ELECTRONIC COMMUNICATIONS in PROBABILITY

A combinatorial proof of the Burdzy–Pitman conjecture*

Stanisław Cichomski[†]

Fedor Petrov[‡]

Abstract

First, we prove the following sharp upper bound for the number of high degree differences in bipartite graphs. Let (U, V, E) be a bipartite graph with $U = \{u_1, u_2, \ldots, u_n\}$ and $V = \{v_1, v_2, \ldots, v_n\}$. For $n \ge k > \frac{n}{2}$ we show that

$$\sum_{1 \le i,j \le n} \mathbb{1}\left\{ |\deg(u_i) - \deg(v_j)| \ge k \right\} \le 2k(n-k).$$

Second, as a corollary, we confirm the Burdzy–Pitman conjecture about the maximal spread of coherent and independent vectors: for $\delta \in (\frac{1}{2}, 1]$ we prove that

 $\mathbb{P}(|X - Y| \ge \delta) \le 2\delta(1 - \delta)$

for all random vectors (X, Y) satisfying $X = \mathbb{P}(A|\mathcal{G})$ and $Y = \mathbb{P}(A|\mathcal{H})$ for some event A and independent σ -fields \mathcal{G} and \mathcal{H} .

Keywords: conditional expectations; coherent opinions; bipartite graphs; maximal inequality. **MSC2020 subject classifications:** 60E15.

Submitted to ECP on October 10, 2022, final version accepted on January 15, 2023.

1 Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say that a random vector (X, Y) defined on this probability space is coherent if there exist sub σ -fields $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ and an event $A \in \mathcal{F}$, such that

$$X = \mathbb{E}(\mathbb{1}_A | \mathcal{G}), \quad Y = \mathbb{E}(\mathbb{1}_A | \mathcal{H}).$$

We will also say that the joint distribution of such (X, Y) is coherent on $[0, 1]^2$. Hereinafter, we write $(X, Y) \in \mathcal{C}$ or $\mu \in \mathcal{C}$ to indicate that the vector (X, Y) or a distribution μ is coherent. By abuse of notation, \mathcal{C} will be used to denote a family of vectors and a family of distributions

As suggested in [6], a coherent vector can be interpreted as objective opinions of two autonomous experts about the odds of some random event A. In this context, we interpret \mathcal{G} and \mathcal{H} as different information sources that are available to the experts. Motivated by this application, it is natural to ask about the maximal possible spread of coherent opinions. Accordingly, Burdzy and Pal [1] proved that for any $\delta \in (\frac{1}{2}, 1]$ and

^{*}The work of the second-named author is supported by *Junior Leader* grant of Theoretical Physics and Mathematics Advancement Foundation "BASIS".

[†]Faculty of Mathematics (MIMUW), University of Warsaw, Poland. E-mail: s.cichomski@uw.edu.pl

[‡]St. Petersburg State University and St. Petersburg Department of the Steklov Mathematical Institute RAS, Russia. E-mail: fedyapetrov@gmail.com

 $(X,Y) \in \mathcal{C}$ the probability $\mathbb{P}(|X-Y| \geq \delta)$ that the difference between coherent random variables exceeds a given threshold δ is bounded above by $\frac{2(1-\delta)}{2-\delta}$. They go on to show that this bound is sharp and it is attained by a random vector (X,Y) with X and Y being dependent random variables. We will write

$$\mathcal{C}_{\mathcal{I}} = \{ (X, Y) \in \mathcal{C} : X \perp Y \},\$$

to denote the family of those coherent vectors whose components are independent. In this paper we prove the following claim stated as a conjecture by Burdzy and Pitman in [2].

Theorem 1.1. If $\delta \in (\frac{1}{2}, 1]$ and $(X, Y) \in C_{\mathcal{I}}$ then

$$\mathbb{P}(|X - Y| \ge \delta) \le 2\delta(1 - \delta).$$
(1.1)

Moreover, the bound $2\delta(1-\delta)$ is optimal.

In other words, Theorem 1.1 provides a sharp upper bound on the maximal spread of coherent opinions in the special case of two experts with access to independent sources of information. Let us point out that restricting δ to $(\frac{1}{2}, 1]$ does not diminish generality of the result. Consider $X' = \mathbb{1}_A$ and $Y' = \mathbb{P}(A)$ for an arbitrary event A with $\mathbb{P}(A) = \frac{1}{2}$. It is easy to see that $(X', Y') \in \mathcal{C}$. In this case, $\mathbb{P}(|X' - Y'| \ge \frac{1}{2}) = 1$. Hence, for all $\delta \in [0, \frac{1}{2}]$ the problem is trivial.

Let us briefly describe our approach and the organization of the paper. Although there are known alternative characterizations of coherent distributions [6, 7, 9], let us quote [2]:

For reasons we do not understand well, these general characterizations seem to be of little help in establishing the evaluations of $\epsilon(\delta)$ [i.e. $\mathbb{P}(|X - Y| \ge \delta)$] discussed above, or in settling a number of related problems about coherent distributions [...].

It is our belief that this is indeed so because of the underlying combinatorial nature of these problems. Discretization and combinatorial techniques appeared already in [1, 5]. Moreover, it is a remarkable fact that the properties of two-dimensional coherent vectors are closely related to the properties of degree sequences of bipartite graphs. An intriguing example of this phenomenon can be found in [12]. Therefore, in order to take advantage of the combinatorial nature of the claim made in Theorem 1.1, we start by discussing its graph-theoretic version. More precisely, we prove the following theorem. **Theorem 1.2.** Let G = (U, V, E) be a bipartite graph with an equal bipartition, i.e.

 $U = \{u_1, u_2, \dots, u_n\}, \quad V = \{v_1, v_2, \dots, v_n\},\$

for some $n \in \mathbb{Z}_+$. For $n \ge k > \frac{n}{2}$ we have

$$\sum_{1 \le i,j \le n} \mathbb{1}\left\{ |\deg(u_i) - \deg(v_j)| \ge k \right\} \le 2k(n-k).$$
(1.2)

Note that the trivial upper bound n^2 is the best possible upper bound in the case $k \leq \frac{n}{2}$. The proof of Theorem 1.2, given in Section 2, is based on an idea similar to the spread bounding theorem of Erdős, Chen, Rousseau and Schelp – see [8, 3]. Later in the same section we provide an elementary example showing that the bound (1.2) is sharp. In Section 3 we show how to transform the Theorem 1.1 to Theorem 1.2. To this end, we make use of an appropriate sampling construction, similar in spirit to [11]. The key idea is to approximate a fixed coherent distribution with a randomly generated sequence of graphs. We then apply Theorem 1.2 to each of the graphs in the sequence and obtain (1.1) by passing to the limit.

2 Number of high degree differences in bipartite graphs

Let G = (U, V, E) be a bipartite graph with an equal bipartition, that is a triplet

$$U = \{u_1, u_2, \dots, u_n\}, V = \{v_1, v_2, \dots, v_n\},\$$

and

 $E \subset U \times V$,

for some fixed $n \in \mathbb{Z}_+$. Let us fix a natural number k satisfying $n \ge k > \frac{n}{2}$. Hereinafter, we denote the degree sequences of G as $(\alpha_i)_{i=1}^n$ and $(\beta_j)_{j=1}^n$, i.e., $\alpha_i = \deg(u_i)$ and $\beta_j = \deg(v_j)$ for all $1 \le i, j \le n$. Without loss of generality we also assume that

$$\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n,$$

$$\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n.$$

We start with an observation similar to the spread bounding theorem of Erdős et al. – see [8].

Lemma 2.1. There exist $s, t \in \{1, 2, ..., n - k + 1\}$ such that $\alpha_s \leq \beta_{s+k-1} + k - 1$ and $\beta_t \leq \alpha_{t+k-1} + k - 1$.

Proof. We will prove only the existence of s, as the case of t is analogous. Assume for the sake of contradiction that such a number s does not exists. Therefore, the total number of edges incident to $u_1, u_2, \ldots, u_{n-k+1}$ is at least $\beta_k + \beta_{k+1} + \cdots + \beta_n + k(n-k+1)$. Observe that at least k(n-k+1) of these edges go to vertices $v_1, v_2, \ldots, v_{k-1}$. Let us denote

$$\tilde{E} := E \cap \left(\{u_1, u_2, \dots, u_{n-k+1}\} \times \{v_1, v_2, \dots, v_{k-1}\} \right).$$

We have just shown that $|\tilde{E}| \ge k(n-k+1)$. On the other hand, we clearly have

$$|\tilde{E}| \le (k-1)(n-k+1),$$

which is a contradiction.

Proof of Theorem 1.2. For $1 \le i, j \le n$, let us call (i, j) an \mathcal{A} -pair if $\alpha_i \ge \beta_j + k$. Analogously, let us call (i, j) a \mathcal{B} -pair if $\beta_j \ge \alpha_i + k$. Since $k > \frac{n}{2}$, we have $\alpha_i > \frac{n}{2}$ for all \mathcal{A} -pairs (i, j) and $\alpha_i < \frac{n}{2}$ for all \mathcal{B} -pairs (i, j). As a consequence, there exists an $i_0 \in \{1, 2, \ldots, n+1\}$ such that:

- 1. $i \leq i_0 1$ for any \mathcal{A} -pair (i, j),
- 2. $i \ge i_0$ for any \mathcal{B} -pair (i, j).

Analogously, there exists $j_0 \in \{1, 2, \dots, n+1\}$ such that:

- 3. $j \leq j_0 1$ for any \mathcal{B} -pair (i, j),
- 4. $j \ge j_0$ for any \mathcal{A} -pair (i, j).

Observe that by Lemma 2.1,

- 5. for any A-pair (i, j) either i < s or j > s + k 1,
- 6. for any \mathcal{B} -pair pair (i, j) either j < t or i > t + k 1.

https://www.imstat.org/ecp

We will now show that conditions 1–6 imply that the total number of A-pairs and B-pairs is at most 2k(n-k). Let us fix $i_0, j_0 \in \{1, 2, ..., n+1\}$. First, we will show that it is sufficient to consider only s and t such that $s, t \in \{1, n-k+1\}$ because these values of s and t are optimal in the sense that they maximize the total number of pairs (i, j) fulfilling all conditions 1–6.

Note that the variable s appears only in the 5-th condition and thus the value of s is not relevant for bounding the number of \mathcal{B} -pairs. Moreover, observe that if $i_0 \leq n-k+1$, then for s = n - k + 1 condition 5 is automatically fulfilled and thus s = n - k + 1 is an optimal value. Similarly, if $j_0 \geq k + 1$, then for s = 1 condition 5 is also automatically fulfilled and s = 1 is an optimal value. Finally, let us assume that $i_0 \geq n-k+2$ and $j_0 \leq k$. In this case, the restrictions imposed by condition 5 remove exactly $(i_0 - s)(s + k - j_0)$ additional pairs. Therefore, as the last expression is a concave function of $s \in [1, n-k+1]$, it is minimized in one of the endpoints. Hence we may assume that s = 1 or s = n - k + 1, as desired. Analogously, we show that t = 1 or t = n - k + 1 is optimal. There are four possible cases now:

- a. s = 1, t = n k + 1. We have $j \ge k + 1$ for all A-pairs and $j \le n k$ for all B-pairs (i, j). Thus any i participates in at most n k of A-pairs and in at most n k of B-pairs. Therefore, since a fixed vertex can not participate in both types of pairs, every i participates overall in at most n k pairs. As a consequence, the total number of pairs does not exceed n(n k) < 2k(n k).
- b. s = n k + 1, t = 1. This case is symmetric to the previous one.
- c. s = 1, t = 1. We have $j \ge k + 1$ for all \mathcal{A} -pairs and $i \ge k + 1$ for all \mathcal{B} -pairs (i, j). Let us denote $a := \max(k + 1, j_0)$ and $b := \max(k + 1, i_0)$. Then the total number of \mathcal{A} -pairs is bounded by (n - a + 1)(b - 1), while the total number of \mathcal{B} -pairs is at most (n - b + 1)(a - 1). Notice, that for $a, b \in [k + 1, n + 1]$ the sum

$$S := (n - a + 1)(b - 1) + (n - b + 1)(a - 1),$$

is bilinear and it is maximized at one of four corners. For a = b = k + 1, we get S = 2k(n-k). For, say a = n + 1, we get $S = n(n-b+1) \leq n(n-k) < 2k(n-k)$.

d. s = n - k + 1, t = n - k + 1. This case is analogous to c.

Hence we have shown that Theorem 1.2 holds in all cases. This ends the proof. \Box

We end this section with an example showing that the upper bound 2k(n-k) in (1.2) cannot be improved. Note that a straightforward modification of this example shows that $2\delta(1-\delta)$ in (1.1) is also sharp.

Example 2.2. Consider $n, k \in \mathbb{Z}_+$, with $n \ge k > \frac{n}{2}$. Let $G_{n,k} = (U, V, E)$, where $U = V = \{1, 2, \ldots, n\}$ and

$$E = \{(u, v) \in U \times V : \max(u, v) \le k\}.$$

We clearly have

1

$$\sum_{\leq i,j \leq n} \mathbb{1}\left\{ \left| \deg(u_i) - \deg(v_j) \right| \geq k \right\} = 2k(n-k).$$

Moreover, one can check that inequality (1.2) becomes an equality exactly for those graphs G that are isomorphic to $G_{n,k}$ or to its complement $\overline{G}_{n,k}$. This follows easily from the proof of Theorem 1.2 and we leave the details to interested reader.

Proof of the Burdzy-Pitman conjecture

3 Proof of the Burdzy-Pitman conjecture

By $C_{\mathcal{I}}(m)$ we denote the set of $(X, Y) \in C_{\mathcal{I}}$ such that both X and Y take at most m different values.

Proposition 3.1. Let (X, Y) be coherent and independent, and let m be a positive integer. Then there exists $(X_m, Y_m) \in C_{\mathcal{I}}(m)$, such that $|X - X_m| \leq \frac{1}{m}$ and $|Y - Y_m| \leq \frac{1}{m}$, almost surely.

The proof of the above Proposition can be found in [4, 1]. In what follows, fix any $\delta \in (\frac{1}{2}, 1]$.

Proposition 3.2. To prove Theorem 1.1 it is enough to verify it for all $(X, Y) \in C_{\mathcal{I}}(m)$, $m \ge 1$.

Proof. Fix $(X,Y) \in C_{\mathcal{I}}$ and choose (X_m,Y_m) as in Proposition 3.1. By the triangle inequality we get

$$\mathbb{P}(|X - Y| \ge \delta) \le \mathbb{P}(|X_m - Y_m| \ge \delta - 2/m).$$

Thus, assuming that Theorem 1.1 is true for all $(X, Y) \in \bigcup_{m=1}^{\infty} C_{\mathcal{I}}(m)$, for m large enough so that $\delta - 2/m > 1/2$, we obtain

$$\mathbb{P}(|X - Y| \ge \delta) \le 2(\delta - 2/m)(1 - \delta + 2/m).$$

Letting $m \to \infty$ completes the proof.

We are now able to prove our main result.

Proof of Theorem 1.1. Fix $(X, Y) \in \bigcup_{m=1}^{\infty} C_{\mathcal{I}}(m)$. There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, independent sub σ -fields $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ and an event $A \in \mathcal{F}$, such that $X = \mathbb{E}(\mathbb{1}_A | \mathcal{G})$ and $Y = \mathbb{E}(\mathbb{1}_A | \mathcal{H})$. Furthermore, for some $N, M \in \mathbb{Z}_+$, we may suppose that X takes values x_1, x_2, \ldots, x_N on sets G_1, G_2, \ldots, G_N and Y takes values y_1, y_2, \ldots, y_M on sets H_1, H_2, \ldots, H_M . We can also assume without loss of generality that

$$\mathcal{G} = \sigma \Big(G_1, G_2, \dots, G_N \Big),$$

 $\mathcal{H} = \sigma \Big(H_1, H_2, \dots, H_M \Big).$

For $1 \leq i \leq N$ and $1 \leq j \leq M$, let $p_i = \mathbb{P}(G_i), q_j = \mathbb{P}(H_j)$ and

$$\rho_{i,j} = \frac{\mathbb{P}(G_i \cap H_j \cap A)}{\mathbb{P}(G_i \cap H_j)}$$

Then by independence we have $\mathbb{P}(G_i \cap H_j) = p_i q_j$ and

$$x_i = \sum_{j=1}^{M} q_j \rho_{i,j}, \qquad 1 \le i \le N,$$
 (3.1)

$$y_j = \sum_{i=1}^{N} p_i \rho_{i,j}, \quad 1 \le j \le M.$$
 (3.2)

First, we show how to construct a sequence of bipartite graphs $G_n = (U_n, V_n, E_n)$ with $|U_n| = |V_n| = n$, such that:

(C1) there are $p_i n + O(n^{3/4})$ vertices in U_n of degree $x_i n + O(n^{3/4})$, i = 1, 2, ..., N, (C2) there are $q_j n + O(n^{3/4})$ vertices in V_n of degree $y_j n + O(n^{3/4})$, j = 1, 2, ..., M,

ECP 28 (2023), paper 3.

https://www.imstat.org/ecp

where by $O(n^{3/4})$ we denote any quantity bounded in magnitude by $Cn^{3/4}$ for some constant $C < \infty$ independent of n, N, M, i and j.

Fix $n \geq 1$ and choose n independent points u_1, u_2, \ldots, u_n in the initial space Ω (distributed according to \mathbb{P}) and for $1 \leq i \leq n$ denote $\alpha_i = s$ if $u_i \in G_s$. In other words, $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is an i.i.d. sample from the set $\{1, 2, \ldots, N\}$ with weights p_1, p_2, \ldots, p_N , respectively. We can think about this sample as a randomly generated sequence of labels. Let $A_s = \sum_{i=1}^n \mathbb{1}_{\{\alpha_i = s\}}$ be the number of labels equal to $s, 1 \leq s \leq N$. Observe that A_s is the sum of n independent Bernoulli random variables. Hence, by Hoeffding's inequality [10], we have

$$\mathbb{P}(|A_s - np_s| \ge nr) \le 2 \cdot e^{-2nr^2},$$

for all positive r. Consequently, setting $r = n^{-1/4}$ we get

$$\mathbb{P}(|A_s - np_s| \ge n^{3/4}) \le 2 \cdot e^{-2\sqrt{n}}.$$

Thus, for large n, with high probability we have $|A_s - np_s| < n^{3/4}$ simultaneously for all $1 \le s \le N$.

Analogously, we choose points v_1, v_2, \ldots, v_n and generate an i.i.d. sample $(\beta_1, \beta_2, \ldots, \beta_n)$ from the set $\{1, 2, \ldots, M\}$ with weights q_1, q_2, \ldots, q_M . If $B_t = \sum_{j=1}^n \mathbb{1}_{\{\beta_j=t\}}$ for $1 \le t \le M$ then, for large n, with high probability $|B_t - nq_t| < n^{3/4}$ for all t simultaneously.

Given the points $(u_i)_{i=1}^n$ and $(v_j)_{j=1}^n$ and the corresponding labels $(\alpha_i)_{i=1}^n$ and $(\beta_j)_{j=1}^n$, we will generate independently edges of a random bipartite graph (U_n, V_n, E_n) , where $U_n = \{u_1, u_2, \ldots, u_n\}$ and $V_n = \{v_1, v_2, \ldots, v_n\}$. The subscripts on $\mathbb{P}_{\alpha,\beta}$ and $\mathbb{E}_{\alpha,\beta}$ will denote conditioning on $(\alpha_i)_{i=1}^n$ and $(\beta_j)_{j=1}^n$.

1. Generate independent indicator random variables $Z_{i,j}$ for $1 \le i,j \le n$ satisfying

$$\mathbb{P}_{\alpha,\beta}(Z_{i,j}=1) = 1 - \mathbb{P}_{\alpha,\beta}(Z_{i,j}=0) = \rho_{\alpha_i,\beta_j},$$

2. for $1 \leq i, j \leq n$, set $(u_i, v_j) \in E_n$ iff $Z_{i,j} = 1$.

Hence, $Z_{i,j} = \mathbb{1}_{\{(u_i, v_j) \in E_n\}}$. For $1 \le i \le n$,

$$\mathbb{E}_{\alpha,\beta} \operatorname{deg}(u_i) = \mathbb{E}_{\alpha,\beta}\left(\sum_{j=1}^n Z_{i,j}\right) = \sum_{t=1}^M B_t \rho_{\alpha_i,t} = \sum_{t=1}^M \left(nq_t + O(n^{3/4})\right) \rho_{\alpha_i,t},$$

and hence, by (3.1),

$$\mathbb{E}_{\alpha,\beta} \deg(u_i) = n x_{\alpha_i} + O(n^{3/4}).$$
(3.3)

Similarly, for $1 \le j \le n$, by (3.2) we get

$$\mathbb{E}_{\alpha,\beta} \deg(v_j) = n y_{\beta_j} + O(n^{3/4}).$$
(3.4)

We apply Hoeffdings's inequality again to obtain

$$\mathbb{P}_{\alpha,\beta}\Big(|\deg(u_i) - \mathbb{E}_{\alpha,\beta} \deg(u_i)| \ge n^{3/4}\Big) \le 2 \cdot e^{-2\sqrt{n}},\tag{3.5}$$

and

$$\mathbb{P}_{\alpha,\beta}\Big(|\deg(v_j) - \mathbb{E}_{\alpha,\beta} \deg(v_j)| \ge n^{3/4}\Big) \le 2 \cdot e^{-2\sqrt{n}},\tag{3.6}$$

for all $i, j \in \{1, 2, ..., n\}$. Note that the concentration rates (3.5) and (3.6) are exponential in \sqrt{n} . Thus, since n is large, with high probability all these inequalities hold simultaneously. Then, by (3.3) and (3.4), we have $\deg(u_i) = nx_{\alpha_i} + O(n^{3/4})$ and $\deg(v_j) = ny_{\beta_j} + O(n^{3/4})$ for all $i, j \in \{1, 2, ..., n\}$ with high probability. This, together

ECP 28 (2023), paper 3.

with bounds on $(A_s)_{s=1}^N$ and $(B_t)_{t=1}^M$, proves that (deterministic) G_n 's satisfying conditions (C1)-(C2) exist for large n.

In what follows, we add additional subscripts and write $u_i^{(n)}$ and $v_j^{(n)}$ for generic elements of U_n and V_n , respectively. We can now write

$$\mathbb{P}(|X - Y| \ge \delta) = \sum_{\substack{1 \le i \le N \\ 1 \le j \le M}} \mathbb{1}_{\{|x_i - y_j| \ge \delta\}} \cdot p_i q_j$$
$$= \lim_{n \to \infty} \frac{1}{n^2} \sum_{\substack{1 \le i \le N \\ 1 \le j \le M}} \mathbb{1}_{\{|nx_i - ny_j| \ge n\delta\}} \cdot \left(p_i n + O(n^{3/4})\right) \left(q_j n + O(n^{3/4})\right).$$
(3.7)

By the triangle inequality

$$|nx_{\alpha_i} - ny_{\beta_j}| \leq |\deg(u_i^{(n)}) - \deg(v_j^{(n)})| + 2 \cdot O(n^{3/4}),$$

for all $i, j \in \{1, 2, ..., n\}$. This and (C1)-(C2) imply that we can bound the right hand side of (3.7) by

$$\leq \limsup_{n \to \infty} \frac{1}{n^2} \sum_{1 \leq i, j \leq n} \mathbb{1}\Big\{ |\deg(u_i^{(n)}) - \deg(v_j^{(n)})| \geq n\delta - 2O(n^{3/4}) \Big\}.$$

Finally, applying Theorem 1.2 to bipartite graphs G_n , we obtain

$$\leq \limsup_{n \to \infty} \frac{1}{n^2} \cdot 2 \Big(n\delta - 2O(n^{3/4}) \Big) \Big(n - n\delta + 2O(n^{3/4}) \Big) = 2\delta(1 - \delta),$$

which ends the proof.

References

- Burdzy, K. and Pal, S.: Can coherent predictions be contradictory? Adv. in Appl. Probab. 53, (2021), 133–161. MR4232752
- [2] Burdzy, K. and Pitman, J.: Bounds on the probability of radically different opinion. *Electron. Commun. Probab.* 25, (2020), 1–12. MR4069734
- [3] Caro, Y. and Lauri, J. and Zarb, C.: Notes on Spreads of Degrees in Graphs. Bull. Inst. Combin. Appl. 85, (2019), 79–91. MR3888898
- [4] Cichomski, S.: Maximal spread of coherent distributions: a geometric and combinatorial perspective. *Master's thesis University of Warsaw*, (2020), arXiv:2007.08022
- [5] Cichomski, S. and Osękowski, A.: The maximal difference among expert's opinions. *Electron. J. Probab.* 26, (2021), 1–17. MR4290507
- [6] Dawid, A.P. and DeGroot, M.H. and Mortera, J.: Coherent combination of experts' opinions. *Test.* 4, (1995), 263–313. MR1379793
- [7] Dubins, L.E. and Pitman, J.: A maximal inequality for skew fields. Z. Wahrsch. Verw. Gebiete. 52, (1980), 219–227. MR0576883
- [8] Erdős, P. and Chen, G. and Rousseau, C.C. and Schelp, R.H.: Ramsey problems involving degrees in edge-colored complete graphs of vertices belonging to monochromatic subgraphs. *European J. Combin.* 14, (1993), 183–189. MR1215330
- [9] Gutmann, S. and Kemperman, J. H. B. and Reeds, J. A. and Shepp, L.A.: Existence of probability measures with given marginals. Ann. Probab. 19, (1991), 1781–1797. MR1127728
- [10] Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc 58, (1963), 13–30. MR0144363
- [11] Lovász, L.: Large Networks and Graph Limits. American Mathematical Society, Providence, 2012. xiv+475 pp. MR3012035
- [12] Tao, T.: Szemerédi's regularity lemma revisited. Contrib. Discrete Math. 1, (2006), 8–28. MR2212136]

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS¹)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by IMS³, BS⁴, ProjectEuclid⁵
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund⁶ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

¹LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

 $^{^2} EJMS: Electronic \ Journal \ Management \ System: \ \texttt{https://vtex.lt/services/ejms-peer-review/}$

³IMS: Institute of Mathematical Statistics http://www.imstat.org/

⁴BS: Bernoulli Society http://www.bernoulli-society.org/

⁵Project Euclid: https://projecteuclid.org/

⁶IMS Open Access Fund: https://imstat.org/shop/donation/