A combinatorial proof of the Burdzy-Pitman conjecture*

Stanisław Cichomski ${ }^{\dagger} \quad$ Fedor Petrov ${ }^{\ddagger}$

Abstract

First, we prove the following sharp upper bound for the number of high degree differences in bipartite graphs. Let (U, V, E) be a bipartite graph with $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $n \geq k>\frac{n}{2}$ we show that $$
\sum_{1 \leq i, j \leq n} \mathbb{1}\left\{\left|\operatorname{deg}\left(u_{i}\right)-\operatorname{deg}\left(v_{j}\right)\right| \geq k\right\} \leq 2 k(n-k)
$$

Second, as a corollary, we confirm the Burdzy-Pitman conjecture about the maximal spread of coherent and independent vectors: for $\delta \in\left(\frac{1}{2}, 1\right]$ we prove that $$
\mathbb{P}(|X-Y| \geq \delta) \leq 2 \delta(1-\delta)
$$ for all random vectors (X, Y) satisfying $X=\mathbb{P}(A \mid \mathcal{G})$ and $Y=\mathbb{P}(A \mid \mathcal{H})$ for some event A and independent σ-fields \mathcal{G} and \mathcal{H}.

Keywords: conditional expectations; coherent opinions; bipartite graphs; maximal inequality. MSC2020 subject classifications: 60E15. Submitted to ECP on October 10, 2022, final version accepted on January 15, 2023.

1 Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say that a random vector (X, Y) defined on this probability space is coherent if there exist sub σ-fields $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ and an event $A \in \mathcal{F}$, such that

$$
X=\mathbb{E}\left(\mathbb{1}_{A} \mid \mathcal{G}\right), \quad Y=\mathbb{E}\left(\mathbb{1}_{A} \mid \mathcal{H}\right)
$$

We will also say that the joint distribution of such (X, Y) is coherent on $[0,1]^{2}$. Hereinafter, we write $(X, Y) \in \mathcal{C}$ or $\mu \in \mathcal{C}$ to indicate that the vector (X, Y) or a distribution μ is coherent. By abuse of notation, \mathcal{C} will be used to denote a family of vectors and a family of distributions

As suggested in [6], a coherent vector can be interpreted as objective opinions of two autonomous experts about the odds of some random event A. In this context, we interpret \mathcal{G} and \mathcal{H} as different information sources that are available to the experts. Motivated by this application, it is natural to ask about the maximal possible spread of coherent opinions. Accordingly, Burdzy and Pal [1] proved that for any $\delta \in\left(\frac{1}{2}, 1\right]$ and

[^0]$(X, Y) \in \mathcal{C}$ the probability $\mathbb{P}(|X-Y| \geq \delta)$ that the difference between coherent random variables exceeds a given threshold δ is bounded above by $\frac{2(1-\delta)}{2-\delta}$. They go on to show that this bound is sharp and it is attained by a random vector (X, Y) with X and Y being dependent random variables. We will write
$$
\mathcal{C}_{\mathcal{I}}=\{(X, Y) \in \mathcal{C}: X \perp Y\}
$$
to denote the family of those coherent vectors whose components are independent. In this paper we prove the following claim stated as a conjecture by Burdzy and Pitman in [2].
Theorem 1.1. If $\delta \in\left(\frac{1}{2}, 1\right]$ and $(X, Y) \in \mathcal{C}_{\mathcal{I}}$ then
\[

$$
\begin{equation*}
\mathbb{P}(|X-Y| \geq \delta) \leq 2 \delta(1-\delta) \tag{1.1}
\end{equation*}
$$

\]

Moreover, the bound $2 \delta(1-\delta)$ is optimal.
In other words, Theorem 1.1 provides a sharp upper bound on the maximal spread of coherent opinions in the special case of two experts with access to independent sources of information. Let us point out that restricting δ to $\left(\frac{1}{2}, 1\right]$ does not diminish generality of the result. Consider $X^{\prime}=\mathbb{1}_{A}$ and $Y^{\prime}=\mathbb{P}(A)$ for an arbitrary event A with $\mathbb{P}(A)=\frac{1}{2}$. It is easy to see that $\left(X^{\prime}, Y^{\prime}\right) \in \mathcal{C}$. In this case, $\mathbb{P}\left(\left|X^{\prime}-Y^{\prime}\right| \geq \frac{1}{2}\right)=1$. Hence, for all $\delta \in\left[0, \frac{1}{2}\right]$ the problem is trivial.

Let us briefly describe our approach and the organization of the paper. Although there are known alternative characterizations of coherent distributions [6, 7, 9], let us quote [2]:

For reasons we do not understand well, these general characterizations seem to be of little help in establishing the evaluations of $\epsilon(\delta)$ [i.e. $\mathbb{P}(|X-Y| \geq \delta)$] discussed above, or in settling a number of related problems about coherent distributions [...].

It is our belief that this is indeed so because of the underlying combinatorial nature of these problems. Discretization and combinatorial techniques appeared already in $[1,5]$. Moreover, it is a remarkable fact that the properties of two-dimensional coherent vectors are closely related to the properties of degree sequences of bipartite graphs. An intriguing example of this phenomenon can be found in [12]. Therefore, in order to take advantage of the combinatorial nature of the claim made in Theorem 1.1, we start by discussing its graph-theoretic version. More precisely, we prove the following theorem.
Theorem 1.2. Let $G=(U, V, E)$ be a bipartite graph with an equal bipartition, i.e.

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, \quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

for some $n \in \mathbb{Z}_{+}$. For $n \geq k>\frac{n}{2}$ we have

$$
\begin{equation*}
\sum_{1 \leq i, j \leq n} \mathbb{1}\left\{\left|\operatorname{deg}\left(u_{i}\right)-\operatorname{deg}\left(v_{j}\right)\right| \geq k\right\} \leq 2 k(n-k) \tag{1.2}
\end{equation*}
$$

Note that the trivial upper bound n^{2} is the best possible upper bound in the case $k \leq \frac{n}{2}$. The proof of Theorem 1.2, given in Section 2, is based on an idea similar to the spread bounding theorem of Erdős, Chen, Rousseau and Schelp - see [8, 3]. Later in the same section we provide an elementary example showing that the bound (1.2) is sharp. In Section 3 we show how to transform the Theorem 1.1 to Theorem 1.2. To this end, we make use of an appropriate sampling construction, similar in spirit to [11]. The key idea is to approximate a fixed coherent distribution with a randomly generated sequence of graphs. We then apply Theorem 1.2 to each of the graphs in the sequence and obtain (1.1) by passing to the limit.

2 Number of high degree differences in bipartite graphs

Let $G=(U, V, E)$ be a bipartite graph with an equal bipartition, that is a triplet

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, \quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},
$$

and

$$
E \subset U \times V
$$

for some fixed $n \in \mathbb{Z}_{+}$. Let us fix a natural number k satisfying $n \geq k>\frac{n}{2}$. Hereinafter, we denote the degree sequences of G as $\left(\alpha_{i}\right)_{i=1}^{n}$ and $\left(\beta_{j}\right)_{j=1}^{n}$, i.e., $\alpha_{i}=\operatorname{deg}\left(u_{i}\right)$ and $\beta_{j}=\operatorname{deg}\left(v_{j}\right)$ for all $1 \leq i, j \leq n$. Without loss of generality we also assume that

$$
\begin{gathered}
\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n} \\
\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n} .
\end{gathered}
$$

We start with an observation similar to the spread bounding theorem of Erdős et al. see [8].
Lemma 2.1. There exist $s, t \in\{1,2, \ldots, n-k+1\}$ such that $\alpha_{s} \leq \beta_{s+k-1}+k-1$ and $\beta_{t} \leq \alpha_{t+k-1}+k-1$.

Proof. We will prove only the existence of s, as the case of t is analogous. Assume for the sake of contradiction that such a number s does not exists. Therefore, the total number of edges incident to $u_{1}, u_{2}, \ldots, u_{n-k+1}$ is at least $\beta_{k}+\beta_{k+1}+\cdots+\beta_{n}+k(n-k+1)$. Observe that at least $k(n-k+1)$ of these edges go to vertices $v_{1}, v_{2}, \ldots, v_{k-1}$. Let us denote

$$
\tilde{E}:=E \cap\left(\left\{u_{1}, u_{2}, \ldots, u_{n-k+1}\right\} \times\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}\right) .
$$

We have just shown that $|\tilde{E}| \geq k(n-k+1)$. On the other hand, we clearly have

$$
|\tilde{E}| \leq(k-1)(n-k+1)
$$

which is a contradiction.
Proof of Theorem 1.2. For $1 \leq i, j \leq n$, let us call (i, j) an \mathcal{A}-pair if $\alpha_{i} \geq \beta_{j}+k$. Analogously, let us call (i, j) a \mathcal{B}-pair if $\beta_{j} \geq \alpha_{i}+k$. Since $k>\frac{n}{2}$, we have $\alpha_{i}>\frac{n}{2}$ for all \mathcal{A}-pairs (i, j) and $\alpha_{i}<\frac{n}{2}$ for all \mathcal{B}-pairs (i, j). As a consequence, there exists an $i_{0} \in\{1,2, \ldots, n+1\}$ such that:

1. $i \leq i_{0}-1$ for any \mathcal{A}-pair (i, j),
2. $i \geq i_{0}$ for any \mathcal{B}-pair (i, j).

Analogously, there exists $j_{0} \in\{1,2, \ldots, n+1\}$ such that:
3. $j \leq j_{0}-1$ for any \mathcal{B}-pair (i, j),
4. $j \geq j_{0}$ for any \mathcal{A}-pair (i, j).

Observe that by Lemma 2.1,
5. for any \mathcal{A}-pair (i, j) either $i<s$ or $j>s+k-1$,
6. for any \mathcal{B}-pair pair (i, j) either $j<t$ or $i>t+k-1$.

We will now show that conditions $1-6$ imply that the total number of \mathcal{A}-pairs and \mathcal{B}-pairs is at most $2 k(n-k)$. Let us fix $i_{0}, j_{0} \in\{1,2, \ldots, n+1\}$. First, we will show that it is sufficient to consider only s and t such that $s, t \in\{1, n-k+1\}$ because these values of s and t are optimal in the sense that they maximize the total number of pairs (i, j) fulfilling all conditions 1-6.

Note that the variable s appears only in the 5 -th condition and thus the value of s is not relevant for bounding the number of \mathcal{B}-pairs. Moreover, observe that if $i_{0} \leq n-k+1$, then for $s=n-k+1$ condition 5 is automatically fulfilled and thus $s=n-k+1$ is an optimal value. Similarly, if $j_{0} \geq k+1$, then for $s=1$ condition 5 is also automatically fulfilled and $s=1$ is an optimal value. Finally, let us assume that $i_{0} \geq n-k+2$ and $j_{0} \leq k$. In this case, the restrictions imposed by condition 5 remove exactly $\left(i_{0}-s\right)\left(s+k-j_{0}\right)$ additional pairs. Therefore, as the last expression is a concave function of $s \in[1, n-k+1]$, it is minimized in one of the endpoints. Hence we may assume that $s=1$ or $s=n-k+1$, as desired. Analogously, we show that $t=1$ or $t=n-k+1$ is optimal. There are four possible cases now:
a. $s=1, t=n-k+1$. We have $j \geq k+1$ for all \mathcal{A}-pairs and $j \leq n-k$ for all \mathcal{B}-pairs (i, j). Thus any i participates in at most $n-k$ of \mathcal{A}-pairs and in at most $n-k$ of \mathcal{B}-pairs. Therefore, since a fixed vertex can not participate in both types of pairs, every i participates overall in at most $n-k$ pairs. As a consequence, the total number of pairs does not exceed $n(n-k)<2 k(n-k)$.
b. $s=n-k+1, t=1$. This case is symmetric to the previous one.
c. $s=1, t=1$. We have $j \geq k+1$ for all \mathcal{A}-pairs and $i \geq k+1$ for all \mathcal{B}-pairs (i, j). Let us denote $a:=\max \left(k+1, j_{0}\right)$ and $b:=\max \left(k+1, i_{0}\right)$. Then the total number of \mathcal{A}-pairs is bounded by $(n-a+1)(b-1)$, while the total number of \mathcal{B}-pairs is at most $(n-b+1)(a-1)$. Notice, that for $a, b \in[k+1, n+1]$ the sum

$$
S:=(n-a+1)(b-1)+(n-b+1)(a-1)
$$

is bilinear and it is maximized at one of four corners. For $a=b=k+1$, we get $S=2 k(n-k)$. For, say $a=n+1$, we get $S=n(n-b+1) \leqslant n(n-k)<2 k(n-k)$.
d. $s=n-k+1, t=n-k+1$. This case is analogous to c .

Hence we have shown that Theorem 1.2 holds in all cases. This ends the proof.
We end this section with an example showing that the upper bound $2 k(n-k)$ in (1.2) cannot be improved. Note that a straightforward modification of this example shows that $2 \delta(1-\delta)$ in (1.1) is also sharp.
Example 2.2. Consider $n, k \in \mathbb{Z}_{+}$, with $n \geq k>\frac{n}{2}$. Let $G_{n, k}=(U, V, E)$, where $U=V=\{1,2, \ldots, n\}$ and

$$
E=\{(u, v) \in U \times V: \max (u, v) \leq k\}
$$

We clearly have

$$
\sum_{1 \leq i, j \leq n} \mathbb{1}\left\{\left|\operatorname{deg}\left(u_{i}\right)-\operatorname{deg}\left(v_{j}\right)\right| \geq k\right\}=2 k(n-k)
$$

Moreover, one can check that inequality (1.2) becomes an equality exactly for those graphs G that are isomorphic to $G_{n, k}$ or to its complement $\bar{G}_{n, k}$. This follows easily from the proof of Theorem 1.2 and we leave the details to interested reader.

3 Proof of the Burdzy-Pitman conjecture

By $\mathcal{C}_{\mathcal{I}}(m)$ we denote the set of $(X, Y) \in \mathcal{C}_{\mathcal{I}}$ such that both X and Y take at most m different values.
Proposition 3.1. Let (X, Y) be coherent and independent, and let m be a positive integer. Then there exists $\left(X_{m}, Y_{m}\right) \in \mathcal{C}_{\mathcal{I}}(m)$, such that $\left|X-X_{m}\right| \leq \frac{1}{m}$ and $\left|Y-Y_{m}\right| \leq \frac{1}{m}$, almost surely.

The proof of the above Proposition can be found in [4, 1]. In what follows, fix any $\delta \in\left(\frac{1}{2}, 1\right]$.
Proposition 3.2. To prove Theorem 1.1 it is enough to verify it for all $(X, Y) \in \mathcal{C}_{\mathcal{I}}(m)$, $m \geq 1$.

Proof. Fix $(X, Y) \in \mathcal{C}_{\mathcal{I}}$ and choose $\left(X_{m}, Y_{m}\right)$ as in Proposition 3.1. By the triangle inequality we get

$$
\mathbb{P}(|X-Y| \geq \delta) \leq \mathbb{P}\left(\left|X_{m}-Y_{m}\right| \geq \delta-2 / m\right)
$$

Thus, assuming that Theorem 1.1 is true for all $(X, Y) \in \cup_{m=1}^{\infty} \mathcal{C}_{\mathcal{I}}(m)$, for m large enough so that $\delta-2 / m>1 / 2$, we obtain

$$
\mathbb{P}(|X-Y| \geq \delta) \leq 2(\delta-2 / m)(1-\delta+2 / m)
$$

Letting $m \rightarrow \infty$ completes the proof.
We are now able to prove our main result.
Proof of Theorem 1.1. Fix $(X, Y) \in \bigcup_{m=1}^{\infty} \mathcal{C}_{\mathcal{I}}(m)$. There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, independent sub σ-fields $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ and an event $A \in \mathcal{F}$, such that $X=\mathbb{E}\left(\mathbb{1}_{A} \mid \mathcal{G}\right)$ and $Y=\mathbb{E}\left(\mathbb{1}_{A} \mid \mathcal{H}\right)$. Furthermore, for some $N, M \in \mathbb{Z}_{+}$, we may suppose that X takes values $x_{1}, x_{2}, \ldots, x_{N}$ on sets $G_{1}, G_{2}, \ldots, G_{N}$ and Y takes values $y_{1}, y_{2}, \ldots, y_{M}$ on sets $H_{1}, H_{2}, \ldots, H_{M}$. We can also assume without loss of generality that

$$
\begin{aligned}
& \mathcal{G}=\sigma\left(G_{1}, G_{2}, \ldots, G_{N}\right), \\
& \mathcal{H}=\sigma\left(H_{1}, H_{2}, \ldots, H_{M}\right) .
\end{aligned}
$$

For $1 \leq i \leq N$ and $1 \leq j \leq M$, let $p_{i}=\mathbb{P}\left(G_{i}\right), q_{j}=\mathbb{P}\left(H_{j}\right)$ and

$$
\rho_{i, j}=\frac{\mathbb{P}\left(G_{i} \cap H_{j} \cap A\right)}{\mathbb{P}\left(G_{i} \cap H_{j}\right)} .
$$

Then by independence we have $\mathbb{P}\left(G_{i} \cap H_{j}\right)=p_{i} q_{j}$ and

$$
\begin{array}{ll}
x_{i}=\sum_{j=1}^{M} q_{j} \rho_{i, j}, & 1 \leq i \leq N, \\
y_{j}=\sum_{i=1}^{N} p_{i} \rho_{i, j}, & 1 \leq j \leq M . \tag{3.2}
\end{array}
$$

First, we show how to construct a sequence of bipartite graphs $G_{n}=\left(U_{n}, V_{n}, E_{n}\right)$ with $\left|U_{n}\right|=\left|V_{n}\right|=n$, such that:
(C1) there are $p_{i} n+O\left(n^{3 / 4}\right)$ vertices in U_{n} of degree $x_{i} n+O\left(n^{3 / 4}\right), i=1,2, \ldots, N$,
(C2) there are $q_{j} n+O\left(n^{3 / 4}\right)$ vertices in V_{n} of degree $y_{j} n+O\left(n^{3 / 4}\right), j=1,2, \ldots, M$,
where by $O\left(n^{3 / 4}\right)$ we denote any quantity bounded in magnitude by $C n^{3 / 4}$ for some constant $C<\infty$ independent of n, N, M, i and j.

Fix $n \geq 1$ and choose n independent points $u_{1}, u_{2}, \ldots, u_{n}$ in the initial space Ω (distributed according to \mathbb{P}) and for $1 \leq i \leq n$ denote $\alpha_{i}=s$ if $u_{i} \in G_{s}$. In other words, $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is an i.i.d. sample from the set $\{1,2, \ldots, N\}$ with weights $p_{1}, p_{2}, \ldots, p_{N}$, respectively. We can think about this sample as a randomly generated sequence of labels. Let $A_{s}=\sum_{i=1}^{n} \mathbb{1}_{\left\{\alpha_{i}=s\right\}}$ be the number of labels equal to $s, 1 \leq s \leq N$. Observe that A_{s} is the sum of n independent Bernoulli random variables. Hence, by Hoeffding's inequality [10], we have

$$
\mathbb{P}\left(\left|A_{s}-n p_{s}\right| \geq n r\right) \leq 2 \cdot e^{-2 n r^{2}}
$$

for all positive r. Consequently, setting $r=n^{-1 / 4}$ we get

$$
\mathbb{P}\left(\left|A_{s}-n p_{s}\right| \geq n^{3 / 4}\right) \leq 2 \cdot e^{-2 \sqrt{n}}
$$

Thus, for large n, with high probability we have $\left|A_{s}-n p_{s}\right|<n^{3 / 4}$ simultaneously for all $1 \leq s \leq N$.

Analogously, we choose points $v_{1}, v_{2}, \ldots, v_{n}$ and generate an i.i.d. sample ($\beta_{1}, \beta_{2}, \ldots$, β_{n}) from the set $\{1,2, \ldots, M\}$ with weights $q_{1}, q_{2}, \ldots, q_{M}$. If $B_{t}=\sum_{j=1}^{n} \mathbb{1}_{\left\{\beta_{j}=t\right\}}$ for $1 \leq t \leq M$ then, for large n, with high probability $\left|B_{t}-n q_{t}\right|<n^{3 / 4}$ for all t simultaneously.

Given the points $\left(u_{i}\right)_{i=1}^{n}$ and $\left(v_{j}\right)_{j=1}^{n}$ and the corresponding labels $\left(\alpha_{i}\right)_{i=1}^{n}$ and $\left(\beta_{j}\right)_{j=1}^{n}$, we will generate independently edges of a random bipartite graph $\left(U_{n}, V_{n}, E_{n}\right)$, where $U_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{n}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The subscripts on $\mathbb{P}_{\alpha, \beta}$ and $\mathbb{E}_{\alpha, \beta}$ will denote conditioning on $\left(\alpha_{i}\right)_{i=1}^{n}$ and $\left(\beta_{j}\right)_{j=1}^{n}$.

1. Generate independent indicator random variables $Z_{i, j}$ for $1 \leq i, j \leq n$ satisfying

$$
\mathbb{P}_{\alpha, \beta}\left(Z_{i, j}=1\right)=1-\mathbb{P}_{\alpha, \beta}\left(Z_{i, j}=0\right)=\rho_{\alpha_{i}, \beta_{j}}
$$

2. for $1 \leq i, j \leq n$, set $\left(u_{i}, v_{j}\right) \in E_{n}$ iff $Z_{i, j}=1$.

Hence, $Z_{i, j}=\mathbb{1}_{\left\{\left(u_{i}, v_{j}\right) \in E_{n}\right\}}$. For $1 \leq i \leq n$,

$$
\mathbb{E}_{\alpha, \beta} \operatorname{deg}\left(u_{i}\right)=\mathbb{E}_{\alpha, \beta}\left(\sum_{j=1}^{n} Z_{i, j}\right)=\sum_{t=1}^{M} B_{t} \rho_{\alpha_{i}, t}=\sum_{t=1}^{M}\left(n q_{t}+O\left(n^{3 / 4}\right)\right) \rho_{\alpha_{i}, t}
$$

and hence, by (3.1),

$$
\begin{equation*}
\mathbb{E}_{\alpha, \beta} \operatorname{deg}\left(u_{i}\right)=n x_{\alpha_{i}}+O\left(n^{3 / 4}\right) \tag{3.3}
\end{equation*}
$$

Similarly, for $1 \leq j \leq n$, by (3.2) we get

$$
\begin{equation*}
\mathbb{E}_{\alpha, \beta} \operatorname{deg}\left(v_{j}\right)=n y_{\beta_{j}}+O\left(n^{3 / 4}\right) \tag{3.4}
\end{equation*}
$$

We apply Hoeffdings's inequality again to obtain

$$
\begin{equation*}
\mathbb{P}_{\alpha, \beta}\left(\left|\operatorname{deg}\left(u_{i}\right)-\mathbb{E}_{\alpha, \beta} \operatorname{deg}\left(u_{i}\right)\right| \geq n^{3 / 4}\right) \leq 2 \cdot e^{-2 \sqrt{n}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}_{\alpha, \beta}\left(\left|\operatorname{deg}\left(v_{j}\right)-\mathbb{E}_{\alpha, \beta} \operatorname{deg}\left(v_{j}\right)\right| \geq n^{3 / 4}\right) \leq 2 \cdot e^{-2 \sqrt{n}} \tag{3.6}
\end{equation*}
$$

for all $i, j \in\{1,2, \ldots, n\}$. Note that the concentration rates (3.5) and (3.6) are exponential in \sqrt{n}. Thus, since n is large, with high probability all these inequalities hold simultaneously. Then, by (3.3) and (3.4), we have $\operatorname{deg}\left(u_{i}\right)=n x_{\alpha_{i}}+O\left(n^{3 / 4}\right)$ and $\operatorname{deg}\left(v_{j}\right)=n y_{\beta_{j}}+O\left(n^{3 / 4}\right)$ for all $i, j \in\{1,2, \ldots, n\}$ with high probability. This, together
with bounds on $\left(A_{s}\right)_{s=1}^{N}$ and $\left(B_{t}\right)_{t=1}^{M}$, proves that (deterministic) G_{n} 's satisfying conditions (C1)-(C2) exist for large n.

In what follows, we add additional subscripts and write $u_{i}^{(n)}$ and $v_{j}^{(n)}$ for generic elements of U_{n} and V_{n}, respectively. We can now write

$$
\begin{gather*}
\mathbb{P}(|X-Y| \geq \delta)=\sum_{\substack{1 \leq i \leq N \\
1 \leq j \leq M}} \mathbb{1}_{\left\{\left|x_{i}-y_{j}\right| \geq \delta\right\}} \cdot p_{i} q_{j} \\
=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{\substack{1 \leq i \leq N \\
1 \leq j \leq M}} \mathbb{1}_{\left\{\left|n x_{i}-n y_{j}\right| \geq n \delta\right\}} \cdot\left(p_{i} n+O\left(n^{3 / 4}\right)\right)\left(q_{j} n+O\left(n^{3 / 4}\right)\right) . \tag{3.7}
\end{gather*}
$$

By the triangle inequality

$$
\left|n x_{\alpha_{i}}-n y_{\beta_{j}}\right| \leq\left|\operatorname{deg}\left(u_{i}^{(n)}\right)-\operatorname{deg}\left(v_{j}^{(n)}\right)\right|+2 \cdot O\left(n^{3 / 4}\right)
$$

for all $i, j \in\{1,2, \ldots, n\}$. This and (C1)-(C2) imply that we can bound the right hand side of (3.7) by

$$
\leq \limsup _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{1 \leq i, j \leq n} \mathbb{1}\left\{\left|\operatorname{deg}\left(u_{i}^{(n)}\right)-\operatorname{deg}\left(v_{j}^{(n)}\right)\right| \geq n \delta-2 O\left(n^{3 / 4}\right)\right\}
$$

Finally, applying Theorem 1.2 to bipartite graphs G_{n}, we obtain

$$
\leq \limsup _{n \rightarrow \infty} \frac{1}{n^{2}} \cdot 2\left(n \delta-2 O\left(n^{3 / 4}\right)\right)\left(n-n \delta+2 O\left(n^{3 / 4}\right)\right)=2 \delta(1-\delta)
$$

which ends the proof.

References

[1] Burdzy, K. and Pal, S.: Can coherent predictions be contradictory? Adv. in Appl. Probab. 53, (2021), 133-161. MR4232752
[2] Burdzy, K. and Pitman, J.: Bounds on the probability of radically different opinion. Electron. Commun. Probab. 25, (2020), 1-12. MR4069734
[3] Caro, Y. and Lauri, J. and Zarb, C.: Notes on Spreads of Degrees in Graphs. Bull. Inst. Combin. Appl. 85, (2019), 79-91. MR3888898
[4] Cichomski, S.: Maximal spread of coherent distributions: a geometric and combinatorial perspective. Master's thesis - University of Warsaw, (2020), arXiv:2007.08022
[5] Cichomski, S. and Osękowski, A.: The maximal difference among expert's opinions. Electron. J. Probab. 26, (2021), 1-17. MR4290507
[6] Dawid, A.P. and DeGroot, M.H. and Mortera, J.: Coherent combination of experts' opinions. Test. 4, (1995), 263-313. MR1379793
[7] Dubins, L.E. and Pitman, J.: A maximal inequality for skew fields. Z. Wahrsch. Verw. Gebiete. 52, (1980), 219-227. MR0576883
[8] Erdős, P. and Chen, G. and Rousseau, C.C. and Schelp, R.H.: Ramsey problems involving degrees in edge-colored complete graphs of vertices belonging to monochromatic subgraphs. European J. Combin. 14, (1993), 183-189. MR1215330
[9] Gutmann, S. and Kemperman, J. H. B. and Reeds, J. A. and Shepp, L.A.: Existence of probability measures with given marginals. Ann. Probab. 19, (1991), 1781-1797. MR1127728
[10] Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc 58, (1963), 13-30. MR0144363
[11] Lovász, L.: Large Networks and Graph Limits. American Mathematical Society, Providence, 2012. xiv+475 pp. MR3012035
[12] Tao, T.: Szemerédi's regularity lemma revisited. Contrib. Discrete Math. 1, (2006), 8-28. MR2212136]

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *The work of the second-named author is supported by Junior Leader grant of Theoretical Physics and Mathematics Advancement Foundation "BASIS".
 ${ }^{\dagger}$ Faculty of Mathematics (MIMUW), University of Warsaw, Poland. E-mail: s.cichomski@uw.edu.pl
 ${ }^{\ddagger}$ St. Petersburg State University and St. Petersburg Department of the Steklov Mathematical Institute RAS, Russia. E-mail: fedyapetrov@gmail.com

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: https://imstat.org/shop/donation/

