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Incorporating Prior Information Into Distributed
Lag Nonlinear Models With Zero-Inflated

Monotone Regression Trees

Daniel Mork∗ and Ander Wilson†

Abstract. In environmental health research there is often interest in the effect of
an exposure on a health outcome assessed on the same day and several subsequent
days or lags. Distributed lag nonlinear models (DLNM) are a well-established sta-
tistical framework for estimating an exposure-lag-response function. We propose
methods to allow for prior information to be incorporated into DLNMs. First,
we impose a monotonicity constraint in the exposure-response at lagged time
periods which matches with knowledge on how biological mechanisms respond
to increased levels of exposures. Second, we introduce variable selection into the
DLNM to identify lagged periods of susceptibility with respect to the outcome of
interest. The variable selection approach allows for direct application of informa-
tive priors on which lags have nonzero association with the outcome. We propose a
tree-of-trees model that uses two layers of trees: one for splitting the exposure time
frame and one for fitting exposure-response functions over different time periods.
We introduce a zero-inflated alternative to the tree splitting prior in Bayesian
additive regression trees to allow for lag selection and the addition of informa-
tive priors. We develop a computational approach for efficient posterior sampling
and perform a comprehensive simulation study to compare our method to exist-
ing DLNM approaches. We apply our method to estimate time-lagged extreme
temperature relationships with mortality during summer or winter in Chicago,
IL.
Keywords: Bayesian additive regression trees, monotone, distributed lag, variable
selection, informative priors.

1 Introduction
In many applications, there is interest in estimating the relationship between a predictor
and an outcome when there is substantial prior information about the exposure-response
relationship. Including prior information into a statistical analysis can increase the pre-
cision of an estimator. In this paper, we consider estimation of the relationship between
temperature exposure and mortality due to exposure on the same day and 20 subse-
quent days. In the environmental epidemiology literature this is commonly referred to
as lagged effects. There is substantial prior research that confirms high summer temper-
atures and low winter temperatures are both associated with increased risk of mortality,
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2 Monotone Distributed Lag Nonlinear Models

the relationship between high or low temperatures, and mortality are each monotonic
and exposures with the largest impact on mortality occur on the same day and the
previous 3 to 10 days (Baccini et al., 2008; Yu et al., 2012; Ragettli et al., 2017). How-
ever, there is a lack of appropriate methods to estimate lagged health effects with shape
constraints or informative priors on the length of the lagged association.

When estimating the association between an exposure and an outcome on each of
the days following exposure, henceforth lags, the most common statistical approach is
a distributed lag model (DLM). DLMs are commonly used in time-series studies to es-
timate the lagged relationships between an exposure and a health outcome (Schwartz,
2000) and in the analysis of perinatal cohort studies to identify time periods during
pregnancy when exposures are related to changes in birth or children’s health outcomes
(Hsu et al., 2015). In a DLM, an outcome yt at time t is regressed on repeated mea-
surements of past exposures, xt−l, for lagged times l = 0, . . . , L. Such models assume a
linear exposure-response relationship at each lag with lag-specific slope. Exposures mea-
sured at fine temporal resolution tend to be highly correlated. To reduce the effect of
multicollinearity, DLMs are typically constrained so that the lagged relationships vary
smoothly in time. Methods to constrain DLMs include splines (Zanobetti et al., 2000),
principal components (Wilson et al., 2017a), Gaussian processes (Warren et al., 2012),
and regression trees (Mork and Wilson, 2023). To allow for nonlinear associations be-
tween a lagged predictor and an outcome, Gasparrini et al. (2010) proposed distributed
lag nonlinear models (DLNMs) that allow for a smooth, nonlinear exposure-lag-response
function at each time point using a bi-dimensional spline basis. Gasparrini et al. (2017)
later extended DLNM to penalized regression splines that reduce sensitivity of model
selection. Mork and Wilson (2022) proposed a regression tree DLNM (TDLNM) ap-
proach as an equally powered and more precise alternative. Both DLM and DLNM are
now standard tools in the environmental epidemiology literature.

Imposing monotonicity in a distributed lag nonlinear model is appealing because it
forces the resulting estimate to correspond with the underlying biological belief that an
increase in exposure will not result in an improved health outcome. Yet, there are no ex-
isting methods to estimate an exposure-lag-response function subject to a monotonicity
constraint. Some previous work has estimated monotone exposure-response functions
for exposure to air pollution or weather and a health outcome assessed on the same
day (Powell et al., 2012; Wilson et al., 2014), and there is a rich statistical literature
on shape constrained regression for a general regression function. Approaches for shape
constrained regression in a general regression setting include piecewise linear functions
(Hildreth, 1954; Brunk, 1955), kernel smoothers Mammen (1991), a large number of
spine based approaches (Ramsay, 1988; Neelon and Dunson, 2004; Meyer, 2008; Wang
and Li, 2008; Meyer et al., 2011; Meyer, 2012; Powell et al., 2012) and Bernstein poly-
nomial methods (Chang et al., 2005, 2007; Curtis and Ghosh, 2011; Wilson et al., 2014;
Ding and Zhang, 2016; Wilson et al., 2020). Chipman et al. (2021) proposed a mono-
tone regression model based on the popular nonparametric Bayesian additive regression
trees (BART) framework (Chipman et al., 2010) that constrains a general regression
function to be monotone with respect to some or all predictors. None of these methods
are applicable to repeated measures of exposure.
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A second appealing area to apply prior information is on which lags have a nonzero
exposure effect. Incorporating prior information on lag selection can improve precision
in the identified lags during which exposure is associated with an outcome, which are
critical to targeting public health interventions. These time periods are of particular
interest when estimating the association between maternal exposure to air pollution
during pregnancy and birth outcomes where time periods of interest are referred to as
critical windows of susceptibility and hypothesized to correspond to sensitive stages of
fetal development (Wright, 2017). There is limited work on including prior information
on which lags represent susceptible periods. To incorporate biological information into
the analysis of maternal exposure to air pollution and childhood asthma, Hazlehurst
et al. (2021) used average exposure over clinically defined developmental periods and
assessed which periods demonstrated the greatest association between exposure and
asthma risk. Using average exposure over predefined windows can cause bias (Wilson
et al., 2017b) and there are no existing methods to add prior information on which
lags have nonzero association with the outcome in the distributed lag framework. For
linear DLMs, previous work focuses on adding prior knowledge about the smoothness of
lag-to-lag variation in the magnitude of the effect in linear DLMs. This can be achieved
through Bayesian priors (Heaton and Peng, 2012) or a priori knot selection in spline
models (Gasparrini, 2016). In a time series study it is typical to allow more flexibility
on the shape of the distributed lag function for short lags during which the majority of
the exposure effect is posited to occur (Gasparrini, 2016). Yet, these previous methods
do not specify a prior on whether there is an effect at specific lags or not, with the
exception of smoothly going to zero as the lag increases in some cases (Heaton and
Peng, 2012).

Adding prior information on which lags are associated with the outcome is difficult
with most existing models because the probability of a nonzero effect at each lag is
not directly parameterized in most distributed-lag-type models. This not only hinders
assigning prior probability of a nonzero effect but also reduces interpretability and
inference on lag selection. Warren et al. (2020) proposed a Bayesian variable selection
approach to identify time periods where there is a nonzero linear relationship. This
approach directly parameterizes inclusion or exclusion of time periods, but does not
apply prior information to the inclusion probabilities. For a nonlinear DLNM, time
periods are typically identified using confidence or credible intervals to compare expected
outcomes compared to a reference outcome, such as zero or median exposure. This
both results in a multiple testing issue and is unsatisfying because comparing to a
single reference exposure value may miss associations that are only present over certain
exposure ranges such as very high exposures. Hence, there is a need for DLNMs that
can allow for both assigning prior information to which lags have nonzero effect and for
direct inference on time periods when there is a true exposure-response function.

In this paper, we propose a monotone model using BART-style models that is specif-
ically tailored to repeated measures of exposure using the DLNM framework. Our ap-
proach, which we call monotone-TDLNM throughout this paper, utilizes a nested tree
BART framework (Chipman et al., 2010; Mork et al., 2023). Specifically, we employ an
ensemble of regression trees that subdivide the lagged time periods of exposure. Within
a single time-tree, each terminal node corresponds to a mutually exclusive time period
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of exposure which is affiliated with a nested regression tree that specifies a monotone
exposure-response function for the exposure observed in the given time period. Hence,
the exposure-trees are nested in the time-tree to make a tree of trees. To ensure mono-
tonicity we implement a constraint on terminal node parameters of the exposure-trees
using a transformation that allows for Gibbs sampling in a hybrid Markov chain Monte
Carlo (MCMC) approach to posterior sampling. We introduce variable selection into the
DLNM through a zero-inflated alternative to the standard BART tree splitting prior.
By combining the zero-inflated splitting prior in an ensemble regression trees setting
we are able assign prior probabilities of a nonzero effect at each lag and to make direct
inference on the time periods of susceptibility to exposure in our monotone model. The
elegance of the nested tree approach is that the exposure-response relationship at each
time point is specified by an ensemble of univariate regression trees–nested trees that
only splits on exposure concentration. By using univariate trees we can efficiently add
monotonicity constraints and selection at each time point.

We demonstrate the advantage of our monotone-TDLNM compared to unconstrained
TDLNM and penalized spline DLNMs through a simulation study. Specifically, we show
the monotonicity constraint results in more precise estimates of both the exposure-lag-
response function and of time periods when there is a nonzero association. We apply
monotone-TDLNMs to a reanalysis of temperature exposure and mortality in a time-
series study from Chicago, Illinois, USA. Previous analyses of these data have looked
broadly at temperature, which tends to have an “inverted-J” shape with both high
summer temperatures and low winter temperatures being associated with increased
mortality. We consider separate analysis of summer and winter temperatures. We sep-
arately estimate the monotonic relationship between high summer temperatures and
mortality and between low winter temperatures and mortality. Software is made avail-
able in the R package dlmtree (github.com/danielmork/dlmtree). Code to replicate
our simulation and data analysis are available at https://github.com/danielmork/
monotone_dlnm.

2 Distributed lag nonlinear models
We begin by introducing the DLNM in the context of a time-series study on tempera-
ture related mortality. Let yt represent the observed mortality count at time t. We are
interested in how extreme temperature during preceding days is related to changes in
yt. Denote xt, xt−1, . . . , xt−L to be the temperatures during the same day as the out-
come and the previous L days. The time-lagged relationship between temperature and
mortality is described through the equation

g [E(yt)] =
L∑

l=0

w(xt−l, l) + h(t; ζ), (1)

where g(·) is a link function; h(t; ζ) is a function of time parameterized by ζ and
w(xt−l, l) is a nonlinear exposure-lag-response function for characterizing the effect of
temperature xt−l on mortality l days after exposure. We assume h(t; ζ) contains an
intercept and in some cases may contain other covariates such as day of week.

http://github.com/danielmork/dlmtree
https://github.com/danielmork/monotone_dlnm
https://github.com/danielmork/monotone_dlnm
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Two assumptions are often imposed when estimating w. First, it is assumed that
w varies smoothly across the range of xt−l at each lag time l. This assumption follows
from biological plausibility, that an exposure-response will exhibit a smooth trend across
the range of exposure concentration. The second assumption is that w(·, l) is similar for
proximal lags. This assumption is both biologically motivated and statistically practical.
From a biological perspective it is assumed that exposure on proximal days will have
a similar effect on the outcome. Statistically, there typically exists high autocorrelation
between exposure measurements taken close in time and some form of regularization is
needed to reduce the effects of multicollinearity in the predictors and ensure biologically
plausible estimates of the exposure-lag-response function. Regularization in the lag di-
mension can take the form of a smoothness constraint or piecewise smooth or constant
parameters over a small number of time segments. Combined, these assumptions result
in a smoothly or piecewise smoothly varying exposure-lag-response function.

3 Nested tree framework for DLNM
Our approach to estimating a DLNM with monotone exposure-response and variable
selection uses a nested regression tree framework (Mork et al., 2023). Figure 1 visualizes
the nested tree framework. Like most tree methods, we use an ensemble approach. In
our case, we use an ensemble of A nested tree units indexed by a. Let Ta denote a binary
tree with dichotomous splits on the lagged time periods of exposure l = 0, . . . , L into one
or more mutually exclusive segments. The regression tree Ta consists of internal nodes
with splits on the available times and terminal nodes denoted {ηab}Ba

b=1 that identify the
tree endpoints. In contrast to the previously proposed, unconstrained TDLNM, internal
nodes of Ta split only on time and do not split on values of exposure concentration.
Instead, for each terminal node {ηab}Ba

b=1 in tree Ta, we define a binary nested tree
Eab. The internal nodes of each Eab split on values of exposure concentration and the
terminal nodes are denoted by {λabc}Cab

c=1. To complete the nested tree model we define a
scalar parameter δabc corresponding to each λabc. Each δabc characterizes the exposure-
response for a given exposure-concentration and time combination defined by Ta and
Eab.

From the nested tree model, the exposure-lag-response function, w, is calculated

w(xt−l, l) =
A∑

a=1

Ba∑
b=1

Cab∑
c=1

δabcψ(xt−l, l; ηab, λabc, σx). (2)

Here, the sums are over, from left to right: a) nested tree unit in the ensemble, b)
terminal node of the time tree Ta, and c) terminal nodes of the nested exposure-splitting
tree Eab. The summand contains both the terminal node parameter δabc and an exposure-
specific weight function denoted by ψ that depends on exposure timing, the terminal
nodes and a hyperparameter σx. The weight function ψ can take many forms, two
explored by Mork and Wilson (2022) include a step function and a smooth weight
function to incorporate smoothness in the exposure-concentration dimension. As most
biological applications assume a smooth effect of exposure, we follow the latter approach
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Figure 1: Diagram of the nested tree DLNM framework. On the left is a single binary
tree Ta from the ensemble of trees, a = 1, . . . , A. Tree Ta partitions the lag dimension via
terminal nodes ηab, b = 1, 2, 3, that partition the time dimension. The nested trees, Eab,
and corresponding terminal nodes, λabc, partition the exposure-concentration dimension
within each time period. For each λabc there is a corresponding scalar parameter, δabc,
shown in the resulting exposure-lag-response surface at right. To impose monotonicity
we require δabc ≤ δabc′ for c < c′. For identifiability and variable selection we set δab1 = 0.

and define

ψ(xt−l, l; ηab, λabc, σx) =
[
Φ
(
�xabc� − xt−l

σx

)
− Φ

(
�xabc� − xt−l

σx

)]
· I(l ∈ ηab), (3)

where �xabc� and �xabc� are the upper and lower exposure-concentration limits of node
λabc, respectively, Φ is the normal cumulative density function, I(l ∈ ηab) is an indicator
function that equals 1 when lag time l is in node ηab and 0 otherwise, and σx is a tuning
parameter that is fixed for all exposure-time-response functions. Larger σx will increase
the smoothness of the exposure-response curves while smaller σx allows for sharper
changes in the exposure-response relationship. As σx → 0 we arrive at the step weight.
We treat σx as fixed due to the computational expense required to estimate it in our
model and follow Mork and Wilson (2022) by setting σx equal to half the standard
deviation of the exposure data.

4 Monotone treed exposure-lag-response function
The exposure-response relationship is monotone if w(xt−l, l) ≤ w(x∗

t−l, l) for any two
exposures such that xt−l < x∗

t−l at the same time t− l. We do not assume strict mono-
tonicity as we wish to allow for a null exposure-response relationship. The monotonicity
constraint in the exposure-response at each lag time l is satisfied if the terminal node
parameters {δabc}Cab

c=1 are non-decreasing in the exposure-concentrations spanned by
terminal nodes {λabc}Cab

c=1 for each nested tree Eab. Without loss of generality, we order
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the terminal nodes on each nested tree according to their exposure ranges such that
�xab1� < · · · < �xabCab

�, where �xabc� is the minimum exposure concentration value in
terminal node λabc. We then constrain the terminal node parameters δab1 ≤ · · · ≤ δabCab

.
We set δab1 = 0, which allows for identifiability of the exposure-lag-response function.
Specifically, this imposes the identifiability constraint that the exposure-response func-
tion at each lag is constrained to be zero at the lowest observed exposure level.

We implement the constraint on the δ’s through a reparameterization of the node-
specific parameters for each nested tree following the approach used by (Wang and Li,
2008) for monotone regression with Bernstein polynomials. Let θab = (θab1, . . . , θabCab

)′
and δab = (δab1, . . . , δabCab

)′. We consider first-order difference transformation matrix
Dab such that Dabδab = θab. Specifically, we define the transformation δabc−δab(c−1) =
θabc for c ≥ 2 and θab1 = δab1 = 0. Using this transformation, the parameter space for
each θabc is fixed to be θabc ≥ 0. This facilitates more efficient sampling via MCMC. In
contrast, the parameter space of each δabc is constrained such that δabc−1 ≤ δabc ≤ δabc+1
and is challenging to estimate with MCMC. The matrix Dab follows a block style with
adjacent 1 and −1 entries at a unique location in each row and zeros elsewhere. For
example, with Cab = 4, the transformation matrix is

Dab =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

⎤
⎥⎥⎦ . (4)

A block-style transformation can be extended to the entire nested tree, such that
Daδa = θa where δa = (δ′a1, . . . , δ

′
aBa

)′, θa = (θ′
a1, . . . ,θ

′
aBa

)′, and

Da =

⎡
⎢⎢⎢⎢⎢⎣

Da1 0 · · · 0 0
0 Da2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Da(Ba−1) 0
0 0 · · · 0 DaBa

⎤
⎥⎥⎥⎥⎥⎦ , (5)

where Dab make up the diagonal block matrices with zeros elsewhere. We assign inde-
pendent priors to θabc, where each follows a truncated normal distribution with range
[0,∞), mean 0, and variance σ2ν2. In the variance, σ2 is the residual variance from a
Gaussian model and is fixed to a value of 1 for binomial models. This transformation
and prior specification allows us to implement efficient multivariate truncated normal
sampling procedures.

5 Zero-inflated regression trees for lag selection
The standard BART model uses a splitting probability that decays quickly as the depth
of the split increases but assigns a large probability of splitting to the initial node
(Chipman et al., 2010). Specifically, BART defines the probability of a split at node
λ by psplit(λ) = α(1 + dλ)−β , α ∈ (0, 1), β > 0, where dλ is the depth of the node
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beginning at zero. In addition, a probability on the dichotomous splitting rule (i.e.,
variable and location) is defined, most commonly by a uniform probability across vari-
ables and locations. In our situation, we have two sets of trees, the time trees Ta’s and
the exposure-response trees Eab’s, that both have different purposes and require separate
consideration for an appropriate prior structure.

5.1 Prior on time-splitting trees Ta

We retain the original BART splitting prior for trees Ta. Imposing default hyperpriors
αT = 0.95 and βT = 2, results in a prior distribution for the number of terminal
nodes in the time dimension with P(Ba > 1) = 0.95 with E(Ba) = 2.51. Having a
high prior probability of multiple terminal nodes in the time dimension allows us to
identify critical windows and have flexibility across lags. A high prior probability on Ba

being relatively small helps to regularize the model by retaining the assumption that
the lagged exposure-response functions are similar across nearby times.

For a model with l = 0, . . . , L lags there are L possible splitting points. To determine
the time splitting points, we incorporate work by Linero (2018) where the probability
of a rule splitting between lags l and l + 1 is equal to Pl/l+1 with P0/1, . . . ,PL−1/L ∼
Dirichlet{κL−1, . . . , κL−1} and κ(κ+L)−1 ∼ Beta(1, 1). This allows for a data-informed
approach to identifying change points in the exposure-lag-response function by sharing
information about split points across trees in the ensemble.

5.2 Prior on exposure-response trees Eab

For the nested trees, Eab, the default BART splitting prior is less desirable because at
least two terminal nodes in exposure concentration implies a nonzero effect of exposure.
The prior probability of no splits across an ensemble of A trees is (1−α)A. Changing α
to reflect prior belief that there is a non-zero effect requires an extremely low α value for
even a moderate ensemble size A. A negative consequence of setting α to be low is that
it will also decrease the probability of splits at all subsequent levels of the nested tree.
This is undesirable as it is likely to induce strong shrinkage on the exposure-response
relationship. Our objective is, therefore, to allow user-specification of the probability of
the first split without impacting the prior probability of subsequent splits conditional
on there being a first split.

We enlist two strategies to help accomplish variable selection in our model. First we
define nested trees without splits (i.e. Cab = 1) to be zero effect (as described by setting
δab1 = 0 in Section 4), ensuring that specific time periods will be excluded from the
exposure-lag-response function (e.g., these times are not selected). Second, we propose
an alternative splitting probability on trees that allows for the time periods with or
without effects to also be learned from the data.

For nested tree Eab we define the zero-inflated tree splitting prior as

psplitZI(λ|ηab,γ, α, β) = π0(γ, ηab)I(dλ = 0) + αE(1 + dλ)−βE I(dλ > 0), (6)
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where γ = [γ0, . . . , γL] is a vector of parameters corresponding to each lag time point;
αE = 0.95 and βE = 2 are the standard BART parameters set to typical default values;
dλ is the depth of node λ; and

logit{π0(γ, ηab)} = |ηab|−1
∑
l∈ηab

γl, (7)

where |ηab| equals the number of times, l, contained in node ηab. By defining π0 with
the logistic function, we allow for continuous parameters γl ∈ R and the probability of a
split to be based on the time periods in a given terminal node, ηab. If ηab contains many
time points with higher valued γl there will be a high probability of an effect within
Eab. If ηab instead contains times with many lower valued γl, nested tree Eab will have
a much lower probability of splitting and therefore no effect.

For the zero-inflated splitting parameters, γl, we define prior γ ∼ MVN (γ0,Σ),
where γ0 = (γ01, . . . , γ0L)′ is a prior mean and Σ is a covariance matrix. It is natural
to set γ0l = 0 for all l = 0, . . . , L implying a prior probability of effect at time l equal
to 0.5. However, prior information on which weeks have a nonzero association can be
easily incorporated by assigning lag-specific values to each γ0l. For Σ we rely on a scaled
identity matrix allowing for the regularization of the tree structures to impose a model-
specified correlation among γ. For instance, in our simulation as a default prior we set
γ0 = 0 and Σ = 0.314 · IL, where IL denotes an L × L identity matrix, will define a
prior such that 95% of the time π0(γ0l) falls between 0.25 and 0.75 for each time, l.
In our data analysis we incorporate an even more vague prior by setting γ0 = 0 and
Σ = 7.294 ·IL which says that 95% of the time π0(γ0l) will fall between 0.005 and 0.995.

5.3 Variable-selection based inference on lags

In the spline-based DLNM or TDLNM, periods of susceptibility (i.e., lags with nonzero
exposure-response relationships) are not well defined. They are typically identified as lag
times that have credible intervals not containing zero for some user-specified exposure
contrast of interest. In the proposed method, we can directly infer the probability of a
lag-specific susceptibility through a posterior analysis of terminal nodes at a given lag
time. Specifically, for posterior samples r = 1, . . . , R define E

(r)
l = 1 if any nested tree

Eab with l ∈ ηab has 2 or more terminal nodes, otherwise E
(r)
l = 0. Then,

P̂(susceptibility at lag l) = R−1
R∑

r=1
E

(r)
l . (8)

By specifying a reasonable level of confidence (e.g., probability ≥ 0.95) we can make a
conclusion about which lag times show susceptibility to the exposure. It is noted that at
P̂(susceptibility at lag l) = 0.95, the corresponding central credible interval will equal
zero as the lower bound is at the 2.5 percentile. If this result is not desired, alternative
solutions are to use an upper 95% credible interval or a 90% credible interval alongside
the probability of effect.
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6 Prior specification and posterior computation
6.1 Prior specification

For simplicity, we focus on a Gaussian model in this section. The model is

yt =
L∑

l=0

w(xt−l, l) + h(t; ζ) + εt, (9)

where εt ∼ N (0, σ2) and assumed independent. We discuss binomial outcomes in Sec-
tion 6.3.

We complete the Bayesian specification of the model by assigning priors to the
remaining parameters. We specify half-Cauchy priors for the variance parameters, with
σ, ν ∼ C+(0, 1). Because σ2 is the variance parameter for the residuals in the fixed
effect model, it can be interpreted as a scaling factor on residual variance in the tree
ensemble, ν2, and is equivalent to scaled BART variance prior described by Linero and
Yang (2018). We specify a non-informative prior on the regression parameters for the
time trend and covariate model, ζ ∼ MVN (0, cσ2I), where c is fixed to a large value.

6.2 MCMC approach for Gaussian model

We estimate the model parameters using MCMC with a hybrid Gibbs-Metropolis-
Hastings algorithm. Specifically, the terminal node parameters can be efficiently sampled
via a Gibbs sampler as can the variance components and regression parameters for the
covariates. The tree structures are updated with the Metropolis-Hastings (MH) algo-
rithm using the grow, prune, and change proposals steps. When updating the exposure-
splitting trees we also consider the zero-inflation probability and update that probabil-
ity.

Updating terminal node parameters: θa

Define the total exposure effect as f(xt) =
∑L

l=0 w(xt−l, l). Let utabc =
∑L

l=0 ψ(xt−l, l;
ηab, λabc, σx) be the sum of weights described in (3). Define uta = (uta11, . . . , uta1Ca1 ,
uta21, . . . , utaBaCaBa

)′ and Ua be the matrix containing rows u′
ta. Applying the trans-

formation from Section 4, u′
taδa = u′

taD−1
a θa and the total exposure effect is f(xt) =∑A

a=1 u′
taD−1

a θa.

To estimate the exposure-lag-response function we integrate out ζ from the full
likelihood. Let y = (y1, . . . , yn)′ and f = [f(x1), . . . , f(xn)]′ be vectors of length n.
Then,

y|σ ∼ MVN (f , σ2VZ)
VZ = (I − Z′VζZ)−1

Vζ = (Z′Z + c−1I)−1,
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where Z is a matrix with rows z′t that are vector functions of the covariates or spline
basis expansion for time. Using a Bayesian backfitting approach (Hastie and Tib-
shirani, 2000) we consider the partial residuals Ra = [R1a, . . . , Rna]′ where Rta =
yt −

∑
a′ �=a uta′D−1

a′ θa′ resulting in

Ra|Ta, Ea1, . . . , EaBa ,θa, σ ∼ MVN (UaD−1
a θa, σ

2VZ).

The transformed terminal node parameters θa for tree Ta and nested trees {Eab}Ba

b=1 are
simulated as a block from their full conditional

θa|− ∼ T N [0,∞)[Vθa(UaD−1
a )′V−1

Z Ra, σ
2Vθa ]

Vθa =
[
(UaD−1

a )′V−1
Z UaD−1

a + ν−2I
]−1

.

Draws for θa are done via efficient sampling methods proposed by Li and Ghosh (2015).

Updating Eab

To facilitate convergence by allowing larger proposal steps in the Markov chain we
deviate from the typical BART proposal framework when updating each Eab and instead
draw directly from the tree prior. Recall that the probability of nested tree Eab equals

p(Eab) =
∏

λ internal

psplitZI(λ|ηab,γ, αE , βE)prule(λ)
∏

λ terminal

[1 − psplitZI(λ|ηab,γ, αE , βE)] .

Our algorithm for drawing proposed nested tree E∗ starts by drawing a new tree from
the prior, without any consideration for the observed data. First, E∗

ab splits from root
with probability π0(γ, ηab). If a split from root occurs, this results in two new terminal
nodes, λab1 and λab2. Each terminal node, λabc, splits with probability αE(1 + dλabc

)βE ,
resulting in two new terminal nodes (the splitting node is now considered an internal
node). This process continues with each new terminal node until no new terminal nodes
are created. Next, accept or reject the proposed tree drawn from the prior using the
observed data and MH. The MH algorithm acceptance probability for proposed nested
tree E∗

ab equals

r = min
{
p(Ra|Ta, {Eab}∗, ν, σ)p(E∗

ab)p(Eab|E∗
ab)

p(Ra|Ta, {Eab}, ν, σ)p(Eab)p(E∗
ab|Eab)

, 1
}
,

where {Eab} = Ea1, . . . , EaBa is the set of nested trees and {Eab}∗ = Ea1, . . . , E∗
ab, . . . , EaBa

is the set of nested trees with a tree proposal. Here, the proposal distribution, p(E∗
ab|Eab)

= p(E∗
ab) requiring only that we evaluate the likelihood, p(Ra|Ta, {Eab}, ν, σ). We calcu-

late

p(Ra|Ta, {Eab}, ν, σ) =
∫

p(Ra|Ta, {Eab},θa, σ)p(θa|σ, ν)dθa

= (2πσ2)−n/2(22σ2ν2)−p/2|VZ|−1/2|Vθa |1/2

× exp
{
−R′

aV−1
Z Ra

2σ2 + R′
aV−1

Z UaD−1
a Vθa(UaD−1

a )′V−1
Z Ra

2σ2

}



12 Monotone Distributed Lag Nonlinear Models

×
[∫

[0,∞)
p(θa|Ra,−)dθa

]
,

where the last integral is the normalizing constant for the full conditional distribution
of θa, which can be numerically approximated through algorithms described by Genz
and Bretz (2002).

Updating Ta

In our nested tree framework an additional consideration must be made when updating
tree Ta. When we grow Ta we must replace a nested tree, Eab with two new nested
trees, E∗

ab1
and E∗

ab2
. Therefore, proposed tree T ∗

a has a different number of terminal
nodes, B∗

a, each with a corresponding nested tree. When we apply a grow proposal T ∗
a ,

we draw each new E∗
abi

, i ∈ {1, 2}, using the previously described algorithm. The other
nested trees remain the same. To calculate the MH acceptance ratio for proposal Ta
we follow similar steps to updating Eab by first calculating p(Ra|T ∗

a , {Eab}∗, ν, σ) and
p(Ra|Ta, {Eab}, ν, σ). The resulting acceptance ratio equals

r = min
{
p(Ra|T ∗

a , {Eab}∗, ν, σ)p(T ∗
a )p(Ta|T ∗

a )
p(Ra|Ta, {Eab}, ν, σ)p(Ta)p(T ∗

a |Ta)
, 1
}
. (10)

A prune proposal for Ta replaces two nested trees corresponding to the pruned nodes
with a new nested tree while a change proposal is the same as changing an internal node
in standard BART. In a change proposal for Ta we retain the structure of all nested
trees.

Updating remaining parameters: γl, ζ, σ, and ν

Each terminal node ηab contributes one binary ‘observation’ (effect or no effect) to a
logistic model relating the probability of an effect at lag time l and parameters γl. We
employ a Polyá-gamma augmentation approach to updating γl (Polson et al., 2013).

The remaining parameters are updated with Gibbs steps using standard full condi-
tionals. The variance components σ, and ν are updated using the approach of Makalic
and Schmidt (2016). The parameters for the time trend and covariate model, γ and ζ,
have multivariate normal full conditionals.

6.3 Implementation for binomial response

For a binomial response, yt, we define the logistic model,

yt|xt, t ∼ Binomial{nt, 1/(1 + e−ψt)}, (11)

where ψt =
∑L

l=0 w(xt−l, l) + h(t; ζ). To estimate the exposure-lag-response function,
w(xt−l, l), we follow a Polyá-gamma augmented variable approach. Briefly, for Polyá-
gamma random variable, ωt ∼ PG(nt, ψt), the data-likelihood is proportional to exp{(yt−
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nt/2)ψt}E{exp(−ωtψ
2
t /2)}, where the expectation is with respect to a PG(nt, 0) ran-

dom variable (see e.g. Polson et al. (2013)). The inclusion of ωt creates a conditionally
Gaussian likelihood and allows for Gibbs updates of θa and ζ parameters.

6.4 Strategies for incorporating additional prior information

Two goals that often exist simultaneously in estimating exposure-lag-response functions
are identifying periods of susceptibility or nonzero effects in the exposure response and
change points in the lag response dimension. The specification of monotone-TDLNM
allows for the inclusion of prior information in each dimension.

To increase or decrease the prior probability of a nonzero exposure relationship
we can alter the priors in the zero-inflated regression tree for specific time periods,
specifically γ0 and Σp. For example, we can define γ0l and Σp(l, l) such that 1/{1+e−γ0l}
falls within a given range 95% of the time. In practice, high probability of effect in some
lags should be balanced by lower probability of effect in other lags to maintain roughly
zero mean across γ0 to prevent false positives when many lag periods are included in
the same terminal node.

Informative priors for lag change points are easily introduced via two alternate
approaches. First, we can fix the time split probability rules, Pl/l+1, to increase the
probability of a tree splitting at a given lag and increasing the likelihood that differ-
ent exposure-response relationships will exist before or after the split. In some anal-
yses where there is a well-defined change point in the exposure time-series, this ap-
proach makes the most sense. For example, air pollution exposures during fetal devel-
opment and early childhood may assume a change in the exposure-lag-response at the
time of birth–here it makes sense to apply a large fixed probability of split at that
time point. The second strategy to incorporating prior information into the time split
probabilities is through a modification to the Dirichlet prior. Here, we introduce prior
P0/1, . . . ,PL−1/L ∼ Dirichlet(d0/1κ, . . . , dL−1/Lκ) where

∑
dl/l+1 = 1, and dl/l+1 > 0

is the prior probability of a split point between lag l and l + 1 in a given tree. The
hyper parameter κ may be set for a specific variance in the probabilities or assigned
a prior distribution as in Section 5.1. Using a fixed κ in the Dirichlet prior can allow
for additional posterior inference on the change points through Bayes Factors or similar
methods.

An alternative method to introduce prior information into the regression tree model
is using fixed time trees corresponding to previously estimated periods of susceptibility.
For example, if two other studies identify periods of susceptibility during specific lag
periods, we may fix two trees in our model with change points corresponding to these
past studies. The model and data will determine whether the exposure-lag-response
function in the nested trees is nonzero; however, we remove the need to select splitting
times in these trees. Other trees in the model can continue to explore other splitting
times in case the relationships in the data do not agree with previously estimated
lag periods of susceptibility. Furthermore, the idea of fixed time trees could allow for
information transfer from larger studies, where the time periods can be more effectively
estimated, to small studies. The idea of using one sample to estimate the periods of
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susceptibility and another sample to estimate the exposure response is closely tied to
the idea of honest inference (Wager and Athey, 2018; Athey and Imbens, 2016).

7 Simulation study
We developed a simulation study based on our data analysis to compare our proposed
method alongside existing methods TDLNM (Mork and Wilson, 2022) and the penal-
ized spline DLNM (GAM) (Gasparrini et al., 2017). The goals of our simulation study
were to first, show that the monotonicity assumptions in monotone-TDLNM improve
estimation of the exposure-lag-response function while providing valid inference in terms
of confidence intervals and high precision for identifying periods of susceptibility and
second, that the inclusion of informative priors can additionally supplement ability of
DLNM methods to estimate exposure-lag-response functions.

For each simulation replicate we sampled n = 1000 days from the summer tempera-
ture time series in our data analysis and used L = 20 days of lagged temperature expo-
sures. We created 9 simulation scenarios based on combinations of 3 exposure-response
relationships given by

fx(x) = I(x > 25)

⎧⎪⎨
⎪⎩

0.1 · (x− 25) linear
0.2 · log(x− 25) sublinear
0.2 · [exp{0.25 · (x− 25)} − 1] exponential

(12)

and 3 lag-response relationships,

fl(l) =

⎧⎪⎨
⎪⎩

20 · I(l < 4) piecewise
max{0, 6 · (6 − l)} linear
max{0, 0.2 · (l + 1) · (l − 8)2} quadratic,

(13)

where the exposure-lag-response function is calculated as w(xt−l, l) = fx(xt−l) · fl(l).
Figure 2 shows plots of fx and fl. When considering the exposure-response and lag-
response functions separately, the piecewise lag-response function can be exactly fit
with a single tree with two terminal nodes. All other exposure-response and lag-response
functions require multiple splits from a single tree, or more realistically an ensemble of
trees, to approximate the function. When the exposure-response and lag-response func-
tions are combined, all nine scenarios require complex tree structures to approximate
the exposure-lag-response function.

The outcome was simulated by yt =
∑20

l=0 w(xt−l, l) + εt where εt was drawn in-
dependently from a normal distribution with mean zero and standard deviation 2, 4,
and 8 times the standard deviation of the exposure-lag-response. We repeated each
combination of exposure-response, lag-response, and error for 100 simulation replicates.

For each simulation scenario, we compare three models: GAM, TDLNM, and mono-
tone-TDLNM. We also compare with the same models using informative priors. The
objective of adding informative priors is not simply to get better results but to pro-
vide empirical evidence documenting the effects of including this form of correct prior
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Figure 2: The exposure-lag-response function in our simulations is defined by
w(xt−l, l) = fx(xt−l) · fl(l), based on combinations of fx and fl.

information into an analysis with the proposed models. For GAM, we use a penalized
B-spline crossbasis with 10 degrees of freedom in both exposure and lag dimensions.
To incorporate informative priors, we add varying ridge penalization to the latter 6 lag
degrees of freedom which will increase the shrinkage of estimates in later lag periods
toward zero (see e.g., Gasparrini et al. (2017) for more details). We apply TDLNM and
monotone-TDLNM with default priors as described in Mork and Wilson (2022) and this
paper. To add informative prior information to TDLNM we define the probability of a
split in time to be 10 times higher during the lag periods of true effect compared to other
lag periods. For monotone-TDLNM, we add informative priors in two places as described
in Section 6.4: first we set the mean and variance of the prior normal distribution for γl
such that there is a 95% probability π0(γl) is between 0.95 and 0.995 during lag periods
of effect and between 0.005 and 0.995 during other lag periods; second we set splitting
parameters such that dl/l+1 divided by dl′/l′+1 equals 10 for l and l′ being periods of
effect or no effect, respectively; κ retains the prior distribution described in Section 5.1.
For TDLNM and monotone-TDLNM we fix the smoothing parameter σx equal to half
the standard deviation of the temperature data. Because a smooth exposure-response
function at each lag enforces strict monotonicity, we add a small quantity of 0.05 to
each side of the estimated credible intervals to capture places where the exposure-lag-
response function remains at zero across a range of exposure-concentration values (e.g.,
less than 25 for periods of nonzero effect). For the tree model we combine results from
two independent Markov chains. We run each chain for 7,000 total iterations, discard-
ing the first 2,000 iterations as burn-in and retaining every 10th iteration to allow for
adequate mixing. Convergence is assessed using the Gelman-Rubin statistic (Gelman
and Rubin, 1992).

For each simulation scenario, we estimate the exposure-lag-response function across a
grid of values spanning the temperature and lag data: x = 3, 4, 5 . . . , 30 and l = 0, . . . , 20.
We calculate the root mean square error (RMSE), first averaged at each point on the
grid then averaged across the entire exposure-lag-response function. We determine the
average coverage based on how often 95% credible intervals cover the true exposure-lag-
response value at each point on the grid. We also calculate the average credible interval
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width by taking the average difference between the upper and lower interval limits.
Finally, we calculate precision as the proportion of correctly identified time periods of
nonzero effect (true positive) relative to the total identified time periods of nonzero
effect (true positive plus false positive). In TDLNM and GAM we use credible intervals
to determine precision, in monotone-TDLNM we consider P̂(susceptibility at time l) ≥
0.95 as the criteria for a nonzero effect.

Simulation results for σ = 2, 8 containing RMSE, coverage, interval width, and pre-
cision are presented in Tables 1 and 2. Additional results are provided in Supplementary
Materials (Mork and Wilson, 2024). Monotone-TDLNM and TDLNM consistently have
the lowest RMSE across all simulation scenario and error combinations. Targeted penal-
ization decreases the RMSE for the GAM approach, but this method consistently has
the highest RMSE. Both TDLNM and monotone-TDLNM are able to shrink estimates
towards zero in places of no effect while GAM often overgeneralizes periods of effect
and retains additional wiggliness across the estimated exposure-lag-response function.
Additionally, the spline based GAM displays more extreme behavior at the boundaries,
a characteristic not shared by the tree-based methods.

Monotone-TDLNM generally maintains nominal coverage of the true exposure-lag-
response function by 95% credible intervals and has the smallest credible interval width
across the range of simulation scenarios and error settings. Adding informative prior in-
formation further decreases the credible interval width in the highest error setting. We
note that the strict monotonicity in monotone-TDLNM, due to the smoothing weight,
makes exact coverage of a flat exposure-response impossible (e.g., below 25C during
periods of nonzero effect) resulting in non-coverage at lower exposure-concentrations
despite a roughly flat exposure response curve. TDLNM also maintains nominal cover-
age of the true effects but the credible interval width is generally larger than monotone-
TDLNM. GAM models have adequate coverage by 95% confidence intervals, but the
largest interval width. The wiggliness of splines in GAM contributes to additional un-
certainty across the exposure-lag-response function, especially near boundaries where
spline-based methods have the largest uncertainty. Addition targeted penalization to
GAM decreases average width substantially, making it similar to TDLNM.

Our proposed method generally has the highest precision compared to TDLNM and
GAM across all scenarios and error settings. Compared to GAM, TDLNM also has
higher precision on average. The inclusion of targeted penalization in GAM increases
precision slightly. With respect to true positives (probability of detecting a correct
period of nonzero effect), GAM consistently outperforms the other methods with the
trade off of the largest false positive rate (probability of misidentifying an effect). The
addition of informative prior information improves the true positive rate for monotone-
TDLNM with larger differences occurring at higher error settings. Changing the splitting
probabilities for TDLNM does not have a large effect on the model outcomes.

The Gelman-Rubin statistic, denoted R̂, for convergence was calculated at each
point on the exposure-lag-response surface and the median was preserved. We present
the average R̂ across simulation replicates for each scenario and error combination in
Supplementary Materials (Mork and Wilson, 2024). We note that R̂ is near 1 for both
monotone-TDLNM and TDLNM, indicating good convergence.
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Standard Prior Informative Prior

Metric fx fl GAM TDLNM Monotone GAM TDLNM Monotone

RMSE Exp Lin 1.10 0.48 0.61 0.80 0.49 0.72
Pw 0.86 0.27 0.26 0.72 0.25 0.41
Quad 0.89 0.39 0.43 0.71 0.38 0.56

Lin Lin 1.05 0.55 0.60 0.70 0.58 0.68
Pw 0.83 0.34 0.35 0.67 0.32 0.44
Quad 0.86 0.43 0.49 0.63 0.44 0.58

Sub Lin 0.94 0.48 0.53 0.60 0.50 0.60
Pw 0.71 0.30 0.27 0.56 0.27 0.39
Quad 0.74 0.38 0.40 0.57 0.38 0.49

Coverage Exp Lin 0.96 0.99 0.98 0.99 0.99 0.98
Pw 0.95 0.99 0.98 0.98 0.99 0.99
Quad 0.94 0.98 0.97 0.98 0.98 0.97

Lin Lin 0.95 0.99 0.98 0.98 0.99 0.97
Pw 0.94 0.99 0.98 0.96 0.99 0.98
Quad 0.93 0.98 0.97 0.96 0.97 0.96

Sub Lin 0.94 0.98 0.97 0.97 0.98 0.96
Pw 0.92 0.98 0.97 0.95 0.98 0.97
Quad 0.91 0.97 0.94 0.94 0.96 0.94

CI Width Exp Lin 3.55 1.80 0.97 2.11 1.83 0.98
Pw 2.51 1.15 0.42 1.57 1.06 0.50
Quad 2.63 1.42 0.61 1.76 1.27 0.77

Lin Lin 3.35 2.19 1.05 1.92 2.01 1.20
Pw 2.38 1.34 0.55 1.38 1.28 0.56
Quad 2.58 1.64 0.85 1.51 1.54 0.81

Sub Lin 2.92 1.86 0.92 1.58 1.67 0.98
Pw 2.06 1.17 0.38 1.12 0.98 0.44
Quad 2.28 1.42 0.69 1.17 1.22 0.66

Precision Exp Lin 0.74 1.00 1.00 0.95 1.00 1.00
Pw 0.73 1.00 1.00 0.89 1.00 1.00
Quad 0.68 0.97 1.00 0.92 0.92 1.00

Lin Lin 0.73 0.97 1.00 0.88 0.89 1.00
Pw 0.73 1.00 1.00 0.88 0.95 1.00
Quad 0.68 1.00 1.00 0.88 0.90 1.00

Sub Lin 0.69 0.97 1.00 0.87 1.00 1.00
Pw 0.70 1.00 1.00 0.83 1.00 1.00
Quad 0.65 0.95 1.00 0.84 0.89 1.00

Table 1: Simulation results for σ = 2, including root mean square error (RMSE), cover-
age by 95% credible or confidence intervals, average credible/confidence interval width
(upper minus lower) and precision. Results shown for all exposure-response (fx) and
lag-response (fl) combinations.

8 Temperature related mortality
We illustrate our method by analyzing the association between extreme heat or cold and
daily mortality. Let dt represent the number of deaths on day t while temperature during
the past 20 days is given by xt, xt−1, . . . , xt−20. We use mortality and temperature data
from the National Morbidity, Mortality and Air Pollution Study, in the city of Chicago
between 1987 to 2000 (Samet et al., 2000). The data is publicly available in the R
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Standard Prior Informative Prior

Metric fx fl GAM TDLNM Monotone GAM TDLNM Monotone

RMSE Exp Lin 2.28 1.36 1.24 1.95 1.32 1.34
Pw 1.58 0.96 0.88 1.28 0.94 0.97
Quad 1.78 1.01 0.94 1.48 1.01 1.03

Lin Lin 2.29 1.48 1.34 1.79 1.42 1.44
Pw 1.57 1.05 0.94 1.27 1.01 1.04
Quad 1.75 1.10 1.05 1.41 1.09 1.12

Sub Lin 1.91 1.22 1.12 1.44 1.19 1.19
Pw 1.34 0.87 0.83 1.06 0.85 0.85
Quad 1.48 0.92 0.87 1.17 0.91 0.93

Coverage Exp Lin 0.94 0.98 0.99 0.94 0.98 0.95
Pw 0.93 0.98 0.99 0.94 0.99 0.98
Quad 0.93 0.97 0.99 0.93 0.98 0.90

Lin Lin 0.94 0.97 0.99 0.93 0.98 0.93
Pw 0.91 0.98 0.99 0.92 0.98 0.97
Quad 0.9 0.97 0.98 0.93 0.98 0.89

Sub Lin 0.9 0.97 0.98 0.93 0.98 0.93
Pw 0.9 0.98 0.99 0.92 0.98 0.96
Quad 0.9 0.97 0.98 0.93 0.97 0.89

CI Width Exp Lin 6.55 4.98 3.64 3.80 4.68 1.96
Pw 4.35 3.11 1.93 2.63 3.09 1.56
Quad 5.03 3.92 2.48 3.38 3.75 1.44

Lin Lin 6.32 5.14 3.28 3.61 5.16 2.08
Pw 3.71 3.36 2.16 2.73 3.35 1.63
Quad 4.40 4.29 2.58 3.45 4.21 1.54

Sub Lin 4.57 4.32 2.69 2.92 4.23 1.78
Pw 3.06 2.83 1.76 2.31 3.02 1.29
Quad 3.82 3.47 2.15 2.87 3.49 1.34

Precision Exp Lin 0.73 0.97 1.00 0.84 1.00 1.00
Pw 0.71 0.93 1.00 0.83 1.00 1.00
Quad 0.66 0.97 1.00 0.73 1.00 1.00

Lin Lin 0.73 0.92 1.00 0.74 1.00 1.00
Pw 0.70 0.96 1.00 0.73 1.00 1.00
Quad 0.63 0.97 1.00 0.72 1.00 1.00

Sub Lin 0.71 0.95 1.00 0.74 1.00 1.00
Pw 0.68 0.92 1.00 0.71 1.00 1.00
Quad 0.69 0.97 0.91 0.69 1.00 1.00

Table 2: Simulation results for σ = 8, including root mean square error (RMSE), cover-
age by 95% credible or confidence intervals, average credible/confidence interval width
(upper minus lower) and precision. Results shown for all exposure-response (fx) and
lag-response (fl) combinations.

package dlnm. Because extreme hot and cold temperatures may each increase mortality
and break the monotonicity assumption in our model, we separately analyze summer
(May-September) and winter (October-April) time periods. Days were removed from
the analysis if lagged temperature was missing, resulting in 2,142 summer days and
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2,952 winter days. Separately for summer and winter, we fit the model

E[log(dt)] = γmy(t) + δdow(t) +
20∑
l=0

w(xt−l, l), (14)

where γmy(t) is an intercept for month and year at time t, δdow(t) is an intercept for the
day of the week. We assume a constant variance for the log-rate death outcome condi-
tional on the time and temperature, i.e., Var[log(dt)|t,xt] = σ2. We reversed the sign of
temperature in the winter model so that w(xt−l, l) is monotone increasing for monotone-
TDLNM. Assumptions of constant variance and identically distributed normal errors
are considered in Supplementary Materials Section 2 (Mork and Wilson, 2024). Good
convergence was demonstrated by the tree-based models, as indicated by traceplots and
the Gelman-Rubin statistic; details are available in Supplementary Materials Section 2.

We applied informative priors reflecting the strong body of evidence that heat up to
five days prior is related to mortality (Baccini et al., 2008; Yu et al., 2012; Ragettli et al.,
2017). To incorporate informative prior information in the summer monotone-TDLNM
approach, we applied the informative prior described in our simulation study to the
first six lag periods (l = 0, . . . , 5). For the winter temperature and mortality analysis
we used a vague prior to reflect the added uncertainty around cold-temperature related
mortality. Specifically, in the winter analysis we set γ0l and Σ such that 95% of the time
π0(γ0l) lies between 0.005 and 0.995. As a sensitivity we repeated the summer data
analysis with the same vague prior.

We compare results to TDLNM (no monotonicity assumption) and penalized spline
DLNM (GAM) (Mork and Wilson, 2022; Gasparrini et al., 2017). The treed models were
run for 5,000 MCMC iterations thinned by 10 after 2,000 burn-in iterations. We com-
bined posterior samples from 5 independent Markov chains. For GAM, we specify third
degree B-splines with 10 degrees of freedom in both lag and temperature dimensions
and second order difference penalties. In the GAM summer model we added varying
ridge penalization to the last seven degrees of freedom in the lag dimension as an in-
formative prior (see e.g., Gasparrini et al. (2017) for more details). In both summer
and winter mortality data, we estimate temperature-mortality relationships from the
DLNM relative to 20 degrees Celsius and back transform results to estimated percent
change in mortality at a given lag-temperature combination.

Monotone-TDLNM allows us to compute a posterior probability of non-zero temper-
ature related mortality during a given lag period. The posterior probabilities of effect are
shown in Figure 3. We use posterior probability above 0.95 to indicate a nonzero effect.
The results from monotone-TDLNM indicate a relationship for heat-related (summer)
mortality during lags 0 − 3 days prior and cold-related (winter) mortality during lags
1 − 9 days prior. Due to the monotonicity assumption in monotone-TDLNM we can
specifically say these relationships are due to heat or cold. TDLNM and GAM do not
share a similar variable selection method and we identify possible periods of suscep-
tibility by identifying where 95% credible intervals do not contain zero. Because the
exposure-response functions in TDLNM and GAM are not monotone, the identified pe-
riods of susceptibility may be due to increased or decreased temperatures and requires
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Figure 3: Posterior probability of susceptibility at a given lag, for summer (solid line)
and winter (dashed line) models.

inspection of the posterior distribution of the exposure-time-response surface. Based on
the credible intervals, TDLNM indicates nonzero relationships between mortality and
temperature in summer at lags 0− 11 and 19 days prior and for winter temperatures at
lags 0−10 days prior; GAM finds nonzero relationships between mortality and summer
temperatures during lags 0−6, 8−11 and 13 days prior, and due to winter temperatures
0 − 5 and 7 − 9 days prior.

Figure 4a shows slices of the estimated DLNM at three different temperatures (25,
28, and 32 degrees C). This is the estimated percent difference in mean mortality for
each temperature value compared to 20 degrees C by lag. Figure 4b shows slices at
three different lag periods (1, 2, and 5 days prior) for each of the three compared
methods. This is the exposure-response function between temperature and mortality on
1, 2, and 5 days post exposure. Only monotone-TDLNM shows longer lagged effects at
lower temperatures (28 degrees C from 0 − 3 days prior), the other methods show an
immediate effect (same day of exposure) as well as intermittent nonzero relationships
at longer lags (e.g., GAM shows increased mortality for temperatures below 20C during
lags 8−11 as well as decreased mortality above 20C at lag 13). For higher temperatures
(32 degrees C), GAM shows effects extending back 6 days while the lagged relationships
for TDLNM and monotone-TDLNM are similar but only extend to 3 days prior. When
looking at slices in the lag dimension, all models indicate an exponential-like relationship
between temperature and mortality. At 2 days prior, monotone-TDLNM indicates the
relationship to increased mortality extends to lower temperatures than the other models.
We also note that the credible interval widths for monotone-TDLNM are similar or
smaller than the competing methods, especially at low temperatures and later lags
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Figure 4:
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where the effects are shrunk towards zero. The summer sensitivity analysis had similar
findings, details are given in Supplementary Material Section 2 (Mork and Wilson,
2024).

Figure 5a shows the lagged relationship to mortality at temperatures −15, 0, and
10 degrees C. TDLNM and GAM indicate decreased mortality at lag 0 followed by in-
creased mortality related to low temperatures during previous days. Monotone-TDLNM
and TDLNM show potentially longer lagged relationships between lower temperatures
and mortality compared to GAM. The wiggliness of GAM also indicates no relationship
between mortality at cold temperatures at 6 days prior which is likely a spline-induced
artifact. Figure 5b shows the exposure-response relationship between mortality and tem-
perature (degrees below zero) at 1, 2, and 5 days prior. We see a more linear relationship
between lower temperatures and mortality in all models where GAM extends up to tem-
peratures near 20C while the tree-based methods only indicate increased mortality at
lower temperatures.

9 Discussion
DLNMs have become a standard tool in environmental epidemiology. Most commonly
researchers use spline-based DLNMs to estimate the association between an exposure
and a lagged health outcome, such as temperature and mortality on the same day and
following 20 days as we consider in this paper. In such analyses, it is rare to consider
prior information on the shape of the exposure-lag-response function. This is despite
ample prior research that shows that the exposure-response function is monotone for
many exposure-response pairs or sheds light on which lags are likely to be associated
with the outcome. The decision to not include information on monotonicity is in large
part due to a lack of available statistical methods to estimate monotone DLNMs.

We propose a regression tree based DLNM that is constrained to have a monotone
exposure-response relationship at each lag time. Our work builds of the popular spline-
based DLNM (Gasparrini et al., 2017) and existing tree-based TDLNM (Mork and
Wilson, 2022), both of which impose no constraints on the shape of the exposure-
response relationship. We propose a nested-tree approach that uses one tree to partition
of lag period into discrete time segments and a set of nested trees that capture the
exposure-response relationship during each time segment. The approach can be thought
of as a Bayesian tree analog to the crossbasis DLNM that uses two basis expansion, one
in the lag direction and a second in the exposure-concentrations direction, to estimate
a DLNM (Gasparrini et al., 2010).

Our proposed monotone-TDLNM allows for easy inclusion of prior information and
inference on lags for which there is a nonzero exposure-response relationship through
Bayesian variable selection methods incorporated into a regression tree setting. Iden-
tifying lags with nonzero exposure-response relationships is challenging with previous
implementations of DLNM. Similar time selection methods have been proposed for linear
DLMs (Warren et al., 2020), but no such methods are available for nonlinear DLNMs.
No previous methods have considered inclusion of prior information on which lags are
associated with an outcome.
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Figure 5:
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Through simulation, we show that the monotone-TDLNM resulted in more precise
estimation of the exposure-lag-response function and lag selection compared to a pe-
nalized spline DLNM and unconstrained TDLNM. The monotone-TDLNM resulted in
smaller credible intervals that still maintained the nominal coverage level. In an analysis
of summer heat exposure and winter cold exposure and mortality in a Chicago, Illinois,
USA time-series study we found that both summer heat and winter cold were associated
with increased mortality. Importantly, the unconstrained models were consistent with
a monotone relationship and such a relationship has been found in other analyses of
temperature and mortality. However, the constrained model that includes prior infor-
mation on monotonicity resulted in more precise estimates of the exposure-lag-response
function. This highlights one of the advantages of the proposed model. In addition, the
easy inference on the lags with nonzero effect highlights a second major advantage over
previous methods.

A clear limitation of the proposed approach, or any constrained regression method,
is that violation of the monotonicity assumption would be a major misapplication and
result in bias and incorrect inference. In the case of temperature and mortality this
monotonicity by season is well established. However, in other situations it is impor-
tant to check these assumptions. For example, a researcher may consider also fitting
unconstrained models and looking for evidence of departures from monotonicity as we
demonstrated in our data application.

Our work adds to a recent literature on incorporating prior information in environ-
mental epidemiology analyses. Thomas et al. (2007) provides a compelling argument
for incorporating biological prior information in Bayesian analyses of the health effects
of environmental exposures. Recent work has promoted the use of informative priors in
several model types (Reich et al., 2020; McGee et al., 2022), including previous models
that impose monotonicity in the exposure-response relationship (Powell et al., 2012;
Wilson et al., 2014). As was so well stated by (Thomas et al., 2007), “by directly in-
corporating into our analyses information from other studies or allied fields—we can
improve our ability to distinguish true causes of disease from noise and bias.”

Supplementary Material
Supplementary Materials to: Incorporating prior information into distributed lag nonlin-
ear models with zero-inflated monotone regression trees (DOI: 10.1214/23-BA1412SUPP;
.pdf). This document includes additional simulation and data analysis results and fig-
ures.
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