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Abstract. Simulation-based calibration checking (SBC) is a practical method to
validate computationally-derived posterior distributions or their approximations.
In this paper, we introduce a new variant of SBC to alleviate several known prob-
lems. Our variant allows the user to in principle detect any possible issue with
the posterior, while previously reported implementations could never detect large
classes of problems including when the posterior is equal to the prior. This is
made possible by including additional data-dependent test quantities when run-
ning SBC. We argue and demonstrate that the joint likelihood of the data is an
especially useful test quantity. Some other types of test quantities and their theo-
retical and practical benefits are also investigated. We provide theoretical analysis
of SBC, thereby providing a more complete understanding of the underlying sta-
tistical mechanisms. We also bring attention to a relatively common mistake in
the literature and clarify the difference between SBC and checks based on the
data-averaged posterior. We support our recommendations with numerical case
studies on a multivariate normal example and a case study in implementing an or-
dered simplex data type for use with Hamiltonian Monte Carlo. The SBC variant
introduced in this paper is implemented in the SBC R package.
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2 Simulation-Based Calibration and Test Quantities

1 Introduction

Simulation-based calibration checking (SBC; Talts et al. 2020) is a method to validate
Bayesian computation, extending ideas from Cook et al. (2006).* While SBC is primarily
intended for validating sampling algorithms such as MCMC, it can be used for validating
any method implementing or approximating Bayesian inference. Published applications
include variational inference (Yao et al., 2018) and neural posterior approximations
(Radev et al., 2023).

Throughout this paper we assume an implicit and fixed Bayesian statistical model
m with data space Y and parameter space ©. For y € Y, 0 € © the model implies the
following joint, marginal, and posterior distributions:

Tjoint (y, 9) = 7"'obs(y|9)7"'pri0r (9)7
Tmarg (y) = /Ode 7T'obs(:’J'e)Trprior(e),

Tobs (y | 6) Tprior (0)
Tmarg (y)

7Tpost(0|y) =

Typically, the posterior distribution 7. is the target of inference but is impossible
to evaluate directly. While many computational approaches exist for sampling from the
posterior or its approximations, they may fail to provide a correct answer. Problems
can arise from errors in how the algorithm or the statistical model are encoded or from
inherent inability of the computational method to correctly handle a given model with
a given dataset.

1.1 Self-consistency of Bayesian models

To discover problems with computation, several classes of checks can be derived from
self-consistency properties of statistical models. One such property concerns the data-
averaged posterior (Geweke, 2004):

71-prior(e> :/Ydy/@déWpost(9|y)7robs<y|é)7rprior(é)~ (1)

SBC relies on a different property that involves the joint distribution of prior and
posterior samples from the same model (Cook et al., 2006):

TSBC (ya 03 é) = Tprior (é)wobs(y|9~)7rpost (0|y) (2)
Since Tobs(Y]0) Tprior (0) = Tmarg (¥) Tpost (0]y), this implies,

TSBC (y7 97 é) = 7Tmarg(y)ﬂ—post (ely)ﬂ—post (ély) (3)

IThe term in the literature is “simulation-based calibration”; here we have added the word “check-
ing” to emphasize that these methods do not themselves produce calibration; rather, they measure
departure from calibration.
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Equation (3) immediately shows that conditional on a specific data y € Y, the distribu-
tions of @ and @ in (2) and (3) are identical. In general, SBC-like checks are sensitive to
different deviations from the correct posterior than checks based on the data-averaged
posterior (see Section 3.5 for more details). The two families of checks coincide when Y
has just a single element as in this case both reduce to directly comparing two distri-
butions.

SBC and related methods employ two different implementations of the same statis-
tical model and check if the results have the same distribution conditional on data. The
first step is to define a generator capable of directly simulating draws from wprior(é) and
Wobs(y|§), and the second step is to define a probabilistic program that, in combination
with a given posterior approximation algorithm, samples from the posterior distribution

Tpost (0]y). Each simulation from the generator yields,

é* ~ Wprior(é)u
y* ~ 7T'olas(:‘/‘é*)? (4)
91, . 91\/[ ~ 7Tpost(€|y*)’

where M is the number of posterior draws sampled. Where confusion is possible we use
asterisk to mark a random variable. We run many such simulations and then inspect
the realized distributions of 1, ...,0 and 6* conditional on y*. Specific calibration
checking methods differ in how exactly they test the conditional equality of the two
distributions.

1.2 Proposed SBC variant

SBC has been believed to be insensitive to some classes of mismatches, and as described
in Talts et al. (2020) would not work for discrete variables. To remove those limitations,
we argue for the following variant of the SBC check: First, project the potentially high-
dimensional parameter and data space into a scalar test quantity f : © xY — R. Second,
compute the rank of the prior draw in the posterior conditional on y. Specifically, we
take the number of posterior sample draws where the test quantity is lower than in
the prior draw, and, if there are any ties, choosing the rank randomly among the tied
positions:

M

Niess = Y 1[f(Om,y) < f(0,9)] ,

m=1
M

Nequals = Z I [f(anuy) = f(éa y)] ;

m=1
K ~ uIlifOITﬂ(O7 Nequals)a

Ntotal = Nless + K7

where I[P] denotes the indicator function for predicate P. The procedure simplifies if
there are no ties, which will be true for most practical test quantities over models with
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Figure 1: Schematic representation of SBC with .S simulations. The generator is respon-
sible for sampling from the prior distribution 6 ~ ﬁprior(é) and from the observation
model y ~ Tops(y | ). The draws from the observation model are then treated as in-
put for the probabilistic program and the associated algorithm which takes M posterior
draws 61, ...60). Each test quantity projects the prior draw and the posterior draws (po-
tentially using data) onto the real line, letting us compute a single rank (Niota1). Finally,

deviations from discrete uniform distribution are assessed numerically or visually.

continuous parameter space. When no ties occur, we have Nigta1 = Niess- Lhen, if the
probabilistic program and the generator implement the same probabilistic model, we
have

Niota1 ~ uniform(0, M). (5)

See Theorems 3 and 4 for a formal statement and proof. As a result, once we obtain a set
of draws from empirical distribution of Nyeta1 via multiple simulations, we can perform
a test for uniformity. The process is then repeated for all test quantities we want to
consider. If we are using MCMC to sample from s, the posterior sample typically
needs to be thinned to ensure that 6,...,605 are approximately independent (Talts
et al., 2020; Sailynoja et al., 2022). The overall SBC process is illustrated in Figure 1.

While it is possible to use numerical tests for uniformity with SBC, we generally
prefer to use visualisations of the rank distribution as they are more informative than
numerical summaries and discourage dichotomous thinking. Most prominent are rank
histograms and plots of empirical cumulative distribution functions (Siilynoja et al.,
2022).

Our proposed SBC variant improves upon the way SBC has been previously reported
and used in two major ways:

e We let test quantities depend on both data and parameters, while previous work
only considered quantities that depend on the parameters. In practice, these test
quantities were almost exclusively just the individual parameters themselves.
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e Previous formulations of SBC required uniformity of Nyess. However, even if the
probabilistic program is exactly correct, Nqiess Will not be uniform if Pr(Nequals >
0) > 0, that is, if ties can occur. With our improved SBC procedure, we can handle
test quantities that have distributions with point masses and thus ties between
f(8,y) and (f(01,y), ..., f(Bar,v)). Resolving ties lets us use SBC for models with
discrete parameters as well as in some other special cases, such as when a theo-
retically strictly positive test quantity suffers underflow and some prior/posterior
sample draws are numerically zero. Random tie-braking has previously been used
for checking that data-averaged posterior equals prior (1) over discrete parameter
spaces (Saad et al., 2019).

1.3 Practical considerations

SBC will be satisfied if the generator, probabilistic program, and posterior approxima-
tion algorithm are in harmony: The generator and the probabilistic program should
correspond to the same data-generating process. At the same time the posterior ap-
proximation algorithm (including the associated tuning parameters) provides samples
that have at most a negligible difference from the correct posterior for the probabilistic
program, given the data simulated from the prior. Failure indicates that at least one of
the components is mismatched to the others. However, by itself, SBC cannot determine
where exactly the problem lies. As a result, two broad uses of SBC arise:

e We have code to simulate data and a probabilistic program we trust, and the goal
is to check that an algorithm correctly samples from the posterior, or

e We have an algorithm that we trust is correct and trustworthy code to simulate
data, and the goal is to check that we correctly implemented our probabilistic
program.

In practice, those classes overlap and mix: we are rarely completely certain of the
correctness of any algorithm, generator, or probabilistic program. Additionally, SBC as
a simulation method has no way to inform us about a discrepancy between the process
that generated real data and the assumptions of our statistical model. For reliable
inference, SBC thus needs to be combined with other elements of Bayesian workflow
that can detect model misspecification, such as posterior predictive checks or analysis
of residuals (Gabry et al., 2019; Gelman et al., 2020; Kay, 2021).

1.4 Importance of test quantities

It has been generally believed that methods based on (2), including SBC, are never
sensitive to some classes of mismatches between the generator and the probabilistic
program—most notably that it is impossible to detect if the probabilistic program sam-
ples from the prior distribution and ignores the information in the data (e.g., Equation
(1.3) of Lee et al. 2019; Appendix M.2 of Lueckmann et al. 2021; Schad et al., 2022;
Zhao et al., 2021; Ramesh et al., 2022; Cockayne et al., 2022).
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In this paper we show that the choice of test quantities greatly influences the use-
fulness and sensitivity of SBC. We show that using test quantities that depend on data
makes it possible to detect any conceivable mismatch between the generator and the
probabilistic program. Thus, we demonstrate that the belief in inherent limitations of
SBC has relied on overly restrictive and sometimes plainly incorrect assumptions. We
discuss useful classes of test quantities that have not been used so far and provide char-
acterization of possible remaining undetected failures. We provide simulation studies as
well as theoretical analysis of SBC to support our findings. We hope that our theoretical
framework can serve as a basis for a better understanding of the properties of SBC and
related methods. All of the techniques discussed are implemented in the SBC R package
(Kim et al., 2022).

The rest of the paper is structured as follows: Section 2 discusses related work,
Section 3 summarizes the theoretical results we derived, Sections 4 and 5 show results
of simulation and real-world case studies, and Section 6 discusses the results and our
recommendations for practical use of SBC.

2 Related work

Prior contributions to validation of Bayesian computation can be roughly split into
works that focus on the data-averaged posterior, those that focus on the SBC property,
and other relevant works that do not directly invoke any self-consistency property.

2.1 Data-averaged posterior

The idea of using simulations via a generator to verify Bayesian computation can be
traced back to Geweke (2004) who compared the moments of the prior and the data-
averaged posterior distributions for multiple test quantities. That paper proposed to
integrate a transition kernel for an MCMC sampler targeting mpest into a scheme that
samples Tjoine directly. This lets one obtain the data-averaged posterior from a single
run of this sampler, potentially reducing the computational cost but increasing imple-
mentation burden. Geweke’s formalism allows the test quantities to depend on data,
although all the examples actually shown only depend on parameters. Comparing the
mean vector and covariance matrix of the prior distribution and the data-averaged pos-
terior distribution is also discussed by Yu et al. (2021), who use repeated fits to build
the data-averaged posterior.

Saad et al. (2019) proposed a check for identity of two potentially high-dimensional
discrete distributions by inspecting ranks generated by different total orderings over the
parameter space. Their work is relevant in four ways: (i) it can be used to assess the
data-averaged posterior criterion (1) for discrete domains, (ii) in close analogy to the
use of test quantities in this paper, they focus on different orderings of the underlying
domain and their different power to detect discrepancies, (iii) they propose breaking
ties in ordering uniformly at random in the same way we do, and (iv) they prove some
results that are analogous to or special cases of some of our theoretical results.
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2.2 SBC-like checks

The identity of prior and posterior distributions conditional on a specific dataset as
a tool to check computation was proposed by Cook et al. (2006) and further refined
by Talts et al. (2020) who introduced SBC as it is currently used. Specific variants
of SBC have been proposed for variational inference (Yao et al., 2018), Bayes factors
(Schad et al., 2022), and Gaussian processes (Mcleod and Simpson, 2021). SBC has
also been used to validate likelihood-free inference methods including neural posterior
approximators with normalizing flows (Radev et al., 2020, 2021) and an SBC variant
for checking joint calibration of such methods has been proposed and used in Radev
et al. (2023).

Gandy and Scott (2020) proposed a procedure similar to SBC that can work with
shorter sequences of Markov transitions than a full fit, reducing computational cost.
This is, however, less relevant for algorithms that need a nontrivial warmup phase to
adapt to the specific posterior (e.g., the adaptive Hamiltonian Monte Carlo sampler
implemented in Stan; Carpenter et al., 2017). This is because warmup is a fixed cost
that occurs during every model fit even if fewer post-warmup draws are needed.

Prangle et al. (2014) proposed an SBC-like procedure for approximate Bayesian
computation (ABC). They note that the possibility that the probabilistic program sim-
ply samples from the prior distribution cannot be ignored in this context and resolve
this issue by separately inspecting ranks for some subsets of the simulated datasets.
SBC is closely related to the coverage property discussed by Prangle et al.: when using
M posterior sample draws, SBC can be understood as checking for all posterior inter-
vals of width « € {ﬁ, ceey %} that the probability the interval contains the original
simulated value of the test quantity is a.

A broader framework for calibration of learning procedures has been proposed by
Cockayne et al. (2022). There, Bayesian inference is just one example of procedures
where calibration can be empirically verified with an SBC-like check. They distinguish
between strong calibration which corresponds to passing SBC (specifically continuous
SBC as defined in Appendix A; Modrak et al. 2023) for all measurable test quantities
and weak calibration which corresponds to having a correct data-averaged posterior (1).
They however only consider test quantities that depend only on parameters.

2.3 Miscellaneous

The problem of diagnosing and understanding computational issues is transformed by
Rendsburg et al. (2022). Their approach tries to find a prior distribution that would
make the probabilistic program and algorithm exactly match the generator.

Both Grosse et al. (2016) and Domke (2021) proposed to use fits to multiple gener-
ated datasets to estimate the symmetrized KL-divergence between a distributional ap-
proximation to the correct posterior (e.g., Laplace or variational inference) and the true
posterior. Cusumano-Towner and Mansinghka (2017) described a method to compute
the symmetrized KL-divergence between a gold standard posterior and an approximate
posterior.
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3 Theoretical results

The formalism required for SBC is relatively heavy on definitions and syntax, so for
all results in this section we also provide plain English-language summaries. Proofs,
expanded definitions (as required for proofs) and some additional discussion can be
found in Appendix A (Modrdk et al., 2023). Some of the results for stochastic rank
statistics (SRS) by Saad et al. (2019) can be understood as special cases of some of our
theorems. Specifically, SRS assumes that the parameter space © is finite or countable
and the goal is to directly compare two distributions, which is the same as assuming
the data space Y has just a single element. We will refer to this special case as the SRS
assumption.

Definition (Posterior family, test quantity). A posterior family ¢ assigns a normalized
posterior density to each possible y € Y. That is, a posterior family is a function
¢:© xY — RT such that Vy : [df ¢(f|y) = 1. For each y, we will denote the implied
distribution over © as ¢,. A test quantity is any measurable function f: © xY — R

Definition (Sample rank CDF, sample Q, sample SBC). Given a test quantity f,
M € N and a posterior family ¢. If 01, ...,0y ~ ¢, we can define the following random
variables:

NoFay Z L[ (O, v) < 7O.9)]

v Z 1[f(0mo0) = f0.9)],

Kd) f.0y "~ uniform (0 Nequals>

¢,f.0,y
total . less .
Norow =Noroyt Eoroy

The M-sample Q) is:
Qu.s(il) = [ A8 mp @)Pr (NFE, <1).
We then say that ¢ passes M-sample SBC w.r.t. fif, Vi€ 0,..., M —1,

i+1
d ' mar = .
[ 0 Qo il maes ) = 3755

This definition does not match immediately with the procedure we actually use to
run SBC in practice but is more convenient for further analysis and is equivalent:

Theorem 1 (Procedural definition of sample SBC). A posterior family ¢ passes M-
sample SBC w.r.t. f if and only if given 0% ~ 7(0),y* ~ mops(y|0*), NttaL = Ntotal

@, 1,0%y*
we have N*°*! ~ uniform (0, M).

Next, we define an idealized, continuous version of SBC that will be more amenable
to theoretical analysis:
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Definition (Continuous rank CDF, continuous ¢, continuous SBC). We first define
fitted CDF: CF ; : RxY — [0,1], CF ;(sy) := [o dOL[f (0,y) < 5] ¢ (A]y) and fitted tie
probability: DF , : R x Y — [0,1], DF ,(sly) := Jo A0 o(0|y)I[f(0,y) = s].

We then define the continuous ¢ : [0,1] x Y — [0,1] as

.5 (zly) = /@ A0 Tose (01y)Pr (Cyp (f (0,y)|y) — UDg s (f (6,y)]y) < =),

assuming U is a random variable distributed uniformly over the [0, 1] interval.

Finally, ¢ passes continuous SBC w.r.t. f if Vo € [0,1] : [, dyqe, s ([y) Tmarg(y) = .

3.1 Correctness

With the definitions ready, we first establish that if a probabilistic program achieves
uniform distribution of ranks in sample SBC for a given test quantity as M — oo, then
it will satisfy continuous SBC as well.

Theorem 2 (Sample SBC implies continuous SBC).

1. For any fited y € Y if as the number of sample draws M — oo we have Vi €
{0,..., M} : Qg s(tly) — X;f:l then Vx € [0,1] : g4 f(x]y) = .

2. If as M — oo we have Yi € {0,..., M} : [, dy Qo £ (ily) Tmarg(y) — ]\7;11 then ¢
passes continuous SBC for f.

Theorem 3 then shows that if a probabilistic program passes continuous SBC for
a given test quantity, it will pass sample SBC for all M. We then show that passing
continuous SBC (and thus our SBC variant) is a necessary condition for the correctness
of posterior estimation (Theorem 4). That is, the correct posterior will always produce
uniformly distributed ranks, including for test quantities that may have ties (see also
Examples 5 and 6 in Appendix B Modrék et al. 2023). A special case of Theorem 4
under the SRS assumption was proven as Theorem 3.1 of Saad et al. (2019).

Theorem 3 (Continuous SBC implies sample SBC). For all M € N:
1. Foranyy €Y, if Ve €[0,1] : qp s (xly) = = then Vi € {0,..., M —1} : Qp s (ily) =
irasy
2. If ¢ passes continuous SBC w.r.t. f, then ¢ passes M-sample SBC w.r.t. f.

Theorem 4 (Correct posterior and ¢). For any y € Y, if V0 € © : ¢(0|y) = Tpost(0]y)
then for any test quantity f we have Va € [0,1] : g, ¢(2|y) = .

3.2 Characterization of SBC failures

Still, many incorrect posteriors will also pass SBC for any given test quantity, so in
Theorem 5 we characterize those situations.
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Theorem 5 (Characterization of SBC failures). For all y € Y and s € R :
Jo AOT[f (0,y) < sl (Oly) = [oAOL[f (6,y) < 5] mpost(Bly) if and only if Va € [0,1] :
40,5 (xly) = .

Not only does the correct posterior yield a uniform distribution of ranks when aver-
aging over the whole data space Y, but the ranks are uniformly distributed even when
we only consider simulations that yielded data in some Y C Y. The reverse implication
also holds: when the ranks are uniformly distributed for all subsets of the data space
Y C Y, then the implied posterior distribution of the test quantity under investigation
has to be exactly correct. In other words, whenever SBC “fails” and the implied poste-
rior distribution of a given test quantity is incorrect although the rank distribution is
uniform, we can find a subset of the data space, where the ranks are non-uniform. It
just so happens that all the deviations in various subsets cancel each other out perfectly.

An obvious application of Theorem 5 is that we could partition our simulations based
on some features of the data space and investigate uniformity separately for each part,
similarly to the procedure suggested by Prangle et al. (2014). This however quickly runs
into issues of multiple testing due to the lower number of simulations in each part. It is
thus in our experience not practical except for the special case where interest lies only
in some subset of the data space, so that the SBC checks can focus only on that data
space of interest. This is a form of rejection sampling and can be practically useful if
it is easy to formulate a criterion that constrains plausible real data sets but hard to
construct a defensible prior distribution that would enforce this criterion implicitly. For
example, prior information can be available on the plausible variance of an outcome
across the whole population, which may be hard to express as a prior on coefficients
associated with predictors (but see the approaches for linear models discussed in Zhang
et al., 2020 and Aguilar and Biirkner, 2023).

3.3 Data-dependent test quantities

The characterization of SBC failures discussed above provides intuition why test quanti-
ties that depend on data are useful: If SBC passes for a test quantity f, but the posterior
is in fact incorrect, we can always pick a test quantity g that combines f with some
aspect of the data and ensures that the discrepancies in various parts of data space add
up instead of canceling out. For example, we could have over-abundance of low ranks
and under-abundance of high ranks in Y7 C Y and a matching under-abundance of low
ranks and over-abundance of high ranks in Y5 C Y. Setting

_ _f(07 y) Yy e Y17
9(0,9) = {f(@, Y) otherwise,

will ensure over-abundance of high ranks in both Y; and Y5. Since such a test quantity
uses all the simulations, we do not lose power from reduced number of simulations.

An even stronger reason to use data-dependent test quantities is that they make SBC
in some sense complete: If there is any difference between the correct posterior and the
posterior implemented by the probabilistic program, there will exist a data-dependent
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test quantity that fails SBC. In fact, we can construct a specific test quantity that
detects the failures, which is the ratio of the correct posterior density to the posterior
density actually implemented by the probabilistic program.

Theorem 6 (Density ratio). For any posterior family ¢, take g (0,y) = %W. Then
@ passes continuous SBC w.r.t. g if and only if Tyost and ¢ are equal except for a set
of measure 0:

/Y dy /@ 40 7 joi0t (4, O)1 (7ot (Oy) # H(01y)] = 0.

Here g is not a practical test quantity, as it (a) depends on the specific probabilistic
program we implemented and (b) requires that we already have the correct posterior
density. However our empirical results in this paper, and our experience with using
SBC in model development more generally, shows that the model likelihood 7ops(y|0) is
frequently useful as a general-purpose test quantity. This makes sense intuitively, as the
likelihood is an important contributor to the density ratio. In their Theorem 3.1, Saad
et al. (2019) proved an analogous result under the SRS assumption, although relying on
a different test quantity. Under the SRS assumption, they also show that the difference
of the two densities will fail M-sample SBC for all M > 1 (their Theorem 3.6) and has
maximum power against discrepancies (their Theorem 3.7).

3.4 Ignoring data

We generalize the result that probabilistic programs sampling from the prior distribution
will pass SBC against all test quantities that do not depend on data.

Theorem 7 (Incomplete use of data). Assume a model © with observation space Y
and parameter space ©, a space Y', and a measurable function t : Y — Y'. Denote the
set t7Hy') ={y € Y : t(y) = y'}. Consider the model 7' with parameter space © and
observation space Y' such that for all 6 € ©,y' € Y':

7r11;>rior (9) = Tprior (9)7

Ta(y/]6) = / dy Tons (419).
t=1(y")

Assume a test quantity f' : Y'xO — R. If we have a posterior family ¢’ onY', O such
that ¢’ passes continuous SBC w.r.t. f and set test quantity f: Y x © = R, f(0,y) =
1'(0,t(y)) and posterior family ¢ on ©,Y such that ¢(0ly) = ¢'(0|t(y)) then ¢ passes
continuous SBC w.r.t. f.

Here, the choice of t lets us choose which aspects of the data are ignored, if Vy € Y :
t(y) = 1, we recover the case where all data are ignored: 7}, (0|y) = Tprior(9) and thus
d(0ly) = Tprior(0) will pass SBC w.r.t. f. If ¢ is a bijection, no information is lost. Other
choices of ¢ then let us interpolate between those two extremes, for example ignoring
just a subset of the data points, treating some data points as censored, rounding all
data to integers.
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3.5 Detailed analysis of simple models and test quantities

Appendix B (Modrék et al., 2023) provides full theoretical analysis of SBC for simple
models and test quantities where we can actually characterize all possible posterior
distributions that will satisfy SBC. This is aimed at providing intuition on what SBC
actually does and also serves as counterexamples to some claims. In some publications
(e.g., Lee et al., 2019, Lueckmann et al., 2021, Schad et al., 2022, Grinsztajn et al., 2021,
Ramesh et al., 2022, Saad et al., 2019), it is assumed that SBC is based on the data-
averaged posterior (1). We show that this is incorrect: Example 2 not only explicitly
constructs posterior distributions that will satisfy (1) for some test quantity while not
passing SBC, but also posterior distributions that pass SBC while not satisfying (1).
One possibly more general lesson is that SBC is most naturally understood as enforcing
constraints on the quantile function of the test quantity while having a correct data-
averaged posterior is most naturally seen as constraint on the density of the test quantity.

This implies there might be some gains from using both the data-averaged posterior
and SBC when verifying the correctness of Bayesian computation. We however suspect
that the additional practical benefit of using the data-averaged posterior is small in the
sense that the incorrect posteriors that pass SBC but are ruled out by (1) are mostly
contrived and unlikely to be a result of a computational problem or an inadvertent
mistake. Lemma 2.19 of Cockayne et al. (2022) proves that if a posterior passes SBC
for all possible test quantities that do not depend on data, it will have the correct
data-averaged posterior for all test quantities that do not depend on data, so SBC is
stronger at least in the limit of using infinitely many test quantities. We leave a more
thorough examination of the relationship between data-averaged posterior and SBC as
future work.

Additionally, we show the behavior of SBC when ties are present, whether induced
by a test quantity (Example 5) or by discrete parameter space (Example 6). Discrete
parameter spaces may induce additional structure on the space of posterior families
passing SBC.

3.6 Monotonic transformations of test quantities

Finally, transforming a test quantity by a strictly monotonic function produces equiva-
lent SBC results:

Theorem 8 (Monotonic transformations). Assume test quantities f,g and a set of
measurable functions h, : R — R such that Vy € Y,0 € © : f(0,y) = hy(9(01,y)) and a
posterior family ¢. If either for ally € Y : hy is strictly increasing or for ally € Y : hy
is strictly decreasing then 1) ¢ passes continuous SBC w.r.t. [ if and only if ¢ passes
continuous SBC w.r.t. g and 2) ¢ passes M -sample SBC w.r.t. f if and only if ¢ passes
M -sample SBC w.r.t. g.

The result cannot be easily strengthened as many non-monotonic transformations
lead to different, non-equivalent SBC checks. Example 3 shows that flipping the ordering
of values only for some subset of the data space yields a different SBC check. Example 4
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shows that we can also obtain a different check if we combine a test quantity with a non-
monotonic bijection, and Example 5 shows the same for the case when a whole range
of values is projected onto a single point. In all those examples, the transformed test
quantities rule out some sets of posteriors that pass SBC for the original quantity, but
there are also sets of posteriors not passing SBC for the original quantity but passing
SBC for the transformed quantity.

4 Numerical case studies

The theoretical analysis in previous section primarily deals with the behavior of SBC in
the limit of both infinitely many posterior draws per fit and infinitely many simulations.
Here, we further support the results by numerical experiments which let us understand
not only whether a certain problem is detectable at all but also how much computational
effort is required for SBC to detect the problem.

4.1 Setup

To illustrate some of the properties of various types of test quantities, we use a simple
bivariate normal model,

1~ MVN(0, ),
Vi, ¥Yn ~ MVN(pu, ),

1 08
2_<0.8 1)’

where the two-element vector u is the target of inference and y1,...,y, are observed.

Z?Zl ¥, the correct analytic posterior is MVN (nN—JFS'l, %HE) Unless

mentioned otherwise we will use n = 3. In most previous use cases of SBC, the only
test quantities used would have been the parameters themselves, that is, the elements
of p in the above example. Below, we also check a host of derived quantities: the sum,
difference, and product of the p elements, the joint likelihood of all the data, and
pointwise likelihoods for the first two data points.

(6)

Introducing y = %

To quantify the discrepancy between an observed distribution of posterior ranks and
the uniform distribution, we take the likelihood of observing the most extreme point on
the empirical CDF if the rank distribution was indeed uniform:

=2 min min{Bin(R;|S, z;),1 — Bin(R; — 1|5, z;) }). 7
Lo (min{Bin(R,1S. 5.1 = Bin(R, — 1[5, )}) 7)
Here, M is the number of draws in the sample obtained from the posterior, S is the
number of simulations (and thus the number of observed ranks), z; = 3747 is the
expected proportion of observed ranks smaller than i, R; is the observed count of ranks
smaller than 4, and Bin(R|S,p) is the CDF of the binomial distribution with S trials

and probability of success p evaluated at R. This metric was introduced in a paper
by Séiilynoja et al. (2022), where we can also find computational methods to evaluate



14 Simulation-Based Calibration and Test Quantities

- mu[1] mu[2] mu[1] + mu[2] mu[1] - mu[2]
© 41

<

g 4 W {NMN‘\* W WW
< 01

T ool

g mu[1] * mu[2] mvn_log_lik mvn_log_lik[1] mvn_log_lik[2]
£ 49

o 01

le)

— -2

0 250 500 750 10000 250 500 750 10000 250 500 750 10000 250 500 750 1000
Number of simulations

Figure 2: Case study 1: FEwvolution of the difference between the gamma statis-
tic and threshold (log#) for rejecting uniformity at 5% for the correct posterior.
mun_Llog_lik[1] and mun_log_lik[2] are the pointwise likelihoods w(y1|p) and w(y2|u)
respectively, while mun_log_lik is the joint likelihood. As expected when using a 5% level
for rejection, false positives (values below the threshold) do happen, but they tend to cor-
respond to only small discrepancies.

the distribution of v under uniform distribution of ranks for given M and S. Our
primary metric of interest would then be log %, where 7 is the 5th percentile of the
null distribution. That is, if you adopt a hypothesis-testing framework, then log% <0
implies a rejection of the hypothesis of uniform distribution at the 5% level. Having
log% < 0 also corresponds to situations where visual checks of the ECDF plots would
show problems (for a single test quantity). This diagnostic is typically more sensitive
than the Kolmogorov-Smirnoff or x? test.

4.2 Correct posterior — Case study 1

Figure 2 shows how the ~ statistic evolves in a fairly typical SBC run as we add more
simulations using a probabilistic program that samples from the correct posterior. There
is some variability, but most of the time all quantities would indicate uniformity and if
they indicate some non-uniformity, the discrepancies tend to be small so we are unlikely
to reject this model as incorrect.

4.3 Ignoring data — Case studies 2—-4

For comparison, case study 2 (Figure 3) shows the evolution of the same quantities
for a typical run with an incorrect posterior that is completely equal to the prior. All
quantities that do not depend on data pass SBC, barring small short-term deviations
as seen for the correct posterior. But all the likelihood-based quantities start showing
big discrepancies after just a handful of simulations. While the overall distribution of
ranks for the parameters themselves is uniform, when we look separately at data with
large average y and low average y, the ranks are strongly non-uniform in both regions
(Figure 4).
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Figure 3: Case study 2: Evolution of the difference between the gamma statistic and
threshold for rejecting uniformity at 5% for an incorrect posterior that equals the prior.
Note how quickly large discrepancies accumulate for the likelihood-based quantities, de-
spite the horizontal axis being zoomed to show only first 50 simulations.
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Figure 4: Case study 2: Rank distribution for the elements of u split by the average value
of the corresponding y elements for the incorrect posterior that is completely equal to
the prior. The distributions for the two cases exactly compensate to make the overall
distribution uniform. The gray horizontal line represents exact uniform distribution and
the blue areas represent an approximate 95% prediction interval for the observed ranks,
assuming uniform rank distribution.

In case study 3, we observe similar behaviour for the posterior that ignores only
the first data point; see Figure 5. The biggest difference is that now the pointwise
likelihood for the second data point—which was not ignored—passes SBC, while the
joint likelihood as well as the pointwise likelihood for the first ignored data point show
problems. Additionally, the pointwise likelihood for the ignored data point now shows
bigger discrepancy than the joint likelihood. For both quantities, the discrepancy is
smaller and requires about S = 20 simulations to reliably uncover, because ignoring a
single data point produces a posterior that is closer to the correct one than when ignoring
all the data. For case study 4 we increase the number of data points to n = 20 (Figure 6),
ignoring just a single data point produces a posterior that is close to correct and even
after 1000 simulations, the discrepancy for the joint likelihood is small. The pointwise
likelihood for the first (ignored) data point still detects the problem relatively quickly.

More generally, if the model (partially) ignores data, then adding a test quantity
that involves both data and parameters can detect this failure. Specifically adding the
joint log-likelihood of the data as a derived quantity seems to be a useful default. If
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Figure 5: Case study 3: Evolution of the difference between the gamma statistic and

threshold for rejecting uniformity at 5% for an incorrect posterior that ignores the first
datapoint among a small data set (n =3).
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Figure 6: Case study 4: Evolution of the difference between the gamma statistic and
threshold for rejecting uniformity at 5% for an incorrect posterior that ignores the first
datapoint among a larger dataset (n = 20).

only a small part of the data is missing, using the joint likelihood in SBC will turn it
into a problem of precision. Missing just a single datapoint in a large dataset (e.g., an
off-by-one error in the probabilistic program) may change the posterior only slightly
and be undetectable with realistic computational effort.

4.4 Incorrect correlations — Case study 5

Suppose we have an incorrect posterior that has the correct marginal distributions
for both parameters, i.e., sampling is done from independent univariate normal dis-

tributions, p; | y1,..-,¥yn ~ N (:Z_S;l, %HEW»). The evolution of the discrepancy as
simulations are added is shown in Figure 7. If the test quantities are the univariate
parameters, SBC passes without any indication of problems, while the likelihood-based
quantities as well as the difference, product, and sum of the variables show problems

relatively quickly. The joint likelihood is the first to show serious issues.
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Figure 7: Case study 5: Evolution of the difference between the gamma statistic and
threshold for rejecting uniformity at 5% for incorrect posterior that has wrong correlation
structure.

If the inference does not represent correlations in the posterior correctly, this should
as well manifest in an SBC failure for some function of the parameters. This can be
directly targeted by using products (“interactions”) of model parameters, but the log-
likelihood once again seems to be generally useful as a highly nonlinear function of all
model parameters.

4.5 Less plausible problems — Case study 6

In this subsection our results get less practical and more theoretical. The (partially)
unused data case may easily arise in practice due to a bug in the probabilistic program
such as an indexing bug or a deficient overall approach. For example, an approximate
Bayesian computation algorithm may not learn from the data at all and just stick to
the prior (Prangle et al., 2014). Incorrect correlations or more general higher-order
structure of the posterior may also easily arise due to a problem with an approximate
inference algorithm. For example, mean-field variational inference will never recover any
correlations by design. Beyond those examples, we have found it hard to find incorrect
probabilistic programs that would satisfy the SBC identity and could plausibly arise
from unintentional mistakes in program code or problems with an algorithm. We see
this as anecdotal evidence that SBC augmented with a few well-chosen test quantities
that probe usage of data and higher order posterior structure such as the likelihood
can robustly detect these kinds of mistakes. That said, for specific models, wide sets of
artificial counterexamples that incorrectly pass SBC can be constructed.

In case study 6, we show a specific case of a more general class of setups where
we can create an incorrect posterior approximation that produces overabundance of
low ranks for datasets with average of y positive and compensates by producing over-
abundance of high ranks for other datasets. If this is done right, the test quantity will
pass SBC. The distribution of the ranks conditional on the average of y for one such
setup is shown in Figure 8—here we transform draws from the correct posterior dis-
tribution by first applying the correct CDF, manipulating the results to achieve the
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Figure 8: Case study 6: Rank distribution for the elements of u split by the average
value of the corresponding y elements for the incorrect posterior that satisfies SBC' for
individual parameters. The distributions for the two cases exactly compensate to make
the overall distribution uniform.
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Figure 9: Case study 6: Evolution of the difference between the gamma statistic and
threshold for rejecting uniformity at 5% for incorrect posterior that satisfies SBC for
individual parameters. Note the different horizontal axis between top row (quantities
that detect the problem slowly or not at all) and bottom row (quantities that detect the
problem quickly). The vertical red dashed line marks 500 simulations. We only show
quantities derived from the first element of u; the situation is analogous for the second
element. The drop (mu[1]) quantity is defined as p1 if p1 <1 and as p1 — 5 otherwise.

desired shape of ranks and then transform back via the quantile function. See the as-
sociated code for more details. As seen in Figure 9, when averaging over all datasets,
SBC indeed passes for the univariate parameter test quantities, but if we instead look
at, say, the absolute value of u (as well as some other non-monotonic transformations
of u), we immediately see problems as now some of the previously low ranks flip to
high ranks and the discrepancies accumulate instead of canceling each other. In this
particular case, the problem is also eventually picked up by the product of the y values
and with enough simulations even by the joint likelihood, but there is no guarantee this
will always happen. In general, non-monotonic transformations can discover incorrect
posteriors that would be otherwise hidden when looking at the original variables. Still,
the practical relevance of non-monotonic transforms in SBC is, in our view, likely lim-
ited, as it required careful work to construct posteriors that manifested this behaviour.
We were unable to find even remotely plausible scenarios where an issue with Bayesian
computation was best discovered by using a non-monotonic transformation of another
test quantity.
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Figure 10: Case study 7: Fvolution of the difference between the gamma statistic and
threshold for rejecting uniformity at 5% for incorrect posterior that introduces a small
bias for each parameter.

4.6 Small discrepancies — Case study 7

A final case study considers small discrepancies in the posterior. To be specific, we
introduce a small bias in the posterior drawn from normal(0,0.3) independently for
each simulation and element of p. The resulting SBC history is shown in Figure 10.
While all of the monitored quantities will eventually show the problem, the likelihood-
based quantities and the difference of i do that noticeably sooner than others. This
demonstrates that derived quantities can somewhat improve precision of SBC: small
changes in the univariate marginals can result in big (and thus easy to detect) changes for
some test quantities combining the univariate marginals with data and other parameters.

5 Real-world case study

We present a case study adapted from an actual user discussion on forums of the Stan
probabilistic programming language. Our goal is to use Stan and its Hamiltonian Monte
Carlo implementation to sample from a distribution over an ordered K-dimensional
simplex which is then to be used as a component in a larger model:?

K
OrdSimplex ;- = {x ERNO<m < - <ax <1, @ = 1}.

i=1

To do that, we need to construct an ordered simplex from primitive data types
available in Stan and compute the logarithm of the Jacobian determinant of the trans-
formation (up to a constant).

2The discussion can be found at https://discourse.mc-stan.org/t/ordered-simplex-
constraint-transform/24102. We thank Sean Pinkney, Bob Carpenter and Ben Goodrich for
contributing to the discussion and suggesting solutions.
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5.1 Proposed implementations

We consider three variants. Mimicking the fallibility of methods proposed by real statis-
ticians, not all of the following derivations will be correct. A reader interested in little
mathematical puzzles may try to pin down any errors. In the next subsection, we will
then show how to use SBC to discover the error(s) without the painstaking attention
to detail required for checking the math. We then also remedy the error(s).

The first variant will be called min. Here, we start with an unordered bounded vector
u € [0, 1]%~! (which is a primitive in Stan). The minimal element of the simplex needs

to satisfy 21 < 4, so we set 1 = “. Given 1, if we set x’ € RE~1 2} = % =
%, then x” € OrdSimplex . _;, giving us a recursive formula for the transformation,

which we can unroll as:

bl = 07 = 17
, U,
for1<i<K: z;= bi-l—nm, bit1 =i, Tip1 =ri(1 —w;),
K—1
wk:bzﬁ—rk:l—in.
=1

Here r; can be understood as tracking the remaining amount to be distributed to ensure
x; sum to 1 if all the following elements will be at least b;. For 1 < i < K, we have

gi? = %3i= and when also ¢ < j < K then gi? = 0, so the Jacobian matrix is
T J
triangular and the Jacobian determinant is thus
K—1 .
detJ = —_— 8
I ey ®)

The second variant, called sof tmax starts with a positive ordered vector v € (0, —l—oo)K -1

v] < -+- < vg—1 (also a primitive in Stan). We then prepend 0 to the vector and
normalize it with the softmax function:?

! 1 exp(vg—1)
k-1
s=1+ g 1 exp(vs), x1 = PRI et
i=

For k > 1,1 <j <K —1,j# k — 1 the partial derivatives are:

Oz explues)  exp(un-1) _ exp(vp_1)(s - expup_i)
Ovg_1 s B 52 - 52 ’
Oz exp(vp—1 +v;)
;S '

30ne could also base the normalization on the arithmetic sum of the elements, but this results in
problematic geometry of the posterior and the sampler has trouble converging.
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We notice the repeated elements and define a K — 1 dimensional diagonal matrix D,

where D; ; = exz#i). We can now express the Jacobian matrix as
—exp(vy) -+ —exp(vg_1)
J=|D + sl
—exp(v1) -+ —exp(vk-1)
We now define a K — 1 dimensional column vector c, ¢, = —exp(vy) and a row vector

r,r; = 1 and obtain J = D (cr + sIx_1). By the matrix determinant lemma, det(cr +
X) = det(X)(1 + rX~1c), for any invertible matrix X. Since rc = Zfi}l(fexp v;) =
1 — s, we have:

1—s

1
det(er + sIx_1) = (1 + rc) st = <1 + ) sK—1 = gK=2,
s

: _ e )
Since det(D) = —5g="=, we finally have

K-1
det(J) = det(D) det(cr + sIx_) = ‘m’(?{%j”) 9)

As a different approach, if we are willing to restrict our priors over the ordered
simplex to Dirichlet distributions, we may employ the fact that if w € (0, +00)%, w; ~

(e, 1) then ZKLUJ ~ Dirichlet(a). So if we start with w positive ordered (a primitive
i=1 "t
in Stan), then x = =x— will be Dirichlet distributed over OrdSimplex; and no

i=1 Wi

Jacobian adjustment is required. A downside of this approach is that the mapping is
many-to-one and in models where x is tightly constrained by data, the implied geometry
on w will likely pose difficulty for most samplers. This variant will be referred to as
gamma.

At this point the interested reader is welcome to try to find issues with any of the
above approaches.

5.2 Testing with SBC

Whether the reader managed to find errors or not, we can use SBC to test all approaches.
To run SBC we embed the ordered simplex into a simple model:

x € OrdSimplex,, m(x) o Dirichlet(2, 2, 2, 2),

y ~ Multinomial(10, x). (10)
Implementing the simulator code is straightforward: due to symmetry, we can sample
x simply by ordering a sample from the unordered Dirichlet distribution. Both min and
gamma variant show no problems in SBC and are indeed correct, but softmax exhibits
issues. Figure 11 shows the evolution of the discrepancies. The problems are most quickly
picked up by the first element of x and the log Dirichlet prior density. Although the
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Figure 11: Fvolution of the difference between the gamma statistic and threshold for
rejecting uniformity at 5% for the incorrectly implemented softmaz variant of an ordered
simplex model. Tog_1lik is the multinomial log likelihood of the data and log_prior is
the log density of the prior Dirichlet distribution. Note the different horizontal azis
between top row (quantities that detect the problem quickly) and bottom row (quantities
that detect the problem slowly). The vertical red dashed line marks 400 simulations.

problem is found relatively quickly with SBC, the bias in the inferences would likely not
be noticed in an informal assessment of the model: the results are not completely wrong,
just somewhat biased. The source of the issue is an off-by-one error in the exponent for
s in equation (9); the correct Jacobian determinant is

K-1
OXPD iz Vi

det(J) = det(D) det(cr + sIx—1) = e
s

Indeed, if we correct the Jacobian, SBC passes.

5.3 Remarks

The previous section showed the type of modeling problem where SBC is in our view the
most useful: deriving and implementing the probabilistic program is relatively involved
and offers plenty of opportunities for error, but building a simulator is straightforward.
Jacobian adjustments for changes of variables are also in our experience one of the most
confusing concepts to Stan users and SBC offers a good way to check if one’s reasoning
is correct.

The examples in this section introduce several non-obvious conceptual questions:
For min and softmax we compute the Jacobian only considering K — 1 elements of the
ordered simplex, even when the Dirichlet prior then acts on all elements. Is that correct?
For gamma, will ordering w imply the correct ordered simplex distribution? Running SBC
is then a useful (although not completely definitive) check that our reasoning is correct.

In this example, the log likelihood did not reveal the error quickly, showing that it
is not a panacea, especially in cases where the problem lies with the prior. The log prior
density seems potentially useful in this case as it shows the problem as quickly as the
most problematic individual parameter. Another lesson is that SBC is useful not only
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for testing a full model but also for testing components of a model in isolation, akin to
unit tests in software engineering. Additionally, by running SBC, we get a simulation
study for free: in the specific setup described by (10), min is the most efficient in terms
of effective sample size per second, followed by gamma. The correct version of softmax
performs worst. The softmax variant also fails to converge in 6 of the 1000 simulations,
while the other two are slightly more stable (convergence problems in 3 and 1 of the
simulations respectively). Finally, our posterior uncertainty is large and the data do not
really provide a lot of information about the parameter values. See the rendered output
of the supplementary code for details.

6 Conclusions

6.1 Choosing test quantities for SBC

We have found that enriching the repertoire of test quantities used in SBC provides
both qualitative and quantitative improvements to the ability of SBC to detect problems
in Bayesian computation. For practical use of SBC in everyday model and algorithm
development, we recommend to use by default the individual model parameters as test
quantities as well as the joint likelihood of the data and potentially a small number of
other quantities.

Individual parameters are recommended as they are always immediately available
and are able to diagnose a large number of problems with a posterior approximation.
Also, the parameters are themselves often of primary interest for inference, so it is
desirable to check that their uncertainty is correctly calibrated.

The joint likelihood is a highly useful quantity to detect the types of problems dis-
cussed in Section 4 (especially ignoring data and incorrect correlations). In all of the
cases presented in our simulations, the joint likelihood was able to detect the discrep-
ancies and in many cases it was even able to detect them with the fewest simulations
among all considered quantities. While, for some specific problems, we could find quan-
tities that are more sensitive than the joint likelihood, none other was useful in all
cases. Section 3.3 provides theoretical justification for why we could expect this to hold
frequently and not only in the examples we discussed. We think this generality makes
the joint likelihood a good default quantity to monitor in SBC. If not using all the data
correctly is a potential issue (e.g., because the code handling the data is particularly
complex), then adding selected likelihoods for subsets of the data might also be sensible.

As shown in Section 5, knowing where a potential problem lies can let us design more
sensitive problem-specific checks (e.g., when we are not sure our prior density is correct,
the log prior can be highly useful). It also makes sense to add test quantities tailored
to the specific inferential goals we have built the model for (e.g., some specific model
predictions). These quantities often let us implicitly check the correctness of parameter
correlations or other dependency structures and safeguard the user against problems
that they care about the most. If correlations or other dependencies in the posterior are
directly of interest, then pairwise products or differences of the model parameters can
also be sensible test quantities.
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6.2 Limitations

Although we have shown that SBC can in principle diagnose any problem, limitations
for practical use remain. For nontrivial models, adding a finite number of test quantities
cannot guard against all possible ways the SBC identity may be satisfied by an incorrect
posterior. However, as we check more quantities, the potential counterexamples become
contrived, hard to construct, and unlikely to be the result of an inadvertent bug in
model or algorithm code. At the same time, adding more test quantities increases the
risk of false SBC failures simply due to the number of tests performed (if no corrections
for multiple comparisons are made for the SBC checks) or it may reduce the overall
power of the check (if corrections for multiple comparisons are made), so choosing test
quantities carefully remains important.

This problem could potentially be alleviated by improving our understanding of the
expected dependency structure of different test quantities’ uniformity checks, letting
us correct for multiple comparisons without loosing that much power. However, even
similar test quantities can lead to in principle different SBC checks (see Section 3.6).
So any practical measure of dependency or orthogonality between test quantities would
need to reflect not only existence of a difference, but also its magnitude. We leave that
as future work. In practice, we have seen similarity in the degree of uniformity violation
between different test quantities using the same inputs, making the need for multiple
comparison correction less urgent.

Moreover, there are practical limitations imposed by the fact that we always have
only limited computational resources for SBC: We can produce only a limited number
of simulated datasets to fit the model on and only a limited number of posterior draws
per fitted model. Both contribute to the stringency and precision of the uniformity test
we can perform. The difference between continuous SBC and any practical implemen-
tation of sample SBC arises due to (a) approximating gg ¢(z|y) by Qg,f(|xM]|y), and
(b) using finite number of simulations to assess uniformity of Niota1. In both cases, the
underlying difference can be understood as estimating a CDF by an empirical CDF and
should therefore have similar rate of decrease with more draws. This suggests that for
a given computational budget a user is likely to obtain the highest sensitivity using the
same order of magnitude of simulated datasets as posterior draws per dataset. However,
in practice most algorithms incur a substantial cost in a warmup phase, before any sam-
ples can be extracted. We also want to assess that our fitting algorithm has converged
for each dataset, which typically requires the equivalent of at least 100 independent
posterior samples (as measured by effective sample size) to do that (e.g., to get a low
R statistic, as discussed by Vehtari et al. 2021). It is thus hard to get a speedup by
reducing the number of posterior draws. Unless we can afford to run many thousands
of simulations, we are also unlikely to benefit substantially from getting more than this
minimal number of draws.

Additional test quantities do not help much with precision problems—if the pos-
terior is close to correct, the test quantities will also be close to correct. Although in
some cases, some test quantities can slightly increase the sensitivity of the check by
combining multiple parameters, so small imprecisions in each of the parameters can
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get compounded (once again the nonlinearity of the likelihood seems to be at least
sometimes useful in this regard).

6.3 Implications for non-SBC checks

As a contribution to the broader discussion about validation of Bayesian computation,
we show that SBC and the data-averaged posterior provide different checks, despite
being repeatedly conflated in the literature (see Section 3.5). We leave a more detailed
comparison of SBC and data-averaged posterior as future work, although there are some
tentative arguments to believe that SBC provides stricter checks.

SBC is not the only approach to validating Bayesian computation that relies on
choosing specific test quantities—test quantities are fundamental to the methods of
Geweke (2004), Prangle et al. (2014), Gandy and Scott (2020), and Cockayne et al.
(2022). We suspect that many of the considerations regarding their choice for SBC are
applicable also in these other approaches.

Supplementary Material

Appendixes for Simulation-Based Calibration Checking for Bayesian Computation: The
Choice of Test Quantities Shapes Sensitivity (DOI: 10.1214/23-BA1404SUPP; .pdf).
Appendix A contains mathematical theory and proofs, and Appendix B contains ex-
amples of simple models where we can fully characterize the space of posteriors that
satisfy simulation-based calibration checking with respect to several test quantities.
Code for simulations and all the figures in Sections 4 and 5 can be found at https://
github.com/martinmodrak/sbc_test_quantities_paper. All code output and asso-
ciated commentary can also be viewed at https://martinmodrak.github.io/sbc_
test_quantities_paper/
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