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A Latent Shrinkage Position Model for Binary
and Count Network Data∗†

Xian Yao Gwee‡, Isobel Claire Gormley§, and Michael Fop¶

Abstract. Interactions between actors are frequently represented using a net-
work. The latent position model is widely used for analysing network data, whereby
each actor is positioned in a latent space. Inferring the dimension of this space
is challenging. Often, for simplicity, two dimensions are used or model selection
criteria are employed to select the dimension, but this requires choosing a crite-
rion and the computational expense of fitting multiple models. Here the latent
shrinkage position model (LSPM) is proposed which intrinsically infers the ef-
fective dimension of the latent space. The LSPM employs a Bayesian nonpara-
metric multiplicative truncated gamma process prior that ensures shrinkage of
the variance of the latent positions across higher dimensions. Dimensions with
non-negligible variance are deemed most useful to describe the observed network,
inducing automatic inference on the latent space dimension. While the LSPM is
applicable to many network types, logistic and Poisson LSPMs are developed here
for binary and count networks respectively. Inference proceeds via a Markov chain
Monte Carlo algorithm, where novel surrogate proposal distributions reduce the
computational burden. The LSPM’s properties are assessed through simulation
studies, and its utility is illustrated through application to real network datasets.
Open source software assists wider implementation of the LSPM.

Keywords: Bayesian nonparametrics, latent position model, multiplicative
gamma process prior, adaptive sampler, network data.

1 Introduction
Network data are a collection of interconnected objects which are usually represented
formally using graph theory. The objects are often called nodes while their connections
to each other are called edges. Living in an increasingly connected world, network data
have garnered increased interest in recent years. Social network data are a well known
example where friendships (Liu and Chen, 2021), competitions (D’Angelo et al., 2019),
companies (Ryan et al., 2017), households (Fosdick et al., 2019), and other social rela-
tions are exhibited between individuals (or actors) and can be modelled to understand
how people interact in different situations. Beyond that, the network-based perspective
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2 Latent Shrinkage Position Model

has found useful applications in complex systems across various fields including compu-
tational biology such as protein-protein interactions (Chen et al., 2019); neuroscience
on the topological properties of brain connectomes (Yang et al., 2020); economy on
understanding trades between countries (Sajedianfard et al., 2021); education on online
problem based learning (Saqr and Alamro, 2019); and public health on studying the
spread of infectious disease (Jo et al., 2021).

There are many types of models for network data. Most are variants of the random
graph model (Erdős and Rényi, 1959; Gilbert, 1959), the stochastic blockmodel (Holland
et al., 1983), or the latent position model (LPM, Hoff et al., 2002). The LPM has
received much attention as it provides a meaningful visualisation of the data and rich
qualitative information (Ma et al., 2020; Tafakori et al., 2021). The LPM postulates that
the nodes have positions in a latent space, and that the observed edge formation process
is explained through the distance between the nodes’ latent positions. In this way,
important features such as transitivity, reciprocity, and homophily are easily accounted
for in the model, which captures local and global structures (Rastelli et al., 2016; Kim
et al., 2018; Smith et al., 2019).

The number of dimensions of the latent space, p, in the LPM is usually unknown
and needs to be inferred from the data. Typically, p is fixed at two for easy visualisation
and interpretation (Sewell and Chen, 2016; Zhang et al., 2020; Liu and Chen, 2021).
However, this is an arbitrary choice and may result in an incomplete or overly complex
description of the network. The estimation of p has received some attention in the
literature. Attempts to tackle the dimension selection issue have used model selection
tools such as a variant of the well-known Bayesian information criterion (BIC, Handcock
et al., 2007), the Akaike information criterion (Gormley and Murphy, 2010; Sewell,
2021), the deviance information criterion (Friel et al., 2016), and the Watanabe-Akaike
information criterion (Ng et al., 2021; Sosa and Betancourt, 2022). Models with different
numbers of dimensions are fitted and then compared using the chosen model selection
criterion. However, the selected criterion may not be formally correct for choosing p
(Handcock et al., 2007). Furthermore, fitting a range of models, each with a different
value of p, can incur a large computational cost and restrict the set of models considered.

An alternative approach to the dimension selection problem is to have an automatic
process that infers the optimal dimension of the latent space from the data. This type
of process has been used in areas such as factor analysis using shrinkage priors (Bhat-
tacharya and Dunson, 2011; Durante, 2017; Murphy et al., 2020), or spike and slab
distributions (Legramanti et al., 2020). In network analysis, within a stochastic block-
model setting, automatic dimension estimation has been used in Yang et al. (2020) in
a frequentist framework while Passino and Heard (2020) used a Bayesian framework.

In the context of the LPM, a number of proposals for automatic inference of the
dimension of the latent space using shrinkage priors have been suggested. Rastelli (2018)
develops an approach to automatically determine the number of dimensions by creating
a finite mixture of unidimensional LPMs and utilising a Dirichlet shrinkage prior on the
mixing proportions. The key idea is to intentionally overfit the number of dimensions
by considering a relatively large number of mixture components and then empty the
superfluous components using the shrinkage prior during inference. The approach shows
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good performance in recovering the true dimension with small networks but tends to
overestimate the number of dimensions when the number of nodes is large. Also, the
approach is less interpretable than the original LPM as the Euclidean distance between
nodes across dimensions has no relevant meaning. Durante and Dunson (2014) employ
the shrinkage prior of Bhattacharya and Dunson (2011) when considering the dimension
of the latent space in the projection model formulation of the LPM for a dynamic binary
network; the distance model formulation of the LPM is considered here. Durante et al.
(2017) use a similar shrinkage approach but in the context of a population of networks.

Here the latent shrinkage position model (LSPM), which facilitates automatic infer-
ence on the dimensionality of the latent space, is introduced. The LSPM is a Bayesian
nonparametric model that theoretically allows infinitely many dimensions. This is estab-
lished through a shrinkage process prior inspired by Bhattacharya and Dunson (2011).
The key idea is that the variance of the latent positions on each dimension becomes
increasingly small as the number of dimensions grows. The informative, effective di-
mensions are those that have non-negligible variance in the latent positions while the
uninformative, negligible dimensions will have latent position variances that tend to
zero. With the LSPM, the need to select a model selection criterion is obviated, only
a single model needs to be fitted and the LPM’s ease of interpretation is retained. In
addition, posterior uncertainty concerning the latent space dimension is automatically
accounted for. The LSPM builds on Durante and Dunson (2014) and Durante et al.
(2017) by (a) considering binary and count valued networks with the development of
the logistic LSPM and the Poisson LSPM respectively, (b) introducing a truncated ver-
sion of the Bhattacharya and Dunson (2011) multiplicative gamma process prior and
(c) proposing a computationally efficient Markov chain Monte Carlo inference scheme
through the use of surrogate proposal distributions.

The remainder of this article is structured as follows: Section 2 describes the LPM
and the proposed LSPM. Section 3 outlines the inferential process. Section 4 contains
simulation studies exploring the performance of the LSPM in terms of inferring the
number of effective dimensions and estimating parameters across realistic settings. Sec-
tion 5 applies the proposed LSPM to a range of networks, having different edge types and
characteristics. Section 6 concludes the article and discusses some potential extensions.
R (R Core Team, 2022) code with which all results presented herein were produced is
freely available from the lspm GitLab repository.

2 The latent shrinkage position model
2.1 The latent position model

Network data typically take the form of an n× n adjacency matrix, Y, where n is the
number of observed nodes, with entries yi,j denoting the relationship between node i
and node j. To probabilistically model the presence or absence of an edge between two
nodes, the latent position model (LPM, Hoff et al., 2002) assumes that the observed
edge formation process can be explained in terms of the nodes’ latent positions in a p-
dimensional latent space. Under the LPM, edges are assumed independent, conditional

https://gitlab.com/gwee95/lspm
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on the latent positions of the nodes. Self-loops are not permitted and thus the diagonal
elements of Y are zero. The sampling distribution is

P(Y | α,Z) =
∏
i �=j

P(yi,j | α, zi, zj),

where Z is the n × p matrix of latent positions with zi denoting the latent position
of node i, while α is a global parameter that captures the overall connectivity level in
the network. A generalised linear model (McCullagh and Nelder, 1998) can be used to
model the probability of a range of edge types between nodes as a function of their
latent positions. Hoff et al. (2002) propose the distance model formulation of the LPM
by considering the Euclidean distance between zi and zj , the latent locations of nodes
i and j respectively, i.e.,

g[E(yi,j)] = α− ‖zi − zj‖2
2, (1)

where g is an appropriate link function. As in Gollini and Murphy (2016) and D’Angelo
et al. (2019), here the distance is taken to be the squared Euclidean distance. This model
is particularly suitable for undirected networks or directed networks that exhibit strong
reciprocity. The projection model formulation is an alternative LPM that considers the
angle between nodes; Salter-Townshend et al. (2012) provide a comprehensive review.

The LPM has been predominantly used to model binary valued networks via the
use of a logit link function

log qi,j
1 − qi,j

= α− ‖zi − zj‖2
2,

where qi,j is the probability of forming an edge between node i and node j. The prob-
ability of forming an edge between nodes when the distance between them is zero is
determined by α. There have been various extensions to this model, for example, by
including covariates (Hoff et al., 2002) and random effects (Hoff, 2003), sender and
receiver effects (Hoff, 2005), social reach (Sewell and Chen, 2015), and stochastic block-
models (Ng et al., 2021). While feasible, such extensions are not considered here in the
interest of simplicity.

In addition to binary valued networks, various link functions within the generalised
linear model framework can be utilised to model alternative edge types. This includes,
but is not limited to, the use of a Poisson distribution (Hoff, 2005) for modelling count
edges, and a truncated normal distribution (Sewell and Chen, 2016) and an exponential
distribution (Rastelli, 2018) for non-negative continuous edges. In addition to binary
edges, the LPM for count edges is considered here where

log(λi,j) = α− ‖zi − zj‖2
2,

where λi,j is the rate parameter of a Poisson distribution between node i and j. A similar
interpretation to the binary case applies here where α is the rate for forming an edge
between a pair of nodes when the distance between them is zero.

Beyond different edge types, the LPM has been extended, for example, to facilitate
clustering of nodes in a network (Handcock et al., 2007; Gormley and Murphy, 2010),



X. Y. Gwee, I. C. Gormley, and M. Fop 5

to model dynamic networks (Sewell and Chen, 2015), and to model multiple networks
(Gollini and Murphy, 2016; Salter-Townshend and McCormick, 2017; D’Angelo et al.,
2019). While extending the LPM has received much attention, attempts to objectively
infer the latent space dimension have been few; subjectively choosing p = 2 or choosing
between a set of possible dimensions via a selected model selection criterion are typical
approaches. Here, the LSPM is proposed to address the inference of p in a Bayesian
nonparametric framework using a shrinkage prior.

2.2 The latent shrinkage position model
The latent shrinkage position model (LSPM) is a LPM which employs a multiplicative
truncated gamma process (MTGP) prior allowing the model to intrinsically infer the
number of effective dimensions from the network data, where “effective dimensions”
means the dimensions necessary to fully describe the network. The MTGP prior builds
on the multiplicative gamma process (MGP) prior that originates from the infinite
factor model literature (Bhattacharya and Dunson, 2011), where the MGP prior allows
an infinite number of factors whose loadings are shrunk towards zero as the factor
number increases. Legramanti et al. (2020) modified the MGP by employing a spike
and slab distribution structure that increases the prior mass on the spike for later
factors. Other popular shrinkage priors include the Dirichlet-Laplace (Bhattacharya
et al., 2015), generalized double Pareto (Armagan et al., 2013), and the horseshoe
(Carvalho et al., 2010) priors.

Under the LPM, the prior on the latent positions is typically assumed to be a
zero centred Gaussian with equal variance across each of the p dimensions. Under the
LSPM, the latent positions are assumed to have a zero centred Gaussian distribution
with diagonal precision matrix Ω, whose entries ω� denote the precision of the latent
positions in dimension �, for � = 1, . . . ,∞. The LSPM employs a MTGP prior on
the precision parameters: the latent dimension h has an associated shrinkage strength
parameter δh, where the cumulative product of δ1 to δ� gives the precision ω�. An
unconstrained gamma prior is assumed for the shrinkage strength parameter for the
first dimension, while a truncated gamma distribution is assumed for the remaining
dimensions to ensure shrinkage. Specifically, for i = 1, . . . , n

zi ∼ MVN(0,Ω−1), ω� =
�∏

h=1

δh for � = 1, . . . , ∞, (2)

δ1 ∼ Gam(a1, b1 = 1), δh ∼ GamT(a2, b2 = 1, c2 = 1) for h > 1.
Here a1 and b1 are the shape and rate parameters of the gamma prior on the shrinkage
parameter of the first dimension, while a2 is the shape parameter, b2 is the rate param-
eter, and c2 is the left truncation point (here set to 1) of the truncated gamma prior for
dimensions h > 1. This MTGP prior results in an increasing precision and therefore a
shrinking variance in the higher dimensions of the latent space.

While Bhattacharya and Dunson (2011) state that ω� stochastically increases under
the restriction a2 > 1, Durante (2017) shows that this does not guarantee shrinkage,
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and indeed that shrinkage does not occur when a1 = 1 and a2 = 1.1. While the reader
is referred to Durante (2017) for guidelines to study the behavior of the MGP under
all possible combinations of a1 and a2, Durante (2017) theoretically and empirically
suggests that using a1 = 2 and a2 = 3 induces posterior distributions with the desired
characteristics, with improved performance when the true number of dimensions is low.
Although the ω� will be stochastically increasing under such hyperparameter settings,
this sometimes poses difficulties in the MCMC algorithm used for inference. In particu-
lar, δh < 1 can be accepted in some cases, which increases the latent positions’ variance
on dimension h rather than decreasing it. To tackle this, here a truncated gamma dis-
tribution bounded between 1 and ∞ is assumed for the second and higher dimensions
to ensure shrinkage across these dimensions. Nevertheless, the shrinkage parameter on
the first dimension does not require the use of a truncated gamma distribution allowing
it to have an unconstrained range and allowing the first dimension to encode as much
information as required. The variance of the first dimension therefore determines the
maximum possible variance for higher dimensions.

Empirically (see Supplementary Material (Gwee et al., 2023), Appendix C), while
the use of the MGP rather than the MTGP prior tends to make little difference in
terms of inferring the posterior mode of the number of dimensions, the MGP does tend
to result in more diffuse posteriors, with the MTGP being more precise in its inference
of the dimension and the variance parameters. Moreover, the MTGP prior is faithful to
the inherent model principle of shrinking variance at higher dimensions. Furthermore,
the MTGP prior induces an intuitively appealing decrease in the order of importance
of subsequent dimensions, as it is typical of dimension reduction methods.

Under this MTGP prior, the LSPM is nonparametric with infinitely many dimen-
sions, where unnecessary higher dimensions’ variances are increasingly shrunk towards
zero. Dimensions that have variance very close to zero will then have little to no mean-
ingful information encoded in them as the distances between nodes will be close to zero.
Thus, the effective dimensions are those in which the variance is non-negligible.

2.3 Properties of the latent shrinkage position model

Given the use of the multiplicative truncated gamma process prior, it is of interest to
explore the behaviour of distances in the latent space imposed by the LSPM. The full
derivations for this section are given in the Supplementary Material in Appendix A.

The expected squared distance between nodes i and j within the �-th dimension
given its precision ω� is

E[(zi� − zj�)2 | ω�] = 2
(

b1
a1 − 1

)[
Γ(a2 − 1, 1)

Γ(a2, 1)

]�−1
, (3)

where Γ is the upper incomplete gamma function. Since Γ(a2 − 1, 1) < Γ(a2, 1), any
dimension higher than � = 1 is expected to have a smaller distance. Increasing a1
will result in the biggest decrease in all of the expected distances for � = 1, . . . ,∞ as
later dimensions are based on previous dimension(s). Figure 1, in which a1 is set to 2,
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Figure 1: (a) The expected pairwise squared distance for each dimension � for different
values of a2; (b) The expected pairwise squared distance in the latent space for different
values of a2 and different truncation levels p.

illustrates the typical behaviour of the expected squared distance between a pair of
nodes. Increasing a2 will decrease the gamma function ratio in (3) and thus decrease the
expected squared distance as shown in Figure 1(a). For fixed a1 and b1, the minimum
decrease in expected squared distance is lima2→0

Γ(a2−1,1)
Γ(a2,1) = 0.68 which means the

expected distance contribution from each higher dimension will be at least 32% less
than the previous dimension.

The expected squared distance between nodes i and j in the latent space is the
geometric sum of (3) across all dimensions � = 1, . . . , p < ∞, i.e.

E[(zi − zj)2 | ω1, . . . , ωp] = 2
(

b1
a1 − 1

)[
1 −

(Γ(a2−1,1)
Γ(a2,1)

)p
1 − b2Γ(a2−1,1)

Γ(a2,1)

]
.

Figure 1(b) shows the behaviour of E[(zi − zj)2 | ω1, . . . , ωp] under different truncation
levels while varying the hyperparameter a2. As a2 increases, the expected squared dis-
tance contribution from the higher dimensions gets increasingly small and encourages a
smaller number of effective dimensions, which is notable at a2 > 6, showing very small
distance contributions from higher latent dimensions. The positive limit as a2 → ∞,
alluded to in Figure 1(b), is due to the contribution of the expected squared distance
from the first dimension.

3 Inference
The joint posterior distribution of the LSPM is

P(α,Z, δ | Y) ∝ P(Y | α,Z)P(α)P(Z | δ)P(δ)
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where P(Z | δ) and P(δ) are the prior distributions outlined in Section 2.2; for α,
a N(μα = 0, σ2

α = 9) non-informative prior is assumed throughout, where μα is the
mean and σ2

α is the variance. Markov chain Monte Carlo (MCMC) is employed here
to draw samples from the joint posterior distribution. Although the MTGP prior is
nonparametric, it is not implementable in practice without setting a truncation level, p,
on the number of dimensions fitted. Thus, an adaptive Metropolis-within-Gibbs sampler
is used to dynamically shrink or augment the truncation level (see Section 3.2). Details of
the derivations of the full conditional distributions of the latent positions and parameters
are given in the Supplementary Material, in Appendix B.

The MCMC algorithm proceeds by iterating the following steps for s = 1, . . . , S
where s denotes the current iteration and S is the total number of iterations.

1. Sample a value Ž from the MVN(Z(s), kΩ−1(s)) proposal distribution where k is
a step size factor. Accept Ž as Z(s+1) with probability
P(Y|Ž,α(s))

P(Y|Z(s),α(s))
MVN(Ž,kΩ−1(s))

MVN(Z(s),kΩ−1(s)) , otherwise set Z(s+1) = Z(s).

2. Sample a value α̌ from an informed Gaussian proposal distribution and accept
α̌ as α(s+1) following the Metropolis-Hastings (M-H) acceptance ratio. Details of
this informed proposal distribution are given in Section 3.1.

3. Sample δ
(s+1)
1 from

Gam
(
np
2 + a1, b1 + 1

2
∑n

i=1
∑p

�=1
∏�

m=2 δ
(s)
m [z(s+1)

i� ]2
)
,

where zi� is the latent position of node i in dimension �.

4. Sample δ
(s+1)
h for h = 2, . . . , p from

GamT(n(p−h+1)
2 + a2, b2 + 1

2
∑n

i=1
∑p

�=h

∏�
m=1,m �=h δ

(s∗)
m [z(s+1)

i� ]2, 1
)
,

where s∗ = s + 1 for m < h and s∗ = s for m > h.

5. Calculate ω
(s+1)
� by taking the cumulative product of δ(s+1)

1 to δ
(s+1)
� .

Since the likelihood function considers the Euclidean distances between the latent
positions, it is invariant to rotation, reflection, or translation of the latent positions.
Thus, to ensure valid posterior inference, as in Gormley and Murphy (2010), here a
Procrustean transformation is performed which translates, reflects and rotates the con-
figurations of the latent positions Z(1), . . . ,Z(S) to be as similar as possible to a reference
configuration Z̃. This reference configuration is the configuration with the highest log-
likelihood in the burn-in period of the MCMC chain. While this choice is arbitrary, it
is somewhat irrelevant as the configuration is used only to identify the model.

As inference from the MCMC algorithm is sensitive to its initial values, they are
initialized using the following approach. When s = 0:

1. Calculate the geodesic distances between the nodes in the network. The geodesic
distance (Kolaczyk and Csárdi, 2020) is the shortest path between two nodes,
measured as the number of edges that must be traversed to move from one node
to the other.
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2. Apply classical multidimensional scaling (MDS) (Cox and Cox, 2001) to the
geodesic distances of the network.

3. K-means clustering (Wu, 2012) is applied to the eigenvalues from the MDS and
the number of eigenvalues in the smallest cluster is used as the initial truncation
level, p0.

4. Set Z(s) to be the set of n× p0 positions from the resulting MDS coordinates.

5. Fit a standard regression model, with regression coefficients α and β, to the vec-
torised adjacency matrix, depending on the edge type, e.g.,

(a) for binary edges, fit a logistic regression model where log odds(qi,j = 1) =
α− β‖z(s)

i − z(s)
j ‖2

2 to obtain estimates α̂ and β̂;
(b) for count valued edges, fit a Poisson regression model where log(λi,j) = α−

β‖z(s)
i − z(s)

j ‖2
2, to obtain estimates α̂ and β̂.

6. Set α(s) = α̂. As the LSPM model (e.g., (1)) implicitly constrains β = 1, centre
and rescale the latent positions by setting Z(s) =

√
|β̂|Z̃(s), where Z̃(s) is the

mean-centred matrix of the initial latent positions.

7. Obtain ω
(s)
� for � = 1, . . . , p0 by calculating the precision empirically from Z(s).

8. Set δ
(s)
1 = ω

(s)
1 and calculate δ

(s)
h = ω

(s)
h

ω
(s)
h−1

where h = 2, . . . , p0.

3.1 An informed proposal distribution for α

To improve mixing and the speed of convergence of the Markov chain, an informed
proposal distribution is used for α in the Metropolis-Hastings algorithm. This proposal
distribution has parameters that are updated as the chain progresses, ensuring that it
shadows the target distribution well. This is achieved by approximating a non-linear
term in the loglikelihood function using a quadratic Taylor expansion, similar to Gorm-
ley and Murphy (2010). Details of the proposal distribution for the Poisson LSPM are
provided below; the derivation of the informed proposal distribution for the logistic
LSPM is given in the Supplementary Material in Appendix B.2.

For the Poisson LSPM, the loglikelihood is

logL(Y | Z, α) =
∑
i �=j

[(α− ‖zi − zj‖2
2)yi,j ] −

∑
i �=j

[exp(α− ‖zi − zj‖2
2)] −

∑
i �=j

log[yi,j !],

the second term of which can be approximated by a quadratic Taylor expansion around
α(s) to give

−
∑
i �=j

[exp(α− ‖zi − zj‖2
2)] ≈ −

∑
i �=j

[exp(α(s) − ‖zi − zj‖2
2)]
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− (α− α(s))
∑
i �=j

[exp(α(s) − ‖zi − zj‖2
2)]

− 0.5(α− α(s))2
∑
i �=j

[exp(α(s) − ‖zi − zj‖2
2)].

Substituting this expression and completing the square gives an approximated likelihood
function that is quadratic in α, which, when combined with the normal prior on α,
suggests the use of a normal proposal distribution N(μ̄α,C , σ̄

2
α,C) with mean

μ̄α,C = α(s) + σ̄2
α,C

⎡
⎣∑

i �=j

yi,j −
∑
i �=j

[exp(α(s) − ‖z(s)
i − z(s)

j ‖2
2)] + 1

σ2
α

(μα − α(s))

⎤
⎦ ,

and variance

σ̄2
α,C =

⎡
⎣∑

i �=j

[exp(α(s) − ‖z(s)
i − z(s)

j ‖2
2)] + 1

σ2
α

⎤
⎦
−1

.

The parameters of this informed proposal distribution depend on the current state
of the chain and thus are automatically updated each iteration. This maintains the
approximation of the target distribution across all iterations of the algorithm. A step size
factor that multiplies the variance parameter of the proposal distribution is introduced
to assist in achieving satisfactory acceptance and further improve mixing. In terms of
computational gain when compared to using a random walk proposal distribution, in
the case of a network with n = 50 and 2 latent dimensions, for example, using the
informed proposal distribution reduced the thinning required by up to 25%.

3.2 An adaptive MCMC sampler to infer the latent dimension
Inference through MCMC for the LSPM is implemented using an adaptive sampler. The
sampler shrinks or augments the truncation level p, in order to have a finite number
of active dimensions in each iteration of the MCMC chain. A similar sampler is used
in Bhattacharya and Dunson (2011) and Murphy et al. (2020). At the s-th iteration,
adaptation occurs with probability P(s) = exp(−κ0 − κ1s), with κ0 ≥ 0 and κ1 > 0
chosen so that adaptation occurs often at the beginning of the chain but decreases
exponentially fast as the chain grows. Here, 3 ≤ κ0 ≤ 5 and κ1 = 3 × 10−5 were found
to be useful and are used across the studies that follow. Adaptation only occurs after
the burn-in period, in order to ensure targeting of the posterior distribution.

At an adaptation step, when p > 1, a reduction in the truncation level is based on
a criterion which considers the cumulative proportion of variance that the dimensions
� = 1, . . . , p−1 contain. If the dimensions up to the �-th cumulatively contain at least a
proportion ε1 of the total variance, then the dimensions from �+ 1 to p add little infor-
mation, and p is reduced to �. In practice, ε1 = 0.9 has been found to work well. When
the adaptation criterion for reducing p is not met, an increase in p is then considered by
examining δ−1

p and a threshold ε2. If δ−1
p > ε2, a new dimension is added, by sampling

δp+1 from the MTGP prior and the latent positions from a univariate zero mean Normal
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distribution with induced variance ωp+1. Under the MTGP, δ−1
p < 1 and when δ−1

p ≈ 1
shrinkage in the pth dimension is weak and more dimensions may be required to fully de-
scribe the data. Therefore we consider ε2 = 0.9 which was found to work well in practice.

When p = 1, only an increase in p is possible. In this case, we consider the proportion
of latent positions that have absolute deviation from the mean that exceeds the 95%
critical value of a standard Normal distribution. When this proportion is ε3 times greater
than the expected 0.05 proportion, p is increased to 2. Setting ε3 = 5 demonstrated good
performance in simulation studies, with higher values of ε3 increasing the tendency to
remain at 1 dimension.

The hyperparameters κ0 and a2 can influence mixing in the adaptive MCMC sam-
pler. When p is increased or decreased, it can take time for α to mix well as it compen-
sates for the change in dimension. Small κ0 increases the adaptation frequency, which
can make achieving sufficient mixing of α challenging. Similarly, small a2 encourages the
addition of a dimension with variance similar to that of the pth dimension, which results
in large distances between latent positions and α needs time to adjust. Conversely, an
a2 that is too large adds a dimension that has very little variance and encodes little
information. The aforementioned 3 ≤ κ0 ≤ 5 and a2 = 3 were found to be a good
combination in practice.

The adaptive sampler allows inference on the posterior distribution of the number
of active dimensions p. The posterior mode pm is used as the estimate of the effective
p, with credible intervals quantifying the associated uncertainty.

3.3 Posterior predictive checking
Posterior predictive checking is a useful way of assessing the fit of a model to the data.
Any systematic differences between the networks simulated from the posterior predictive
distribution and the observed network may indicate potential failings of the model
(Gelman et al., 2013). Sections 4 and 5 include posterior predictive checks to assess the
fit of the LSPM to simulated and observed networks respectively. Samples drawn from
the posterior predictive distribution are used to simulate replicate networks under the
fitted model. These simulated networks are then compared to the observed network by
checking similarity metrics, network properties, and distances between networks. The
type of metrics used depends on the network type.

Binary valued networks

For binary networks, the similarity metrics considered here are the accuracy and the
F1-score between the observed network and the replicate networks drawn from the
posterior predictive distribution. Accuracy is a measure of the correctly identified edges
i.e., accuracy = (TP + TN)/[n(n − 1)], where TP is the number of true positives and
TN is the number of true negatives. The F1-score is the harmonic mean of precision
and recall i.e., F1-score = 2 × precision×recall

precision+recall where precision = TP/(TP + FP) and
recall = TP/(TP + FN), with FP the number of false positives, and FN the number of
false negatives.
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Network properties such as density and transitivity are also considered. A network’s
density is the ratio of the number of observed dyadic connections over the number of
possible dyadic connections, while transitivity is three times the number of triangles
divided by the total number of connected triples. These metrics assess if the LSPM
captures network properties of the observed data.

The Hamming distance is also considered, measuring the normalised difference be-
tween the observed network and a replicate network. The Hamming distance is given
by 1

n(n−1)
∑

1≤i �=j≤n |yi,j − y
(r)
i,j |, where y

(r)
i,j is the link between nodes i and j in the rth

replicate network from the posterior predictive distribution.

Count valued networks

As binary network measures are not directly applicable to count valued networks, the
(log) frequencies of counts in replicate networks from the posterior predictive distri-
bution are compared to those of the observed network. The mean absolute difference
between replicate and observed counts is also considered.

In the simulation studies outlined in Section 4, the fit of the Poisson LSPM is
also evaluated in terms of Euclidean distances for estimated and actual latent positions.
Specifically, the ratios between the n(n−1)/2 distances derived from the posterior mean
latent positions and the distances derived from the true latent positions are computed.
A distribution of these ratios tightly centered around 1 will indicate good model fit.

4 Simulation studies
The performance of the LSPM is assessed on simulated data scenarios. The simulated
data are generated by Bernoulli trials for each node pair based on the probabilities
derived from the distances between the nodes’ latent positions. For count valued edges,
a Poisson distribution is employed instead of the Bernoulli.

The latent positions are simulated according to (2) with the shrinkage strengths
being manually set to explore their effect across different settings. Hyperparameters are
set as μα = 0, σα = 3, a1 = 2, a2 = 3, b1 = b2 = 1. A total of 30 networks are simulated
in each case. Different step sizes between 0.1 to 3 are used in the proposal distributions
to ensure acceptance rates are within the 20–40% range. The MCMC chains are run for
1,000,000 iterations for Section 4.1 and 4.3 with a burn-in period of 100,000 iterations,
thinning every 1,500th. In Section 4.2 and Section 4.4, 500,000 iterations are considered,
the burn-in period is 50,000 with thinning every 1,500th iteration for the logistic LSPM
and every 1,000th iteration for the Poisson LSPM.

The simulation studies are structured as follows: Section 4.1 examines the impact
of different initial truncation levels, p0. Section 4.2 assesses LSPM capability under
different network sizes, n. Section 4.3 studies the performance of the logistic LSPM
under different network densities; Section 4.4 explores the performance of the Poisson
LSPM under different levels of overdispersion. Where relevant, violin plots are used to
visualise posterior distributions for each of the 30 simulated networks. Red crosses or
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red lines within the violin plots represent the true values used to simulate the network.
Throughout, the LSPM is compared with the LPM and posterior predictive checks
are used to assess model fit. Additional results and posterior predictive checks for the
simulation studies are available in the Supplementary Material, in Appendix D.

4.1 Study 1: initial truncation level

This section explores the effect of the initial number of latent dimensions p0 on the
inference of the number of active dimensions. Networks with n = 100 are generated
with the true number of effective latent dimensions p∗ = 4 and shrinkage strengths of
δ1 = 0.5, δ2 = 1.1, δ3 = 1.05, and δ4 = 1.15 which mean that the second dimension
has importance similar to the first. Here, α = 6 meaning moderate network density (i.e.
� 20%) in the case of binary networks. Four initial truncation levels are considered:
p0 initialised as described in step 3 of Section 3 (termed ‘auto’) and p0 = {2, 4, 10}
representing situations where the initial truncation has been underestimated, correctly
specified, and overestimated, respectively. Across the simulated networks, 3 ≤ p0 ≤ 6
were found under the ‘auto’ procedure, with p0 = {4, 5} in the majority of cases.

Figure 2 shows the posterior of the number of active dimensions p inferred from the
30 simulated networks. Under the ‘auto’ initialisation procedure, and when p0 > p∗, the
posterior concentrates around the true number of dimensions. However, when p0 < p∗,
the posterior tends to concentrate on dimensions lower than p∗. Further results are
summarised in Table 1, which shows that for all initial values p0, the 95% credible
intervals include the true dimension p∗. Across binary and count simulated networks,

Figure 2: For different initial truncation levels, p0, the posterior distribution of the
number of active dimensions p across 30 simulated networks under the logistic LSPM
for binary networks (top) and under the Poisson LSPM for count networks (bottom).
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Binary networks Count networks

p0 pm
Proportion where

pm = p∗ Procrustes correlation pm
Proportion where

pm = p∗ Procrustes correlation

auto 4 (3, 6) 0.63 0.96 (0.89, 1.00) 4 (3, 5) 0.73 0.98 (0.84, 1.00)
2 3 (2, 4) 0.13 0.84 (0.69, 0.94) 3 (2, 5) 0.03 0.81 (0.69, 0.92)
4 4 (3, 5) 0.67 0.97 (0.89, 0.99) 4 (3, 6) 0.70 0.98 (0.80, 1.00)
10 4 (3, 5) 0.53 0.97 (0.89, 0.99) 4 (3, 5) 0.67 0.98 (0.89, 1.00)

Table 1: For different initial truncation levels, p0, the posterior mode pm of the number of
active dimensions, the proportion of the 30 simulated networks for which pm = p∗ = 4,
and the Procrustes correlation of the 30 simulated networks’ latent positions with the
posterior mean positions. The 95% credible intervals are given in the brackets.

the proportion of times the posterior modal dimension pm = p∗ = 4 is greater than 0.63
under the ‘auto’ initialisation, and is greater than 0.53 when p0 = 10, with a poorer
proportion of 0.13 or less when initialising p0 < p∗. Table 1 also reports the Procrustes
correlations between the true latent positions and the LSPM posterior mean positions,
conditioned on pm; there is good agreement across network types and initialisation
strategies. These results suggest that the ‘auto’ approach or starting with a reasonably
large p0 is advisable for accurate inference on the number of dimensions.

Figure 3 illustrates the posterior distributions of the shrinkage strength parame-
ters, with the number of dimensions truncated at 8 for visualization purposes. When
p0 = {4, 10} or is ‘auto’ initialised, the shrinkage parameter δ5 tends to have a higher
and more diffuse posterior than δ4, correctly indicating strong shrinkage after the 4th
dimension. However, when p0 = 2 < p∗, the shrinkage parameters δh for h > p0 tend
to be overestimated, causing excessive shrinkage below the true number of dimensions.
When p0 < p∗, the adaptive sampler can struggle to increase the dimension, with the
shrinkage prior hyperparameter being very influential. These results support the sug-
gestion that the ‘auto’ approach or starting with a reasonably large p0 is advisable for
accurate inference on the number of dimensions.

Posterior distributions for the intercept parameter α, conditional on different num-
bers of active dimensions p = {2, 3, 4, 5}, are illustrated in Figure 4. When p = p∗ = 4,
for any p0, α is accurately inferred, with more diffuse posteriors in the case of binary
networks than for count networks. However, when p �= p∗, the α parameter compensates
for the additional or missing dimensions: when p < p∗ underestimation of α occurs, due
to the missing contribution from the Euclidean distances in the omitted dimensions.
Conversely, when p > p∗, α is overestimated to account for the additional distance
contributed by the extra dimensions, but with a smaller bias than when p < p∗.

Posterior predictive checks under the logistic LSPM for binary simulated networks
initialised using the ‘auto’ approach and p0 = {2, 4, 10} are shown in Figure 5. A num-
ber of LPM models were fitted using the latentnet R package (Krivitsky and Hand-
cock, 2020) with p = {1, . . . , 8}; the BIC suggested p = 4 dimensions as optimal.
The logistic LSPM fitted well and similarly across p0 ≥ p∗ while model fit was poorer
across all metrics considered when p0 < p∗. The LPM with p = 4 also fitted well,
but required multiple models to be fit and the use of a model selection criterion. Fig-
ure 6 shows the posterior predictive checks for the Poisson LSPM fitted to simulated
count networks. Similar behaviour to the binary case is observed with poor model fit
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Figure 3: Posterior distributions of shrinkage strength across dimensions for different
initial truncation levels p0, across 30 simulated networks for the logistic LSPM for binary
data (top) and the Poisson LSPM for count data (bottom).

Figure 4: Posterior distributions of α for different initial truncation levels p0 across 30
simulated networks under (a) the logistic LSPM for binary networks and (b) the Poisson
LSPM for count networks.
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Figure 5: Posterior predictive checks, across 30 simulated binary networks, for the lo-
gistic LSPM (gray) under different initial truncation levels p0 conditioned on pm and
the logistic LPM (blue) with p = 4. The violin plots indicate the metric distributions
from 30 replicate networks. The network density and transitivity plots illustrate the
differences between the posterior predictive and observed networks.

Figure 6: Assessment of model fit for the Poisson LSPM via (a) the mean absolute
difference between replicate and observed network counts, (b) ratios of the pairwise
distances between inferred and true node locations, and (c) the log frequency of replicate
and observed network counts.
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when p0 < p∗ and improved fit when p0 ≥ p∗: mean absolute count differences are
small and ratios of pairwise distances between true and inferred latent locations are
centred around 1. There is good agreement between the log frequency of counts in
posterior predictive networks and the observed counts, with p0 = 2 having larger un-
certainty.

In terms of computational cost, fitting the logistic LSPM on a computer with an
i7-10510U CPU and 16 GB RAM took on average 40 minutes for a simulated binary
network with n = 100. For comparison, fitting a single p = 4 LPM with the latentnet
(Krivitsky and Handcock, 2020) R package, with default settings but the same burn in
period and thinning as LSPM, took on average 37 minutes. However, fitting a number
of LPM models each with a different p and choosing between them using the BIC is
required in the LPM setting, thus incurring additional computational cost.

4.2 Study 2: network size

Here the focus is on assessing the effect of different network sizes. Networks with n =
{20, 50, 100, 200} are generated with p∗ = 2, and shrinkage strengths of δ1 = 0.5 and
δ2 = 1.1 giving ω−1

1 = 2 and ω−1
2 = 1.82 respectively. Here, α = 3 leading to a moderate

network density (i.e. � 20%) in the binary network case.

Inference on pm, the posterior mode of p, and the Procrustes correlations between
inferred and observed latent locations as n varies are detailed in Table 2. The posterior
mode pm is accurate across different n, while the 95% credible intervals’ upper bounds
tend to increase as n increases. This affects the proportion of times the posterior mode
is equal to the optimal p∗ = 2. Networks with larger n are characterized by larger un-
certainty on the dimension of the latent space, as the sampler tends to explore higher
dimensional solutions. In the majority of cases where pm is not 2, the posterior mode
indicates 3 dimensions. The Procrustes correlation between true and posterior mean la-
tent positions, conditioned on pm, are increasingly accurate and precise as n increases,
with higher values for count than binary networks. As n increases, posterior predic-
tive checks under the LSPM indicate improved model fit (see Supplementary Material,
Appendix D).

Binary networks Count networks

n pm
Proportion where

pm = p∗
Procrustes correlation pm

Proportion where
pm = p∗

Procrustes correlation

20 2 (2, 3) 1.00 0.964 (0.882, 0.985) 2 (2, 3) 0.93 0.992 (0.807, 0.998)
50 2 (2, 4) 0.80 0.992 (0.981, 0.995) 2 (2, 3) 0.97 0.998 (0.995, 0.999)
100 2 (2, 4) 0.87 0.996 (0.992, 0.997) 2 (2, 4) 0.93 0.999 (0.974, 1.000)
200 2 (2, 5) 0.87 0.998 (0.997, 0.998) 2 (2, 4) 0.77 1.000 (0.999, 1.000)

Table 2: For different n, the posterior mode pm of the number of active dimensions, the
proportion of the 30 simulated networks for which pm = p∗ = 2, and the Procrustes
correlation of the 30 simulated networks’ positions with the LSPM posterior mean
positions. The 95% credible intervals are given in brackets.



18 Latent Shrinkage Position Model

True α
Empirical network

density (%) pm
Proportion where

pm = p∗
Procrustes correlation

0 2–5 2 (2, 4) 0.23 0.38 (0.22, 0.64)
1 4–8 2 (2, 3) 0.48 0.50 (0.39, 0.75)
5 20–35 3 (2, 4) 0.77 0.98 (0.87, 0.99)
10 49–65 3 (2, 4) 0.90 0.99 (0.93, 0.99)
20 79–94 3 (2, 4) 0.57 0.96 (0.91, 0.98)
30 90–99 2 (2, 4) 0.33 0.70 (0.49, 0.90)

Table 3: For different network densities, the posterior mode pm of the number active
dimensions, the proportion of the 30 simulated networks for which pm = p∗ = 3, and
the Procrustes correlation of the 30 simulated networks’ positions against the LSPM
posterior mean positions. The 95% credible intervals are given in the brackets.

4.3 Study 3: density in binary networks

In the context of binary networks, the impact of network density on the performance
of the LSPM is explored. Networks with n = 50, p∗ = 3, δ1 = 0.5, δ2 = 1.1, and
δ3 = 1.05 are generated. A range of α values between 0 and 30 are used to simulate
networks with densities ranging from 2% to 99%. Table 3 reports the posterior mode of p
and Procrustes correlations between inferred and true latent positions under different α
values. Under the LSPM, the accuracy of pm increases as the network density increases
from 2% to 65%, but accuracy deteriorates for denser networks with density > 0.79.

Figure 7(a) illustrates the effect of different network densities on the estimation of the
α parameter. Values of α ≤ 10 are estimated accurately whereas higher values of α tend
to be underestimated. Further, as it is evident from Figure 7(b) where the Procrustes
correlations decrease for large values of α, the true latent positions are difficult to recover
since their influence on the link probabilities is small in comparison to α when α is large.
Similarly, the Procrustes correlations decrease for lower values of α as there are many
possible locations that will produce a mostly unconnected network. In summary, the
logistic LSPM performs best for networks of moderate density. Additional posterior
distributions of dimensions, variances and shrinkage strength parameters, and posterior
predictive checks, are available in the Supplementary Material, in Appendix D.

4.4 Study 4: overdispersion in count networks

Count network data are often characterised by overdispersion, whereby the variance
of the counts is greater than their mean. Here, the impact on the performance of the
Poisson LSPM of different levels of overdispersion in count network data is examined
by varying the α and δ parameters. The first set of 30 networks are simulated with
α = 0.5 and δ1 = δ2 = 1.5 giving mean counts between 0.45 and 0.60 and variance
between 0.65 and 0.85 (low overdispersion). Another 30 more overdispersed count net-
works are generated with α = 1.5, δ1 = 0.5, and δ2 = 1.5 giving mean counts between
0.5 and 0.7 and variance between 1.4 and 2.0 (moderate overdispersion). The final set
of 30 highly overdispersed count networks are generated with α = 5, δ1 = 0.1, and
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Figure 7: For different network densities the (a) posterior distributions of α and (b)
Procrustes correlations between true and LSPM posterior mean latent positions.

Level of
overdispersion pm

Proportion where
pm = p∗

Procrustes correlation

Low 2 (2, 3) 0.93 0.991 (0.950, 0.993)
Moderate 2 (2, 4) 0.80 0.997 (0.885, 0.998)
High 3 (2, 4) 0.43 0.855 (0.732, 0.914)

Table 4: For different levels of overdispersion, the posterior mode pm of the number of
active dimensions, the proportion of 30 simulated networks for which pm = p∗ = 2, and
the Procrustes correlation of the 30 simulated networks’ positions against the LSPM
posterior mean positions. The 95% credible intervals are given in the brackets.

δ2 = 1.5 giving mean counts between 3 and 6 and variance between 220 and 420 (high
overdispersion).

Table 4 reports on the posterior mode of p and on the Procrustes correlation be-
tween true and inferred positions for different overdispersion levels. As overdispersion
increases, the LSPM tends to overestimate the number of effective dimensions. Figure 8
also illustrates that as overdispersion increases, inferential accuracy and precision for the
variance parameters decreases. Additional posterior distributions of dimensions, vari-
ances and shrinkage strength parameters, and posterior predictive checks, are available
in the Supplementary Material, in Appendix D.

5 Illustrative applications
The logistic and Poisson LSPMs are fitted to a range of real network datasets with
different characteristics: the well-known Zachary karate club binary network which has
a small number of nodes, a cat brain connectivity binary network with moderate number
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Figure 8: Posterior distributions of variance under the Poisson LSPM fitted to simulated
networks with different levels of overdispersion.

of nodes and density, a relatively large but sparse worm nervous system binary network,
and an overdispersed phone calls count network. In all cases hyperparameters, initial
values, and step sizes are set as in Section 4.

5.1 Zachary karate club binary network data
The well-known Zachary’s karate club network (Zachary, 1977) is a social network with
n = 34 members and describes the relationships in a university karate club. The karate
teacher, Mr. Hi, and the club president, John, are the two central figures and the club
was divided into two new clubs after an argument between them. The network is binary,
undirected and has a density of 13.9%. For inference, 10 MCMC chains are run, each
for 100,000 iterations with a burn-in period of 1,000 and every 400th sample thinned.

Figure 9(a) indicates that the posterior modal dimension is 2, with low associated
uncertainty. Upon fitting multiple LPMs with p = {1, . . . , 5}, the BIC suggests 1 di-
mension is optimal. Posterior predictive checks for the LPM with p = 1 and the logistic
LSPM with pm = 2 (Figure 9(b)) indicate better fit for network density, transitivity and
F1 score under the LSPM while the LPM has better accuracy and Hamming distance.
The Procrustes correlation between the posterior mean positions from the 1 dimensional
LPM and the first dimension of the LSPM has a median value of 0.92 (standard devia-
tion of 0.06) across 10 logistic LSPM and LPM chains. Additional results regarding the
posterior distributions of variance and shrinkage strength parameters can be found in
the Supplementary Material, Appendix E.

5.2 Cat brain connectivity binary network data
The logistic LSPM is used to analyse a cat brain connectivity network which includes
n = 65 non-overlapping regions in the cortex treated as nodes and 1139 interregional
macroscopic axonal projections treated as edges (Scannell et al., 1995; de Reus and
van den Heuvel, 2013). The cortex regions were classified into four categories namely:
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Figure 9: Zachary karate club network: (a) the posterior distribution of p and (b) pos-
terior predictive checks for LPM with p = 1 and the logistic LSPM for pm = 2.

visual regions (18 areas), auditory regions (10 areas), somatomotor regions (18 areas),
and frontolimbic regions (19 areas). These classifications were based on neurophysio-
logical information about the functional role of each brain area. Here, the network is
viewed as a binary directed network, with yi,j = 1 indicating there is a connection
between regions i and j, while yi,j = 0 indicating there is not. The network density is
27.37%.

To assess convergence, the logistic LSPM is fitted 10 times using different initial
latent positions by introducing noise to the initial configuration obtained as outlined in
Section 3. The MCMC chains are run for 500,000 iterations with a burn-in period of
50,000 and thinning every 2,000th sample. Model fitting took on average 10 minutes on
a computer with an i7-10510U CPU and 16 GB RAM. For comparison, fitting an LPM
with p = 5 with the latentnet (Krivitsky and Handcock, 2020) R package with default
settings but 500,000 iterations took 7 minutes. However, the LPM setting requires fit-
ting multiple models, thus incurring additional computational cost. The Gelman-Rubin
convergence criterion (Gelman et al., 2013) was satisfied with 1.0 ≤ R̂ < 1.1 for α and
the shrinkage parameters. Visual inspection of trace plots also suggests convergence; an
example is provided in the Supplementary Material, Appendix E.

Figure 10(a) suggests that pm = 3 effective dimensions are required for these data,
with low associated uncertainty. Upon fitting multiple LPMs with p = {1, . . . , 5}, the
BIC suggests 2 dimensions are optimal, with 3 dimensions being next best. Posterior
predictive check metrics from 30 posterior predictive replicate networks for each of the
10 logistic LSPM and LPM MCMC chains are shown in Figure 10(b). While the logistic
LSPM tends to underestimate network transitivity, it performs better than the LPM
across the majority of metrics, with the estimated density close to the network data
density, higher accuracy and F1 score, and lower Hamming distance.

Figure 11 shows posterior mean latent positions under the logistic LSPM with
pm = 3. The inferred latent positions under both the LPM and the LSPM are very
similar with a mean Procrustes correlation of 0.97 (standard deviation 0.01) across the
10 chains. Nodes from the same cortical region also lie close to each other in the latent
space under both the LPM and the logistic LSPM.
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Figure 10: Cat brain connectivity data: (a) the posterior distribution of p and (b) pos-
terior predictive checks for the LPM with p = 2 and the logistic LSPM with pm = 3.

Figure 11: Posterior mean latent positions under the logistic LSPM with pm = 3 for the
cat brain connectivity network.

5.3 Worm nervous system binary network data

This binary directed network contains n = 272 nodes of neurons from the nervous
system of the Caenorhabditis elegans adult male worm, with each of the 4451 edges
representing the presence of either a chemical or electrical interaction between nodes.
The data were reconstructed from serial electron micrograph sections by Jarrell et al.
(2012). Three unconnected nodes are removed prior to analysis. The network is sparse
with a density of 6.09%. To fit the logistic LSPM to these data, each of 10 MCMC
chains were run for 1,000,000 iterations with a burn-in period of 100,000 iterations and
every 3,000th thinned.

From a range of LPMs with p = {1, . . . , 7}, the BIC suggests p = 4 as optimal,
closely followed by p = 3, as shown in Figure 12(a). Under the logistic LSPM, Fig-
ure 12(b) indicates that the posterior modal dimension is pm = 3, with 4 dimen-
sions the next most probable, a posteriori; in addition Figure 12(c) illustrates that
the shrinkage strength parameter δ4 has large uncertainty. The LSPM approach indi-
cates that while 3 dimensions are required to adequately describe the network, there is
high, quantifiable posterior uncertainty as to whether or not an additional dimension is
needed.
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Figure 12: For the worm nervous system network: (a) the BIC for the LPM for p =
{1, . . . , 7} and under the logistic LSPM (b) the posterior distribution of p and (c) the
posterior distribution of shrinkage strength parameters across the 10 MCMC chains.

Figure 13: Posterior predictive checks on the worm nervous system network.

In terms of posterior predictive checks, Figure 13 shows that the LSPM with both
3 and 4 active dimensions fit better than the LPM with 3 and 4 dimensions in terms of
network density and F1 score, but worse in terms of transitivity, accuracy, and Ham-
ming distance. The LSPM with pm = 3 fits only slightly worse than its 4-dimensional
counterpart, and so may be preferred as a lower dimensional representation. The Pro-
crustes correlation between locations under the LSPM with pm = {3, 4} and the LPM
with p = {3, 4} have similar median values of more than 0.88 (standard deviation 0.05).

5.4 Phone calls count network data
Mobile phone call logs are available from the “Friends and Family” data collected by
the MIT Human Dynamics Lab (Aharony et al., 2011). Here, the set of call logs from
the November 2010 period is considered; the associated network contains the number
of (directed) calls within a young community of n = 120 people. Modelling the number
of calls rather than reducing the data to a binary network representing whether or not
a call was made or received allows for deeper insight on the exchange of phone calls
within the network. The Poisson LSPM is therefore fitted to this count network data.
Fourteen disconnected nodes are removed prior to analysis. The data are overdispersed,
with a mean count of 0.51 and a variance of 33.29.
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A total of 10 MCMC chains were run, each from different starting configurations
and with 500,000 iterations, a burn-in of 100,000 iterations and every 2,000th thinned.
Figure 14(a) shows that under a Poisson LSPM the posterior explored models with 3 to
5 active dimensions, with pm = 4. Fitting the Poisson LPM with p = 1, . . . , 5 suggested
1 dimension as optimal via the BIC. Comparing the posterior mean positions under the
p = 1 LPM and the first dimension of the pm = 4 Poisson LSPM gave a Procrustes
correlation of 0.7, indicating some discrepancy. In terms of posterior predictive checks,
Figure 14(b) shows that the Poisson LSPM posterior predictive networks tend to be
more overdispersed than the observed network; considering a model that accounts for
such overdispersion is likely to give improved model fit.

Figure 14: For the phone calls count network data: (a) the posterior distribution of p
and (b) the log frequency of the observed and posterior predictive call counts for the
first 8 counts in the network.

6 Discussion
The proposed latent shrinkage position model is a nonparametric Bayesian approach to
model network data that focuses on the issue of inferring the dimension of the latent
space. The LSPM extends the latent position model by employing a multiplicative trun-
cated gamma process prior to allow an infinite number of dimensions in the latent space.
In practice, the LSPM intrinsically infers the number of effective dimensions required
to describe the network. The LSPM therefore circumvents the more computationally
intensive approach where model selection criteria are used to choose the dimension after
fitting a range of models with different dimensions p. Importantly, the LSPM retains the
ease of interpretability inherent to the original LPM. The logistic and Poisson LSPM
are developed for the analysis of binary and count network data respectively; extensions
to alternative models for different link types are similarly feasible.

While fitting the LSPM is computationally feasible on the networks considered here,
fitting the LSPM to large networks is relatively slow. There are many improvements
that could be made to shorten run time, for example, by embedding the case-control
concepts of Raftery et al. (2012) and by implementing the variational Bayesian inference
of Salter-Townshend and Murphy (2013).
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Since their introduction, both the concepts of the LPM for network data and the
Bayesian nonparametric multiplicative gamma shrinkage prior have received much at-
tention in a range of fields; as such the LSPM framework developed here should be of
interest to a wide array of researchers and practitioners. The provision of the associated
lspm R package will assist in usage of the Bayesian nonparametric LSPM models.

Supplementary Material
Supplementary to “A Latent Shrinkage Position Model for Binary and Count Network
Data” (DOI: 10.1214/23-BA1403SUPP; .pdf). The supplementary material contains
the derivations of the properties of the LSPM and of the full conditional distributions
required for the MCMC algorithm. Additional plots relating to the simulation studies
and data applications are also included
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