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Independent Finite Approximations for Bayesian
Nonparametric Inference∗
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Abstract. Completely random measures (CRMs) and their normalizations
(NCRMs) offer flexible models in Bayesian nonparametrics. But their infinite di-
mensionality presents challenges for inference. Two popular finite approximations
are truncated finite approximations (TFAs) and independent finite approxima-
tions (IFAs). While the former have been well-studied, IFAs lack similarly general
bounds on approximation error, and there has been no systematic comparison
between the two options. In the present work, we propose a general recipe to con-
struct practical finite-dimensional approximations for homogeneous CRMs and
NCRMs, in the presence or absence of power laws. We call our construction the
automated independent finite approximation (AIFA). Relative to TFAs, we show
that AIFAs facilitate more straightforward derivations and use of parallel comput-
ing in approximate inference. We upper bound the approximation error of AIFAs
for a wide class of common CRMs and NCRMs — and thereby develop guidelines
for choosing the approximation level. Our lower bounds in key cases suggest that
our upper bounds are tight. We prove that, for worst-case choices of observation
likelihoods, TFAs are more efficient than AIFAs. Conversely, we find that in real-
data experiments with standard likelihoods, AIFAs and TFAs perform similarly.
Moreover, we demonstrate that AIFAs can be used for hyperparameter estimation
even when other potential IFA options struggle or do not apply.

1 Introduction
Many data analysis problems can be seen as discovering a latent set of traits in a
population — for example, recovering topics or themes from scientific papers, ancestral
populations from genetic data, interest groups from social network data, or unique
speakers across audio recordings of many meetings (Palla, Knowles and Ghahramani,
2012; Blei, Griffiths and Jordan, 2010; Fox et al., 2010). In all of these cases, we might
reasonably expect the number of latent traits present in a data set to grow with the
number of observations. One might choose a prior for different data set sizes, but then
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2 Independent Finite Approximations

model construction potentially becomes inconvenient and unwieldy. A simpler approach
is to choose a single prior that naturally yields different expected numbers of traits for
different numbers of data points. In theory, Bayesian nonparametric (BNP) priors have
exactly this desirable property due to a countable infinity of traits, so that there are
always more traits to reveal through the accumulation of more data.

However, the infinite-dimensional parameter presents a practical challenge; namely,
it is impossible to store an infinity of random variables in memory or learn the distri-
bution over an infinite number of variables in finite time. Some authors have developed
conjugate priors and likelihoods (Orbanz, 2010; James, 2017; Broderick, Wilson and
Jordan, 2018) to circumvent the infinite representation; in particular, these models al-
low marginalization of the infinite collection of latent traits. These models will typically
be part of a more complex generative model where the remaining components are all
finite. Therefore, users can apply approximate inference schemes such as Gibbs sam-
pling. However, these marginal forms typically limit the user to a constrained family of
models; are not amenable to parallelization; would require substantial new development
to use with modern inference engines like NIMBLE (de Valpine et al., 2017); and are
not straightforward to use with variational Bayes.

An alternative approach is to approximate the infinite-dimensional prior with a
finite-dimensional prior that essentially replaces the infinite collection of random traits
by a finite subset of “likely” traits. Unlike a fixed finite-dimensional prior across all data
set sizes, this finite-dimensional prior is an approximation to the BNP prior. Therefore,
its cardinality can be informed directly by the BNP prior and the size of the observed
data. Any moderately complex model will necessitate approximate inference, such as
Markov chain Monte Carlo (MCMC) or variational Bayes (VB). Therefore, as long as the
error due to the finite-dimensional prior approximation is small compared to the error
due to using approximate inference, inferential quality is not affected. Unlike marginal
representations, probabilistic programming languages like NIMBLE (de Valpine et al.,
2017) natively support such finite approximations.

Much of the previous work on finite approximations developed and analyzed trun-
cations of series representations of the random measures underlying the nonparametric
prior; we call these truncated finite approximations (TFAs) and refer to Campbell et al.
(2019) for a thorough study. TFAs start from a sequential ordering of population traits
in a random measure. The TFA retains a finite set of approximating traits; these match
the population traits until a finite point and do not include terms beyond that (Doshi-
Velez et al., 2009; Paisley, Blei and Jordan, 2012; Roychowdhury and Kulis, 2015; Arbel
and Prünster, 2017; Campbell et al., 2019). However, we show in Section 5 that the
sequential nature of TFAs makes it difficult to derive update steps in an approximate
inference algorithm (either MCMC or VB) and is not amenable to parallelization.

Here, we instead develop and analyze a general-purpose finite approximation con-
sisting of independent and identically distributed (i.i.d.) representations of the traits
together with their rates within the population; we call these independent finite approx-
imations (IFAs). At the time of writing, we are aware of two alternative lines of work
on generic constructions of finite approximations using i.i.d. random variables, namely
Lijoi, Prünster and Rigon (2023) and Lee, Miscouridou and Caron (2022); Lee, James
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and Choi (2016). Lijoi, Prünster and Rigon (2023) design approximations for clustering
models, characterize the posterior predictive distribution, and derive tractable inference
schemes. However, the authors have not developed their method for trait allocations,
where data points can potentially belong to multiple traits and can potentially exhibit
traits in different amounts. And in particular it would require additional development
to perform inference in trait allocation models using their approximations.1 Lee, Mis-
couridou and Caron (2022); Lee, James and Choi (2016) construct finite approximations
through a novel augmentation scheme. However, Lee, Miscouridou and Caron (2022);
Lee, James and Choi (2016) lack explicit constructions in important situations, such as
exponential-family rate measures, because the functions involved in the augmentation
are, in general, only implicitly defined. When the augmentation is implicit, there is not
currently a way to evaluate (up to proportionality constant) the probability density of
the finite-dimensional distribution; therefore standard Markov chain Monte Carlo and
variational approaches for approximate inference are unavailable.

Our contributions. We propose a general-purpose construction for IFAs that sub-
sumes a number of special cases that have already been successfully used in applications
(Section 3.1). We call our construction the automated independent finite approxima-
tion, or AIFA. We show that AIFAs can handle a wide variety of models — including
homogeneous completely random measures (CRMs) and normalized CRMs (NCRMs)
(Section 3.3).2 Our construction can handle (N)CRMs exhibiting power laws and has an
especially convenient form for exponential family CRMs (Section 3.2). We show that our
construction works for useful CRMs not previously seen in the BNP literature (Exam-
ple 3.4). Unlike marginal representations, AIFAs do not require conditional conjugacy
and can be used with VB. We show that, unlike TFAs, AIFAs facilitate straightfor-
ward derivations within approximate inference schemes such as MCMC or VB and are
amenable to parallelization during inference (Section 5). In existing special cases, prac-
titioners report similar predictive performance between AIFAs and TFAs (Kurihara,
Welling and Teh, 2007) and that AIFAs are also simpler to use compared to TFAs (Fox
et al., 2010; Johnson and Willsky, 2013). In contrast to the methods of Lee, Miscouridou
and Caron (2022); Lee, James and Choi (2016), one can always evaluate the probabil-
ity density (up to a proportionality constant) of AIFAs; furthermore, in Section 6.4,
AIFAs accurately learn model hyperparameters by maximizing the marginal likelihood
where the methods of Lee, Miscouridou and Caron (2022); Lee, James and Choi (2016)
struggle.

In Section 4, we bound the error induced by approximating an exact infinite-di-
mensional prior with an AIFA. Our analysis provides interpretable error bounds with
explicit dependence on the size of the approximation and the data cardinality; our
bounds can be used to set the size of the approximation in practice. Our error bounds
reveal that for the worst-case choice of observation likelihood, to approximate the target

1We also note that, without modification, their approximation is not suitable for use in statistical
models where the unnormalized atom sizes of the CRM are bounded, as arise when modeling the
frequencies (in [0, 1]) of traits. While model reparameterization may help, it requires (at least) additional
steps.

2NCRMs are also called normalized random measures with independent increments (NRMIs)
(Regazzini, Lijoi and Prünster, 2003; James, Lijoi and Prünster, 2009).
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to a desired accuracy, it is necessary to use a large IFA model while a small TFA model
would suffice. However, in practical experiments with standard observations likelihoods,
we find that AIFAs and TFAs of equal sizes have similar performance. Likewise, we find
that, when both apply, AIFAs and alternative IFAs (Lee, Miscouridou and Caron, 2022;
Lee, James and Choi, 2016) exhibit similar predictive performance (Section 6.3). But
AIFAs apply more broadly and are amenable to hyperparameter learning via optimizing
the marginal likelihood, unlike Lee, Miscouridou and Caron (2022); Lee, James and Choi
(2016) (Section 6.4). As a further illustration, we show that we are able to learn whether
a model is over- or underdispersed, and by how much, using an AIFA approximating a
novel BNP prior in Section 6.5.

2 Background
Our work will approximate nonparametric priors, so we first review construction of
these priors from completely random measures (CRMs). Then we cover existing work
on the construction of truncated and independent finite approximations for these CRM
priors. For some space Ψ, let ψi ∈ Ψ represent the i-th trait of interest, and let θi > 0
represent the corresponding rate or frequency of this trait in the population. If the set
of traits is finite, we let I equal its cardinality; if the set of traits is countably infinite,
we let I = ∞. Collect the pairs of traits and frequencies in a measure Θ that places
non-negative mass θi at location ψi: Θ :=

∑I
i=1 θiδψi , where δψi is a Dirac measure

placing mass 1 at location ψi. To perform Bayesian inference, we need to choose a prior
distribution on Θ and a likelihood for the observed data Y1:N := {Yn}Nn=1 given Θ.
Then, applying a disintegration, we can obtain the posterior on Θ given the observed
data.

Homogeneous completely random measures. Many common BNP priors can be
formulated as completely random measures (Kingman, 1967; Lijoi and Prünster, 2010).3
CRMs are constructed from Poisson point processes,4 which are straightforward to ma-
nipulate analytically (Kingman, 1992). Consider a Poisson point process on R+ := [0,∞)
with rate measure ν(dθ) such that ν(R+) = ∞ and

∫
min(1, θ)ν(dθ) < ∞. Such a pro-

cess generates a countably infinite set of rates (θi)∞i=1 with θi ∈ R+ and 0 <
∑∞

i=1 θi < ∞
almost surely. We assume throughout that ψi

i.i.d.∼ H for some diffuse distribution H.
The distribution H, called the ground measure, serves as a prior on the traits in the
space Ψ. For example, consider a common topic model. Each trait ψi represents a la-
tent topic, modeled as a probability vector in the simplex of vocabulary words. And θi
represents the frequency with which the topic ψi appears across documents in a corpus.
H is a Dirichlet distribution over the probability simplex, with dimension given by the
number of words in the vocabulary.

By pairing the rates from the Poisson process with traits drawn from the ground
measure, we obtain a completely random measure and use the shorthand CRM(H, ν)

3Conversely, some important priors, such as Pitman-Yor processes, are not CRMs or their normal-
izations and are outside the scope of the present paper (Pitman and Yor, 1997; Arbel, De Blasi and
Prünster, 2019; Lijoi, Prünster and Rigon, 2020a).

4For brevity, we do not consider the fixed-location and deterministic components of a CRM (King-
man, 1967). When these are purely atomic, they can be added to our analysis without undue effort.
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for its law: Θ =
∑

i θiδψi ∼ CRM(H, ν). Since the traits ψi and the rates θi are in-
dependent, the CRM is homogeneous. When the total mass Θ(Ψ) is strictly positive
and finite, the corresponding normalized CRM (NCRM) is Ξ := Θ/Θ(Ψ), which is a
discrete probability measure: Ξ =

∑
i ξiδψi , where ξi = θi/(

∑
j θj) (Regazzini, Lijoi and

Prünster, 2003; James, Lijoi and Prünster, 2009).

The CRM prior on Θ is typically combined with a likelihood that generates trait
counts for each data point. Let �(· | θ) be a proper probability mass function on N∪{0}
for all θ in the support of ν. The process Xn :=

∑
i xniδψi collects the trait counts,

where xni |Θ ∼ �(· | θi) independently across atom index i and i.i.d. across data index
n. We denote the distribution of Xn as LP(�,Θ), which we call the likelihood process.
Together, the prior on Θ and likelihood on X given Θ form a generative model for
allocation of data points to traits; hence, this generative model is a special case of a
trait allocation model (Campbell, Cai and Broderick, 2018). Analogously, when the trait
counts are restricted to {0, 1}, this generative model represents a special case of a feature
allocation model.

Since the trait counts are typically just a latent component in a full generative model
specification, we define the observed data to be Yn |Xn

indep∼ f(· |Xn) for a probability
kernel f(dY |X). Consider the topic modeling example: θi represents the rate of topic ψi

in a document corpus; Θ captures the rates of all topics; Xn captures how many words
in document n are generated from each topic; and Yn gives the observed collection of
words for that document.

Finite approximations. Since the set {θi}∞i=1 is countably infinite, it is not possible
to simulate or perform posterior inference for every θi. One approximation scheme uses
a finite approximation ΘK :=

∑K
i=1 ρiδψi . The atom sizes {ρi}Ki=1 are designed so that

ΘK is a good approximation of Θ in a suitable sense. Since it involves a finite number
of parameters unlike Θ, ΘK can be used directly in standard posterior approximation
schemes such as Markov chain Monte Carlo or variational Bayes. But not using the full
CRM Θ introduces approximation error.

A truncated finite approximation (TFA; Doshi-Velez et al., 2009; Paisley, Blei and
Jordan, 2012; Roychowdhury and Kulis, 2015; Arbel and Prünster, 2017; Campbell
et al., 2019) requires constructing an ordering on the set of rates from the Poisson
process; let (θi)∞i=1 be the corresponding sequence of rates. The approximation uses
ρi = θi for i up to some K; i.e. one keeps the first K rates in the sequence and ignores the
remaining ones. We refer to the number of instantiated atoms K as the approximation
level. Campbell et al. (2019) categorizes and analyzes TFAs. TFAs offer an attractive
nested structure: to refine an existing truncation, it suffices to generate the additional
terms in the sequence. However, the complex dependencies between the rates (θi)Ki=1
potentially make inference more challenging.

We instead develop a family of independent finite approximations (IFAs). An IFA is
defined by a sequence of probability measures ν1, ν2, . . . such that at approximation level
K, there are K atoms whose weights are given by ρ1, . . . , ρK

i.i.d.∼ νK . The probability
measures are chosen so that the sequence of approximations converges in distribution to
the target CRM: ΘK

D→ Θ as K → ∞. For random measures, convergence in distribution
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can also be characterized by convergence of integrals under the measures (Kallenberg,
2002, Lemma 12.1 and Theorem 16.16). The advantages and disadvantages of IFAs
reverse those of TFAs: the atoms are now i.i.d., potentially making inference easier, but
a completely new approximation must be constructed if K changes.

Next consider approximating an NCRM Ξ =
∑

i ξiδψi , where ξi = θi/(
∑

j θj), with a
finite approximation. A normalized TFA might be defined in one of two ways. In the first
approach, the rates {ρi}Ki=1 that target the CRM rates {θi}∞i=1 are normalized to form
the NCRM approximation; i.e. the approximation has atom sizes ρi/

∑K
j=1 ρj (Campbell

et al., 2019). The second approach directly constructs an ordering over the sequence of
normalized rates ξi and truncates this representation.5 We construct normalized IFAs
in a similar manner to the first TFA approach: the NCRM approximation has atom
sizes ρi/

∑K
j=1 ρj where {ρi}Ki=1 are the IFA rates.

In the past, independent finite approximations have largely been developed on a
case-by-case basis (Paisley and Carin, 2009; Broderick et al., 2015; Acharya, Ghosh
and Zhou, 2015; Lee, James and Choi, 2016). Our goal is to provide a general-purpose
mechanism. Lijoi, Prünster and Rigon (2023) and Lee, Miscouridou and Caron (2022)
have also recently pursued a more general construction, but we believe there remains
room for improvement. Lijoi, Prünster and Rigon (2023) focus on NCRMs for clustering;
it is not immediately clear how to adapt this work for inference in trait allocation models.
Also, Lijoi, Prünster and Rigon (2023, Theorem 1) employ infinitely divisible random
variables. Since infinitely divisible distributions that are not Dirac measures cannot
have bounded support, the approximate rates {ρi}Ki=1 are not naturally compatible
with the trait likelihood �(· | θ) if the support of the rate measure ν is bounded. But the
support of ν is often bounded in applications to trait allocation models; e.g., θi may
represent a feature frequency, taking values in [0, 1], and �(· | θ) may take the form of
a Bernoulli, binomial, or negative binomial distribution. Therefore, applications of the
finite approximations of Lijoi, Prünster and Rigon (2023, Theorem 1) to these models
may require some additional work. The construction in Lee, Miscouridou and Caron
(2022, Proposition 3.2) yields {ρi}Ki=1 that are compatible with �(· | θ) and recovers
important cases in the literature. However, outside these special cases, it is unknown if
the i.i.d. distributions are tractable because the densities νK are not explicitly defined;
see the discussion around Eq. (3) for more details.

Example 2.1 (Running example: beta process). For concreteness, we consider the
(three-parameter) beta process6 (Teh and Görür, 2009; Broderick, Jordan and Pitman,
2012) as a running example of a CRM. The process BP(γ, α, d) is defined by a mass
parameter γ > 0, discount parameter d ∈ [0, 1), and concentration parameter α > −d.
It has rate measure

ν(dθ) = γ
Γ(α + 1)

Γ(1 − d)Γ(α + d)1{0 ≤ θ ≤ 1}θ−d−1(1 − θ)α+d−1dθ. (1)

5In this case,
∑K

i=1 ξi < 1. Therefore, setting the final atom size in the NCRM approximation to
be 1 −

∑K
i=1 ξi ensures the approximation is a probability measure.

6Also known as the stable beta process (Teh and Görür, 2009).
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The d = 0 case yields the standard beta process (Hjort, 1990; Thibaux and Jor-
dan, 2007). The beta process is typically paired with the Bernoulli likelihood process
with conditional distribution �(x | θ) = θx(1 − θ)1−x1{x ∈ {0, 1}}. The resulting beta–
Bernoulli process has been used in factor analysis models (Doshi-Velez et al., 2009;
Paisley, Blei and Jordan, 2012) and for dictionary learning (Zhou et al., 2009).

3 Automated independent finite approximations
In this section we introduce automated independent finite approximations, a practical
construction of independent finite approximations (IFAs) for a broad class of CRMs. We
highlight a useful special case of our construction for exponential family CRMs (Brod-
erick, Wilson and Jordan, 2018) without power laws and apply our construction to
approximate NCRMs. In all of these cases, we prove that as the approximation size
increases, the distribution of the approximation converges (in some relevant sense) to
that of the exact infinite-dimensional model.

3.1 Applying our approximation to CRMs
Formally, we define IFAs in terms of a fixed, diffuse probability measure H and a
sequence of probability measures ν1, ν2, . . . . The K-atom IFA ΘK is

ΘK :=
∑K

i=1ρiδψi , ρi
i.i.d.∼ νK , ψi

i.i.d.∼ H,

which we write as ΘK ∼ IFAK(H, νK). We consider CRM rate measures ν with densities
that, near zero, are (roughly) proportional to θ−1−d, where d ∈ [0, 1) is the discount
parameter. We will propose a general construction for IFAs given a target random
measure and prove that it converges to the target (Theorem 3.1). We first summarize
our requirements for which CRMs we approximate in Assumption 1. We show in Nguyen
et al. (2023, Section S1) that popular BNP priors satisfy Assumption 1; specifically,
we check the beta, gamma (Ferguson and Klass, 1972; Kingman, 1975; Titsias, 2008),
generalized gamma (Brix, 1999), beta prime (Broderick et al., 2015), and PG(α, ζ)-
generalized gamma (James, 2013) processes.

Assumption 1. For d ∈ [0, 1) and η ∈ V ⊆ R
d, we take Θ ∼ CRM(H, ν(·; γ, d, η)) for

ν(dθ; γ, d, η) := γθ−1−dg(θ)−d h(θ; η)
Z(1 − d, η)dθ

such that

1. for ξ > 0 and η ∈ V , Z(ξ, η) :=
∫
θξ−1g(θ)ξh(θ; η)dθ < ∞;

2. g is continuous, g(0) = 1, and there exist constants 0 < c∗ ≤ c∗ < ∞ such that
c∗ ≤ g(θ)−1 ≤ c∗(1 + θ);

3. there exists ε > 0 such that for all η ∈ V , the map θ 
→ h(θ; η) is continuous and
bounded on [0, ε].
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Other than the discount d and mass γ, the rate measure ν potentially depends on
additional hyperparameters η. The finiteness of the normalizer Z is necessary in defining
finite-dimensional distributions whose densities are similar in form to ν. The conditions
on the behaviors of g(θ) and h(θ; η) ensure that the overall rate measure’s behavior near
θ = 0 is dominated by the θ−1−d term. The support of the rate measure is implicitly
determined by h(θ; η).

Given a CRM satisfying Assumption 1, we can construct a sequence of IFAs that
converge in distribution to that CRM.

Theorem 3.1. Suppose Assumption 1 holds. Let

Sb(θ) =
{

exp
(

−1
1−(θ−b)2/b2 + 1

)
if θ ∈ (0, b)

1{θ > 0} otherwise.
(2)

For c := γh(0; η)/Z(1 − d, η), let

νK(dθ) := θ−1+cK−1−dS1/K(θ−1/K)g(θ)cK
−1−dh(θ; η)Z−1

K dθ

be a family of probability densities, where ZK is chosen such that
∫
νK(dθ) = 1. If

ΘK ∼ IFAK(H, νK), then ΘK
D→ Θ as K → ∞.

See Nguyen et al. (2023, Section S2) for a proof of Theorem 3.1. We choose the
particular form of Sb(θ) in Eq. (2) for concreteness and convenience. But our theory
still holds for a more general class of Sb forms, as we describe in more detail in the proof
of Theorem 3.1.

Definition 3.2. We call the K-atom IFA resulting from Theorem 3.1 the automated
IFA (AIFAK).

Although the normalization constant ZK is not always available analytically, numer-
ical implementation remains straightforward. When ZK is a quantity of interest, such
as in Section 6.4, we estimate it using standard numerical integration schemes for a
one-dimensional integral (Piessens et al., 2012; Virtanen et al., 2020). For other tasks,
we need not access ZK directly. In our experiments, we show that we can use either
Markov chain Monte Carlo (Sections 6.1 and 6.5) or variational Bayes (Sections 6.2
and 6.3) with the unnormalized density.

To illustrate our construction, we next apply Theorem 3.1 to BP(γ, α, d) from Ex-
ample 2.1. In Nguyen et al. (2023, Section S1) we show how to construct AIFAs for the
beta prime, gamma, generalized gamma, and PG(α, ζ)-generalized gamma processes.

Example 3.1 (Beta process AIFA). To apply Assumption 1, let η = α + d, V = R+,
g(θ) = 1, h(θ; η) = (1 − θ)η−11[θ ≤ 1], and Z(ξ, η) equal the beta function B(ξ, η).
Then the CRM rate measure ν in Assumption 1 corresponds to that of BP(γ, α, d) from
Example 2.1. Note that we make no additional restrictions on the hyperparameters
γ, α, d beyond those in the original CRM (Example 2.1). Observe that h is continuous
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and bounded on [0, 1/2], and the normalization function B(ξ, η) is finite for ξ > 0, η ∈ V ;
it follows that Assumption 1 holds. By Theorem 3.1, then, the AIFA density is

1
ZK

θ−1+c/K−dS1/K(θ−1/K)(1 − θ)α+d−11{0 ≤ θ ≤ 1}dθ,

where c := γ/B(α + d, 1 − d) and ZK is the normalization constant. The density does
not in general reduce to a beta distribution in θ due to the θ in the exponent.

Comparison to an alternative IFA construction. Lee, Miscouridou and Caron
(2022, Proposition 3.2) verify the validity of a different IFA construction. Their con-
struction requires two functions: (1) a bivariate function Λ(θ, t) such that for any
t > 0,Δ(t) :=

∫
Λ(θ, t)ν(dθ) < ∞ and (2) a univariate function f(n) such that Δ(f(n))

is bounded from both above and below by n as n → ∞. If these functions exist and

ν̃K(dθ) := Λ(θ, f(K))ν(dθ)
Δ(f(K)) , (3)

Lee, Miscouridou and Caron (2022, Proposition 3.2) show that IFAK(H, ν̃K) converges
in distribution to CRM(H, ν) as K → ∞. The usability of Eq. (3) in practice depends on
the tractability of Λ and f . There are typically many tractable Λ(θ, t) (Lee, Miscouridou
and Caron, 2022, Section 4). Proposition B.2 of Lee, Miscouridou and Caron (2022) lists
tractable f for the important cases of the beta process and generalized gamma process
with d > 0. However, the choice of f provided there for general power-law processes
is not tractable because its evaluation requires computing complicated inverses in the
asymptotic regime. Furthermore, for processes without power laws, no general recipe for
f is known. In contrast, the AIFA construction in Theorem 3.1 always yields densities
that can be evaluated up to proportionality constants.

Example 3.2 (Beta process: an IFA comparison). We next compare our beta process
AIFA to the two separate IFAs proposed by Lee, Miscouridou and Caron (2022) and
Lee, James and Choi (2016) for disjoint subcases within the case d > 0. First consider
the subcase where α = 0, d > 0. Lee, James and Choi (2016) derive7 what we call8 the
BFRY IFA. The IFA density, denoted νBFRY(dθ), is equal to

γ

K

θ−d−1(1 − θ)d−1

B(d, 1 − d)

[
1 − exp

(
−
(
KΓ(d)d

γ

)1/d
θ

1 − θ

)]
1{0 ≤ θ ≤ 1}dθ. (4)

Second, consider the subcase where α > 0, d > 0, Lee, Miscouridou and Caron
(2022, Section 4.5) derive another K-atom IFA, which we call9 the generalized Pareto

7There is a typo in Lee, James and Choi (2016, Theorem 2, item (iii)): θ/K should be (θ/Γ(α))/K.
8Devroye and James (2014) introduce the acronym BFRY to denote a distribution named for the

authors Bertoin et al. (2006). We here use “BFRY IFA” to denote what Lee, James and Choi (2016)
call the “BFRY process” and thereby emphasize that this process forms an IFA.

9We use the term “generalized Pareto” because Lee, Miscouridou and Caron (2022, Section 4.5) use
generalized Pareto variates to define Λ(θ, t) from Eq. (3).
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IFA (GenPar IFA). The IFA density, denoted νGenPar(dθ), is equal to

γ

K

θ−d−1(1 − θ)α+d−1

B(1 − d, α + d)

⎛⎜⎜⎝1 − 1(
θ

[(
1 + Kd

γα

) 1
d − 1
]

+ 1
)α
⎞⎟⎟⎠1{0 ≤ θ ≤ 1}dθ. (5)

Since the BFRY IFA and GenPar IFA apply to disjoint hyperparameter regimes,
they are not directly comparable. Since our AIFA applies to the whole domain α ≥ −d,
we can separately compare it to each of these alternative IFAs; we also highlight that
the AIFA still applies when α ∈ (−d, 0), a case not covered by either the BFRY IFA or
GenPar IFA.

We find in Section 6.3 that the AIFA and BFRY IFA have comparable predictive
performance; the AIFA and GenPar IFA also have comparable predictive performance.
But in Section 6.4, we show that the AIFA is much more reliable than the BFRY IFA
or the GenPar IFA for estimating the discount (d) hyperparameter by maximizing the
marginal likelihood. Conversely, sampling from a BFRY IFA or GenPar IFA prior is
easier than sampling from an AIFA prior since the BFRY and GenPar IFA priors are
formed from standard distributions.

3.2 Applying our approximation to exponential family CRMs
Exponential family CRMs with d = 0 comprise a widely used special case of CRMs. In
what follows, we show how Theorem 3.1 simplifies in this special case.

In common BNP models, the relationship between the likelihood �(· | θ) and the CRM
prior is closely related to finite-dimensional exponential family conjugacy (Broderick,
Wilson and Jordan, 2018, Section 4). In particular, the likelihood has an exponential
family form,

�(x | θ) := κ(x)θφ(x) exp (〈μ(θ), t(x)〉 −A(θ)) . (6)
Here x ∈ N ∪ {0}, κ(x) ∈ R is the base density, φ(x) ∈ R and t(x) ∈ R

D′ (for some
D′) form the vector of sufficient statistics (t(x), φ(x))T , A(θ) ∈ R is the log partition
function, μ(θ) ∈ R

D′ and ln θ form the vector of natural parameters (μ(θ), ln θ)T , and
〈μ(θ), t(x)〉 denotes the standard Euclidean inner product. The rate measure nearly
matches the form of the conjugate prior, but behaves like θ−1 near 0:

ν(dθ) := γ′θ−1 exp
{〈(

ψ
λ

)
,

(
μ(θ)
−A(θ)

)〉}
1{θ ∈ U}dθ, (7)

where γ′ > 0, λ > 0, ψ ∈ R
D′ and U ⊆ R+ is the support of ν. Eq. (7) leads to the

suggestive terminology of exponential family CRMs. The θ−1 dependence near 0 means
that these models lack power-law behavior. Models that can be cast in this form include
the standard beta process with Bernoulli or negative binomial likelihood (Zhou et al.,
2012; Broderick et al., 2015) and the gamma process with Poisson likelihood (Acharya,
Ghosh and Zhou, 2015; Roychowdhury and Kulis, 2015). We refer to these models as,
respectively, the beta–Bernoulli, beta–negative binomial, and gamma–Poisson processes.
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We now specialize Assumption 1 and Theorem 3.1 to exponential family CRMs in
Assumption 2 and Corollary 3.3, respectively.

Assumption 2. Let ν be of the form in Eq. (7) and assume that

1. For any ξ > −1, for any η = (ψ, λ)T where λ > 0, the normalizer defined as

Z(ξ, η) :=
∫
U

θξ exp
{〈

η,

(
μ(θ)
−A(θ)

)〉}
dθ (8)

is finite, and

2. there exists ε > 0 such that, for any η = (ψ, λ)T where λ > 0, the map

ς : θ 
→ exp
{〈

η,

(
μ(θ)
−A(θ)

)〉}
1{θ ∈ U}

is a continuous and bounded function of θ on [0, ε].

Corollary 3.3. Suppose Assumption 2 holds. For c := γ′ς(0), let

νK(θ) := θc/K−1ς(θ)
Z (c/K − 1, η) . (9)

If ΘK ∼ IFAK(H, νK), then ΘK
D→ Θ.

The density in Eq. (9) is almost the same as the rate measure of Eq. (7), except
the θ−1 term has become θc/K−1. As a result, Eq. (9) is a proper exponential-family
distribution. In Nguyen et al. (2023, Section S1), we detail the corresponding d = 0
special cases of the AIFA for beta prime, gamma, generalized gamma, and PG(α,ζ)-
generalized gamma processes. We cover the beta process case next.

Example 3.3 (Beta process AIFA for d = 0). Corollary 3.3 is sufficient to recover
known IFA results for BP(γ, α, 0); when d = 0, the AIFA from Example 3.1 sim-
plifies to νK = Beta (γα/K,α). Doshi-Velez et al. (2009) approximates BP(γ, 1, 0)
with νK = Beta (γ/K, 1). For BP(γ, α, 0), Griffiths and Ghahramani (2011) set νK =
Beta (γα/K,α), and Paisley and Carin (2009) use νK = Beta (γα/K,α(1 − 1/K)). The
difference between Beta (γα/K,α) and Beta (γα/K,α(1 − 1/K)) is negligible for mod-
erately large K.

We can also use Corollary 3.3 to create a new finite approximation for a nonpara-
metric process so far not explored in the Bayesian nonparametric literature.

Example 3.4 (CMP likelihood and extended gamma process). The CMP likelihood10

(Shmueli et al., 2005) is given by

�(x | θ) = θx

(x!)τ
1

Zτ (θ)
, where Zτ (θ) :=

∞∑
y=0

θy

(y!)τ . (10)

10CMP stands for Conway-Maxwell-Poisson.
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The conjugate CRM prior, which we call an extended gamma (or Xgamma) process, has
four hyperparameters: mass γ, concentration c, maximum T , and shape τ :

ν(dθ) = γθ−1Z−c
τ (θ)1{0 ≤ θ ≤ T}dθ. (11)

Unlike existing BNP models, the model in Eqs. (10) and (11), which we call Xgamma–
CMP process, is able to capture different dispersion regimes. For τ < 1, the variance of
the counts from �(x | θ) is larger than the mean of the counts, corresponding to overdis-
persion. For τ > 1, the variance of the counts from �(x | θ) is smaller than the mean
of the counts, corresponding to underdispersion. As we show in Section 6.5, the latent
shape τ can be inferred using observed data. Zhou et al. (2012); Broderick et al. (2015)
provide BNP trait allocation models that handle overdispersion. Canale and Dunson
(2011) provide a BNP model that handles both underdispersion and overdispersion,
but for clustering rather than traits. We are not aware of trait allocation models that
handle underdispersion, or any trait allocation models that handle both underdispersion
and overdispersion. Following the approach of Broderick, Wilson and Jordan (2018), in
Nguyen et al. (2023, Section S4) we show that as long as γ > 0, c > 0, T ≥ 1, and
τ > 0, the total mass of the rate measure is infinite and the number of active traits is
almost surely finite. Under these conditions, we show in Nguyen et al. (2023, Section
S1) that Corollary 3.3 applies to the CRM in Eq. (11), and we construct the resulting
AIFA.

3.3 Normalized independent finite approximations
Given that AIFAs are approximations that converge to the corresponding target CRM,
it is natural to ask if normalizations of AIFAs converge to the corresponding normal-
ization of the target CRM, i.e., the corresponding NCRM. Our next result shows that
normalized AIFAs indeed converge, in the sense that the exchangeable partition proba-
bility functions, or EPPFs (Pitman, 1995), converge. Given a random sample of size N
from an NCRM Ξ, the EPPF gives the probability of the induced partition from such
a sample. In particular, consider the model Ξ ∼ NCRM, Xn | Ξ i.i.d.∼ Ξ for 1 ≤ n ≤ N .11
Grouping the indices n with the same value of Xn induces a partition over the set
{1, 2, . . . , N}. Let b represent the number of distinct values in the set {Xn}Nn=1, so
b ≤ N . Let ni be the number of indices n with Xn equal to the i-th distinct value
of Xn, for some ordering of the values. So

∑b
i=1 ni = N and ∀i, ni ≥ 1. With this

notation in hand, we can write the EPPF, which gives the probability of the induced
partition under the model, as a symmetric function p(n1, n2, . . . , nb) that depends only
on the counts ni. Similarly, we let pK(n1, n2, . . . , nb) be the EPPF for the normalized
AIFAK . Note that pK(n1, n2, . . . , nb) = 0 when K < b since the normalized AIFAK at
approximation level K generates at most K blocks.

Theorem 3.4. Suppose Assumption 1 holds. Take any positive integers N, b, {ni}bi=1
such that b ≤ N , ni ≥ 1, and

∑b
i=1 ni = N . Let p be the EPPF of the NCRM Ξ :=

11We reuse the Xn notation from the CRM description, even though Xn now is a scalar, because
the role of the draws from Ξ is the same as that of the draws from Θ.
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Θ/Θ(Ψ). If ΘK is the AIFA for Θ at approximation level K, and pK is the EPPF for
the corresponding NCRM approximation ΘK/ΘK(Ψ), then

lim
K→∞

pK(n1, n2, . . . , nb) = p(n1, n2, . . . , nb).

See Nguyen et al. (2023, Section S2.3) for the proof. Since the EPPF gives the
probability of each partition, the point-wise convergence in Theorem 3.4 certifies that the
distribution over partitions induced by sampling from the normalized AIFAK converges
to that induced by sampling from the target NCRM, for any finite sample size N .

4 Non-asymptotic error bounds
Theorems 3.1 and 3.4 justify the use of our proposed AIFA construction in the limit
K → ∞ but do not provide guidance on how to choose the approximation level K
when N observations are available. In Section 4.1, we quantify the error introduced by
replacing an exponential family CRM with the AIFA. In Section 4.2, we quantify the
error introduced by replacing a Dirichlet process (DP) (Ferguson, 1973; Sethuraman,
1994) with the corresponding normalized AIFA. We derive error bounds that are simple
to manipulate and yield recommendations for the appropriate K for a given N and a
desired accuracy level.

4.1 Bounds when approximating an exponential family CRM
Recall from Section 2 that the CRM prior Θ is typically paired with a likelihood process
LP, which manifests features Xn, and a probability kernel f relating active features to
observations Yn. The target nonparametric model can be summarized as

Θ ∼ CRM(H, ν),

Xn | Θ i.i.d.∼ LP(�,Θ), n = 1, 2, . . . , N,

Yn | Xn
indep∼ f(· |Xn), n = 1, 2, . . . , N.

(12)

The approximating model, with νK as in Theorem 3.1 (or Corollary 3.3), is

ΘK ∼ AIFAK(H, νK),

Zn | ΘK
i.i.d.∼ LP(�,ΘK), n = 1, 2, . . . , N,

Wn | Zn
indep∼ f(· | Zn), n = 1, 2, . . . , N.

(13)

Active traits in the approximate model are collected in Zn and observations are Wn. Let
PN,∞ be the marginal distribution of the observations Y1:N and PN,K be the marginal
distribution of the observations W1:N . The approximation error we analyze is the total
variation distance dTV(PN,K , PN,∞) := sup0≤g≤1 |

∫
gdPN,K −

∫
gdPN,∞| between the

two observational processes, one using the CRM and the other one using the approxi-
mate AIFAK as the prior. Total variation is a standard choice of error when analyzing
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CRM approximations (Ishwaran and Zarepour, 2002; Doshi-Velez et al., 2009; Paisley,
Blei and Jordan, 2012; Campbell et al., 2019). Small total variation distance implies
small differences in expectations of bounded functions.

Conditions. In our analysis, we focus on exponential family CRMs and conjugate like-
lihood processes. We will suppose Assumption 2 holds. Our analysis guarantees that
dTV(PN,K , PN,∞) is small whenever a conjugate exponential family CRM–likelihood
pair and the corresponding AIFA model satisfy certain conditions, beyond those al-
ready stated in Assumption 2. In the proof of the error bound, these conditions serve as
intermediate results that ultimately lead to small approximation error. Because we can
verify the conditions for common models, we have error bounds in the most prevalent
use cases of CRMs. To express these conditions, we use the marginal process representa-
tion of the target and the approximate model, i.e., the series of conditional distributions
of Xn |X1:(n−1) (or Zn |Z1:(n−1)) with Θ (or ΘK) integrated out. Corollary 6.2 of Brod-
erick, Wilson and Jordan (2018) guarantees that the marginal Xn |X1:(n−1) is a random
measure with finite support and with a convenient form. Since we will use this form to
write our conditions (Condition 1 below), we first review the requisite notation — and
establish analogous notation for Zn |Z1:(n−1).

We start by defining h and M to describe the conditional distribution Xn |X1:(n−1).
Let Kn−1 be the number of unique atom locations in X1, X2, . . . , Xn−1, and let {ζi}Kn−1

i=1
be the collection of unique atom locations in X1, X2, . . . , Xn−1. Fix an atom location ζj
(the choice of j does not matter). For m with 1 ≤ m ≤ n, let xm be the atom size of Xm

at atom location ζj ; xm may be zero if there is no atom at ζj in Xm. The distribution of
xn depends only on the x1:(n−1) values, which are the atom sizes of previous measures
Xm at ζj . We use h(x | x1:(n−1)) to denote the probability mass function (p.m.f.) of xn

at value x. Furthermore, Xn has a finite number of new atoms, which can be grouped
together by atom size. Consider any potential atom size x ∈ N. Define pn,x to be the
number of atoms of size x. Regardless of atom size, each atom location is a fresh draw
from the ground measure H and pn,x is Poisson-distributed; we use Mn,x to denote the
mean of pn,x.

Next, we define h̃, which governs the conditional distribution of Zn |Z1:(n−1). Let
0n−1 be the zero vector with n − 1 components. Although h(x | x1:(n−1)) is defined
only for count vectors x1:(n−1) that are not identically zero, we will see that h̃(x |
0n−1) is well-defined. In particular, let {ζi}Kn−1

i=1 be the union of atom locations in
Z1, Z2, . . . , Zn−1. Fix an atom location ζj . For 1 ≤ m ≤ n, let xm be the atom size of
Zm at atom location ζj . We write the p.m.f. of xn at x as h̃(x | x1:(n−1)). In addition,
Zn also has a maximum of K−Kn−1 new atoms with locations disjoint from {ζi}Kn−1

i=1 ,
and the distribution of atom sizes is governed by h̃(x | 0n−1). Note that we reuse the
xn and ζj notation from Xn |X1:(n−1) without risk of confusion, since xn and ζj are
dummy variables whose meanings are clear given the context of h or h̃.

In Nguyen et al. (2023, Section S3), we describe the marginal processes in more
detail and give formulas for h, h̃, and Mn,x in terms of the functions that parametrize
Eqs. (6) and (7) and the normalizer Eq. (8). For the beta–Bernoulli process with d = 0,
the functions have particularly convenient forms.
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Example 4.1. For the beta–Bernoulli model with d = 0, we have

h(x | x1:(n−1)) =
∑n−1

i=1 xi

α− 1 + n
1{x = 1} +

α +
∑n−1

i=1 (1 − xi)
α− 1 + n

1{x = 0}.

h̃(x | x1:(n−1)) =
∑n−1

i=1 xi + γα/K

α− 1 + n + γα/K
1{x = 1} +

α +
∑n−1

i=1 (1 − xi)
α− 1 + n + γα/K

1{x = 0},

Mn,1 = γα

α− 1 + n
, Mn,x = 0 for x > 1.

We now formulate conditions on h, h̃, and Mn,x that will yield small dTV(PN,K ,
PN,∞).

Condition 1. There exist constants {Ci}5
i=1 such that

1. for all n ∈ N,
∞∑
x=1

Mn,x ≤ C1

n− 1 + C1
; (14)

2. for all n ∈ N,
∞∑
x=1

h̃(x | x1:(n−1) = 0n−1) ≤
1
K

C1

n− 1 + C1
; (15)

3. for any n ∈ N, for any {xi}n−1
i=1 �= 0n−1,

∞∑
x=0

∣∣∣h(x | x1:(n−1)) − h̃(x | x1:(n−1))
∣∣∣ ≤ 1

K

C1

n− 1 + C1
; and (16)

4. for all n ∈ N, for any K ≥ C2(lnn + C3),
∞∑
x=1

∣∣∣Mn,x −Kh̃(x | x1:(n−1) = 0n−1)
∣∣∣ ≤ 1

K

C4 lnn + C5

n− 1 + C1
. (17)

Note that the conditions depend only on the functions governing the exponential
family CRM prior and its conjugate likelihood process — and not on the observation like-
lihood f . Eq. (14) constrains the growth rate of the target model since

∑N
n=1
∑∞

x=1 Mn,x

is the expected number of components for data cardinality N . Because each
∑∞

x=1 Mn,x

is at most O(1/n), the total number of components after N samples is O(lnN). Simi-
larly, Eq. (15) constrains the growth rate of the approximate model. The third condition
(Eq. (16)) ensures that h̃ is a good approximation of h in total variation distance and
that there is also a reduction in the error as n increases. Finally, Eq. (17) implies that
Kh̃(x | 0n−1) is an accurate approximation of Mn,x, and there is also a reduction in the
error as n increases.

We show that Condition 1 holds for the most commonly used non-power-law CRM
models; see Example 4.2 for the case of the beta–Bernoulli model with discount d = 0
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and Nguyen et al. (2023, Section S6) for the beta–negative binomial and gamma–Poisson
models with d = 0. As we detail next, we believe Condition 1 is also reasonable beyond
these common models. The O(1/n) quantity in Eq. (14) is the typical expected number
of new features after observing n observations in non-power-law BNP models. Eqs. (15),
(16) and (17) are likely to hold when h̃ is a small perturbation of h and Kh̃ is a small
perturbation of Mn,x. For instance, in Example 4.1, the functional form of h̃ is very
similar to that of h, except that h̃ has the additional γα/K factor in both numerator
and denominator. The functional form of Kh̃ is very similar to that of Mn,x, except
that Kh̃ has an additional γα/K factor in the denominator.

Example 4.2 (Beta–Bernoulli with d = 0, continued). The growth rate of the target
model is ∞∑

x=1
Mn,x = Mn,1 = γα

n− 1 + α
.

Since h̃ is supported on {0, 1}, the growth rate of the approximate model is

h̃(1 | x1:(n−1) = 0n−1) = γα/K

α− 1 + n + γα/K
≤ 1

K

γα

n− 1 + α
.

Since both h and h̃ are supported on {0, 1}, Eq. (16) becomes

∣∣∣h(1 | x1:(n−1)) − h̃(1 | x1:(n−1))
∣∣∣ = ∣∣∣∣∣
∑n−1

i=1 xi + γα/K

α− 1 + n + γα/K
−
∑n−1

i=1 xi

α− 1 + n

∣∣∣∣∣ ≤ γα

K

1
n− 1 + α

.

And because Mn,x = 0 = h̃(x | · ) for x > 1, Eq. (17) becomes∣∣∣Mn,1 −Kh̃(1 | x1:(n−1) = 0n−1)
∣∣∣ = ∣∣∣∣ γα

α− 1 + n
− γα

α− 1 + n + γα
K

∣∣∣∣ ≤ γ2α

K

1
n− 1 + α

.

Calibrating {Ci} based on these inequalities is straightforward.

Upper bound. We now make use of Condition 1 to derive an upper bound on the
approximation error induced by AIFAs.

Theorem 4.1 (Upper bound for exponential family CRMs). Recall that PN,∞ is the dis-
tribution of Y1:N from Eq. (12) while PN,K is the distribution of W1:N from Eq. (13). If
Assumption 2 and Condition 1 hold, then there exist positive constants C ′, C ′′, C ′′′, C ′′′′

depending only on {Ci}5
i=1 such that

dTV (PN,∞, PN,K) ≤ C ′ + C ′′ ln2 N + C ′′′ lnN lnK + C ′′′′ lnK

K
.

See Nguyen et al. (2023, Section S7.1) for explicit values of the constants as well as
the proof. Theorem 4.1 states that the AIFA approximation error grows as O(ln2 N)
with fixed K, and decreases as O (lnK/K) for fixed N . The bound accords with our
intuition that, for fixed K, the error should increase as N increases: with more data, the
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expected number of latent components in the data increases, demanding finite approx-
imations of increasingly larger sizes. In particular, O(lnN) is the standard Bayesian
nonparametric growth rate for non-power law models. It is likely that the O(ln2 N)
factor can be improved to O(lnN) due to O(lnN) being the natural growth rate; more
generally, we conjecture that the error directly depends on the expected number of la-
tent components in a model for N observations. On the other hand, for fixed N , we
expect that error should decrease as K increases and the approximation thus has greater
capacity. This behavior also matches Theorem 3.1, which guarantees that sufficiently
large finite models have small error.

We highlight that Theorem 4.1 provides upper bounds both (i) for approximations
that were already known in the literature but where bounds were not already known,
as in the case of the beta–negative binomial process, and (ii) for processes and approx-
imations not previously studied in the literature in any form.

Lower bounds. From the upper bound in Theorem 4.1, we know how to set a sufficient
number of atoms for accurate approximations: for the total variation to be less than
some ε, we solve for the smallest K such that the right hand side of Theorem 4.1
is smaller than ε. We now derive lower bounds on the AIFA approximation error to
characterize a necessary number of atoms for accurate approximations, by looking at
worst-case observational likelihoods f . In particular, Theorem 4.1 implies that an AIFA
with K = O (poly(lnN)/ε) atoms suffices in approximating the target model to less
than ε error. In Theorem 4.2 below, we establish that K must grow at least at a lnN
rate in the worst case. In Theorem 4.3 below, we establish that the 1/ε term is necessary.
To the best of our knowledge, Theorems 4.2 and 4.3 are the first lower bounds on IFA
approximation error for any process.

Our lower bounds apply to the beta–Bernoulli process with d = 0. Recall that PN,∞
is the distribution of Y1:N from Eq. (12) while PN,K is the distribution of W1:N from
Eq. (13). In what follows, PBP

N,∞ refers to the marginal distribution of the observations
that arises when we use the prior BP(γ, α, 0). Analogously, PBP

N,K is the observational
distribution that arises when we use the AIFAK approximation in Example 3.1. The
observational likelihood f will be clear from context. The worst-case observational like-
lihoods f are pathological. We leave to future work to lower bound the approximation
error when more common likelihoods f , such as Gaussian or Dirichlet, are used.

For the first result, it will be useful to define the growth function for any N ∈ N,
α > 0:

C(N,α) :=
N∑

n=1

α

n− 1 + α
. (18)

C(N,α) satisfies limN→∞ C(N,α)/(α lnN) = 1; this asymptotic equivalence is a corol-
lary of Nguyen et al. (2023, Lemma S5.10) or Theorem 2.3 from Korwar and Hollander
(1972). Our next result shows that our AIFA approximation can be poor if the approx-
imation level K is too small compared to the growth function C(N,α).

Theorem 4.2 (lnN is necessary). For the beta–Bernoulli process model with d = 0,
there exists an observation likelihood f , independent of K and N , such that for any N ,
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if K ≤ 0.5γC(N,α), then

dTV(PBP
N,∞, PBP

N,K) ≥ 1 − C

Nγα/8 ,

where C is a constant depending only on γ and α.

See Nguyen et al. (2023, Section S7.2) for the proof. The intuition is that, with high
probability, the number of features that manifest in the target X1:N is greater than
0.5γC(N,α). However, the finite model Z1:N has fewer than 0.5γC(N,α) components.
Hence, there is an event where the target and approximation assign drastically different
probability masses. Theorem 4.2 implies that as N grows, if the approximation level
K fails to surpass the 0.5γC(N,α) threshold, then the total variation between the
approximate and the target model remains bounded from zero; in fact, the error tends
to one.

We next show that the 1/K factor in the upper bound from Theorem 4.1 is tight
(up to logarithmic factors).

Theorem 4.3 (Lower bound of 1/K). For the beta–Bernoulli process model with d = 0,
there exists an observation likelihood f , independent of K and N , such that for any N ,

dTV(PBP
N,∞, PBP

N,K) ≥ C
1

(1 + γ/K)2
1
K

,

where C is a constant depending only on γ.

See Nguyen et al. (2023, Section S7.2) for the proof. The intuition is that, under
the pathological likelihood f , analyzing the AIFA approximation error is the same as
analyzing the binomial–Poisson approximation error (Le Cam, 1960). We then show that
1/K is a lower bound using the techniques from Barbour and Hall (1984). Theorem 4.3
implies that an AIFA with K = Ω (1/ε) atoms is necessary in the worst case.

Our lower bounds (which apply specifically to the beta–Bernoulli process) are much
less general than our upper bounds. However, as a practical matter, generality in the
lower bounds is not so crucial due to the different roles played by upper and lower
bounds. Upper bounds give control over the approximation error; this control is what
is needed to trust the approximation and to set the approximation level. Whether or
not we have access to lower bounds, general-purpose upper bounds give us this control.
Lower bounds, on the other hand, serve as a helpful check that the upper bounds are
not too loose — and reassure us that we are not inefficiently using too many atoms in
a too-large approximation. From that standpoint, the need for general-purpose lower
bounds is not as pressing.

The dependence on the accuracy level in the d = 0 beta–Bernoulli process is worse for
AIFAs than for TFAs. For example, consider the Bondesson approximation (Bondesson,
1982; Campbell et al., 2019) of BP(γ, α, 0); we will see next that this approximation is
a TFA with excellent error bounds.
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Example 4.3 (Bondesson approximation (Bondesson, 1982)). Fix α ≥ 1, let El
i.i.d.∼

Exp(1), and let Γk :=
∑k

l=1 El. The K-atom Bondesson approximation of BP(γ, α, 0) is
a TFA

∑K
k=1 θkδψk

, where θk := Vk exp(−Γk/γα), Vk
i.i.d.∼ Beta(1, α− 1), and ψk

i.i.d.∼ H.

The following result gives a bound on the error of the Bondesson approximation.
Proposition 4.4. (Campbell et al., 2019, Appendix A.1) For γ > 0, α ≥ 1, let ΘK be
distributed according to a level-K Bondesson approximation of BP(γ, α, 0), Rn |ΘK

i.i.d.∼
LP(�; ΘK), Tn |Rn

indep∼ f(· |Rn) with N observations. Let QN,K be the distribution of

the observations T1:N . Then: dTV
(
PBP
N,∞, QN,K

)
≤ Nγ

(
γα

1+γα

)K
.

Proposition 4.4 implies that a TFA with K = O (ln{N/ε}) atoms suffices in approx-
imating the target model to less than ε error. Up to log factors in N , comparing the
necessary 1/ε level for an AIFA and the sufficient ln (1/ε) level for a TFA, we conclude
that the necessary size for an AIFA is exponentially larger than the sufficient size for a
TFA, in the worst-case observational likelihood f .

4.2 Approximating a (hierarchical) Dirichlet process
So far we have analyzed AIFA error for CRM-based models. In this section, we analyze
the error that arises from using a normalized AIFA as an approximation for an NCRM;
here, we focus on a Dirichlet process — i.e., a normalized gamma process without power-
law behavior. We first consider a generative model with the same number of layers as
in previous sections. But we also consider a more complex generative model, with an
additional layer — as is common in, e.g., text analysis. Indeed, one of the strengths
of Bayesian modeling is the flexibility facilitated by hierarchical modeling, and a goal
of probabilistic programming is to provide fast, automated inference for these more
complex models.

Dirichlet process. The Dirichlet process is one of the most widely used nonparamet-
ric priors and arises as a normalized gamma process. The generalized gamma process
CRM is characterized by the rate measure ν(dθ) = γ λ1−d

Γ(1−d)θ
−d−1e−λθdθ. We denote

its distribution as ΓP(γ, λ, d). A normalized draw from ΓP(γ, 1, 0) is Dirichlet-process
distributed with mass parameter γ (Kingman, 1975; Ferguson, 1973). By Corollary 3.3,
IFAK(H, νK) with νK = Gam(γ/K, 1) converges to ΓP(γ, 1, 0). Because the normal-
ization of independent gamma random variables is a Dirichlet random variable, a nor-
malized draw from IFAK(H, νK) is equal in distribution to

∑K
i=1 piδψi where ψi

i.i.d.∼ H
and {pi}Ki=1 ∼ Dir({γ/K}1K). We call this distribution the finite symmetric Dirichlet
(FSD), and denote it as FSDK(γ,H).12

In the simplest use case, the Dirichlet process is used as the de Finetti measure
for observations Xn; i.e., Ξ ∼ DP, Xn | Ξ i.i.d.∼ Ξ for 1 ≤ n ≤ N . In Nguyen et al.
(2023, Section S8), we state error bounds when FSDK replaces the Dirichlet process

12The name “finite symmetric Dirichlet” comes from Kurihara, Welling and Teh (2007). See Ish-
waran and James (2001, Section 2.2) for other names this distribution has had in the literature.
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as the mixing measure that are analogous to the results in Section 4.1. The upper
bound is similar to Theorem 4.1 in that the error grows as O(ln2 N) with fixed K,
and decreases as O (lnK/K) for fixed N . The lower bounds, which are the analogues of
Theorems 4.2 and 4.3, state that K = Ω(lnN) is necessary for accurate approximations,
and that truncation-based approximations are better than FSDK , in the worst case.
In comparison to existing results (Ishwaran and Zarepour, 2000, 2002), Theorem 1
of Ishwaran and Zarepour (2000) does not bound the distance between observational
processes, so it is not directly comparable to our error bound. We improve upon Theorem
4 of Ishwaran and Zarepour (2002), whose upper bound on the FSD approximation error
lacks an explicit dependence on K or N . So, unlike our bounds, that bound cannot be
inverted to determine a sufficient approximation level K.

Hierarchical Dirichlet process. In modern applications such as text analysis, practi-
tioners use additional hierarchical levels to capture group structure in observed data. In
text, we might have D documents with N words in each. More, generally, we might have
D groups (each indexed by d) with N observations (each indexed by n) each. We target
the influential model of Wang, Paisley and Blei (2011); Hoffman et al. (2013), which is a
variant of the hierarchical Dirichlet process (HDP; Teh et al., 2006) and which we refer
to as the modified HDP. In the HDP, G is a population measure with G ∼ DP(ω,H).
The measure for the d-th subpopulation is Gd |G ∼ DP(α,G); the concentrations ω and
α are potentially different from each other. The modified HDP is defined in terms of
the truncated stick-breaking (TSB) approximation:

Definition 4.5 (Stick-breaking approximation (Sethuraman, 1994)). For i = 1, 2, . . . ,
K − 1, let vi

i.i.d.∼ Beta(1, α). Set vK = 1. Let ξi = vi
∏i−1

j=1(1 − vj). Let ψk
i.i.d.∼ H, and

ΞK =
∑K

k=1 ξkδψk
. We denote the distribution of ΞK as TSBK(α,H).

In the modified HDP, the sub-population measure is distributed as Gd |G ∼ TSBT (α,
G). Wang, Paisley and Blei (2011) and Hoffman et al. (2013) set T to be small so that
inference in the modified HDP is more efficient than in the HDP, since the number of
parameters per group is greatly reduced. From a modeling standpoint, small T is a rea-
sonable assumption since documents typically manifest a small number of topics from
the corpus, with the total number depending on the document length and independent
of corpus size. For completeness, the generative process of the modified HDP is

G ∼ DP(ω,H),

Hd | G i.i.d.∼ TSBT (α,G) across d,

βdn | Hd
indep∼ Hd(·) across d, n

Wdn | βdn
indep∼ f(· | βdn) across d, n.

(19)

Hd contains at most T distinct atom locations, all shared with the base measure G.

The finite approximation we consider replaces the population-level Dirichlet process
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with FSDK , keeping the other conditionals intact:13

GK ∼ FSDK(ω,H),

Fd | GK
i.i.d.∼ TSBT (α,GK) across d,

ψdn | Fd
indep∼ Fd(·) across d, n,

Zdn | ψdn
indep∼ f(· | ψdn) across d, n.

(20)

Our contribution is analyzing the error of Eq. (20).

Let P(N,D),∞ be the distribution of the observations {Wdn}. Let P(N,D),K be the dis-
tribution of the observations {Zdn}. We have the following bound on the total variation
distance between P(N,D),∞ and P(N,D),K .

Theorem 4.6 (Upper bound for modified HDP). For some constants C ′, C ′′, C ′′′, C ′′′

that depend only on ω,

dTV
(
P(N,D),∞, P(N,D),K

)
≤ C ′ + C ′′ ln2(DT ) + C ′′′ ln(DT ) lnK + C ′′′′ lnK

K
.

See Nguyen et al. (2023, Section S9) for explicit values of the constants as well as
the theorem’s proof. For fixed K, Theorem 4.6 is independent of N , the number of
observations in each group, but scales with the number of groups D like O(poly(lnD)).
For fixed D, the approximation error decreases to zero at rate no slower that O (lnK/K).
The O(ln(DT )) factor is related to the expected logarithmic growth rate of Dirichlet
process mixture models (Arratia, Barbour and Tavaré, 2003, Section 5.2) in the following
way. Since there are D groups, each manifesting at most T distinct atom locations from
an underlying Dirichlet process prior, the situation is akin to generating DT samples
from a common Dirichlet process prior. Hence, the expected number of unique samples
is O(ln(DT )). Similar to Theorem 4.1, we speculate that the O(ln2(DT )) factor can
be improved to O(ln(DT )). For error bounds of truncation-based approximations of
hierarchical processes, such as the HDP, we refer to Lijoi, Prünster and Rigon (2020b,
Theorem 1).

5 Conceptual benefits of finite approximations
Though approximation error lends itself more readily to analysis, ease-of-use consid-
erations are often at the forefront of users’ choice of finite approximation in practice.
Therefore, we next compare AIFAs to TFAs in this dimension. We see that AIFAs offer
more straightforward updates in approximate inference algorithms and easier imple-
mentation of parallelism.

13Our construction in Eq. (20) is slightly different from Eqs. 5.5 and 5.6 in Fox et al. (2010). Our
document-level process Fd contains at most T topics from the underlying corpus; by contrast, the Fox
et al. (2010) document-level process contains as many topics as the corpus-level process. However, the
novelty of Eq. (20) is incidental since the replacement of the population-level DP with the FSD in the
modified HDP is analogous to the DP case.
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To reduce notation in this section, we let a term without subscripts represent the
collection of all subscripted terms: ρ := (ρk)Kk=1 denotes the collection of atom sizes,
ψ := (ψk)Kk=1 denotes the collection of atom locations, x := (xn,k)K,N

k=1,n=1 denotes the
latent trait counts of each observation,14 and y := (yn)Nn=1 denotes the observed data.
We use a dot to collect terms across the corresponding subscript: x.,k := (xn,k)Nn=1
denotes trait counts across observations of the k-th trait. We next consider algorithms
to approximate the posterior distribution P(ρ, ψ, x | y) of the finite approximation.

Gibbs sampling. When all latent parameters are continuous, Hamiltonian Monte
Carlo methods are increasingly standard for performing Markov chain Monte Carlo
(MCMC) posterior approximation (Hoffman and Gelman, 2014; Carpenter et al., 2017).
However, due to the discreteness of the trait counts x, successful MCMC algorithms
for CRMs or their approximations have been based largely on Gibbs sampling (Ge-
man and Geman, 1984). In particular, blocked Gibbs sampling utilizing the natural
Markov blanket structure is straightforward to implement when the complete condi-
tionals P(ρ |x, ψ, y),P(x |ψ, ρ, y), and P(ψ |x, ρ, y) are easy to simulate from.15

Different finite approximations with the same number of atoms K change only P(ρ) in
the generative model. So, of the conditionals, we expect only P(ρ |x, ψ, y) to differ across
finite approximations. We next show in Proposition 5.1 that the form of P(ρ |x, ψ, y)
is particularly tractable for AIFAs. Then we will discuss how Gibbs derivations are
substantially more involved for TFAs.

Proposition 5.1 (Conditional conjugacy of AIFA). Suppose the likelihood is an ex-
ponential family (Eq. (6)) and the AIFA prior νK is as in Corollary 3.3. Then the
complete conditional of the atom sizes factorizes across atoms as:

P(ρ | x, ψ, y) =
K∏

k=1

P(ρk | x.,k).

Furthermore, each P(ρk |x.,k) is in the same exponential family as the AIFA prior, with
density proportional to

1{ρ ∈ U}ρc/K+
∑N

n=1 φ(xn,k)−1 exp
(
〈ψ +

N∑
n=1

t(xn,k), μ(ρ)〉 + (λ + N)[−A(ρ)]
)
.

(21)

See Nguyen et al. (2023, Section S10.2) for the proof of Proposition 5.1. For common
models — such as beta–Bernoulli, gamma–Poisson, and beta–negative binomial — we

14The usage of x in this section is different from the usage in the remaining sections: in Eq. (6), x
is a single observation from the likelihood process.

15Because of the factorization P(x |ψ, ρ, y) =
∏N

n=1 P(xn,. |ψ, ρ, yn), Gibbs sampling over the finite
approximation can be an appealing technique even when Gibbs sampling over the marginal process
is not. In particular, the wall-time of a Gibbs iteration for the finite approximation can be small
by drawing P(xn,. |ψ, ρ, yn) in parallel. Meanwhile, any iteration to update the trait counts with the
marginal process representation needs to sequentially process the data points, prohibiting speed up
through parallelism.
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see that the complete conditionals over AIFA atom sizes are in forms that are well
known and easy to simulate.

There are many different types of TFAs, but typical TFA Gibbs updates pose ad-
ditional challenges. Even when P(ρ) is easy to sample from, P(ρ |x) can be intractable,
as we see in the following example.

Example 5.1 (Stick-breaking approximation (Broderick, Jordan and Pitman, 2012;
Paisley, Carin and Blei, 2011)). Consider the TFA for BP(γ, α, 0) given by

ΘK =
K∑
i=1

Ci∑
j=1

V
(i)
i,j

i−1∏
l=1

(1 − V
(l)
i,j )δψij ,

where Ci
i.i.d.∼ Poisson(γ), V (l)

i,j
i.i.d.∼ Beta(1, α) and ψi,j

i.i.d.∼ H. One can sample the atom
sizes V

(i)
i,j

∏i−1
l=1(1− V

(l)
i,j ). But there is no tractable way to sample from the conditional

distribution P(ρ |x) because of the dependence on Ci as well as the entangled form of
each ρ. Strategies to make sampling more tractable include introducing auxiliary round
indicator variables rk and marginalizing out the stick-breaking proportions (Broderick,
Jordan and Pitman, 2012). However, the final model still contains one Gibbs conditional
that is difficult to sample from (Broderick, Jordan and Pitman, 2012, Equation 37).

Other superposition-based approximations, like decoupled Bondesson or power-law
(Campbell et al., 2019), present similar challenges due to the number of atoms per round
variables Ci and the dependence among the atom sizes.

Mean-field variational inference (MFVI). Analogous to Hamiltonian Monte Carlo
for MCMC, black-box variational methods are increasingly used for variational infer-
ence when the latent parameters are continuous (Ranganath, Gerrish and Blei, 2014;
Kingma and Welling, 2014; Rezende, Mohamed and Wierstra, 2014; Burda, Grosse and
Salakhutdinov, 2016; Kucukelbir et al., 2017; Bingham et al., 2018). Mean-field coor-
dinate ascent updates (Wainwright and Jordan, 2008, Section 6.3) remain popular for
cases with discrete variables, including the present trait counts x.16

MFVI posits a factorized distribution q to approximate the exact posterior. In our
case, we approximate P(ρ, ψ, x | y) with q(ρ, ψ, x) = qρ(ρ)qψ(ψ)qx(x). We focus on qρ(ρ).
For fixed qψ(ψ) and qx(x), the optimal q∗ρ minimizes the (reverse) Kullback-Leibler
divergence between the posterior and q∗ρqψqx:

q∗ρ := argmin
qρ

KL (qρ(·)qψ(·)qx(·) || P(·, ·, · | y)) . (22)

Our next result shows that q∗ρ takes a convenient form when using AIFAs.

16When discrete latent variables are present, black-box variational methods typically utilize enu-
meration strategies to marginalize out the discrete variables. There exists a tradeoff between user time
and wall time. The user time is small since there is no need to derive update equations, but the wall
time can be large depending on the enumeration strategy.
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Corollary 5.2 (AIFA optimal distribution is in exponential family). Suppose the like-
lihood is an exponential family (Eq. (6)) and the AIFA prior νK is as in Corollary 3.3.
Then, the density of q∗ρ is given by

q∗ρ(ρ) =
∏
k

p̃k(ρk), (23)

where each p̃k has density at ρk proportional to

1{ρk ∈ U}ρc/K+
∑

n Exn,k∼qxφ(xn,k)−1
k exp

〈[
ψ +
∑

n Exn,k∼qxt(xn,k)
λ + N

]
,

[
μ(ρk)
−A(ρk)

]〉
(24)

where xn,k ∼ qx denotes the marginal distribution of xn,k under qx(x).

That is, when using the AIFA, the optimal q∗ρ factorizes across the K atoms, and
each distribution is in the conjugate exponential family for the likelihood �(xn,k | ρk).
Typically users will report summary statistics like means or variances of the variational
approximations q∗ρ. These are typically straightforward from the exponential family
form.

The TFA case is much more complex and requires both more steps in the inference
scheme as well as additional approximations. See Nguyen et al. (2023, Section S10.1)
for two illustrative examples.

Parallelization. We end with a brief discussion on parallelization. In both Proposi-
tion 5.1 and Corollary 5.2, the update distribution for ρ factorizes across the K atoms.
Hence, AIFA updates can be done in parallel across atoms, yielding speed-ups in wall-
clock time, with the gains being greatest when there are many instantiated atoms. For
TFAs, due to the complicating coupling among the atom rates, there is no such benefit
from parallelization.

6 Empirical evaluation
In our experiments, we compare our AIFA constructions to TFAs and to other IFA
constructions (Lee, James and Choi, 2016; Lee, Miscouridou and Caron, 2022) on a
variety of synthetic and real-data examples. Even though our theory suggests better
performance of TFAs than AIFAs for worst-case likelihoods, we find comparable per-
formance of TFAs and AIFAs in predictive tasks (Sections 6.1 and 6.2). Likewise, we
find comparable performance of AIFAs and alternative IFAs in predictive tasks (Sec-
tion 6.3). However, we find that AIFAs can be used to learn model hyperparameters
where alternative IFA approximations fail (Section 6.4). And we show that AIFAs can
be used to learn model hyperparameters for new models, not previously explored in the
BNP literature (Section 6.5).

In relation to prior studies, existing empirical work has compared IFAs and TFAs
only for simpler models and smaller data sets (e.g., Doshi-Velez et al. (2009, Table 1,2)
and Kurihara, Welling and Teh (2007, Figure 4)). Our comparison is grounded in models
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with more levels and analyzes datasets of much larger sizes. For instance, in our topic
modeling application, we analyze nearly 1 million documents, while the comparison in
Kurihara, Welling and Teh (2007) utilizes only 200 synthetic data points.

6.1 Image denoising with the beta–Bernoulli process

Our first experiments show comparable performance of the AIFA and TFA at an image
denoising task with a CRM-based target model. We use MCMC for image denoising
through dictionary learning because it is an application where finite approximations of
BNP models — in particular the beta–Bernoulli process with d = 0 — have proven
useful (Zhou et al., 2009). The observation likelihood in this dictionary learning model
is not one of the worst cases in Section 4.1. We find that the performance of AIFAs and
TFAs is comparable across K, and the posterior modes across TFA and AIFA models
are similar to each other.

The goal of image denoising is to recover the original, noiseless image (e.g., Fig-
ure 1a) from a corrupted one (e.g., Figure 1b). The input image is first decomposed
into small contiguous patches. The model assumes that each patch is a combination
of latent basis elements. By estimating the coefficients expressing the combination, one
can denoise the individual patches and ultimately the overall image. The beta–Bernoulli
process allows simultaneous estimation of both basis elements and basis assignments.
The number of extracted patches depends on both the patch size and the input image
size. So even on the same input image, the analysis might process a varying number of
“observations.” The nonparametric nature of the beta–Bernoulli process sidesteps the
cumbersome problem of calibrating the number of basis elements for these different data
set sizes, which can be large even for a relatively small image; for a 256×256 image like
Figure 1b, the number of extracted patches, N , is about 60,000. We quantify denoising
quality by computing the peak signal-to-noise ratio (PNSR) between the original and
the denoised image (Hore and Ziou, 2010). The higher the PNSR, the more similar the
images.

Figure 1: AIFA and TFA denoised images have comparable quality. (a) The noiseless
image. (b) The corrupted image. (c,d) Sample denoised images from finite models with
K = 60. We report PSNR (in dB) with respect to the noiseless image.
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Figure 2: (a) Peak signal-to-noise ratio (PNSR) as a function of approximation level K.
Error bars depict 1-standard-deviation ranges across 5 trials. (b,c) How PSNR evolves
during inference across 10 trials, with 5 each starting from respectively cold or warm
starts.

We use Gibbs sampling to approximate the posterior distributions. To ensure sta-
bility and accuracy of the sampler, patches (i.e., observations) are gradually introduced
in epochs, and the sampler modifies only the latent variables of the current epoch’s
observations. See Nguyen et al. (2023, Section S11.1) for more details about the finite
approximations, the hyperparameter settings, and the inference algorithm.

Figures 1c and 1d visually summarize the results of posterior inference for a partic-
ular image. We report experiments with other images in Nguyen et al. (2023, Section
S12.1). Our results across all images indicate that the AIFA and TFA perform similarly,
and both approximations perform much better than the baseline (i.e., the noisy input
image). Figure 2 quantitatively confirms these qualitative findings; Figure 2a shows
that, for approximation levels we considered, the PSNR between either the TFA or
AIFA output image and the original image are always very similar and substantially
higher (between 30 and 35) than the PSNR between the original and corrupted image
(below 30). In fact, each TFA denoised image is more similar to the AIFA denoised
image than to the original image; the PSNR between the TFA and AIFA outputs is
about 50. We also see from Figure 2a that the quality of denoised images improves with
increasing K. The improvement with K is largest for small K, and plateaus for larger
values of K.

In addition to randomly initializing the latent variables at the beginning of the Gibbs
sampler of one model (“cold start”), we can use the last configuration of latent variables
visited in the other model as the initial state of the Gibbs sampler (“warm start”). In
Figure 2b, the warm-start curve uses the output of inference with the AIFA as an initial
value for inference with the TFA; similarly, the warm-start curve of Figure 2c uses the
output with the TFA to initialize inference with the AIFA. For both approximations,
K = 60. At the end of training, all latent variables for all patches have been assigned, so
for the warm start experiment, we make all patches available from the start instead of
gradually introducing patches. For both approximations, the Gibbs sampler initialized
at the warm start visits candidate images that essentially have the same PSNR as the
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Figure 3: (a) Test log-likelihood (testLL) as a function of approximation level K. Error
bars show 1 standard deviation across 5 trials. (b,c) TestLL change during inference.

starting configuration; the PSNR values never deviate from the initial PSNR by more
than 1%. The early iterates of the cold-start Gibbs sampler are noticeably lower in
quality compared to the warm-start iterates, and the quality at the plateau is still lower
than that of the warm start.17 Each PSNR trace corresponds to a different set of initial
values and simulation of the conditionals. The variation across the 5 warm-start trials
is small; the variation across the 5 cold-start trials is larger but still quite small. In all,
the modes of TFA posterior are good initializations for inference with the AIFA model,
and vice versa.

6.2 Topic modelling with the modified hierarchical Dirichlet process
We next compare the performance of normalized AIFAs (namely, FSDK) and TFAs
(namely, TSBK) in a DP-based model with additional hierarchy: the modified HDP
from Section 4.2. As in Section 6.1, we find that the approximations perform similarly.

We use the modified HDP for topic modeling. We apply stochastic variational infer-
ence with mean-field factorization (Hoffman et al., 2013) to approximate the posterior
over the latent topics. The training corpus consists of nearly one million documents from
Wikipedia. We measure the quality of inferred topics via predictive log-likelihood on a
set of 10,000 held-out documents. See Nguyen et al. (2023, Section S11.2) for complete
experimental details.

Figure 3a shows that, as expected, the quality of the inferred topics improves as the
approximation level grows. For a given approximation level, the quality of the topics
learned using the TFA and the normalized AIFA are almost the same.

The warm start in this case corresponds to using variational parameters at the end of
the other model’s training. Figure 3b uses the outputs of inference with the normalized
AIFA approximation as initial values for inference with the normalized TFA; similarly
Figure 3c uses the TFA to initialize inference with the AIFA. We fix the number of
topics to K = 300 and run 5 trials each with the cold start and warm start, respectively.

17Because the warm start represents the end of the training from the cold start with gradually
introduced patches, the gap in final PSNR is due to the gradual patch introduction.
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For both approximations, the test log-likelihood stays nearly the same for warm-start
training iterates; the test log-likelihood for the iterates never deviate more than 0.5%
from the initial value. The early iterates after the cold start are noticeably lower in
quality compared to the warm iterates; however at the end of training, the test log-
likelihoods are nearly the same. Each trace corresponds to a different set of initial
values and ordering of data batches processed. The variation across either cold starts or
warm starts is small. So, in sum, the modes of the TFA posterior are good initializations
for inference with the AIFA model, and vice versa.

6.3 Comparing predictions across independent finite approximations

We next show that AIFAs have comparable predictive performance with other IFAs,
namely the BFRY IFA and GenPar IFA. We consider a linear–Gaussian factor analysis
model with the power-law beta–Bernoulli process (Griffiths and Ghahramani, 2011),
where the AIFA, BFRY IFA, or GenPar IFA can be used directly.

Recall that the BFRY IFA applies only when the concentration hyperparameter is
zero, and the GenPar IFA applies only when the concentration parameter is positive.
We consider it a strength of the AIFA that it applies to both cases (and the negative
range of the concentration hyperparameter) simultaneously. Nonetheless, we here gen-
erate two separate synthetic datasets: one to compare the BFRY IFA with the AIFA
and one to compare the GenPar IFA with the AIFA. In each case, we generate 2,000
data points from the full CRM model with a discount of d = 0.6. We use 1,500 for train-
ing and report predictive log-likelihood on the 500 held-out data points. For posterior
approximation, we use automatic differentiation variational inference as implemented
in Pyro (Bingham et al., 2018). To isolate the effect of the approximation type, we
use “ideal” initialization conditions: we initialize the variational parameters using the
latent features, assignments, and variances that generated the training set. See Nguyen
et al. (2023, Section S11.3) for more details about the BRFY IFA, GenPar IFA, and the
approximate inference scheme. Figure 4a shows that across approximation levels K, the
predictive performances of the AIFA and BFRY IFA are similar. Likewise, Figure 4b
shows that the predictive performance of the AIFA and GenPar IFA are similar.

6.4 Discount estimation

We next show that AIFAs can reliably recover the beta process discount hyperparameter
d, which governs the power law growth in the number of features. By contrast, we show
that the BFRY IFA or GenPar IFA struggle at this task. In Nguyen et al. (2023, Section
S12.3), we show that the AIFA can also reliably estimate the mass and concentration
hyperparameters.

We generate a synthetic dataset so that the ground truth hyperparameter values are
known. The data takes the form of a binary matrix X, with N rows and K̃ columns.
We generate X from an Indian buffet process prior; recall that the Indian buffet process
is the marginal process of a beta process CRM paired with Bernoulli likelihood. To
learn the hyperparameter values with an AIFA, we maximize the marginal likelihood of
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Figure 4: (a) The left panel shows the average predictive log-likelihood of the AIFA
(blue) and BFRY IFA (red) as a function of the approximation level K; the average
is across 10 trials with different random seeds for the stochastic optimizer. The right
panel shows highest predictive log-likelihood across the same 10 trials. (b) The panels
are analogous to (a), except the GenPar IFA is in red.

the observed matrix X implied by the AIFA. In particular, we compute the marginal
likelihood by integrating the Bernoulli likelihood P(xn,k | θk) over θk distributed as the
K-atom AIFA νK . To quantify the variability of the estimation procedure, we generate
50 feature matrices and compute the maximum likelihood estimate for each of these 50
trials. See Nguyen et al. (2023, Section S11.4) for more experimental details.

Figure 5a shows that we can use an AIFA to estimate the underlying discount for a
variety of ground-truth discounts. Since the estimates and error bars are similar whether
we use the AIFA (left) or full nonparametric process (right), we conclude that using the
AIFA yields comparable inference to using the full process.

In theory, the marginal likelihood of the BFRY IFA can also be used to estimate
the discount, but in practice we find that this approach is not straightforward and can
yield unreliable estimates. At the time of writing, such an experiment had not yet been
attempted; Lee, James and Choi (2016) focus on clustering models and do not discuss
strategies to estimate any hyperparameter in a feature allocation model with a BFRY
IFA. We are not aware of a closed-form formula for the marginal likelihood. Default
schemes to numerically integrate P(0 | θk) against the BFRY prior for θk fail because
of overflow issues. (KΓ(d)d/γ)1/d is typically very large, especially for small d. Due to
finite precision, 1 − exp

(
−(Kd/γ)1/d θ

1−θ

)
evaluates to 1 on the quadrature grid used

by numerical integrators (Piessens et al., 2012). In this case, Eq. (4) behaves as θ−d−1

near 0, and thus the integral over θ diverges. To create the left panel of Figure 5b, we
view the marginal likelihood as an expectation and construct Monte Carlo estimates; we
draw 105 BFRY samples to estimate the marginal likelihood, and we take the estimate’s
logarithm as an approximation to the log marginal likelihood (red line). To quantify the
uncertainty, we draw 100 batches of 105 samples (light red region). Even for this large
number of Monte Carlo samples, the estimated log marginal likelihood curve is too noisy
to be useful for hyperparameter estimation. By comparison, we can compute the log
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Figure 5: (a) We estimate the discount by maximizing the marginal likelihood of the
AIFA (left) or the full process (right). The solid blue line is the median of the estimated
discounts, while the lower and upper bounds of the error bars are the 20% and 80%
quantiles. The black dashed line is the ideal value of the estimated discount, equal to
the ground-truth discount. (b) In each panel, the solid red line is the average log of
negative log marginal likelihood (LNLML) across batches. The light red region depicts
two standard errors in either direction from the mean.

marginal likelihood analytically for the IBP (dashed black line); it is much smoother and
features a clear minimum. Moreover, we can compute the AIFA log marginal likelihood
via numerical integration (solid blue line); it is also very smooth and features a clear
minimum.

We again consider the BFRY IFA and GenPar IFA separately and generate separate
simulated data for each case due to their disjoint assumptions; we generate data with
concentration α = 0 for the BFRY IFA and with α > 0 for the GenPar IFA. An
experiment to recover a discount hyperparameter with the GenPar IFA, analogous to
the experiment above with the BFRY IFA, has also not previously been attempted.
There is no analytical formula for the GenPar IFA marginal likelihood, and we again
encounter overflow when trying numerical integration. Therefore, we resort to Monte
Carlo; we find that estimates of the log marginal likelihood are too noisy for practical
use in recovering the discount (the right panel of Figure 5b).

6.5 Dispersion estimation

Finally, we show that the AIFA can straightforwardly be adapted to estimate hyperpa-
rameters in other BNP processes, not just the beta process. In particular we show that
AIFAs can be used to learn the dispersion parameter τ in the novel Xgamma–CMP pro-
cess that we introduced in Example 3.4. We consider a well-known application of BNP
trait-allocation models to matrix-factorization–based topic modeling (Roychowdhury
and Kulis, 2015). The observed data is a count matrix X, with N rows, represent-
ing documents, and V columns, representing vocabulary words. We adjust the model
of Roychowdhury and Kulis (2015) to use the Xgamma–CMP process of Example 3.4
instead of a gamma–Poisson process. The added flexibility of τ allows modeling trait
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Figure 6: Blue histograms show posterior density estimates for τ from MCMC draws.
The ground-truth τ (solid red line) is 0.7 in the overdispersed case (upper row) and
1.5 in the underdispersed case (lower row). The threshold τ = 1 (dashed black line)
marks the transition from overdispersion (τ < 1.0) to underdispersion (τ > 1.0). The
percentile in each panel’s title is the percentile where the ground truth τ falls in the
posterior draws. The approximation size K of the AIFA increases in the plots from left
to right.

count distributions that are over- or under-dispersed, which cannot be done with the
gamma-Poisson process.

To have a notion of ground truth, we generate synthetic data (with N = 600)
from a large AIFA (with K = 500) of the Xgamma–CMP process, which is a good
approximation of the BNP limit.18 In each set of experiments, the data are overdispersed
(τ < 1) or underdispersed (τ > 1). In this case, we take a Bayesian approach to
estimating τ , and put a uniform prior on τ ∈ (0, 100] since τ must be strictly positive.
For smaller values of K (K = 50 to K = 150), we approximate the posterior for the
K-atom AIFA using Gibbs sampling. See Nguyen et al. (2023, Section S11.5) for more
details about the experimental setup.

Figure 6 shows that the posterior approximation agrees with the ground truth on
the dispersion type (over or under) in each case. We also see from the figures that the
95% credible intervals contain the ground-truth τ value in each case.

18For the chosen number of documents N , let the number of traits with positive count be K̂. There
is no noticeable difference in the distribution of K̂ between K = 500 and K > 500. The rates of the
inactive (zero count) traits are smaller than 1/N .
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7 Discussion
We have provided a general construction of automated independent finite approxima-
tions (AIFAs) for completely random measures and their normalizations. Our construc-
tion provides novel finite approximations not previously seen in the literature. For pro-
cesses without power-law behavior, we provide approximation error bounds; our bounds
show that we can ensure accurate approximation by setting the number of atoms K to
be (1) logarithmic in the number of observations N and (2) inverse to the error toler-
ance ε. We have discussed how the independence and automatic construction of AIFA
atom sizes lead to convenient inference schemes. A natural competitor for AIFAs is a
truncated finite approximation (TFA). We show that, for the worst case choice of obser-
vational likelihood and the same K, AIFAs can incur larger error than the corresponding
TFAs. However, in our experiments, we find that the two methods have essentially the
same performance in practice. Meanwhile, AIFAs are overall easier to work with than
TFAs, whose coupled atoms complicate the development of inference schemes. Future
work might extend our error bound analysis to conjugate exponential family CRMs with
power-law behavior. An obstacle to upper bounds for the positive-discount case is the
verification of the clauses in Condition 1. In the positive-discount case, the functions
h and Mn,x, which describe the marginal representation of the nonparametric process,
take forms that are straightforwardly amenable to analysis. But the function h̃, which
describes the finite approximations, is complex. In general, h̃ is equal to the ratio of
two normalization constants of different AIFAs. The normalization constants can be
computed numerically. However, to make theoretical statements such as the clauses
in Condition 1, we need to prove their smoothness properties. Another direction is to
tighten the error upper bound by focusing on specific, commonly-used observational
likelihoods — in contrast to the worst-case analysis we provide here. Finally, more work
is required to directly compare the size of error in the finite approximation to the size
of error due to approximate inference algorithms such as Markov chain Monte Carlo or
variational inference.

Supplementary Material
Supplementary Material: Independent finite approximations for Bayesian nonparametric
inference (DOI: 10.1214/23-BA1385SUPP; .pdf). The supplementary materials contain
detailed proofs and more details on the experiments.
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