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When the target of statistical inference is chosen in a data-driven manner,
the guarantees provided by classical theories vanish. We propose a solution to
the problem of inference after selection by building on the framework of al-
gorithmic stability, in particular its branch with origins in the field of differen-
tial privacy. Stability is achieved via randomization of selection and it serves
as a quantitative measure that is sufficient to obtain nontrivial post-selection
corrections for classical confidence intervals. Importantly, the underpinnings
of algorithmic stability translate directly into computational efficiency—our
method computes simple corrections for selective inference without recourse
to Markov chain Monte Carlo sampling.

1. Introduction. Classical statistical theory provides tools for valid inference under the
assumption that the statistical question is determined before observing any data. In practice,
however, the choice of question is typically guided by exploring the same data that is used
for inference. This coupling between the statistical question and the data used for inference
induces dependencies that invalidate guarantees derived from classical theories.

While traditional wisdom might deem this coupling unacceptable, recent literature em-
braces this coupled approach to statistical investigation and grants novel ways of thinking
about validity. Indeed, data-driven model selection is widely taught and practiced, and even
stands as a research area of its own. Sometimes model selection is even unavoidable; in
the canonical setting of linear regression, the statistician often starts with a pool of candidate
variables large enough that it makes the solution unidentifiable without additional constraints,
and when those constraints are data-dependent the solution depends on the data in two ways.

This coupling of the problem formulation and inference stages of statistical analysis has
been thoroughly studied in a line of work called selective, or post-selection, inference [7,
9, 47]. To this day, however, there are few general principles that enable both statistically
powerful and computationally tractable inference after selection. Most existing solutions are
either tailored to specific selection strategies (e.g., [30, 31, 53]), and as such do not generalize
to all popular selection methods, or are valid for arbitrary selections at the cost of increased
conservativeness (e.g., [2, 9]).

In the current paper, we build on concepts from the field of differential privacy [17, 18] to
derive selective confidence intervals that are both tractable computationally and powerful sta-
tistically. Our theoretical framework delivers intervals of tunable width, a useful consequence
of the fact that our confidence intervals derive from a quantitative measure of the algorithmic
stability of the selection procedure. More precisely, we provide a valid correction to classical,
nonselective confidence intervals simultaneously for all procedures that have the same level
of algorithmic stability. Informally, a selection being stable means that it is not too sensitive
to the particular realization of the data, and the more stable the selection is, the smaller the
resulting intervals are. In particular, if the selection is “perfectly stable” in the sense that the
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inferential target is fixed up front and does not depend on the data at hand, the confidence
intervals resulting from our approach smoothly recover classical confidence intervals.

We sketch our main result. Let Ŝ denote a data-dependent outcome of selection. For ex-
ample, Ŝ could be subset of {1, . . . , d} corresponding to the variables selected for inclusion
in a linear regression model. For every possible selection S, let βS denote the resulting infer-
ential target. In the linear regression context, βS could be the population-level least-squares
solution within the model determined by S.

Imagine that there is an oracle that guesses Ŝ, only knowing the method used to arrive at
the selection together with the distribution of the data, but not its realization. Denote by Ŝ0

the oracle’s guess. We say that a selection procedure is η-stable for some η > 0 if there exists
an oracle such that, with high probability over the distribution of the data, the likelihood of
any selection under Ŝ and the likelihood of the same selection under Ŝ0 can differ by at most
a multiplicative factor of eη. Intuitively, η quantifies how much the selection can vary across
different realizations of the data; η = 0 essentially means that the selection cannot depend on
the data and hence Ŝ is fixed, while as η grows the selection is allowed to be increasingly
data-adaptive. Note that the magnitude of stability depends not only on the selection method,
but also on the distribution of the data.

Our main result provides a post-selection-valid correction to classical, nonselective con-
fidence intervals for stable selection procedures. We state an informal version of our key
inference tool.

THEOREM 1.1 (Informal). For every fixed selection S, suppose that CI(α)
S are confidence

intervals with valid coverage,

P
{
βS /∈ CI(α)

S

} ≤ α.

Let Ŝ be an η-stable selection. Then

P
{
β

Ŝ
/∈ CI(αe−η)

Ŝ

} ≤ α.

Theorem 1.1 is valid simultaneously across all possible selection methods which are η-
stable. In other words, under the computational notion of stability we consider, the stability
parameter of a selection method alone is sufficient to correct for selective inferences.

Our stability designs are based on explicit randomization schemes which calibrate the level
of randomization to a prespecified algorithmic stability requirement. Together with Theo-
rem 1.1, this allows the statistician to choose the confidence interval width, obtaining a per-
turbation of a selection algorithm (e.g., the LASSO), to obtain a target interval width and a
guarantee of valid coverage. Since the derived perturbation is an explicit function of the target
interval width, this provides a way to understand the loss in utility due to randomization; for
example, expressing how “far” the perturbed LASSO solution is from the standard, nonran-
domized LASSO solution, in some appropriate sense. With this methodology in hand, one
can explicitly analyze the inherent tradeoff between the post-selection correction and loss in
utility due to randomization for any stable procedure.

We note that the use of randomization in selective inference is by no means a new idea
(see, e.g., [10, 26, 36, 37, 49–51]). The main difference between our work and previous work
is the use of stability as an analysis tool, which, on the one hand, leads to a computationally
efficient, nonparametric, sampling-free approach to constructing selective confidence inter-
vals with strict coverage, and on the other hand, explicitly connects the level of randomization
to the resulting interval width. We elaborate on the comparisons to related work in Section 3.
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1.1. Organization. In the following section, we present two motivating vignettes to-
gether with our solutions based on stability. In Section 3, we discuss related work. In Sec-
tion 4, we introduce the notion of algorithmic stability at the focus of our study and in Sec-
tion 5 we give theory for statistical inference under this definition. Then, in Section 6 we
instantiate our theory in the context of model selection in linear regression. In Section 7,
we draw connections to conditional post-selection inference. In Section 8, we discuss the
design of stable algorithms and give stable versions of the LASSO and marginal screening.
In Section 9, we study the performance of our procedures empirically. We end with a brief
discussion in Section 10.

2. Motivating vignettes. To illustrate our framework, we present two motivating exam-
ples together with solutions implied by our theory, deferring the proofs of validity of the
solutions to later sections. In addition, we compare our correction to some relevant baselines.

2.1. Vignette 1: Winner’s curse. The first vignette considers the problem of selecting the
largest observed effect. Suppose that we observe an n-dimensional vector y ∼ N (μ,σ 2I );
for example, each entry in this vector could be an observed treatment effect for a separate
treatment. We are interested in doing inference on the most significant effect. More formally,
denoting i∗ = arg maxi yi , we want to construct a confidence interval for μi∗ . Note that this
is a random inferential target because i∗ is a function of the data.

One simple way of providing valid inference for μi∗ is to apply the Bonferroni correction:

P
{
μi∗ ∈ (yi∗ ± z1−α/(2n)σ )

} ≥ 1 − α,

where zq is the q quantile of the standard normal distribution.
Benjamini et al. [8] show that a tighter correction is valid, namely

P
{
μi∗ ∈ (yi∗ ± z1−α/(n+1)σ )

} ≥ 1 − α.

We show that, if we randomize the selection step, rather than select i∗ exactly, the intervals
can be made even tighter. Furthermore, the reduction in interval width is directly related to
the amount of randomization.

CLAIM 1. Suppose that we select î∗ = arg maxi (yi + ξi), where ξi
i.i.d.∼ Lap(

2z1−αδ/(2n)

η
),

for user-chosen parameters η > 0, δ ∈ (0,1). Then

P
{
μ

î∗ ∈ (y
î∗ ± z1−α(1−δ)e−η/2σ)

} ≥ 1 − α.

The proof of validity of this construction relies on our notion of stability, introduced in
later sections; we defer the analysis of Claim 1 to Appendix A of the Supplementary Mate-
rial [54]. Note that, as η and δ decrease toward zero, the noise level increases and the intervals
approach classical, nonselective intervals. In general, η is the key parameter that trades off
the information used for selection versus inference: small η corresponds to using more in-
formation for inference, while large η corresponds to prioritizing selection quality. Figure 1
illustrates how the interval width changes with η, in comparison to baselines, for σ = 1,
δ = 0.5, and varying n.

Note that if there is significant separation between μi∗ and the other effects, î∗ will likely
be equal to i∗ even for small η. If, on the other hand, there are multiple effects of similar mag-
nitude, the randomization will smooth out the selection and place nonnegligible probability
on all the competitive effects. In particular, to ensure î∗ = i∗ with high probability, it suffices
to have η inversely proportional to the gap between the largest and second largest observed
effect, � = yi∗ − maxj �=i∗ yj .
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FIG. 1. Confidence interval width around the “winning” effect, computed via the Bonferroni correction, Ben-
jamini et al. [8] correction, and our stability-based approach. From left to right, we increase the value of
n ∈ {50,100,500} and keep σ = 1 fixed.

CLAIM 2. If η ≥ 4 log(n/(2δ′))z1−αδ/(2n)

�
for some δ′ ∈ (0,1), then î∗ = i∗ with probability

at least 1 − δ′ over the randomness in the selection.

As a result, for large enough �, the approach of Claim 1 allows selecting i∗ with high
probability while providing a tighter correction than the baselines.

Finally, we note that, just like the Bonferroni correction, the stability-based solution can be
applied nonparametrically. For example, the solution is applicable when the errors are only
known to be sub-Gaussian, not necessarily Gaussian.

2.2. Vignette 2: Feature selection. In the second example, we look at inference after
data-driven feature selection. Suppose we have a fixed design matrix, X ∈ R

n×d , with n ob-
servations and d features and a corresponding outcome vector y ∼ N (μ,σ 2I ) ∈ R

n. Denote
by Xi the columns of X, for i ∈ [d]. We would like to select a model corresponding to a sub-
set of the d features, and perform valid inference on the least-squares target after regressing
y on the selected features only. This problem is discussed in depth by Berk et al. [9].

We set this problem up more generally in later sections; to keep this illustration light,
assume that the features are normalized so that ‖Xi‖2 = 1 and we are selecting a single
feature. Then, this problem amounts to doing inference on X


i∗μ, where i∗ is the selected
feature. Again, we note that this is a random inferential target since i∗ is data-dependent.

Suppose that the goal of selection is to simply maximize the absolute correlation of the
selected feature with y: i∗ = arg maxi |X


i y|. Then, our results imply the following.

CLAIM 3. Suppose that we select î∗ = arg maxi |X

i y+ξi |, where ξi

i.i.d.∼ Lap(
2z1−αδ/(2d)

η
),

for user-chosen parameters η > 0, δ ∈ (0,1). Then

P
{
X


î∗
μ ∈ (

X

î∗

y ± z1−α(1−δ)e−η/2σ
)} ≥ 1 − α.

Again, as η and δ tend toward zero, the intervals approach nonselective intervals, and
the relationship between η and the gap between the largest and second largest correlation,
� = |X


i∗y| − maxj �=i∗ |X

j y|, drives the accuracy of selection.

CLAIM 4. If η ≥ 4 log(d/(2δ′))z1−αδ/(2d)

�
for some δ′ ∈ (0,1), then î∗ = i∗ with probability

at least 1 − δ′ over the randomness in the selection.

An alternative, equally simple solution to inference after feature selection is data splitting:
we use a fraction f ∈ (0,1) of the data for selection and the remaining 1 − f fraction for
inference. In Section 5.1, we present a more detailed comparison with data splitting. For
now we remark that, given that both data splitting and stability lead to intervals that look like
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FIG. 2. Average error, defined as maxi |X

i y|−|X


î∗
y|, when interval widths of the two approaches are matched

(top row), and average interval width when errors of the two approaches are matched (bottom row). We use one of
the experimental setups in Section 9. The rows of X are drawn i.i.d. from an equicorrelated multivariate Gaussian
distribution with pairwise correlation 0.5. The outcome is generated as y = Xβ +ε, where ε is isotropic Gaussian
noise and half of the entries in β are zero and half are sampled independently from Exp(0.2). From left to right,
we increase the value of d ∈ {50,100,200} and keep n = 50 fixed.

classical intervals with an additional correction factor, every parameter η has a corresponding
parameter f ≡ f (η) that yields data-splitting intervals of roughly the same width as stability-
based intervals (given a fixed δ such as 0.5). However, we observe that stability can be a
significantly more powerful solution. The top row of Figure 2 compares the error of data
splitting with the error of the stability solution described in Claim 3 in a simple simulation
setting, when the interval widths implied by the two approaches are matched. In the bottom
row of Figure 2 we provide a reverse comparison: we compare the average interval width of
data splitting and the stability solution when the errors of the two approaches are matched.
Unlike interval widths, we match the errors empirically: for each stability parameter η, we
consider all splitting fractions f (equivalently, subsample sizes) and take the one that implies
closest average error when averaged over 10,000 trials. Dotted lines indicate that the intervals
are infinite (because the errors are matched when all data is used for selection, leaving no
information for inference) or essentially infinite (larger than 200).

Finally, we emphasize that stability can be applied to the problem of feature selection even
when data splitting is not an option, such as when there are spatial or temporal dependencies
in the data.

3. Related work. In this section, we elaborate on the comparisons between our work
and existing work in post-selection inference, and additionally discuss relevant work in the
algorithmic stability literature.

3.1. Simultaneous coverage. In the formulation of post-selection inference by Berk et
al. [9], the goal is to construct simultaneous confidence intervals (as per Eq. (2)) that are
valid for any model selection method M̂ : y → M, for a prespecified model class M. The
framework of Berk et al. was subsequently generalized by Bachoc et al. [2] to handle distri-
butions beyond the homoscedastic Gaussian, as initially assumed. These proposals are com-
putationally infeasible in high dimensions as they essentially require looking for the “worst
possible” model M ∈ M, one that implies the largest so-called PoSI (Post-Selection Infer-
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ence) constant, an analog of which we introduce and characterize in the context of stability.
More recent work has proposed computationally efficient confidence regions via UPoSI [29].

Another approach to valid post-selection inferences that applies to general selection rules
is data splitting [39]: split the data into two disjoint subsets, then use one subset to select
the inferential target and the other subset to perform inference. Data splitting is appealing
because, if the two subsets of the data are independent, classical inferences will be valid re-
gardless of the selection procedure. However, data splitting is not universally applicable as
one cannot always obtain two independent data sets, and even if applicable, it can suffer a
significant loss in power, such as when only a few samples capture some relevant informa-
tion. Our stability-based approach does not rely on any independence assumption between
different observations, and, as illustrated in Figure 2, it can be a more powerful solution than
data splitting when the latter is applicable. We give a further discussion of data splitting and
its relationship to stability in Section 5.1.

All the aforementioned strategies strive for robustness: they protect against all selection
procedures. For specific selection procedures, however, the intervals computed by simulta-
neous methods and related approaches are unnecessarily wide, as they do not exploit any
knowledge of how the analyst arrives at the selected target. Recent work aims to address this
issue in the framework of simultaneous coverage over the selected variables (SoS) by con-
structing SoS-controlling confidence intervals for k seemingly largest effects [8]. Our work
likewise implies SoS intervals, by putting forward a general stability perspective and analyz-
ing the relationship between stability and interval width for arbitrary stable procedures.

3.2. Conditional coverage. Conditional methods [21] exploit properties of the selection
procedure. However, they control a different error criterion than simultaneous methods. In
particular, the goal of conditional post-selection inference is to design CIS such that, for all
fixed selections S, P{βS ∈ CIS |Ŝ = S} ≥ 1 − α. For a fixed selection procedure, conditional
post-selection inference aims to characterize the distribution of the data given Ŝ = S, and
then using the knowledge of this conditional distribution it computes CIS . This approach is
tailored to the selection method at hand, and existing work has derived intervals for model
selection via methods such as the LASSO [30], marginal screening, orthogonal matching
pursuit [31], forward stepwise, and LARS [53].

It is often remarked that the conditional approach leads to overconditioning, thus leading
to wide intervals [27]. Informally, overconditioning refers to the phenomenon of overstating
the cost of selection, thus leaving little information for inference. Surprisingly, it has even
been observed that simultaneous approaches can in some cases yield smaller intervals, due to
the intervals being unconditional rather than conditional [2]. One attempt at narrowing down
the intervals involves choosing a better event on which to condition [33]. Another solution to
overconditioning which is relevant to the present context is the idea of randomizing the selec-
tion procedure [10, 26, 36, 37, 49–51]. Notably, the pioneering work in this direction due to
Tian and Taylor [51] proves a central limit theorem that asymptotically relates the validity of
statistical inferences without selection to their selective counterparts, a result similar in flavor
to our Theorem 5.2. However, existing randomization proposals suffer several drawbacks.
One is that they give little insight into the tradeoff between confidence interval width and the
loss in utility from the additional noise. Another issue is that inference is based on a selective
pivot which, unlike in exact conditional approaches, lacks closed-form expressions. As a re-
sult, to approximate the pivot, existing work resorts to computationally expensive sampling
[49, 51], which is generally infeasible in high dimensions. There are other, computationally-
efficient approaches which aim to approximate the pivot [36, 37], although these are only
approximate and the general theory applies to restricted classes of selection problems.

Although our primary goal is to provide unconditional guarantees, in Section 7 we will
also discuss implications of stability for conditional inference.
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We also point out the work of Andrews et al. [1], who propose a hybrid approach that
interpolates between unconditional and conditional post-selection inference to obtain smaller
confidence intervals relative to a purely conditional approach.

3.3. Algorithmic stability. The technical tools of this paper are rooted in the theory of
differential privacy [17, 18] and its extensions [4, 15]. Initially, differential privacy was de-
veloped as a standard for private data analysis. A more recent line of work, typically referred
to as adaptive data analysis (see, e.g., [5, 15, 16]), has recognized that a stability concept
can be extracted from differential privacy and exploited to obtain perturbation-based general-
ization guarantees in learning theory. Superficially, adaptive data analysis has the same goal
as post-selection inference—developing statistical tools for valid inference when hypotheses
about the data are also data-driven—but the typical formalization of this problem is not di-
rectly comparable to that of the canonical post-selection inference setup in regression. The
conceptual connection between the two areas has, however, been recognized (dating back to
at least the seminal work of Tian and Taylor [51]), and several existing works discuss selec-
tive hypothesis tests and stability-based corrections to arbitrary selective p-values [40, 42].
Our work does not aim to contribute to adaptive data analysis per se; rather, we build on and
adapt existing tools in this literature for the purpose of providing post-selection corrections
for common selection problems, such as within the framework put forward by Berk et al. [9].
Finally, we note that connections between stability and generalization are not new [11], and
stability ideas have been utilized to construct predictive confidence intervals [3, 44].

4. Algorithmic stability and selection. The formal theory of algorithmic stability char-
acterizes how the output of an algorithm changes when the input is perturbed. Randomized
algorithms have as output a random variable; therefore, to study the stability of a random-
ized algorithm, an appropriate notion of closeness of two random variables is required. The
particular notion of closeness considered in differential privacy and related work is known as
indistinguishability, or max-divergence.

DEFINITION 4.1 (Indistinguishability). A random variable Q is (η, τ )-indistinguishable
from W , denoted Q ≈η,τ W , if for all measurable sets O, P{Q ∈ O} ≤ eη

P{W ∈ O} + τ .

Note that indistinguishability is essentially a property of two distributions; for this reason,
we will sometimes say that a distribution PQ is (η, τ )-indistinguishable from a distribution
PW , meaning that Q ≈η,τ W holds for any Q ∼ PQ and W ∼ PW .

Roughly speaking, τ bounds the probability of the event where Q and W are “very differ-
ent.” For fixed τ ∈ [0,1], the parameter η is meant to capture how similar the distributions of
Q and W are—the larger η is the larger the divergence between Q and W can be. One should
think of τ as being at most a small factor proportional to the miscoverage probability α.

We now formally introduce the main notion of algorithmic stability considered in this
paper. The algorithm whose stability we analyze will usually be a selection algorithm. Intu-
itively, a randomized algorithm A is stable if there exists an “oracle” random variable A0 such
that, for all “typical” inputs ω, A(ω) is distributionally indistinguishable from A0. In other
words, as long as the input is typical, we can approximate the distribution of the randomized
algorithm’s output with a fixed law, without having to see the input in the first place.

DEFINITION 4.2 (Stability). Let A :Rn → S be a randomized algorithm. We say that A
is (η, τ, ν)-stable with respect to a distribution P supported on R

n if there exists a random
variable A0, possibly dependent on P , such that P{ω ∈ R

n : A(ω) ≈η,τ A0} ≥ 1 − ν.
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This notion is a special case of typical stability introduced by Bassily and Freund [4]. It is
closely related to the notions of perfect generalization [13] and max-information [15]. Unless
stated otherwise, whenever we use the term stability we will assume stability in the sense of
Definition 4.2. The parameter ν can in principle take on any value in [0,1] but in practice we
will set it to be proportional to α.

We will only invoke stability with respect to the data distribution, which we will denote by
Py . Thus, for simplicity, when we say that A is (η, τ, ν)-stable we are implicitly assuming
that it is stable with respect to Py .

Definition 4.2 requires that, as the input data ω varies, the distribution of A(ω) remains
indistinguishable from a fixed distribution that does not depend on ω, namely the distribution
of A0. The parameter ν allows the laws of A(ω) and A0 to deviate for a small set of atypical
data vectors ω. The parameters η and τ bound the maximum deviation of A(ω) from A0 over
the typical set of vectors ω.

Given a stable algorithm, we will refer to A0 (which must exist by definition) as its cor-
responding oracle. The term “oracle” is motivated by the fact that A0 will typically depend
on Py , which is unknown. To build further intuition, suppose that we observe data y ∼ Py

and let μ = Ey. Most of our stability constructions will rely on arguing that Definition 4.2
holds if we take A0 = A(μ); the reader should think of this as the most prototypical oracle
construction. In other words, A(y) conditional on y is indistinguishable from A(μ) in the
sense of Definition 4.1 (as long as y is not an atypical data set). At a high level, this hap-
pens because y concentrates around μ; we work out a concrete example building on this idea
below.

EXAMPLE. To provide intuition for Definition 4.2, we present one simple mechanism
for achieving stability. Although basic, this mechanism will be a fundamental building block
in our stability proofs. Suppose that we wish to compute w
y, for some fixed vector w, and
suppose that we take Py to be N (μ,σ 2I ) with known σ > 0. Let A(y) = w
y + ξ , where

ξ ∼ Lap(
z1−ν/2σ‖w‖2

η
), for user-specified parameters η > 0, ν ∈ (0,1). Here, Lap(b) denotes a

draw from the zero-mean Laplace distribution with parameter b, independent of y. We argue
that this mechanism is (η,0, ν)-stable. First, we know

P
{∣∣w
y − w
μ

∣∣ ≥ z1−ν/2σ‖w‖2
} = P

{∣∣N (
0, σ 2‖w‖2

2
)∣∣ ≥ z1−ν/2σ‖w‖2

} = ν.

Denote E = {ω ∈ R
n : |w
ω − w
μ| ≤ z1−ν/2σ‖w‖2}, and notice that we have shown

that P{y ∈ E} = 1 − ν.
Now let A0 = A(μ). Since the ratio of densities of ξ ∼ Lap(b) and its shifted counterpart

x + ξ is upper bounded by e|x|/b, we can conclude that for all ω ∈ E and measurable sets O,

P{A(ω) ∈ O}
P{A(μ) ∈ O} ≤ eη;

that is, we have A(ω) ≈η,0 A0 for all ω ∈ E. Putting everything together, we see that A(·) is
(η,0, ν)-stable with respect to Py .

Throughout we will use Ŝ(·) to denote a possibly randomized selection algorithm, which
takes as input the data y and outputs a selection that determines the inferential target. For
example, Ŝ could be a model selection algorithm such as in the second vignette, or it could
be an algorithm that selects an effect that is the focus of subsequent inference, such as in the
first vignette. With a slight abuse of notation, we will use Ŝ to denote both the mapping from
the data to the selection as well as the selection itself, Ŝ(y) ≡ Ŝ.
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5. Confidence intervals after stable selection. Given the assumption of (η, τ, ν)-
stability, we now show how a simple modification to classical confidence intervals suffices to
correct for selective inferences. This correction is valid regardless of any additional property
of the selection criterion.

The main intuition behind this assertion is the following. If the selection algorithm is sta-
ble, then by Definition 4.2 one can construct an oracle selection Ŝ0 without looking at y, such
that Ŝ(y) and Ŝ0 are distributionally indistinguishable. Since Ŝ(y) is indistinguishable from
Ŝ0, we can pretend that Ŝ0 is the selection of interest. Furthermore, since Ŝ0 was constructed
independently of y, we are free to use y for inference. Stability ensures that, despite data
reuse, inference behaves almost like with data splitting, in which we perform selection on
one batch of data and then use independent data for constructing intervals.

We state a technical lemma, related to Lemma 3.3 by Bassily and Freund [4], that we
use to prove our main theorem. We include a proof of Lemma 5.1 in Appendix A of the
Supplementary Material [54].

LEMMA 5.1. Let Ŝ :Rn → S be an (η, τ, ν)-stable selection algorithm and let Ŝ0 be the
corresponding oracle selection. Then, it holds that (y, Ŝ(y)) ≈η,τ+ν (y, Ŝ0).

Equipped with Lemma 5.1, we can now describe how to construct post-selection-valid
confidence intervals after stable selection.

Suppose that, under selection S, our target of inference is βS . Moreover, suppose that CI(α)
S

are valid intervals at level 1 − α for any fixed S, meaning P{βS /∈ CI(α)
S } ≤ α. Such intervals

are provided by classical theory.
Theorem 5.2 formally states how to construct confidence intervals for an adaptive target

β
Ŝ

, when Ŝ is selected in a stable way. This is the key result of our paper.

THEOREM 5.2. Fix δ ∈ (0,1), and let Ŝ be an (η, τ, ν)-stable selection algorithm. Then,

P
{
β

Ŝ
/∈ CI(δe

−η)

Ŝ

} ≤ δ + τ + ν.

In words, if Ŝ is (η, τ, ν)-stable, we can pretend that there is no selection bias and simply
construct classical intervals, albeit at a more conservative level, to achieve validity. If we set
the target error level to be δe−η, then the realized error level will be at most δ + τ + ν.

5.1. Comparison with data splitting. In many scenarios it is possible to split the data into
two independent chunks, one to be used for selection and the other to be reserved for infer-
ence. Classical inferences are then valid because the inferential target is determined before
seeing any of the data used in the inference step. This simple baseline for valid inference after
selection is called data splitting. In this section, we illuminate the relationship between our
approach via stability and data splitting.

First we want to emphasize that the stability principle is applicable even with dependent
samples: Theorem 5.2 can be applied even when it is not clear how to create two independent
subsets of the data. Moreover, in some selection problems data splitting makes little concep-
tual sense, such as in our first motivating vignette about inference on the winning effect.

The appeal of data splitting lies in its broad applicability. As long as the data can be
split into two independent components, the criteria for choosing the inferential target can
be arbitrary. Therefore, data splitting provides a selection-agnostic correction, universally
valid across all possible selection strategies.

Conceptually, stability lies somewhere between data splitting and conditional post-
selection inference. It computes a correction level as a function of how adaptive the selection
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is to the data, thereby adapting to some properties of the selection rule like conditional in-
ference methods. However, at the same time it provides a correction that is universally valid
across all possible selection strategies with the same level of stability, which can be seen as a
refinement of the principle of data splitting.

To illustrate the conceptual difference between the stability principle and the data splitting
principle, suppose that in the latter case we allocate f -fraction of the data to selection, and
(1 − f )-fraction to inference. Then, the resulting intervals will roughly look like classical

intervals augmented by a factor of
√

1
1−f

regardless of how the selection is performed.
In contrast, the stability approach augments classical intervals as a function of the adap-

tivity of the selection algorithm. Suppose for concreteness that y ∼ N (μ, I ) and we are con-
sidering doing inference on one of two targets, v


0 μ or v

1 μ, where the selection Ŝ ∈ {0,1}

depends on the data y. Consider three different selection methods:

• Ŝ = 1 no matter what the data vector is.
• Ŝ = 1 if ȳ := 1

n

∑n
i=1 yi ≥ 0, and Ŝ = 0 otherwise.

• Ŝ = 1 if X

1 y ≥ 0 for some unit vector X1, and Ŝ = 0 otherwise.

We can write all three procedures as Ŝ = 1{w
y ≥ 0}; in the first case w = 0, in the second
case w = 1

n
1, and in the third case w = X1.

Let us fix the noise level γ > 0 and select Ŝ = 1{w
y + ξ ≥ 0}, where ξ ∼ Lap(γ ).
The first method is trivially (0,0,0)-stable for any level γ , hence we can simply use
y for inference without any correction. Based on the same analysis as in the exam-
ple in Section 4, the second selection method is (

√
2 log(2/ν)/(γ

√
n),0, ν)-stable for all

ν > 0; that is, (
√

2 log(4/α)/(γ
√

n),0, α/2)-stable. Similarly, the third selection method is
(
√

2 log(4/α)/γ,0, α/2)-stable.
We can thus observe that, even though in all three examples we perturb the selection by

the same constant level of noise, the stability approach exploits the fact that some selection
criteria are more stable than others and this is reflected in the resulting stability parameter. By
Theorem 5.2, this stability parameter, in turn, directly determines the correction factor, that
is, how conservative we need to make classical inferences for them to be valid post selection.

While data splitting and stability come with conceptual differences, they also have tech-
nical similarities. In particular, each one has a leading parameter—f ∈ (0,1) in the case of
data splitting and η > 0 in the case of stability—and this parameter interpolates between two
extremes. One extreme is when all information is reserved for inference (attained when f = 0
and η = 0, respectively) and the other is when all information is used for selection (attained
when f = 1 and η → ∞, respectively). Therefore, it might make sense to ask how the two
interpolations relate.

For every η, there is an f (η) such that, if we used f (η)-fraction of the data for selection
and 1 − f (η) for inference, we would approximately get the same interval correction. We
sketch the derivation of f (η) in the case of normal intervals for simplicity, however this
calculation can be generalized to other distributions. We will assume that ν+τ ≤ δα for some
δ ∈ (0,1); then, the intervals resulting from (η, τ, ν)-stability are of width proportional to
z1−(1−δ) α

2 e−η . The intervals resulting from data splitting are of width proportional to z1− α
2
(1−

f (η))−1/2. By equating the two expressions to achieve the same width and simplifying, we
obtain

(1) f (η) = 1 −
( z1− α

2

z1−(1−δ) α
2 e−η

)2
≈ log 1

1−δ
+ η

log 2
(1−δ)α

+ η
,

where the approximation on the right-hand side follows by a sub-Gaussian approximation.
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Of course, this sketch only gives intuition for when data splitting and stability imply
equally powerful inference; it does not say anything about which selection is more accurate—
one where we select on f (η)-fraction of the data, or one where we select on the whole data
set in an η-stable way. We will tackle this question empirically, as the notion of “more accu-
rate” varies greatly depending on the context. In Figure 2, we used the splitting fraction in
Eq. (1) and observed that stability outperforms data splitting. We provide further empirical
comparisons in Section 9.

Finally, we mention another proposal that is conceptually closely related to data split-
ting, namely the (U,V ) decomposition of Rasines and Young [38]. Like stability, the (U,V )

decomposition allows the statistician to see all data points—more precisely, noisy versions
thereof—both in the selection step and in the inference step. This is an important advantage
over data splitting when there are only a few samples that capture information about certain
directions. In contrast with stability, performing the (U,V ) decomposition does not rely on
any properties of the selection method. However, finite-sample guarantees of this approach
crucially rely on the data being Gaussian with known covariance, while the stability principle
is applicable beyond Gaussianity and is robust to only having an estimate of the covariance.

6. Model selection in linear regression. In this section, we discuss an application of
our stability tools to the problem of model selection in linear regression. We focus on the
framework presented in the seminal work of Berk et al. [9]. We begin by reviewing the model
and introduce the necessary notation.

Let X ∈ R
n×d denote a fixed design matrix, and let Xi ∈ R

n denote the ith column of X,
for i ∈ [d]. We refer to vectors Xi as variables or features. For a subset M ⊆ [d], we denote
by XM ∈ R

n×|M| the submatrix of X given by selecting the columns indexed by M . We make
no assumptions about how n and d relate; in particular, we could have d � n.

By y ∈R
n we denote the random vector of outcomes corresponding to X. Importantly, we

do not assume knowledge of a true data-generating process; for example, we do not assume
that μ := E[y] can be expressed as a linear combination of {Xi}di=1. The vector μ ∈ R

n is
unconstrained and need not reside in the column space of X. Rather, different subsets of
{Xi}di=1 provide different approximations to μ, some better than others.

The statistician wishes to let the data decide how the initial pool of features should be
reduced to a smaller set of seemingly relevant features, and then run linear regression on
this smaller set. That is, the statistician chooses a set M̂ ⊆ [d] by running a model selection
method on X, y, and then aims to approximate y ≈ X

M̂
β̂

M̂
, for some β̂

M̂
. As before, we will

employ a conventional abuse of notation by letting M̂ ≡ M̂(y).
Assuming X

M̂
has full column rank almost surely, the unique least-squares estimate in

model M̂ is given by

β̂
M̂

:= arg min
β∈R|M̂|

‖y − X
M̂

β‖2
2 = (

X

M̂

X
M̂

)−1
X


M̂
y := X+

M̂
y,

where we define X+
M̂

:= (X

M̂

X
M̂

)−1X

M̂

to be the pseudoinverse of X
M̂

. For a fixed model

M , the target estimand of β̂M is

βM := arg min
β∈R|M|

E
[‖y − XMβ‖2

2
] = X+

Mμ,

and hence for a random model M̂ , this implies a random target β
M̂

= X+
M̂

μ.
We denote by βj ·M the entry of βM corresponding to feature Xj , for all j ∈ M . Note that

βj ·M is not defined for j /∈ M . We adopt similar notation for the entries of β̂M .
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Our goal is to construct simultaneous confidence intervals for the target of inference β
M̂

.

More precisely, we wish to design CI(α)

j ·M̂ such that

(2) P
{
β

j ·M̂ ∈ CI(α)

j ·M̂ , ∀j ∈ M̂
} ≥ 1 − α,

for a fixed α ∈ (0,1) and a fixed selection procedure M̂ . Note that the work of Berk et al.
and various extensions [2, 9, 29] provide simultaneity both over the selected variables and
over all selection methods, while we keep the selection method fixed. Our guarantees are
simultaneous over the selected (cf. [8]).

The intervals resulting from our approach are of the form CI
j ·M̂(K) := (β̂

j ·M̂ ± Kσ̂
j ·M̂),

where σ̂ 2
j ·M̂ is an estimator of variance for the OLS estimate β̂

j ·M̂ ; for example, the “sand-

wich” variance estimator [12]. Our goal is to find a suitable value of K such that CI
j ·M̂(K)

are valid (1−α)-confidence intervals, as per Eq. (2). By analogy with Berk et al. [9], we refer
to the minimal such valid K as the PoSI constant. It is important to remember that, unlike in
Berk et al., our PoSI constant depends on the selection procedure, rather than a family of all
possible models.

The PoSI constant is well characterized when the model is fixed rather than determined in
a data-driven fashion. For a fixed model M and given α ∈ (0,1), we define KM,α to be the
minimum value of K such that

P

{
max
j∈M

∣∣∣∣ β̂j ·M − βj ·M
σ̂j ·M

∣∣∣∣ ≥ K

}
≤ α.

In other words, KM,α defines the PoSI constant when the model M is specified up front and
does not depend on the data; in this case, CIj ·M(KM,α) are valid simultaneous intervals at
level 1 − α. For example, when y ∼ N (μ,σ 2I ), one simple way of providing a valid upper
bound on KM,α is via standard z-scores or t-scores, after doing a Bonferroni correction over
j ∈ M . Sharper estimates of KM,α can be obtained by exploiting the correlations between the
regression coefficients to estimate the maximum z-score or t-score. Even in a distribution-free
setting, it is common to determine KM,α via normal approximation [35, 39].

We are now ready to state a corollary of Theorem 5.2 that focuses on the problem of model
selection in linear regression.

COROLLARY 6.1. Fix δ ∈ (0,1). Let M̂ be an (η, τ, ν)-stable model selection algorithm.
For all j ∈ M̂ , let CI

j ·M̂(K
M̂,δe−η ) = (β̂

j ·M̂ ± K
M̂,δe−η σ̂j ·M̂). Then

P
{∃j ∈ M̂ : β

j ·M̂ /∈ CI
j ·M̂(K

M̂,δe−η )
} ≤ δ + τ + ν.

To provide further intuition, we instantiate Corollary 6.1 in the canonical setting of Gaus-

sian observations. Let y ∼N (μ,σ 2I ). If σ > 0 is known, we let σ̂j ·M = σ
√

((X

MXM)−1)jj ;

otherwise, we assume we have access to an estimate of σ , denoted σ̂ , and let σ̂j ·M =
σ̂

√
((X


MXM)−1)jj . Following the treatment of Berk et al. [9], we assume that σ̂ 2 ∼ σ 2 χ2
r
r

for

r degrees of freedom and assume that σ̂ 2 ⊥ β̂j ·M for all possible OLS estimates β̂j ·M . If the
full model is assumed to be correct, that is y ∼N (Xβ,σ 2I ), and n > d , then this assumption
is satisfied for r = n − d by setting σ̂ 2 = ‖y − Xβ̂‖2

2/(n − d), where β̂ is the OLS estimate
in the full model. Even if the full model is not correct, there exist other ways of producing a
valid estimate of σ ; we refer the reader to Berk et al. [9] for further discussion.

We denote by z1−α the 1 − α quantile of the standard normal distribution, and by tr,1−α

the 1 − α quantile of the t-distribution with r degrees of freedom.



1678 T. ZRNIC AND M. I. JORDAN

COROLLARY 6.2. Fix δ ∈ (0,1), and suppose y ∼ N (μ,σ 2I ). Further, let M̂ be an
(η, τ, ν)-stable model selection algorithm. If σ is known, let

CI
j ·M̂ = (

β̂
j ·M̂ ± z1−δ/(2|M̂|eη)

σ

√((
X


M̂
X

M̂

)−1)
jj

)
.

If, on the other hand, σ is not known but there exists an estimate, σ̂ 2 ∼ σ 2 χ2
r
r

, independent of
the OLS estimates, let

CI
j ·M̂ = (

β̂
j ·M̂ ± t

r,1−δ/(2|M̂|eη)
σ̂

√((
X


M̂
X

M̂

)−1)
jj

)
.

In either case, we have P{∃j ∈ M̂ : β
j ·M̂ /∈ CI

j ·M̂} ≤ δ + τ + ν.

The proof follows by a direct application of Corollary 6.1, together with a Bonferroni
correction over j ∈ M̂ when computing K

M̂,δe−η . Approximating Gaussian quantiles by sub-
Gaussian concentration, we observe that the PoSI constant in Corollary 6.2 scales roughly as√

2(log(2|M̂|/δ) + η) (when σ is known, or as r → ∞ when σ is estimated from data).

6.1. Recovering the Scheffé rate. Our main technical step in deriving selective confi-
dence intervals is Lemma 5.1, which argues that the joint distribution of (y, Ŝ) cannot be too
different from the joint distribution of (y, Ŝ0), where Ŝ0 is the oracle from the definition of
stability. In the context of model selection in linear regression, we verify that the confidence
intervals resulting from this approach are not vacuously wide in the two most extreme set-
tings: the first, in which the model selection is independent of the data, and the second, in
which the model selection is arbitrarily complex and dependent on the data.

Suppose that M̂ is independent of y. Then, the distribution of M̂(y), conditional on y, is
equal to the distribution of M̂(ω) for any point ω, hence M̂(ω) is an oracle which trivially
implies (0,0,0)-stability. In this case, the intervals in Corollary 6.1 reduce to CI

j ·M̂(K
M̂,δ

)

and are valid at level 1 − δ, as expected.
Now suppose that M̂ is allowed to have arbitrary dependence on y; in particular, it can

attain the “significant triviality bound” of Berk et al. [9]. While arguing stability in the sense
of Definition 4.2 would require additional assumptions, the only property of stability used
to prove Theorem 5.2—the indistinguishability in Lemma 5.1—can be obtained. This allows
for the proof of Theorem 5.2 to go through, thus recovering the tight rate of existing analyses.

PROPOSITION 6.3. Let M̂ be an arbitrary, possibly randomized model selection proce-
dure, such that |M̂| ≤ s almost surely. Then, for any Py , there exists an oracle selection M̂0
such that for any τ ∈ (0,1),(

y, M̂(y)
) ≈η,τ (y, M̂0), for some η = O

(
s log(d/s)

) + log(1/τ).

Consequently, there exists a value η = O(s log(d/s)) + log(1/τ) such that the confidence
intervals CI

j ·M̂(K
M̂,δe−η ) = (β̂

j ·M̂ ± K
M̂,δe−η σ̂j ·M̂) satisfy

P
{∃j ∈ M̂ : β

j ·M̂ /∈ CI
j ·M̂(K

M̂,δe−η )
} ≤ δ + τ.

By approximating Gaussian quantiles via sub-Gaussian concentration, we obtain confi-
dence intervals which are universally valid for all s-sparse selections under Gaussian out-
comes and scale as O(

√
η) = O(

√
s log(d/s))). This rate is in general tight [28], and as s

approaches d , it matches the rate given by the Scheffé protection [9, 43].
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7. Conditional coverage. So far all results we have presented have been about marginal
coverage. Sometimes it is desirable to provide conditional coverage, whereby we condition
on the event that a given selection was made. We discuss how stability can provide guarantees
that closely resemble those of conditional post-selection inference.

If a selection Ŝ is (η, τ, ν)-stable, we know that there must exist an oracle selection Ŝ0
such that Py{ω : Ŝ(ω) ≈η,τ Ŝ0} ≥ 1 − ν. In what follows, let E denote the set over which Ŝ

is indistinguishable from the corresponding oracle Ŝ0: E = {ω : Ŝ(ω) ≈η,τ Ŝ0}. Note that we
know P{y ∈ E} ≥ 1 − ν by definition.

Importantly, the set E is known to the analyst. The reason is that E is specified as part of
a stable algorithm design: to be able to claim that an algorithm is stable—meaning, indistin-
guishable from an oracle Ŝ0—one must provide a set E where Ŝ(ω) is indistinguishable from
Ŝ0 for all ω ∈ E. To give an example, in the first motivating vignette in Section 2, E is taken
to be all vectors ω such that ‖ω−μ‖∞ is small (for an appropriately chosen radius depending
on ν). For a desired stability level η, the magnitude of randomization is then calibrated to the
size of this radius; that is, the size of E.

We state an implication of Lemma 5.1, the key step toward a conditional guarantee.

LEMMA 7.1. Suppose that Ŝ is (η,0, ν)-stable with respect to oracle Ŝ0 = Ŝ(y′
E), where

y′
E is a sample from Py truncated to E. Then, it holds that

(3) P
{
y ∈OS |Ŝ(y) = S, y ∈ E

} ≤ eη
P{y ∈ OS |y ∈ E},

for all selections S and measurable sets OS .

As suggested by Lemma 7.1, the main difference between conditional post-selection in-
ference and the conditional guarantees implied by stability is that in the latter case we addi-
tionally truncate the distribution of y to a high-probability set E. Note that on the right-hand
side of Eq. (3) there is no dependence on the selection event, which makes inference, despite
selection, essentially as easy as classical inference.

We illustrate the conditional properties of stability with an example.

7.1. Example: Publication bias. We consider an illustration of the publication bias prob-
lem, also known as the file-drawer problem [21, 41, 51]. Suppose we observe an effect y ∼Py

with E[y] = μ, supp(Py) ⊆ R. We are interested in constructing an interval for μ only if the
observed effect is deemed “interesting” enough, for example, if y > T for some threshold T .
Denote by report(y) the event that we decide to report the confidence interval.

One approach to this problem is to evaluate the distribution of the data conditional on the
selection event. For example, we could find K such that P{|y − μ| > K|report(y)} ≤ α, and
report CI(K) = (y ±K) on the event report(y). Importantly, this approach generally requires
an explicit characterization of the event report(y). Our theory suggests a criterion-agnostic
solution based on randomizing the selection.

CLAIM 5. Let y ∼ N (μ,σ 2). Suppose that we apply the selection criterion to y + ξ ,
where ξ ∼ Lap(b) for some user-chosen parameter b > 0; that is, we report the confidence
interval on the event report(y + ξ). Then, for any user-chosen parameter ν ∈ (0,1), we have

P
{
μ /∈ (y ± z1− α

2 (1−ν)e−ησ )|report(y + ξ), y ∈ E
} ≤ α,

where

η = z1−ν/2σ

b
− σ 2

2b2 + log
(

1 − ν

2(�(z1−ν/2 + σ
b
) − �(σ

b
))

)

and E is an event such that P{y ∈ E} ≥ 1 − ν.
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FIG. 3. Normalized interval width implied by stability solution and unadjusted width for different noise levels b

and error levels α. We fix ν = 0.05.

Although in the main body of the paper we state the result when Py = N (μ,σ 2) for
simplicity, the Laplace noise addition strategy is valid for arbitrary Py ; only the expression
for η changes as a function of Py . In the Supplementary Material [54] we state a general
version of Claim 5.

The proof of Claim 5 relies on showing that the selection to report is stable with respect to
the oracle Ŝ(y′

E), and hence we can invoke Lemma 7.1.
We can see that, by choosing ν → 0, b → ∞, we recover the nonselective confidence

intervals, albeit at the cost of making the decision to report virtually independent of y. As
we decrease b (and keep ν bounded away from zero), the decision to report becomes more
reflective of the event report(y) and the inference level smoothly becomes more stringent. In
Figure 3 we plot the normalized interval width, z1− α

2 (1−ν)e−η , together with the unadjusted
normalized width z1− α

2
, for several different noise levels b and error levels α and ν = 0.05.

As a concrete example, suppose that report(y) = {y > T }, for some threshold T . Then, as
in Claim 2 and Claim 4, we can conclude that 1{report(y)} = 1{report(y + ξ)} with probabil-
ity 1 − δ over the choice of ξ as long as b ≤ |y−T |

log(1/(2δ))
.

8. The design of stable selection algorithms. We discuss tools for designing stable
algorithms and present an application of these tools to variable selection in linear regression.
All proofs can be found in Appendix A of the Supplementary Material [54]. We begin with
an overview of the basic properties of stability, which are key to efficient design of stable
selections.

8.1. Properties of stability. Stability satisfies two key algorithmic properties: closure un-
der post-processing and composition. We provide precise definitions of the two shortly. The
reason why these properties enable efficient stability designs is that many selection rules can
be written as post-processing and composition of simple computations, such as linear func-
tions of the data or finding maxima of a sequence. As long as we know how to stabilize the
necessary simple computations, closure under post-processing and composition provide rules
for computing the overall stability parameter of the whole algorithm efficiently.

8.1.1. Post-processing. First, stability is closed under post-processing: if A : Rn → S is
(η, τ, ν)-stable, then for any (possibly randomized) map B : S → G, the composition B ◦ A
is also (η, τ, ν)-stable. While the proof of this fact is a straightforward consequence of the
definition of stability, the implications are significant. Suppose for the moment that the statis-
tician is given a stable version of the LASSO algorithm, and denote its solution by θ̂LASSO.
Since θ̂LASSO is stable, then so is M̂ = {j ∈ [d] : θ̂LASSO,j �= 0}. In fact, the statistician need
not necessarily choose the model corresponding exactly to the support of θ̂LASSO; for exam-
ple, they could choose M̂ = {j ∈ [d] : |θ̂LASSO,j | ≥ ε}, for some constant threshold ε, or they
could pick dsel ≤ d entries with the maximum absolute value. More generally, any model
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chosen solely as a function of θ̂LASSO inherits the same stability parameters as θ̂LASSO. And,
according to Corollary 6.1, the same PoSI constant suffices to correct the confidence intervals
resulting from any such model.

Algorithm 1 Adaptive composition
input: data y ∈ R

n, sequence of algorithms At : S1 × · · · × St−1 ×R
n → St , t ∈ [k]

output: (a1, . . . , ak) ∈ S1 × · · · × Sk

for t = 1,2, . . . , k do
Compute at = At (a1, . . . , at−1, y) ∈ St

end
Return (a1, . . . , ak)

8.1.2. Composition. The second important property is composition. In Algorithm 1, we
define adaptive composition. Adaptive composition consists of k sequential rounds in which
the analyst observes the outcomes of all previous computations and selects the next com-
putation adaptively—as a function of the previous evaluations. The adaptive composition
property bounds the stability parameters of Algorithm 1 in terms of the stability parame-
ters of At . In its simplest form, it says that Algorithm 1 is (kη,0,0)-stable if for all t ∈ [k],
At (a1, . . . , at−1, ·) is (η,0,0)-stable for all fixed a1, . . . , at−1. For example, for some selec-
tion algorithms such as forward stepwise, it is clear to see how they can be represented using
adaptive composition. In forward stepwise, At outputs an index it ∈ [d], which corresponds
to the variable i that minimizes the squared error resulting from adding i to the current pool of
selected features; it = At (i1, . . . , it−1, y). It suffices to prove that any given step of forward
stepwise selection is stable, in order to infer that the overall algorithm is stable as well.

Our proofs will only require adaptive composition for algorithms with ν = 0; such results
follow from classical theory on differential privacy. More advanced (and more conservative)
adaptive composition theorems that allow ν > 0 can be found in the context of typical stabil-
ity [4]. In the Supplementary Material [54], we state the composition results we will need in
our proofs.

A simpler kind of composition is nonadaptive composition. Here, the algorithms At have
no dependence on the past computations. Nonadaptive composition can capture a protocol
that involves running multiple selection methods and choosing a final selection target as an
arbitrary function of all the outputs. As we state formally in the Supplementary Material, the
resulting stability parameters simply add up. This is a rather appealing property of stability,
as it suggests that the statistician only needs to keep track of the stability parameters of each
selection algorithm they run, in order to derive valid selective confidence intervals. A similar
combination of the results of different selection methods was considered by Markovic and
Taylor [34].

8.2. Model selection algorithms: Examples. We now consider several algorithms for
variable selection in linear regression through the lens of stability. While many of the princi-
ples presented in this section can be adapted to different distributional assumptions, for the
sake of clarity and interpretability we assume that y ∼N (μ,σ 2I ), where σ 2 is unknown but

we have access to an estimate σ̂ 2 ∼ σ 2 χ2
r
r

, independent of y. This is the setup studied by Berk
et al. [9]. More generally, we only need to know the decay of the tail of the distribution of y

in order to enforce stability. In Appendix C of the Supplementary Material [54], we extend
the algorithms in this section to outcome vectors with a known bound on their Orlicz norm,
for any Orlicz function. This includes cases such as general sub-Gaussian and subexponential
outcomes.
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8.2.1. Model selection via the LASSO. We begin by considering the canonical example
of the LASSO estimator [52]. The LASSO estimate is the solution to the usual least-squares
problem with an additional �1-constraint on the regression coefficients:

(4) θ̂LASSO ∈ arg min
θ∈Rd

1

2
‖y − Xθ‖2

2 s.t. ‖θ‖1 ≤ C1,

where C1 > 0 is a tuning parameter. This problem is sometimes referred to as the LASSO
in constrained/bound form, to contrast it with the LASSO in penalized form: θ̂ λ

LASSO ∈
arg minθ∈Rd

1
2‖y − Xθ‖2

2 + λ‖θ‖1, where λ > 0 is now the tuning parameter. These two
problems are equivalent in a sense: given X and y, for any C1 > 0 there exists a correspond-
ing λ > 0 such that θ̂LASSO = θ̂ λ

LASSO. In our analysis, we focus on the formulation (4). It
is worth pointing out that our selective inference tools do not directly extend to penalized
LASSO since, for a fixed penalty λ, the corresponding constraint C1 depends on the data,
which is random. Extending our approach to handle inference after solving the penalized
problem is an important direction for future work.

The LASSO objective induces sparse solutions, and a common way of declaring that a
feature is relevant is to check for a corresponding nonzero entry in the LASSO solution
vector. That is, the model “selected” by the LASSO is

M̂ = {
j ∈ [d] : θ̂LASSO,j �= 0

}
.

Model selection via the LASSO was first analyzed in selective inference by Lee et al. [30].
While this work provides exact confidence intervals, it has been observed that the intervals
(which do not make use of randomization) have infinite expected length [27]. Subsequent
work has improved upon these often large confidence intervals by choosing a better event to
condition on [33], or by applying randomization [26, 36, 37, 49–51].

We now formulate a stable version of the LASSO algorithm. It is inspired by the differ-
entially private LASSO algorithm of Talwar et al. [46], although the noise variables are cali-
brated somewhat differently due to different modeling assumptions. We use ei to denote the
ith standard basis vector in R

d , and {±ei}di=1 to denote the set of 2d standard basis vectors,
multiplied by 1 and −1. We also let ‖X‖2,∞ := maxi∈[d] ‖Xi‖2.

In essence, Algorithm 2 is a randomized version of the Frank-Wolfe algorithm [22].
We argue that θ̂LASSO is stable. The proof is based on a composition argument: namely,

we can view θ̂LASSO as the result of a composition of k subroutines, each given by one
optimization step which produces θt . The stability of each subroutine is proved by extending
an argument related to the “report noisy max” mechanism from differential privacy [18].

Algorithm 2 Stable LASSO algorithm

input: design matrix X ∈ R
n×d , outcome vector y ∈ R

n, variance estimate σ̂ 2 ∼ σ 2 χ2
r
r

,
�1-constraint C1, number of steps k, parameters δ ∈ (0,1), η > 0
output: LASSO solution θ̂LASSO ∈ R

d

Initialize θ1 = 0
for t = 1,2, . . . , k do

∀φ ∈ C1 · {±ei}di=1, sample ξt,φ
i.i.d.∼ Lap(

4tr,1−δ/(2d)C1‖X‖2,∞
ηn

)

∀φ ∈ C1 · {±ei}di=1, let αφ = − 2
nσ̂

φ
X
(y − Xθt) + ξt,φ

Set φt = arg minφ∈C1·{±ei}di=1
αφ

Set θt+1 = (1 − �t)θt + �tφt , where �t = 2
t+1

end
Return θ̂LASSO = θk+1
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Algorithm 3 Stable marginal screening algorithm

input: design matrix X ∈ R
n×d , outcome vector y ∈ R

n, variance estimate σ̂ 2 ∼ σ 2 χ2
r
r

,
model size k, parameters δ ∈ (0,1), η > 0
output: M̂ = {i1, . . . , ik}
Compute (c1, . . . , cd) = 1

nσ̂
X
y ∈ R

d

res1 = [d]
for t = 1,2, . . . , k do

∀i ∈ resi , sample ξt,i
i.i.d.∼ Lap(

2tr,1−δ/(2d)‖X‖2,∞
nη

)

it = arg maxi∈rest |ci + ξt,i |
rest+1 = rest \ it

end
Return M̂ = {i1, . . . , ik}

PROPOSITION 8.1 (LASSO stability). Algorithm 2 is both:

(a) (1
2kη2 + √

2k log(1/δ)η, δ, δ)-stable, and
(b) (kη,0, δ)-stable.

We state two rates because there exist parameter regimes where either rate leads to tighter
confidence intervals than the other (the first rate being tighter when η is small).

By the post-processing property, Proposition 8.1 implies stability of any model M̂ obtained
as a function of θ̂LASSO, such as the model corresponding to its nonzero entries.

Notice that the noise level in Algorithm 2 is an explicit function of η. This allows the
statistician to understand the loss in utility—that is, how much worse θ̂LASSO is relative to an
exact LASSO solution—due to randomization. In fact, building on work by Jaggi [24] and
Talwar et al. [46], we can upper bound the excess risk resulting from randomization.

PROPOSITION 8.2 (LASSO utility). Algorithm 2 run for k = �n‖X‖2∞C1η

σ̂‖X‖2,∞ � steps has

1

n
E

[‖y − Xθ̂LASSO‖2
2 | y

] − min
θ :‖θ‖1≤C1

1

n
‖y − Xθ‖2

2 = Õ

(
C1‖X‖2,∞ log(d)tr,1−δ/(2d)σ

nη

)
.

8.2.2. Model selection via marginal screening. One of the most commonly used model
selection methods involves picking a constant number of the features with the largest absolute
inner product with the outcome y [20, 23]. That is, one selects features i corresponding to
the top k values of |X


i y|, for a prespecified parameter k. This strategy is known as marginal
screening. It was analyzed in the context of selective inference by Lee and Taylor [31].

In Algorithm 3, we state a stable version of marginal screening. Notice that the random-
ization scheme is similar to that of the stable LASSO method. Indeed, the high-level idea
behind the proof of stability of Algorithm 3 is similar to that of Algorithm 2. As before, we
let ‖X‖2,∞ denote the L2,∞ norm of X.

PROPOSITION 8.3 (Marginal screening stability). Algorithm 3 is both:

(a) (1
2kη2 + √

2k log(1/δ)η, δ, δ)-stable, and
(b) (kη,0, δ)-stable.

As for the LASSO, we aim to quantify the loss in utility due to randomization. Given that
the goal of marginal screening is to detect the largest k values |ci | = |X


i y|, a reasonable
notion of utility loss is the difference between the values ci corresponding to the variables in
M̂ , and the actual largest values of ci .
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PROPOSITION 8.4 (Marginal screening utility). Let mi denote the index of the ith largest
value cj in absolute value, so that (|cm1 |, . . . , |cmd

|) is the decreasing order statistic of
{|ci |}di=1. Then, for any δ′ ∈ (0,1), Algorithm 3 satisfies

P

{
max
j∈[k] |cmj

| − |cij | ≤
4tr,1−δ/(2d) log(dk/δ′)‖X‖2,∞

nη
|y

}
≥ 1 − δ′.

9. Experimental results. We evaluate our selective intervals for the LASSO and
marginal screening and compare our solution with data splitting.

For a fixed sample size n we vary the number of features d . We consider two different
data-generating processes for the design matrix: one in which the rows of X are drawn inde-
pendently from an equicorrelated multivariate Gaussian distribution with pairwise correlation
0.5, and the second one in which all entries of X are drawn as independent Bernoulli random
variables with parameter 0.1. In the former case, X is normalized to have columns of unit
norm. Given a signal parameter ρ > 0 and a sparsity parameter s ∈ (0,1), we sample

βi =
{

Exp(ρ), i ∈ {1, . . . , sd},
0, i ∈ {sd + 1, . . . , d},

and generate the outcome as y = Xβ + ε, where εi
i.i.d.∼ N (0,1), i ∈ [n]. In Appendix B

of the Supplementary Material [54] we provide additional experiments when the errors are
drawn from a heavier-tailed, Laplace distribution. We fix the target miscoverage level to be
α = 0.1. In all experiments we vary η ∈ {1,2,3,4,5,6,7,8,9,10}. For the comparison with
data splitting, we use the splitting fraction derived in Section 5.1. Further experimental details
are given in the Supplementary Material.

9.1. Gaussian design. We first state the results for the Gaussian design case.
In Figure 4 we compare the false discovery rate (FDR) of the stable LASSO algo-

rithm and the LASSO algorithm with data splitting. In all plots n = 50 is fixed and we

FIG. 4. Comparison of FDR after stable LASSO and LASSO with data splitting, with varying dimension and
signal strength, in the Gaussian design case. We also plot the average interval width (at ρ = 0.2 only, however
the width varies minimally with ρ) and the average unadjusted width.



POST-SELECTION INFERENCE VIA ALGORITHMIC STABILITY 1685

FIG. 5. Comparison of FDR after stable LASSO and LASSO with data splitting, with varying sample size, in the
Gaussian design case. We also plot the average interval width at n = 200 and the average unadjusted width.

vary d ∈ {50,100,200}. As we increase d , we also increase the size of the constraint set
C1 ∈ {20,40,80} to allow more selections. We consider signal levels ρ ∈ {0.33,0.2,0.14},
corresponding to an expected value of the nonnull βi lying in {3,5,7}, and we fix s = 0.5.

We observe that stability generally outperforms data splitting as η grows, equivalently
when the splitting fraction f (η) grows, as well as when the signal strength grows. In Figure 4
we additionally plot the average width of stable intervals against the average width of naive,
unadjusted intervals. Note that the intervals obtained via data splitting have essentially the
same width (and are hence not plotted), based on how f (η) is chosen. We only plot interval
width for ρ = 0.2 since the width varies minimally for different values of ρ. For completeness
we include all plots of interval width in Appendix B of the Supplementary Material [54].

In Figure 5 we compare the stable LASSO algorithm and the LASSO with data splitting
in a sparse high-dimensional setting with d = 500, s = 0.1, and we vary the sample size
n ∈ {100,200,300}. We fix ρ = 0.1. We observe that stability consistently outperforms data
splitting for large enough η and this gap grows with n. In addition, we plot the average interval
width implied by stability against the average unadjusted interval width at n = 200 (again we
do not plot the interval width given by data splitting for the same reason as in Figure 4). We
include the plots of all interval widths in the Supplementary Material.

FIG. 6. Comparison of average error after stable marginal screening and marginal screening with data splitting,
with varying dimension and signal strength, in the Gaussian design case. In addition, we plot the average interval
width (at ρ = 0.2 only, however the width varies minimally with ρ), together with the average unadjusted width
and the width obtained via the conditional correction of Lee and Taylor [31]. We also plot the 90% quantile of the
conditional width because it varies greatly across realizations.
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FIG. 7. Comparison of average error after stable marginal screening and marginal screening with data splitting,
with varying sample size, in the Gaussian design case. We also plot the average interval width at n = 200, together
with the average unadjusted width and the width implied by the conditional approach of Lee and Taylor [31].

In Figure 6 we compare the average error of stable marginal screening and marginal screen-
ing with data splitting. Since marginal screening explicitly aims to maximize the values
|X


i y| for selected variables Xi , we quantify the error as 1
k

∑k
t=1(|X


i∗t y| − |X

it

y|), where
it is the estimated index of the t th largest absolute inner product (based on a subsample in
the case of data splitting, or based on a randomized sample in the case of stability), and i∗t is
the true index of the t th largest absolute inner product in the data set. We vary the parameters
as in the LASSO comparison in Figure 4, only instead of varying C1 we vary k ∈ {5,10,20}.
We also plot the average interval width with stability, together with the unadjusted interval
width and the average width obtained via the conditional method of Lee and Taylor [31] with
no randomization. For the conditional method, since the intervals are sometimes orders of
magnitude larger than the average width, we also plot the 90% quantile of interval width. We
see that stability typically outperforms data splitting in terms of the average error, and this
benefit is more pronounced for larger η and signal strength. In terms of interval width, we ob-
serve that stability leads to significantly smaller intervals than the conditional approach. We
only plot interval width when ρ = 0.2, and defer the remaining plots to the Supplementary
Material.

In Figure 7 we consider a setting analogous to that of Figure 5, and we analogously vary the
sample size n. We again see that stability generally dominates data splitting. Moreover, the

FIG. 8. Comparison of FDR after stable LASSO and LASSO with data splitting, with varying dimension and
signal strength, in the Bernoulli design case. We also plot the average interval width (at ρ = 0.2 only, however
the width varies minimally with ρ) and the average unadjusted width.
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FIG. 9. Comparison of FDR after stable LASSO and LASSO with data splitting, with varying sample size, in the
Bernoulli design case. We also plot the average interval width at n = 200 and the average unadjusted width.

gap between the intervals obtained via stability and those of Lee and Taylor [31] is even more
pronounced than in Figure 6. We provide the plots of all interval widths in the Supplementary
Material.

9.2. Bernoulli design. Now we consider the Bernoulli design case. The motivation for
considering a sparse Bernoulli design lies in the fact that certain directions in the column
space of X are captured by only a few samples, hence missing out on them—as is possible
with data splitting—can significantly affect the quality of selection.

In Figure 8 and Figure 9 we provide comparisons analogous to those of Figure 4 and
Figure 5, using the same parameter configurations. We observe a larger gap between data
splitting and stability than in the Gaussian design case, and observe the same trends: as η and
the signal strength grow, the performance gap increases. As before, we defer the remaining
plots of interval widths to Appendix B of the Supplementary Material [54].

In Figure 10 and Figure 11 we provide comparisons analogous to those of Figure 6 and
Figure 7, using the same parameter configurations. We observe a larger gap between data
splitting and stability both than in the Gaussian design case, as well as in the LASSO ex-
periments using the Bernoulli design. In addition, we observe an even more pronounced gap

FIG. 10. Comparison of average error after stable marginal screening and marginal screening with data split-
ting, with varying dimension and signal strength, in the Bernoulli design case. In addition, we plot the average
interval width (at ρ = 0.2 only, however the width varies minimally with ρ), together with the average unadjusted
width and the width obtained via the conditional correction of Lee and Taylor [31]. We also plot the 90% quantile
of the conditional width because it varies greatly across realizations. Since the conditional widths are of a higher
order of magnitude, the scale on the y-axis in the widths plots is logarithmic.
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FIG. 11. Comparison of average error after stable marginal screening and marginal screening with data split-
ting, with varying sample size, in the Bernoulli design case. We also plot the average interval width at n = 200,
together with the average unadjusted width and the width implied by the conditional approach of Lee and Tay-
lor [31]. Since the conditional widths are of a higher order of magnitude, the scale on the y-axis in the widths plot
is logarithmic.

between stable confidence interval widths and widths of intervals obtained via a conditional
correction [31]. For this reason, the y-axis in the widths plots is logarithmic. We defer the
remaining plots of interval widths to the Supplementary Material.

10. Discussion. Building on concepts from algorithmic stability, as originally developed
for applications in differential privacy, we have provided general theory for designing post-
selection confidence intervals when the selection procedure is stable. The stability principle is
broadly applicable, ranging from inference on the winning effect to model selection in linear
regression. In particular, stability is applicable even when data splitting is not, such as when
there are dependencies between observations.

Performing inference after a stable selection is simple: it merely requires discounting the
type I error based on the level of stability. Moreover, stability comes with several practically
appealing properties, namely robustness to post-processing and composition. Thus, for ex-
ample, the statistician can run various selection methods, and essentially only needs to keep
track of the stability parameters of each in order to obtain valid confidence intervals for the
final target, which could combine the results of all the selections in an arbitrary way.

There are numerous other potential applications of algorithmic stability to the problem
of post-selection inference that would be worthwhile to explore. For example, it would be
valuable to understand bootstrapping [39] from the perspective of stability, due to its concep-
tual relations to the “privacy amplification by subsampling” principle in differential privacy,
which argues that privacy is amplified when run on a random subsample of the entire data set
[6, 25]. More broadly, selective mechanisms have been long analyzed in the context of dif-
ferential privacy [14, 19, 32, 45, 48], and we believe that some of these developments could
be imported to selective inference via stability.
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