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Conformal prediction is a popular, modern technique for providing valid
predictive inference for arbitrary machine learning models. Its validity relies
on the assumptions of exchangeability of the data, and symmetry of the given
model fitting algorithm as a function of the data. However, exchangeability is
often violated when predictive models are deployed in practice. For example,
if the data distribution drifts over time, then the data points are no longer ex-
changeable; moreover, in such settings, we might want to use a nonsymmetric
algorithm that treats recent observations as more relevant. This paper gener-
alizes conformal prediction to deal with both aspects: we employ weighted
quantiles to introduce robustness against distribution drift, and design a new
randomization technique to allow for algorithms that do not treat data points
symmetrically. Our new methods are provably robust, with substantially less
loss of coverage when exchangeability is violated due to distribution drift or
other challenging features of real data, while also achieving the same cov-
erage guarantees as existing conformal prediction methods if the data points
are in fact exchangeable. We demonstrate the practical utility of these new
tools with simulations and real-data experiments on electricity and election
forecasting.

1. Introduction. The field of conformal prediction addresses a challenging modern
problem: given a “black box” algorithm that fits a predictive model to available training
data, how can we calibrate prediction intervals around the output of the model so that these
intervals are guaranteed to achieve some desired coverage level?

As an example, consider a holdout set approach. Suppose we have a pre-fitted model μ̂

mapping features X to a prediction of a real-valued variable Y (e.g., μ̂ is the output of
some machine learning algorithm trained on a prior data set), and a fresh holdout set of
data (X1, Y1), . . . , (Xn,Yn) not used for training. We can then use the empirical quantiles of
the errors |Yi − μ̂(Xi)| on the holdout set to compute a prediction interval around our predic-
tion μ̂(Xn+1) that aims to cover the unseen response Yn+1. Split conformal prediction (Vovk,
Gammerman and Shafer (2005)) formalizes this method, and gives guaranteed predictive
coverage when the data points (Xi, Yi) are drawn i.i.d. from any distribution (see Section 2).
However, the validity of this method hinges on the assumption that the data points are drawn
independently from the same distribution, or more generally, that (X1, Y1), . . . , (Xn+1, Yn+1)

are exchangeable.
In many applied domains, this assumption is often substantially violated, due to distribu-

tion drift, correlations between data points, or other phenomena. As an example, Figure 1
shows results from an experiment on a real data set monitoring electricity usage in Australia
(the ELEC2 data set (Harries (1999)), which we return to in Section 5.2). We see that over
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FIG. 1. Empirical results from a real data set (details will be given in Section 5.2).

a substantial stretch of time, conformal prediction loses coverage, its intervals decreasing far
below the target 90% coverage level, while our proposed method, nonexchangeable confor-
mal prediction, is able to maintain approximately the desired coverage level. In this paper, we
will see how to quantify the loss of coverage due to violations of exchangeability, and how
we can modify the conformal prediction methodology to regain predictive coverage even in
the presence of distribution drift or other violations of exchangeability.

1.1. Beyond exchangeability. In this paper, we will consider three important classes of
methods for distribution-free prediction: split conformal, full conformal, and the jackknife+.
(We give background on split and full conformal in Section 2, and on jackknife+ in Ap-
pendix B.) These methods rely on exchangeability in two different ways:

• The data Zi = (Xi, Yi) are assumed to be exchangeable (for example, i.i.d.).
• The algorithm A, which maps data to a fitted model μ̂ : X → R, is assumed to treat the

data points symmetrically, to ensure that exchangeability of the data points Zi still holds
even after we observe the fitted model(s).

In this work, we aim to provide distribution-free prediction guarantees when we drop both
of these assumptions:

• We may have data points Zi that are not exchangeable—for instance, they may be in-
dependent but nonidentically distributed (e.g., due to distribution drift), or there may be
dependence among them that creates nonexchangeability (e.g., correlation over space or
time).

• We may wish to use an algorithm A that does not treat the input data points symmetri-
cally—for example, if Zi denotes data collected at time i, we may prefer to fit a model μ̂

that places higher weight on more recent data points.

1.2. Our contributions. We generalize the split conformal, full conformal, and jack-
knife+ methods (detailed later) to allow for both of these sources of nonexchangeability.
Our procedures can recover the original variants if a symmetric algorithm is employed. We
will provide coverage guarantees that are identical to existing guarantees if the data points are
in fact exchangeable, and only slightly lower if the deviation from exchangeability is mild.

To elaborate, let us define the coverage gap as the loss in coverage compared to what is
achieved under exchangeability. For example, in split conformal prediction run with a desired
coverage level 1 − α, we have

Coverage gap = (1 − α) − P
{
Yn+1 ∈ Ĉn(Xn+1)

}
,
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since, under exchangeability, the method guarantees coverage with probability 1 −α. To give
an informal preview of our results, we write Zi = (Xi, Yi) to denote the ith data point and

(1) Z = (Z1, . . . ,Zn+1)

to denote the full (training and test) data sequence, and let Zi denote this sequence after
swapping the test point (Xn+1, Yn+1) with the ith training point (Xi, Yi):

(2) Zi = (Z1, . . . ,Zi−1,Zn+1,Zi+1, . . . ,Zn,Zi).

To enable robustness, our methods will allow for weights: let wi ∈ [0,1] denote a prespecified
weight placed on data point i. We will see that the coverage gap can be bounded as

(3) Coverage gap ≤
∑n

i=1 wi · dTV(Z,Zi)

1 +∑n
i=1 wi

,

where dTV denotes the total variation distance between distributions. Notably, we do not make
any assumption on the joint distribution of the n + 1 points. Of course, the result will only
be meaningful if we are able to select fixed (non-data-dependent) weights wi such that this
upper bound is likely to be small. In particular, if we use these methods, we are implicitly
assuming that this weighted sum of total variation terms is small. In contrast, past work on
conformal prediction in a model-free setting has relied on the assumption that the data are
exactly exchangeable, since no prior results offered an analysis of the coverage gap under
violations of exchangeability. See Section 4.3 for further discussion.

Note that the upper bound in (3) is a far stronger result than simply asking whether the data
is “nearly exchangeable.” For instance, in a time series, it might be the case that dTV(Z,Zi)

is quite small but dTV(Z,Zπ) ≈ 1 for most permutations π . In words, if the observations are
noisy, then permuting only two data points might not be detectable—but if there is nonsta-
tionarity or dependence over time then Z is likely to be far from exchangeable.

Several further remarks are in order. First, for wi ≡ 1 and a symmetric algorithm, the pro-
posed weighted methods will reduce to the usual conformal (or jackknife+) methods. Thus,
the result (3) also quantifies the degradation in coverage of standard methods in nonexchange-
able settings. Second, this result has new implications in exchangeable settings: if the data

points are in fact exchangeable (with i.i.d. as a special case), then Z
d= Zi and the coverage

gap bound in (3) is equal to zero (here we use d= for equality in distribution). Therefore, our
use of a weighted conformal procedure (rather than choosing wi ≡ 1, which is the original
unweighted procedure) does not hurt coverage if the data are exchangeable. Finally, the result
provides insights on why one might prefer to use our new weighted procedures in (possibly)
nonexchangeable settings: it can provide robustness in the case of distribution shift. To elab-
orate, consider a setting where the data points Zi are independent, but are not identically
distributed due to distribution drift. The following result relates dTV(Z,Zi) to the distribu-
tions of the individual data points.

LEMMA 1. If Z1, . . . ,Zn+1 are independent, then

dTV
(
Z,Zi) ≤ 2dTV(Zi,Zn+1) − dTV(Zi,Zn+1)

2 ≤ 2dTV(Zi,Zn+1).

Combining this lemma with (3), we can see that if we are able to place small weights wi on
data points Zi with large total variation distance dTV(Zi,Zn+1), then the coverage gap will
be low. For example, under distribution drift, we might have dTV(Zi,Zn+1) decreasing with
i; we can achieve a low coverage gap by using, say, weights wi = ρn+1−i for some ρ < 1.
We will return to this example in Section 4.4.
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We will also see that the result in (3) actually stems from a stronger result:

(4) Coverage gap ≤
∑n

i=1 wi · dTV(R(Z),R(Zi))

1 +∑n
i=1 wi

.

Here R(Z) denotes a vector of residuals: for split conformal prediction, this is the vector
with entries R(Z)i = |Yi − μ̂(Xi)|, where μ̂ is a pre-fitted model, while for full conformal
the entries are again given by R(Z)i = |Yi − μ̂(Xi)| but now μ̂ is the model obtained by
running A on the entire data sequence Z. Now R(Zi) is simply the same function applied to
the swapped data Zi instead of Z—that is, the residuals are computed after swapping data
points i and n + 1 in the data set. (We also later generalize to any outcome space Y and to
other definitions of residuals.)

Clearly, the bound in (4) is strictly stronger than (3), because the total variation distance
between any function applied to each of Z and Zi , cannot be larger than dTV(Z,Zi) itself—
and in many cases, the bound in (4) may be substantially tighter. For example, if the data
is high dimensional, with Zi = (Xi, Yi) ∈ R

p × R for large p, then the distance dTV(Z,Zi)

may be extremely large since Z and Zi each contain p + 1 dimensions of information about
each data point. On the other hand, if we only observe the residuals (e.g., R(Z)i = |Yi −
μ̂(Xi)| for each i), then this reveals only a one-dimensional summary of each data point; this
typically reduces the distance between the two distributions, and by a considerable amount if
the distribution drift occurs in features that happen to be irrelevant for prediction and are thus
ignored by μ̂. In Section 4.4, we will see a specific example demonstrating the potentially
large gap between these two upper bounds.

2. Background and related work. We briefly review several distribution-free predic-
tion methods that offer guarantees under an exchangeability assumption on the data and sym-
metry of the underlying algorithm. We also set up notation that will be useful later in the
paper.

Split conformal prediction. Split conformal prediction (Vovk, Gammerman and Shafer
(2005)) (also called inductive conformal prediction) is a holdout method for constructing pre-
diction intervals around a pre-trained model. Specifically, given a model μ̂ : X →R that was
fitted on an initial training data set, and given n additional data points (X1, Y1), . . . , (Xn,Yn)

(the holdout set), we define residuals

Ri = ∣∣Yi − μ̂(Xi)
∣∣, i = 1, . . . , n,

and then compute the prediction interval at the new feature vector Xn+1 as

Ĉn(Xn+1) = μ̂(Xn+1) ± (
the

⌈
(1 − α)(n + 1)

⌉
-th smallest of R1, . . . ,Rn

)
.

Equivalently, we can write

(5) Ĉn(Xn+1) = μ̂(Xn+1) ± Q1−α

(
n∑

i=1

1

n + 1
· δRi

+ 1

n + 1
· δ+∞

)
,

where Qτ (·) denotes the τ -quantile of its argument,1 and δa denotes the point mass at a. This
method is well-known to guarantee distribution-free predictive coverage at the target level
1 − α.

A drawback of the split conformal method is the loss of accuracy due to sample splitting,
since the pre-trained model μ̂ needs to be independent from the holdout set—in practice, if
only n labeled data points are available in total, we might use n/2 data points for training μ̂,

1If the quantile is not unique, then Qτ (·) denotes the smallest possible τ -quantile, throughout this paper.
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and then the procedure defined in (5) above would actually be run with a holdout set of size
n/2 in place of n. In this paper, however, we will continue to write n to denote the holdout set
size for the split conformal method, in order to allow for universal notation across different
methods.

Full conformal prediction. To avoid the cost of data splitting, an alternative is the full
conformal method (Vovk, Gammerman and Shafer (2005)), also referred to as transductive
conformal prediction. Fix any regression algorithm

A : ⋃
n≥0

(X ×R)n → {measurable functions μ̂ : X →R},

which maps a data set containing any number of pairs (Xi, Yi), to a fitted regression function
μ̂. The algorithm A is required to treat data points symmetrically, that is,2

(6) A
(
(xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))

) = A
(
(x1, y1), . . . , (xn, yn)

)
for all n ≥ 1, all permutations π on [n] := {1, . . . , n}, and all {(xi, yi)}i=1,...,n. Next, for each
y ∈ R, let

μ̂y = A
(
(X1, Y1), . . . , (Xn,Yn), (Xn+1, y)

)
denote the trained model, fitted to the training data together with a hypothesized test point
(Xn+1, y), and let

(7) R
y
i =

{∣∣Yi − μ̂y(Xi)
∣∣, i = 1, . . . , n,∣∣y − μ̂y(Xn+1)
∣∣, i = n + 1.

The prediction set (which might or might not be an interval) for feature vector Xn+1 is then
defined as

(8) Ĉn(Xn+1) =
{
y ∈ R : Ry

n+1 ≤ Q1−α

(
n+1∑
i=1

1

n + 1
· δR

y
i

)}
.

The full conformal method is known to guarantee distribution-free predictive coverage at the
target level 1 − α:

THEOREM 1 (Full conformal prediction (Vovk, Gammerman and Shafer (2005))). If
the data points (X1, Y1), . . . , (Xn,Yn), (Xn+1, Yn+1) are i.i.d. (or more generally, exchange-
able), and the algorithm A treats the input data points symmetrically as in (6), then the full
conformal prediction set defined in (8) satisfies

P
{
Yn+1 ∈ Ĉn(Xn+1)

} ≥ 1 − α.

The same result holds true for split conformal.

Indeed, since split conformal can be viewed as a special case of full conformal (by consid-
ering a trivial algorithm A that returns the same fixed pre-fitted function μ̂ regardless of the
input data), this theorem also implies that the same coverage result holds for the split confor-
mal method (5). For completeness, and to set up our proof strategy, we will give a succinct
proof of this theorem in Section 6.1.

By avoiding data splitting, full conformal often (but not always) yields more precise pre-
diction intervals than split conformal. This potential benefit comes at a steep computational
cost, since in order to compute the prediction set (8) we need to rerun the model training al-
gorithm A for each y ∈ R (or in practice, for each y in a fine grid). Luckily, in certain special

2If A is a randomized algorithm, then this equality is only required to hold in a distributional sense.
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cases such as ordinary least squares, kernel ridge regression (Burnaev and Vovk (2014)), or
the Lasso (Lei (2019)), the prediction set (8) can be computed more efficiently using special-
ized techniques.

As a compromise between the greater computational efficiency of split conformal and the
greater statistical efficiency of full conformal, the jackknife+ and CV+ methods (Barber et al.
(2021)) (closely related to cross-conformal prediction (Vovk (2015))) use a cross-validation-
style approach for distribution-free predictive inference. For example, for jackknife+, the
procedure requires fitting n leave-one-out models μ̂−i . Later, in Appendix B, we will give
more detailed background on these methods, and provide a nonexchangeable version of the
jackknife+.

General nonconformity scores. In the exchangeable setting, conformal prediction (both
split and full) was initially proposed in terms of “nonconformity scores” Ŝ(Xi, Yi), where Ŝ

is a fitted function that measure the extent to which a data point (Xi, Yi) is unusual relative
to a training data set (Vovk, Gammerman and Shafer (2005)) (whose dependence we make
implicit in the notation). For simplicity, so far we have only presented the most commonly
used nonconformity score, which is the residual from the fitted model

(9) Ŝ(Xi, Yi) := ∣∣Yi − μ̂(Xi)
∣∣

(where μ̂ is pre-trained for split conformal, and μ̂ = A((Xj ,Yj ) : j ∈ [n+1]) for full confor-
mal). We will also present our new methods with this particular form of score. In many set-
tings, other nonconformity scores can be more effective—for example, Kivaranovic, Johnson
and Leeb (2020), Romano, Patterson and Candès (2019) propose scores based on quantile
regression that often lead to tighter prediction intervals in practice. Our proposed nonex-
changeable conformal prediction procedures can also be extended to allow for general non-
conformity scores—we will return to this generalization in Appendix A.

Further related work. Conformal prediction was pioneered by Vladimir Vovk and various
collaborators in the early 2000s; the book by Vovk, Gammerman and Shafer (2005) details
their advances and remains a critical resource. The recent spurt of interest in these ideas
in the field of statistics was catalyzed by Jing Lei, Larry Wasserman, and colleagues (see,
e.g., Lei et al. (2018), Lei, Robins and Wasserman (2013), Lei and Wasserman (2014)). For
gentle introduction and more history, we refer to the tutorials by Shafer and Vovk (2008) and
Angelopoulos and Bates (2023).

Tibshirani et al. (2019) extended conformal prediction to handle nonexchangeable data
under an assumption called covariate shift, where training and test data can have a different
X distribution, but are assumed to have an identical distribution of Y given X. The data is
reweighted using the likelihood ratio to compare the test and training covariate distributions
(with this likelihood ratio assumed to be known or accurately approximable), coverage can
be guaranteed via an argument based on a concept that they called weighted exchangeability.

Our current work differs from Tibshirani et al. (2019) in several fundamental ways, such
that neither work subsumes the other in terms of methodology or theory. In their work, the
covariate shift assumption must hold, and the aforementioned high-dimensional likelihood
ratio must be known exactly or well approximated for correct coverage. Furthermore, the
weights on the data points are then calculated as a function of the data point (Xi, Yi) to com-
pensate for the known distribution shift. In the present work, on the other hand, the weights
are required to be fixed rather than data-dependent, and can compensate for unknown viola-
tions of the exchangeability assumption, as long as the violations are small (to ensure a low
coverage gap). Moreover, our theory can handle nonsymmetric algorithms that treat different
data points differently, and in particular, can depend on their order. Finally, and importantly,
if there was actually no distribution shift, and the data happened to be exchangeable, their
weighted algorithm does not have any coverage guarantee, while ours retains exact coverage.
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Since its publication, the ideas and methods from Tibshirani et al. (2019) have been ap-
plied and extended in several ways. For example, Podkopaev and Ramdas (2021) demonstrate
that reweighting can also deal with label shift (the marginal distribution of Y changes from
training to test, but the conditional distribution of X given Y is assumed unchanged). Lei and
Candès (2021) show how reweighting can be extended to causal inference setups for predic-
tive inference on individual treatment effects, and Candès, Lei and Ren (2023) show how to
apply these ideas in the context of censored outcomes in survival analysis. Fannjiang et al.
(2022) use reweighting in a setup where the test covariate distribution is under the statis-
tician’s control. A different weighted approach is taken in Guan (2023), called “localized”
conformal prediction, where the weight on data point i is determined as a function of the
distance ‖Xi −Xn+1‖2, to enable predictive coverage that holds locally (in neighborhoods of
X space, that is, an approximation of prediction that holds conditional on the value of Xn+1).
Each of these works also contributes new ideas to problem-specific challenges (and differs
substantially from the work proposed here, both in terms of methods and the nature of the
resulting guarantees), but we omit the details for brevity.

Conformal methods have also be used for sequential tests for exchangeability of the un-
derlying data (Vovk (2021)), and these sequential tests can form the basis of sequential al-
gorithms for changepoint detection (Volkhonskiy et al. (2017)) or outlier detection (Bates
et al. (2023)). This line of work is differs from ours in that they employ conformal prediction
for detecting nonexchangeability, but do not provide algorithms or guarantees for the use of
conformal methods for predictive inference on nonexchangeable data. Several other recent
works propose conformal inference type methods for time series (Chernozhukov, Wüthrich
and Yinchu (2018), Stankeviciute, Alaa and van der Schaar (2021), Xu and Xie (2021)),
but these results require exchangeability assumptions or other distributional conditions (e.g.,
assuming a strongly mixing time series), while in our present work we aim to avoid these
conditions.

The recent work of Gibbs and Candès (2021) takes a different approach towards handling
distribution drift in an online manner. Informally, they compare the current attained coverage
to the target 1 − α level, and if the former is bigger (or smaller) than the latter, then they iter-
atively increase (or decrease) the nominal level αt to employ for the next prediction. Zaffran
et al. (2022) build further on this approach, allowing for adaptivity to the amount of depen-
dence in the time series. An alternative approach is that of Cauchois, Gupta and Ali (2020),
where robustness is introduced under the assumption that the test distribution is bounded in
f -divergence from the distribution of the training data points.

For data that is instead drawn from a spatial domain, the recent work of Mao, Martin and
Reich (2023) uses weighted conformal prediction with higher weights assigned to data points
drawn at spatial locations near that of the test point (or, as a special case, giving a weight of 1
to the nearest neighbors of the test point, and weight 0 to all other points), but their theoretical
guarantees require distributional assumptions.

Finally, we return full circle to the book of Vovk, Gammerman and Shafer (2005), which
has chapters that discuss moving beyond exchangeability, for example using Mondrian con-
formal prediction (and its generalization, online compression models). Mondrian methods
informally divide the observations into groups, and assume that the observations within each
group are still exchangeable (e.g., class-conditional conformal classification). We also note
the work of Dunn, Wasserman and Ramdas (2022) that studies the case of two-layer hierar-
chical models (like random effect models) that shares strength across groups. These works
involve very different ideas from those presented in the current paper.

3. Nonexchangeable conformal prediction. We now present our new nonexchangeable
conformal prediction method, in both its split and full versions, in this section. For clarity
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of the exposition, we will use |y − μ̂(x)| as the score used to measure the nonconformity
of a point (x, y) in the data set, as in (9), but our methods and accompanying theoretical
guarantees can be extended in a straightforward way to arbitrary nonconformity scores—we
give details for this extension in Appendix A.

3.1. Robust inference through weighted quantiles. As described above, our new method-
ology moves beyond the exchangeable setting by allowing both for nonexchangeable data,
and for nonsymmetric algorithms. For simplicity, we will first consider only the first
extension—the data points Zi = (Xi, Yi) are no longer required to be exchangeable, but the
model fitting algorithm A will still be assumed to be symmetric for now. The next subsection
generalizes the method to allow nonsymmetric algorithms as well.

For our nonexchangeable conformal methods, we choose weights w1, . . . ,wn ∈ [0,1],
with the intuition that a higher weight wi should be assigned to a data point Zi that is “trusted”
more, that is, that we believe comes from (nearly) the same distribution as the test point Zn+1.
We assume the weights wi are fixed (see Section 4.5 for further discussion on this point). For
instance, if data point Zi occurs at time i, and we are concerned about distribution drift, we
might choose weights w1 ≤ · · · ≤ wn so that our prediction interval relies mostly on recent
data points and places little weight on data from the distant past. Alternatively, in a spatial
setting, if data point i is collected at a (prespecified) location Li , then the weight wi might
be chosen as a function of the distance dist(Li,Ln+1), with the intuition that data points
collected nearby in the spatial domain are more likely to have similar distributions.

We now modify the split and full conformal predictive inference methods to use weighted
quantiles, rather than the original definitions where all data points are implicitly given equal
weight. To simplify notation, in what follows, given wi ∈ [0,1], i = 1, . . . , n, we will define
normalized weights

(10) w̃i = wi

w1 + · · · + wn + 1
, i = 1, . . . , n and w̃n+1 = 1

w1 + · · · + wn + 1
.

Nonexchangeable split conformal with a symmetric algorithm. The prediction interval is
given by

(11) Ĉn(Xn+1) = μ̂(Xn+1) ± Q1−α

(
n∑

i=1

w̃i · δRi
+ w̃n+1 · δ+∞

)
,

where Ri = |Yi − μ̂(Xi)| for the pre-trained model μ̂, as before.
Nonexchangeable full conformal with a symmetric algorithm. The prediction set is given

by

(12) Ĉn(Xn+1) =
{
y : Ry

n+1 ≤ Q1−α

(
n+1∑
i=1

w̃i · δR
y
i

)}
,

where as before, we define μ̂y = A((X1, Y1), . . . , (Xn,Yn), (Xn+1, y)) by running the algo-
rithm A on the training data together with the hypothesized test point (Xn+1, y), and define
R

y
i as in (7) from before.
Notice that for both methods, their original (unweighted) versions are recovered by choos-

ing weights w1 = · · · = wn = 1.
The theoretical results for this section, which we previewed in (3) and (4), will follow as

a corollary of more general results that also accommodate nonsymmetric algorithms (intro-
duced next); we avoid restating the results here for brevity. In addition, the interested reader
may already jump forward to Appendix C to examine a different style of result on the ro-
bustness of weighted (and unweighted) conformal methods—using symmetric algorithms—
under a Huber-style adversarial contamination model (which relies on stronger assumptions
to allow for a tighter guarantee).
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3.2. Enhanced predictions with nonsymmetric algorithms. Now, we will allow the al-
gorithm A to be an arbitrary function of the data points, removing the requirement of a
symmetric algorithm. This generalization will require only a small modification to the pre-
vious conformal method to ensure validity, and can result in more accurate predictors and
boost efficiency of the resulting prediction sets, as we will demonstrate in the experiments
(Section 5).

To begin, let us give some examples of algorithms that do not treat data points symmetri-
cally, to see what types of settings we want to handle:

• Weighted regression. The algorithm A might fit a model μ̂(x) = x
β̂ where the param-
eter vector β̂ is fitted via a weighted regression. Specifically, for nonnegative weights ti ,
consider solving

(13) β̂ = arg min
β∈Rp

{∑
i

ti · �(X

i β, Yi

)+ h(β)

}
,

for some loss function � and penalty function h. For example, weighted least squares would
be obtained by taking the loss function �(u, y) = (u − y)2.

• Adapting to changepoints. In a streaming data setting, if sudden changes may occur in the
data distribution, then the quality of our predictions will suffer if our models are always
trained on the full set of available training data without accounting for possible change-
points. We might therefore aim to improve the model by building in a changepoint detec-
tion step. Assume data points arrive in an ordered fashion so that i = 1 is the first arrival,
i = 2 the second, and so on. Then, we might have

(14) β̂ = arg min
β∈Rp

{∑
i>T̂

�
(
X


i β, Yi

)+ h(β)

}
,

for some loss function � and penalty function h, where T̂ is the time of the most recent de-
tected changepoint (or T̂ = 0 if no changepoint is detected). To be clear, here the algorithm
A incorporates estimation of both T̂ and of β̂ .

• Autoregressive models. Suppose that the response Yn+1 is best predicted by combining
information from the features Xn+1 together with response Yn from the previous time
point—for example, we might solve for

(15) (β̂, γ̂ ) = arg min
(β,γ )∈Rp×R

{∑
i

(
Yi − (

X

i β + γ Yi−1

))2
}
,

to return a fitted function of the form μ̂(x, yprev) := x
β̂ + γ̂ · yprev.

To accommodate these and many other settings, we will now define A as

(16) A : ⋃
n≥0

(X ×R× T )n → {measurable functions μ̂ : X →R},

mapping a data sequence containing any number of “tagged” data points (Xi, Yi, ti) ∈ X ×
R × T , to a fitted regression function μ̂. The tag ti associated with data point (Xi, Yi) can
play a variety of different roles, depending on the application:

• ti can provide the weight for data point i in a weighted regression;
• ti can indicate the time or spatial location at which data point i is sampled;
• ti can simply indicate the order of the data points (i.e., setting ti = i for each i), so that A

is “aware” that data point (Xi, Yi) is the ith data point, and is thus able to use the ordering
of the data points when fitting the model.
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In particular, the algorithm A is no longer required to treat the input data points (Xi, Yi)

symmetrically, because if we swap (Xi, Yi) with (Xj ,Yj ) (and the algorithm receives tagged
data points (Xj ,Yj , ti) and (Xi, Yi, tj )), the fitted model may indeed change.3 As for the
weights wi , we require the tags t1, . . . , tn+1 to be fixed.

With the added flexibility of a nonsymmetric regression algorithm, we will need a key
modification to the methods defined earlier in Section 3.1 to maintain predictive coverage.
Our modification requires that, before applying the model fitting algorithm A, we first ran-
domly swap the tags of two of the data points in the ordering. First, draw a random index
K ∈ [n + 1] from the multinomial distribution that takes the value i with probability w̃i (de-
fined in (10)):

(17) K ∼
n+1∑
i=1

w̃i · δi .

Note that K is drawn independently from the data. We will apply our algorithm to the data ZK

(defined in (2)) in place of Z. In particular, the tagged data points are now (Xn+1, Yn+1, tK)

and (XK,YK, tn+1), that is, these two data points have swapped tags. This modification is
carried out as follows.

Nonexchangeable split conformal with a nonsymmetric algorithm. For split conformal, the
model μ̂ is pre-fitted on separate data, and does not depend on the data points (Xi, Yi) of the
holdout set—in other words, μ̂ is trivially a symmetric function of the (Xi, Yi) points. Thus,
no modification is needed, and our prediction interval (11) is unaltered.

Nonexchangeable full conformal with a nonsymmetric algorithm. First, for any y ∈ R and
any k ∈ [n + 1], define

μ̂y,k = A
((

Xπk(i), Y
y
πk(i)

, ti
) : i ∈ [n + 1]),

where πk is the permutation on [n+1] swapping indices k and n+1 (and πn+1 is the identity
permutation), and where we define

Y
y
i =

{
Yi, i = 1, . . . , n,

y, i = n + 1.

In other words, μ̂y,k is fitted by applying the algorithm A to the training data (X1, Y1), . . . ,

(Xn,Yn) together with the hypothesized test point (Xn+1, y), but with the kth and (n + 1)st
data points swapped (note that the tags tk and tn+1 are now assigned to data points (Xn+1, y)

and (Xk,Yk), respectively, after this swap).
Define the residuals from this model,

R
y,k
i =

{∣∣Yi − μ̂y,k(Xi)
∣∣, i = 1, . . . , n,∣∣y − μ̂y,k(Xn+1)
∣∣, i = n + 1.

Then, after drawing a random index K as in (17), the prediction set is given by

(18) Ĉn(Xn+1) =
{
y : Ry,K

n+1 ≤ Q1−α

(
n+1∑
i=1

w̃i · δ
R

y,K
i

)}
.

Symmetric algorithms as a special case. The symmetric setting, discussed in Section 3.1,
is actually a special case of the broader setting defined here. Specifically, for any symmet-
ric algorithm A that acts on (untagged) data points (xi, yi), we can trivially regard it as an

3For many common examples, the algorithm A will instead be symmetric as a function of the tagged data points
(Xi,Yi , ti ), but we do not require this assumption in this work.
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algorithm A′ that acts on tagged data points (xi, yi, ti) by simply ignoring the tags. For this
reason, we will only give theoretical results for the general forms of the methods given in this
section, but our theorems apply also to the symmetric setting considered in Section 3.1.

The swap step. In the case of a nonsymmetric algorithm, our swap step requires that A is
run on the swapped data set—that is, with data points (Xn+1, Yn+1, tK) and (XK,YK, tn+1),
rather than the original tagged data points (XK,YK, tK) and (Xn+1, Yn+1, tn+1). This swap
step is necessary for our theoretical guarantees to hold (in fact, it plays a key role in the
theory even for symmetric algorithms, with fixed weights wi as in (12), even though the fitted
models are unchanged in that case).

Of course, for nonsymmetric algorithm A, the swap step will alter the fitted model μ̂

produced by A and thus may affect the precision of the resulting prediction interval. The
extent to which this swap will perturb the output of the algorithm A, will undoubtedly depend
on the nature of the algorithm itself. In many practical situations, we would not expect the
random swap to have a large impact on the output of the method, since many algorithms A
applied to a large number of data points are often not very sensitive to perturbing the training
set in this fashion, although interestingly, our theoretical results do not rely on any stability
conditions or any assumptions of this type. (For comparison, if we were to instead permute
the data at random before applying the algorithm A—that is, use a permutation π chosen
uniformly at random, rather than the single swap permutation πK , so that the algorithm is
now trained on tagged data points (Xπ(i), Yπ(i), ti)—then this would restore the symmetric
algorithm assumption, but could potentially result in a highly inaccurate model since the
information carried by the tags is now meaningless.)

However, in certain settings it may be the case that the fitted model μ̂ returns predictions
that are far less accurate due to the swap. For instance, this may be the case in an autore-
gressive setting where the tag tn+1 indicates the most recent data point and thus plays a
disproportionately large role in the resulting predictions. We leave the important question of
practical implementation for such settings, and the question of how to choose algorithms A
that will not be too sensitive to the swap, to future work.

4. Theory. In this section, we establish theory on the coverage of our proposed method.
Since split conformal is a special case of full conformal (even in this nonexchangeable set-
ting), we only present theory for the nonexchangeable full conformal method.

We first need to define the map from a data sequence z = (z1, . . . , zn+1) ∈ (X × R)n+1,
with entries zi = (xi, yi), to a vector of residuals R(z). Given z, we first define the model

μ̂ = A
(
(xi, yi, ti) : i ∈ [n + 1]).

Then define the residual vector R(z) ∈R
n+1 with entries(

R(z)
)
i = ∣∣yi − μ̂(xi)

∣∣, i = 1, . . . , n + 1.

4.1. Lower bounds on coverage. Recall the notation Zi , Z, Zi defined in (1) and (2). We
now present our coverage guarantee for nonexchangeable full conformal (and consequently,
the same bound holds for nonexchangeable split conformal as a special case). This theorem
can be viewed as a generalization of Theorem 1.

THEOREM 2 (Nonexchangeable full conformal prediction). Let A be an algorithm map-
ping a sequence of triplets (Xi, Yi, ti) to a fitted function as in (16). Then the nonexchange-
able full conformal method defined in (18) satisfies

P
{
Yn+1 ∈ Ĉn(Xn+1)

} ≥ 1 − α −
n∑

i=1

w̃i · dTV
(
R(Z),R

(
Zi)).

The same result holds true for nonexchangeable split conformal.
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To summarize, we see that the coverage gap is bounded by
∑n

i=1 w̃i · dTV(R(Z),R(Zi)).
Since it holds that

dTV
(
R(Z),R

(
Zi)) ≤ dTV

(
Z,Zi)

for each i, we therefore also see that

Coverage gap ≤ ∑
i

w̃i · dTV
(
Z,Zi).

This last bound is arguably more interpretable, but could also be significantly more loose,
and we consider it an important point that the coverage gap depends on the total variation
between swapped residual vectors, and not the swapped raw data vectors. Finally, recalling
Lemma 1, we see that in the case of independent data points, we have

Coverage gap ≤ 2
∑
i

w̃i · dTV
(
(Xi, Yi), (Xn+1, Yn+1)

)
.

4.2. Upper bounds on coverage. To complement the results in the last subsection, it is
also possible to verify, for the nonexchangeable conformal method, that the procedure does
not substantially overcover—that is, under mild deviations from exchangeability, our method
is not overly conservative.

For the exchangeable setting, Lei et al. ((2018), Theorem 2.1) show that, in a setting where
the residuals Ri (for split conformal) or R

y
i (for full conformal) are distinct with probability

1, conformal prediction satisfies

1 − α ≤ P
{
Yn+1 ∈ Ĉn(Xn+1)

}
< 1 − α + 1

n + 1
.

Here we give the analogous results for our nonexchangeable methods.

THEOREM 3. For any algorithm A as in (16), if R
Yn+1,K

1 , . . . ,R
Yn+1,K
n ,R

Yn+1,K

n+1 are dis-
tinct with probability 1, then the nonexchangeable full conformal method (18) satisfies

P
{
Yn+1 ∈ Ĉn(Xn+1)

}
< 1 − α + w̃n+1 +

n∑
i=1

w̃i · dTV
(
R(Z),R

(
Zi)).

The same result holds true for nonexchangeable split conformal.

(In the split conformal context, since R
Yn+1,K

i = |Yi − μ̂(Xi)| for the pre-fitted function μ̂,
the statement becomes simpler—we simply require that the residuals |Yi − μ̂(Xi)| are distinct
with probability 1.)

From this result, we see that if w̃n+1 = 1
w1+···+wn+1 is small (which corresponds to the

effective sample size of our weighted method being large), then mild violations of exchange-
ability can only lead to mild undercoverage (as in Theorem 2) or to mild overcoverage.

Of course, when we use these methods in practice, it would be useful to know whether
overcoverage or undercoverage is to be expected; however, without further assumptions, this
cannot be determined in advance. As a simple example, if the data exhibits mild violations
of exchangeability due to the conditional variance of Y |X changing over time, then we might
see undercoverage if Var(Y |X) increases over time (and thus the residual of the test point
(Xn+1, Yn+1) is larger than typical training residuals), or overcoverage if Var(Y |X) is instead
decreasing over time.
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4.3. Remarks on the theorems. A few comments are in order to help us further under-
stand the implications of these theoretical results.

New results in the exchangeable setting. We point out that when the data happen to be
exchangeable, that is, dTV(Z,Zi) = 0 for all i, then the above results are new and cannot be
inferred from the existing conformal literature. In particular, existing conformal methods are
not able to handle nonsymmetric algorithms, which limits their applicability in many practical
settings (e.g., streaming data, as described above). In addition, our results show that, under
exchangeability, there is no coverage lost by introducing fixed weights wi into the quantile
calculations used for constructing the prediction interval; this means that we are free to use
these weights to help ensure robustness against nonexchangeability without sacrificing any
guarantees if indeed exchangeability happens to hold.

Robustness results for the original algorithms. Another interesting implication of these
new bounds is that they yield robustness results for the original algorithms. In more detail,
the original split conformal (5) and full conformal (8) algorithms presented in Section 2
can be viewed as special cases of our proposed nonexchangeable methods (11) and (18),
respectively, by taking weights w1 = · · · = wn = 1 and using a symmetric A, that is, without
tags. (As we will see in Appendix B below, the same is true for viewing jackknife+ as a
special case of the nonexchangeable jackknife+.) In this setting, our theorems establish a
new robustness result,

Coverage gap ≤
∑n

i=1 dTV(R(Z),R(Zi))

n + 1
≤

∑n
i=1 dTV(Z,Zi)

n + 1
.

For example, in the case of independent data points, applying Lemma 1 we obtain

Coverage gap ≤ 2
∑n

i=1 dTV((Xi, Yi), (Xn+1, Yn+1)))

n + 1
.

These new bounds ensure robustness of existing methods against mild violations of the ex-
changeability (or i.i.d.) assumption, and thus help explain the success of these methods on
real data, where the exchangeability assumption may not hold.

Choosing the weights. Our theoretical results above confirm the intuition that we should
give higher weights wi to data points (Xi, Yi) that we believe are drawn from a similar dis-
tribution as (Xn+1, Yn+1), and lower weights to those that are less reliable. As is always
the case with inference methods, we are faced with a tradeoff: if many weights wi are cho-
sen to be quite low, then this reduces the effective sample size of the method (e.g., for split
conformal prediction, we are reducing the effective sample size for estimating the empiri-
cal quantile of the residual distribution). Thus, overly low weights will often lead to wider
prediction intervals—at the extreme, if we choose w1 = · · · = wn = 0, this yields a cover-
age gap of zero but results in Ĉn(Xn+1) ≡R, a completely uninformative prediction interval.
How to choose weights optimally (and, even how to quantify optimality) is an interesting and
important question that we leave for future work.

Is the guarantee useful? While the upper bound on the coverage gap holds with no as-
sumptions on the distribution of the data, the result is meaningless if this upper bound is
extremely large. Thus, we would ideally use these methods in settings where we have some
a priori knowledge about the properties of the data distribution, so that the weights wi can
be chosen in advance in such a way that we believe the resulting coverage gap is likely to be
small. We emphasize in practice we likely only need qualitative (not quantitative) knowledge
of the likely deviations from exchangeability—for example, under gradual distribution drift,
a geometric decay as in wi = ρn+1−i will likely lead to a low coverage gap, without requiring
knowledge of the exact rate or nature of the distribution drift. On the other hand, if the test
point comes from a new distribution that bears no resemblance to the training data, neither
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our bound nor any other method would be able to guarantee valid coverage without further
assumptions. An important open question is whether it may be possible to determine, in an
adaptive way, whether coverage will likely hold for a particular data set, or whether that data
set exhibits high deviations from exchangeability such that the coverage gap may be large.

4.4. Examples. Before turning to our empirical results, we pause to give several exam-
ples of settings where the coverage gap bound is favorable.

Bounded distribution drift. First, consider a setting where the data points (Xi, Yi) are in-
dependent, but experience distribution drift over time. In this type of setting, we would want
to choose weights wi that decay as we move into the distant past, for example, wi = ρn+1−i

for some decay parameter ρ ∈ (0,1). If we assume that the distribution drift is bounded with
a Lipschitz-type condition,

dTV(Zi,Zn+1) ≤ ε · (n + 1 − i), i = 1, . . . , n + 1,

for some ε > 0, then the coverage gap for our proposed methods is bounded as

Coverage gap ≤ ∑
i

w̃i · dTV
(
Z,Zi) ≤ ∑

i

w̃i · 2dTV(Zi,Zn+1)

≤
n∑

i=1

ρn+1−i

1 +∑n
j=1 ρn+1−j

· 2ε · (n + 1 − i) ≤ 2ε

1 − ρ
,

which is small as long as the distribution drift parameter ε is sufficiently small.
Changepoints. In other settings with independent data points (Xi, Yi), we might have pe-

riodic large changes in the distribution rather than the gradual drift studied above—that is,
we may be faced with a changepoint. Suppose that the most recent changepoint occurred k

time steps ago, so that dTV(Zi,Zn+1) = 0 for i > n− k (but, before that time, the distribution
might be arbitrarily different from the test point, so we might even have dTV(Zi,Zn+1) = 1
for i ≤ n − k). In this setting, again taking weights wi = ρn+1−i that decay as we move into
the past, we have

Coverage gap ≤
n∑

i=1

w̃i · dTV
(
Z,Zi) ≤

n−k∑
i=1

w̃i =
∑n−k

i=1 ρn+1−i

1 +∑n
i=1 ρn+1−i

≤ ρk.

This yields a small coverage gap as long as k is large, that is, as long as we have plenty of
data observed after the most recent changepoint.

Covariate time series. Next, to highlight the distinction between dTV(Z,Zi) and
dTV(R(Z),R(Zi)), we will consider a setting where the data points (Xi, Yi) are no longer

independent. Suppose that Yi = X

i β + εi where εi

iid∼ N (0, σ 2) but where the covariates
Xi are not i.i.d. For example, the covariates may be dependent due to a time series struc-
ture, or may be independent but not identically distributed. Writing X ∈ R

(n+1)×p to denote
the covariate matrix (with ith row Xi), we will assume that vec(X) ∼ N (0,�) for some
� ∈ R

(n+1)p×(n+1)p, allowing for both nonindependent and/or nonidentically distributed
rows Xi . Now consider running full conformal with least squares regression as the base
algorithm, so that we have residuals

R(Z) = Y − X
(
X
X

)−1
X
Y = P⊥

X(Y ) = P⊥
X(ε),

where Y = (Y1, . . . , Yn+1), ε = (ε1, . . . , εn+1), and P⊥
X denotes projection to the orthogonal

complement of the column span of X. In the Supplementary Material (Barber et al. (2023)),
we prove that

(19) dTV
(
R(Z),R

(
Zi)) ≤ √

8κ� · p√
n + 1 − p

,
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where κ� is the condition number of �; if n � p2 while κ� is bounded, then this total
variation distance is very small.

On the other hand, it is likely that dTV(Z,Zi) is very large (it may even be close to the
largest possible value of 1), unless the covariates are essentially exchangeable. For example,
in dimension p = 1, we can consider the autoregressive model Xi = γXi−1 +N (0,1 − γ 2),
with X1 ∼ N (0,1), so X1, . . . ,Xn+1 are identically distributed. Then, for 2 ≤ i ≤ n we have

dTV
(
Z,Zi) ≥ dTV(Xi − γXi−1,Xn+1 − γXi−1)

= dTV
(
N
(
0,1 − γ 2),N (

0,1 + γ 2 − 2γ n+3−i)),
which is proportional to γ 2. This shows that dTV(R(Z),R(Zi)) can be vanishingly small
even when dTV(Z,Zi) is bounded away from zero.

4.5. Extensions and explorations. We now briefly describe several extensions of our gen-
eral framework.

Additive versus multiplicative bounds. In our theoretical results above, the reduction in
coverage is additive—that is, the probability P{Yn+1 /∈ Ĉn(Xn+1)} has the form α+�, where
the term � reflects the extent to which the exchangeability assumption is violated (as mea-
sured by total variation distance). If the target noncoverage level α is extremely low, then this
additive bound may represent a substantial increase in the probability of error. In Appendix C,
we give an alternative bound under a Huber contamination model, which is multiplicative
rather than additive, but holds only for the symmetric algorithm case.

Fixed versus data-dependent weights. Throughout this paper, we have worked under the
assumption that the weights wi on the conformal residuals, as well as the tags ti used in model
fitting in the nonsymmetric case, are fixed a priori. In contrast, when weighted versions of
conformal prediction are used for addressing problems such as covariate shift (Tibshirani
et al. (2019)), data censoring (Candès, Lei and Ren (2023)), or local coverage (Guan (2023)),
the weights are data-dependent, that is, wi = w(Xi) or wi = w(Xi,Xn+1), in each of these
settings. We pause here to comment on this distinction.

In practical applications of our proposed methods, it may be the case that we would like to
use weights and/or tags that are somehow random—for example, if each data point (Xi, Yi)

is gathered at a random time Ti , the weight wi and tag ti might then need to depend on Ti .
In the setting where the weights wi and/or tags ti may be random or data-dependent, our
results will still apply if the terms dTV(Z,Zi) appearing in our bounds on the coverage gap
are replaced with suitable conditional versions,

Coverage gap ≤ E

[
n∑

i=1

w̃i · dTV(Z,Zi |w1, . . . ,wn, t1, . . . , tn+1)

]
,

where now the ith term on the right-hand side is the total variation distance between the
conditional distributions of Z and Zi , conditioning on the weights and tags. We might there-
fore consider a possible extension that unifies the proposed framework with the weighted
conformal prediction (Tibshirani et al. (2019)) and/or localized conformal prediction (LCP)
(Guan (2023)) methods, where the weight wi (and, potentially, the tag ti ) placed on data point
i might now additionally incorporate data-dependent information—for example, the weight
wi might depend on both the index i, as in our framework, and on ‖Xi − Xn+1‖2, as in the
LCP framework. We leave a more detailed investigation of data dependent weights for future
work.

Are these results assuming the data is approximately exchangeable? Finally, we point
out that these coverage gap bounds are very different in flavor than simply assuming that
Z is “nearly exchangeable.” In particular, in a setting where dTV(Z, Z̃) is small for some
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exchangeable Z̃, it follows immediately that the coverage gap is bounded by dTV(Z, Z̃) for
(unweighted) split or full conformal, since these methods are guaranteed to have coverage
1 −α with exchangeable data Z̃. By comparison, our coverage gap bound

∑
i w̃i · dTV(Z,Zi)

is substantially stronger.
To see this through an example, consider a distribution where the covariates Xi are i.i.d.,

and where Yi ∼ Bernoulli(0.5 + (−1)i · ε), for some small constant ε > 0. Suppose that we
run conformal prediction without weights, wi ≡ 1. Then we have dTV(Zi,Zn+1) ≤ 2ε for
all i, and so our coverage gap bound ensures that conformal prediction has coverage at least
1 − α − 4ε. On the other hand, we have

dTV(Z, Z̃) ≈ 1 for any exchangeable Z̃.

To verify the above claim, note that under the distribution of Z, we have

� n+1
2 �∑

i=1

1{Y2i−1 < Y2i} + Bi1{Y2i−1 = Y2i} ∼ Binomial
(⌊

n + 1

2

⌋
,0.5 + ε

)
,

where Bi
iid∼ Bernoulli(0.5), while under any exchangeable distribution, the left-hand side

above is distributed as Binomial(�n+1
2 �,0.5), and these two binomial distributions have total

variation distance ≈ 1, for large n. Thus, in this example, we see that our coverage gap is low
even though it is not the case that Z is “nearly exchangeable.”

5. Experiments. In this section, we examine the empirical performance of nonex-
changeable full conformal prediction, with residual weights and allowing for a nonsymmetric
algorithm, against the original full conformal method. (Additional experiments that imple-
ment split conformal and jackknife+ can be found in the Supplementary Material.) We will
see that adding weights enables robustness against changes in the data distribution (i.e., better
coverage), while moving to a nonsymmetric algorithm enables shorter prediction intervals.4

5.1. Simulations. We consider three simulated data distributions:

• Setting 1: i.i.d. data. We generate N = 2000 i.i.d. data points (Xi, Yi), with Xi
iid∼ N (0, I4)

and Yi ∼ X

i β +N (0,1) for a coefficient vector β = (2,1,0,0).

• Setting 2: changepoints. We generate N = 2000 data points (Xi, Yi), with Xi
iid∼ N (0, I4)

and Yi ∼ X

i β(i) +N (0,1). Here β(i) is the coefficient vector at time i, and changes two

times over the duration of data collection:

β(1) = · · · = β(500) = (2,1,0,0),

β(501) = · · · = β(1500) = (0,−2,−1,0),

β(1501) = · · · = β(2000) = (0,0,2,1).

• Setting 3: distribution drift. We generate N = 2000 data points (Xi, Yi), with Xi
iid∼

N (0, I4) and Yi ∼ X

i β(i) + N (0,1). As before, β(i) is the coefficient vector at time i;

but now we set β(1) = (2,1,0,0), β(N) = (0,0,2,1), and then compute each intermediate
β(i) by linear interpolation.

4Code for reproducing the experiments in Sections 5.1 and 5.2 is available at https://rinafb.github.io/code/
nonexchangeable_conformal.zip.

https://rinafb.github.io/code/nonexchangeable_conformal.zip
https://rinafb.github.io/code/nonexchangeable_conformal.zip
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For each task, we implement the following three methods, with target coverage level 1 −
α = 0.9.

• CP+LS: full conformal prediction with least squares. We consider the original definition
of full conformal prediction (8), with μ̂ the least squares fit, that is, A is the least squares
regression algorithm.5

• NexCP+LS: nonexchangeable full conformal with least squares. We also run nonex-
changeable full conformal prediction (12) using weights wi = 0.99n+1−i , and with the
same algorithm A (least squares regression).

• NexCP+WLS: nonexchangeable full conformal with weighted least squares. Lastly, we use
nonexchangeable full conformal prediction (12) but now with a nonsymmetric algorithm,
weighted least squares regression. Specifically, to fit μ̂ given tagged data points (xi, yi, ti),
the algorithm A will run weighted least squares regression placing weight ti on data point
(xi, yi). We implement the algorithm with ti = 0.99n+1−i , and again use weights wi =
0.99n+1−i .

After a burn-in period of the first 100 time points, at each time n = 100, . . . ,N − 1 we
run the methods with training data i = 1, . . . , n and test point n + 1. The results shown are
averaged over 200 independent replications of the simulation.

Our results are shown in Figure 2, and are summarized in Table 1. In terms of coverage,
we see that all three methods have coverage ≈ 90% across the time range of the experiment
for the i.i.d. data setting (Setting 1), while for the changepoint (Setting 2) and distribution
drift (Setting 3) experiments, the two proposed methods achieve approximately the desired
coverage level, but the original full conformal method CP+LS undercovers. In particular,
as expected, CP+LS shows steep drops in coverage in Setting 2 after changepoints, while
in Setting 3 the coverage for CP+LS declines gradually over time as the distribution drift
grows. The NexCP+LS and NexCP+WLS methods are better able to maintain coverage in
these settings. (In fact, in Setting 2, we see that NexCP+WLS overcovers for a period of
time after each changepoint—this is because, a short period of time after the changepoint,
the fitted weighted least squares model is already quite accurate for the new data distribution,
but the weights w̃i are still placing some weight on residuals from data points from before
the changepoint, leading briefly to an overestimate of our model error.)

Turning to the prediction interval width, for the i.i.d. data setting (Setting 1), the three
methods show similar mean widths, although the widths for NexCP+LS and NexCP+WLS
are very slightly higher than for CP+LS; in addition, variability is higher for NexCP+LS and
NexCP+WLS than for CP+LS, which is to be expected since using decaying weights wi for
computing the prediction intervals leads to a lower effective sample size. For the changepoint
(Setting 2) and distribution drift (Setting 3) experiments, we see that NexCP+LS leads to
wider prediction intervals than the original method CP+LS, which is to be expected since
NexCP+LS is using the same model fitting algorithm but avoiding the undercoverage issue
of CP+LS. More importantly, NexCP+WLS is able to construct narrower prediction intervals
than CP+LS, while avoiding undercoverage. This is due to the fact that weighted least squares
leads to more accurate fitted models. This highlights the utility of nonsymmetric algorithms
for settings where data are not exchangeable.

5In principle, full conformal run with A given by least squares may return a prediction set Ĉ(Xn+1) that is a dis-
joint union of intervals, but this is rare in most typical settings. The same is true for NexCP and for weighted least
squares. For interpretability, we implement each method to always return an interval (i.e., if Ĉ(Xn+1) happens to
be a disjoint union of intervals, then we return its convex hull).
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FIG. 2. Simulation results showing mean prediction interval coverage and width, averaged over 200 independent
trials. The displayed curves are smoothed by taking a rolling average with a window of 10 time points.

5.2. Electricity data set. We now compare the three methods on a real data set. The
ELEC2 data set6 (Harries (1999)) tracks electricity usage and pricing in the states of New
South Wales and Victoria in Australia, every 30 minutes over a 2.5 year period in 1996–
1999. (This data set was previously analyzed by Vovk, Petej and Gammerman (2021) in the
context of conformal prediction, finding distribution drift that violated exchangeability.)

For our experiment, we use four covariates: nswprice and vicprice, the price of
electricity in each of the two states, and nswdemand and vicdemand, the usage demand
in each of the two states. Our response variable is transfer, the quantity of electricity
transferred between the two states. We work with a subset of the data, keeping only those

TABLE 1
Simulation results showing mean prediction interval coverage and width, averaged over all time points and over

200 trials

Setting 1 (i.i.d. data) Setting 2 (changepoints) Setting 3 (drift)

Coverage Width Coverage Width Coverage Width

CP+LS 0.900 3.31 0.835 5.99 0.838 3.73
NexCP+LS 0.907 3.39 0.884 6.83 0.888 4.29
NexCP+WLS 0.907 3.42 0.906 4.13 0.907 3.45

6Data was obtained from https://www.kaggle.com/yashsharan/the-elec2-dataset.

https://www.kaggle.com/yashsharan/the-elec2-dataset
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FIG. 3. Electricity data results showing coverage and prediction interval width on the original data and the
permuted data. The displayed curves are smoothed by taking a rolling average with a window of 300 time points.

observations in the time range 9:00am–12:00pm (aiming to remove daily fluctuation effects),
and discarding an initial stretch of time during which the value transfer is constant. After
these steps, we have N = 3444 time points. We then implement the same three methods as
in the simulations (CP+LS, NexCP+LS, and NexCP+WLS), using the exact same definitions
and settings as before.

Our goal is to examine how distribution drift over the duration of this 2.5 year period
will affect each of the three methods. As a sort of “control group,” we also perform the
experiment with a permuted version of this same data set—we draw a permutation π on
[N ] uniformly at random, and then repeat the same experiment on the permuted data set
(Xπ(1), Yπ(1)), . . . , (Xπ(N), Yπ(N)). The random permutation ensures that the distribution of
this data set now satisfies exchangeability.

Our results are shown in Figure 3, and summarized in Table 2. On the original data set, we
see that the unweighted method CP+LS shows some undercoverage, while both NexCP+LS
and NexCP+WLS achieve nearly the desired 90% coverage level. In particular, CP+LS shows
undercoverage during a long range of time around the middle of the duration of the experi-
ment, and then recovers, showing the effects of distribution drift in this data set—this occurs
as the response variable transfer is more noisy during the middle of the time range, as
compared to the beginning and end of the time range. On the permuted data set, on the other

TABLE 2
Electricity data results showing coverage and prediction interval width on the

original data and the permuted data, averaged over all time points

Electricity data Permuted electricity data

Coverage Width Coverage Width

CP+LS 0.852 0.565 0.899 0.639
NexCP+LS 0.890 0.606 0.908 0.652
NexCP+WLS 0.893 0.527 0.908 0.663
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hand, all three methods show coverage that is close to 90% throughout the time range, which
is expected since the permuted data set is exchangeable.

Turning now to prediction interval width, on the original data set we see that the interval
width of NexCP+LS is generally larger than that of NexCP+WLS, again demonstrating the
advantage of a nonsymmetric algorithm. For the permuted data set, on the other hand, the
interval widths are similar, although NexCP+LS and NexCP+WLS show higher variability;
this is explained by the lower effective sample size that is introduced by weighting the data
points, combined with the heavy-tailed nature of the data.

5.3. Election data set. Finally, we apply our weighted methods to predict how Americans
voted in the 2020 U.S. presidential election. Our experiments in this subsection are inspired
by the work of Cherian and Bronner (2020) for The Washington Post.

The left map in Figure 4 shows, county by county, the relative change in the number of
votes for the Democratic Candidate between 2016 and 2020, defined as

Y = Dem2020 − Dem2016

Dem2016
,

where Dem2020 is the number of Democratic votes in a given county in 2020 (and similarly
for 2016). In our experiments, the covariate vector X includes information on the makeup of
the county population by ethnicity, age, sex, median income and education (see the Supple-
mentary Material for details and for information about the data sources), given the data that
was available in 2020.

During real-time election forecasting, after observing the response Y for a subset of the
counties (those counties that have reported), the problem is to predict the vote change Y in
each of the counties where vote counts are not yet available. If the order in which counties
report their vote totals were drawn uniformly at random, then the exchangeability of the
resulting training and test sets would mean that conformal prediction can be applied in a
straightforward manner to obtain valid predictive intervals for the unobserved counties. In
practice, however, the time at which a county reports its votes may depend on various factor
such as the time zone of the county, the size of the county, and so on. Therefore, if at any
point in time we were to train on counties whose votes have already been reported, then this
can create a division of training and test sets that violates exchangeability, and can thus lead
to a failure of the predictive coverage guarantee.

FIG. 4. Left map: relative change in the number of votes for the Democratic presidential candidate from 2016
to 2020. Blue colors indicate an increase in Democratic votes and red colors indicate a decrease, with the darkest
shade of blue (respectively, red) corresponding to a 50% increase (respectively, decrease). Right map: the counties
that form the training set (in green), and all remaining counties are in the test set.
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TABLE 3
Election data results showing coverage, averaged over all test counties

Coverage

CP+LS 0.743
NexCP+LS 0.820
NexCP+WLS 0.840

Coverage

CP+QR 0.782
NexCP+QR 0.836
NexCP+WQR 0.835

To mimic this type of biased split, for the current experiment, we use counties that fall
under the Eastern time zone as our training set, and the remaining counties as the test set, as
highlighted in the right-hand map in Figure 4. This results in 1119 training points and 1957
test points.

To run the experiment, we implement the same three full conformal methods as before
(CP+LS, NexCP+LS, and NexCP+WLS). To define weights wi for NexCP, we will use some
available side information—namely, Xprev ∈ R

p , which gives the 2016 measurements for
the same set of demographic and socioeconomic variables as contained in X for 2020. The

weights are then defined as wi = e−γ ‖Xprev
i −X

prev
n+1‖2 , where we choose γ to satisfy

(
∑n

i=1 wi + 1)2∑n
i=1 w2

i + 1
= 100,

essentially corresponding to an effective training sample size of 100 once we use the weighted
training sample. We note that, since these weights depend only on data from 2016, we can
treat these weights as fixed (i.e., these weights were determined “earlier” than gathering the
data set {(Xi, Yi)}3076

i=1 in 2020). By using these weights within nonexchangeable conformal,
we are implicitly invoking a hypothesis that counties which had similar demographics in
2016 will generate approximately exchangeable data in 2020. Finally, for NexCP+WLS, we
use the same choice for the tags used for running the weighted least squares regression, that
is, setting ti = wi .

In addition, we also repeat the entire experiment with quantile regression in place of
linear regression, and use a corresponding choice of the nonconformity score function—
specifically, after fitting a lower 5% percentile function q̂0.05(·), and an upper 95% per-
centile function q̂0.95(·) to the data, the nonconformity score is given by Ŝ(Xi, Yi) =
max{q̂0.05(Xi)−Yi, Yi − q̂0.95(Xi)}, as in Romano, Patterson and Candès (2019). This yields
three additional methods: conformal prediction with quantile regression (CP+QR), nonex-
changeable conformal with quantile regression (NexCP+QR), and nonexchangeable confor-
mal with weighted quantile regression (NexCP+WQR), where the weights wi and the tags ti
are defined the same way as in linear regression.

Table 3 shows the resulting predictive coverage, averaged over the test set, for each of
the three methods, when they are run with target coverage level 1 − α = 0.9. We can see
that CP undercovers substantially, particularly when combined with least squares, due to
the construction of nonexchangeable training and test counties. In contrast, NexCP (with or
without the nonsymmetric algorithm) is able to achieve a coverage level that is much closer
to the target level 90%.

6. Proofs. In this section, we give proofs of all theorems presented so far.

6.1. Background: Proof of Theorem 1. To help build intuition for the proof techniques
we will use later on, we reformulate Vovk, Gammerman and Shafer (2005)’s proofs of these
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results, and we then explain some of the challenges in extending these existing results to our
new setting.

Let Ri = R
Yn+1
i denote the ith residual, at the hypothesized value y = Yn+1. By our as-

sumptions, the data points (X1, Y1), . . . , (Xn+1, Yn+1) are i.i.d. (or exchangeable), and the
fitted model μ̂ = μ̂Yn+1 = A((X1, Y1), . . . , (Xn+1, Yn+1)) is constructed via an algorithm A
that treats these n + 1 data points symmetrically. The residuals Ri = |Yi − μ̂(Xi)| are thus
exchangeable.

Now define the set of “strange” points

S(R) =
{
i ∈ [n + 1] : Ri > Q1−α

(
n+1∑
j=1

1

n + 1
· δRj

)}
.

That is, an index i corresponds to a “strange” point if its residual Ri is one of the �α(n + 1)�
largest elements of the list R1, . . . ,Rn+1. By definition, this can include at most α(n + 1)

entries of the list, that is, ∣∣S(R)
∣∣ ≤ α(n + 1).

Next, by definition of the full conformal prediction set, we see that Yn+1 /∈ Ĉn(Xn+1) (i.e.,
coverage fails) if and only if Rn+1 > Q1−α(

∑n+1
i=1

1
n+1 · δRi

), or equivalently, if and only if
the test point n + 1 is “strange,” that is, n + 1 ∈ S(R). Therefore, we have

P
{
Yn+1 /∈ Ĉn(Xn+1)

} = P
{
n + 1 ∈ S(R)

} = 1

n + 1

n+1∑
i=1

P
{
i ∈ S(R)

}

= 1

n + 1
E

[
n+1∑
i=1

1
{
i ∈ S(R)

}] = 1

n + 1
E
[∣∣S(R)

∣∣]
≤ 1

n + 1
· α(n + 1) = α,

where the second equality holds due to the exchangeability of R1, . . . ,Rn+1.
Challenges for the new algorithms. We will now see why the above proof does not ob-

viously extend to our nonexchangeable conformal method, even if we were to assume that
the data points (Xi, Yi) are exchangeable. First, suppose that A is symmetric (i.e., we do not
use tags ti). For the original full conformal prediction method, in the proof of Theorem 1,
exchangeability of the data points is used to verify that P{n + 1 ∈ S(R)} = P{i ∈ S(R)} for
each i ∈ [n], or equivalently,

P

{
Rn+1 > Q1−α

(
n+1∑
j=1

1

n + 1
· δRj

)}
= P

{
Ri > Q1−α

(
n+1∑
j=1

1

n + 1
· δRj

)}
.

This equality holds since the residuals Ri are exchangeable (by assumption on the data) and
since Q1−α(

∑n+1
j=1

1
n+1 · δRj

) is a symmetric function of R1, . . . ,Rn+1. For the nonexchange-
able full conformal algorithm proposed in (12), on the other hand, we would need to check
whether

P

{
Rn+1 > Q1−α

(
n+1∑
j=1

w̃j · δRj

)}
?= P

{
Ri > Q1−α

(
n+1∑
j=1

w̃j · δRj

)}
.

Even when the residuals Ri are exchangeable (i.e., when the data points are exchangeable
and the algorithm is symmetric), the weighted quantile Q1−α(

∑n+1
j=1 w̃j · δRj

) is no longer a
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symmetric function of R1, . . . ,Rn+1 if the weights w̃j are not all equal, and therefore, the
equality will no longer be true in general.

Next, if we use nonsymmetric algorithms that take tagged data points (Xi, Yi, ti) as input,
the situation becomes even more complex—even if the data points (Xi, Yi) are exchangeable,
the residuals R1, . . . ,Rn+1 may no longer be exchangeable as they depend on a fitted model
μ̂ that treats the training data points nonsymmetrically.

Finally, in this paper we are of course primarily interested in the setting where the data
points are no longer exchangeable, and in bounding the resulting coverage gap. This leads to
additional challenges, all of which we address in the proofs below.

6.2. Proof of Theorem 2. Since nonexchangeable split conformal is simply a special case
of nonexchangeable full conformal, we only need to prove the result for full conformal.

For each k ∈ [n + 1], denote

μ̂k = μ̂Yn+1,k = A
(
(Xπk(1), Yπk(1), t1), . . . , (Xπk(n+1), Yπk(n+1), tn+1)

)
,

where for any k ∈ [n], as before πk denotes the permutation on [n + 1] that swaps indices k

and n+ 1, while πn+1 is the identity permutation. Then, for any k ∈ [n+ 1], we can calculate(
R
(
Zk))

i = ∣∣Yπk(i) − μ̂k(Xπk(i))
∣∣,

and therefore,

(20)
(
R
(
ZK))

i =

⎧⎪⎪⎨⎪⎪⎩
R

Yn+1,K

i , if i �= K and i �= n + 1,

R
Yn+1,K

n+1 , if i = K,

R
Yn+1,K

K , if i = n + 1.

The definition of the nonexchangeable full conformal prediction set (18) reveals

Yn+1 /∈ Ĉn(Xn+1) ⇐⇒ R
Yn+1,K

n+1 > Q1−α

(
n+1∑
i=1

w̃i · δ
R

Yn+1,K

i

)
,

and we can equivalently write this as

(21) Yn+1 /∈ Ĉn(Xn+1) ⇐⇒ R
Yn+1,K

n+1 > Q1−α

(
n∑

i=1

w̃i · δ
R

Yn+1,K

i

+ w̃n+1 · δ+∞
)
.

Next, we verify that deterministically (20) implies

(22) Q1−α

(
n∑

i=1

w̃i · δ
R

Yn+1,K

i

+ w̃n+1 · δ+∞
)

≥ Q1−α

(
n+1∑
i=1

w̃i · δ(R(ZK))i

)
.

Indeed, if K = n + 1, then R(ZK) = RYn+1,K by (20), and so the bound holds trivially. If
instead K ≤ n, then the distribution on the left-hand side of (22) equals

n∑
i=1

w̃i · δ
R

Yn+1,K

i

+ w̃n+1 · δ+∞

= ∑
i=1,...,n;i �=K

w̃i · δ
R

Yn+1,K

i

+ w̃K(δ
R

Yn+1,K

K

+ δ+∞) + (w̃n+1 − w̃K)δ+∞,
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while the distribution on the right-hand side of (22) can be rewritten as

n+1∑
i=1

w̃i · δ(R(ZK))i

= ∑
i=1,...,n;i �=K

w̃i · δ
R

Yn+1,K

i

+ w̃Kδ
R

Yn+1,K

n+1
+ w̃n+1δ

R
Yn+1,K

K

= ∑
i=1,...,n;i �=K

w̃i · δ
R

Yn+1,K

i

+ w̃K(δ
R

Yn+1,K

K

+ δ
R

Yn+1,K

n+1
) + (w̃n+1 − w̃K)δ

R
Yn+1,K

K

,

by applying (20). Since wK ∈ [0,1] by assumption, we have w̃n+1 ≥ w̃K , which from the last
two displays verifies that (22) must hold. Combining (21) and (22), we have

Yn+1 /∈ Ĉn(Xn+1) =⇒ R
Yn+1,K

n+1 > Q1−α

(
n+1∑
i=1

w̃i · δ(R(ZK))i

)
,

or equivalently by (20),

(23) Yn+1 /∈ Ĉn(Xn+1) =⇒ (
R
(
ZK))

K > Q1−α

(
n+1∑
i=1

w̃i · δ(R(ZK))i

)
.

Next define a function S from R
n+1 to subsets of [n + 1], as follows: for any r ∈ R

n+1,

(24) S(r) =
{
i ∈ [n + 1] : ri > Q1−α

(
n+1∑
j=1

w̃j · δrj

)}
.

These are the “strange” points—indices i for which ri is unusually large, relative to the
(weighted) empirical distribution of r1, . . . , rn+1. A direct argument (see, e.g., the determin-
istic inequality in Harrison ((2012), Lemma A.1)) shows that

(25)
∑

i∈S(r)

w̃i ≤ α for all r ∈ R
n+1,

that is, the (weighted) fraction of “strange” points cannot exceed α. From (23), we have that
noncoverage of Yn+1 implies strangeness of point K :

(26) Yn+1 /∈ Ĉn(Xn+1) =⇒ K ∈ S
(
R
(
ZK))

.

Finally,

P
{
K ∈ S

(
R
(
ZK))} =

n+1∑
i=1

P
{
K = i and i ∈ S

(
R
(
Zi))}

=
n+1∑
i=1

w̃i · P{i ∈ S
(
R
(
Zi))}

≤
n+1∑
i=1

w̃i · (P{i ∈ S
(
R(Z)

)}+ dTV
(
R(Z),R

(
Zi)))

= E

[ ∑
i∈S(R(Z))

w̃i

]
+

n∑
i=1

w̃i · dTV
(
R(Z),R

(
Zi))

≤ α +
n∑

i=1

w̃i · dTV
(
R(Z),R

(
Zi)),

(27)
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where the last step holds by (25), whereas step (27) holds because K ⊥⊥ Z and Zi = πi(Z) is
a function of the data Z, and therefore, K ⊥⊥ Zi .

7. Discussion. Our main contribution in this paper was to demonstrate how conformal
prediction, which has crucially relied on exchangeability, can be modified to handle nonsym-
metric regression algorithms, and utilize weighted residual distributions in order to provide
robustness against deviations from exchangeability in the data. With no assumptions whatso-
ever on the underlying joint distribution of the data, it is possible to give a coverage guarantee
for both existing conformal methods, and our new proposed nonexchangeable conformal pro-
cedures. The coverage gap, expressing the extent to which the guaranteed coverage level is
lower than what would be guaranteed under exchangeability, is bounded by a weighted sum
of total variation distances between the residual vectors obtained by swapping the ith point
with the (n + 1)st point.

Our work opens the door to applying conformal prediction in applications where the data
is globally likely far from exchangeable but locally deviates mildly from exchangeability.
Tags and weights can be prudently used to downweight “far away” points during training and
calibration, and recover reasonable coverage in practice. We hope our work will lead to more
targeted methods that focus on custom design of nonsymmetric algorithms and weighting
schemes to improve efficiency and robustness in specific applications, through the lens of
nonexchangeable conformal prediction.

APPENDIX A: EXTENSION TO GENERAL NONCONFORMITY SCORES

In this section, we extend our new nonexchangeable inference methods for split and full
conformal to the setting of general nonconformity scores. The response is no longer required
to be real-valued, so we will consider the general setting with data points (Xi, Yi) ∈ X ×Y .

For split conformal, as usual, we assume that the nonconformity score function Ŝ : X ×
Y →R is pre-fitted. The nonexchangeable split conformal set is given by

(28) Ĉn(Xn+1) =
{
y ∈ Y : Ŝ(Xn+1, y) ≤ Q1−α

(
n∑

i=1

w̃i · δŜ(Xi,Yi)
+ w̃n+1 · δ+∞

)}
.

For the special case Ŝ(x, y) = |y − μ̂(x)| (where μ̂ is a pre-fitted function), note that this
reduces to the previous definition (11) from before.

For full conformal, we now consider algorithms A of the form

(29) A : ⋃
n≥0

(X ×Y × T )n → {measurable functions Ŝ : X ×Y →R}.

(As before, the symmetric algorithm setting, with no tags ti , is simply a special case of this
general formulation.) First, for any y ∈R and any k ∈ [n + 1], define

Ŝy,k =A
((

Xπk(i), Y
y
πk(i)

, ti
) : i ∈ [n + 1]),

where the permutation πk is defined as before (that swaps indices k and n + 1), and where

Y
y
i = Yi, i = 1, . . . , n, Y

y
n+1 = y,

as before. Define the scores from this model,

S
y,k
i = Ŝy,k(Xi, Yi), i = 1, . . . , n, S

y,k
n+1 = Ŝy,k(Xn+1, y).

Then, after drawing a random index K as in (17), the prediction set is given by

(30) Ĉn(Xn+1) =
{
y ∈ Y : Sy,K

n+1 ≤ Q1−α

(
n+1∑
i=1

w̃i · δ
S

y,K
i

)}
.



CONFORMAL PREDICTION BEYOND EXCHANGEABILITY 841

For the special case Ŝ(x, y) = |y − μ̂(x)| (where μ̂ is fitted on the same data), this again
reduces to the previous definition (18) from before.

Importantly, the same theoretical result (i.e., Theorem 2) holds for these more general
methods as well. The proof does not fundamentally rely on residual scores, and the modifi-
cations required for the general case are straightforward, so we omit the details here.

APPENDIX B: NONEXCHANGEABLE JACKKNIFE+

B.1. Background. The jackknife+ (Barber et al. (2021)) (closely related to “cross-
conformal prediction” (Vovk (2015))) is a method that offers a compromise between the com-
putational and statistical costs of the split and full conformal methods. For each i = 1, . . . , n,
define the ith leave-one-out model as

(31) μ̂−i =A
(
(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn,Yn)

)
,

fitted to the training data with ith point removed. Define also the ith leave-one-out residual
RLOO

i = |Yi − μ̂−i (Xi)|, which avoids overfitting since data point (Xi, Yi) is not used for
training μ̂−i . The jackknife+ prediction interval is then given by7[

Qα

(
n∑

i=1

1

n + 1
· δμ̂−i (Xn+1)−RLOO

i
+ 1

n + 1
· δ−∞

)
,

Q1−α

(
n∑

i=1

1

n + 1
· δμ̂−i (Xn+1)+RLOO

i
+ 1

n + 1
· δ+∞

)]
.

(32)

While in practice the jackknife+ generally provides coverage close to the target level 1 − α

(and provably so under a stability assumption on A), its theoretical guarantee only ensures
1 − 2α probability of coverage in the worst case:

THEOREM 4 (Jackknife+ (Barber et al. (2021))). If (X1, Y1), . . . , (Xn,Yn), (Xn+1, Yn+1)

are i.i.d. (or more generally, exchangeable), and the algorithm A treats the input data points
symmetrically as in (6), then the jackknife+ prediction interval defined in (32) satisfies

P
{
Yn+1 ∈ Ĉn(Xn+1)

} ≥ 1 − 2α.

This method can be viewed as a form of n-fold cross-validation; more generally, the CV+
method (Barber et al. (2021)) uses K-fold cross-validation for any desired K , and obtains a
similar distribution-free guarantee.

B.2. Methods. We next present the nonexchangeable jackknife+ method.
Nonexchangeable jackknife+ with a symmetric algorithm. We first consider the setting

where the algorithm A is symmetric. To begin, we choose weights wi ∈ [0,1], i = 1, . . . , n,
which are fixed ahead of time, and as before, this gives rise to normalized weights as in (10).
The prediction interval is then given by[

Qα

(
n∑

i=1

w̃i · δμ̂−i (Xn+1)−RLOO
i

+ w̃n+1 · δ−∞
)
,

Q1−α

(
n∑

i=1

w̃i · δμ̂−i (Xn+1)+RLOO
i

+ w̃n+1 · δ+∞
)]

,

(33)

where μ̂−i is defined as in (31), and RLOO
i = |Yi − μ̂−i (Xi)| as before.

7Abusing notation, here Qα(·) is used to denote the largest possible α-quantile if it is not unique, while as
before, Q1−α(·) denotes the smallest possible (1 − α)-quantile if not unique.
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Analogous to split and full conformal, here the original (unweighted) version of jackknife+
is recovered by choosing weights w1 = · · · = wn = 1 in the new algorithm.

Nonexchangeable jackknife+ with a nonsymmetric algorithm. We now extend the nonex-
changeable jackknife+ to allow for a nonsymmetric algorithm A. For any k ∈ [n+1] and any
i ∈ [n], define the model μ̂k−i as

μ̂k−i = A
(
(Xπk(j), Yπk(j), tj ) : j ∈ [n + 1], πk(j) /∈ {i, n + 1}).

As before, πk is the permutation on [n + 1] that swaps indices k and n + 1 (or, the identity
permutation in the case k = n + 1). Equivalently,

μ̂k−i =
{
A
(
(Xj ,Yj , tj ) : j ∈ [n]\{i, k}, (Xk,Yk, tn+1)

)
, if k ∈ [n] and k �= i,

A
(
(Xj ,Yj , tj ) : j ∈ [n]\{i}), if k = n + 1 or k = i.

In other words, this model is fitted on the training data (X1, Y1), . . . , (Xn,Yn) but with the
ith point removed, and furthermore the data point (Xk,Yk) is given the tag tn+1 rather than
tk . (We note that computing the fitted model μ̂k−i does not require knowledge of the test point
(Xn+1, Yn+1), because πk(j) = n+ 1 is excluded from the data set when running A.) For the
model μ̂k−i , we define its corresponding leave-one-out residuals as

R
k,LOO
i = ∣∣Yi − μ̂k−i (Xi)

∣∣.
To run the method, we first draw a random index K as in (17), and then compute the

nonexchangeable jackknife+ prediction interval as[
Qα

(
n∑

i=1

w̃i · δ
μ̂K−i (Xn+1)−R

K,LOO
i

+ w̃n+1 · δ−∞
)
,

Q1−α

(
n∑

i=1

w̃i · δ
μ̂K−i (Xn+1)+R

K,LOO
i

+ w̃n+1 · δ+∞
)]

.

(34)

Again, as was the case for nonexchangeable conformal, this method is a generalization of
the symmetric case for nonexchangeable jackknife+, which was presented above.

B.3. Theory. As for the proof for nonexchangeable full conformal, we first need to de-
fine how we map a data sequence z = (z1, . . . , zn+1) ∈ (X ×R)n+1, with entries zi = (xi, yi),
to the residuals Rjack+(z). In the setting of jackknife+, however, the residuals are now a ma-
trix rather than a vector. Given z, we define

(n+1
2

)
leave-two-out models: for each i, j ∈ [n+1]

with i �= j , let

μ̂−ij = μ̂−ji = A
(
(xk, yk, tk) : k ∈ [n + 1]\{i, j}).

Then define the matrix of residuals Rjack+(z) ∈ R
(n+1)×(n+1) with entries(

Rjack+(z)
)
ij = ∣∣yi − μ̂−ij (xi)

∣∣,
for all i �= j , and zeros on the diagonal.

THEOREM 5 (Nonexchangeable jackknife+). Let A be an algorithm mapping a sequence
of triplets (Xi, Yi, ti) to a fitted function as in (16). Then the nonexchangeable jackknife+
defined in (34) satisfies

P
{
Yn+1 ∈ Ĉn(Xn+1)

} ≥ 1 − 2α −
n∑

i=1

w̃i · dTV
(
Rjack+(Z),Rjack+

(
Zi)).
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The proof of this result is given in the Supplementary Material. To summarize, we see that
the coverage gap is bounded by

n∑
i=1

w̃i · dTV
(
Rjack+(Z),Rjack+

(
Zi)).

As for the full conformal guarantee, this therefore implies the coverage gap is bounded by∑
i w̃i ·dTV(Z,Zi), as well. Again, while this last bound can be viewed as more interpretable,

in many settings it is substantially more loose.
While jackknife+ is defined specifically for the residual-based nonconformity score (i.e.,

the score |y − μ̂(x)| to measure the extent to which a data point (x, y) does not conform to
observed trends in the data), in other settings we may wish to use alternative nonconformity
scores. Jackknife+ is closely related to earlier work on the cross-conformal method (Vovk
(2015), Vovk et al. (2018)). Unlike jackknife+, the cross-conformal method can be applied
to arbitrary nonconformity scores. In the Supplementary Material, we will present a nonex-
changeable version of the cross-conformal algorithm.

APPENDIX C: HUBER-ROBUSTNESS OF CONFORMAL PREDICTION

In this section, we consider an alternative form of robustness, which requires stricter as-
sumptions on the distribution drift but will yield a stronger predictive coverage guarantee.
First, consider a version of the classic Huber contamination model from robust statistics,
where most of the data is i.i.d. from the target distribution Dtarget but some fraction ε of the
data is arbitrarily corrupted. For simplicity, to start we consider observing training data point
Zi = (Xi, Yi) from the mixture model

(35) Di = (1 − ε)Dtarget + εD′
i .

Here D′
i denotes an arbitrary adversarial distribution, that could potentially corrupt the ith

training data point. However, we want to ensure coverage with respect to the target distribu-
tion Dtarget—that is, the test point Zn+1 = (Xn+1, Yn+1) will be drawn from Dtarget. Standard
conformal prediction assumes ε = 0. But, one may ask: how badly can such adversarial cor-
ruptions hurt coverage? Here, we will answer that question, but do so in a slightly more
general manner. First, define a new measure of distance between distributions,

(36) dmix
(
D,D′) = inf

{
t ≥ 0 : D = (1 − t) ·D′ + t ·D′′ for some distribution D′′}.

Abusing notation, we will write dmix(Z,Z′) = dmix(D,D′) if Z ∼ D and Z′ ∼ D′.
This “distance” can be thought of as measuring the contamination of D′, in the Huber

sense. Indeed, if the data did indeed come from the mixture model in (35), then we would have
dmix(Zi,Zn+1) ≤ ε. (We note that dmix is not a metric, and in particular, is not symmetric in
its two arguments.)

We now state our theory for our weighted version of split conformal, full conformal, and
jackknife+, in a more restricted setting where the data points are independent and the al-
gorithm is symmetric. From this point on, we assume w1 + · · · + wn > 0 to avoid a trivial
setting. Define

w̄i = wi

w1 + · · · + wn

, i = 1, . . . , n.

THEOREM 6 (Multiplicative bounds). Suppose that Z1, . . . ,Zn+1 are independent. For
any symmetric algorithm A, the nonexchangeable full conformal method (12) satisfies

P
{
Yn+1 /∈ Ĉn(Xn+1)

} ≤ α

1 −∑n
i=1 w̄i · dmix(Zi,Zn+1)
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(which includes the nonexchangeable split conformal method (11) as a special case), and the
nonexchangeable jackknife+ method (33) satisfies

P
{
Yn+1 /∈ Ĉn(Xn+1)

} ≤ 2α

1 −∑n
i=1 w̄i · dmix(Zi,Zn+1)

.

In particular, if each Zi follows an ε-Huber contamination model relative to Zn+1 as in
(35), then the bound on the noncoverage rate for both unweighted and weighted conformal
methods inflates by a factor of at most 1/(1 − ε), that is, for split or full conformal prediction
we get a noncoverage guarantee of α/(1 − ε) instead of the nominal level α. We note that the
coverage gap here is multiplicative—that is, α/(1 − ε) ≈ α + αε, and so the coverage gap is
proportional to α. If the target error level α is small, then this multiplicative bound can offer
much tighter error control, as compared to the earlier additive bounds in Theorem 2, if the
terms dmix(Zi,Zn+1) are small.

On the other hand, notice that in general, we have dmix(Zi,Zn+1) ≥ dTV(Zi,Zn+1), and
furthermore, it is possible to have dmix(Zi,Zn+1) = 1 even when dTV(Zi,Zn+1) is arbitrarily
small. In a such setting the original additive bounds may give tighter results. Of course, an ad-
ditional restriction is that the multiplicative bounds require independent data and symmetric
algorithms, whereas the earlier theorems make no such assumptions.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Conformal prediction beyond exchangeability” (DOI:
10.1214/23-AOS2276SUPP; .pdf). This supplement contains details on the nonexchangeable
cross-conformal method, additional proofs and calculations for the theoretical results in the
main paper, additional simulations, and details for the election data set.
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