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We consider the estimation of two-sample integral functionals, of the
type that occur naturally, for example, when the object of interest is a diver-
gence between unknown probability densities. Our first main result is that,
in wide generality, a weighted nearest neighbour estimator is efficient, in the
sense of achieving the local asymptotic minimax lower bound. Moreover, we
also prove a corresponding central limit theorem, which facilitates the con-
struction of asymptotically valid confidence intervals for the functional, hav-
ing asymptotically minimal width. One interesting consequence of our results
is the discovery that, for certain functionals, the worst-case performance of
our estimator may improve on that of the natural ‘oracle’ estimator, which it-
self can be optimal in the related problem where the data consist of the values
of the unknown densities at the observations.

1. Introduction. This paper concerns the estimation of two-sample density functionals
of the form

(1) T = T (f, g) :=
∫
X

f (x)φ
(
f (x), g(x)

)
dx,

where X := {x ∈ R
d : f (x) > 0, g(x) > 0}, based on independent d-dimensional random

vectors X1, . . . ,Xm,Y1, . . . , Yn, where X1, . . . ,Xm have density f and Y1, . . . , Yn have den-
sity g. The interest in the estimation of such functionals arises from many applications: for
instance, many divergences such as the Kullback–Leibler divergence, total variation and
Hellinger distances (or more generally, all ϕ-divergences) are of this form. The estimation
of such divergences is important for two-sample testing (Wornowizki and Fried (2016)), reg-
istration problems in image analysis (Hero et al. (2002)) and generative adversarial networks
(Nowozin, Cseke and Tomioka (2016)), to name just a few examples. Of course, we can
regard the problem of estimation of one-sample density functionals

(2) H(f ) :=
∫
{x:f (x)>0}

f (x)ψ
(
f (x)

)
dx,

which include Shannon and Rényi entropies, as a special case.
Motivated by these applications, the estimation of the two-sample functional (1) (or

closely related quantities) has received considerable attention in the literature recently (e.g.,
Kandasamy et al. (2015), Krishnamurthy et al. (2014), Moon et al. (2018), Singh and Póczos
(2016), Singh, Sriperumbudur and Póczos (2018)). Naturally, the one-sample version of the
problem, and special cases of it, have been highly-studied subjects over several decades (e.g.,
Beirlant et al. (1997), Berrett, Samworth and Yuan (2019), Biau and Devroye (2015), Bickel
and Ritov (1988), Birgé and Massart (1995), Han et al. (2020), Kozachenko and Leonenko
(1987), Laurent (1996), Leonenko, Pronzato and Savani (2008), Leonenko and Seleznjev
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(2010)). It turns out that many functionals of interest involve functions φ in (1) that are non-
smooth as their arguments approach zero, or functions ψ in (2) that are nonsmooth as their
argument vanishes. For instance, for the Shannon entropy, ψ(y) = − logy, while the Rényi
entropy of order κ is essentially equivalent to ψ(y) = yκ−1, which is nonsmooth as y → 0
when κ ∈ (0,1). To avoid problems caused by this lack of smoothness, many of the aforemen-
tioned authors assume that the density f is bounded away from zero on its (compact) support.
In that case, efficient estimators can sometimes be obtained; to give just one example, when f

is also s-Hölder smooth on {x : f (x) > 0} with s > d/4, Laurent (1996) obtained a Shannon
entropy estimator Ĥm satisfying

(3) mE
[{

Ĥm − H(f )
}2] →

∫
{x:f (x)>0}

f log2 f − H(f )2.

The limit in (3) is the asymptotic rescaled mean squared error of the oracle estimator H ∗
m :=

−m−1 ∑m
i=1 logf (Xi), and is optimal in a local asymptotic minimax sense (Ibragimov and

Khas’minskiı̆ (1991), Laurent (1996)).
However, the assumption that the density f is bounded away from zero on its support is

made purely for mathematical convenience; it assumes away the essential difficulty of the
problem caused by the nonsmoothness and rules out many standard densities of common
interest. In the related problem of density estimation, it is known that, depending on the loss
function and the smoothness of the densities considered, optimal rates of convergence can
be very different when densities with unbounded support are allowed (Donoho et al. (1996),
Goldenshluger and Lepski (2014), Juditsky and Lambert-Lacroix (2004)).

It is therefore of great interest to understand the ways in which low density regions interact
with the potential nonsmoothness of the functional to determine the behaviour of estimators.
Previous works in this direction have tended to focus on specific functionals and on rates of
convergence (e.g., Han et al. (2020), Tsybakov and van der Meulen (1996)). By contrast, in
this work our aim is to provide a class of estimators that are efficient for a wide spectrum of
functionals. Our estimators will be deterministically weighted versions of preliminary estima-
tors based on nearest neighbour distances. To set the scene, for integers kX ∈ {1, . . . ,m − 1}
and kY ∈ {1, . . . , n}, write ρ(kX),i,X for the (Euclidean) distance between Xi and its kXth near-
est neighbour in the sample X1, . . . ,Xi−1,Xi+1, . . . ,Xm, and write ρ(kY ),i,Y for the distance
between Xi and its kY th nearest neighbour in the sample Y1, . . . , Yn. The starting point for
the construction of our estimators is the approximation

f (Xi)Vdρd
(kX),i,X ≈ kX/m,

where Vd := πd/2/�(1 + d/2) denotes the d-dimensional Lebesgue measure of the unit
Euclidean ball in R

d ; this arises by comparing the proportion of points in a ball of radius
ρ(kX),i,X about Xi with a local constant approximation to the probability content of the same
ball. This motivates the initial estimator

(4) T̃m,n = T̃m,n,kX,kY
:= 1

m

m∑
i=1

φ

(
kX

mVdρd
(kX),i,X

,
kY

nVdρd
(kY ),i,Y

)
.

Restricting attention for simplicity of exposition to the one-sample analogue T̃m = T̃m,k of
(4) that simply replaces φ(·, ··) with ψ(·) and kX with k, it has long been known in the spe-
cial case of the Shannon entropy functional that one should debias T̃m by replacing k with
e	(k), where 	(·) denotes the digamma function (Kozachenko and Leonenko (1987)). This
amounts to adding log k − 	(k) to the original estimator. Ryu et al. (2018) argued that for
general two-sample functionals, the estimator (4) can be debiased to leading order via an
implicit inverse Laplace transform, and showed that this has an explicit expression in cer-
tain examples. It turns out, however, that even the remaining bias is large enough to preclude
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efficient estimation when d ≥ 4, and this motivates us to consider weighted linear combina-
tions of estimators of the form (4) over different choices of kX and kY , where the weights are
chosen to cancel sufficient terms in the bias expansion. A subtle question concerns the issue
of whether to apply our weights to the original estimators (4) or their debiased versions. We
address this by using fractional calculus techniques to provide an explicit expression for the
leading order remaining bias of the debiased estimators. We conclude that, in general, the
gain from the fact that fewer nonzero weights are required to obtain an efficient estimator
when applying these weights to the debiased estimator is outweighed by the added compli-
cation of the resulting estimator. However, in special cases such as the Kullback–Leibler and
Rényi divergences, where the correct explicit debiasing terms are available, the weighting
scheme simplifies and we advocate applying the weights to the debiased estimator.

Returning to the general case, our final estimators T̂m,n are based on weighted averages
of estimators of the form T̃m,n,kX,kY

for different choices of kX and kY ; such estimators are
attractive because they generalise easily to multivariate cases (unlike, for example, estima-
tors based on sample spacings), and because they are straightforward to compute. Our first
main result (Theorem 2 in Section 2), reveals that the dominant asymptotic contribution to
the squared error risk of T̂m,n is of the form v1/m + v2/n as m,n → ∞, uniformly over
appropriate classes of densities f , g, functions φ and choices of weights, for certain vari-
ance functionals v1 = v1(f, g) and v2 = v2(f, g) given in (8) below. Theorem 14 in Section 6
complements this by establishing that v1 and v2 are optimal in a local asymptotic minimax
sense. We therefore conclude that, under the conditions of these results, the estimators T̂m,n

are efficient.
In addition to studying the efficiency of our estimators T̂m,n, it is also highly desirable to be

able to derive their asymptotic distributions; such a result could be used, for instance, to obtain
an asymptotically valid confidence interval for T . Despite the fact that the summands in our
estimator are dependent, for the special case of the one-sample Shannon entropy functional,
it is straightforward to derive the asymptotic normality of the weighted nearest neighbour es-
timator, as it is well approximated by the efficient, ‘oracle’ estimator −m−1 ∑m

i=1 logf (Xi).
However, for general functionals, the natural oracle estimator may not be efficient, as ex-
plained in the next paragraph; this means that deriving the asymptotic distribution of T̂m,n

in such cases remains a significant challenge. In our second main result (Theorem 3 in Sec-
tion 2), we show how the problem can be reexpressed in a form where we can apply the
central limit theorem of Baldi and Rinott (1989) for dependent random variables for which
the degrees of the nodes in the pairwise dependency graph are controlled. Thus, the estimators
T̂m,n are indeed asymptotically normal under appropriate conditions.

As a byproduct of our efficiency analysis, we uncover a curious phenomenon that can occur
for certain functionals; for ease of exposition here, we focus on the Rényi-type functional

Hκ :=
∫
Rd

f (x)κ dx,

with κ ∈ (1/2,1). Given access to f (X1), . . . , f (Xm), the natural oracle estimator in this
setting is

H ∗
m := 1

m

m∑
i=1

f (Xi)
κ−1.

Indeed, Proposition 12 reveals that this oracle estimator can be optimal in a local asymptotic
minimax sense for the oracle problem where the practitioner seeks to estimate a one-sample
functional such as Hκ based on f (X1), . . . , f (Xm). Nevertheless, surprisingly, we find that
there exists an estimator Ĥm and general classes F of densities for which

(5) lim
m→∞ sup

f ∈F
Ef {(Ĥm − Hκ)2}
Ef {(H ∗

m − Hκ)2} = κ2 < 1.
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We refer to this as the super-oracle phenomenon. It is important to note that this is very
different from the phenomenon of superefficiency, as occurs with, for example, the Hodges
estimator (Lehmann and Casella (1998), Example 6.2.5). There, in the case of scalar pa-
rameter estimation, asymptotic improvement in mean squared error risk is possible at a set
of fixed parameter values, which form a Lebesgue null set (LeCam (1953), van der Vaart
(1997)). Moreover, and more importantly from our perspective, the superefficient asymptotic
behaviour is necessarily accompanied by worse finite-sample performance in a neighbour-
hood of points of superefficiency, so that any apparent improvement is really an artefact of
the pointwise asymptotic regime considered. By contrast, in (5), the supremum is taken inside
the limit, so that the super-oracle improvement for large m can be considered as genuine.

The remainder of the paper is organised as follows: in Section 2, we present our main re-
sults on the asymptotic squared error risk and asymptotic normality of our general two-sample
functional estimators. Section 3 is devoted to understanding the bias of these estimators and
a discussion of the potential benefits of debiasing them before computing our weighted av-
erages, while Section 4 considers their variance properties. In Section 5, we describe the
super-oracle phenomenon in greater detail, and in Section 6 we present a local asymptotic
minimax lower bound that illustrates the asymptotic optimality of our estimators and justifies
referring to them as efficient. Our main theoretical arguments are given in the Supplementary
Material (Berrett and Samworth (2023)), as well as various auxiliary results and bounds on
remainder terms.

We end this section by introducing some notation used throughout the paper. For m ∈ N0,
we write [m] := {0,1, . . . ,m}. If A is a vector, matrix or array, we write ‖A‖ for its Euclidean
vectorised norm. For x ∈ R

d and r ≥ 0, let Bx(r) := {y ∈ R
d : ‖y − x‖ ≤ r} denote the

closed Euclidean ball or radius r about x. For vectors a and b of the same dimension, we
write a ◦ b for their Hadamard product. If Z is a random variable, we write L(Z) for its
law. We write Z := (0,∞)2. For a smooth function φ : Z → R, z = (u, v) ∈ Z and j, l ∈ N,

we write φjl(z) := ∂j+lφ

∂uj ∂vl . We also use multi-index notation for derivatives, so that, for a

sufficiently smooth density f ∗ on R
d , x = (x1, . . . , xd)T ∈ R

d , t ∈ N and a multi-index α =
(α1, . . . , αd) ∈ N

d
0 with |α| := ∑d

j=1 αj = t , we write ∂αf ∗ := ∂tf ∗
∂x

α1
1 ...∂x

αd
d

. For α > 0 and

a density f ∗ on R
d , we write μα(f ∗) := ∫

Rd ‖x‖αf ∗(x) dx and ‖f ∗‖∞ := supx∈Rd f ∗(x).
For r ∈ [0,∞) and x ∈ R

d , we also define hx,f ∗(r) := ∫
Bx(r) f

∗(y) dy and, for s ∈ [0,1), let

h−1
x,f ∗(s) := inf{r ≥ 0 : hx,f ∗(r) ≥ s}. Recall that, for a, b > 0, the beta function is defined by

Ba,b := ∫ 1
0 ta−1(1 − t)b−1 dt and define also the corresponding density Ba,b(s) := sa−1(1 −

s)b−1/Ba,b for s ∈ (0,1).

2. Main results. Let X1, . . . ,Xm, and Y1, . . . , Yn be independent d-dimensional random
vectors, with X1, . . . ,Xm having density f and with Y1, . . . , Yn having density g, both with
respect to Lebesgue measure on R

d . We consider the estimation of the functional T (f, g) in
(1).

Before we can state our main theorems on the asymptotic risk and normality of our func-
tional estimators, we need some preparatory work. This will consist of definitions of the
classes of functionals and densities over which our results will hold, the definitions of our
weighted nearest neighbour estimators and the corresponding classes of allowable weights,
as well as various parameters that will play a role in the statements of our results.

Starting with our classes of functionals, we impose a condition on the function φ in (1).
It will be convenient to introduce the shorthand x∧ := x ∧ 1 and x∨ := x ∨ 1 for x ≥ 0. Let
� := R

2 × (N \ {1})× (1,∞), and for ξ = (κ1, κ2, β
∗,L) ∈ �, let � ≡ �(ξ) denote the class

of functions φ : Z → R for which the partial derivatives φ�1�2 exist for all �1, �2 ∈ N0 with
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�1 + �2 ≤ β∗ and satisfy ∣∣u�1v�2φ�1�2(u, v)
∣∣ ≤ Lu

κ1∧ uL∨v
κ2∧ vL∨

for all (u, v) ∈ Z . This is a growth condition on φ and its partial derivatives of order up
to β∗. The pre-multiplier u�1v�2 allows us to control discrepancies of φ under relative, as
opposed to absolute, changes in its arguments. Moreover, the right-hand side of the bound
affords additional flexibility regarding the level of regularity required for both small and
large values of these first and second arguments, controlled by the parameters κ1, κ2 and L.
This latter aspect will allow us to include functionals such as the Kullback–Leibler and Rényi
divergences, for which the corresponding φ is nonsmooth as the densities approach zero; see
Examples 1 and 2 below. More generally, for the ϕ-divergence functional with φ(u, v) =
ϕ(v/u), it is straightforward to express this condition in terms of a condition on ϕ.

For our classes of densities, fix β > 0, a density f on R
d , and x ∈ R

d with f (x) > 0 such
that f is β := �β�− 1-times differentiable at x. Write f (t)(x) ∈ (Rd)⊗t for the t th derivative

array of f at x for t ∈ [β], so that f
(t)
j1...jt

(x) := ∂tf
∂xj1 ...∂xjt

(x) for (j1, . . . , jt ) ∈ {1, . . . , d}t .
Now define

Mf,β(x) := inf
{
M ≥ 1 : max

t∈[β]

(‖f (t)(x)‖
f (x)

)1/t

∨ sup
y,z∈Bx(1/M),

y �=z

(‖f (β)(z) − f (β)(y)‖
f (x)‖z − y‖β−β

)1/β

≤ M

}
;

otherwise, we set Mf,β(x) := ∞. The quantity Mf,β(x) measures the smoothness of deriva-
tives of f in neighbourhoods of x, relative to f (x) itself, but does not require f to be
smooth everywhere. For instance, if f is the uniform density on the unit ball B0(1), then
Mf,β(x) = 1/(1 − ‖x‖) for ‖x‖ < 1. Now, for θ = (α,β,λ,C) ∈ (0,∞)4, and writing Fd

for the class of densities on R
d , let

Gd,θ :=
{
f ∈ Fd : μα(f ) ≤ C,‖f ‖∞ ≤ C,

∫
{x:f (x)>0}

f (x)

{
Mf,β(x)d

f (x)

}λ

dx ≤ C

}
.

Thus, in addition to requiring a moment assumption and a bounded density, the classes Gd,θ

also impose an integrability condition on our local measure of smoothness; to understand
this condition, we note that in constructing a nearest-neighbour based estimate of f (x), the
crucial quantity that controls the bias is the function

s �→ inf
{
r ≥ 0 :

∫
Bx(r)

f (y) dy ≥ s

}
=: h−1

x,f (s)

on (0,1). If f is constant in a neighbourhood of x with f (x) > 0, then h−1
x,f (s)d = s

Vdf (x)
for

small s > 0. More generally, the error of the approximation of h−1
x,f (s)d by this linear function

of s (together with higher-order Taylor expansion terms) is controlled by Mf,β(·)d
f (·) ; see Lemma

S4 in the Supplementary Material ((Berrett and Samworth (2023))) for a formal statement.

This explains why we ask for a condition on an appropriate norm of Mf,β(·)d
f (·) in our classes. It

is an attractive feature that the assumption comes in an integral form, as opposed to requiring
a boundedness condition on Mf,β(x), for instance. This integrability condition is our primary
tool for avoiding the assumption that the density is bounded away from zero on its support
(see the discussion in the Introduction). While Tsybakov and van der Meulen (1996) and
Berrett, Samworth and Yuan (2019) made first steps in this direction in the context of Shannon
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entropy estimation, the former of these works, which focused on the case d = 1, required a
strictly positive density on the whole real line; the latter relaxed this condition a little, but
made extremely stringent requirements on the behaviour of the density f in neighbourhoods
of points x0 ∈ R

d with f (x0) = 0. In particular, no Beta(a, a) density was allowed, for any
a > 0, and the only densities having points x0 with f (x0) = 0 that were shown to belong to
their classes involved all derivatives also vanishing at x0. By contrast, Proposition 1 below
shows that a multivariate spherically symmetric generalisation of a Beta(a, b) density belongs
to Gd,θ for suitable θ ∈ (0,∞)4, provided only that a, b ≥ 1 (though in fact the requirements
of our Theorem 2 on efficiency would actually also need b > d − 1 for this family).

PROPOSITION 1. Fix a, b ∈ [1,∞), and let f denote the density on R
d given by

f (x) = Cd,a,b‖x‖a−1(
1 − ‖x‖)b−11{‖x‖≤1},

where Cd,a,b := �(a+b+d−1)
dVd�(a+d−1)�(b)

. Then for any α,β > 0 and any λ ∈ (0, b/(b+d −1)), there
exists C0 > 0, depending only on α, β and λ, such that f ∈ Gd,(α,β,λ,C) for any C ≥ C0.

From Proposition 1 we also see that discontinuous densities may also belong to Gd,θ for
suitable θ ∈ (0,∞)4; in particular, the U [−1,1] density belongs to G1,(α,β,λ,C) for any α,β >

0, λ ∈ (0,1) and C ≥ 1/(1 − λ). We also remark that, similar to Berrett, Samworth and Yuan
(2019), all Gaussian densities belong to Gd,θ for any α,β > 0, λ ∈ (0,1) and sufficiently
large C > 0, and multivariate-t densities with ν degrees of freedom belong to Gd,θ for any
α ∈ (0, ν), any β > 0, λ ∈ (0, ν/(ν + d)) and C > 0 sufficiently large.

To define our main class of densities, then, for � = (0,∞)5 and ϑ = (α,β,λ1, λ2,C) ∈ �,
let Mβ(x) ≡ Mf,g,β(x) := Mf,β(x) ∨ Mg,β(x) and set

Fd,ϑ :=
{
(f, g) ∈ Gd,(α,β,λ1,C) ×Fd :

∫
X

f (x)

[{
Mβ(x)d

f (x)

}λ1 +
{
Mβ(x)d

g(x)

}λ2
]
dx ≤ C,

μ1/C(g) ≤ C,‖g‖∞ ≤ C,

∫
X

f (x)2+2κ1−1/Cg(x)2κ2−1−1/C dx ≤ C

}
.

Note that Fd,ϑ also depends on ξ through κ1 and κ2, that is, on the functional we wish
to estimate, though we suppress this in our notation. To understand the final integrability
condition in Fd,ϑ , we first note that the efficient variance v2, defined in (8) below, can be
bounded above as follows:

v2 = Var
(
f (Y1)φ01

(
f (Y1), g(Y1)

)) ≤ L2C4L+2(|κ1|+|κ2|)
∫
X

f (x)2+2κ1g(x)2κ2−1 dx,

for C ≥ 1. Thus, for large values of C, our condition is only slightly stronger than assuming
that v2 is bounded. This slight strengthening of that assumption is made so that the inte-
gral over X in v2 can be approximated by integrals over large subsets of X , uniformly over
(f, g) ∈Fd,ϑ .

We now introduce the class of weights that we consider for our estimators. To this end, for
k, I ∈ N and c ∈ (0,1), define

W(k)
I,c :=

{
w = (w1, . . . ,wk) ∈ R

k :

k∑
j=1

wj = 1 and wj = 0 for j < ck,‖w‖1 ≤ 1/c,

k∑
j=1

j
2�
d

−iwj = 0 for (�, i) ∈ ([�d/2� − 1
] × [I ]) \ {

(0,0)
}}

.

(6)
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Fixing ξ = (κ1, κ2, β
∗,L) ∈ � and c ∈ (0,1), and for wX ∈ W(kX)

�(β∗−1)/2�,c and wY ∈
W(kY )

�(β∗−1)/2�,c, we can now define our weighted functional estimators as

(7) T̂m,n ≡ T̂ wX,wY
m,n :=

kX∑
jX=1

kY∑
jY =1

wX,jX
wY,jY

T̃m,n,jX,jY
.

Note that the constraint on the support of wX ensures that all component indices with nonzero
weight are of the same order as kX , with the corresponding property also holding for wY .
Once this is satisfied, and given appropriate choices of kX , kY , the remaining constraints in
(6) will ensure that the bias of T̂m,n is asymptotically negligible.

It is convenient to use the shorthand φx := φ(f (x), g(x)), as well as (f φ10)x :=
f (x)φ10(f (x), g(x)) and (f φ01)x := f (x)φ01(f (x), g(x)) for x ∈ R

d . Our result on the
asymptotic risk of T̂m,n will be expressed in terms of

(8) v1 = v1(f, g) := Var
(
φX1 + (f φ10)X1

)
and v2 = v2(f, g) := Var

(
(f φ01)Y1

)
.

Fixing d ∈ N, ϑ = (α,β,λ1, λ2,C) ∈ � and ξ = (κ1, κ2, β
∗,L) ∈ �, we will moreover im-

pose requirements on various derived parameters. In particular, writing κ−
i := max(−κi,0)

for i = 1,2, it will also be convenient to define

ζ := κ−
1

λ1
+ κ−

2

λ2
+ d(κ−

1 + κ−
2 )

α
,

τi := 1 − max
(

d

2β
,

d

2(2 ∧ β) + d
,

d

2(2 ∧ β)β∗ ,
1

2(λi ∧ 1)(1 − ζ )

)
, i = 1,2.

(9)

Finally, then, we are in a position to state our first main result, on the asymptotic squared
error risk of T̂m,n.

THEOREM 2. Fix d ∈ N, fix ϑ = (α,β,λ1, λ2,C) ∈ � and fix ξ = (κ1, κ2, β
∗,L) ∈ �.

Assume that ζ < 1/2 and that min(τ1, τ2) > 1/β∗. Let (kL
X), (kL

Y ), (kU
X) and (kU

Y ) be de-
terministic sequences of positive integers that satisfying min(kL

Xm−1/β∗
, kL

Y n−1/β∗
) → ∞

and max(kU
Xm−(τ1−ε), kU

Y n−(τ2−ε)) → 0 for some ε > 0. Then for each c ∈ (0,1), each

wX = w
(kX)
X ∈W(kX)

�(β∗−1)/2�,c and each wY = w
(kY )
Y ∈ W(kY )

�(β∗−1)/2�,c, we have

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

max
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

∣∣∣∣Ef,g

{
(T̂m,n − T )2} − v1

m
− v2

n

∣∣∣∣ = o

(
1

m
+ 1

n

)

as m,n → ∞.

In Proposition 8 in Section 3.2, we will improve Theorem 2 by showing that when β ∈
(0,1], the same conclusion holds when we replace the term d/(2β) in the definitions of τ1, τ2
in (9) with d/(4β). This allows us to weaken the smoothness requirement on our densities for
the estimators T̂m,n to be efficient. In particular, we only need β > d/4 instead of β > d/2,
when d ∈ {1,2,3} and when β∗ may be taken to be arbitrarily large, which is the case in
several examples of interest, as illustrated below.

Theorem 2 follows immediately from combining Proposition 6 in Section 3 with Proposi-
tion 11 in Section 4, which elucidate the asymptotic bias and variance of T̂m,n respectively.
We therefore defer a description of the main ideas of our proofs until after the statements of
these results, and first illustrate Theorem 2 via several examples.
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EXAMPLE 1. Consider the Kullback–Leibler divergence, for which we may take
φ(u, v) = log(u/v). For any ε ∈ (0,1/2), any β∗ ≥ 2, and any L > (β∗ − 1)!, we have
that φ ∈ �(−ε,−ε,β∗,L). Thus, for any d ∈ N and ϑ = (α,β,λ1, λ2,C) ∈ � such that
β > d/2 and min(λ1, λ2) > 1/2, Theorem 2 tells us that we can find sequences (kX), (kY ),
(wX), (wY ) such that

sup
(f,g)∈Fd,ϑ

∣∣∣∣Ef,g

{
(T̂m,n − T )2} − 1

m
Varf log

(
f (X1)

g(X1)

)
− 1

n
Varg

(
f (Y1)

g(Y1)

)∣∣∣∣ = o

(
1

m
+ 1

n

)
.

If f and g are spherically symmetric beta densities as in Proposition 1 with parameters
(af , bf ) and (ag, bg) respectively, then we see from the proof of Proposition 1 that we have
Mβ(x) ≤ A/{‖x‖(1 − ‖x‖)}, where A > 0 depends only on d , af , bf , ag and bg . Thus,
(f, g) ∈Fd,ϑ for sufficiently large C > 0 whenever

λ1 ∈
(

0,
bf

bf + d − 1

)
,

λ2 ∈
(

0,min
{
af + d − 1

ag + d − 1
,

bf

bg + d − 1

})
,

2af − ag + d − 1 > 0 and 2bf − bg > 0.

It follows from simplifying the condition min(λ1, λ2) > 1/2 that we have efficiency whenever
β > d/2 and

min
(

bf

bf + d − 1
,
af + d − 1

ag + d − 1
,

bf

bg + d − 1

)
>

1

2
.

As mentioned above, in Section 3.2 we will see that here, as in Examples 2 and 3 below, we
can weaken the first of these conditions to β > d/4 whenever d ∈ {1,2,3}.

EXAMPLE 2. For κ ∈ (1/2,3/2), consider the κ-Rényi divergence, for which we may
take φ(u, v) = (u/v)κ−1. For any β∗ ≥ 2 and L ≥ (β∗)! we have φ ∈ �(κ − 1,1 − κ,β∗,L).
Let d ∈ N and ϑ = (α,β,λ1, λ2,C) ∈ � be such that β > d/2, such that

ζ = (κ − 1)−
λ1

+ (1 − κ)−
λ2

+ d|1 − κ|
α

<
1

2
,

and such that min(λ1, λ2) > 1/{2(1 − ζ )}. Then, by Theorem 2, we can find sequences (kX),
(kY ), (wX), (wY ) such that

sup
(f,g)∈Fd,ϑ

∣∣∣∣Ef,g

{
(T̂m,n − T )2} − κ2

m
Varf

(
f (X1)

κ−1

g(X1)κ−1

)
− (κ − 1)2

n
Varg

(
f (Y1)

κ

g(Y1)κ

)∣∣∣∣
= o

(
1

m
+ 1

n

)
.

As in Example 1, we simplify these conditions for spherically symmetric beta distributions,
but here we restrict attention to d = 1 and β > 1/4 for simplicity. When κ ∈ (1,3/2) we have
efficiency when min(af /ag, bf /bg) > κ − 1/2, and when κ ∈ (1/2,1) we have efficiency
when min(af /ag, bf /bg) > 1/(2κ).

EXAMPLE 3. Suppose we would like to estimate
∫
Rd {f (x)−g(x)}2 dx = ∫

Rd f (x)2 dx+∫
Rd g(x)2 dx − 2

∫
Rd f (x)g(x) dx. We may estimate each of these terms separately using

one- or two-sample estimators as appropriate. Then, by Theorem 2 and a corresponding
one-sample version, we can achieve a mean squared error of O(1/m + 1/n) uniformly over
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classes of densities (f, g) such that ‖f ‖∞,‖g‖∞ ≤ C, such that μ1/C(f ),μ1/C(g) ≤ C,
such that ∫

Rd
f (x)1−λ1Mβ(x)dλ1 dx ≤ C,

∫
Rd

g(x)1−λ2Mβ(x)dλ2 dx ≤ C,

and such that

(10)
∫
{x:g(x)>0}

f (x)

{
Mβ(x)d

g(x)

}λ3

dx ≤ C,

for any C > 0, for any β > d/2 and for any λ1, λ2, λ3 > 1/2. It may be the case that f has
heavier tails than g, so that (10) holds with the roles of f and g reversed. In that case, we can
obtain the same order of mean squared error by reversing the roles of the two samples in our
estimator.

To study the asymptotic normality of T̂m,n, we impose a stronger condition on the pair
(f, g): for ϑ = (α,β,λ1, λ2,C) ∈ �, let

F̃d,ϑ :=
{
(f, g) ∈ Fd,ϑ : min(v1, v2) ≥ 1/C,

max
p=3,4

max
(∫

X
f (x)1+pκ1g(x)pκ2 dx,∫

X
g(y)1+p(κ2−1)f (y)p+pκ1 dy

)
≤ C

}
.

(11)

To explain the lower bounds on v1 and v2 in (11), consider the setting in which
φ(u, v) = ϕ(v/u), as is the case with ϕ-divergences. Then, writing W := g(X1)/f (X1) and
Z := g(Y1)/f (Y1), we have that

v1 = Var
(
ϕ(W) − Wϕ′(W)

)
and v2 = Var

(
ϕ′(Z)

)
.

Now, if f = g then we have v1 = v2 = 0, and it is possible that estimators will converge to T

at a faster rate than m−1/2 +n−1/2 (with a potentially nonnormal limiting distribution). Thus,
in order to state uniform results on the asymptotic normality of T̂m,n, we work over a class of
densities for which v1 and v2 are bounded below.

The bounds on the integrals in (11) arise from considering the influence functions
given by IF1(x) := φx + (f φ10)x and IF2(y) := (f φ01)y . Our conditions on φ imply that
|IF1(x)| ≤ 2LC2L+|κ1|+|κ2|f (x)κ1g(x)κ2 and |IF2(y)| ≤ LC2L+|κ1|+|κ2|f (y)κ1+1g(y)κ2−1.
Under our assumptions, we can therefore obtain bounds on E{|IF1(X1)|p} and E{|IF2(Y1)|p}
for p = 3,4. This is helpful for the application of the central limit theorem of Baldi and
Rinott (1989).

For two random variables X and Y with distribution functions F and G (where for later
convenience we allow X and Y to take values in the extended real line), let

dK
(
L(X),L(Y )

) := sup
t∈R

∣∣F(t) − G(t)
∣∣

denote the Kolmogorov distance between the distributions of X and Y .

THEOREM 3. Suppose that the conditions of Theorem 2 hold. If (kU
X)4 log8 m = o(m)

and (kU
Y )4 log8 n = o(n), then

sup
φ∈�(ξ)

sup
(f,g)∈F̃d,ϑ

max
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

dK

(
L

(
T̂m,n − T

{v1/m + v2/n}1/2

)
,N(0,1)

)
→ 0

as m,n → ∞.
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The proof of Theorem 3 relies on a Poissonisation argument. By this, we mean that we
initially consider the related problem where instead of observing samples X1, . . . ,Xm and
Y1, . . . , Yn of fixed size, we first sample M ∼ Poi(m) and N ∼ Poi(n), and, conditional on M

and N , observe two independent samples X1, . . . ,XM
iid∼ f and Y1, . . . , YN

iid∼ g. The main
reason for doing this is because in this model, appropriately truncated nearest neighbour
distances of Xi and Xj are independent provided that Xi and Xj are sufficiently far apart.
One of the key ideas of the proof is the observation that, after Poissonisation and nearest
neighbour distance truncation, we can construct a careful partition of Rd into Voronoi cells,
such that the probability content of each cell is roughly the same and decays with the sample
size, and yet each cell has only a small number of other cells that are close to it (Proposition
S2, Berrett and Samworth (2023)). By decomposing our estimator into contributions from
each cell of the partition, we therefore obtain a sum of terms with a sparse dependency graph,
which enables us to apply the central limit theorem of Baldi and Rinott (1989).

Another key aspect of the proof of Theorem 3 is an approximation of our unweighted
nearest neighbour functional estimators by a sum of two terms, each of which only depends
on one of the samples. To describe this decomposition, we write ρ(k),i,� for the kth nearest
neighbour distance of Xi among the sample X1, . . . ,X� whenever � ≥ max(k +1, i). We will
also write ρ(k),�(x) for the kth nearest neighbour distance of x among the sample Y1, . . . , Y�

whenever � ≥ k. Now define the random variables

T (1)
m := 1

m

m∑
i=1

φ

(
kX

mVdρd
(kX),i,m

, g(Xi)

)
,

T (2)
n :=

∫
X

f (x)φ

(
f (x),

kY

nVdρ(kY ),n(x)d

)
dx.

(12)

We can think of T
(1)
m and T

(2)
n as semi-oracle estimators, where in the first case the sample

size n from density g is infinite, and in the second case, the sample size m from density f

is infinite. In particular, the crucial point is that T
(1)
m depends only on X1, . . . ,Xm and T

(2)
n

depends only on Y1, . . . , Yn. In fact, our proof reveals the interesting observation that under
our conditions,

T̃m,n −E(T̃m,n) = T (1)
m −E

(
T (1)

m

) + T (2)
n −E

(
T (2)

n

) + op

(
m−1/2 + n−1/2)

.

The main advantage of this decomposition is that it allows us to establish the asymptotic nor-
mality of T̃m,n by considering T

(1)
m and T

(2)
n separately. A further benefit is that it facilitates

control of the Poissonisation error more easily than would otherwise be the case, as we now
explain. Let M ∼ Poi(m) and N ∼ Poi(n) be independent (and independent of the data), and,
when M ≥ (kX + 1) log(em) and N ≥ kY log(en), define

T (1),p
m := 1

m

M∑
i=1

φ

(
kX

mVdρd
(kX),i,M

, g(Xi)

)
−

(
M

m
− 1

)∫
X

f (x)
{
φx + (f φ10)x

}
dx,

T (2),p
n :=

∫
X

f (x)φ

(
f (x),

kY

nVdρ(kY ),N (x)d

)
dx −

(
N

n
− 1

)∫
X

f (x)(gφ01)x dx.

If M < (kX + 1) log(em), say T
(1),p
m := 0, and similarly if N < kY log(en), say T

(2),p
n := 0.

The following result bounds the mean squared difference of these approximations.

PROPOSITION 4. Assume that the conditions of Theorem 2 hold and additionally assume
that kU

X = o(m1/4) and kU
Y = o(n1/6). Then

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

max
kX∈{kL

X,...,kU
X}
E

{(
T (1)

m − T (1),p
m

)2} = o(1/m)
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and

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

max
kY ∈{kL

Y ,...,kU
Y }
E

{(
T (2)

n − T (2),p
n

)2} = o(1/n).

Theorem 3 also facilitates the construction of asymptotically valid confidence intervals of
asymptotically minimal width, provided we can find consistent estimators of v1 and v2. To
describe our methodology here, it is convenient to introduce the shorthand

(13) f̂(kX),i := kX

mVdρd
(kX),i,X

and ĝ(kY ),i := kY

nVdρd
(kY ),i,Y

for i ∈ {1, . . . ,m}, kX ∈ {1, . . . ,m − 1} and kY ∈ {1, . . . , n}. Further, define

V̂ (1),1
m,n := 1

m

m∑
i=1

min
[{

φ(f̂(kX),i , ĝ(kY ),i) + f̂(kX),iφ10(f̂(kX),i , ĝ(kY ),i)
}2

, logm, logn
]
,

V̂ (1),2
m,n := T̃m,n + 1

m

m∑
i=1

f̂(kX),iφ10(f̂(kX),i , ĝ(kY ),i),

V̂ (2),1
m,n := 1

m

m∑
i=1

min
{
f̂(kX),i ĝ(kY ),iφ01(f̂(kX),i , ĝ(kY ),i)

2, logm, logn
}
,

V̂ (2),2
m,n := 1

m

m∑
i=1

ĝ(kY ),iφ01(f̂(kX),i , ĝ(kY ),i),

as well as V̂
(1)
m,n := max{V̂ (1),1

m,n − (V̂
(1),2
m,n )2,0} and V̂

(2)
m,n := max{V̂ (2),1

m,n − (V̂
(2),2
m,n )2,0}. It turns

out that V̂
(1)
m,n and V̂

(2)
m,n satisfy the consistency property that we seek, so, writing zq for the

(1 − q)th quantile of the standard normal distribution, v̂m,n := V̂
(1)
m,n/m + V̂

(2)
m,n/n and

Im,n,q := [
T̂m,n − zq/2v̂

1/2
m,n, T̂m,n + zq/2v̂

1/2
m,n

]
,

we have the following result.

THEOREM 5. Suppose that the conditions of Theorem 3 hold. Then

sup
φ∈�(ξ)

sup
(f,g)∈F̃d,ϑ

max
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

dK

(
L

(
T̂m,n − T

v̂
1/2
m,n

)
,N(0,1)

)
→ 0

as m,n → ∞. In particular,

sup
q∈(0,1)

sup
φ∈�(ξ)

sup
(f,g)∈F̃d,ϑ

max
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

∣∣P(
Im,n,q � T (f, g)

) − (1 − q)
∣∣ → 0

as m,n → ∞.

3. Bias.

3.1. Bias of the naive estimator. Here we state a result on the bias of the estimator (4). It
is in fact an immediate consequence of a more general statement, given as Proposition S1 in
the Supplementary Material (Berrett and Samworth (2023)), which considers a wider range
of choices of kX and kY .
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PROPOSITION 6. Fix d ∈ N, ϑ = (α,β,λ1, λ2,C) ∈ � and ξ = (κ1, κ2, β
∗,L) ∈ �.

Assume that ζ < 1/2 and that min(τ1, τ2) > 1/β∗. Suppose further that min(kL
Xm−1/β∗

,

kL
Y n−1/β∗

) → ∞ and that there exists ε > 0 with max(kU
Xm−τ1+ε, kU

Y n−τ2+ε) → 0. Then
for each i1, i2 ∈ [�d/2� − 1] and j1, j2 ∈ N0 such that j1 + j2 ≤ �(β∗ − 1)/2�, we can
find coefficients λi1i2j1j2 ≡ λi1i2j1j2(d, f, g,φ), with the properties that λ0,0,0,0 = T (f, g),
that

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

|λi1i2j1j2 | < ∞,

and that ∣∣∣∣∣Ef,g(T̃m,n) −
�d/2�−1∑
i1,i2=0

∞∑
j1,j2=0

1{j1+j2≤�(β∗−1)/2�}
λi1i2j1j2

k
j1
X k

j2
Y

(
kX

m

) 2i1
d

(
kY

n

) 2i2
d

∣∣∣∣∣
= o

(
m−1/2 + n−1/2)

as m,n → ∞, uniformly for φ ∈ �(ξ), (f, g) ∈ Fd,ϑ , kX ∈ {kL
X, . . . , kU

X} and kY ∈
{kL

Y , . . . , kU
Y }.

Proposition 6 provides conditions on the classes of densities and functionals under which
we can give a uniform asymptotic expansion of the bias of T̃m,n, up to terms of negligible
order. This expansion also holds uniformly over a range of values of kX and kY , which can
be chosen adaptively (i.e., without knowledge of the parameters of the underlying densities)
to satisfy the conditions of the theorem, for example, by setting kX = m1/β∗

logm and kY =
n1/β∗

logn.
As revealed by Corollary 7 below, Proposition 6 allows us to form weighted versions of the

estimators T̃m,n,kX,kY
, for different choices of kX and kY , so as to cancel the dominant terms

in the expression for the bias of the naive estimator. Indeed, it was this result that motivated
our choice of the class of weights that we consider in Theorem 2.

COROLLARY 7. Suppose that the conditions of Proposition 6 hold. Then for each c ∈
(0,1), each wX = w

(kX)
X ∈ W(kX)

�(β∗−1)/2�,c and each wY = w
(kY )
Y ∈ W(kY )

�(β∗−1)/2�,c, we have

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

sup
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

∣∣Ef,g

(
T̂ wX,wY

m,n

) − T (f, g)
∣∣ = o

(
m−1/2 + n−1/2)

as m,n → ∞.

In order to gain intuition about the level of smoothness of the functional required in
Corollary 7, it is helpful to consider the following (favourable) case: if our assumptions
hold for all α,β,λ2 > 0 and all λ1 < 1, then it suffices that κ1 > −1/2 and that β∗ >

max{2,1 + d/4,
2(1−κ−

1 )

1−2κ−
1

}.
The key idea of our bias proofs is a truncation argument that partitions X as Xm,n ∪ (X \

Xm,n), where

Xm,n :=
{
x ∈ X : f (x)

Mβ(x)d
≥ kX logm

m
,

g(x)

Mβ(x)d
≥ kY logn

n

}
.

Further, by Lemma S5 of the Supplementary Material (Berrett and Samworth (2023)), we
have that f and g are uniformly well-approximated in a relative sense, over balls of an ap-
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propriate radius, by their values at the centres of these balls; more precisely, for every ϑ ∈ �,
and writing A := (16d)1/(β−β) and r0(x) := 1/{AMβ(x)},

sup
(f,g)∈Fd,ϑ

sup
y∈Bx(r0(x))

∣∣∣∣f (y)

f (x)
− 1

∣∣∣∣ ∨ ∣∣∣∣g(y)

g(x)
− 1

∣∣∣∣ ≤ 1

2
.

In particular, this means that

(14) inf
x∈Xm,n

hx,f

(
r0(x)

) ≥ VdkX logm

2Adm
and inf

x∈Xm,n

hx,g

(
r0(x)

) ≥ VdkY logn

2Adn

whenever (f, g) ∈ Fd,ϑ . Thus for each x ∈ Xm,n, it is the case that with high probability,
the kX nearest neighbours of x among X1, . . . ,Xm, as well as the kY nearest neighbours of
x among Y1, . . . , Yn, lie in Bx(r0(x)). Moreover, the functions hx,f (·) and hx,g(·) can be
approximated by Taylor expansions on [0, r0(x)], which yield corresponding expansions for
their respective inverses. Since hXi,f (ρ(k),i,X)|Xi ∼ Beta(k,m − k) and hXi,g(ρ(k),i,Y )|Xi ∼
Beta(k, n + 1 − k), these facts, in combination with (14), allow us to deduce a stochastic
expansion for ρ(k),i,X and ρ(k),i,Y in terms of powers of the relevant beta random variables.
The contribution to the bias from the region Xm,n can then be computed by a Taylor expansion
of φ and using exact formulae for moments of beta random variables. For x ∈ X \Xm,n, we
have no guarantees about the proximity of the kX nearest neighbours of x among X1, . . . ,Xm,
nor the kY nearest neighbours of x among Y1, . . . , Yn; however,

P(X1 ∈ X \Xm,n) ≤ C

{(
kX logm

m

)λ1 ∨
(

kY logn

n

)λ2
}
,

so the integrability conditions in our classes Fd,ϑ allow us to control the contribution to the
bias from this region.

3.2. Tighter control of the bias when β ≤ 1. Our general bias result in Proposition S1 of
the Supplementary Material (Berrett and Samworth (2023)) has remainder terms of the order
(kX/m)β/d and (kY /n)β/d in the expansion, and leads naturally to the condition β > d/2 for
efficiency. A requirement of this level of smoothness for a parametric rate of convergence
(albeit with smoothness measured in different ways) also appears in several other related
works on functional estimation, including Leonenko and Seleznjev (2010), Kandasamy et al.
(2015) and Singh and Póczos (2016). However, other results show that d/4 smoothness (often
in the case d = 1 or while also requiring this smoothness to be at most 1) may suffice for
certain functionals without singularities (Bickel and Ritov (1988), Birgé and Massart (1995),
Giné and Nickl (2008), Laurent (1996), Leonenko and Seleznjev (2010)). The purpose of
Proposition 8 below, then, is to demonstrate that when β ∈ (0,1], it is possible to tighten our
bias bounds to have terms of the order (kX/m)2β/d and (kY /n)2β/d , so that we only require
β > d/4 for efficiency.

PROPOSITION 8. Fix d ∈ N, ϑ = (α,β,λ1, λ2,C) ∈ � with β ∈ (0,1] and ξ =
(κ1, κ2, β

∗
1 , β∗

2 ,L) ∈ �. Let kL
X ≤ kU

X , kL
Y ≤ kU

Y be deterministic sequences of positive inte-
gers such that kL

X/ logm → ∞, kL
Y / logn → ∞, kU

X = O(m1−ε) and kU
Y = O(n1−ε) for some

ε > 0. Suppose that ζ < 1. Then for each j1 ∈ [�(β∗ − 1)/2�] and j2 ∈ [�(β∗ − 1)/2�], we
can find λj1j2 ≡ λj1j2(d, f, g,φ), with the properties that λ0,0 = T (f, g),

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

|λj1j2 | < ∞,
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and that, for every ε > 0,

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

∣∣∣∣∣Ef,g(T̃m,n) −
∞∑

j1,j2=0

1{j1+j2≤�(β∗−1)/2�}
λj1j2

k
j1
X k

j2
Y

∣∣∣∣∣
= O

(
max

{
k
−β∗/2
X ,

(
kX

m

)2β/d

,

(
kX

m

)λ1(1−ζ )−ε

, k
−β∗/2
Y ,(15)

(
kY

n

)2β/d

,

(
kY

n

)λ2(1−ζ )−ε

,1/m,1/n

})
,

as m,n → ∞, uniformly for kX ∈ {kL
X, . . . , kU

X} and kY ∈ {kL
Y , . . . , kU

Y }.

The proof of Proposition 8 is given in Section S1.3 of the Supplementary Material (Berrett
and Samworth (2023)). The interest in the result arises because it reveals that the bias of
nearest-neighbour functional estimators is of smaller order than that of the corresponding
density estimators, at least when β ≤ 1 and when the function φ is smooth away from its
singularities. This reduced bias is due to the fact that the nearest-neighbour density esti-
mate biases at different values of x ∈ X cancel to leading order when we integrate over
X . While similar phenomena have been observed for kernel-based density estimates in the
context of the estimation of quadratic functionals (Giné and Nickl (2008), Leonenko and Se-
leznjev (2010)), we are not aware of corresponding results for nearest-neighbour methods or
nonsmooth functionals.

An immediate corollary of Proposition 8 is that the conclusions of Theorems 2 and 3 hold
with the d/(2β) term in the definitions of τ1 and τ2 in (9) replaced with d/(4β), provided
β ≤ 1. In particular, in this case it suffices to have β > d/4 in Examples 1, 2 and 3.

3.3. Bias of an alternative debiased estimator. As mentioned in the Introduction, build-
ing on the original debiasing idea of Kozachenko and Leonenko (1987), Ryu et al. (2018)
proposed a debiasing technique for the naive estimator T̃m,n of a general two-sample func-
tional. The initial goal of this subsection is to use fractional calculus techniques to give an
informal study of the remaining bias of these resulting estimators, with a view to addressing
the question of whether to apply our weighting scheme to the naive estimator (4) or that of
Ryu et al. (2018).

For simplicity, we will focus on the one-sample setting in (2), though all of the calcu-
lations have analogues in the two-sample setting. Suppose that there exists a sequence of
differentiable functions (ψk) for which

(16) ψ(u) =
∫ ∞

0
e−s sk−1

�(k)
ψk

(
ku

s

)
ds

for all u ∈ (0,∞); examples in the cases of Shannon and Rényi entropies will be given below.
We will consider the debiased estimator of H(f ) given by

H̃m := 1

m

m∑
i=1

ψk(f̂(k),i).

Write Xf := {x : f (x) > 0}. Then, under regularity conditions on f and ψk , since
mBeta(k,m − k) can be approximated by a �(k,1) random variable, we have that

EH̃m =
∫
Xf

f (x)

∫ 1

0
ψk

(
k

mVdh−1
x,f (s)d

)
Bk,m−k(s) ds dx
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≈
∫
Xf

f (x)

∫ 1

0

{
ψk

(
kf (x)

ms

)
− Vdf (x)h−1

x,f (s)d − s

ms2/{kf (x)} ψ ′
k

(
kf (x)

ms

)}
× Bk,m−k(s) ds dx

≈
∫
Xf

f (x)

∫ ∞
0

{
ψk

(
kf (x)

t

)
+ kt

2
d
−1�f (x)

2(d + 2){Vdnf (x)} 2
d

ψ ′
k

(
kf (x)

t

)}(17)

× e−t t k−1

�(k)
dt dx

= H(f ) + 1

2(d + 2)(Vdn)
2
d

∫
Xf

�f (x)

f (x)
2
d
−1

∫ ∞
0

e−t t k+2/d−2

�(k − 1)
ψ ′

k

(
kf (x)

t

)
dt dx.

In order to understand the behaviour of the dominant bias term on the right-hand side of (17),
for α ∈ [0,1) define the operator Dα by

(
Dαg

)
(u) := − 1

�(1 − α)

∫ ∞
u

g′(s)
(s − u)α

ds.

This is closely related to the Caputo fractional derivative (Kilbas, Srivastava and Trujillo
(2006), Section 2.4). Then, with g(s) = e−λs for some λ ∈ (0,∞), we have that

(
Dαg

)
(u) = 1

�(1 − α)

∫ ∞
u

λe−λs

(s − u)α
ds = λαe−λu = λαg(u).

From (16), we can see that

(18)
�(k − 1)

uk−1 ψ ′(u) = u−(k−1)
∫ ∞

0
e−t t k−2ψ ′

k

(
ku

t

)
dt =

∫ ∞
0

e−susk−2ψ ′
k

(
k

s

)
ds.

When d ≥ 3, we can apply the operator D2/d to both sides of (18) to simplify the inner
integral in our expression for the dominant bias term in (17) as follows:

1

�(k − 1)

∫ ∞
0

e−t t k+ 2
d
−2ψ ′

k

(
ku

t

)
dt

= uk+2/d−1

�(k − 1)

∫ ∞
0

e−susk+ 2
d
−2ψ ′

k

(
k

s

)
ds

= − uk+2/d−1

�(1 − 2/d)

∫ ∞
u

d
ds

(ψ ′(s)/sk−1)

(s − u)2/d
ds

= uk+2/d−1

�(1 − 2/d)

∫ ∞
u

(k − 1)s−kψ ′(s) − s1−kψ ′′(s)
(s − u)2/d

ds

(19)

= �(k + 2/d − 1)

�(k − 1)

∫ 1

0
B1−2/d,k+2/d−1(s)

×
{
ψ ′

(
u

1 − s

)
− u

(k − 1)(1 − s)
ψ ′′

(
u

1 − s

)}
ds.

For Shannon and Rényi entropies, both ψ ′ and ψ ′′ are constant multiples of functions g

with the property that g(xy) = g(x)g(y) for any x, y ∈ (0,∞). In these cases, the leading
order bias separates into a coefficient depending only on d , n and f and a factor that is a
function of k. Using weights, this leading order bias may be cancelled out, and it can be seen
that, when f is sufficiently regular, the next term is of order k4/d/n4/d . However, the only
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continuous functions g with this property are g(x) = xa for some a ∈ R (e.g., Dieudonné
((1969), (4.3.7), p. 86)). If the term in braces in (19) is separable for all values of k then both
u �→ ψ ′(u) and u �→ uψ ′′(u) must be separable individually, and so ψ ′(u) ∝ ua for some
a ∈ R. Thus, the Shannon and Rényi entropies are the only functionals with this property. In
general, all that can be said is that this term in the bias can be expanded as a series of the form
k2/d

n2/d (c0 + c1/k + c2/k2 + · · · ). For larger values of d , to cancel out sufficient bias that the
resulting estimator is efficient, the weighting scheme is then only marginally simpler than the
weighting scheme for the naive estimator, and the analysis is significantly more complicated.

Despite the general conclusion of our discussion in the previous paragraph, returning to
the two-sample functional setting, we now show that in the special case of the Kullback–
Leibler and Rényi divergence functionals, the debiasing scheme described above significantly
simplifies the weighting scheme, while facilitating the same conclusions regarding efficiency.
To this end, for the Kullback–Leibler divergence, we define the following class of weight
vectors:

W(k),KL
c :=

{
w = (w1, . . . ,wk) ∈ R

k :
k∑

j=1

wj = 1 and wj = 0 for j < ck,‖w‖1 ≤ 1/c,

k∑
j=1

�(j + 2�/d)

�(j)
wj = 0 for � ∈ [�d/2� − 1

] \ {0}
}
.

The analogue of the Kozachenko–Leonenko debiased estimator is

D̃m,n := 1

m

m∑
i=1

log
(

e	(kX)

mρd
(kX),i,X

nρd
(kY ),i,Y

e	(kY )

)
= T̃m,n + 	(kX) − log kX − 	(kY ) + log kY

(Ryu et al. (2018)). If the weighted estimator D̂
wX,wY
m,n is then formed as in (7) then the follow-

ing theorem elucidates its asymptotic bias. Since this result uses very similar (in fact, some-
what simpler) arguments to those in Proposition S1 in the Supplementary Material (Berrett
and Samworth (2023)), its proof, together with that of Proposition 10 below, is omitted for
brevity.

PROPOSITION 9. Fix d ∈ N, let ϑ = (α,β,λ1, λ2,C) ∈ � and let φ(u, v) = log(u/v).
Assume that

τ1 = 1 − max
(

d

2β
,

1

2λ1

)
> 0 and τ2 = 1 − max

(
d

2β
,

1

2λ2

)
> 0,

and that there exists ε > 0 such that max(kU
Xm−τ1+ε, kU

Y n−τ2+ε) → 0. Then for each c ∈
(0,1), each wX = w

(kX)
X ∈ W(kX),KL

c and each wY = w
(kY )
Y ∈ W(kY ),KL

c , we have

sup
(f,g)∈Fd,ϑ

sup
kX∈{1,...,kU

X}
kY ∈{1,...,kU

Y }

∣∣Ef,g

(
D̂wX,wY

m,n

) − T (f, g)
∣∣ = o

(
m−1/2 + n−1/2)

as m,n → ∞.

Since D̃m,n is simply a deterministic translation of T̃m,n, our variance results in Section 4
continue to hold, so the corresponding efficiency result for D̂

wX,wY
m,n is immediate.

When estimating the Rényi integral
∫
X f κg−(κ−1), for b ∈ R and c > 0, we define

W(k),R
b,c :=

{
w = (w1, . . . ,wk) ∈ R

k :
k∑

j=1

wj = 1 and wj = 0 for j < ck,‖w‖1 ≤ 1/c,
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k∑
j=1

�(j − b + 2�/d)

�(j − b)
wj = 0 for � ∈ [�d/2� − 1

] \ {0}
}
.

The corresponding debiased estimator is

Ďm,n := 1

m

m∑
i=1

�(kX)�(kY )

�(kX − κ + 1)�(kY + κ − 1)

( nρd
(kY ),i,Y

mρd
(kX),i,X

)κ−1

= k1−κ
X �(kX)kκ−1

Y �(kY )

�(kX − κ + 1)�(kY + κ − 1)
T̃m,n

(Ryu et al. (2018)). If the weighted estimator D̂
wX,wY
m,n is again formed as in (7) then the

following result provides the corresponding bias guarantee.

PROPOSITION 10. Fix d ∈ N, let ϑ = (α,β,λ1, λ2,C) ∈ � and let φ(u, v) = (u/v)κ−1

for some κ ∈ (1/2,∞). With ζ as defined as in (9), κ1 = −κ2 = κ − 1,

τ1 = 1 − max
(

d

2β
,

1

2λ1(1 − ζ )

)
and τ2 = 1 − max

(
d

2β
,

1

2λ2(1 − ζ )

)
,

assume that ζ < 1/2 and min(τ1, τ2) > 0. Suppose further that there exists ε > 0 such that
max(kU

Xm−τ1+ε, kU
Y n−τ2+ε) → 0. Then for each c ∈ (0,1), each wX = w

(kX)
X ∈ W(kX),R

κ−1,c and

each wY = w
(kY )
Y ∈ W(kY ),R

1−κ,c , we have

sup
(f,g)∈Fd,ϑ

sup
kX∈{1,...,kU

X}
kY ∈{1,...,kU

Y }

∣∣Ef,g

(
D̂wX,wY

m,n

) − T (f, g)
∣∣ = o

(
m−1/2 + n−1/2)

as m,n → ∞.

In this case, with kL
X and kL

Y defined as in Theorem 2, we have

Ďm,n

T̃m,n

− 1 = k1−κ
X �(kX)kκ−1

Y �(kY )

�(kX − κ + 1)�(kY + κ − 1)
− 1 → 0

uniformly for kX ≥ kL
X and kY ≥ kL

Y , so we can again deduce an efficiency result for D̂
wX,wY
m,n .

4. Variance. The following result provides the main asymptotic variance expansion for
our weighted estimators. Write τ ′

i = 1 − max{ d
d+2(2∧β)

, 1
2(λi∧1)(1−ζ )

} for i = 1,2.

PROPOSITION 11. Fix d ∈ N, ϑ = (α,β,λ1, λ2,C) ∈ � and ξ = (κ1, κ2, β
∗,L) ∈ �

such that ζ < 1/2, τ ′
1 > 0, τ ′

2 > 0. Let (kL
X), (kL

Y ), (kU
X) and (kU

Y ) be deterministic sequences
of positive integers satisfying min(kL

X/ log5 m,kL
Y / log5 n) → ∞ and max(kU

Xm−(τ ′
1−ε),

kU
Y n−(τ ′

2−ε)) → 0 for some ε > 0. Then for each c ∈ (0,1), each wX = w
(kX)
X ∈W(kX)

�(β∗−1)/2�,c
and each wY = w

(kY )
Y ∈ W(kY )

�(β∗−1)/2�,c, we have

sup
φ∈�(ξ)

sup
(f,g)∈Fd,ϑ

max
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

∣∣∣∣Varf,g

(
T̂ wX,wY

m,n

) − v1

m
− v2

n

∣∣∣∣ = o

(
1

m
+ 1

n

)

as m,n → ∞.
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The proof of Proposition 11 is significantly more complicated that those of the bias proofs
in Section 3, primarily owing to the need to consider the joint distribution of nearest neigh-
bour distances around two different points, X1 and X2, say. These have an intricate depen-
dence structure because, for instance, X1 may be one of the five nearest neighbours of X2,
but not vice-versa. To describe our main strategy for approximating Varf,g(T̂

wX,wY
m,n ), we write

T̂
wX,wY
m,n =: m−1 ∑m

i=1 T̂
(i)
m,n as shorthand, so that

(20) Varf,g

(
T̂ wX,wY

m,n

) = 1

m
Varf,g

(
T̂ (1)

m,n

) + m − 1

m
Covf,g

(
T̂ (1)

m,n, T̂
(2)
m,n

)
.

Using similar techniques to those employed in Section 3, it can be shown that

Varf,g

(
T̂ (1)

m,n

) → Varf φX1 .

For the covariance term in (20), we first condition on X1 and X2. It turns out that this term
can be further decomposed into a sum of two terms, representing the contributions from the
events on which X1 and X2 either share or do not share nearest neighbours. Observe that if

‖X1 − X2‖ >

{
kX

mVd

(
1 + log1/2 m

k
1/2
X

)}1/d{
f (X1)

−1/d + f (X2)
−1/d} =: R(X1,X2),

say, then, with high probability, X1 and X2 do not share any of their kX nearest neighbours
among X3, . . . ,Xm. This means that the random vector (hX1(ρ(kX),1,X), hX2(ρ(kX),2,X),1 −
hX1(ρ(kX),1,X) − hX2(ρ(kX),2,X)) has approximately the same distribution as (Z1,Z2,Z3),
say, where (Z1,Z2,Z3) ∼ Dirichlet(kX, kX,m − 2kX − 1). Writing ‖ · ‖TV for the total vari-
ation norm on signed measures, we can then exploit the facts that∥∥L(Z1,Z2) − Beta(kX,m − kX) ⊗ Beta(kX,m − kX)

∥∥
TV = O(kX/m)

and

(21)
f̂(kX),1

f (X1)
= 1 + Op

(
k
−1/2
X

)
to show that the contribution to the covariance from this region is O(1/m) (where in fact we
also determine the leading constant). On the other hand,

P
[{‖X1 − X2‖ ≤ R(X1,X2)

} ∩ {X1 ∈ Xm,n}] = O(kX/m),

and this, together with (21) again, allows us to demonstrate that the contribution to the co-
variance from this region due to the nearest neighbour distances among X3, . . . ,Xm is also
O(1/m) (with a different leading constant). The terms arising from the nearest neighbour
distances of Y1, . . . , Yn from X1 and X2 can be handled similarly, and their contributions can
be shown to be O(1/n). Combining these dominant terms results in the expansion

Covf,g

(
T̂ (1)

m,n, T̂
(2)
m,n

) = 2

m
Covf

(
φX1, (f φ10)X1

) + 1

m
Varf

(
(f φ10)X1

)
+ v2

n
+ o

(
1

m
+ 1

n

)
,

and the conclusion follows.
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5. The super-oracle phenomenon. In this section, we consider an alternative es-
timation problem, where we are still interested in the functional T (f, g) in (1), but
where instead of observing data X1, . . . ,Xm,Y1, . . . , Yn as before, we instead observe
f (X1), . . . , f (Xm), g(X1), . . . , g(Xm). Although this latter framework should be consid-
ered as an ‘oracle’ version of the problem, because typically f (X1), . . . , f (Xm) and
g(X1), . . . , g(Xm) are unknown, it is nevertheless instructive to compare the performance
of our efficient estimator T̂m,n with that of the estimator

T ∗
m := 1

m

m∑
i=1

φ
(
f (Xi), g(Xi)

)
in the new problem. The estimator T ∗

m is unbiased, and moreover, m1/2(T ∗
m −T )

d→ N(0, σ 2),
where σ 2 = σ 2(f, g) := Varf φ(f (X1), g(X1)). In fact, as we now show, T ∗

m can be the
optimal estimator, in a local asymptotic minimax sense, of T in our oracle problem. Our aim
here is not to seek maximal generality, but instead to give a simple class of examples for
which T ∗

m has this optimality property.
For simplicity of exposition, we will focus on the one-sample functional (2) with ψ(u) =

u−(1−κ) for some κ ∈ (1/2,1). Thus, we consider estimation of the Rényi functional

H(f ) =
∫ ∞

0
f (x)ψ

(
f (x)

)
dx =

∫ ∞
0

f (x)κ dx,

based on the observations f (X1), . . . , f (Xm). Moreover, we take X = [0,∞), and assume
that f (x) = e−P(x) for some convex, strictly increasing polynomial P : [0,∞) → R. Define
the function h : [0,∞) →R by

(22) h(x) := f ′(x)

f (x)

∫ x

0

{
ψ

(
f (y)

) − H(f )
}
dy = −P ′(x)

∫ x

0

{
f (y)−(1−κ) − H(f )

}
dy.

Now, for t ∈ [0,∞), define ft : [0,∞) →R by

ft (x) := {
1 − th(x)

}
f (x);

in the proof of Proposition 12 below, we will see that ft is a bounded probability density for
sufficiently small t ≥ 0. Moreover f0 = f , and we will see that {ft : t ∈ [0,∞)} constitutes a
least favourable sub-model in this problem.

Recall that (Hm) is called an estimator sequence if Hm :Rm×d →R is a measurable func-
tion for each m ∈ N. We are now in a position to state a local asymptotic minimax lower
bound that reveals the optimality of the one-sample version of T ∗

m in this context.

PROPOSITION 12. Writing I for the set of all finite subsets of [0,∞), for any estimator
sequence (H̃m) we have that

sup
I∈I

lim inf
m→∞ max

t∈I
mEf

t/m1/2

[{
Hm − H(ft/m1/2)

}2] ≥ Varf ψ
(
f (X1)

)
.

Moreover, fixing α,β > 0 and λ ∈ (0,1), there exist t0 > 0, depending only on κ ∈ (1/2,1)

and f as defined above, and C = C(α,β,λ, κ, f ) > 0 such that ft ∈ G1,θ for t ∈ [0, t0],
where θ = (α,β,λ,C).

Specialising the estimator T ∗
m to this one-sample problem, we see that T ∗

m is efficient in
the sense of van der Vaart ((1997), Chapter 25), and hence optimal in this local asymptotic
minimax sense.

The following result, which is an immediate consequence of Theorem 2, compares
the asymptotic worst-case squared error risks of T̂m,n (in the original problem with data
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X1, . . . ,Xm,Y1, . . . , Yn) and T ∗
m (in the oracle problem with data f (X1), . . . , f (Xm) and

g(X1), . . . , g(Xm)). We first define a slight modification of the class Fd,ϑ , by setting

(23) F∗
d,ϑ := {

(f, g) ∈ Fd,ϑ : min(v1, v2) ≥ 1/C
}
.

THEOREM 13. Assume the conditions of Theorem 2. Then

sup
φ∈�(ξ)

sup
(f,g)∈F∗

d,ϑ

max
kX∈{kL

X,...,kU
X}

kY ∈{kL
Y ,...,kU

Y }

Ef,g{(T̂m,n − T )2}
Ef {(T ∗

m − T )2} · σ 2/m

v1/m + v2/n
→ 1

as m,n → ∞.

To understand the implications of this theorem, consider the case where n is at least of the
same order as m, so that A := lim supn→∞ m/n ∈ [0,∞). If σ 2/(v1 + Av2) > 1, then the
worst-case risk of T̂m,n is asymptotically better than that of T ∗

m, and we have an illustration of
the super-oracle phenomenon. The one-sample functional (2) corresponds to A = 0, and the
arguments above reveal that for the Rényi-type functional

∫
Rd f (x)κ dx with κ ∈ (1/2,1),

the efficient variance in the original problem is strictly smaller than that in the oracle prob-
lem since σ 2 ≡ σ 2(f ) = Varf (f (X1)

κ−1) and v1 = κ2σ 2 (note that supf ∈F∗
d,ϑ

σ 2(f ) < ∞
whenever λ1 > 2 − 2κ). In general, the phenomenon occurs if and only if

2 Covf

(
φX1, (f φ10)X1

)
< −Varf (f φ10)X1 − Av2.

One of the surprising aspects of the super-oracle phenomenon is the fact that the es-
timator T̂m,n is constructed so as to mimic T ∗

m, by estimating f (X1), . . . , f (Xm) and
g(X1), . . . , g(Xm), but can in some cases outperform T ∗

m itself.

6. A local asymptotic minimax lower bound. Before we can state our local asymp-
totic minimax result, we require some further assumptions on the function φ. For ξ =
(κ1, κ2, β

∗,L) ∈ � let �̃(ξ) denote the subset of �(ξ) consisting of those φ for which:

(i) for all z = (u, v) ∈ Z and �1 ∈ [β∗] we have

max
�2∈[β∗−�1]

u�1v�2 |φ�1�2(z)|
|φ(z) + uφ10(z)| ∨ 1

∨ max
�2∈[β∗−�1]\{0}

u�1+1v�2−1|φ�1�2(z)|
(u|φ01(z)|) ∨ 1

≤ L;

(ii) for all ε = (ε1, ε2) ∈ (−1/L,1/L)2, z = (u, v) ∈ Z , and �1, �2 ∈ N0 with �1 + �2 ≤
β∗ − 1, we have

u�1v�2 |φ�1�2(z + ε) − φ�1�2(z)|
|φ(z) + uφ10(z)| ∨ 1

≤ L

(∣∣∣∣ ε1

u1

∣∣∣∣(β∗−�1)∧1
+

∣∣∣∣ ε2

u2

∣∣∣∣(β∗−�2)∧1)
;

u�1+1v�2−1|φ�1�2(z + ε) − φ�1�2(z)|
(u|φ01(z)|) ∨ 1

≤ L

(∣∣∣∣ ε1

u1

∣∣∣∣(β∗−�1)∧1
+

∣∣∣∣ ε2

u2

∣∣∣∣(β∗−�2)∧1)
when �2 ≥ 1.

To understand these conditions it is instructive to consider the case of ϕ-divergences, for
which φ(u, v) = ϕ(v/u) for some function ϕ. Here, (i) reduces to requiring that

sup
w>0

{
max
�∈[β∗]

w�|ϕ(�)(w)|
|ϕ(w) − wϕ′(w)| ∨ 1

, max
�∈[β∗]\{0}

w�−1|ϕ(�)(w)|
|ϕ′(w)| ∨ 1

}
< ∞,
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and a similar reduction holds for (ii). This is satisfied for the Kullback–Leibler divergence
and all Rényi divergences. Moreover, when φ(u, v) = v, we have φ ∈ �̃(0,0, β∗,1 + 1/β∗)
for every β∗ > 0.

Now fix (f, g) ∈F2
d and φ : Z →R and define the functions

h1(x) := φx + (f φ10)x −E
{
φX1 + (f φ10)X1

}
h2(x) := (f φ01)x −E

{
(f φ01)Y1

}
.

This enables us to define, for each t = (t1, t2) ∈ R
2, the densities

ft1(x) := c1(t1)K
(
t1h1(x)

)
f (x) and gt2(x) := c2(t2)K

(
t2h2(x)

)
g(x),

where K(t) := 1/2+1/(1+e−4t ) and c1(·), c2(·) are normalising constants. Our choice of K

is made so that K(0) = K ′(0) = 1, that K is smooth, and that K is bounded above and below
by positive constants. Now, for each t = (t1, t2) ∈ R

2 we define the sequence of probability
measures (Pn,t ) on R

(m+n)×d so that Pn,t has density f ⊗m

m−1/2t1
⊗ g⊗n

n−1/2t2
(here we think of m

as a function of n). It turns out that the family {Pn,t : t ∈ R
2} constitutes a least favourable

parametric sub-model for this estimation problem. For an arbitrary probability measure P on
R

(m+n)×d , we write EP to denote expectation over (X1, . . . ,Xm,Y1, . . . , Yn)
T ∼ P .

We can now state our local asymptotic minimax lower bound, and the consequent optimal-
ity property of our estimators T̂m,n.

THEOREM 14. Fix d ∈ N, ϑ = (α,β,λ1, λ2,C) ∈ � and ξ = (κ1, κ2, β
∗,L) ∈ �. Let

m = mn be any sequence of positive integers such that m → ∞ and m/n → A for some
A ∈ [0,∞], let (f, g) ∈ Fd,ϑ , let φ ∈ �̃(ξ) and let I denote the set of finite subsets of R2.

(i) For any estimator sequence (Tm,n), we have that

sup
I∈I

lim inf
n→∞ max

t=(t1,t2)∈I
nEPn,t

[{
Tm,n − T (fm−1/2t1

, gn−1/2t2
)
}2] ≥ 1

A
v1(f, g) + v2(f, g).

(ii) There exists t0 = t0(d,ϑ, ξ) ∈ (0,1] such that, for any t1, t2 ∈ (−t0, t0), we have
(ft1, gt2) ∈ Fd,ϑ̃ , where ϑ̃ = (α, β̃, λ1, λ2,C/t0) and β̃ := min{β, (1 ∧ β)(β∗ − 1)}. In par-

ticular, when the conditions of Theorem 2 hold and β̃ = β , the estimators T̂m,n in (7) satisfy

sup
I∈I

lim sup
n→∞

max
t=(t1,t2)∈I

nEPn,t

[{
T̂m,n − T (fm−1/2t1

, gn−1/2t2
)
}2] = 1

A
v1(f, g) + v2(f, g).

Recall, for example, that for both the Kullback–Leibler divergence and all Rényi-type
divergences, we can take β∗ large enough that β̃ = β . In these and other cases for which the
conditions hold, then, the local asymptotic minimax bounds in Theorem 14 justify the claim
that suitably chosen versions of our weighted nearest neighbour estimator (7) are efficient
over these classes of densities and functionals.

We conclude with a few extensions of Theorem 14. The condition β̃ = β can be weak-
ened to β̃ > d/2 (or in fact β̃ > d/4 when d ∈ {1,2,3}), at the expense of slightly stronger
conditions on the tuning parameters in the definition of T̂m,n. Theorem 14(i) implies a (non-
local) minimax lower bound over the classes F∗

d,ϑ ⊆ Fd,ϑ from (23), and this matches the
upper bound in Theorem 2 over Fd,ϑ . Theorem 14(i) may also be extended to broader classes
of loss functions, namely those that have closed, convex, symmetric sub-level sets; see van
der Vaart and Wellner ((1996), Theorem 3.11.5) for details. Finally, Theorem 3 allows us
to extend Theorem 2, and consequently Theorem 14(ii), to Lq -losses with q ∈ (0,2). The
combination of these results implies that our estimators are asymptotically optimal in a local
asymptotic minimax sense for these Lq losses too; we omit formal statements for brevity.
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