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Let B = (Bx)x∈Rd be a collection of N(0,1) random variables forming
a real-valued continuous stationary Gaussian field on R

d , and set C(x −y) =
E[BxBy ]. Let ϕ : R → R be such that E[ϕ(N)2] < ∞ with N ∼ N(0,1),
let R be the Hermite rank of ϕ, and consider Yt = ∫

tD ϕ(Bx)dx, t > 0 with
D ⊂ R

d compact.
Since the pioneering works from the 1980s by Breuer, Dobrushin, Major,

Rosenblatt, Taqqu and others, central and noncentral limit theorems for Yt

have been constantly refined, extended and applied to an increasing number
of diverse situations, to such an extent that it has become a field of research
in its own right.

The common belief, representing the intuition that specialists in the sub-
ject have developed over the last four decades, is that as t → ∞ the fluctua-
tions of Yt around its mean are, in general (i.e., except possibly in very special
cases), Gaussian when B has short memory, and non-Gaussian when B has
long memory and R ≥ 2.

We show in this paper that this intuition forged over the last 40 years can
be wrong, and not only marginally or in critical cases. We will indeed bring
to light a variety of situations where Yt admits Gaussian fluctuations in a long
memory context.

To achieve this goal, we state and prove a spectral central limit theorem,
which extends the conclusion of the celebrated Breuer–Major theorem to sit-
uations where C /∈ LR(Rd). Our main mathematical tools are the Malliavin–
Stein method and Fourier analysis techniques.

1. Introduction. Fix a dimension d ≥ 2, and consider a real-valued almost surely con-
tinuous Gaussian field (Bx)x∈Rd defined on R

d . Assume furthermore that B is stationary,
that is, there is a function C : Rd →R such that

(1) Cov(Bx,By) = C(x − y), x, y ∈ R
d,

and suppose that Bx ∼ N(0,1) for all x ∈ R
d or, equivalently, that E[Bx] = 0 and C(0) = 1.

As a second ingredient, consider a measurable function ϕ :R →R such that

(2) E
[
ϕ(N)2] < ∞ for N ∼ N(0,1).

Our object of interest in this paper is

(3) Yt =
∫
tD

ϕ(Bx) dx, t > 0,

where D ⊂ R
d is compact with Vol(D) > 0 and tD := {tx|x ∈ D}. Well-posedness of (3) as

a random variable in L2(�) is ensured by Proposition 2.1 and the almost sure continuity of
(Bx)x∈Rd . We also observe that the continuity of B , together with its stationarity, implies1
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1Indeed, since |B0(Bx+h − Bx)| ≤ B2

0 + 1
2B2

x + 1
2B2

x+h, by applying the generalized dominated convergence
theorem we have C(x + h) − C(x) = E[B0(Bx+h − Bx)] → 0 as h → 0.

737

https://imstat.org/journals-and-publications/annals-of-probability/
https://doi.org/10.1214/23-AOP1669
mailto:leonardo.maini@uni.lu
mailto:ivan.nourdin@uni.lu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


738 L. MAINI AND I. NOURDIN

the continuity of its covariance function C, a property that will be needed to evoke Bochner’s
theorem later in (14).

Studying the asymptotic behavior of functionals of the form (3) dates back from the 1980s,
with seminal works by Breuer and Major [4], Dobrushin and Major [6], Rosenblatt [25] and
Taqqu [27]. Since then, limit theorems for (3) have been constantly investigated, and represent
nowadays a central theme in the modern probability theory.

We note that many interesting geometric quantities associated with the Gaussian field
(Bx)x∈Rd can be represented as functionals of the form (3). For instance, the choice ϕ =
1(−∞,u] (resp., ϕ = 1[u,∞)), u ∈ R corresponds to the volume of the lower (resp., upper) level
sets of (Bx)x∈Rd .

Since (2) holds, we can decompose ϕ in Hermite polynomials (see, e.g., [19], Section 1.4)
as

(4) ϕ = E
[
ϕ(N)

] +
∞∑

q=R

aqHq with R ≥ 1 such that aR 	= 0,

where Hq denotes the qth Hermite polynomial and aq = aq(ϕ) = 1
q!E[ϕ(N)Hq(N)] ∈R. The

integer R ≥ 1 is called the Hermite rank of ϕ. We also define the second Hermite rank R′ ≥ 2
of ϕ as the Hermite rank of ϕ(x) − E[ϕ(N)] − aRHR(x) (if ϕ(x) = E[ϕ(N)] + aRHR(x),
we set R′ = ∞).

In the present paper, we are more specifically interested in the asymptotic behavior of

(5)
Yt − mt

σt

, t → ∞,

where we have Yt ∈ L2(�) for all t , and where we note mt = E[Yt ] and σt = √
Var(Yt ) > 0.

For simplicity, to ensure that σt > 0 for all t , we will assume for the rest of the paper the
existence of some k ≥ 1 such that a2k 	= 0,2 or equivalently that ϕ is not an odd function. As
an illustration of what may happen when ϕ is odd; see (22).

Throughout all the paper, for two functions f,g : R+ →R+ we write

(6) f (t) � g(t)

to indicate that f (t) = O(g(t)) and g(t) = O(f (t)) as t → ∞.

1.1. Previous results. Given its importance in our paper, we start with the celebrated
Breuer–Major theorem, stated here in its continuous form.

THEOREM 1.1 (Breuer, Major [4]). Let B = (Bx)x∈Rd be a real-valued continuous
centered Gaussian field on R

d , assumed to be stationary and to have unit variance. Let
ϕ : R → R be such that E[ϕ(N)2] < ∞ with N ∼ N(0,1), let R be the Hermite rank of
ϕ, consider Yt defined by (3), and recall the definition (1) of the covariance function C.

If
∫
Rd |C(x)|R dx < ∞, then t− d

2 (Yt −E[Yt ]) law→ N(0, σ 2) where

(7) σ 2 = Vol(D)

∞∑
q=R

q!a2
q

∫
Rd

C(z)q dz ≥ 0.

In particular, if ϕ is not odd, then σ 2 > 0, σ 2
t � td and

Yt − mt

σt

law→ N(0,1).

2This comes from the fact that σ 2
t = Var(Yt ) = ∑∞

q=R q!a2
q

∫
(tD)2 Cq(x − y)dx dy.
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To describe the asymptotic behavior in the case where C /∈ LR(Rd) (i.e., when we cannot
apply the Breuer–Major Theorem 1.1), we have to be more precise on the behavior of C at
infinity. In the papers studying limit theorem for (5) in a general framework (i.e., not for a
particular model), it is often (if not always) assumed that

(8) C(x) = |x|−βL
(|x|),

with β ∈ (0,∞) and L : R+ → R slowly varying (i.e., satisfying L(λr)/L(λ) → 1 as λ →
∞, for every fixed r > 0). The following three different situations (i)–(ii)–(iii) then occur:

(i) If β > d
R

, then C ∈ LR(Rd) and we say that we are in the short-memory case. We

deduce from Breuer–Major Theorem 1.1 that t−d/2(Yt −E[Yt ]) law→ N(0, σ 2).
(ii) If β = d

R
, we are in a critical case. Although C /∈ LR(Rd), fluctuations of Yt around

its mean are still asymptotically Gaussian (see, e.g., [4], Theorem 1’, [17], Section 5, and
[18], Theorem 1).

(iii) If β < d
R

, then C /∈ LR(Rd) and we say that we are in the long-memory case. A

theorem of Dobrushin and Major [6] asserts that t−(d−Rβ
2 )L−R/2(t)(Yt −E[Yt ]) law→ Z where,

up to a multiplicative constant, Z is the Hermite distribution of order R and self-similarity
index H ∈ (0,1) (with H depending only on β). Since we do not use it in the sequel, we do
not give its precise definition here. (The interested reader can, e.g., consult [28].) Let us only
stress here that the Hermite distribution of order R belongs to the Rth Wiener chaos, and so
is not Gaussian as soon as R ≥ 2.

1.2. Motivating examples. The intuition we can naturally develop from the previous (i)–
(ii)–(iii) (and that represents the common intuition forged by the papers written on the subject
over the last 40 years) is that Yt defined by (3) displays Gaussian (resp., non-Gaussian)
fluctuations when the Gaussian field B has short (resp., long) memory, and this whatever the
function ϕ with Hermite rank R ≥ 2. (The case R = 1 is apart.3)

As anticipated, we will show in this paper that this intuition can be wrong, and not only
marginally or in critical cases. We will indeed state a central limit theorem (Theorem 1.2
below) whose conclusion is valid provided that a certain spectral condition is satisfied. As we
will see, this may lead to Gaussian fluctuations in a long memory context, in total contrast
with Dobrushin and Major [6] (see (iii) above).

Recently, Berry’s Random Wave Model (BRWM) has attracted a lot of attention. It is de-
fined as follows. Choose the dimension d = 2 and consider the centered continuous Gaussian
field B on R

2 with covariance E[BxBy] = C(x − y) = J0(|x − y|), with J0 the Bessel func-
tion of the first kind of order 0 (see Section 2.2 for its definition and some properties); in
particular, we have

(9) C(x) =
√

2

π
|x|− 1

2 cos
(
|x| − π

4

)
+ O

(|x|− 3
2
)

as |x| → ∞;

see, for example, [11], Theorem 4. This field, called in this way in honor of Berry who intro-
duced it in the seminal paper [2], can be seen as a universal Gaussian field emerging as the
local scaling limit of a number of random fields on two-dimensional manifolds; see, for exam-
ple, [5] and the references therein. It is widely regarded as a popular model for the Laplacian
eigenfunctions (with large eigenvalue t2) of classically chaotic billiards, hence its importance

3The case where R = 1 is apart since, whatever the memory, we generally obtain Gaussian fluctuations. But
this is for different reasons that we understand better in the functional version: in the short memory case, the limit
is a standard Brownian motion, while in the long memory case the limit is a fractional Brownian motion.
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in quantum mechanics. Indeed, integrating ϕ(Bx) over tD is the same as integrating ϕ(Btx)

over the fixed domain D, after a change of variable. As we will see, our Theorem 1.2 will al-
low to prove the Gaussian fluctuations of

∫
D ϕ(Btx) dx for many functionals that were never

investigated in the literature, in particular for the cases R = 2 and R = 1 in (10), enriching
the knowledge on the geometric properties of the Berry’s random wave model. Indeed, to
the best of our knowledge, so far Gaussian fluctuations were proved only for (3) under the
assumption R ≥ 4 (see, e.g., [15]), or for nodal set volumes (see [21]), where the latter cannot
be expressed in the form (3).

If we compare (9) with (8), it is like we have β = 1
2 and that we had replaced the slowly

varying function L in (8) by the bounded and oscillatory function cos(· − π
4 ). As we will

see, this replacement is all but insignificant in the presence of long memory. Indeed, taking,

for example, D compact such that D = D̊ and with smooth ∂D and nonvanishing Gaussian
curvature, if we apply our main result (Theorem 1.2 below) for R ∈ {1,2,4} and Breuer–
Major theorem for R ≥ 5, we obtain (recalling that R, resp., R′, denotes the Hermite rank,
resp., the second Hermite rank, of the nonodd function ϕ):

(10) σ 2
t �

⎧⎪⎪⎨⎪⎪⎩
t3 if R = 2 or (R = 1 and R′ = 2),

t2 log(t) if R = 4 or (R = 1 and R′ = 4),

t2 if R ≥ 5 or (R = 1 and R′ ≥ 5)

and

(11)
Yt − mt

σt

law→ N(0,1) as t → ∞.

Indeed, Gaussian fluctuations (11) and asymptotics (10) follow directly from (9) and the
Breuer–Major Theorem 1.1 when R ≥ 5, because in this case we have

∫
Rd |C(x)|R dx < ∞.

The case R = 4 is comparable with the situation (ii) in the model (8), since β = 1
2 = d

R
;

Gaussian fluctuations (11) and asymptotic (10) displaying a logarithmic correction are then
not surprising, since in agreement with what is usually observed in critical cases. In contrast,
the fact that we still have Gaussian fluctuations in (11) with unconventional rate when R ∈
{1,2} is very surprising. Indeed, since β = 1

2 < 1 ≤ d
R

in this case, we are in the long-memory
case where non-Gaussian fluctuations are usually the rule; see (iii). This last case turns out to
be the most important, since R = 1 and R = 2 are the most common values in applications.

As we will see, what we just described (Gaussian fluctuations in a long memory frame-
work) for BRWM is not an isolated phenomenon. In fact, we are going to state and prove
Theorem 1.2 (our main result), which not only explains in a clear way the phenomenon ob-
served for BRWM, but also bring to light an easy-to-check condition on the spectral measure
of a general Gaussian field B (see (20) below) to imply Gaussian fluctuations for Yt .

We conclude this section by emphasizing that Gaussian fluctuations in presence of long
memory have already been observed in the literature in other (non-Euclidean) contexts, in
particular for integral functionals of random Laplace eigenfunctions on the sphere S

2, see
[14] for more details.

1.3. Main result. In order to state Theorem 1.2, we have to introduce a certain number
of further quantities and notation. We continue to let B , ϕ and Yt be as described in (1), (2)
and (3), respectively, and we recall the Hermite decomposition (4) of ϕ defining its Hermite
rank R and its second Hermite rank R′.

Fix t > 0 and q ≥ R, and set

(12) Yq,t =
∫
tD

Hq(Bx) dx.
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Using (4), we immediately get that

(13) Yt = E[Yt ] +
∞∑

q=R

aq Yq,t , t ≥ 0.

Moreover, a direct computation (making use of the isometry properties of Hermite polyno-
mials (see, e.g., [19], Section 1.4)) yields that

Var(Yq,t ) = q!tdvq,t ,

where

vq,t =
∫
Rd

C(z)q gD

(
z

t

)
dz =

∫
{|z|≤diam(D)t}

C(z)q gD

(
z

t

)
dz ≥ 0,

with gD(x) the covariogram of D at x ∈ R
d , defined as the Lebesgue measure of D∩(x+D),

and diam(D) := sup{|x − y| : x, y ∈ D} < ∞ since D is compact. When C ∈ Lq(Rd), we
deduce by dominated convergence (using that ‖gD‖∞ ≤ Vol(D) and gD(z

t
) → Vol(D) as

t → ∞ for all fixed z ∈ R
d ) that

vq,t → Vol(D)

∫
Rd

C(z)q dz ≥ 0.

Since our field B is stationary and its covariance function C is continuous, Bochner’s
theorem yields the existence of a finite measure G on R

d such that

(14) C(x) =
∫
Rd

ei〈λ,x〉G(dλ),

with 〈·, ·〉 the usual scalar product on R
d . The measure G is called the spectral measure of

B , and it will be our gateway toward the Fourier analysis techniques developed in the sequel.
At this stage, let us make a further assumption on B , by supposing that it is also isotropic.

In our framework, this is equivalent to suppose that the quantity C(x) only depends on the
norm |x|, namely that there is a function ρ : R+ →R such that

C(x) = ρ
(|x|), x ∈ R

d .

Now, set

(15) μ(s) = G
({|x| ≤ s

})
, s ∈ (0,∞).

Since μ is increasing and bounded, it defines a finite measure on R+, called the isotropic
spectral measure of B . Because C(x) only depends of |x|, we can write, with wd = ∫

Sd−1 dξ

(Sd−1 being the unit sphere of Rd ):

(16)
ρ(r) = 1

wd

∫
Sd−1

C(rξ) dξ = 1

wd

∫
Sd−1

dξ

∫
Rd

ei〈λ,rξ 〉G(dλ)

=
∫
Rd

bd

(
r|λ|)G(dλ) =

∫ ∞
0

bd(rs)μ (ds),

where

(17) bd

(|λ|) = 1

wd

∫
Sd−1

ei〈λ,ξ〉 dξ.

By d-dimensional polar coordinates, we readily find (see [26], p. 815) that

(18) bd(r) = cd r1− d
2 Jd

2 −1(r), r > 0,
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with Jν denoting the Bessel function of the first kind of order ν (see Section 2.2) and cd > 0
a constant depending only of d .

We are at last in a position to state our main result, which we have decided to call the
spectral central limit theorem, because it leads to Gaussian fluctuations on the one hand
(hence “central”) and the main assumption we have to check is the spectral condition (20) on
the other hand (hence “spectral”).

THEOREM 1.2 (Spectral CLT). Fix d ≥ 2, let B = (Bx)x∈Rd be a real-valued contin-
uous centered Gaussian field on R

d , and assume that B is stationary, isotropic and has
unit variance. Let ϕ : R → R be not odd and such that E[ϕ(N)2] < ∞ with N ∼ N(0,1),
let R (resp., R′) be the Hermite rank (resp., second Hermite rank) of ϕ, where (R,R′) /∈
{(1,3)} ∪ {(2k + 1, n) : k ≥ 1, n ∈ N}. Consider Yt defined by (3), where D ⊂ R

d compact
and Vol(D) > 0. Set mt = E[Yt ] and σt = √

Var(Yt ) > 0, and recall the definition (15) of the
isotropic spectral measure μ. Set

(19) wq,t =
∫
{|z|≤t}

C(z)q dz,

and assume that the following spectral condition holds:

(20)
∫ ∞

0
s− d

R μ (ds) < ∞.

Finally, when R = 2 assume that |F[1D](x)| = O( 1
|x|d/2 ) as |x| → ∞, and when R = 1

assume that |F[1D](x)| = o( 1
|x|d/2 ) as |x| → ∞, with F the Fourier transform (since we

assumed D to be compact, these two assumptions are satisfied, for example, when D = D̊

and ∂D is smooth with nonvanishing Gaussian curvature; see, e.g., [3]). Then we have

σ 2
t �

⎧⎪⎪⎨⎪⎪⎩
tdwR,t if R even,

tdwR′,t if R = 1 and R′ ∈ {2,4},
td if R = 1 and R′ ≥ 5

and

Yt − mt

σt

law→ N(0,1) as t → ∞.

By a simple Fubini argument, we observe that the spectral condition (20) is equivalent to

(21)
∫ ∞

0
s−1− d

R μ(s) ds < ∞.

When ρ(r) = r−βL(r) with β ∈ (0, d
R

) and L slowly varying as r → ∞, we have μ(s) ∼
sβL(s−1) as s → 0; see [12], Theorem 1.4.3. We deduce that (20)–(21) is not satisfied, which
is of course perfectly consistent with the conclusion of the Dobrushin–Major noncentral limit
theorem [6].

Also, let us observe that the assumption “ϕ is not odd” is equivalent to “∃ k ≥ 1 such
that a2k 	= 0,” and so is needed only in the case where R = 1 and R′ ≥ 5. Moreover, the
cases not covered by our Theorem 1.2 are R ≥ 3 odd, (R,R′) = (1,3) and ϕ odd. In these
situations, very peculiar things can happen. Consider, for example, ϕ(x) = x, which gives
Yt = ∫

tD Bx dx. Using (29), (14) and Fubini, we have, with F the Fourier transform,

Var(Yt ) =
∫
Rd

C(z)gtD(z) dz =
∫
Rd

F[gtD](λ)G(dλ).



SPECTRAL CLT 743

Using that gtD = 1tD ∗ 1−tD , we obtain

(22) Var(Yt ) = const
∫
Rd

td

|λ|d |tλ|d ∣∣F[1D](tλ)
∣∣2G(dλ).

In particular, for D = {|z| ≤ 1} ⊂ R
d and Berry’s Random Wave Model B = (Bx)x∈R2 , we

get (using (26))

σ 2
t = Var(Yt) = const t2J 2

1 (t);
although Yt is Gaussian the conclusion of Theorem 1.2 cannot hold in this case, the limit of
Yt−mt

σt
being ill-defined due to the fact that Card{t : σt = 0} ∩ [T ,∞) = +∞ for all T > 0.

To understand the significance of our spectral CLT, let us go back to BRWM and explain
how Theorem 1.2 together with the Breuer–Major theorem allow to prove (11). Since C(x) =
ρ(|x|) = J0(|x|), it follows immediately from the representation (16) that the isotropic spec-
tral measure associated with BRWM B = (Bx)x∈R2 is μ = δ1, with δ1 the Dirac mass at 1.
In particular, the spectral condition (20) is obviously satisfied, whatever the value of R. The
convergence (11) thus follows from the Breuer–Major Theorem 1.1 (see also (9)) if R ≥ 5
and from Theorem 1.2 in all the other cases in (10).

1.4. Possible natural extensions of Theorem 1.2. As a natural extension of the present
work, it would be interesting to study the joint convergence associated with Theorem 1.2.
More precisely, taking D1, . . . ,Dn compact domains in R

d , is it possible to identify condi-
tions that resemble those in Theorem 1.2 ensuring that the random vector(∫

tD1

ϕ(Bx) dx, . . . ,

∫
tDn

ϕ(Bx) dx

)
converges, after proper normalization, to a Gaussian random vector? In other words, can
we prove a multivariate spectral central limit theorem? Such an extension is not immediate,
because the spectral condition (20) alone looks too general to capture the asymptotic behavior
of the covariances between the components of the random vector. A partial answer to this
question (covering also Berry’s model) will be given in the forthcoming work [13] by the first
author. Note that a multivariate result was obtained in the particular case of the nodal length
of Berry’s model restricted to a finite collection of smooth compact domains D1, . . . ,Dn of
the plane in the recent paper [24].

A further stronger generalization of Theorem 1.2 would be to prove a functional spectral
central limit theorem. This problem has been investigated in the particular case of nodal set
volumes in [16] by ad hoc techniques. In our general framework, we believe however that
proving such a functional extension would require novel ideas that go beyond the scope of
the present paper.

1.5. Plan of the paper. Apart from Section 6 that illustrates a use of Theorem 1.2, the
rest of the paper is fully devoted to the proof of this latter. More precisely, after a few needed
preliminaries given in Section 2,

(i) In Section 3, we will first consider the situation where the Hermite rank R of ϕ is
even and bigger or equal than 4. As we will see, in this case we have that

∫
tD |C(x)|R dx =

O(log t), meaning that we are somehow in the “domain of attraction” of the Breuer–Major
Theorem 1.1;

(ii) We will then deal with the remaining cases, namely R = 2 in Section 4 and (R = 1, ϕ

nonodd and R′ 	= 3) in Section 5. We regard this part as the most important contribution of
this paper, especially since among the Hermite ranks, R = 1 and R = 2 are the most common
values encountered in practice. They turn out to be also the most difficult cases. To deal with
them, we will have to introduce novel ideas, by making heavy use of Fourier techniques in a
way that, to the best of our knowledge, has never been introduced before this work.
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2. A few preliminaries for the proof of Theorem 1.2.

2.1. Well-posedness of Yt . The following proposition explains why the random variable
Yt defined by (3) is well defined for all t .

PROPOSITION 2.1. Let B = (Bx)x∈Rd be a real-valued continuous centered Gaussian
field on R

d , assumed to be stationary and to have unit variance. Let D ⊂R
d be compact with

Vol(D) > 0 and let ϕ : R → R be such that E[ϕ(N)2] < ∞ with N ∼ N(0,1). Consider the
Hermite expansion of ϕ given by (4), and set

ϕn = E
[
ϕ(N)

] +
n∑

q=R

aqHq, n ≥ R.

For each fixed t > 0, the sequence
∫
tD ϕn(Bx) dx, n ≥ R, is a.s. well defined and converges

in L2(�). The limit is noted Yt and we write, possibly with a slight abuse of notation:

Yt =
∫
tD

ϕ(Bx) dx.

PROOF. That
∫
tD ϕn(Bx) dx is a.s. well defined is because tD is compact, ϕn is a poly-

nomial and B is continuous. For any n,m ≥ R and q ∈ N, we have (since |C(z)| ≤ C(0) = 1,
a0 = E[ϕ(N)] and aq = 0 if q ∈ {1, . . . ,R − 1})∣∣∣∣1[0,n∧m](q)

∫
(tD)2

q!a2
qC(x − y)q dx dy

∣∣∣∣ ≤ Vol(tD)2q!a2
q,

with
∑∞

q=0 Vol(tD)2q!a2
q = Vol(tD)2

E[ϕ(N)2] < ∞ by assumption. Then, by dominated
convergence we obtain as n,m → ∞,

E

[∫
tD

ϕn(Bx) dx

∫
tD

ϕm(By) dy

]

=
n∧m∑
q=0

q!a2
q

∫
(tD)2

C(x − y)q dx dy

→ E
[
ϕ(N)

]2Vol(tD)2 +
∞∑

q=R

q!a2
q

∫
(tD)2

C(x − y)q dx dy.

That is, {∫tD ϕn(Bx) dx}n≥R is an L2(�)-Cauchy sequence, and the desired conclusion fol-
lows. �

2.2. Bessel functions and Fourier transform of the indicator of the unit ball. The Bessel
function Jν , ν ≥ 0 is defined by the series

Jν(t) =
(

t

2

)ν

,

∞∑
j=0

(−1)j
(t2/4)j

j !(j + ν + 1)
, t ∈ R,

and it is a solution to the ODE

t2J ′′
ν (t) + tJ ′

ν(t) + (
t2 − ν2)Jν(t) = 0.

It satisfies the classical Schläfli’s representation

(23) Jν(t) = 1

π

∫ π

0
cos(νθ − t sin θ) dθ − sin(νπ)

π

∫ ∞
0

e−νθ−t sinh θ dθ,
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as well as the Mehler–Sonine formula

(24) Jν(t) = (t/2)ν√
π (ν + 1

2)

∫ 1

−1
eits(1 − s2)ν− 1

2 ds.

Schläfli’s representation (23) immediately implies that Jν is bounded on R. This, combined
with an inequality found, for example, in [11] (see also the references therein), leads to

(25) sup
t∈R+

√
t
∣∣Jν(t)

∣∣ < ∞ for all ν ≥ 0,

a simple property that we will use several times in the forthcoming proof of Theorem 1.2.
The Fourier transform of the indicator of the unit ball is given by

F[1{|x|≤1}](y) =
∫
{|x|≤1}

ei〈x,y〉 dx.

Since F[1{|x|≤1}] is rotationally symmetric, we can write, with αd the volume of the unit ball
{|x| ≤ 1} ⊆R

d ,

F[1{|x|≤1}](y) = F[1{|x|≤1}]((0, . . . ,0, |y|))
=

∫ 1

−1

(
1 − x2

d

) d−1
2 αd−1e

ixd |y| dxd

= αd−1
√

π 

(
d + 1

2

)
2ν |y|− d

2 Jd/2
(|y|),

(26)

the last equality being a consequence of (24).

2.3. Reduction to the Rth chaos. In the short memory case, that is, when C ∈ LR(Rd),
the Breuer–Major Theorem 1.1 yields Gaussian fluctuations for Yt . In its modern proof given
by [20] (see also [19], Chapter 7), the chaotic expansion of Yt − mt is considered, namely

(27) Yt − mt =
∞∑

q=R

aqYq,t ,

and the proof goes as follows. It is first shown that t−dσ 2
t → σ 2 in (7) by means of the isome-

try property of Hermite polynomials. Then it is proved using the fourth moment theorem (see

[19], Theorem 5.2.7) that t−d/2Yq,t
law→ N(0, σ 2

q ) for all q ≥ R from which it is deduced that

t− d
2 (Yt − mt)

law→ N(0,
∑∞

q=R a2
qσ

2
q ) thanks to [19], Theorem 5.2.7. In particular, we observe

that no term is asymptotically dominant in (27); they all contribute to the limit.
As the following result will show, the situation is totally opposite in the critical and long

memory cases (when R is even); here, it is the term YR,t alone which is responsible of the
limit.

PROPOSITION 2.2 (Reduction to the Rth chaos). Let B = (Bx)x∈Rd be a real-valued
continuous centered Gaussian field on R

d , and assume that B is stationary and has unit
variance (note that d ≥ 2 and isotropy are not required here). Let ϕ : R → R be such that
E[ϕ(N)2] < ∞ (with N ∼ N(0,1)) and have Hermite decomposition (4) and Hermite rank
R, and consider Yt defined by (3), where D ⊂ R

d compact and Vol(D) > 0. Set mt = E[Yt ],
σt = √

Var(Yt ) > 0, and recall the definition (1) of C(x) and the definition (12) of Yq,t .
If R is even, if t−dVar(YR,t ) → ∞ and if

∫
Rd |C(x)|M dx < ∞ for some M ≥ R + 1 then,

as t → ∞, we have σ 2
t � Var(YR,t ) and

(28) YR,t/
√

Var(YR,t )
law→ N(0,1) =⇒ Yt − mt

σt

law→ N(0,1).
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PROOF. We have

Var(Yq,t ) =
∫
(tD)2

E
[
Hq(By)Hq(Bx)

]
dx dy = q!

∫
(tD)2

C(x − y)q dx dy.

Applying the change of variable z = y − x and then Fubini, we obtain that

Var(Yq,t ) = q!tdvq,t ,

where

(29) vq,t =
∫
{|z|≤diam(D)t}

C(z)q gD

(
z

t

)
dz,

where diam(D) = sup {|x − y| : x, y ∈ D} < ∞ (because D is compact) and gD(x) is the
covariogram of D at x ∈ R

d , that is, gD(x) is the Lebesgue measure of D ∩ (x + D). Also,
set

(30) ṽq,t =
∫
{|z|≤diam(D)t}

∣∣C(z)
∣∣q gD

(
z

t

)
dz,

and observe that vR,t = ṽR,t > 0 since R is even.
For any q > R, we have

(31)
Var(Yq,t )

Var(YR,t )
= q!vq,t

R!vR,t

.

Applying the Cauchy–Schwarz inequality, we obtain for q > R,

|vq,t |
vR,t

≤
∫
{|z|≤diam(D)t} |C(z)|qgD(z

t
) dz

vR,t

=
∫
{|z|≤diam(D)t} |C(z)|q−R

2 |C(z)|R
2 gD(z

t
) dz

vR,t

≤
(∫

{|z|≤diam(D)t} |C(z)|2q−RgD(z
t
) dz

vR,t

)1/2
=

(
ṽ2q−R,t

vR,t

)1/2
.

Applying Cauchy–Schwarz again, but this time with 2q −R > R instead of q > R, we obtain(
ṽ2q−R,t

vR,t

)1/2
≤

(
ṽ4q−3R,t

vR,t

) 1
4
.

By iterating the process, we get, for every n ≥ 3,

|vq,t |
vR,t

≤
(

ṽ2q−R,t

vR,t

)1/2
≤

(
ṽ4q−3R,t

vR,t

) 1
4 ≤ · · · ≤

(
ṽR+2n(q−R),t

vR,t

) 1
2n

.

When q > R, we have R + 2n(q − R) ≥ 2n, so we may and will choose n large enough so
that R + 2n(q − R) ≥ M for all q > R (recall from the statement of Proposition 2.2 that
M is an integer supposed to be such that

∫
Rd |C(x)|M dx < ∞). Using |C(x)| ≤ C(0) = 1

and gD(x) ≤ Vol(D) for all x ∈ R
d , we deduce that ṽR+2n(q−R),t ≤ Vol(D)

∫
Rd |C(x)|M dx.

Combining all these facts together, we finally get that

(32)
|vq,t |
vR,t

≤
(

Vol(D)

∫
Rd

∣∣C(x)
∣∣M dx

) 1
2n

v
− 1

2n

R,t for all q > R.

Since Var(Yt ) = ∑∞
q=R a2

q Var(Yq,t ), we deduce

(33)
∣∣∣∣ Var(Yt )

Var(YR,t )
− a2

R

∣∣∣∣ ≤ 1

R!
(

Vol(D)

∫
Rd

∣∣C(x)
∣∣M dx

) 1
2n

( ∞∑
q=R+1

a2
qq!

)
v

− 1
2n

R,t ,
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from which it comes that Var(Yt ) ∼ a2
RVar(YR,t ) as t → ∞, since vR,t = 1

R! t
−dVar(YR,t ) →

∞ by assumption.
To conclude the proof of Proposition 2.2, it remains to prove (28). Using the decomposi-

tion,

Yt − mt√
Var(Yt )

− sgn(aR)
YR,t√

Var(YR,t )

= sgn(aR)(Yt − mt − aRYR,t )

aR

√
Var(YR,t )

+ Yt − mt√
Var(Yt )

{
1 − 1

|aR|

√
Var(Yt )

Var(YR,t )

}
we get that

E

[(
Yt − mt√
Var(Yt )

− sgn(aR)
YR,t√

Var(YR,t )

)2]

≤ 2
E[(Yt − mt − aRYR,t )

2]
a2
RVar(YR,t )

+ 2
(

1 − 1

|aR|

√
Var(Yt )

Var(YR,t )

)2
.

(34)

Since E[(Yt − mt − aRYR,t )
2] = ∑∞

q=R+1 a2
q Var(Yq,t ), we deduce from (31) and (32) that

E[(Yt − mt − aRYR,t )
2]

a2
RVar(YR,t )

≤ 1

R!a2
R

(
Vol(D)

∫
Rd

∣∣C(x)
∣∣M dx

) 1
2n

( ∞∑
q=R+1

q!a2
q

)
v

− 1
2n

R,t ,

and this tends to zero as t → ∞. By plugging this into (34) and taking into account that (33)
holds, we deduce that

Yt√
Var(Yt )

− sgn(aR)
YR,t√

Var(YR,t )

L2(�)→ 0 as t → ∞,

from which the implication (28) now follows easily. �

2.4. Elements of Malliavin calculus and the fourth moment theorem. To obtain the
N(0,1) distribution in the limit in Theorem 1.2, we rely on the fourth moment theorem
of Nualart and Peccati (see [19], Theorem 5.2.7). Before stating and reformulating it in our
framework, we start with some notions on Malliavin calculus. For all the missing details, we
refer to [19] and [22].

2.4.1. The Wiener–Itô integral. Let B = (Bx)x∈Rd be a real-valued continuous centered
Gaussian field on R

d , and assume that B is stationary with unit variance. Define

H = span
{
Bx, x ∈ Rd

}L2(�)
.

Since H is a real, separable Hilbert space, there is an isometry � : H → L2(R+). If we set
ex := �(Bx) for every x ∈ R

d , we have

E[BxBy] = C(x − y) = 〈ex, ey〉L2(R+).

Consider now the Gaussian noise W = {W(h),h ∈ L2(R+)}, that is, a family of centered
Gaussian random variables with covariance given by

E
[
W(h)W(g)

] = 〈h,g〉L2(R+).
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Since in this paper we are only interested in distributions, we can assume without loss of
generality that (Bx)x∈Rd = (W(ex))x∈Rd .

For q ≥ 1, we also define the qth Wiener chaos as the linear subspace of L2(�) generated
by {Hq(W(h)), h ∈ L2(R+)}. For every h ∈ L2(R+) with ‖h‖L2(R+) = 1, we define the qth
Wiener–Itô integral

Iq

(
h⊗q) = Hq

(
W(h)

)
,

where h⊗q :Rq
+ →R is defined by

h⊗q(x1, . . . , xq) =
q∏

r=1

h(xr).

Note that the definition of Iq can be extended to every function in the space L2
s (R

q
+) of

symmetric functions in L2(R
q
+) so that Iq : L2

s (R
q
+) → L2(�) is a linear map, because

span{h⊗q, h ∈ L2(R+)} is dense in L2
s (R

q
+) (see, e.g., [7]).

2.4.2. Contractions and the fourth moment theorem. For q ∈ N, r ∈ {1, . . . , q − 1} and
h1, h2 symmetric functions with unit norm in L2(R+), we can define the r th contraction of
h

⊗q
1 and h

⊗q
2 as the (nonsymmetric) element of L2(R

2q−2r
+ ) given by

h
⊗q
1 ⊗r h

⊗q
2 = 〈h1, h2〉rL2(R+)

h
⊗q−r
1 ⊗ h

⊗q−r
2 .

Here again, this definition can be extended (taking the closure in L2(R
q
+)) to every h1, h2

in L2
s (R

q
+). We will denote the norm in the space L2(R

q
+) as ‖·‖q . We can finally state the

celebrated fourth moment theorem proved in [23] by Nualart and Peccati.

THEOREM 2.3 (Fourth moment theorem). Fix q ≥ 2, consider (ht )t>0 ⊂ L2
s (R

q
+) and

assume that E[Iq(ht )
2] → 1 as t → ∞. Then the following assertions are equivalent:

• Iq(ht ) converges in distribution to a standard Gaussian N ∼ N(0,1).
• E[Iq(ht )

4] → 3 = E[N4], where N ∼ N(0,1).
• ‖ht ⊗r ht‖2q−2r → 0 as t → ∞, for all r = 1, . . . , q − 1.

An important consequence of the previous result (in our framework) is the following.

THEOREM 2.4. Let B = (Bx)x∈Rd be a real-valued continuous centered Gaussian field
on R

d , and assume that B is stationary and has unit variance. Assume that D ⊂ R
d is com-

pact with Vol(D) > 0. Recall the definition (1) of C. Fix also q ≥ 2, recall the definition (12)
of Yq,t and assume Var(Yq,t ) > 0 for all t large enough. If we have, for any r ∈ {1, . . . , q −1},
that

(35)
td

Var2(Yq,t )

∫
{|u|≤diam(D)t}3

∣∣C(x)
∣∣r ∣∣C(y)

∣∣r ∣∣C(z)
∣∣q−r ∣∣C(x + y + z)

∣∣q−r
dx dy dz

converges to 0 as t → ∞, then Yq,t /
√

Var(Yq,t )
law→ N(0,1) as t → ∞.

PROOF. Let us first write Yq,t as a qth multiple Wiener–Itô integral with respect to B:

Yq,t =
∫
tD

Hq(Bx) dx =
∫
tD

Hq

(
W(ex)

)
dx =

∫
tD

Iq

(
e⊗q
x

)
dx = Iq(ft,q),

where

ft,q =
∫
tD

e⊗q
x dx.
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Since by definition,

ft,q ⊗r ft,q =
∫
tD

∫
tD

Cr(x − y)e⊗q−r
x e⊗q−r

y dx dy,

we obtain

‖ft,q ⊗r ft,q‖2
2q−2r

=
∫
(tD)4

C(x1 − x3)
rC(x2 − x4)

rC(x1 − x2)
q−r

× C(x3 − x4)
q−r dx1 dx2 dx3 dx4.

Applying the change of variable x = x3 − x1, y = x2 − x4, z = x1 − x2, a = x4 (whose
Jacobian is equal to 1) and using the symmetry of C, we get that

‖ft,q ⊗r ft,q‖2
2q−2r

≤ Vol(D)td
∫
{|u|≤diam(D)t}3

∣∣C(x)
∣∣r ∣∣C(y)

∣∣r ∣∣C(z)
∣∣q−r ∣∣C(x + y + z)

∣∣q−r
dx dy dz.

The fourth moment theorem asserts that Yq,t /
√

Var(Yq,t ) converges in distribution to N(0,1)

if (and only if) ‖ft,q ⊗r ft,q‖2q−2r/Var(Yq,t ) → 0 for all r = 1, . . . , q − 1. The desired con-
clusion thus follows from (35) and the previous bound for ‖ft,q ⊗r ft,q‖2

2q−2r . �

3. Proof of Theorem 1.2 when R ≥ 4 even. This section is devoted to the proof of
Theorem 1.2 when R ≥ 4 is even, which is equivalent to say that d

R
≤ d−1

2 and R even. It
represents the “easy” part of Theorem 1.2.

To ease the exposition, we write in the following proposition the statement obtained when,
in Theorem 1.2, we suppose that d

R
≤ d−1

2 and R even.

PROPOSITION 3.1. Fix d ≥ 2, let B = (Bx)x∈Rd be a real-valued continuous centered
Gaussian field on R

d , and assume that B is stationary, isotropic and has unit variance. Let
ϕ : R → R be such that E[ϕ(N)2] < ∞ with N ∼ N(0,1), let R be the Hermite rank of
ϕ and consider Yt defined by (3), where D compact and Vol(D) > 0. Set mt = E[Yt ] and
σt = √

Var(Yt ) > 0, and recall the definition (15) of the isotropic spectral measure μ and the
definition (19) of wR,t :

wR,t =
∫
{|z|≤t}

CR(z) dz.

If (20) holds, if R even and d
R

≤ d−1
2 (i.e., R ≥ 4 and R even), then σ 2

t � tdwR,t and

Yt − mt

σt

law→ N(0,1) as t → ∞.

The goal of this Section 3 is to prove Proposition 3.1. As we will see, it will be a direct
consequence of Lemma 3.2 and Proposition 3.3 below.

We start with Lemma 3.2.

LEMMA 3.2. Let ρ and μ be associated as in (16) and consider an exponent β ∈
(0, d−1

2 ]. If
∫ ∞

0 s−βμ(ds) < ∞, then supr∈R+ rβ |ρ(r)| < ∞.
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PROOF. Since ρ(|x|) = E[B0Bx] for all x ∈ R
d , we deduce from Cauchy–Schwarz that

|ρ| is bounded by 1, and thus supr∈[0,T ] rβ |ρ(r)| < ∞ for all fixed T > 0.
On the other hand, using the representation (16), we can write

rβρ(r) =
∫ ∞

0
(rs)βbd(rs)

μ(ds)

sβ
.

But Jd
2 −1 is bounded and satisfies Jd

2 −1(u) = O(u−1/2) as u → ∞ (see (25)). So,

supu∈R+ uβ |bd(u)| < ∞, and the desired conclusion follows. �

Now, let us state and prove Proposition 3.3, which may be of independent interest.

PROPOSITION 3.3. Let B = (Bx)x∈Rd be a real-valued continuous centered Gaussian
field on R

d , and assume that B is stationary and has unit variance (note that we did not as-
sume isotropy and d ≥ 2). Let ϕ : R → R be such that E[ϕ(N)2] < ∞ with N ∼ N(0,1), let
R be the Hermite rank of ϕ and consider Yt defined by (3), where D compact and Vol(D) > 0.
Set mt = E[Yt ] and σt = √

Var(Yt ) > 0, and recall the definition (1) of the covariance C and
the definition (19) of wR,t .

If R is even, if limt→∞ wR,t = ∞ and if

(36) sup
x∈Rd

|x|d/R
∣∣C(x)

∣∣ < ∞,

then σ 2
t � tdwR,t and

(37)
Yt − mt

σt

law→ N(0,1) as t → ∞.

PROOF. The proof is divided into several steps. Recall the definition (12) of Yq,t .
Step 1. We claim that if R even, then

(38) vR,t � wR,t ,

where vR,t is defined by (29). To prove it, below we let c > 0 denote a constant independent
of t whose value can change from one instance to another. Using (29), we have on the one
hand

vR,t = 1

R! t
−dVar(YR,t ) =

∫
{|z|≤diam(D)t}

C(z)RgD

(
z

t

)
dz

≤ Vol(D)wR,diam(D)t ≤ cwR,t ,

where the last equality follows from the so-called doubling conditions at the origin for non-
negative positive definite functions (see [10]).

On the other hand, gD is uniformly continuous (in particular continuous in 0) according to
[8]. We deduce that gD(z

t
) ≥ Vol(D) − 1

2Vol(D) = 1
2Vol(D) for all z ∈ {|z| ≤ δDt} for some

δD > 0 depending only on D and for every t > 0. As a result,

vR,t = 1

R! t
−dVar(YR,t ) ≥

∫
{|z|≤δDt}

C(z)RgD

(
z

t

)
dz

≥ 1

2
Vol(D)wR,δDt ≥ cwR,t ,

where the last inequality follows again from the doubling conditions proved in [10]. The
announced claim (38) follows.
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Step 2. Since wR,t → ∞, it follows from Step 1 that t−dVar(YR,t ) → ∞. Moreover, since
(36) holds, we have that

∫
Rd |C(x)|R+1 dx < ∞. Applying Proposition 2.2, we obtain that

σ 2
t � tdwR,t and also that (37) will follow if we prove that YR,t/

√
Var(YR,t ) → N(0,1).

Step 3. In this last step, we prove that YR,t/
√

Var(YR,t ) → N(0,1), which will complete
the proof of Proposition 3.3, see the conclusion of Step 2. To do this, we use Theorem 2.4,
following the same approach as in [21], Lemma 8.1. Fix a contraction index r ∈ {1, . . . ,R −
1}. Using the inequality urvR−r ≤ uR + vR for u, v ∈ R+, we have∫

{|u|≤diam(D)t}3

∣∣C(x)
∣∣r ∣∣C(y)

∣∣r ∣∣C(z)
∣∣R−r ∣∣C(x + y + z)

∣∣R−r
dx dy dz

≤ 2
∫
{|u|≤diam(D)t}3

∣∣C(x)
∣∣r ∣∣C(y)

∣∣R∣∣C(x + y + z)
∣∣R−r

dx dy dz

≤ cw̃r,twR,t w̃R−r,t ,

where the last inequality follows from the change of variable a = x + y + z and doubling
conditions in [10], and

w̃q,t =
∫
{|z|≤t}

∣∣C(z)
∣∣q dz.

We deduce that (35) is bounded by

c

td

w̃r,twR,t w̃R−r,t

v2
R,t

= O

(
t−d w̃r,t w̃R−r,t

wR,t

)
,

where the big O comes from (38). We deduce from (36) that w̃q,t = O(td−d
q
R ) for q < R.

Using this last fact, we get

O

(
t−d w̃r,t w̃R−r,t

wR,t

)
= O

(
t−d td−d r

R td−d R−r
R

wR,t

)
= O

(
1

wR,t

)
and then (35) converges to 0 as t → ∞. Therefore, the convergence YR,t/

√
Var(YR,t ) →

N(0,1) follows from Theorem 2.4, and completes the proof of Proposition 3.3. �

We can now proceed with the proof of Proposition 3.1, that is, the proof of Theorem 1.2
when R ≥ 4 and R even (or equivalently, d

R
≤ d−1

2 and R even).

PROOF OF PROPOSITION 3.1. If wR,t is convergent, then the result follows applying
the Breuer–Major Theorem 1.1. So, we can assume that wR,t → ∞. Now, by comparing the
statements of Proposition 3.1 and Proposition 3.3, we see that we are left to check that, if
(20) holds with d

R
≤ d−1

2 , then (36) holds. Since this is a mere application of Lemma 3.2 with
β = d

R
, the proof of Proposition 3.1 is complete. �

4. Proof of Theorem 1.2 when R = 2. This section is devoted to the proof of Theo-
rem 1.2 when R = 2. It requires the introduction of novel ideas with respect to the existing
literature, mainly Fourier arguments.

To ease the exposition, we write in the following proposition the statement obtained when,
in Theorem 1.2, we additionally suppose that R = 2 and |F[1D](x)| = O( 1

|x|d/2 ).

PROPOSITION 4.1. Fix d ≥ 2, let B = (Bx)x∈Rd be a real-valued continuous centered
Gaussian field on R

d , and assume that B is stationary, isotropic and has unit variance. Let
ϕ : R → R be such that E[ϕ(N)2] < ∞ with N ∼ N(0,1), and assume that ϕ has Hermite
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rank R = 2. Consider Yt defined by (3), where D compact and Vol(D) > 0. Set mt = E[Yt ]
and σt = √

Var(Yt ) > 0, and recall the definition (15) of the isotropic spectral measure μ and
the definition (19) of wq,t .

If |F[1D](x)| = O( 1
|x|d/2 ) as |x| → ∞,4 with F the Fourier transform, and if the spectral

condition holds

(39)
∫ ∞

0
s− d

2 μ(ds) < ∞

then σ 2
t � tdw2,t and

Yt − mt

σt

law→ N(0,1) as t → ∞.

Before proving Proposition 4.1 (which is the goal of this section), let us recall the definition
(12) of Y2,t and let us state and prove some preliminary results. We start with Lemma 4.2,
reformulating in a spectral form the norm of the contractions introduced in Section 2.4. Note
that the following result has an analogous version for a general r th contraction in the case
Yq,t , but we skip this unnecessary extension for the sake of brevity.

LEMMA 4.2. Let B = (Bx)x∈Rd be a real-valued continuous centered Gaussian field on
R

d , and assume that B is stationary and has unit variance (note that we did not assume
isotropy and d ≥ 2). Assume that D ⊂ R

d is compact with Vol(D) > 0, recall the notions
introduced in Section 2.4 and write

Y2,t =
∫
tD

H2(Bx) dx = I2(ft ),

where

ft =
∫
tD

e⊗2
x dx.

Recall the definition (1) of C and define

(40) Ct(u) := C(u)1{|u|≤diam(D)t}(u), t > 0, u ∈ R
d,

and for D ⊂ R
d compact

(41) Dt(u) := tD ∩ (tD + u), u ∈ R
d .

Finally, recall the definition (14) of G. Then

‖ft ⊗1 ft‖2
2

=
∫
Rd

G (dx)

∫
Rd

dyF[Ct ](x − y)

∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉,F[1Dt(−w)](y) dw

∣∣∣∣2,(42)

where F is the Fourier transform, and∫
Rd

Ct (w)ei〈x,w〉F[1Dt (−w)](y) dw

=
∫
Rd

F[Ct ](x − z)F[1tD](y − z)F[1tD](z) dz.

(43)

4Since we assumed D to be compact, this happens, for example, when D = D̊ and ∂D is smooth with non-
vanishing Gaussian curvature; see, for example, [3].
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PROOF. Proceeding exactly as in the proof of Theorem 2.4, we have

‖ft ⊗1 ft‖2
2 =

∫
(tD)4

C(x1 − x3)C(x2 − x4)C(x1 − x2)

× C(x3 − x4) dx1 dx2 dx3 dx4.

Applying the change of variable u = x1 − x3, v = x3 − x4, w = x4 − x2, z = x2 we have:
x2 = z, x4 = w + x2 = w + z, x3 = v + x4 = v + w + z and x1 = u + x3 = u + v + w + z.
Then

‖ft ⊗1 ft‖2
2

=
∫
R3d

C(u)C(v)C(w)C(u + v + w)

×
(∫

Rd
1tD(z)1tD(w + z)1tD(v + w + z)1tD(u + v + w + z) dz

)
dudv dw

=
∫
R3d

C(u)C(v)C(w)C(u + v + w)

×
(∫

Rd
1tD(z)1tD(−w + z)1tD(−v − w + z)1tD(−u − v − w + z) dz

)
dudv dw

=
∫
R3d

C(u)C(v)C(w)C(u + v + w)

×
(∫

Rd
1tD∩(tD+w)∩(tD+w+v)∩(tD+u+v+w)(z) dz

)
dudv dw

=
∫
R3d

Ct (u)Ct (v)Ct (w)C(u + v + w)

× Vol
(
(tD − w) ∩ tD ∩ (tD + v) ∩ (tD + u + v)

)
dudv dw,

where in the last equality we used the translation invariance of the Lebesgue measure (sub-
tracting w) and the definition (40), justified by the fact that tD ∩ (tD + a) is empty when
|a| > diam(D)t . Now recall the definition (41). We have

‖ft ⊗1 ft‖2
2

=
∫
R3d

Ct (u)Ct (v)Ct (w)C(u + v + w)Vol
(
Dt(−w) ∩ (

Dt(u) + v
))

dudv dw

=
∫
R3d

Ct (u)Ct (v)Ct (w)C(u + v + w)(1Dt (−w) ∗ 1−Dt (u))(v) dudv dw,

where in the last expression we used that

Vol
(
Dt(−w) ∩ (

Dt(u) + v
))

=
∫
Rd

1Dt (−w)(z)1Dt (u)(z − v)dz = (1Dt (−w) ∗ 1−Dt(u))(v).

Now, using the spectral representation (14),

C(u + v + w) =
∫
Rd

ei〈x,u+v+w〉G(dx),

we have that

‖ft ⊗1 ft‖2
2

=
∫
Rd

G (dx)

∫
R2d

dudwCt(u)Ct (w)ei〈x,u+w〉
∫
Rd

ei〈x,v〉Ct(v)

× (1Dt (−w) ∗ 1−Dt (u))(v) dv.

(44)
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Fix x, u and w, and let us focus in (44) on the integral with respect to v. Using the properties
of the Fourier transform F with respect to convolution and products, we can write∫

Rd
ei〈x,v〉Ct(v)(1Dt (−w) ∗ 1−Dt (u))(v) dv

= F
[
Ct · (1Dt(−w) ∗ 1−Dt (u))

]
(x)

= (
F[Ct ] ∗F[1Dt(−w) ∗ 1−Dt (u)])(x) = (

F[Ct ] ∗ (
F[1Dt (−w)]F[1−Dt(u)]))(x)

=
∫
Rd

F[Ct ](x − y)F[1Dt (−w)](y)F[1−Dt(u)](y) dy.

Putting everything in (44), we get

‖ft ⊗1 ft‖2
2 =

∫
Rd

G (dx)

∫
R2d

dudwCt(u)Ct (w)ei〈x,u+w〉

×
∫
Rd

dyF[Ct ](x − y)F[1Dt (−w)](y)F[1−Dt(u)](y).

(45)

Exchanging integrals in (45) yields

‖ft ⊗1 ft‖2
2

=
∫
Rd

G (dx)

∫
Rd

dyF[Ct ](x − y)

×
(∫

Rd
dwCt(w)ei〈x,w〉F[1Dt (−w)](y)

)(∫
Rd

duCt(u)ei〈x,u〉F[1−Dt(u)](y)

)

=
∫
Rd

G (dx)

∫
Rd

dyF[Ct ](x − y)

∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

∣∣∣∣2,
which is exactly (42). Now, let us focus on the term

∫
Rd Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw in

(42). Using again basic Fourier analysis and Fubini theorem, we obtain∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

=
∫
Rd

Ct (w)ei〈x,w〉F[1tD1tD−w](y) dw

=
∫
Rd

Ct (w)ei〈x,w〉
(∫

Rd
F[1tD](y − z)F[1tD−w](z) dz

)
dw

=
∫
Rd

Ct (w)ei〈x,w〉
(∫

Rd
F[1tD](y − z)F[1tD](z)ei〈−w,z〉 dz

)
dw

=
∫
Rd

F[1tD](y − z)F[1tD](z)
(∫

Rd
Ct (w)ei〈x−z,w〉 dw

)
dz

=
∫
Rd

F[Ct ](x − z)F[1tD](y − z)F[1tD](z) dz,

which is exactly (43). �

LEMMA 4.3. Fix d ≥ 2, let B = (Bx)x∈Rd be a real-valued continuous centered Gaus-
sian field on R

d , and assume that B is isotropic, stationary and has unit variance. Assume
that D ⊂ R

d is compact with Vol(D) > 0. Recall the definition (1) of C, the definition (14) of
G, the definition (19) of w2,t , the definition (40) of Ct and the definition (41) of Dt(u). If the
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spectral condition (39) holds, then∫
Rd

G (dx)

∫
|x−y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

∣∣∣∣2
≤ constw3/2

2,t t2d .

PROOF. First, call

I :=
∫
Rd

G (dx)

∫
|x−y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt (−w)](y) dw

∣∣∣∣2.
Using polar coordinates, we can write

F[Ct ](x) =
∫
{|u|≤diam(D)t}

C(u)ei〈x,u〉 du = td
∫ diam(D)

0
drρ(rt)rd−1

∫
Sd−1

eirt〈x,θ〉 dθ.

Thanks to (17)–(18) and (25), we have for |x| > 1,∣∣∣∣∫
Sd−1

ei〈x,θ〉 dθ

∣∣∣∣ = const |x|1− d
2
∣∣Jd

2 −1

(|x|)∣∣ ≤ const |x|1− d
2 |x|− 1

2 ≤ const√|x| .

We deduce∣∣F[Ct ](x)
∣∣ ≤ const√|x| t

d
∫ diam(D)

0

∣∣ρ(rt)
∣∣rd−1
√

rt
dr = const√|x|

∫ diam(D)t

0

∣∣ρ(r)
∣∣r d−1

2 + d
2 −1 dr

≤ const√|x| t
d
2 −1

∫ diam(D)t

0

∣∣ρ(r)
∣∣r d−1

2 dr ≤ const√|x| t
d−1

2

√∫ diam(D)t

0
ρ2(r)rd−1 dr

= const√|x| t
d−1

2 w
1/2
R,diam(D)t ≤ const√|x| t

d−1
2 w

1/2
R,t ,

where the last inequality follows from the doubling conditions in [10]. With this estimate, we
have that I satisfies:

I ≤
∫
Rd

G (dx)

∫
|y−x|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣
×

∣∣∣∣∫
Rd

dwCt(w)ei〈x,w〉F[1Dt(−w)](y)

∣∣∣∣2
≤ const · t d−1

2 w
1/2
R,t

∫
Rd

G (dx)√|x|
∫
Rd

dy

∣∣∣∣∫
Rd

dwCt(w)ei〈x,w〉F[1Dt(−w)](y)

∣∣∣∣2
= const · t d−1

2 w
1/2
R,t

∫
R2d

dudwCt(u)Ct (w)

×
(∫

Rd

G (dx)√|x| ei〈x,u+w〉
)

︸ ︷︷ ︸
:=C̄(u+w)

∫
Rd

dyF[1Dt (−w)](y)F[1−Dt(u)](y)

≤ const · t d−1
2 w

1/2
R,t

∫
R2d

dudw
∣∣Ct(u)Ct (w)C̄(u + w)

∣∣
×

√
Vol

(
tD ∩ (tD + w)

)√
Vol

(
tD ∩ (tD + u)

)
≤ const · t 3

2 d− 1
2 w

1/2
R,t

∫
R2d

dudw
∣∣Ct(u)Ct (w)C̄(u + w)

∣∣,
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where in the third inequality we used the Cauchy–Schwarz inequality and Plancherel theo-
rem.

Recall now that
∫
Rd |x|− d

2 G(dx) = ∫ ∞
0 s− d

2 μ(ds) < ∞ by assumption; see (39). By def-
inition, the spectral measure of C̄ is G(dλ)√|λ| (see (14)), and the associated isotropic spec-

tral measure is μ̄(ds) = μ(ds)√
s

. Since
∫ ∞

0 s− d
2 μ(ds) = ∫ ∞

0 s− d−1
2 μ̄(ds) < ∞, we deduce

from Lemma 3.2 that supr∈R+ r
d−1

2 |ρ̄(r)| = supu∈Rd |u| d−1
2 |C̄(u)| < ∞, that is, C̄(u) ≤

const |u|− d−1
2 . Using the inequality |ab| ≤ a2 + b2, this yields

I ≤ const · t 3
2 d− 1

2 w
1/2
R,t

∫
{|u|,|w|≤diam(D)t}

dudwC2(u)
∣∣C̄(u + w)

∣∣
≤ const · t 3

2 d− 1
2 w

1/2
R,t wR,diam(D)t

∫
{|z|≤2diam(D)t}

∣∣C̄(z)
∣∣dz

≤ const · t 3
2 d− 1

2 w
3/2
R,t

∫ 2diam(D)t

0
r

d−1
2 dr = const · t2dw

3/2
R,t ,

where in the last inequality we used again doubling conditions in [10]. �

LEMMA 4.4. Let B = (Bx)x∈Rd be a real-valued continuous centered Gaussian field on
R

d , and assume that B is stationary and has unit variance (note that we did not assume
isotropy and d ≥ 2). Assume that D ⊂ R

d is compact with Vol(D) > 0. Recall the definition
(1) of C, the definition (14) of G, the definition (19) of w2,t , the definition (40) of Ct and the
definition (41) of Dt(u). If |F[1D](x)| = O( 1

|x|d/2 ) as |x| → ∞,5 with F the Fourier trans-
form, and if the analogous of the spectral condition (39) holds (note that here the isotropic
spectral measure μ is not defined, because B is not necessarily isotropic, but G is defined)∫

Rd
|x|− d

2 G(dx) < ∞,

then ∫
Rd

G (dx)

∫
|y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

∣∣∣∣2
≤ constw3/2

2,t t2d .

PROOF. First, by (43) in Lemma 4.2, we can write

II : =
∫
Rd

G (dx)

∫
|y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

∣∣∣∣2
=

∫
Rd

G (dx)

×
∫
|y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

F[Ct ](x − z)F[1tD](y − z)F[1tD](z) dz

∣∣∣∣2.
Using the Cauchy–Schwarz inequality two times (first with respect to y, then with respect to
z) and then Plancherel theorem, II satisfies, with ‖·‖2 the L2-norm:

II ≤ ∥∥F[Ct ]
∥∥

2

∫
Rd

G (dx)

5Since we assumed D to be compact, this happens, for example, when D = D̊ and ∂D is smooth with nonvan-
ishing Gaussian curvature; see, for example, [3].
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×
(∫

|y|≥|x|/2
dy

∣∣∣∣∫
Rd

dzF[Ct ](x − z)F[1tD](y − z)F[1tD](z)
∣∣∣∣4)1/2

≤ ∥∥F[Ct ]
∥∥

2

∫
Rd

G (dx)

×
(∫

|y|≥|x|/2
dy

∥∥F[Ct ]
∥∥4

2

∣∣∣∣∫
Rd

dz
∣∣F[1tD]∣∣2(y − z)

∣∣F[1tD]∣∣2(z)∣∣∣∣2)1/2

= ∥∥F[Ct ]
∥∥3

2

∫
Rd

G (dx)

(∫
|y|≥|x|/2

dy
∣∣∣∣F[1tD]∣∣2 ∗ ∣∣F[1tD]∣∣2(y)

∣∣2)1/2

≤ ∥∥F[Ct ]
∥∥3

2

∫
Rd

G (dx)
(

sup
|y|≥|x|/2

∣∣F[1tD]∣∣2 ∗ ∣∣F[1tD]∣∣2(y)
)1/2

×
(∫

Rd
dy

∣∣∣∣F[1tD]∣∣2 ∗ ∣∣F[1tD]∣∣2(y)
∣∣)1/2

≤ ∥∥F[Ct ]
∥∥3

2

∫
Rd

G (dx)
(

sup
|y|≥|x|/2

∣∣F[1tD]∣∣2 ∗ ∣∣F[1tD]∣∣2(y)
)1/2

×
(∫

Rd

∣∣F[1tD](y)
∣∣2 dy

)
= const · td∥∥F[Ct ]

∥∥3
2

∫
Rd

G (dx)
(

sup
|y|≥|x|/2

∣∣F[1tD]∣∣2 ∗ ∣∣F[1tD]∣∣2(y)
)1/2

,

where the last inequality comes from Young convolution inequalities and the last equality
from Plancherel theorem.

Since by assumption |F[1D](x)| = O( 1
|x|d/2 ) as |x| → ∞, in particular supx∈Rd |x|d/2 ×

|F[1D](x)| < ∞. We deduce, for all t > 0 and all y ∈ R
d , that∣∣F[1tD](y)

∣∣2 = t2d
∣∣F[1D](ty)

∣∣2 ≤ const td |y|−d .

This implies

sup
|y|≥|x|/2

∣∣F[1tD]∣∣2 ∗ ∣∣F[1tD]∣∣2(y)

= sup
|y|≥|x|/2

∣∣∣∣∫
Rd

∣∣F[1tD]∣∣2(y − z)
∣∣F[1tD]∣∣2(z) dz

∣∣∣∣
≤ const · td

|x|d sup
|y|≥|x|/2

∣∣∣∣∫|z|≥|x|/4

∣∣F[1tD]∣∣2(y − z) dz +
∫
|y−z|≥|x|/4

∣∣F[1tD]∣∣2(z) dz

∣∣∣∣
≤ const · td

|x|d
∫
Rd

∣∣F[1tD]∣∣2(z) dz = const
t2d

|x|d .

We deduce that

II ≤ const · t2d
∥∥F[Ct ]

∥∥3
2

∫
Rd

G (dx)

|x|d/2

= const · t2dw
3/2
R,diam(D)t

∫
Rd

G (dx)

|x|d/2 ≤ const · t2dw
3/2
R,t

∫
Rd

G (dx)

|x|d/2 ,

where the last equality comes from Plancherel theorem and the last inequality from doubling
conditions in [10].
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Since
∫
Rd |x|− d

2 G(dx) < ∞ by assumption, our bound for II is

II ≤ const · t2dw
3/2
R,t

and the proof is concluded. �

Now we can proceed with the proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. First, we assume without loss of generality that w2,t →
∞, since otherwise the statement follows from Theorem 1.1. Moreover, throughout all the
proof we freely use that v2,t � w2,t ; see (38).

Starting from now, the proof is divided into three steps.
Step 1: Reduction of the proof . We claim that it is enough to check that Y2,t /

√
Var(Y2,t ) →

N(0,1) in order to prove Proposition 4.1. Indeed, since (39) holds and given that d
2 > d−1

2 , we

deduce from Lemma 3.2 that supr∈R+{r d−1
2 ρ(r)} < ∞. Proposition 2.2 implies the statement

on σ 2
t and justifies that we are left to prove that Y2,t /

√
Var(Y2,t ) → N(0,1).

As done in the proof of Proposition 3.1, in order to prove the convergence Y2,t /√
Var(Y2,t ) → N(0,1) we make use of the fourth moment theorem ([19], Theorem 5.2.7);

this requires checking that the only involved contraction goes to zero. To do this, we will use
the novel ideas from Fourier analysis introduced in Lemma 4.2, Lemma 4.3 and Lemma 4.4.

As in the proof of Theorem 2.4, we can first rewrite Y2,t as a double Wiener–Itô integral
with respect to B:

Y2,t = I2(ft ), where ft =
∫
tD

e⊗2
x dx,

with ex such that Bx = I1(ex). We know from the fourth moment theorem stated in Sec-
tion 2.4 that Y2,t /

√
Var(Y2,t ) → N(0,1) if and only if ‖ft ⊗1 ft‖2/Var(Y2,t ) → 0.

Step 2: A two-term error bound for the norm of the contraction. Here, we apply Lemma 4.2.
Noting that for x, y ∈ R

d either |x − y| ≥ |x|/2 or |y| ≥ |x|/2, we deduce from (42) and (43)
the following two terms error bound:

‖ft ⊗1 ft‖2
2

≤
∫
Rd

G (dx)

∫
|x−y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

∣∣∣∣2
+

∫
Rd

G (dx)

∫
|y|≥|x|/2

dy
∣∣F[Ct ](x − y)

∣∣∣∣∣∣∫
Rd

Ct (w)ei〈x,w〉F[1Dt(−w)](y) dw

∣∣∣∣2
= I + II.

Step 3: The norm of the contraction divided by the variance goes to 0. To conclude
the proof of Proposition 4.1, we will now check (see the conclusion of Step 1) that
‖ft ⊗1 ft‖2/Var(Y2,t ) → 0. From (38), we have

(46) Var(Y2,t ) � tdwR,t .

We deduce from Step 2, Lemma 4.3 and Lemma 4.4, that

‖ft ⊗1 ft‖2
2

Var(Y2,t )2 ≤ const · w
3/2
R,t

w2
R,t

= const · 1

w
1/2
R,t

,

and the right-hand side goes to 0, since we assumed at the beginning of the proof that w2,t →
∞. �
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5. Proof of Theorem 1.2 when R = 1. This section is devoted to the proof of Theo-
rem 1.2 in the remaining cases, namely ϕ nonodd, R = 1 and R′ 	= 3.

To ease the exposition, we write in the following proposition the statement obtained when,
in Theorem 1.2, we additionally suppose that we are in the cases just mentioned above.

PROPOSITION 5.1. Fix d ≥ 2, let B = (Bx)x∈Rd be a real-valued continuous centered
Gaussian field on R

d and assume that B is stationary, isotropic and has unit variance. Let ϕ :
R → R be not odd and such that E[ϕ(N)2] < ∞ with N ∼ N(0,1). Assume ϕ has Hermite
rank R = 1 and let R′ ≥ 2, R′ 	= 3, be its second Hermite rank. Consider Yt defined by (3),
where D is compact and Vol(D) > 0. Set mt = E[Yt ] and σt = √

Var(Yt ) > 0, and recall
the definition (15) of the isotropic spectral measure μ, the definition (12) of Yq,t and the
definition (19) of wq,t . Assume that the spectral condition holds

(47)
∫ ∞

0
s−dμ(ds) < ∞

and that |F[1D](x)| = o( 1
|x|d/2 ) as |x| → ∞,6 with F the Fourier transform. Then

σ 2
t �

{
tdwR′,t if R′ ∈ {2,4},
td if R′ ≥ 5

and
Yt − mt

σt

law→ N(0,1) as t → ∞.

PROOF. Set ϕ̂(x) = ϕ(x) − a0 − a1x. By the very definition of R′, the function ϕ̂ has
Hermite rank R′. Let us define

(48) Ŷt =
∫
tD

ϕ̂(Bx) dx =
∞∑

q=R′
aqYq,t = Yt −E[Yt ] − a1Y1,t

and its variance

(49) σ̂ 2
t = Var(Ŷt ) =

∞∑
q=R′

a2
qVar(Yq,t ) = σ 2

t − a2
1Var(Y1,t ).

The proof is divided into two steps.
Step 1: CLT for Ŷt . We claim that σ̂ 2

t � tdwR′,t and

(50)
Ŷt − mt

σ̂t

law→ N(0,1) as t → ∞.

First of all, observe that (47) implies (20) for R′ ≥ 2. Moreover, note that we can have three
different situations:

• If R′ ≥ 5, then by (47) and Lemma 3.2 we have supr∈R+ r
d−1

2 |ρ(r)| = supu∈Rd |u| d−1
2 ×

|C(u)| < ∞, C ∈ LR′
(Rd), and the claim follows immediately by Theorem 1.1 and the

fact that ϕ is not odd.
• If R′ = 4, then the claim follows by Proposition 3.1.
• If R′ = 2, since |F[1D](x)| = o( 1

|x|d/2 ) as |x| → ∞ implies |F[1D](x)| = O( 1
|x|d/2 ) as

|x| → ∞, then the claim follows by Proposition 4.1.

6Since we assumed D to be compact, this happens, for example, when D = D̊ and ∂D is smooth with nonvan-
ishing Gaussian curvature; see, for example, [3].



760 L. MAINI AND I. NOURDIN

Step 2: CLT for Yt . We claim that σt ∼ σ̂t as t → ∞ and

(51) E

[(
Yt − mt

σt

− Ŷt

σ̂t

)2]
→ 0.

The proof of Proposition 5.1 thus follows as soon as these two claims are shown to be true.
From (22), we have

t−dVar(Y1,t ) = const
∫
Rd

G(dλ)

|λ|d |tλ|d ∣∣F[1D](tλ)
∣∣2.

Then, combining (47), dominated convergence theorem and the fact that |F[1D](x)| =
o( 1

|x|d/2 ) as |x| → ∞, we have that Var(Y1,t ) = o(td) as t → ∞. Since in Step 1 we proved

that σ̂ 2
t � td or σ̂ 2

t � tdwR′,t , we have by (49) that σ̂t ∼ σt . It remains to prove (51). By
orthogonality of chaotic projections, we have

E

[(
Yt − mt

σt

− Ŷt

σ̂t

)2]
= a2

1
Var(Y1,t )

Var(Yt )
+

(
σ̂t

σt

− 1
)2

.

Since Var(Y1,t ) = o(td), the first addend converges to 0. On the other hand, the second term
vanishes because σ̂t ∼ σt as t → ∞. �

6. An example of application of Theorem 1.2. In this section, we illustrate a possible
use of Theorem 1.2. In order to introduce our class of fields of interest, recall the definition
of the Bessel function Jν given in Section 2.2 and define, for every ν ≥ 0, the normalized
Bessel function function ρν : [0,∞) →R as

ρν(r) = cν

Jν(r)

rν
,

where cν is chosen so that ρν(0) = 1.
Note that ρd

2 −1 is equal to the function bd defined in (18), and in particular ρ0 = b2 = J0

when d = 2.
Throughout this section, we define the Bessel Gaussian field of order ν and dimension d as

the real-valued continuous centered Gaussian field Bν = (Bν
x )x∈Rd with covariance function

E
[
Bν

xBν
y

] = ρν

(|x − y|).
In particular, d-dimensional Berry’s random wave model is defined as the Bessel Gaussian
field of order d

2 − 1 and dimension d .
The existence of the Bessel Gaussian field of order ν and dimension d ≥ 2 is neither ob-

vious, nor always true. The following result provides a complete picture, and also shows that
d-dimensional Berry’s random wave model appears to be the critical case for the existence of
the Bessel Gaussian field.

PROPOSITION 6.1. Fix d ≥ 2 and ν ≥ 0. There exists a Bessel Gaussian field Bν =
(Bν

x )x∈Rd of order ν and dimension d if and only if ν ≥ d
2 − 1. In this case, the isotropic

spectral measure associated to Bν (see (16)) is

(52) μν(ds) =

⎧⎪⎪⎨⎪⎪⎩
cd,νs

d−1(1 − s2)ν− d
2 1(0,1) ds if ν >

d

2
− 1,

δ1(ds) if ν = d

2
− 1,

where cd,ν > 0 is chosen so that μν is a probability measure.
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PROOF. Observe that ρν has representation

ρν(r) = cν

Jν(r)

rν
= const ×

∞∑
j=0

(−1)j
(ν + 1)(r2/4)j

j !(j + ν + 1)
.

Combining this representation with [9], Proposition 2.2, one has that ρν is not positive definite
when ν < d

2 − 1, showing that the Bessel Gaussian field does not exist in this case.
The statement for the critical case ν = d

2 −1 immediately follows from (16) and (18), after
observing that ρd

2 −1 = bd .

For ν > d
2 − 1, one can actually check that μν given in the statement is the distribution

of the square root of the Beta random variable β(d
2 , ν − d

2 + 1). Then, using Fubini and
bd = ρd

2 −1 we have∫ 1

0
bd(rt)μν (dr) = const

∫ 1

0

( ∞∑
k=0

(−1)k(d/2)

(k + d/2)k!
(
(rt)2/4

)k)
μν (dr)

= const
∞∑

k=0

(−1)k(d/2)

(k + d/2)k!
(

t

2

)2k ∫ 1

0
r2kμν (dr)

= const
∞∑

k=0

(ν + 1)(−1)k

(ν + k + 1)k!
(

t

2

)2k

= ρν(t),

where the second-last equality comes from the fact that the kth moment of a random variable
β(d

2 , ν − d
2 + 1) is

(d/2 + k)(ν + 1)

(d/2)(ν + k + 1)
.

This means (see (16)) that ρν defines a Bessel Gaussian field when ν > d
2 − 1 and that its

spectral measure is μν as defined in the statement.
The fact that any Bessel Gaussian field is continuous can be proved using standard results;

see, for example, [1], Theorem 1.4.1. �

Now let us apply our Theorem 1.2 to the Bessel Gaussian field with parameter ν ≥ d
2 − 1

and dimension d ≥ 2.

COROLLARY 6.2 (Spectral CLT applied to Bν). Fix d ≥ 2 and ν ≥ d
2 − 1. Let Bν =

(Bν
x )x∈Rd be a Bessel Gaussian field on R

d . Let ϕ : R → R be not odd and such that
E[ϕ(N)2] < ∞ with N ∼ N(0,1), let R be the Hermite rank of ϕ and consider Yt defined by
(3), where B = Bν and D is compact, Vol(D) > 0. Set mt = E[Yt ] and σt = √

Var(Yt ) > 0.
If R = 2, assume that |F[1D](x)| = O( 1

|x|d/2 ) as |x| → ∞. Then, if R = 2 or R ≥ 4, we have

that σ 2
t � tdwR,t and

Yt − mt

σt

law→ N(0,1) as t → ∞.

PROOF. Using standard asymptotics for Bessel functions (see, e.g., [11]), one has

ρν(r) = cν

cos(r − aν)

rν+1/2 + O

(
1

rν+3/2

)
as r → ∞

for some constants cν and aν . Then it follows that∫ 2t

0

∣∣ρν(r)
∣∣qrd−1 dr = O

(∫ 2t

1

dr

rqν+ q
2 +1−d

)
as t → ∞.
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Since ν ≥ d
2 −1, when R ≥ 5 we have that |ρ|q(r)rd−1 is integrable, and the result follows by

Breuer–Major Theorem 1.1. For R = 2 and R = 4, the result follows by a direct application
of Theorem 1.2, since the negative moment of order d/R of μν exists for every d ≥ 2 and
R ≥ 2. �

REMARK 6.3. For simplicity, in the previous statement we did not consider all the cases
which can be solved applying our Theorem 1.2. For example, the spectral condition (20) for
R = 1 is not verified by μν if ν > d

2 −1, but holds in the d-dimensional Berry case ν = d
2 −1.

Moreover, relying on a slight variation of the proof of Proposition 5.1, it would have not been
very difficult to also cover the noncritical cases where ν ∈ [d

2 − 1, d
2 − 1

2). We skip the details
for the sake of brevity.

Acknowledgments. We would like to thank the referee for a careful reading, constructive
remarks and useful suggestions.

Funding. L. Maini was supported by the Luxembourg National Research Fund
PRIDE17/1224660/GPS. I. Nourdin was supported by the Luxembourg National Research
O22/17372844/FraMStA.

REFERENCES

[1] ADLER, R. J. and TAYLOR, J. E. (2007). Random Fields and Geometry. Springer Monographs in Mathe-
matics. Springer, New York. MR2319516

[2] BERRY, M. V. (1977). Regular and irregular semiclassical wavefunctions. J. Phys. A 10 2083–2091.
MR0489542

[3] BRANDOLINI, L., HOFMANN, S. and IOSEVICH, A. (2003). Sharp rate of average decay of the Fourier
transform of a bounded set. Geom. Funct. Anal. 13 671–680. MR2006553 https://doi.org/10.1007/
s00039-003-0426-7

[4] BREUER, P. and MAJOR, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J.
Multivariate Anal. 13 425–441. MR0716933 https://doi.org/10.1016/0047-259X(83)90019-2

[5] DIERICKX, G., NOURDIN, I., PECCATI, G. and ROSSI, M. (2023). Small scale CLTs for the nodal
length of monochromatic waves. Comm. Math. Phys. 397 1–36. MR4538280 https://doi.org/10.1007/
s00220-022-04422-w

[6] DOBRUSHIN, R. L. and MAJOR, P. (1979). Non-central limit theorems for nonlinear functionals of Gaus-
sian fields. Z. Wahrsch. Verw. Gebiete 50 27–52. MR0550122 https://doi.org/10.1007/BF00535673

[7] FLORET, K. (1997). Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 153–188.
MR1749787

[8] GALERNE, B. (2011). Computation of the perimeter of measurable sets via their covariogram. Applications
to random sets. Image Anal. Stereol. 30 39–51. MR2816305 https://doi.org/10.5566/ias.v30.p39-51

[9] GOLINSKII, L., MALAMUD, M. and ORIDOROGA, L. (2018). Radial positive definite functions and
Schoenberg matrices with negative eigenvalues. Trans. Amer. Math. Soc. 370 1–25. MR3717972
https://doi.org/10.1090/tran/6876

[10] GORBACHEV, D. and TIKHONOV, S. (2019). Doubling condition at the origin for non-negative positive
definite functions. Proc. Amer. Math. Soc. 147 609–618. MR3894899 https://doi.org/10.1090/proc/
14191

[11] KRASIKOV, I. (2014). Approximations for the Bessel and Airy functions with an explicit error term. LMS J.
Comput. Math. 17 209–225. MR3230865 https://doi.org/10.1112/S1461157013000351

[12] LEONENKO, N. (1999). Limit Theorems for Random Fields with Singular Spectrum. Mathemat-
ics and Its Applications 465. Kluwer Academic, Dordrecht. MR1687092 https://doi.org/10.1007/
978-94-011-4607-4

[13] MAINI, L. (2024). Asymptotic covariances for functionals of weakly stationary random fields. Stochastic
Process. Appl. 170 104297. MR4689941 https://doi.org/10.1016/j.spa.2024.104297

[14] MARINUCCI, D. and WIGMAN, I. (2014). On nonlinear functionals of random spherical eigenfunctions.
Comm. Math. Phys. 327 849–872. MR3192051 https://doi.org/10.1007/s00220-014-1939-7

[15] NOTARNICOLA, M. (2021). Probabilistic limit theorems and the geometry of random fields. Ph.D. thesis,
Univ. Luxembourg.

https://mathscinet.ams.org/mathscinet-getitem?mr=2319516
https://mathscinet.ams.org/mathscinet-getitem?mr=0489542
https://mathscinet.ams.org/mathscinet-getitem?mr=2006553
https://doi.org/10.1007/s00039-003-0426-7
https://mathscinet.ams.org/mathscinet-getitem?mr=0716933
https://doi.org/10.1016/0047-259X(83)90019-2
https://mathscinet.ams.org/mathscinet-getitem?mr=4538280
https://doi.org/10.1007/s00220-022-04422-w
https://mathscinet.ams.org/mathscinet-getitem?mr=0550122
https://doi.org/10.1007/BF00535673
https://mathscinet.ams.org/mathscinet-getitem?mr=1749787
https://mathscinet.ams.org/mathscinet-getitem?mr=2816305
https://doi.org/10.5566/ias.v30.p39-51
https://mathscinet.ams.org/mathscinet-getitem?mr=3717972
https://doi.org/10.1090/tran/6876
https://mathscinet.ams.org/mathscinet-getitem?mr=3894899
https://doi.org/10.1090/proc/14191
https://mathscinet.ams.org/mathscinet-getitem?mr=3230865
https://doi.org/10.1112/S1461157013000351
https://mathscinet.ams.org/mathscinet-getitem?mr=1687092
https://doi.org/10.1007/978-94-011-4607-4
https://mathscinet.ams.org/mathscinet-getitem?mr=4689941
https://doi.org/10.1016/j.spa.2024.104297
https://mathscinet.ams.org/mathscinet-getitem?mr=3192051
https://doi.org/10.1007/s00220-014-1939-7
https://doi.org/10.1007/s00039-003-0426-7
https://doi.org/10.1007/s00220-022-04422-w
https://doi.org/10.1090/proc/14191
https://doi.org/10.1007/978-94-011-4607-4


SPECTRAL CLT 763

[16] NOTARNICOLA, M., PECCATI, G. and VIDOTTO, A. (2023). Functional convergence of Berry’s nodal
lengths: Approximate tightness and total disorder. J. Stat. Phys. 190 Paper No. 97, 41. MR4587627
https://doi.org/10.1007/s10955-023-03111-9

[17] NOURDIN, I. and NUALART, D. (2020). The functional Breuer–Major theorem. Probab. Theory Related
Fields 176 203–218. MR4055189 https://doi.org/10.1007/s00440-019-00917-1

[18] NOURDIN, I., NUALART, D. and TUDOR, C. A. (2010). Central and non-central limit theorems for
weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat.
46 1055–1079. MR2744886 https://doi.org/10.1214/09-AIHP342

[19] NOURDIN, I. and PECCATI, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s
Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge.
MR2962301 https://doi.org/10.1017/CBO9781139084659

[20] NOURDIN, I., PECCATI, G. and PODOLSKIJ, M. (2011). Quantitative Breuer–Major theorems. Stochastic
Process. Appl. 121 793–812. MR2770907 https://doi.org/10.1016/j.spa.2010.12.006

[21] NOURDIN, I., PECCATI, G. and ROSSI, M. (2019). Nodal statistics of planar random waves. Comm. Math.
Phys. 369 99–151. MR3959555 https://doi.org/10.1007/s00220-019-03432-5

[22] NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications
(New York). Springer, Berlin. MR2200233

[23] NUALART, D. and PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic inte-
grals. Ann. Probab. 33 177–193. MR2118863 https://doi.org/10.1214/009117904000000621

[24] PECCATI, G. and VIDOTTO, A. (2020). Gaussian random measures generated by Berry’s nodal sets. J. Stat.
Phys. 178 996–1027. MR4064212 https://doi.org/10.1007/s10955-019-02477-z

[25] ROSENBLATT, M. (1960). Independence and dependence. In Proc. 4th Berkeley Sympos. Math. Statist. and
Prob., Vol. II 431–443. Univ. California Press, Berkeley–Los Angeles, Calif. MR0133863

[26] SCHOENBERG, I. J. (1938). Metric spaces and completely monotone functions. Ann. of Math. (2) 39 811–
841. MR1503439 https://doi.org/10.2307/1968466

[27] TAQQU, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw.
Gebiete 50 53–83. MR0550123 https://doi.org/10.1007/BF00535674

[28] TUDOR, C. A. (2013). Analysis of Variations for Self-Similar Processes: A Stochastic Calculus Approach.
Probability and Its Applications (New York). Springer, Cham. MR3112799 https://doi.org/10.1007/
978-3-319-00936-0

https://mathscinet.ams.org/mathscinet-getitem?mr=4587627
https://doi.org/10.1007/s10955-023-03111-9
https://mathscinet.ams.org/mathscinet-getitem?mr=4055189
https://doi.org/10.1007/s00440-019-00917-1
https://mathscinet.ams.org/mathscinet-getitem?mr=2744886
https://doi.org/10.1214/09-AIHP342
https://mathscinet.ams.org/mathscinet-getitem?mr=2962301
https://doi.org/10.1017/CBO9781139084659
https://mathscinet.ams.org/mathscinet-getitem?mr=2770907
https://doi.org/10.1016/j.spa.2010.12.006
https://mathscinet.ams.org/mathscinet-getitem?mr=3959555
https://doi.org/10.1007/s00220-019-03432-5
https://mathscinet.ams.org/mathscinet-getitem?mr=2200233
https://mathscinet.ams.org/mathscinet-getitem?mr=2118863
https://doi.org/10.1214/009117904000000621
https://mathscinet.ams.org/mathscinet-getitem?mr=4064212
https://doi.org/10.1007/s10955-019-02477-z
https://mathscinet.ams.org/mathscinet-getitem?mr=0133863
https://mathscinet.ams.org/mathscinet-getitem?mr=1503439
https://doi.org/10.2307/1968466
https://mathscinet.ams.org/mathscinet-getitem?mr=0550123
https://doi.org/10.1007/BF00535674
https://mathscinet.ams.org/mathscinet-getitem?mr=3112799
https://doi.org/10.1007/978-3-319-00936-0
https://doi.org/10.1007/978-3-319-00936-0

	Introduction
	Previous results
	Motivating examples
	Main result
	Possible natural extensions of Theorem 1.2
	Plan of the paper

	A few preliminaries for the proof of Theorem 1.2
	Well-posedness of Yt
	Bessel functions and Fourier transform of the indicator of the unit ball
	Reduction to the Rth chaos
	Elements of Malliavin calculus and the fourth moment theorem
	The Wiener-Itô integral
	Contractions and the fourth moment theorem


	Proof of Theorem 1.2 when R>=4 even
	Proof of Theorem 1.2 when R=2
	Proof of Theorem 1.2 when R=1
	An example of application of Theorem 1.2
	Acknowledgments
	Funding
	References

