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Many genetic studies contain rich information on longitudinal pheno-
types that require powerful analytical tools for optimal analysis. Genetic anal-
ysis of longitudinal data that incorporates temporal variation is important for
understanding the genetic architecture and biological variation of complex
diseases. Most of the existing methods assume that the contribution of ge-
netic variants is constant over time and fail to capture the dynamic pattern
of disease progression. However, the relative influence of genetic variants on
complex traits fluctuates over time. In this study, we propose a retrospective
varying coefficient mixed model association test, RVMMAT, to detect time-
varying genetic effect on longitudinal binary traits. We model dynamic ge-
netic effect using smoothing splines, estimate model parameters by maximiz-
ing a double penalized quasi-likelihood function, design a joint test using a
Cauchy combination method, and evaluate statistical significance via a retro-
spective approach to achieve robustness to model misspecification. Through
simulations we illustrated that the retrospective varying-coefficient test was
robust to model misspecification under different ascertainment schemes and
gained power over the association methods assuming constant genetic effect.
We applied RVMMAT to a genome-wide association analysis of longitudinal
measure of hypertension in the Multi-Ethnic Study of Atherosclerosis. Path-
way analysis identified two important pathways related to G-protein signaling
and DNA damage. Our results demonstrated that RVMMAT could detect bi-
ologically relevant loci and pathways in a genome scan and provided insight
into the genetic architecture of hypertension.

1. Introduction. Genome-wide association studies (GWAS) have successfully identi-
fied thousands of susceptible loci underlying human diseases and complex traits. Many epi-
demiological studies, such as Framingham Heart Study (FHS) and Women’s Health Initiative
(WHI), have collected and measured health conditions and phenotypic traits on study par-
ticipants over the years. Such studies provide rich resources for the investigation of genetic
architecture and biological variations of complex disorders. Traditional genetic association
analyses on single time point measure fail to capture the phenotypic variation over time and
may lose statistical power to identify disease-related variants. Thus, genetic studies with lon-
gitudinal phenotypes require powerful analytical tools for optimal analysis. Statistical meth-
ods that account for dependence structure among observations from the same subject have
been developed in GWAS to make full use of longitudinal data, such as mixed effects models
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(Furlotte, Eskin and Eyheramendy (2012), Sikorska et al. (2013), Wu et al. (2019)), gener-
alized estimating equations (GEEs) (Sitlani et al. (2015), Wu et al. (2019)), growth mixture
models (Das et al. (2011), Londono et al. (2013)), and empirical Bayes models (Meirelles
et al. (2013)). Most of these methods assume that genetic contribution is constant over time.
However, disease development and progression is a complicated process that changes over
time. Windows of susceptibility and critical periods across the lifespan exist in disease onset
and development. Studies have shown that genetic influence on the trait variations fluctuates
with the passage of time (Bryois et al. (2017), Chu, Li and Reimherr (2016), Gong and Zou
(2012), Liu, Li and Wu (2014), Wang, Li and Huang (2008)). Modeling time-varying ge-
netic effects is essential to identify and validate causal genetic loci that are associated with
time-dependent variation of disease progression.

Varying coefficient models are a class of generalized regression models in which the coef-
ficients are allowed to vary smoothly with the value of other variables (Hastie and Tibshirani
(1993)). They are semiparametric models that explore dynamic pattern in the data to improve
model fitting (Fan and Zhang (2008)), reduce model bias by specifying the coefficients as
smooth nonparametric functions (Lu and Zhang (2009)), and overcome the “curse of dimen-
sionality” in the nonparametric estimation of multiple regression problems (Eubank et al.
(2004)). There are several approaches to estimate time-varying coefficients in varying coeffi-
cient models, including kernel-local polynomial smoothing (Fan and Zhang (1999), Hoover
et al. (1998), Kauermann and Tutz (1999), Wu, Chiang and Hoover (1998)), polynomial
spline (Huang and Shen (2004), Huang, Wu and Zhou (2002, 2004)), and smoothing spline
(Chiang, Rice and Wu (2001), Hastie and Tibshirani (1993), Zhang (2004)). Other statistical
methods have been developed to model dependency in longitudinal data, such as GEE (Liang
and Zeger (1986)) and Gaussian copula (Joe (2015)). Models allowing for time-varying co-
variate effects include semiparametric regression with GEE (Lin and Carroll (2000)) and
time-varying copula models (Kürüm et al. (2018, 2016)).

Varying coefficient models have been used for two types of applications in longitudinal
GWAS. The first application focuses on feature selection for longitudinal outcomes with
ultrahigh-dimensional predictors, such as single nucleotide polymorphisms (SNPs). As com-
putational burden is a major concern when handling millions of SNPs simultaneously in a
model, feature screening becomes an efficient solution to filter out unimportant SNPs. Fea-
ture screening in varying coefficient models has been developed based on conditional Pearson
correlation (Liu, Li and Wu (2014)), extended B-splines (Fan, Ma and Dai (2014)), modified
weighted least squares estimation (Chu, Li and Reimherr (2016)), and functional regression
with group penalty (Marchetti-Bowick et al. (2016)) to retain important SNPs associated with
continuous and binary traits (Chu et al. (2020), Xia, Yang and Li (2016)). The second appli-
cation focuses on the detection of time-varying effect of quantitative trait nucleotide, such as
functional GWAS (Das et al. (2011), Li et al. (2015), Ning et al. (2017)). These methods fit
the model at each SNP separately and use likelihood ratio tests to determine statistical sig-
nificance, thus can be computationally intensive to analyze genome-wide SNPs, especially
for binary outcomes. For large GWAS score tests are popular and computationally efficient
because they only fit the null model once for all SNPs. However, current score test-based
methods commonly treat the effects of genetic variants as constant over time and are not able
to capture the dynamic contribution to disease progression.

Motivated by a genome-wide association analysis of longitudinal measure of hypertension
in the Multi-Ethnic Study of Atherosclerosis (MESA), we developed a retrospective varying
coefficient mixed model association test, RVMMAT, to detect time-varying genetic effect on
longitudinal binary traits. We model dynamic genetic effect using smoothing splines, esti-
mate model parameters by maximizing a double penalized quasi-likelihood function, design
a joint test using a Cauchy combination method, and evaluate significance of the test via a
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retrospective approach in which genotypes are treated as random conditional on the pheno-
type and covariates. Retrospective association tests have been shown to be robust to the trait
model misspecification and improve statistical power (Hayeck et al. (2015), Jiang, Mbatchou
and McPeek (2015), Wu et al. (2019), Wu and McPeek (2018)). In RVMMAT flexible as-
sumptions on the effect function increased power to detect genetic variants associated with
dynamic traits. RVMMAT maintains correct type I error and is less sensitive to bias of pa-
rameter estimates in the phenotype model introduced by tuning parameters in penalty terms.
For comparison, we also developed VMMAT, a prospective varying coefficient mixed model
association test. We conducted simulation studies to evaluate the type I error and power of
RVMMAT and VMMAT and compared them with the existing association methods. The re-
sults demonstrated that the retrospective varying-coefficient test had better control of type I
error when the trait model was misspecified and was robust to various ascertainment schemes.
Moreover, the retrospective varying-coefficient test was more powerful than the prospective
test. We applied RVMMAT and VMMAT to the genome-wide association analysis of lon-
gitudinal measure of hypertension in MESA and identified hypertension-related genetic loci
and pathways.

2. Methods. Suppose a binary trait is measured over time on a sample of n sub-
jects. We have their genome-wide measures of genetic variation and a set of covari-
ates. The covariates are allowed to be static variables, such as sex, or dynamic vari-
ables, such as body weight. Let Xij and Yij , i = 1, . . . , n, j = 1, . . . ,mi , denote the p-
dimensional covariate vector and the binary trait measured on subject i at time tij . Here
the measurement time and length are allowed to be different for different subjects. We
let X = (X1,1, . . . ,X1,m1, . . . ,Xn,1, . . . ,Xn,mn)

T denote the N × p covariate matrix and
Y = (Y1,1, . . . , Y1,m1, . . . , Yn,1, . . . , Yn,mn)

T denote the outcome vector of length N , where
N = ∑n

i=1 mi is the total number of observations. We focus on the problem of testing time-
varying genetic effect between a genetic variant and the longitudinal binary trait. Let G de-
note the genotype vector of the n subjects at the variant to be tested, where Gi = 0, 1, or 2,
depending on whether subject i has 0, 1, or 2 copies of minor allele at the variant.

2.1. GLMM with varying coefficients. We consider a generalized linear mixed model
(GLMM) with varying coefficients, specified as

(1) g(μij ) = γ0(tij ) + Giγ1(tij ) + XT
ijβ + ai + rij , i = 1, . . . , n; j = 1, . . . ,mi,

where μij = E(Yij |Gi,Xij , ai, rij ) is the mean of the response Yij at time tij for subject
i, given his/her genotype, covariates, and random effects ai and rij , γ0(t), and γ1(t) are
smooth nonparametric functions of time t , representing a time-varying intercept and a time-
varying genetic effect of the tested variant, β is the effects of the covariates, and g(·) is
the link function. For binary traits we use the logit link function. The correlations among
repeated measurements are captured by two random effects: ai is the subject random effect,
and rij is the subject-specific time-dependent random effect (Wang et al. (2017), Wu et al.
(2019)). We assume that ai are independent and ai ∼ N(0, σ 2

a ). The vector of time-dependent
random effects r i = (ri,1, . . . , ri,mi

) is assumed to follow a multivariate normal distribution,
r i ∼ MVN(0, σ 2

r Ri ), where the correlation matrix Ri is modeled by an AR(1) structure in
which τ is the unknown parameter. Given the random effects ai and rij , the response Yij are
assumed to be independent. When both functions γ0(t) and γ1(t) are constants, Model (1)
reduces to a standard GLMM in (Wu et al. (2019)).
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Following (Lin and Zhang (1999), Zhang (2004)), we estimate γ0(t) and γ1(t) by maxi-
mizing the following double penalized quasi-likelihood (DPQL) function:

ldp
{
γ0(·), γ1(·),β, σ 2

a , σ 2
r , τ

} = − 1

2

∑
i,j

Dij (Yij ,μij ) − 1

2σ 2
a

aT a − 1

2σ 2
r

rT R−1r

− λ0

2

∫ {
γ

(h0)
0 (t)

}2
dt − λ1

2

∫ {
γ

(h1)
1 (t)

}2
dt,

(2)

where a = (a1, . . . , an)
T , r = (r1, . . . , rn)

T are the two vectors of random effects, R =
diag{R1, . . . ,Rn} is a block diagonal matrix, Dij (Yij ,μij ) = −2

∫ μij

Yij

Yij−u

u(1−u)
du is the condi-

tional deviance function of binary outcome Yij , given random effects ai and rij , λk (k = 0,1)
are tuning parameters that control the smoothness of γk(t), and hk are positive integers for
the derivative order of γk(t).

The maximizers for the nonparametric functions γk(t) in the DPQL function (2) are
smoothing splines of order 2hk (Wahba (1990)). Let 0 < t0

1 < · · · < t0
m < 1 be the m or-

dered distinct knots of all observed time points tij ; the smoothing splines can be expressed
as

γk(t) =
hk∑

s=1

cksFks(t) +
m∑

l=1

dklVk

(
t, t0

l

)
, k = 0,1,

where Fks(t) is a polynomial of order s − 1 (e.g., Fks(t) = t (s−1)/(s − 1)!, s = 1, . . . , hk)
and Vk(t1, t2) = 1

[(hk−1)!]2

∫ 1
0 (t1 − u)

hk−1
+ (t2 − u)

hk−1
+ du with u+ = max{u,0}. We denote

ck = (ck,1, . . . , ck,hk
)T , dk = (dk1, . . . , dkm)T , and γ k = (γk(t

0
1 ), . . . , γk(t

0
m))

T
for k = 0,1.

Then γ k can be expressed as

(3) γ k = F kck + V kdk,

where F k is an m × hk matrix with its (l, s)th entry equal to Fks(t
0
l ) and V k is a positive

definite matrix with the (l, s)th entry equal to Vk(t
0
l , t0

s ). Similar to equation (5) in (Zhang
(2004)), the DPQL function (2) becomes

ldp
{
γ0(·), γ1(·),β, σ 2

a , σ 2
r , τ

} = − 1

2

∑
i,j

Dij (Yij ,μij ) − 1

2σ 2
a

aT a − 1

2σ 2
r

rT R−1r

− λ0

2
dT

0 V 0d0 − λ1

2
dT

1 V 1d1.

(4)

Following (Lin and Zhang (1999), Zhang (2004)), if we plug equation (3) into Model (1), it
indicates that the maximizers of the DPQL function (4) can be obtained by fitting the GLMM
representation of Model (1), expressed in a matrix form as

(5) g(μ) = MF 0c0 + �GMF 1c1 + Xβ + MV 0d0 + �GMV 1d1 + Ba + r,

where M is an N × m incidence matrix mapping the m distinct knots t0
1 , . . . , t0

m to mea-
surement time tij , with its (l, s)th entry Mls = 1 if the lth entry of Y is measured at
time t0

s and 0 otherwise; B is an N × n design matrix mapping the subject-level geno-
type vector G to a measurement-level genotype vector BG, with its (l, i)th entry Bli = 1
if the lth entry of Y is a measurement on subject i and 0 otherwise; �G = diag{BG} =
diag{G1, . . . ,G1, . . . ,Gn, . . . ,Gn} is an N -dimentional diagonal matrix of the genotypes for
the n subjects; c0 and c1 are regression coefficients, and dk are random effects distributed as
dk ∼ N(0, θkV

−1
k ) for k = 0,1, where θk = λ−1

k .
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Model (5) is a specific implementation of the GLMM with varying coefficients in (Zhang
(2004)). The smoothing parameters λ0 and λ1 in the DPQL function (2) are reparameterized
as θ0 and θ1 and treated as extra variance components in addition to σ 2

a and σ 2
r in Model (5).

Since the DPQL function (4) is the same as the log-likelihood of Model (5), our estimation of
the nonparametric functions, smoothing parameters, and variance components in the DPQL
function (2) can be easily obtained by fitting the working GLMM (5) using the penalized
quasi-likelihood approach (Breslow and Clayton (1993)), which iteratively fits a linear mixed
model to a working response variable, obtains the best linear unbiased predictors (BLUPs)
of the fixed effects and the random effects, and estimates the variance components using
restricted maximum likelihood (REML). The detailed algorithm to estimate the fixed effects
and the random effects in Model (5) follows the procedure described in Section 3.3 of (Lin
and Zhang (1999)) and can be found in the Supplementary Material (Xu et al. (2024)). The
DPQL estimator γ̂ k can be calculated as γ̂ k = F k ĉk + V kd̂k , which is a linear combination
of the penalized quasi-likelihood estimators of the fixed effects ĉk and the random effects d̂k

in Model (5).
It is well known that the penalized quasi-likelihood estimation procedure tends to underes-

timate the variance components for sparse binary data (Breslow and Clayton (1993), Breslow
and Lin (1995), Lin and Breslow (1996)). When the response probabilities are small and the
data are highly imbalanced, only limited information is available for estimating random ef-
fects and their variances and covariances, leading to a convergence to a nonpositive definite
covariance matrix and biased variance component estimates (Breslow and Clayton (1993)).
To improve the asymptotic performance of the penalized quasi-likelihood estimators for cor-
related binary data, we used a bias correction procedure (Lin and Breslow (1996), Lin and
Zhang (1999), Zhang (2004)) to produce less biased variance component estimates and hence
less biased nonparametric functions. The bias correction procedure is as follows: (1) use the
penalized quasi-likelihood approach to estimate regression coefficients and variance com-
ponents; (2) correct variance components, and (3) recalculate regression coefficients using
the corrected variance components. The detailed bias correction algorithm can be found in
Section 5.3 of (Lin and Breslow (1996)).

2.2. Varying coefficient mixed model association test. To test time-varying genetic effect
between the variant and the trait, we test H0 : γ1(t) = 0 in Model (1), which is equivalent
to test H0 : c1 = 0 and θ1 = 0 in Model (5). The reduced GLMM under the null hypothesis
specifies that

(6) g(μ0) = MF 0c0 + Xβ + MV 0d0 + Ba + r,

where μ0 = E(Y |F 0,X,d0,a, r).
If we test H0 : c1 = 0 under the assumption that θ1 = 0, a score test statistic can be con-

structed as

(7) Tf = (
U0(c1)

)T [
Var

(
U0(c1)

)]−1
U0(c1),

where U0(c1) = (�GMF 1)
T (Y − μ̂0) is the score function for c1 and μ̂0 = g−1(MF 0ĉ0 +

Xβ̂ + MV 0d̂0 + Bâ + r̂) is a vector of fitted values under Model (6). Given the genotype
and covariates, the variance of the score U0(c1) under H0 is

Var
(
U0(c1)

) = (�GMF 1)
T P�GMF 1,

where P = �−1 − �−1XF (XT
F �−1XF )

−1
XT

F �−1, XF = (MF 0,X) and � = �̂
−1
0 +

θ̂0MV 0M
T + σ̂ 2

a BBT + σ̂ 2
r R̂. Here, � = diag{μ1,1(1 − μ1,1), . . . ,μ1,m1(1 − μ1,m1), . . . ,

μn,1(1 − μn,1), . . . ,μn,mn(1 − μn,mn)} is an N -dimensional diagonal matrix, and �̂0 and R̂
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are � and R evaluated under Model (6). Under the null hypothesis, the Tf test statistic has
an asymptotic χ2 distribution with h1 degrees of freedom.

On the other hand, if we test H0 : θ1 = 0 under the assumption that c1 = 0, a variance
component score test statistic can be constructed as

(8) Tvc = (Y − μ̂0)
T �GMV 1M

T �G(Y − μ̂0).

Under the null hypothesis, Tvc asymptotically follows a mixture of χ2 distribution, Tvc ∼∑m
l=1 ξlχ

2
1,l , where (ξ1, . . . , ξm) are the eigenvalues of the matrix V

1/2
1 MT �GP�GMV

1/2
1

and χ2
1,l are independent χ2

1 variables. The p-value of Tvc can be evaluated by a moment-
matching method (Liu, Tang and Zhang (2009)).

We propose a joint test for testing H0 : c1 = 0 and θ1 = 0 using a Cauchy combination test
(Liu and Xie (2020)) that combines the test of fixed effect, Tf , and the test of variance compo-
nent, Tvc, which we named as Varying-coefficient Mixed Model Association Test (VMMAT).
Specifically, the VMMAT test statistic is

(9) TVMMAT = 1

2

{
tan

[
(0.5 − pf )π

] + tan
[
(0.5 − pvc)π

]}
,

where pf and pvc are p-values of Tf and Tvc. Under the null hypothesis, TVMMAT asymp-
totically follows a Cauchy distribution. Its p-value can be approximated by pVMMAT =
0.5 − arctan(TVMMAT)/π .

The asymptotic null distributions of Tf and Tvc are based on the working GLMM (5)
which is an equivalent representation of the GLMM with varying coefficients using smooth-
ing splines. The null distributions of the score test statistics, Tf and Tvc, as well as the com-
bined test statistic, TVMMAT, depend on the tuning parameter values in the DPQL function (2),
which are reparameterized and treated as extra variance components in the working GLMM
(5). Correct calibration of a prospective test relies on accurate estimation of one or more
variance component parameters in the trait model, which is often challenging to achieve. For
correlated binary data, regression coefficients and variance components are usually estimated
using the penalized quasi-likelihood approach with bias correction, and the bias-corrected
estimators are expected to have an improved asymptotic performance. Even with bias correc-
tion, VMMAT may still have inadequate control of type I error. We further assessed the null
distribution of VMMAT through type I error experiments in simulation studies.

2.3. Retrospective varying coefficient mixed model association test. Retrospective asso-
ciation tests have been shown to be robust to the trait model misspecification and improve sta-
tistical power (Hayeck et al. (2015), Jiang, Mbatchou and McPeek (2015), Wu et al. (2019),
Wu and McPeek (2018)). In that follows, we introduce a new varying-coefficient test, RVM-
MAT (Retrospective Varying-coefficient Mixed Model Association Test), for testing time-
varying genetic effect between the variant and the trait. RVMMAT also uses a Cauchy com-
bination test to combine two tests: a test for H0 : c1 = 0 under the constraint θ1 = 0 and a test
for H0 : θ1 = 0 under the constraint c1 = 0. In contrast to the two prospective tests, Tf and
Tvc, in VMMAT, the two tests for testing fixed effect and variance component in RVMMAT
are based on a retrospective model of the genotype, given the trait and covariates, such that
the analysis is less dependent on the correct specification of the phenotype model. Under the
null hypothesis of no genetic effect between the variant and the trait, the quasi-likelihood
model of the genotype G conditional on the phenotype Y and covariates X can be specified
as (Jiang, Zhong and McPeek (2016), Thornton and McPeek (2010), Wu et al. (2019))

(10) E0(G|Y ,X) = 2p1n, Var0(G|Y ,X) = σ 2
g �,
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where p is the minor allele frequency (MAF) of the tested variant, 1n is a vector of length n

with every element equals to 1, σ 2
g is an unknown variance parameter, and � is an n × n ge-

netic relationship matrix (GRM), representing the overall genetic similarity between samples
due to population structure, which can be estimated using genome-wide data.

When we test H0 : c1 = 0 under the assumption that θ1 = 0, the same score function
U0(c1) is considered. Because the vector of null phenotypic residuals Y − μ̂0, obtained by
fitting Model (6), is orthogonal to the column space of XF = (MF 0,X), then the null mean
model of G in equation (10) ensures that

E0
(
U0(c1)|Y ,X

) = E0
[
(�GMF 1)

T (Y − μ̂0)|Y ,X
] = 2p(MF 1)

T (Y − μ̂0) = 0,

if h1 ≤ h0. In practice, we commonly use smoothing splines of the same order for γ0(t) and
γ1(t) in Model (1). Thus, we consider the score function U0(c1) and construct score test
statistic under the retrospective Model (10), given by

(11) T R
f = (

U0(c1)
)T [

Var0
(
U0(c1)|Y ,X

)]−1
U0(c1).

Here the variance of U0(c1) is evaluated by

Var0
(
U0(c1)|Y ,X

) = Var0
(
(�GMF 1)

T (Y − μ̂0)|Y ,X
)

= Var0
(
(�RMF 1)

T BG|Y ,X
)

= σ̂ 2
g (�RMF 1)

T
B�BT �RMF 1,

where �R = diag{Y − μ̂0} = diag{(Y1,1 − μ̂0;1,1), . . . , (Y1,m1 − μ̂0;1,m1), . . . , (Yn,1 −
μ̂0;n,1), . . . , (Yn,mn − μ̂0;n,mn

)} is an N -dimentional diagonal matrix of the phenotypic resid-
uals. Under Hardy–Weinberg equilibrium, the variance of the genotype is estimated by
σ̂ 2

g = 2p̂(1− p̂), where p̂ is the sample MAF of the tested variant. Under the null hypothesis,
the T R

f test statistic has an asymptotic χ2 distribution with h1 degrees of freedom.
If we test H0 : θ1 = 0 under the assumption that c1 = 0, a retrospective variance component

score test statistic under Model (10) can be constructed as

(12) T R
vc = (BG)T �RMV 1M

T �RBG = (Y − μ̂0)
T �GMV 1M

T �G(Y − μ̂0),

which has the same form as the prospective variance component score test statistic Tvc. How-
ever, under the null hypothesis, given the trait and covariates, T R

vc asymptotically follows a
mixture of χ2 distribution, T R

vc ∼ ∑m
l=1 ζlχ

2
1,l , where (ζ1, . . . , ζm) are the eigenvalues of the

matrix σ̂ 2
g V

1/2
1 MT �RB�BT �RMV

1/2
1 .

The RVMMAT test statistic is defined by combining the two retrospective score test statis-
tics, T R

f and T R
vc, expressed as

(13) TRVMMAT = 1

2

{
tan

[(
0.5 − pR

f

)
π

] + tan
[(

0.5 − pR
vc

)
π

]}
,

where pR
f and pR

vc are p-values of T R
f and T R

vc. Under the null hypothesis, TRVMMAT asymp-
totically follows a Cauchy distribution.

In retrospective association analysis, the genotype at a tested variant is treated as random,
and the analysis is performed, conditional on the phenotype and covariates. The retrospective
score test statistics, T R

f and T R
vc, are constructed based on retrospective analysis that consid-

ers the conditional distribution of the genotype, given phenotype and covariate information,
under the null hypothesis of no association. Therefore, their null distributions rely on a geno-
typic model and would be expected to be more sensitive to misspecification of the genotype
model under the null hypothesis. While T R

f and T R
vc make use of variance component param-

eters in the trait model, they are less sensitive to whether or not these parameters are well
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estimated. As a result, the combined test statistic, TRVMMAT, is robust to bias of parameter
estimates in the phenotype model introduced by tuning parameters in penalty terms. We also
assessed the null distribution of RVMMAT through type I error experiments in simulation
studies.

3. Simulation studies. We conducted simulation studies to assess the type I error and
power of VMMAT and RVMMAT, and compared them to a Gaussian copula method with
weighted scores that allows for heterogenous genetic effect (Nikoloulopoulos, Joe and Cha-
ganty (2011)) and the two association tests that assume constant genetic effect, GMMAT
(Chen et al. (2016)) and RGMMAT (Wu et al. (2019)). In all simulations VMMAT and RVM-
MAT were implemented with cubic smoothing splines. The Gaussian copula method was im-
plemented with a binomial marginal model with the logit link function and an AR(1) structure
in the Gaussian copula correlation matrix (Nikoloulopoulos, Joe and Chaganty (2011)). VM-
MAT and RVMMAT are designed to detect time-varying genetic effect between a genetic
variant and the longitudinal binary trait. Because we test one variant at a time, these methods
tend to have limited power for rare variants and are more appropriate for common variants.
The performance of all methods was evaluated on common variants in simulation studies.
We considered two trait models and three ascertainment schemes to evaluate the robustness
of VMMAT and RVMMAT in the presence of model misspecification and ascertainment.

3.1. Simulation settings. To generate genotypes, we first simulated 10,000 chromosomes
over a one Mb region using a coalescent model to mimic the recombination rates and linkage
disequilibrium (LD) pattern of the European population (Schaffner et al. (2005), Shlyakhter,
Sabeti and Schaffner (2014)). We then randomly selected 1000 noncausal SNPs with MAF >

0.05. In addition, we simulated two causal SNPs that were assumed to influence the trait
value with epistasis. In each simulation setting, we generated 1000 sets of binary phenotypes
at five time points for a given sample size. In the type I error experiments for each phenotype
dataset, we tested the time-varying genetic effect at the 1000 noncausal SNPs. In total, 106

test results across 1000 phenotype datasets were used for the type I error assessment. In the
power simulations, we tested time-varying genetic effect at the first of the two causal SNPs
and evaluated power using 1000 simulated phenotype datasets. In all tests considered, the
genotypes at the untested SNPs were not included as covariates in the model.

We simulated binary phenotypes under two types of trait models at five time points
in which the two unlinked causal SNPs were assumed to influence phenotype through an
epistatic interaction. The first type is a logistic mixed model, specified by

Yij |Xij ,Gi(1),Gi(2), ai, rij ∼ Bernoulli(μij ),

logit(μij ) = −1.9 + 0.2j + γ1(tij )I{Gi(1)>0,Gi(2)>0}
+ 0.5Xij (1) + 0.5Xi(2) + ai + rij ,

i = 1, . . . , n; j = 1, . . . ,5,

where γ1(tij ) is a function encoding the effect of the causal SNPs, Gi(1) and Gi(2) are the
genotypes of subject i at the two causal SNPs, I{Gi(1)>0,Gi(2)>0} is an indicator function that
takes value 1 when subject i has at least one copy of the minor allele at both causal SNPs,
Xij (1) is a continuous, time-varying covariate generated from a multivariant normal distri-
bution with a compound symmetry correlation matrix where the correlation is 0.5, Xi(2) is
a binary, time-invariant covariate taking values 0 or 1 with a probability of 0.5, and ai and
rij are the subject-level time-independent and time-dependent random effects, respectively.
We assumed ai ∼ N(0, σ 2

a ) and r i = (ri1, . . . , ri5) ∼ MVN(0, σ 2
r R), where R is a 5 × 5

correlation matrix specified by the AR(1) structure with a correlation coefficient τ . The two
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causal SNPs were assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance
components were set to σ 2

a = σ 2
r = 0.64 and τ = 0.7, the same values used by (Wu et al.

(2019)).
The second type of trait model is a liability threshold model in which an underlying con-

tinuous liability determines the binary outcome value based on a threshold. Specifically, the
phenotype Yij is determined by

Yij = 1 if Lij > 0,

with Lij = −1.8 + 0.2j + γ1(tij )I{Gi(1)>0,Gi(2)>0} + 0.5Xij (1) + 0.5Xi(2) + ai + rij + eij ,

where Lij is the underlying liability for subject i at time tij , and eij ∼ N(0, σ 2
e ) represents

independent noise, with σ 2
e = 1.96. All other parameters are the same as those in the logistic

mixed model.
In both trait models, we specified the intercept as a linear function of time tij = j , and

the genetic effect as a logistic function γ1(tij ) = γ
{1+γ exp(8−2.4tij )} (Gong and Zou (2012)).

For the type I error assessment, the effect of the causal SNPs was set to γ = 0.6 in γ1(tij ).
For the power evaluation, we considered a range of values for γ , where γ = 0.6,0.63,0.66,
and 0.69. At the given parameter values, the prevalence of the event of interest ranges from
23.68% to 40.56% over time. The proportion of the phenotypic variance explained by the
two causal SNPs ranges from 0.01% to 2.99% in the logistic mixed model and from 0.01% to
1.36% in the liability threshold model. This range of variation explained is commonly seen
in GWAS.

We considered three sampling designs as in (Wu et al. (2019)). In the “random” sampling,
samples contain 2000 subjects randomly selected from the population regardless of their
phenotypes. In the “baseline” sampling, samples contain 1000 case subjects and 1000 control
subjects based on their outcome value at baseline only. In the “sum” sampling, subjects were
stratified into three strata based on the total count of events of the subject over time, where
subjects in stratum 1 never experienced the event of interest, that is,

∑
j Yij = 0, subjects in

stratum 2 sometimes experienced the event, that is, 0 <
∑

j Yij < ni , and subjects in stratum
3 always experienced the event, that is

∑
j Yij = ni . We oversampled subjects with response

variation over the course of the study and selected 100, 1800, and 100 subjects from the three
strata (Schildcrout et al. (2018)).

3.2. Simulation results. To assess type I error, we tested time-varying genetic effect at
unlinked and unassociated SNPs. Empirical type I error was calculated as the proportion
of simulations in which the p-value of the SNP is less than the nominal level α, for α =
0.01, 0.001, and 0.0001. Table 1 gives the empirical type I error rates of RVMMAT and
VMMAT, based on 106 replicates, under two trait models and three sampling designs. The

95% confidence interval of a nominal level α was calculated as α ± 1.96
√

α(1 − α)/106. In
most simulations the type I error of RVMMAT was within the 95% confidence interval of
the nominal levels. In contrast, the type I error of VMMAT in all simulation settings was
much lower than the nominal level when α = 0.01, 0.001, and 0.0001. It is well recognized
that the DPQL approach underestimates variance components when data are sparse, such as
binary data (Lin and Zhang (1999), Zhang (2004)). Even with bias correction, parameters
estimated from the DPQL function with penalty terms depend on the tuning parameter val-
ues. Thus, the prospective variance of the score U0(c1) tends to be overestimated, producing
a conservative test statistic. However, the retrospective variance of the score U0(c1) is less
sensitive to bias of parameter estimates in the phenotype model introduced by tuning param-
eters in penalty terms so that the test statistic is less biased. These results suggest that the
retrospective RVMMAT test had much better control of type I error and was robust to trait
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TABLE 1
Empirical type I error of RVMMAT and VMMAT, based on 106 replicates

Logistic Mixed Model Liability Threshold Model

Test Level Random Baseline Sum Random Baseline Sum

RVMMAT 0.01 9.90 × 10−3 1.01 × 10−2 9.97 × 10−3 1.02 × 10−2 9.70 × 10−3 1.00 × 10−2

0.001 9.52 × 10−4 9.92 × 10−4 9.17 × 10−4 1.04 × 10−3 1.00 × 10−3 1.03 × 10−3

0.0001 9.80 × 10−5 1.08 × 10−4 9.40 × 10−5 1.00 × 10−4 1.01 × 10−4 1.13 × 10−4

VMMAT 0.01 5.77 × 10−3 6.45 × 10−3 6.91 × 10−3 5.73 × 10−3 6.26 × 10−3 7.20 × 10−3

0.001 4.34 × 10−4 5.14 × 10−4 5.33 × 10−4 4.73 × 10−4 5.10 × 10−4 6.68 × 10−4

0.0001 3.70 × 10−5 4.40 × 10−5 5.70 × 10−5 2.90 × 10−5 5.00 × 10−5 4.60 × 10−5

The 95% confidence interval of a nominal level α was calculated as α±1.96
√

α(1 − α)/106. Specifically, the 95%

confidence intervals are (9.80 × 10−3,1.02 × 10−2) for α = 0.01, (9.38 × 10−4,1.06 × 10−3) for α = 0.001,
and (8.04 × 10−5,1.20 × 10−4) for α = 0.0001. Rates outside of the 95% confidence interval are in bold.

model misspecification and ascertainment, whereas the prospective VMMAT test was overly
conservative.

To compare power, we considered four parameter values for γ to determine time-varying
genetic effect at the two causal SNPs and tested between the trait and the first causal SNP.
Empirical power was calculated at the significance level 10−3, based on 1000 replicates.
Figure 1 demonstrates the power results of the five methods, RVMMAT, VMMAT, Copula,
RGMMAT, and GMMAT, under two trait models and three sampling designs. In all simula-
tion settings, the two varying-coefficient tests consistently had higher power than the associ-
ation tests assuming constant genetic effect. The Gaussian copula method with heterogenous
genetic effect had lower power than RVMMAT and VMMAT, while performed better than

FIG. 1. Empirical power of RVMMAT, VMMAT, Copula, RGMMAT and GMMAT. Power is based on 1000 repli-
cates at five time points with α = 10−3. In the upper panel, trait is simulated under the logistic mixed model; in
the lower panel, trait is simulated under the liability threshold model. Power results are demonstrated in samples
of 2000 individuals according to three ascertainment schemes: random, baseline, and sum.
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RGMMAT and GMMAT. Moreover, within the same type of tests, the retrospective test was
more powerful than the prospective test. Both RVMMAT and VMMAT had similar power
across the three sampling designs. In contrast, Copula, RGMMAT, and GMMAT had lower
power under the sum sampling in both trait models. The power gain of the varying-coefficient
tests was more prominent over the association tests, assuming constant genetic effect in the
presence of ascertainment. These results suggest that RVMMAT was the most powerful test
and outperformed the association tests, assuming constant genetic effect.

4. Application to MESA data. We illustrated the utility of our proposed methods by
analyzing a GWAS dataset of hypertension in MESA (Bild et al. (2002)). MESA is a large
longitudinal study of subclinical cardiovascular disease (CVD) whose primary objective is
to understand the pathogenesis of atherosclerosis and other CVD. We analyzed longitudinal
hypertension assessed at five time points on 6429 participants. Among them 39.3% are white,
26.1% are African-American, 22.5% are Hispanic, and 12.1% are Asian. The proportion of
case subjects at each time point ranges from 44.6% (n = 2864) to 59.5% (n = 2608), and the
missing rate of the hypertension outcome at each time point ranges from 0 to 31.6%.

Samples were genotyped using the Affymetrix Human SNP Array 6.0. After data cleaning,
there were 6428 subjects available for genotype imputation. We applied IMPUTE2 (Howie,
Donnelly and Marchini (2009)) for imputation, using the 1000 Genomes Phase 3 data as a
reference panel. Subjects who did not meet either of the following criteria were excluded: (1)
proportion of successfully imputed SNPs > 95% and (2) empirical inbreeding coefficient <

0.05. Based on the above criteria, 6424 subjects were retained in the downstream analysis,
with 3057 males and 3367 females, of whom 2527 are white, 1673 are African American,
1449 are Hispanic, and 775 are Asian. There are 2227 subjects who had no hypertension
during the study period, 1807 subjects who were sometimes hypertensive, that is, exhib-
ited response variation, and 2390 subjects who were always hypertensive over the course of
the study. We then tested Hardy–Weinberg equilibrium at each SNP within each population.
SNPs met all of the following quality-control conditions were included in the analysis: (1)
call rate > 95%, (2) Hardy–Weinberg χ2 statistic p-value > 10−6, and (3) MAF > 1%. Taken
together, a final set of 6,155,404 SNPs were examined in the downstream analysis.

4.1. Analysis of time-varying genetic effect. Our goal in the MESA data is to detect time-
varying genetic effect on longitudinal measure of hypertension. The null hypothesis is no
genetic effect vs. the alternative hypothesis that allows for time-varying effects on hyperten-
sion. We performed genome-wide tests of time-varying genetic effect on hypertension using
RVMMAT and VMMAT with cubic smoothing splines in the MESA sample. Age at base-
line, sex, and the top 10 principal components (PCs) of the genetic relationship matrix were
included as time-invariant covariates in the analysis. The top 10 PCs were calculated using
the LD pruned SNPs with MAF > 0.05 to control for population structure. Since hyperten-
sion was assessed in year 2000, 2002, 2004, 2005, and 2010, we coded time at the five time
points as 0, 0.2, 0.4, 0.5, and 1, respectively. We also applied the Gaussian copula method
with heterogenous genetic effect, adjusting for the same covariates. To compare the perfor-
mance of the varying-coefficient tests with the association tests assuming constant genetic
effect, we applied RGMMAT and GMMAT to the analysis of hypertension, adjusting for age
at baseline, sex, time, and the top 10 PCs.

The two retrospective tests, RVMMAT and RGMMAT, showed no evidence of inflation in
the quantile-quantile (Q-Q) plot. The genomic control inflation factors were 0.905 and 0.976,
respectively. The prospective VMMAT test was overly conservative, with a genomic control
factor of 0.774, consistent with the observed deflation in the type I error simulations. The
genomic control inflation factor was 0.838 for GMMAT.
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None of the SNPs reached genome-wide significance at the p-value threshold of 5 × 10−8

that is widely used in GWAS. We adopted a less stringent p-value threshold of 5 × 10−7

to increase true positive discovery recommended by (Chen et al. (2021)). Table 2 reports
the top SNPs for which at least one of the tests gives a p-value < 5 × 10−7. The smallest
p-values of these eight SNPs were mostly generated by RVMMAT, except at the last two
SNPs. VMMAT generated much larger p-values than RVMMAT, due to its conservativeness,
while RGMMAT and GMMAT had comparable results. The Gaussian copula method pro-
duced p-values comparable to VMMAT, except at the last two SNPs. A cluster of six SNPs
in LD (r2 > 0.97), rs145659245, rs58265184, rs57719815, rs60197637, rs61327798, and
rs142890225, located at 4p15, showed time-varying genetic effect on hypertension by RVM-
MAT (p-value = 6.78 × 10−8 − 2.85 × 10−7). Figure 2A demonstrated the estimated genetic
effect over time at these SNPs where the estimated effect at each time point was obtained by
using the observed trait values at that time point only. A strait line was used to connect the
estimated values at two adjacent time points. We observed an increasing and then decreasing
trend in genetic effects on hypertension across the five time points. However, RGMMAT and
GMMAT lost power and generated large p-values by assuming constant genetic effect. These
SNPs are in an intron of the gene PROM1, encoding a pentaspan transmembrane glycopro-
tein, which was reported to be associated with pulse pressure (Evangelou et al. (2018)). The
smallest p-value for rs374012917, located on chromosome 17, was generated by the Gaus-
sian copula method (p-value = 1.02 × 10−7). As the estimated genetic effects at the five time
points were relatively stable for this SNP (Figure 2B), RGMMAT and GMMAT generated
slightly larger p-values. There was also evidence of association between hypertension and
rs72930733 (p-value = 2.55 × 10−7). Although RVMMAT did not give the smallest p-value
for this SNP, its p-value was slightly larger than that of RGMMAT, mostly due to the increas-
ing trend in genetic effect (Figure 2B). This SNP is in an intron of the gene WDR7, located at
18q21. Two hypertension GWAS identified an association between WDR7 and systolic blood
pressure (Evangelou et al. (2018), Kichaev et al. (2019)).

We further assessed the model fitting of cubic smoothing splines on the top SNPs
in Table 2 using deviance and goodness-of-fit p-value. We calculated the deviance D =
−2

∑n
i=1

∑mi

j=1{Yi,j ln(
μ̂i,j

Yi,j
) + (1 − Yi,j )ln(

1−μ̂i,j

1−Yi,j
)} of the working GLMM (5), as the

goodness-of-fit test statistic, and compared it with a χ2 distribution with degrees of free-
dom equal to the total number of observations minus the number of parameters in Model (5).
All p-values were large, suggesting that there was no evidence of lack of fit (Table 3). We
also checked the deviance residuals of the cubic smoothing splines model applied to the top
SNPs. The deviance residuals range from −2.46 to 2.19, suggesting that cubic smoothing
splines fit the data adequately.

4.2. Pathway analysis. We then performed functional pathway analysis using the
MetaCoreTM software to identify enriched pathways related to hypertension. The top SNPs
for which at least one of the tests had a p-value < 2 × 10−4 were included in the analysis.
Fisher’s exact test was used to determine whether the SNP list was enriched for a functional
pathway. At the false discovery rate (FDR) < 0.05, we identified two significant pathways
that were associated with G-protein signaling and DNA damage. The first one is the G-protein
signaling pathway related to Rac1 activation (p-value = 6.12 × 10−5, FDR = 1.65 × 10−2).
Rac1 participates in the control of blood pressure through multiple mechanisms in the ar-
terial wall and the central nervous system (Loirand and Pacaud (2010)). Importantly, a role
for Rac1 in atherosclerosis and cardiac hypertrophy has been established in response to the
administration of statins in clinical trials (Maack et al. (2003)). Animal studies indicated
that Rac1 is essential for endothelium-dependent vasomotor response, the redox state of
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TABLE 2
SNPs with p-value < 5 × 10−7 in at least one of the tests in the MESA data

Chr Gene Region SNP Position MAF RVMMAT VMMAT Copula RGMMAT GMMAT

4 PROM1 rs145659245 16,060,553 0.013 6.78 × 10−8 4.19 × 10−6 9.77 × 10−6 7.67 × 10−4 1.78 × 10−3

rs58265184 16,061,151 0.014 2.18 × 10−7 7.70 × 10−5 2.79 × 10−5 2.51 × 10−3 4.85 × 10−3

rs57719815 16,063,652 0.013 2.85 × 10−7 8.04 × 10−5 3.09 × 10−5 1.65 × 10−3 3.27 × 10−3

rs60197637 16,063,659 0.013 2.85 × 10−7 8.04 × 10−5 3.09 × 10−5 1.65 × 10−3 3.27 × 10−3

rs61327798 16,063,661 0.013 2.85 × 10−7 8.04 × 10−5 3.09 × 10−5 1.65 × 10−3 3.27 × 10−3

rs142890225 16,065,544 0.013 2.85 × 10−7 8.04 × 10−5 3.10 × 10−5 1.65 × 10−3 3.27 × 10−3

17 LRRC37B rs374012917 30,403,054 0.038 2.21 × 10−5 1.95 × 10−4 1.02 × 10−7 2.31 × 10−6 4.95 × 10−6

18 WDR7 rs72930733 54,641,870 0.011 1.80 × 10−6 7.06 × 10−5 7.72 × 10−6 2.55 × 10−7 4.63 × 10−6

The smallest p-values among the five tests at the given SNPs are in bold.
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FIG. 2. Estimated genetic effect of the top eight SNPs on hypertension at each of the five time points: (A) six
SNPs on chromosome 4, (B) two SNPs on chromosomes 17 and 18, respectively.

blood vessels, and homeostasis of blood pressure (Moustafa-Bayoumi et al. (2003), Satoh
et al. (2006), Sawada et al. (2008)). The second pathway is the DNA damage pathway re-
lated to the ataxia-telangiectasia mutated (ATM) kinase activation (p-value = 4.98 × 10−4,
FDR = 4.48 × 10−2). Emerging evidence has demonstrated that accumulated DNA damage
and subsequent repair pathways play a crucial role in the initiation and progression of car-
diovascular disorders, such as atherosclerosis and maladaptive cardiac hypertrophy (Shah et
al. (2018), Shah and Mahmoudi (2015), Uryga, Gray and Bennett (2016), Wu et al. (2022)).
ATM-mediated phosphorylation plays cardinal roles in response to genomic stress to pre-
serve cellular homeostasis. DNA double-strand breaks trigger ATM activation which me-
diates DNA damage response and regulate cardiac remodeling, inflammation, and systolic
function, eventually promoting heart failure development (Shiloh and Ziv (2013), Uziel et al.
(2003)).

5. Discussion. In genome-wide association analysis of longitudinal traits, modeling
time-varying genetic effect can increase power for the detection of genes underlying the de-
velopment and progression of complex diseases. In this study we developed RVMMAT, a
GLMM-based, retrospective varying-coefficient association testing method for longitudinal
binary traits. RVMMAT extends the existing association methods, assuming constant effect
over time to testing of time-varying effect on binary traits. RVMMAT is constructed based
on the trait model, allowing for time-varying genetic effect. The variance of the test statis-
tics is assessed retrospectively by considering the conditional distribution of the genotype at
the variant of interest, given phenotype and covariate information, under the null hypothesis
of no association. Our methodological contribution consists of designing joint tests using a

TABLE 3
Assessment of model fitting with cubic smoothing splines at the top SNPs in the MESA data

Chr Gene Region SNP Position MAF Deviance Goodness-of-fit P-value

4 PROM1 rs145659245 16,060,553 0.013 10,467.93 1
rs58265184 16,061,151 0.014 10,468.13 1
rs57719815 16,063,652 0.013 10,469.79 1
rs60197637 16,063,659 0.013 10,469.79 1
rs61327798 16,063,661 0.013 10,469.79 1
rs142890225 16,065,544 0.013 10,469.79 1

17 LRRC37B rs374012917 30,403,054 0.038 10,495.83 1
18 WDR7 rs72930733 54,641,870 0.011 10,493.05 1



RETROSPECTIVE VARYING COEFFICIENT MODEL OF LONGITUDINAL BINARY DATA 501

Cauchy combination method for both prospective test and retrospective test for time-varying
genetic effects on binary traits. The advantages of RVMMAT are: (1) it is computationally
feasible for genetic studies with millions of variants, (2) it has well-controlled type I error in
the presence of ascertainment and trait model misspecification, and (3) it can easily be fitted
as a GLMM model using popular software such as R and SAS. We also propose VMMAT, a
prospective varying-coefficient association test, for performance comparison.

Our simulation results demonstrated that RVMMAT maintained correct type I error under
different trait models and ascertainment schemes, whereas VMMAT was overly conservative,
due to the biased estimation of variance in the penalized trait model. We further demonstrated
that the retrospective RVMMAT test achieved the highest power among the five tests under
all the trait models and ascertainment schemes considered in the simulations. Application
of RVMMAT to the MESA longitudinal hypertension data identified three novel genes that
were associated with hypertension. Among them, two genes are known to be associated with
systolic blood pressure and pulse pressure. Moreover, we identified two significant pathways
associated with longitudinal hypertension: the G-protein signaling pathway related to Rac1
activation and the DNA damage pathway related to ATM activation. Given the established
role for Rac1 and ATM in atherosclerosis and cardiac hypertrophy, our findings suggest that
RVMMAT can provide enhanced statistical power in detecting biologically relevant genetic
loci that are associated with trait dynamics. A better understanding of temporal variation of
trait values and time-varying genetic contribution may shed light on the genetic mechanisms
influencing the temporal trend of diseases and complex traits.

In many applications we are also interested in testing whether the genetic effect of a SNP
is constant over time or time-varying. The prospective version of this test is the same as the
hypothesis test on β1(t) developed in Section 4 of (Zhang (2004)). In retrospective analysis
it is more challenging because the genotype model under the null hypothesis of constant
genetic effect is difficult to specify, especially for the covariance of genotypes at the SNP
when it is associated with the trait. The genetic relationship matrix represents the overall
genetic similarity between samples and does not reflect the correlation of genotypes at that
SNP, that is, the null conditional mean and conditional covariance of the genotype vector in
equation (10) do not hold anymore. We are currently exploring a retrospective test of whether
the genetic effect is constant vs. time-varying and will report it in our future work.

The RVMMAT and VMMAT methods are designed for single-variant association analysis
of longitudinal binary traits. However, single-variant association tests suffer from restricted
power to detect association for rare variants in whole-genome sequencing studies. As many
variants influence complex traits collectively, assessing joint effects from multiple variants
by aggregating weak signals at the gene or pathway level holds great promise for the identifi-
cation of novel genes underlying disease risks. To extend RVMMAT to rare variant analysis
with longitudinal binary data, we could design a linear statistic or a quadratic statistic that
combines the test allowing for time-varying genetic effect at each variant in a gene region.
Such statistics are likely to better calibrate the fluctuation of genetic contributions to the trait
values over time. Additionally, our current model can easily be extended to analyze nominal,
ordinal and count data.
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SUPPLEMENTARY MATERIAL

Supplement A: Algorithm for fitting GLMM (DOI: 10.1214/23-AOAS1798SUPPA;
.pdf). Detail of the algorithm to estimate the fixed effects and the random effects in the
GLMM (5).

Supplement B: Computer code (DOI: 10.1214/23-AOAS1798SUPPB; .zip). R package
implementing RVMMAT and VMMAT and simulation code.
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