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In clinical practice medications are often interchanged in treatment pro-
tocols when a patient negatively reacts to their first line of therapy. Although
switching between medications is common, clinicians often lack structured
guidance when choosing the initial dose and frequency of a new medica-
tion, given the former with respect to risk of adverse events. In this paper we
propose to establish this dose toxo-equivalence relationship using published
clinical trial results with one or both drugs of interest via a Bayesian meta-
analysis model that accounts for both within- and between-study variances.
With the posterior parameter samples from this model, we compute median
and 95% credible intervals for equivalent dose pairs of the two drugs that
are predicted to produce equal rates of an adverse outcome, relying solely
on study-level information. Via extensive simulations, we show that this ap-
proach approximates well the true dose toxo-equivalence relationship, con-
sidering different study designs, levels of between-study variance, and the
inclusion/exclusion of nonconfounder/nonmodifier subject-level covariates in
addition to study-level covariates. We compare the performance of this study-
level meta-analysis estimate to the equivalent individual patient data meta-
analysis model and find comparable bias and minimal efficiency loss in the
study-level coefficients used in the dose toxo-equivalence relationship. Fi-
nally, we present the findings of our dose toxo-equivalence model applied to
two chemotherapy drugs, based on data from 169 published clinical trials.

1. Introduction. Often, there are multiple medication regimens that can be prescribed
to patients to treat the same type of illness. However, these regimens can differ in their dos-
ing as well as in their risks of inducing adverse events in patients. As a motivating example,
we concern ourselves with the taxane chemotherapy drugs paclitaxel and docetaxel, which
are both known to induce peripheral sensory neuropathy, an outcome that is believed to be
directly related to cumulative exposure. Patients are frequently switched from paclitaxel to
docetaxel, due to infusion reactions, yet there currently exists no clear guidance on how clin-
icians should choose an initial dosage and frequency of docetaxel, given a patient’s previous
paclitaxel regimen. However, as with the side effects for many drugs in similar scenarios, the
incidence rate of peripheral sensory neuropathy in clinical trials of paclitaxel and docetaxel
is commonly reported in published literature. Thus, it is desired to develop a method that
leverages this available pool of study meta-information to estimate the dose toxo-equivalence
relationship.

Conventional meta-analysis approaches combine results from independent studies to find
patterns or discrepancies in the published literature (Hedges and Olkin (1985)). They typi-
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cally use summary statistics reported by each study, such as effect size estimates and stan-
dard errors, in either common effects or random effects models to make inferences on the
true value of the parameter of interest (Hedges and Olkin (1985)). In the case of clinical
trials, the reported summary statistics are often treatment effect estimates, such as odds ra-
tios or risk differences, between groups exposed to the two drugs of interest within the same
study (Whitehead (2002)). As we are interested in the dose relationship and not the treatment
effect, we need to extract the response rate for the treatment and its associated dosage infor-
mation from each study rather than estimated treatment effect. Ultimately, we need a method
to incorporate reported incidence rates for each drug at their specific dosage as well as po-
tentially aggregated summary data from any study in one or both of these drugs in a way that
adds little bias, loses minimal efficiency, and produces a useful approximation of this dose
toxo-equivalence.

The use of aggregated summary data in study-level meta-analysis has the potential to in-
duce bias. Focused on treatment effect estimates, Berlin et al. (2002) investigated a real-world
published example for which both individual patient-level and study-level data were available
and ultimately recommended using individual patient data, when feasible, to study patient
characteristics to avoid aggregation bias (in the presence of effect modifiers). In this paper
we will use the term individual patient data (IPD) meta-analysis for the regression analysis
based on individual patients and refer to the analysis based on aggregated study-level data as
study-level (SL) meta-analysis. When there is no interaction effect between patient character-
istics and treatment, another question researchers asked was when IPD meta-analysis and SL
meta-analysis would yield identical results. Among others, Olkin and Sampson (1998) and
Steinberg et al. (1997) illustrated some special settings for which IPD meta-analysis and SL
meta-analysis could generate identical treatment effect estimators, all assuming continuous
outcomes in the IPD meta-analysis. When all covariates are at the study-level, SL and IPD
analyses are generally equivalent. However, when there are individual-level factors or when
these factors are summarized at the individual level, IPD meta-analysis is preferred, in prac-
tice, over SL meta-analysis, due to the risk of aggregation bias, particularly in the presence
of an effect modifier (Berlin et al. (2002), Lambert et al. (2002)). While IPD meta-analysis
is preferred in these scenarios, oftentimes the IPD from different studies are difficult to ob-
tain. Additionally, the size of the data used in IPD meta-analysis can lead to high computation
time, compared to SL meta-analysis, particularly with Bayesian posterior sampling. For these
reasons SL meta-analysis is more practical and feasible, especially when there exists no prior
evidence of effect modifiers.

There is increasing interest in studying the relative efficiency of meta-analyses, based on
fitted results at the study level compared to IPD meta-analysis, given barriers on data shar-
ing and/or protections on participant privacy. Among others, Lin and Zeng (2010b) showed
that, when compared to IPD meta-analysis approaches (called mega-analysis in their setting),
common effect meta-analysis methods using effect estimates from models fit at the study-
level have minimal efficiency loss, and Zeng and Lin (2015) further showed that random
effect meta-analysis methods are at least as efficient as the former. However, their results do
not apply to our setting. In particular, Lin and Zeng (2010b) considered a regression (see
their first equation in Section 2.1) of an outcome Yki on covariates Xki , for the ith participant
in the kth study. Implicitly, they assumed covariates collected within each study (Xki) had
variations within kth study, whereas in our setting, within a study, the dosage is fixed for the
corresponding treatment (i.e., there is no variation within kth study).

While various meta-analysis approaches have been intensively studied, little work has been
done in the dose-equivalence model setting. The validity of SL meta-analysis under this set-
ting has not been studied and its relative efficiency vs. IPD meta-analysis has not been eval-
uated. We aim to fill this gap by developing a Bayesian random-effects model to study the
dose toxo-equivalence relationship.
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In this paper we distinguish the covariates with no variation at the subject level (such as
treatment and designed dosage) in the aggregated study-level data from those with variations
(such as percentage of male or mean age) and call the former study-level covariates and
the latter subject-level covariates. In Section 3 we propose a Bayesian random-effects SL
meta-analysis model that accounts for both within- and between-study variances, with or
without additional subject-level covariates. We show that under the proposed model the toxo-
equivalence curve depends solely on the coefficients of the study-level covariates. Based on
the posterior samples produced by this model, we compute median and 95% credible intervals
for equivalent dose pairs of any two drugs of interest that are predicted to result in equal rates
of the adverse outcome. Via extensive simulation studies in Section 4, we demonstrate the
ability of this model to closely approximate the true dose toxo-equivalence relationship for
different study designs, varying levels of between-study variance, and in the presence of
subject-level data (which are not treatment or dose effect modifiers) in addition to study-
level covariates. We compare the performance of this meta-analysis approach in terms of bias
and efficiency to an IPD meta-analysis model fit on pooled subject-level information, and
demonstrate that our method results in comparable levels of bias to the IPD approach, as
well as minimal efficiency loss in all parameters used to calculate the dose toxo-equivalence
relationship when the model is correctly specified. Additionally, we consider the sensitivity of
our meta-analysis approach to various types of model misspecification. Finally, we illustrate
our method with empirical data gathered from published clinical trials in either paclitaxel or
docetaxel in Section 5. We conclude the paper with discussion in Section 6.

2. Motivating example. Our motivating example looks at the chemotherapy medica-
tions paclitaxel and docetaxel, both members of the taxane class of drugs that are prescribed
to treat a variety of cancers (Warner et al. (2015)). Taxanes are known to induce peripheral
sensory neuropathy, with patient risk for this outcome believed to be directly related to cu-
mulative exposure (Argyriou et al. (2008)). Clinicians frequently start patients on paclitaxel
as their first line of therapy, but some are unable to continue treatment, due to hypersensitiv-
ity or infusion reactions, at which point patients are often switched to a docetaxel treatment
regimen. However, there is no clear guidance on how to choose the initial dose and schedule
of docetaxel, given a previous paclitaxel regimen, particularly with respect to the overall risk
of peripheral sensory neuropathy. Since the rate of neuropathy development within studies is
commonly reported as an adverse effect of treatment, we performed a systematic review of
randomized or nonrandomized clinical trials of paclitaxel or docetaxel monotherapy among
cancer patients aged ≥ 18 years, extracting all aggregated data necessary for the dose toxo-
equivalence calculation. Individual patient data from the included studies was not attainable.
We apply the method for study-level data described in Section 3 to this data in Section 5, after
exploring its performance compared to individual patient data. Further insight into the clini-
cal relevance of our approach, including complete details of the systematic review procedure
and examples of our method applied to specific chemotherapy regimens, can be found in our
related clinical paper (Sigworth et al. (2022)).

3. Methods.

3.1. Hierarchical model structure.

3.1.1. IPD meta-analysis. We first consider the subject-level IPD meta model against
which we will compare our SL meta approach. Denote Dij = (XiA,XiB, di,Zij), i =
1, . . . ,N , j = 1, . . . , ni as the subject-level covariates, where XiA is an indicator that study
i uses drug A, XiB is an indicator that study i uses drug B, di is the dose received in study
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i normalized to mean 0 and standard deviation 1 (or a normalized version of a monotone
transformation of the dose such as the square-root transformation), and Zij is a vector of
subject-specific potential covariates assumed to be associated with the adverse event. Dose
values were normalized to improve computational efficiency in the Bayesian fitting proce-
dure (Kruschke (2015)). Additionally, N is the total number of studies, and ni is the number
of subjects in study i. Let wij denote the incidence indicator of the adverse event of interest,
with wij = 1 for a subject experiencing the adverse event and wij = 0 otherwise. We assume
wij |pij ∼ Bernoulli(pij ) where without additional covariates we have

logit(pij ) = μi + α1 + α2XiB + α3XiAdi + α4XiBdi,

and with additional covariates we have

logit(pij ) = μi + α1 + α2XiB + α3XiAdi + α4XiBdi + α′
zZij.

In this model α1 is the mean outcome for studies in drug A with a normalized dose of 0,
and α1 + α2 is the mean outcome for studies in drug B with a normalized dose of 0. We also
estimate a random intercept component for each study, μi , as a measure of between-study het-
erogeneity. Its variance, τ 2, measures between-study variance in responses not attributable
to other included variables. Note that throughout this manuscript we use the subscript i

to denote the study of interest, that is, the group of subjects assigned to the same protocol
within the same study. In this way single-arm and multiarm studies can be analyzed via this
method. Noninformative priors of μi |τ ∼ N(0, τ 2), with τ ∼ InvGamma (0.001,0.001) and
α ∼ MVN(0,106 diag(1)), are specified, where α = (α1, . . . , α4,α

′
z). Under this model our

posterior distribution for α, τ is

p(α, τ |Dij,wij ) ∝ p(wij |Dij,μi,α)p(μi |τ)p(τ)p(α).

3.1.2. Study-level meta-analysis. Next, we propose a Bayesian hierarchical model of
the prevalence of an adverse event across multiple studies using aggregated meta-data.
Let �i represent the rate of the adverse event in study i, �i = 1

ni

∑ni

j=1 wij , and define
Yi = logit(�i). Denote the per-study data as Di = (XiA,XiB, di,Za

i ), where XiA, XiB , and
di are as defined previously and are study-level variables taking the same value for all subjects
in study i, and Za

i is a vector of aggregated summary statistics of Zij at each study i, such as
frequencies of categorical variables or means of continuous variables. Then the outcome Yi

can be modeled as Yi |μi,β,Di ∼ N(φi, S
2
i ), where

φi = μi + β1 + β2XiB + β3XiAdi + β4XiBdi + β ′
ZZa

i .

Here S2
i is the within-study variance of our outcome, which depends on the size ni of the

relevant arm of the study as well as the count of adverse events in that outcome, ki , such that
S2

i = 1/ki + 1/(ni − ki) (the variance of a logit transformed proportion). As previously, β1
represents the mean outcome for studies in drug A with a normalized dose of 0 and β1 + β2
is the mean outcome for studies in drug B with a normalized dose of 0, while μi represents
a random intercept component estimated at the study level to measure between-study hetero-
geneity. We set noninformative priors of μi |τ ∼ N(0, τ 2), τ ∼ InvGamma(0.001,0.001), and
β ∼ MVN(0,106 diag(1)), where β = (β1, . . . , β4,β

′
Z). Note that although noninformative

priors were used in our simulations (and case study), informative priors could be considered
if prior knowledge on the dose toxo-equivalence relationship was available. Based on this
structure, the posterior distribution for β, τ is

p(β, τ |Di, Yi) ∝ p(Yi |Di,μi,β)p(μi |τ)p(τ)p(β).
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When including additional covariates in the data-generating model, we consider SL meta-
analysis models both with and without Za

i , denoted SL-C and SL-NC, respectively. The ag-
gregated study covariates in the SL-C model are intended to adjust for the additional het-
erogeneity in responses that may be due to these values but not to estimate α from the IPD
meta-analysis. By considering both SL-C and SL-NC in the presence of additional covariates
Za

i , we can evaluate the sensitivity of our method to this extra information.

3.2. Equivalence relationship. For our IPD meta-analysis fits, the hierarchical structure
produces expected outcomes of

logit
[
E(wij |XiA = 1,XiB = 0, di = dA,Zij = z)

] = μ + α1 + α3dA + α′
zz,

logit
[
E(wij |XiA = 0,XiB = 1, di = dB,Zij = z)

] = μ + α1 + α2 + α4dB + α′
zz

for studies in drugs A and B, respectively, where the study in drug A had dose dA and the
study in drug B had dose dB . From these expected outcomes, we can build a dose toxo-
equivalence model for the dose and adverse outcome relationship between the two drugs of
interest. As the logit is a monotone transformation, we look to solve

logit
[
E(wij |XiA = 1,XiB = 0, di = dA,Zij = z)

]

= logit
[
E(wij |XiA = 0,XiB = 1, di = dB,Zij = z)

]

with respect to dB , assuming that dA is known, which, when simplified, results in solving

dB,IPD = (α3dA − α2)/(α4).

As for the SL meta-analysis, from our aggregated meta fits we can produce the expected
outcomes for studies in drugs A and B as

E
(
Yi |XiA = 1,XiB = 0, di = dA,Za

i = z
) = μ + β1 + β3dA + β ′

Zz,

E
(
Yi |XiA = 0,XiB = 1, di = dB,Za

i = z
) = μ + β1 + β2 + β4dB + β ′

Zz,
(1)

where the doses in the studies are dA and dB , respectively, as before. We look to solve
E(Yi |XiA = 1,XiB = 0, di = dA,Za

i = z) = E(Yi |XiA = 0,XiB = 1, di = dB,Za
i = z) with

respect to dB , which results in

dB,SL = (β3dA − β2)/(β4).(2)

For each fit we vary across a range of plausible values of dA to find dose pairs (dA, dB)

for which we expect the rates of adverse outcome to be equivalent, generating a posterior
distribution for dB . We use the Markov chain Monte Carlo methods, employed by the JAGS
software package in R, to produce posterior samples for each of our model parameters. Let
βk

i be the kth MCMC sample from the posterior, then dk
B,SL = (βk

3dA − βk
2 )/(βk

4 ).
We report the median and 95% credible intervals from our calculated distributions of

{dk
B, k = 1, . . . ,K} with K being the total number of draws from the posterior. Similarly,

we calculate dose pairs (dA, dk
B,IPD) from the posterior of our IPD meta-analysis.

Note that under the additive model assumption in (1), the dose toxo-equivalence relation-
ship in (2) is independent of the common intercept β1 and the coefficients of the aggregated
covariates, βZ . This is critical because, as we will demonstrate in Section 4, there is minimal
efficiency loss or increase in bias in estimating (β2, β3, β4), using SL meta-analysis when
comparing to IPD meta-analysis, resulting in comparable dose toxo-equivalence relationship
curves with the correctly specified model.
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4. Simulation study.

4.1. Simulation for a correctly specified model.

4.1.1. Method. To evaluate the performance of our method in terms of bias, efficiency,
and ability to recover the true dose toxo-equivalence relationship, we performed extensive
simulations, varying study types (balanced and unbalanced), generating models (with or with-
out subject-level covariates), and levels of between-study variability (τ 2 ∈ {0, .5,1}). We per-
formed 500 repetitions for each combination, for a total of 6000 simulations.

For each setting we first simulated data from N = 150 study datasets, 75 in each drug.
For consistency we sampled 150 dose values from a U(−1,1) distribution, which are used
for each simulation repetition. Next, a random intercept μi, i ∈ {1, . . . ,150} is generated for
each of the 150 studies from a N(0, τ 2) distribution. If the setting requires balanced studies,
each of the 150 study-level datasets will contain ni = 100 subjects; if unbalanced, each study
contains between 50 and 200 subjects, in increments of 10, with equal probability. Each
subject in study i is assigned the same XiA and XiB indicator variables, based on the drug
type under study in study i, that is, if study i is in drug A, then XiA = 1 and XiB = 0. If
the study includes additional subject-level covariates, then each subject j has two subject-
specific independent covariates drawn: a binary Zij5 with study-specific probability θi drawn
from Unif(0.2,0.5) and a continuous Zij6 drawn from N(0,1).

Once the subject-level covariate data is generated, we calculate subject-specific log-odds of
the adverse event for subject j in study i with normalized dose di , based on a preselected vec-
tor of study-level coefficients (α1, α2, α3, α4) = (−0.6,−0.8,−0.5,−0.9), and subject-level
coefficients (α5, α6) = (0.2,0.5), the latter to be included in studies with additional covari-
ates. These parameters were based on those estimated in our clinical application, discussed
in Section 5, and produce nonrare event outcomes. Thus, for a generating model without
additional covariates, the subject-specific log-odds are

logit(pij ) = μi − 0.6 − 0.8XiB − 0.5XiAdi − 0.9XiBdi,

and for a generating model with two additional subject-level covariates, we have

logit(pij ) = μi − 0.6 − 0.8XiB − 0.5XiAdi − 0.9XiBdi + 0.2Zij5 + 0.5Zij6.

From logit(pij ) we use the expit function to produce subject-specific probabilities of
the adverse outcome, pij . We then generate adverse outcome indicators, wij , from a
Bernoulli(1,pij ). From this simulated dataset at the subject-level, we summarize to re-
flect the metrics commonly reported in a clinical trial. Dose di is the same across subjects
within a study and does not need to be summarized. For binary covariate Zij5, we take the
mean across all subjects in study i, and for continuous covariate Zij6, we take the me-
dian, creating study-level summary values Za

i5 and Za
i6. Event rate per study is calculated

as �i = 1
ni

∑ni

j=1 wij . Studies with �i ∈ {0,1} are dropped and a new dataset generated until
75 valid datasets in each drug have been created (fewer than one in 500 simulated stud-
ies were regenerated). Finally, the logit of the outcome, logit(�i), is calculated, along with
Var(logit(�i)) = S2

i = 1/ki + 1/(ni − ki), where ki = ∑ni

j=1 wij .
Next, for the generating model without additional covariates, we fit our Bayesian models

on both the aggregated study-level meta-data and the subject-level IPD meta-data. All models
were fit using JAGS version 4.3.0 in R version 3.6.0 with packages R2jags version 0.6-1 and
coda version 0.19-2 and were executed using the Vanderbilt Advanced Computing Center for
Research and Education (ACCRE) cluster. Each model consists of four independent chains.
Where τ 2 = 0, we use a burn-in of 5000 and take 20,000 samples with a thinning interval of
2, based on within-chain correlation from preliminary fits. For τ 2 ∈ (0.5,1), we use a burn-in
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of 10,000 and take 40,000 samples with a thinning interval of 4. All R code necessary to
reproduce these simulations can be found at https://github.com/esigworth/BayesianDTEM as
well as in the Supplementary Material (Sigworth et al. (2023)).

For the generating model with additional covariates, we fit three candidate models: an SL-
C meta-analysis model including aggregated Za

i5 and Za
i6, an SL-NC meta-analysis model

fit on only study-level covariates, and the subject-level IPD meta-data model incorporating
study-level covariates and subject-level Zij5 and Zij6. Each of these models was fit using the
same burn-in, sampling, and thinning settings as above, based on τ 2.

From the full set of posterior samples of each parameter in each model, we calculate the
dose toxo-equivalence relationship across a range of normalized doses between −1 and 1,
saving the median 95% credible interval bounds from each simulation. For model diagnostics
we report coverage probabilities, the ratio of the median absolute deviation (MADR) for each
parameter in each SL meta fit to the MAD of the IPD meta fit, mean square error, percent
bias, and relative efficiency. Percent bias is calculated as the median across 500 simulations
of the difference between the mean of the posterior distribution for a given parameter and
the true value of that parameter, divided by the true value and multiplied by 100. Relative
efficiency is the median across simulations of the ratio of the variance in the posterior of the
IPD model to the variance in the SL model (equivalent to the efficiency of the SL model over
the efficiency of the IPD model, where efficiency is the inverse of variance). Both percent
bias and relative efficiency are reported with 95% credible intervals.

4.1.2. Results. Our summary of the performance of this method focuses on the param-
eters involved in the calculation of the dose toxo-equivalence relationship, (β2, β3, β4) and
(α2, α3, α4), since it is only the performance of these parameters that will determine the
ability of our meta and IPD meta models to approximate the true dose toxo-equivalence rela-
tionship.

We first assess our method in the absence of additional covariates. Table 1 summarizes the
coverage probabilities and the MADRs and 95% credible interval widths (MADR CIW) for
each parameter in each setting, arranged by study design and value of τ 2. Coverage is near
95% for all models and settings, and the MADR values for all fits are close to 1 with nar-
row MADR CIWs, signifying comparable levels of variability within the posterior sampling
chains of our two model approaches.

In Figure 1(A) we display the median and 95% credible intervals for percent bias in pa-
rameter estimates from the SL meta and IPD meta model fits without additional covariates,
with three levels of τ 2 (0,0.5,1) displayed across the columns and study designs across the
rows. Median percent bias is consistently close to zero, with variance around the median in-
creasing with increasing τ 2. Figure 1(B) presents the median and 95% credible intervals for
the relative efficiency of the SL meta model to the IPD meta model with no additional covari-
ates. Efficiency is consistently close to 1, shifting slightly higher with increasing τ 2 but with
credible intervals always containing 1, indicating comparable efficiency.

In Figure 1(C) we present the estimated dose toxo-equivalence curves and 95% credible
intervals for the IPD meta (pink) and SL meta (blue) model fits with no additional covariates
and compare these to the true dose toxo-equivalence relationship (green), by τ 2 (columns)
and study design (rows). Credible interval widths increase with τ 2 in all settings. The SL and
IPD estimated relationship curves are very similar to both the true model and one another
across settings. With no additional covariates, then the performance of the IPD meta and SL
meta models in recovering the true dose toxo-equivalence relationship is comparable.

Next, we look at the performance of our method when additional subject-level covari-
ates are included in the generating model, comparing the IPD meta fit on complete data to
the SL-NC and SL-C models on study-level and potentially summarized data. Looking at

https://github.com/esigworth/BayesianDTEM
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TABLE 1
Coverage, median absolute deviation ratios (MADR), percent bias (IQR), and MSE, by fit type and study design,

for simulations without additional covariates. Target coverage was 0.95

Simulations Without Additional Covariates

Statistic Coverage MADR Percent Bias (IQR) MSE

Setting Fit (Parameter) SL (β) IPD (α) SL (β) / IPD (α) SL (β) IPD (α) SL (β) IPD (α)

τ2 = 0
Balanced β2 or α2 0.96 0.96 1.00 −0.01 (0.67) 0.00 (0.69) 0.00 0.00

β3 or α3 0.98 0.97 1.00 −0.02 (0.34) −0.01 (0.34) 0.00 0.00
β4 or α4 0.96 0.96 1.00 −0.01 (0.18) 0.01 (0.18) 0.00 0.00

Unbalanced β2 or α2 0.96 0.96 1.00 −0.02 (0.61) −0.01 (0.61) 0.00 0.00
β3 or α3 0.94 0.94 1.00 −0.01 (0.35) 0.00 (0.35) 0.00 0.00
β4 or α4 0.93 0.93 1.00 −0.01 (0.19) 0.00 (0.19) 0.00 0.00

τ2 = 0.5
Balanced β2 or α2 0.95 0.96 0.98 0.01 (2.27) 0.05 (2.35) 0.01 0.01

β3 or α3 0.96 0.96 0.98 0.00 (1.22) 0.02 (1.23) 0.02 0.03
β4 or α4 0.96 0.96 0.98 −0.02 (0.59) 0.00 (0.60) 0.02 0.02

Unbalanced β2 or α2 0.96 0.96 0.98 −0.04 (2.15) −0.01 (2.21) 0.01 0.01
β3 or α3 0.97 0.97 0.98 −0.04 (1.11) −0.02 (1.13) 0.02 0.02
β4 or α4 0.93 0.93 0.99 −0.01 (0.64) 0.01 (0.66) 0.02 0.02

τ2 = 1
Balanced β2 or α2 0.96 0.96 0.98 −0.01 (2.81) 0.01 (2.89) 0.02 0.02

β3 or α3 0.95 0.95 0.98 −0.06 (1.60) −0.03 (1.66) 0.04 0.04
β4 or α4 0.94 0.95 0.98 −0.04 (0.79) −0.02 (0.81) 0.03 0.04

Unbalanced β2 or α2 0.94 0.94 0.98 −0.06 (3.17) −0.04 (3.24) 0.03 0.03
β3 or α3 0.94 0.95 0.98 −0.05 (1.66) −0.04 (1.71) 0.04 0.05
β4 or α4 0.94 0.95 0.98 −0.03 (0.81) −0.01 (0.83) 0.04 0.04

Table 2, we have comparable coverage near 95% for β2 in all model fits and for (β3, β4),
where τ 2 �= 0. When τ 2 = 0, we have low coverage of β3 and β4 in both the SL-C and SL-
NC fits, between 70% and 90%. This may be due to τ 2 = 0 being on the boundary of the
InvGamma(0.001,0.001) prior on τ . The low coverage in this particular simulation setting
is not a concern for our particular application, since it is highly unlikely for a collection of
clinical studies to contain no between-study variability. All MAD ratios are just below 1 with
narrow CIWs, showing that posterior sampling variability is still comparable.

Figure 2(A) shows the median and 95% credible intervals for percent bias in the parameter
estimates from these three model fits. Percent bias is again at or very near 0, with variance in
the percent bias increasing with increasing τ 2 for all considered parameters. In Figure 2(B)
we see that both the SL-C and SL-NC fits are more efficient than the IPD fit for each param-
eter used in the equivalence calculation (as evidenced by the median relative efficiency being
greater than 1 for each comparison), a trend that increases with τ 2.

Finally, Figure 2(C) shows the median and 95% credible intervals for the dose toxo-
equivalence curves, generated by each model fit, with IPD in pink, SL-C in blue, and SL-NC
in orange. Each of these fall along the true curve (in green), and their credible intervals fully
overlap on both sides of the estimated median with their width increasing with τ 2. The in-
clusion of summarized subject-level information Za

i in the SL-C model does not improve the
estimation of the dose toxo-equivalence curve compared to the SL-NC model.

Of note is the reduced computing time for the SL model comparing to the IPD model.
For example, with a single core of an Intel Sandy Bridge architecture processor using
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FIG. 1. Summaries of correctly specified simulations without additional covariates, under each study design
and value of τ2: (A): Percent bias and 95% credible intervals. (B): Efficiency and 95% credible intervals of SL
vs. IPD meta models. (C): Estimated dose toxo-equivalence relationships and 95% credible intervals of meta and
IPD meta models compared to known relationship.
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TABLE 2
Coverage, median absolute deviation ratios (MADR), percent bias (IQR), and MSE, by fit type and study design, for simulations with additional covariates. Target coverage was 0.95

Simulations With Additional Covariates

Statistic Coverage MADR Percent Bias (IQR) MSE

Setting Fit (Parameter) SL-C (β) SL-NC (β) IPD (α) SL-C (β) / IPD (α) SL-NC (β) / IPD (α) SL-C (β) SL-NC (β) IPD (α) SL-C (β) SL-NC (β) IPD (α)

τ2 = 0
Balanced β2 or α2 0.96 0.95 0.97 0.98 0.98 −0.05 (0.65) −0.06 (0.62) 0.01 (0.67) 0.00 0.00 0.00

β3 or α3 0.89 0.88 0.95 0.98 0.97 −0.06 (0.35) −0.06 (0.36) 0.00 (0.37) 0.00 0.00 0.00
β4 or α4 0.78 0.76 0.94 0.98 0.98 −0.06 (0.20) −0.06 (0.20) 0.00 (0.21) 0.00 0.00 0.00

Unbalanced β2 or α2 0.96 0.95 0.96 0.98 0.98 −0.04 (0.58) −0.05 (0.59) 0.00 (0.61) 0.00 0.00 0.00
β3 or α3 0.91 0.90 0.98 0.98 0.97 −0.06 (0.29) −0.06 (0.30) 0.00 (0.31) 0.00 0.00 0.00
β4 or α4 0.73 0.72 0.95 0.98 0.98 −0.06 (0.16) −0.06 (0.16) 0.00 (0.18) 0.00 0.00 0.00

τ2 = 0.5
Balanced β2 or α2 0.96 0.96 0.96 0.94 0.94 −0.12 (2.22) −0.08 (2.23) −0.03 (2.38) 0.01 0.01 0.01

β3 or α3 0.96 0.96 0.95 0.94 0.93 −0.06 (1.19) −0.07 (1.17) −0.01 (1.25) 0.02 0.02 0.03
β4 or α4 0.89 0.90 0.95 0.94 0.94 −0.08 (0.58) −0.09 (0.59) −0.02 (0.63) 0.03 0.03 0.02

Unbalanced β2 or α2 0.95 0.95 0.95 0.94 0.94 −0.07 (2.23) −0.08 (2.22) 0.00 (2.37) 0.01 0.01 0.01
β3 or α3 0.96 0.95 0.97 0.94 0.94 −0.08 (1.11) −0.08 (1.12) −0.02 (1.18) 0.02 0.02 0.03
β4 or α4 0.93 0.92 0.95 0.94 0.94 −0.07 (0.57) −0.07 (0.58) −0.01 (0.61) 0.02 0.02 0.02

τ2 = 1
Balanced β2 or α2 0.97 0.96 0.97 0.94 0.93 −0.03 (2.79) −0.01 (2.83) 0.05 (3.05) 0.02 0.02 0.03

β3 or α3 0.93 0.94 0.95 0.94 0.93 −0.06 (1.62) −0.06 (1.63) 0.00 (1.72) 0.05 0.05 0.06
β4 or α4 0.94 0.94 0.96 0.94 0.93 −0.09 (0.79) −0.09 (0.80) −0.02 (0.85) 0.04 0.04 0.04

Unbalanced β2 or α2 0.95 0.94 0.95 0.94 0.94 −0.07 (2.99) −0.07 (3.11) 0.02 (3.24) 0.02 0.03 0.03
β3 or α3 0.93 0.93 0.94 0.94 0.94 −0.13 (1.63) −0.13 (1.68) −0.05 (1.77) 0.05 0.05 0.05
β4 or α4 0.94 0.94 0.95 0.94 0.94 −0.08 (0.75) −0.09 (0.74) −0.02 (0.80) 0.03 0.03 0.03
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FIG. 2. Summaries of correctly specified simulations with additional covariates, under each study design and
value of τ2: (A): Percent bias and 95% credible intervals. (B): Efficiency and 95% credible intervals of SL-C
and SL-NC models vs. IPD meta models. (C): Estimated dose toxo-equivalence relationships and 95% credible
intervals of meta and IPD meta models compared to known relationship.
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two GB of system memory, it took one minute to fit an SL model and five hours to fit
an IPD model for a balanced study with no additional covariates and τ 2 = 1. With addi-
tional covariates the SL-C and SL-NC models again took one minute, while the IPD model
took about 24 hours. Additionally, to check the sensitivity of the method to the simula-
tion coefficients, an alternative set of coefficients chosen to produce similar event rates,
(α1, . . . , α6) = (−0.4,0.1,0.6,0.2,0.3,0.8), were also tested to assess the sensitivity of the
model to coefficient choice and produced results consistent with the above simulations in
terms of agreement between the IPD and SL/SL-C/SL-NC models.

4.2. Simulation under a misspecified model.

4.2.1. Misspecified model simulation. We conducted the simulations in Section 4.1 as-
suming a correctly specified model. Several misspecification scenarios are of interest in eval-
uating the performance of our proposed method in practice. For example, it is possible that
individual patient characteristics, such as age, sex, and related comorbidities (Lutz et al.
(2001)), influence their response to medications or general risk for adverse events, possibly
in a nonlinear fashion. When this is the case, it is necessary to have complete subject-level
data to be able to accurately model these interactions (Debray et al. (2015)). However, of
interest is how closely we can approximate the dose toxo-equivalence relationship in the ab-
sence of subject-specific information. We explore this first via the inclusion of a nonlinear
effect of Zij6 and then via an interaction between Zij5 and either drug type or dose in the
data-generating model, comparing the correct specification of the IPD model to the SL-C
and SL-NC models fit, as specified in Section 4.1 in the context of aggregated covariates
(excluding interactions).

Additionally, our previous simulations assume that all subjects in study i receive the same
dose. In practice, however, dosing among subjects can vary due to adverse reactions, missed
appointments, or subject noncompliance (Lebovits et al. (1990)). When this is the case, stud-
ies will often report an aggregated dose variable, such as the median and IQR of received
doses, as in our application in Section 5. To assess the sensitivity of our method to the accu-
racy of reported doses, we allow for variability in the received dose at the IPD level and fit
the SL model on an aggregated dose measure, in this case the median normalized dose. For
complete simulation details for these four misspecification scenarios, see the Supplementary
Material (Sigworth et al. (2023)).

4.2.2. Misspecified model results. Figure 3 shows the estimated dose toxo-equivalence
curves for the simulations where subject-level covariates influence the risk of an adverse event
in ways that are not considered at the SL-C and SL-NC levels. First, in A we allow the effect
of the continuous covariate Zij6 to be nonlinear. Although only the IPD model includes the
nonlinear term, we find that both the SL-C and SL-NC models are still able to approximate
the true toxo-equivalence relationship, as evidenced by all of the curves overlapping with the
true relationship (in green).

Next, in Panels (B) and (C) we consider our simulations where Zij5 is a mediator of the
drug or dose response. We treat the binary covariate Zij5 as sex, with Zij5 = 0 indicating male
and Zij5 = 1 indicating female. We display the estimated IPD curves for females (green) and
males (yellow), the estimated SL-C (pale blue) and SL-NC curves (orange), and the true
curves for females (red) and males (dark blue). In both cases we find the IPD meta model
is fairly good at estimating the sex-specific equivalence curves, while the SL-C and SL-NC
curves are roughly equal to one another and between the sex-specific curves. Thus, the SL-C
and SL-NC curves provide a reasonable estimate of the relationship across sexes but not at a
sex-specific level.
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FIG. 3. Estimated dose toxo-equivalence relationships and 95% credible intervals of SL meta and IPD meta
models compared to known relationship with considered excluded term misspecificiations for each study design
and value of τ2. (A) Exclusion of nonlinear effect of continuous subject-level covariate. (B) Exclusion of inter-
action between drug type and a binary covariate (sex). (C) Exclusion of interaction between dose and a binary
covariate (sex).
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Finally, the performance of our model when the dose truly varies at the subject level can
be found in Figure 4. When allowing dose to vary by subject, we see an increase in variance
of the percent bias of β3 across all simulations (Panel (A)), as compared to the correctly
specified models with no covariates in Figure 1(A); however, median percent bias is still at or
very near to 0. Additionally, the correctly specified IPD meta model is more efficient than the
misspecified meta model for β3 and β4 (Panel (B)). Finally, the credible interval for the meta
model in the dose toxo-equivalence relationship (Panel (C)) is slightly wider than the IPD
meta model, though the median estimated curves are still very similar to both one another
and the true relationship.

5. Clinical application. We revisit our clinical application from Section 2 by applying
our methods to data from 169 published studies in the taxane chemotherapy drugs paclitaxel
and docetaxel. Descriptive summaries of our considered studies can be found in Supple-
mentary Table 1 (Sigworth et al. (2023)). Our outcome �i is the observed rate of all-grade
neuropathy in each study, and our dose di in each study is the normalized median cumulative
dose received by subjects, calculated as di = (Di −Di)/(sdi) where Di is the median cumu-
lative dose received in mg/m2 in study i, Di is the mean of the reported Di , and sdi is the
standard deviation of the reported Di . Dose was normalized within each drug independently
(i.e., paclitaxel was normalized with respect to other paclitaxel doses and the same for doc-
etaxel). We consider the inclusion of the study summary variables normalized median age,
agei , and dose gap, dgi (time between taxane doses in fractions of four-week periods, i.e.,
0.25 = 1 week).

We considered several transformations of Di prior to normalization, looking to reduce
skewness in the distribution of doses. Specifically we looked at

√
Di , ln(Di), and Box–Cox

transformations with λ = 0.22 (chosen to maximize the objective function), λ = 0.25 (for
fourth roots), and λ = 0.33 (for cube roots, as Di is a volume). We fit both SL-C and SL-NC
models and considered the addition of a random slope to allow the dose-response relationship
to vary by study. Each candidate model was fit with a burn-in of 15,000 and 500,000 samples
with a thinning interval of 50, across four independent chains, and the deviance information
criterion (DIC) was used to compare across models. The DIC values for all models (seven
in total) were between 206 and 208 (listed in full in Supplementary Table 2 (Sigworth et al.
(2023)), but the lowest and most parsimonious was the fit with covariates, no random slope,
and no transformation to dose prior to normalization. Thus, the overall final model structure
fit to the data can be defined as follows. Let Xi = (XiP ,XiD, di, agei , dgi) be a study-level
data vector, and define Yi |μi,β,Xi ∼ N(ψi, S

2
i ), where β denotes the vector of estimated

coefficients based on our real data and

ψi = μi + β1 + β2XiD + β3XiP di + β4XiDdi + β5agei + β6dgi

with XiP = I (drug = paclitaxel) and XiD = I (drug = docetaxel). Noninformative priors
of μi |τ ∼ N(0, τ 2), τ ∼ InvGamma(0.001,0.001), and β ∼ MVN(0,106 diag(1)) were set
for all model parameters. With the added normalization step for dose Di , the equivalence
relationship for dose DP of paclitaxel to DD of docetaxel, in mg/m2, becomes

DD = β3(
DP −DP

sdP
) − β2 + β4(

DD
sdD

)

β4/sdD

,

where DP is the mean cumulative dose of paclitaxel, DD is the mean cumulative dose of
docetaxel, and sdP and sdD are the scaling values for paclitaxel and docetaxel, respectively.
Once the equivalence relationship was established, the resultant equivalent dose pairs were
converted from normalized units to original mg/m2 units using the centering and scaling
values originally used in their normalization.
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FIG. 4. Summaries of misspecified simulations with a varied dose, under each study design and value of τ2.
(A): Percent bias and 95% credible intervals. (B): Efficiency and 95% credible intervals of SL versus IPD meta
models. (C): Estimated dose toxo-equivalence relationships and 95% credible intervals of meta and IPD meta
models compared to known relationship.
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FIG. 5. Summaries of model fit to taxane data. (A): Gelman plot. (B): ACF plot. (C): Estimated dose toxo-equiv-
alence relationships and 95% credible intervals for paclitaxel and docetaxel.

The final model diagnostics can be found in Figure 5 Panels (A) and (B). The sampling
chains converged for each parameter, demonstrated by the Gelman plot in A. There was no
evidence of autocorrelation issues in the samples for (β2, β3, β4, β5), demonstrated in the
ACF plot for the β parameters in B. There is some evidence of autocorrelation up to a lag of
40 with (β1, β6); however, as the chain is thinned by 50 and these parameters are not used in
the equivalence calculation, this autocorrelation is not an issue.

The dose toxo-equivalence relationship, generated from these samples, can be found in
Figure 5(C), evaluated along a range of plausible cumulative paclitaxel doses in mg/m2.
Compared to the simulated curves, the width and shape of the credible interval around this
relationship is consistent with our simulation with additional covariates, an unbalanced study
design, and higher between-study variability, which is also the most similar simulation de-
sign, given the mean estimate for 1/τ 2 (an estimate of precision returned by JAGS) was 1.12,
resulting in a τ 2 of 0.89. Note the lower credible interval is clipped at 0 mg/m2, since dosage
values must be nonnegative. Along the IQR of paclitaxel doses observed in our data, 656–
1085 mg/m2, the width of the credible interval was roughly equal to the cumulative dose of
two treatment cycles of docetaxel, providing useful guidance to clinicians. The lower bound
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of the credible interval is also particularly informative in a clinical sense, since clinicians can
view the lower bound as a cautious dosing threshold from a toxicity perspective. Although
we had also hoped to control for cancer type due to different proportions of each cancer rep-
resented for each drug, due to sample size constraints, we were unable to do so. As more trial
data becomes available, we hope to repeat this analysis while controlling for cancer type.

6. Discussion. This proposed approach to building a dose toxo-equivalence model from
a Bayesian SL meta-analysis consistently produced a good approximation of the true dose
toxo-equivalence relationship, performing very similarly to the IPD meta model fit to the full
data under all simulation conditions with significantly reduced computing time (e.g., about
one minute for the SL meta model as opposed to hours for the IPD meta model). Of note is
that, in the absence of an interaction, the relationship between dA and dB depends solely on
study-level information. This finding is valuable, since efforts to recover individual patient
data with clinical trial results are time-intensive, expensive, or even impossible. In estimating
the parameters involved in the dose toxo-equivalence relationship, we see no increase in bias
or loss of efficiency across conditions, as compared to IPD meta-analysis for those parame-
ters needed to calculate equivalence, an outcome that has been demonstrated in similar works
(Luo et al. (2022), Zeng and Lin (2015)). In the case of Zeng and Lin (2015), our approach
has two major differences to their work. First, Lin and Zeng (2010a), Lin and Zeng (2010b),
Zeng and Lin (2015) were interested in using meta-analysis to combine the parameter esti-
mates from each study/site, with each study including both groups and the parameter being
the comparison of two groups, such as an odds ratio, while we are interested in incidence
rates in each treatment group with specific doses, and each study can include either one or
both groups. Second, adjusting for covariates has a different meaning in their application.
In Lin and Zeng (2010a), Lin and Zeng (2010b), Zeng and Lin (2015), the subject-level co-
variates were adjusted for at the study level before proceeding to meta-analysis, while in our
application only the aggregated study-level covariates are available but not the subject-level
covariates. In light of these differences, the theoretical conclusions made by Lin and Zeng
are not applicable to our empirical findings.

We found no significant improvements in the dose toxo-equivalence estimates when in-
cluding additional available aggregated covariates in our SL-C model fits, suggesting that
potential heterogeneity that may be explained by these aggregated measures does not provide
additional information in estimating equivalence, likely because these parameters are not es-
timating the same quantity between the SL meta and IPD meta models; in extreme cases these
parameters could suffer from Simpson’s Paradox (Cates (2002), Berlin et al. (2002)). Further-
more, the finding of comparable performance between SL-C and SL-NC was in the absence
of an effect modifier. As orthogonality between predictors does not necessarily lead to or-
thogonality of their coefficient estimates under a logistic regression model (McCullagh and
Nelder (1989)), this finding is an empirical observation based on our simulation results. In
practice, we could consider both SL-C and SL-NC approaches followed by model selection,
however, with no intention to draw connections between the effects of aggregated covariates
Za

i and the effects of subject-level covariates Zij.
Our explorations in Section 4.2 demonstrate that our method is robust to several common

types of model misspecification. When a continuous covariate has a nonlinear effect that is
overlooked in the SL approach, our method still performs comparably to the IPD model with
the appropriate specification. In the case where the drug or dose response is moderated by
a binary covariate at the subject level, our method produced an equivalence curve that fell
between the curves produced by the two levels of the binary covariate, providing a reason-
able approximation of the average relationship in the face of incomplete information. Given
that drug and dose responses frequently differ by sex or the presence of comorbid conditions
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(Lutz et al. (2001)), this suggests that our method can still provide a useful guide for the
dose toxo-equivalence in this context, though there is some loss of information in this con-
text when using an SL-C or SL-NC model, as opposed to an IPD model. Further work would
be needed to assess the performance of our method in the case of an interaction with a con-
tinuous covariate, such as age or a lab value. Additionally, our simulations did not consider
the inclusion of an interaction term in the SL model (with the aggregated Za

i ); the perfor-
mance of this model specification is of interest in future investigations. We also found that
our model was robust to some variation in the dose received at the subject level, explored at
a variation of 10%. This finding supports our model application to paclitaxel and docetaxel,
which used the median cumulative dose across each study. However, additional simulations
with increasing dose variability could provide more insight into the impact of using an ag-
gregated dose value. Finally, all of the models considered in the simulations and case study
assume a linear relationship between transformed dose and rates of neuropathy. An extension
on our work would be to explore model performance where the true relationship is nonlinear,
which would require constraints on the dose-equivalence calculation for the solution to be
identifiable.

Of note is that our simulations and case study focus on nonrare outcomes. The taxane clin-
ical trial data we used had an overall median adverse outcome rate of 0.29 (IQR 0.16–0.48),
and the parameters used in our simulations generated similar outcome rates for comparabil-
ity. Some refinement of our proposed method may be needed to be applicable to studies with
rare outcomes, such as the use of integrated likelihood inference (Severini (1998), Berger,
Liseo and Wolpert (1999)), a generalized linear mixed model, as opposed to a linear mixed
model at the study level to avoid the normal approximation, or the incorporation of Pois-
son random effects models (Cai, Parast and Ryan (2010)). Additionally, a different prior for
the random intercept term μi may be helpful in the case of rare outcomes, such as uniform
or half-t, as the inverse-gamma prior may incorrectly weight variances when data is sparse
(Gelman (2006)). The general concept of using a meta-analytic approach to build a dose
toxo-equivalence model in other scenarios remains to be fully investigated, but we believe
the findings of our analysis serve as a foundation for other researchers to build upon.
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SUPPLEMENTARY MATERIAL

Supplementary methods: Misspecification simulation details (DOI: 10.1214/23-
AOAS1748SUPPA; .pdf). Supplementary Table 1: Summaries of study characteristics by
taxane type. This table summarizes the characteristics of all included studies, stratified by
taxane type. Categorical variables are presented as count (%) and compared using a Chi-
square test, continuous variables are mean (SD) and compared using a t-test, and discrete
numerical variables as median [Q1, Q3] and compared using a Kruskal–Wallis test. Sup-
plementary Table 2: Deviance information criterion values. Deviance information criterion
values for all candidate models considered in the application of our method to paclitaxel

https://doi.org/10.1214/23-AOAS1748SUPPA
https://doi.org/10.1214/23-AOAS1748SUPPA
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and docetaxel trial data. This section provides a complete description of our misspecification
simulations, including nonlinear effects, drug or dose modifiers, and varying doses.

Supplementary simulation code (DOI: 10.1214/23-AOAS1748SUPPB; .zip). These
code files contain all necessary information to reproduce our correctly specified simulations
in R.
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