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1. Introduction

1.1. Aims and scope of the article

The method of cumulants is a central tool in comparing the distribution of a ran-
dom variable with the normal law. It enters the proof of central limit theorems,
moderate and large deviation principles, Berry-Esseen bounds, and concentra-
tion inequalities in various fields of probability theory: stochastic geometry, ran-
dom matrices, random graphs, random combinatorial structures, functionals of
stochastic processes, mathematical biology—the list is not exhaustive.

The present survey shines a spotlight on a celebrated series of bounds de-
veloped by the Lithuanian school, notably Rudzkis, Saulis, and Statulevičius
[99] and Bentkus and Rudzkis [9]. The bounds work under a condition on cu-
mulants that allows for heavy-tailed behavior and is considerably weaker than
the Cramér condition of finite exponential moments frequently invoked in the
theory of large deviations. The conditions on cumulants can be verified in many
situations of interest, beyond sums of independent random variables. In their
monograph [101], Saulis and Statulevičius study applications, for example, to
random processes with mixing, multiple stochastic integrals, and U -statistics.

Our primary aim is to give a self-contained and accessible presentation, in-
cluding proofs, of the “main lemmas” from Chapter 2 in the book [101] by Saulis
and Statulevičius; along the way, we correct a few minor errors in the proofs.
We have not aimed at a reconstruction of all numerical constants. The presenta-
tion should be accessible to a reader with little exposure to complex-analytic or
Fourier methods in probability or slightly arcane concepts such as the Cramér-
Petrov series. The reader familiar with the classical books by Ibragimov and
Linnik [64], Petrov [92], Gnedenko and Kolmogorov [44], or even Feller [35] will
easily recognize a classical set of ideas, however an in-depth study of charac-
teristic functions, inversion formulas, and asymptotic expansions are nowadays
frequently eschewed in graduate probability courses and these methods are no
longer part of every probabilist’s toolbox. Moreover the presentation in [101] is
extremely technical, making it very hard to extract the proof philosophy from
the long series of technical estimates. To remedy this situation, we have strived
to make explicit the logical structure and key ideas, notably the truncation pro-
cedures needed to deal with Taylor expansions with zero radius of convergence.

In addition, we mention a few exemplary applications and discuss the rela-
tion of the aforementioned results with other techniques and fields, in particular,
large deviations for sums of heavy-tailed variables [33, 83], analytic combina-
torics [43], and mod-phi convergence [39].

In the remaining part of the introduction, we define the cumulants, summarize
the main bounds studied in the present survey, address methods for bounding
cumulants, and list a few recent applications.
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1.2. Cumulants

The cumulants of a real-valued random variable X are the numbers κj ≡ κj(X),
j ∈ N, given by

κj(X) := (−i)j
dj

dtj
logE

[
eitX ]

∣∣∣
t=0

,

provided the derivative exists. Equivalently, assuming r-fold differentiability of
the characteristic function at the origin, the cumulants of order j = 1, . . . , r are
related to the Taylor expansion by

logE
[
eitX
]
=

r∑
j=1

κj

j!
(it)j + o(tr) (t → 0).

The cumulant of order 1 is the expected value κ1 = E[X], the cumulant of
order 2 is the variance κ2 = V(X). More generally, there exists a recurrence
formula between the centered moments E[(X−E[X])j ] and the cumulants, which
is how Thiele [110] originally defined them. Cumulants are often called semi-
invariants because of the homogeneity κj(λX) = λjκj(X) and shift-invariance
κj(X + c) = κj(X) for j ≥ 2. The name cumulants was proposed by Fisher and
Wishart [42]; see Hald [52] for a historical account and a translation of Thiele’s
article from Danish to English.

There are many moment-to-cumulants formulas. We list a few to give a first
impression of cumulants but emphasize that none of them, except perhaps the
first, is used in the sequel. The most common relation, obtained from Faà di
Bruno’s formula, is

κj(X) =

j∑
m=1

(−1)m−1

m

∑
k1+···+km=j
k1,...,km≥1

j!

k1! · · · km!

m∏
�=1

E
[
Xk�
]
.

Equivalently, the j-th cumulant is a sum over set partitions {B1, . . . , Bm} of
{1, . . . , j},

κj(X) =

j∑
m=1

∑
{B1,...,Bm}

(−1)m−1(m− 1)!
m∏
�=1

E
[
X#B�

]
.

It can be obtained by a Möbius inversion on the lattice of set partitions, the
function (−1)m−1(m− 1)! is the Möbius function [108]. Another set of relations
is obtained by differentiating the logarithm of the characteristic function: The
relation

d

dt
E
[
eitX
]
= E
[
eitX
] d
dt

logE
[
eitX
]

implies the recurrence relations

κj(X) = E
[
Xj
]
−

j−1∑
r=1

(
j − 1

r − 1

)
E
[
Xj−r

]
κr(X).
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Cramer’s rule for solving linear equations yields an expression of the cumulant
as the determinant of a Toeplitz matrix [97, Cor. 3.1],

κj(X) = (−1)j−1(j − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

EX EX2

2! · · · EXj−1

(j−1)!
EXk

k!

1 EX · · · EXj−2

(j−2)!
EXj−1

(j−1)!

...
...

. . .
...

...

0 0 · · · EX EX2

2!
0 0 · · · 1 EX

∣∣∣∣∣∣∣∣∣∣∣∣
.

Cumulants offer some advantages over moments. Crucially, the j-th order
cumulant of a sum of independent random variables is simply the sum of the
j-th order cumulants. For a standard normal random variable all cumulants of
order j ≥ 3 vanish. Cumulants of a Poisson random variable with parameter λ
are all given by κj ≡ λ, while formulas for moments are more involved.

Cumulants help prove central limit theorems: A sequence (Xn)n∈N of random
variables converges in distribution to a standard normal variable if and only if
the expectation and the variance go to zero and one, respectively, and in addition
all higher-order cumulants go to zero. In fact for the higher-order cumulants it
is enough to check that the cumulants with j larger than any fixed order s ≥ 3
go to zero, see Janson [67]. Bounds on cumulants translate into quantitative
bounds for the normal approximation.

1.3. Short description of the “main lemmas”

The main theorems discussed in the present survey apply to real-valued random
variables X for which all moments, hence also all cumulants, exist and for which
the cumulants can be bounded as

|κj(X)| ≤ (j!)1+γ

Δj−2
(j ≥ 3)

with γ ≥ 0, Δ > 0. The variable X is assumed to be centered and normalized,
E[X] = 0 and V(X) = 1. Following [1] we shall refer to this condition as the
Statulevičius condition. The main results, roughly, are the following:

1. Normal approximation with Cramér corrections. Let Z ∼ N (0, 1) be a
standard normal variable. Then for x ∈ (0, cΔ1/(1+2γ)) with suitable con-
stant c > 0,

P(X ≥ x) = eL̃(x)
P(Z ≥ x)

(
1 +O

( x+ 1

Δ1/(1+2γ)

))
where L̃(x) is related to the so-called Cramér-Petrov series (reviewed in
Appendix A) and satisfies |L̃(x)| = O(x3/Δ1/(1+2γ)). See Rudzkis, Saulis,
and Statulevičius [99], Lemma 2.3 in [101], and Theorem 2.3 below.
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2. Bound on the Kolmogorov distance. The following bound of Berry-Esseen
type holds true:

sup
x∈R

∣∣P(X ≤ x)− P(Z ≤ x)
∣∣ ≤ C

Δ1/(1+2γ)

for some constant C > 0. See Rudzkis, Saulis, and Statulevičius [99],
Corollary 2.1 in [101], and Theorem 2.4 below.

3. Concentration inequality. Assuming |κj | ≤ 1
2j!

1+γH/Δj−2 for some pa-
rameters H,Δ > 0 and all j (a minor variant of the Statulevičius condi-
tion), one has

P(X ≥ x) ≤ exp
(
−1

2

x2

H + x2−α/Δα

)
, α :=

1

1 + γ

≤ exp
(
−1

4
min
(x2

H
, (xΔ)α

))
for all x ≥ 0. See Bentkus and Rudzkis [9], the corollary to Lemma 2.4 in
[101], and Theorem 2.5 below.

Let us briefly put these results in perspective and discuss the nature of the
Statulevičius condition. When γ = 0, the condition implies that the cumulant
generating function ϕ(t) = logE[exp(tX)] =

∑
j κjt

j/j! is analytic in a neigh-
borhood of the origin and finite for |t| < Δ. This is precisely Cramér’s condition
of finite exponential moments. The normal approximation with Cramér correc-
tions is proven with standard techniques also employed for sums of independent
identically distributed random variables [64, Chapter 8]. The concentration in-
equality is similar to the Bernstein inequality [111].

The bounds are more intriguing for γ > 0. In that case the Taylor expansions∑
j κjt

j/j! of the cumulant generating function can have zero radius of conver-
gence and the random variable can be heavy-tailed, meaning that it has infinite
exponential moments E[exp(tX)] for arbitrarily small t 	= 0. The concentration
inequality shows that the tails of X have at least stretched exponential decay
O(exp(−constxα)) with α = 1/(1 + γ), i.e., X has (in the worst case) Weibull-
like tails. In fact there is equivalence: It is known that the Statulevičius condition
holds true if and only if Linnik’s condition E[exp(δ|X|α)] < ∞, for some δ > 0,
is satisfied, see Section 2.4. Results on large deviations under conditions more
general than Linnik’s condition are available as well, see Section 2.4. Hence, the
concentration inequality morally says that if a random variable has cumulants
similar to those of a Weibull-like variable, then it also has Weibull-like tails.

This result is rather amazing. True, it is well-known that statements on the
tails of a random variable can be inferred from information on the characteristic
function χ(t) = E[exp(itX)] near t = 0— or, if the random variable is non-
negative or with values in N0, from the behavior Laplace transform E[exp(−λX)]
as λ ↓ 0 or the behavior of the probability generating function G(z) = E[zX ]
as z → 1. Such relations are at the heart of analytic proofs of limit theorems
in probability and combinatorics with Fourier analysis, Tauberian theorems, or
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complex analysis [64, 43]. However, it is not clear at all that the coefficients
of a divergent Taylor expansion carry enough information to allow for rigorous
statements.

Proofs for γ > 0 require ingenious truncation procedures. Some of them
are similar to procedures employed for large deviations of sums of heavy-tailed
random variables, see Section 3.1. The critical scale Δ1/(1+2γ) is comparable to
the monomial zones of attraction to the normal law and “Cramér’s system of
limiting tails” for sums of i.i.d. random variables discussed by Ibragimov and
Linnik [64, Chapters 9 and 10]. Let us stress that the critical scale is not just
some technical limitation. For sums of i.i.d. Weibull-like variables, it corresponds
exactly to the scale at which the normal approximation ceases to be good and
heavy-tailed effects kick in [85], see also Section 2.3.2 for an elementary example.

Note that the same cumulant bound also implies Rosenthal type bounds
i.e. estimates for the difference of the k-th moment to the corresponding moment
of the normal distribution, see [31]. Connections with mod-phi convergence and
moderate deviation principles are discussed in Section 3.1 and 3.2.

1.4. How to bound cumulants

There is no one-size-fits-all way to bound cumulants. Nevertheless, there are
some repeating features, depending on the type of bound one seeks to establish
and the type of random variable under investigation. For the bound, it matters
whether one is after an analytic bound γ = 0 or after the weaker case γ > 0.
Models fall broadly in two classes: first, random variables built out of fields
or processes with underlying independence or good control on dependencies
and decay of correlations, for example, empirical mean for a stationary ergodic
process or functionals of Poisson point processes; second, models directly defined
on more complex structures, including random matrices, models from analytic
and probabilistic number theory, or random combinatorial structures.

The Statulevičius bound for γ = 0 implies that the cumulant generating func-
tion is analytic. Conversely, when the cumulant generating function is analytic
in a neighborhood of the origin, then the cumulants can be bounded by applying
Cauchy’s formula. Accordingly one may shift perspective away from the cumu-
lants and focus directly on generating functions. This is especially helpful for
random combinatorial structures, where often the recursive structure of com-
binatorial objects translates into functional equations for generating functions
and information on the analytic behavior [43]. Working directly with generating
functions is also of advantage for random matrices and probabilistic number
theory [39].

Analyticity of the cumulant generating function is equivalent to zero-freeness
of the moment generating function. The role of analyticity and zero-freeness was
already emphasized in Bryc’s central limit theorem [16]. In statistical mechan-
ics, controlling zeros is related to Lee-Yang theory and relations with central
limit theorems were explored, for example, by Iagolnitzer and Souillard [63] or
Ruelle, Pittel, Lebowitz and Speer [75]; see also [39, Chapter 8.1]. For new re-
sults and an account of modern developments, the reader is referred to Michelen
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and Sahasrabudhe [81, 82] (Section 7 in [82] has the telling title “Taming the
cumulant sequence”).

When a direct control of generating functions is not possible, cumulants are
often treated with combinatorial bounds and correlation estimates. Two proto-
types are sums of dependent random variables and U -statistics of sequences of
independent random variables [101, Chapters 4 and 5.1] or m-dependent vec-
tors [53, 55]. Consider for example a sequence of independent random variables

(Xn)n∈N and the random variable Y =
∑n−1

i=1 XiXi+1. The cumulant of Y is not
the sum of the cumulants κ(XiXj) because XiXi+1 and XkXk+1 are not inde-
pendent for {i, i+ 1} ∩ {k, k + 1} 	= ∅. But clearly for a given nearest-neighbor
pair α = {i, i+1} the number of pairs β = {j, j+1} with α∩β 	= ∅ is bounded
by 2. This can be exploited with dependency graphs, see Section 3.4.

Another example is when the input variables Xn, n ∈ N, are not independent.
The cumulants of the partial sum are given by the sum of mixed cumulants
κ(Xα1 , . . . , Xαj ) [76] (see Eq. (3.4) below) as

κj(X1 + · · ·+Xn) =
∑

1≤α1,...,αj≤n

κ(Xα1 , . . . Xαj ),

hence ∣∣κj(X1 + · · ·+Xn)
∣∣ ≤ n sup

α1∈N

∑
α2,...,αj∈N

∣∣κ(Xα1 , . . . , Xαj )
∣∣.

Thus bounds on the cumulants of the sum are intimately tied to summability
properties of mixed cumulants. Analogous relations apply in the context of point
processes; here summability of mixed cumulants is replaced with bounds on
the total variation of reduced (factorial) cumulant measures, which leads to
the notions of weak and strong Brillinger mixing [15, 65]. In the language of
statistical mechanics, Brillinger mixing corresponds to integrability of truncated
correlation functions, a condition typically satisfied by Gibbs point processes at
low density [100].

Brillinger mixing can be rather difficult to establish directly. An alternative
approach, still focused on the decay of correlations, was devised by Baryshnikov
and Yukich [8] and then further developed, see B�laszczyszyn, Yogeshwaran and
Yukich [11] and the references therein. Eichelsbacher, Raič and Schreiber [32]
pushed the method all the way up to the Statulevičius condition. The method
works with approximate factorization properties of moment measures; cumu-
lants are represented as combinations of semi-cluster measures. Combinatorics
enter when bounding the number of summands in the latter representation [32,
Lemma 3.2].

For functionals of Markov chains or stochastic processes with mixing, it is
convenient to work with another set of quantities, called centered moments [101,
Chapter 4], higher-order covariances [57] or Boolean cumulants [37, Section 10].
Mixing properties of the underlying stochastic process lead to good bounds
on the centered moments, and then bounds on cumulants are deduced from a
Boolean-to-classical cumulants formula.
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For Poisson or Gaussian input data, another class of methods builds on dia-
grammatic formulas for cumulants and chaos decompositions (related to Feyn-
man diagrams and Fock spaces in mathematical physics). This applies to multi-
ple stochastic integrals of Brownian motion or of Poisson point processes [101,
Chapter 5.3]. A modern account of diagrammatic formulas is given by Pec-
cati and Taqqu [89]. Useful formulas for cumulants can also be derived using
Malliavin calculus and the infinite-dimensional Ornstein-Uhlenbeck operator,
see Nourdin and Peccati [87].

1.5. Some recent applications

In recent years the method of cumulants has attracted interest in various areas
of application. We list a few; the examples below involve bounds on cumulants
though not necessarily of the form |κj | ≤ j!1+γ/Δj−2.

In stochastic geometry, the method of cumulants is used in numerous ways.
In [48] and [49] it is used for the volume and the number of faces of a Gaussian
polytope to show concentration inequalities and a Marcinkiewicz-Zygmund-type
strong law of large numbers as well as a central limit theorem including error
bounds and moderate deviations. Furthermore for the volumes of random sim-
plices a central limit theorem, mod-phi convergence as well as moderate and
large deviations are proved in [47], where the dimension and the number of
points grow to infinity. Poisson cylinder processes are studied in [59], [60] and
volumes of simplices in high-dimensional Poisson-Delaunay tessellations in [51].
The method is also applicable to the covered volume in the Boolean model,
[46, 56, 57]. General functionals of random m-dependent fields are studied in
[46, 53, 55, 58]. A survey covering m-dependent variables, Markov chains, and
mixing random variables is given by Heinrich [54]. Moderate deviation results
for classical stabilizing functionals in stochastic geometry can be found in [32].

The method of cumulants also plays an important role in the theory of ran-
dom matrices and determinantal point processes. For the latter cumulants for
the sine kernel were studied by Costin and Lebowitz [18]. In [106] and [107] Sosh-
nikov studied the Gaussian limit for linear statistics of Gaussian fields and deter-
minantal random point fields. The methods of [18] were also applied to spacing
distribution in the circular unitary ensemble [105]. The method of [106] was
further extended e.g. to study general one-cut unitary-invariant matrix models
[72] and to prove mesoscopic fluctuations for unitary invariant ensembles [73].
Further the methods were applied to (generalized) Ginibre ensembles, where
linear eigenvalue statistics and characteristic polynomials were studied [95] and
moderate deviations for counting statistics were shown [36]. The method of cu-
mulants is also applied for eigenvalue counting statistics and determinants of
Wigner matrices [26, 27]. This was generalized to the linear spectrum statistics
of orthogonal polynomial ensembles in [88]. Studying the cumulants also works
for characteristic polynomials of random matrices from the circular unitary en-
semble [17] as well as the determinants of random block Hankel matrices, [24].
Cumulants also enter the analysis of matrix models in which the eigenvalues do
not form a determinantal point process, see Borot and Guionnet [14].
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The method of cumulants, combined with the concept of dependency graphs,
yields useful results in random graphs, in particular subgraph count statistics in
Erdős-Rényi random graphs [28, 39], or more generally for graphons in [41], for
the profile of a branching random walk [50] as well as for the winding number of
Brownian motion in the complex plane [21]. Féray gives criteria for normality
convergence of dependency graphs by using the method of cumulants [37]. This
is applied to vincular permutation patterns in [61] (yielding the same order
of convergence in the Kolmogorov distance than achieved by applying Stein’s
method).

The generalization to weighted dependency graphs allows for applications to
the Ising model as [29] shows. Already in [80] models of statistical mechanics
such as the Curie-Weiss and the Ising model are studied.

For an application for multiple Wiener-Itô integrals in stochastic analysis see
[87], the survey of a series of articles in the book [89] as well as [102].

Another area of applications are random logarithmic structures in combina-
torics, random permutations and random integer partitions as well as so-called
character values, see [4, 39, 41]. Random arithmetic functions, the Riemannian
ζ function and L functions over finite fields are considered in the series of pub-
lications [21, 39, 66, 70, 71]. The latest publication [38] shows a central limit
theorem for weighted dependency graphs and generalizes results for the number
of occurrences of any fixed pattern in multiset permutations and in set parti-
tions.

In mathematical biology Möhle and Pitters derived the absorption time and
tree length of the Kingman coalescent by bounding the cumulants, see [84].
Restricted to the infinitely many sites model of Kimura, in [93] Pitters derives
a formula for the cumulants of the number of segregating sites of a Kingman
coalescent implying a central limit theorem and a law of large numbers. Studying
the multivariate cumulants, the number of cycles in a random permutation and
the number of segregating sites jointly converge to the Brownian sheet [94].

To conclude this non-exhaustive list, we stress that cumulants are highly rel-
evant in areas somewhat outside the scope of this survey. Perhaps closest to
traditional probability are asymptotic techniques in statistics, see Barndorff-
Nielsen and Cox [7]. A tensorial view of cumulants, with applications in statis-
tics, is given by McCullagh [79]. Cumulants are also useful in algebraic statistics,
see the book by Zwiernik [114]. For example, Sturmfels and Zwiernik [109] dis-
cuss cumulants for algebraic varieties and binary random variables on hidden
subset models. A completely different line of inquiry is free probability and
non-commutative probability, in which different notions of independence come
with different notions of cumulants. The relation between free, monotone and
Boolean cumulants is studied by Arizmendi, Hasebe, Lehner and Vargas [3].
Finally, cumulants also feature prominently in kinetic theory and the analysis
of time-dependent models in mathematical physics [77, 13].
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2. The main lemmas

Here we state four theorems, roughly the “main lemmas” in Saulis and Stat-
ulevičius [101, Chapter 2]. Two theorems are about the normal approximation,
with Cramér corrections, to a random variable under conditions on finitely many
cumulants (Theorem 2.2) or under the growth condition (Sγ), which allows for
heavy-tailed random variables (Theorem 2.3). An inequality of the Berry-Esseen
type and a concentration inequality are given in Theorems 2.4 and 2.5, again
under the condition (Sγ).

The main theorems are illustrated with two elementary examples—Gamma
and Weibull distributions—in Section 2.3. The meaning of the Statulevičius
condition (Sγ) is further clarified in Section 2.4.

2.1. Normal approximation with Cramér corrections

In the following X is a real-valued random variable, defined on some probability
space (Ω,F ,P), with cumulants κj(X) = κj . We assume throughout the text
that the variable X is normalized, i.e., E[X] = 0 and V(X) = 1. Two important
quantities are the cumulant generating function

ϕ(t) := logE
[
exp(tX)

]
∈ R ∪ {∞} (t ∈ R) (2.1)

and its Legendre transform

I(x) := sup
t∈R

(
tx− ϕ(t)

)
(x ∈ R). (2.2)

The first theorem works under the condition that there exists some Δ > 0 such
that

∀j ≥ 3 : |κj(X)| ≤ (j − 2)!

Δj−2
. (S)

Under this condition the cumulant generating function is finite on (−Δ,Δ) with
absolutely convergent Taylor expansion

ϕ(t) =
t2

2
+

∞∑
j=3

κj

j!
tj (|t| < Δ), (2.3)

where we have used κ1 = E[X] = 0 and κ2 = V(X) = 1. The Cramér rate
function admits a Taylor expansion as well (Proposition A.1), with radius of
convergence at least 0.3Δ (Proposition A.2). The expansion is of the form

I(x) =
x2

2
−

∞∑
j=3

λjx
j (|x| < 3

10
Δ). (2.4)

The series
∑∞

j=3 λj x
j−3 is called Cramér series or Cramér-Petrov series af-

ter [19, 91]. Cramér’s original article [19] was recently made accessible in elec-
tronic form, together with an English translation, by Touchette [20]. Appendix A
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collects some relevant background on the series. It is convenient to set

L(x) :=

∞∑
j=3

λjx
j (2.5)

so that I(x) = 1
2x

2−L(x). From now on Z is always a standard normal variable,
Z ∼ N (0, 1).

Theorem 2.1. Under condition (S) there exist universal constants c, C,C ′ > 0
such that for all x ∈ [0, cΔ] and some θ = θ(x) ∈ [−1, 1],

P(X ≥ x) = eL(x)
P(Z ≥ x)

(
1 + Cθ

x+ 1

Δ

)
and |L(x)| ≤ C ′x3/Δ.

The theorem is proven in Section 6. It is a special case of Theorem 2.3 below;
we have chosen to provide a separate statement as it is easier to grasp, and its
proof is a helpful warm-up for the proof of Theorem 2.3.

The next theorem asks what subsists when the cumulants satisfy the bound
in (S) only up to some order, i.e.,

∀j ∈ {3, . . . , s+ 2} : |κj(X)| ≤ (j − 2)!

Δj−2
(S∗)

for some s ∈ N. We say that X satisfies condition (S∗) if all moments E[Xj ],
j ≤ s+2 exist—hence also all cumulants κj with j ≤ s+2—and the cumulants
satisfy the required inequality. Under condition (S∗) the random variable X
need not have exponential moments and the cumulant generating function may
be infinite, therefore the definitions of ϕ(t) and I(x) are modified as follows. We
set

ϕ̃(t) =
t2

2
+

s∑
j=3

κj

j!
tj . (2.6)

For small x and t the equation ϕ̃′(t) = x reads t + O(t2) = x and it has a
solution t(x) = x+

∑∞
j=2 b̃jx

j with suitably defined coefficients b̃j . We define

Ĩ(x) := t(x)x− ϕ̃(t(x)), L̃(x) :=
x2

2
− Ĩ(x) (2.7)

and note that L̃(x) has a Taylor expansion L̃(x) =
∑∞

j=3 λ̃jx
j with radius of

convergence at least 0.3Δ (Propositions A.4, A.5). In addition, λ̃j = λj for
j ≤ s (Eq. (A.8)).

Theorem 2.2. Let X be a real-valued random variable with E[X] = 0 and
V(X) = 1. Assume that X satisfies condition (S∗) for some even s ≥ 2 and
Δ > 0 with s ≤ 2Δ2. Then for all x ∈ [0,

√
s/(3

√
e)) and some θ = θ(x) ∈

[−1, 1],

P(X ≥ x) = eL̃(x)
P(Z ≥ x)

(
1 + θf(δ, s)

x+ 1√
s

)
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with

δ =
x√

s/(3
√
e)

∈ [0, 1), f(δ, s) =
1

1− δ

(
127 + 113 s e−(1−δ)s1/4/2

)
and |L̃(x)| ≤ 1.2x3/Δ.

The theorem is proven in Section 7. It corresponds to Lemma 2.2 in [101]
and is due to Rudzkis, Saulis, and Statulevičius [99]. The constants are slightly
worse than the constants given in [101] but of a similar order of magnitude. We
are not aware of any application of the concrete formula for f(δ, s). Instead,
what matters is that f(δ, s) is bounded on [0, δ0]× N, for all δ0 < 1.

The next theorem works under a condition that allows for heavy-tailed vari-
ables. For γ > 0 and Δ > 0, consider the Statulevičius condition

∀j ≥ 3 : |κj(X)| ≤ j!1+γ

Δj−2
. (Sγ)

The relation of this condition with Weibull tails and Linnik’s condition, which
reads E[exp(δ|X|1/(1+γ))] < ∞, is clarified by Lemma 2.8 below, see [1]. Define

Δγ :=
1

6

( Δ√
18

)1/(1+2γ)

, sγ := 2
⌊1
2

(Δ2

18

)1/(1+2γ)⌋
− 2, (2.8)

mγ :=min
(⌈ 1

γ

⌉
+ 1, sγ

)
. (2.9)

Theorem 2.3. Let X be a real-valued random variable with E[X] = 0 and
V(X) = 1. Suppose that X satisfies condition (Sγ). Then there exist some
universal constant C > 0 such that for all x ∈ [0,Δγ) and some θ = θ(x) ∈
[−1, 1],

P(X ≥ x) = eL̃γ(x)P(Z ≥ x)
(
1 + θg(δ,Δγ)

x+ 1

Δγ

)
with |L̃γ(x)| ≤ x3/(1.54Δγ) and

L̃γ(x) =

{
θ( x

Δγ
)3, γ ≥ 1,∑mγ

j=3 λjx
j + θCγ(

x
Δγ

)mγ+1, γ < 1.

Here we set

g(δ,Δγ) :=
1

1− δ

(
24 + 749Δ2

γ exp
(
−(1− δ)

√
Δγ

))
,

and δ = x/Δγ .

The theorem is proven in Section 8. It corresponds to Lemma 2.3 in [101] and
is due to Rudzkis, Saulis, and Statulevičius [99]. The constants given in [101]
are 60 and 600 instead of 24 and 749. Our second constant 749 is worse but our
first constant 24 is better.
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We shall see that under the conditions of the theorem, sγ is larger or equal to
4 so that mγ = 2 for γ ≥ 1 and mγ ≥ 3 for γ < 1. Let us briefly comment on the

two bounds for L̃γ(x) in Theorem 2.3. The global bound |L̃γ(x)| ≤ x3/(1.54Δγ)

is similar to the bounds for L(x) and L̃(x) in Theorems 2.1 and 2.2. It gives
the leading order of L̃γ(x). Note, however, that it can be quite large, since
x3/Δγ can be of order up to Δ2

γ . The case distinction in Theorem 2.3 provides

a representation of L̃γ(x) that is precise in the sense that the remainder is small
when x is small compared to Δγ .

Remark. Correction terms from the Cramér series need only be taken into
account when γ < 1. This corresponds to variables with tails decaying like
exp(−c xα) with α = 1/(1 + γ) > 1/2, see Section 2.3.2 and Lemma 2.8 below.
It should be pointed out that the value α = 1/2 plays a role as well for large
deviations of i.i.d. heavy-tailed variables with Weibull tails, see Mikosch and
Nagaev [83, Proposition 3.1].

The error term in O((x + 1)/Δγ) after the exponential is known to be not
optimal for sums of i.i.d. random variables. If Xn = Sn/

√
n is a normalized

sum of i.i.d. random variables that satisfy the Statulevičius condition for some
fixed Δ, then Xn satisfies the Statulevičius condition with a n-dependent Δ(n)

proportional to
√
n (see Section 3.1), and 1/Δγ is of the order of (x+ 1)/

√
n
β

for some β < 1, which is larger than the error term O(x/
√
n) proven e.g. in

Ibragimov and Linnik [64, Eq. (13.4.4)].
The principal idea in the proof of Theorem 2.3 is to apply Theorem 2.2 for

suitably chosen s and Δs such that condition (S∗) is satisfied if condition (Sγ)
holds true. Thus, we seek s and Δs such that

j!1+γ

Δj−2
≤ (j − 2)!

Δj−2
s

(j = 3, . . . , s+ 2).

The inequality is equivalent to

(
j(j − 1)

)1+γ
(j − 2)!γ ≤

( Δ

Δs

)j−2

(j = 3, . . . , s+ 2)

and

max
k=1,...,s

(γ
k
log k! +

1 + γ

k

(
log(k + 2) + log(k + 1)

)
≤ log

Δ

Δs
. (2.10)

By Stirling’s formula, the term to be maximized behaves like

γ log
k

e
+O

(1
k
log k

)
= γ
(
1 + o(1)

)
log k (k → ∞).

For a heuristic evaluation of (2.10), let us keep the leading order term only,
then (2.10) becomes γ log s ≤ log(Δ/Δs) hence Δs = Δ/sγ . Then s ≤ 2Δ2

s

if and only if s ≤ 2(Δ2)1/(1+2γ). This suggests to pick
√
s = constΔ1/(1+2γ),

which is precisely the power of Δ appearing in Theorem 2.3, via Δγ .
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2.2. Berry-Esseen bound and concentration inequality

Theorem 2.3 is complemented by a Berry-Esseen bound and a concentration
inequality that provides statements for all of x ≥ 0—no need to restrict to
x ∈ (0,Δγ).

Theorem 2.4. Under the Statulevičius condition (Sγ), we have

sup
x∈R

∣∣P(X ≥ x)− P(Z ≥ x)
∣∣ ≤ Cγ

Δ1/(1+2γ)

for some constant Cγ that does not depend on the random variable X or on Δ.

Theorem 2.4 is proven in Section 9, it corresponds to Corollary 2.1 in [101].
The precise bound given by [101] is 18/Δγ with Δγ defined in (2.8), we have
not checked the numerical constants.

Theorem 2.5. Suppose E[X] = 0 and

|κj | ≤
(
j!

2

)1+γ
H

Δ
j−2

(2.11)

for some γ ≥ 0 and H,Δ > 0. Set α := 1/(1+ γ). Then there exists C > 0 such
that for all x ≥ 0,

P(X ≥ x) ≤ C exp
(
−1

2

x2

H + x2−α/Δ̄α

)
. (2.12)

The constant does not depend on X, H, Δ, or γ.

Theorem 2.5 is proven in Section 5, it corresponds to Lemma 2.4 in [101] and
is due to Bentkus and Rudzkis [9]. As noted by Kallabis and Neumann [68],
the statement of Lemma 2.4 in [101] contains a typo. Bentkus and Rudzkis give
the constant C = 1, we give a shorter proof but provide no concrete numerical
bound on C.

The exponent in (2.12) can be expressed in terms of the harmonic mean
Harm(a, b) = 2(a−1 + b−1)−1 as

x2

H + x2−α/Δ̄α
=
(H
x2

+
1

(xΔ̄)α

)−1

=
1

2
Harm

(x2

H
, (xΔ̄)α

)
.

Thus Theorem 2.5 provides an upper bound that smoothly interpolates between
Gaussian tails exp(−x2/(2H)) and stretched exponential tails exp(−(xΔ̄)α/2).

2.3. Two examples

Before we turn to the proofs, we provide two examples that illustrate the theo-
rems and explain the role of Δ and Δ1/(1+2γ).
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2.3.1. A Gamma-distributed random variable

Pick Δ > 0 and let Y be a Gamma random variable with parameters β = Δ
and α = Δ2. Thus the random variable Y has probability density function
Γ(α)−11(0,∞)(x)β

αxα−1e−βx, moment generating function (1−t/β)−α, variance
α/β2 = 1 and expected value α/β = 1. Set X := Y −Δ. Then X has pdf

ρΔ(x) =
ΔΔ2

Γ(Δ2)
(x+Δ)Δ

2−1e−Δ(x+Δ)1[−Δ,∞)(x) (2.13)

and cumulant generating function, for |t| < Δ, given by

ϕ(t) = logE
[
etX
]
= −Δ2 log

(
1− t

Δ

)
− tΔ =

∞∑
j=2

1

j

tj

Δj−2
,

from which we read off the cumulants

κj =
(j − 1)!

Δj−2
(j ≥ 2).

The explicit formula for the probability density function allows us to check that
the normal approximation forX is good when Δ is large and x is small compared
to Δ.

Proposition 2.6. As Δ → ∞ and x/Δ → 0, the probability density func-
tion (2.13) satisfies

ρΔ(x) =
exp(−1

2x
2[1 +O( x

Δ )])√
2π

(
1 +O

(
x+1
Δ

))
.

Proof. We rewrite

ρΔ(x) =
Δ2Δ2−1

Γ(Δ2)
(1 + x/Δ)Δ

2−1e−Δ2(1+x/Δ)1[−1,∞)(x/Δ)

=
Δ2Δ2−1e−Δ2

Γ(Δ2)

1

1 + x/Δ
eΔ

2[log(1+x/Δ)−x/Δ]1[−1,∞)(x/Δ). (2.14)

Using Γ(x+ 1) = xΓ(x) and Stirling’s approximation, we have

Γ(Δ2) = Δ−2Γ(Δ2 + 1) =
(
1 +O

(
1
Δ )
)
Δ−2

√
2πΔ2

(
Δ2

e

)Δ2

=
(
1 +O

(
1
Δ )
)√

2πΔ2Δ2−1e−Δ2

. (2.15)

Combining this with the Taylor expansion log(1+ u) = u−u2/2+O(u3) of the
logarithm, we deduce

ρΔ(x) =
(
1 +O

(
1
Δ

))(
1 +O

(
x
Δ

)) 1√
2π

exp
(
−1

2x
2
(
1 +O( x

Δ )
))

.
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The tilted normal approximation (compare Bahadur-Rao [5], [22, Theorem
3.7.4] or the proof of the lower bound in Cramér large deviation principle [22,
Chapter 2.2]) consists in the following. Let I(x) := supt∈R(tx − ϕ(t)) be the
rate function in the Cramér large deviation principle. An explicit computation
yields

I(x) = Δx−Δ2 log(1 + x/Δ) =
1

2
x2 +

∞∑
j=3

(−1)j

jΔj−2
xj ,

from which we read off the Cramér-Petrov series

L(x) = −
∞∑
j=3

(−1)j

jΔj−2
xj (|x| < Δ).

For later purposes we extend the definition of L(x) to all of R by putting L(x) =
I(x)− x2/2. Notice that as x/Δ → 0,

L(x) = x2 O(x/Δ).

Given x ≥ 0, let h ≥ 0 be the solution of ϕ′(h) = x and let X̂h be a random

variable with distribution P(X̂h ≤ y) = e−ϕ(h)
E[ehX1{X≤y}]. The variable X̂h

has expected value ϕ′(h) = x, variance ϕ′′(h), and probability density function

e−ϕ(h)ehyρΔ(y). The approximation L (X̂h) ≈ N (x, ϕ′′(h)) suggests

e−ϕ(h)ehyρΔ(y) = ρX̂h
(y) ≈ 1√

2πϕ′′(h)
e−(y−x)2/[2ϕ′′(h)].

Remember I(x) = hx− ϕ(h) and I ′′(x) = 1/ϕ′′(h), so

ρΔ(y) ≈
√

I ′′(x)e−I(x) × 1√
2π

e−(y−x)2/[2ϕ′′(h)]−h(y−x).

Proposition 2.7. As Δ → ∞, we have for all x ≥ −Δ

ρΔ(x) =
(
1 +O

( 1

Δ

))√I ′′(x)

2π
e−I(x) =

(
1 +O

( 1

Δ

))exp(L(x))
1 + x/Δ

exp(−x2/2)√
2π

with an error term O(1/Δ) uniform in x.

Notice that this approximation is much more precise than the direct normal
approximation.

Proof. An explicit computation yields

I ′(x) =
x

1 + x/Δ
, I ′′(x) =

1

(1 + x/Δ)2
.

Hence for all x ≥ −Δ

1√
2π

√
I ′′(x)e−I(x) =

1√
2π

1

(1 + x/Δ)
e−Δx(1 + x/Δ)Δ

2
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=
1√
2π

(1 + x/Δ)Δ
2−1e−Δx.

A quick look at (2.14) reveals that this expression differs from the density

ρΔ(x) only through the prefactor, 1/
√
2π vs. Δ2Δ2−1e−Δ2

/Γ(Δ2). The ratio
between these two prefactors is independent of x and behaves like 1 + O(1/Δ)
by Stirling’s approximation (2.15).

2.3.2. Weibull tails

Fix γ > 0. Set α := 1/(1+γ) and consider a non-negative random variable with
survival function

P(Y ≥ y) = exp(−yα) (y ≥ 0).

The moments of Y are given by

E[Y m] = Γ
(
1 + m

α

)
.

Notice that as m → ∞,

E[Y m] = (1 + o(1))
√

2πm/α
(m
αe

)m/α

=
m!1+γ

αm/α
eo(m), (2.16)

where we have used Stirling’s approximation and 1/α = 1+γ. Let Z ∼ N (0, 1),
independent of Y . For small ε > 0, set

Xε := Z + εY.

Then the expected value με = E[Xε] and the variance σ2
ε = V(Xε) satisfy

με = O(ε) and V[Xε] = 1 + O(ε2). The centered variable X̂ε = (Xε − με)/σε

has cumulants

κj(X̂ε) =
( ε

σε

)j
κj(Y ) (j ≥ 3).

In view of (2.16) and Lemma 2.8, it seems plausible that the centered variable

X̂ε satisfies condition (Sγ) with ε-dependent Δ = Δ(ε) of the order of

Δ(ε) ≈ σε

ε
=

1

ε
(1 +O(ε2)).

We would like to understand the behavior of the tails P(Xε ≥ xε) = P(X̂ε ≥
(xε − με)/σε) as xε → ∞ and ε → 0. Theorem 2.3 suggests that the normal
approximation P(Xε ≥ xε) ≈ P(Z ≥ xε) should be good as long as xε is small
compared to

Δ(ε)1/(1+2γ) ≈ ε−1/(1+2γ). (2.17)

We are not going to provide a precise statement on the normal approximation.
Instead we would like to emphasize two key facts. First, the critical scale (2.17)
is explained with a very simple heuristics. Second, the normal approximation
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cannot apply beyond that scale. As a consequence, the scale Δ1/(1+2γ) in The-
orem 2.3 is not due to technical restrictions but is in fact sharp.

For the heuristic derivation of the critical scale (2.17), notice

P(Xε ≥ xε) ≥ P(Z ≥ 0, εY ≥ xε) =
1

2
exp
(
−
(xε

ε

)α)
(2.18)

but also, since Y is non-negative,

P(Xε ≥ xε) ≥ P(Z ≥ xε) = (1 + o(1))
exp(−x2

ε/2)

xε

√
2π

,

where we have used the well-known asymptotic behavior of Gaussian tails, see
Eq. (4.16) below. The two lower bounds correspond to two different ways of
realizing the unlikely event that Xε = Z + εY ≥ xε—either Z stays small but
εY is very large, or εY stays small but Z is large. Which of the two effects
dominates the other? The answer depends on how large xε is. In view of the
equivalence

exp
(
−x2

ε

2

)
≥ exp

(
−
(xε

ε

)α)
⇔ xε ≤

(21/α
ε

)α/(2−α)

we should expect the probability P(Xε ≥ xε) to be similar to exp(−x2
ε/2) when

xε � ε−α/(2−α) and similar to exp(−(xε/ε)
α) when xε � ε−α/(2−α). Because

of α = 1/(1 + γ), we have

ε−α/(2−α) = ε−1/(1+2γ),

which is exactly the right-hand side of (2.17). Thus we have recovered, heuris-
tically, the critical scale from Theorem 2.3.

In addition, for xε � ε−α/(2−α), the lower bound (2.18) yields the rigorous
asymptotic lower bound

P(Xε ≥ xε) ≥
1

2
exp
(
−
(xε

ε

)α)
� P(Z ≥ xε).

Hence, the normal approximation cannot be good beyond the scale (2.17).

2.4. On the Cramér, Linnik, and Statulevičius conditions

For γ > 0, the Statulevičius condition (Sγ) seems technical and not immedi-
ately accessible to probabilistic intuition. For γ = 0, the situation is simpler:
If |κj | ≤ j!/Δj−2 for some Δ > 0 and all j ≥ 3, then

∑
j≥1 κjt

j/j! is abso-
lutely convergent on (−Δ,Δ) and E[exp(t|X|)] < ∞ for all t ∈ (−Δ,Δ). Thus
Cramér’s condition is satisfied and the distribution of X has exponentially de-
caying tails.

The question arises if there is a similar intuition for the condition (Sγ) when
γ > 0. The answer is yes, if we replace Cramér’s condition by Linnik’s condition,
which reads

E
[
exp(δ|X|α)

]
< ∞
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for some α ∈ (0, 1) and δ > 0. The correct choice turns out to be α = 1/(1+ γ),
which should not surprise us after Section 2.3.2. In addition, conditions on
cumulants may be replaced by conditions on moments.

Lemma 2.8. Let X be a random variable with E[X] = 0, V(X) = 1, and
E[|X|j ] < ∞ for all j ≥ 3. Fix γ ≥ 0. Then, the following three statements are
equivalent:

(i) X satisfies condition (Sγ).
(ii) There exists H ≥ 1 such that the moments of X satisfy∣∣E[Xj ]

∣∣ ≤ j!1+γHj−2 (j ≥ 3). (Mγ)

(iii) There exists δ > 0 such that E
[
exp
(
δ|X|1/(1+γ)

)]
< ∞.

Similar relations, with explicit control on constants, are proven in [101, Chap-
ter 3.1]. Condition (ii), for γ = 0, is a variant of the condition |E[Xj ]| ≤
1
2Cj!Hj−2, sometimes called Bernstein condition [101] because it allows for
a Bernstein inequality with unbounded random variables [64, Chapter 7.5]. Lin-
nik’s condition is discussed in depth in the context of “monomial zones of local
normal attraction” in [64, Chapter 9]. The name Linnik condition is not used
in the book [64], it is used for example by Saulis and Statulevičius [101] or
Amosova [2].

Large deviation theorems for sums of i.i.d. variables under conditions of the
type E exp[h(X)] < ∞ are available as well, see Chapter 11 in Ibragimov and
Linnik [64] and Nagaev [86] for sums of i.i.d. variables and Heinrich [54, Section
4] for sums of Markov chains. However to the best of our knowledge there is no
analogue of Lemma 2.8 for such more general conditions.

Proof. We start with the equivalence of (ii) and (iii).
“(ii) ⇒ (iii)” First we note that condition (Mγ) implies a similar condition

for the moments of |X|. For even powers this is immediate. For odd powers, we
use 2j + 1 = j + (j + 1), the Cauchy-Schwarz inequality, and condition (Mγ).
This gives

E
[
|X|2j+1

]
≤
(
(2j)!1+γH2j−2 (2j + 2)!1+γH2j

)1/2
=
(2j + 2

2j + 1

)(1+γ)/2

(2j + 1)!1+γH2j−1.

The ratio (2j + 2)/(2j + 1) is not smaller than 1 but is bounded by 4/3 (for
j ≥ 1). Therefore, choosing H ′ ≥ H large enough, we get

E
[
|X|2j+1

]
≤ (2j + 1)!1+γ(H ′)2j+1−2.

We conclude with an argument by Mason and Zhou [78, Appendix B]. Set
α := 1/(1+γ). The function x �→ xα is concave on R+, therefore E[Y

α] ≤ E[Y ]α

for every non-negative random variable Y . In particular, for all j ≥ 3,

E
[
|X|jα

]
≤
(
E
[
|X|j

])α
≤ j!(1+γ)α(H ′)(j−2)α = j!(H ′)(j−2)α,
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which gives

E

[
exp(δ|X|α)

]
= 1 +

∞∑
j=1

δj

j!
E
[
|X|jα

]
< ∞

for δ < 1/H ′.
The implication “(iii) ⇒ (ii)” is proven by Amosova [2, Lemma 3], see also

Mason and Zhou [78, Appendix B]. We sketch the argument for the reader’s
convenience, following [78]. Because of exp(x) ≥ xk/k! for all x ≥ 0, we have

E
[
|X|kα

]
≤ k!

δk
E
[
exp(δ|X|α)

]
=:

k!

δk
C(δ).

Given m ∈ N, define k = �m/α� = �m(1 + γ)�. Thus β := m/(kα) ≤ 1 and
y �→ yβ is concave. Therefore

E
[
|X|m

]
≤
(
E
[
|X|kα

])m/(kα)

.

Because of yβ ≤ max(1, y) for all y ≥ 0 and β ∈ (0, 1), we conclude

E
[
|X|m

]
≤ max

(
1,

k!

δk
C(δ)

)
.

The proof is completed by comparing k! with m!1+γ , aided by Stirling’s formula,
see [78, Appendix B] for details.

Next we address the equivalence of moment and cumulant conditions.
“(ii) ⇒ (i)” We follow Rudzkis, Saulis, and Statulevičius [99, Lemma 2]. Set

mj := E
[
Xj ]. The moment-cumulant relation yields

κj

j!
= [zj ] log

(
1 +

j∑
k=1

mk

k!
zk
)

meaning that κj/j! is equal to the coefficient of zj in the power series obtained
by expanding the logarithm on the right-hand side. Let r > 0 small enough so
that

j∑
k=1

|mk|
k!

rk < 1.

Then z �→ log
(
1+
∑j

k=1
1
k!mkz

k
)
is analytic in |z| < r and continuous in |z| ≤ r.

By Cauchy’s integral formula, the coefficient can be represented by a contour
integral over the contour |z| = r and we find∣∣∣κj

j!

∣∣∣ = ∣∣∣∣∣ 1

2πi

∮
log
(
1 +

j∑
k=1

mk

k!
zk
) dz

zj+1

∣∣∣∣∣ ≤ r−j

∣∣∣∣∣log(1−
j∑

k=1

|mk|
k!

rk
)∣∣∣∣∣,

where we have used | log(1 + z)| ≤ − log(1 − |z|) for z ∈ C with |z| < 1. For
δ ∈ (0, 1) small enough we check that the choice

r :=
δ

j!γ/jH(j−2)/j
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is admissible. Notice r−j = δ−jj!γHj−2 resp. rk = δkH−k(j−2)/j(j!)−γk/j for
k ≤ j. We have

j∑
k=1

|mk|
k!

rk ≤ 1

2
r2 +

j∑
k=3

k!γHk−2rk =
1

2
r2 +

j∑
k=3

k!γ

j!γk/j
Hk−2

Hk(j−2)/j
δk.

For k ≤ j we have k!j ≤ j!k (this can be proven by induction over j ≥ k at fixed
k). In addition j(k − 2) ≤ k(j − 2), hence Hk−2 ≤ Hk(j−2)/j and

j∑
k=1

|mk|
k!

rk ≤ 1

2
δ2 +

j∑
k=3

δk ≤ 1

2
δ2 +

δ3

1− δ
=: Cδ.

Clearly Cδ < 1 for small δ. Setting C ′
δ := − 1

δ2 log(1− Cδ) we get

|κj | ≤ C ′
δ j!

1+γ
(1
δ
H
)j−2

.

Set Δ := δ
H min(1, 1

C′
δ
), then |κj | ≤ j!1+γ/Δj−2 for all j ≥ 3.

“(i) ⇒ (ii)” Suppose that X satisfies (Sγ). From the moment-cumulant rela-
tions, we get

mj

j!
= [zj ] exp

( j∑
�=2

κ�

�!
z�
)
,

meaning that mj is equal to the coefficient of zj on the right-hand side. The
Cauchy inequality yields

|mj |
j!

≤ sup
r>0

1

rj
exp
( j∑
�=2

|κ�|
�!

r�
)
.

From here on the proof is similar to the proof of the implication (ii) ⇒ (i) and
therefore omitted.

3. Related techniques and applications

3.1. Moderate deviations vs. heavy-tailed behavior

Let (Xn)n∈N be a sequence of normalized real-valued random variables such that
each Xn satisfies condition (Sγ) for some n-dependent Δn > 0. Further assume
that Δn → ∞ as n → ∞. Let us evaluate P(Xn ≥ xn) for sequences xn with

xn → ∞ and xn = o(Δ
1/(1+2γ)
n ). Theorem 2.3, combined with the Gaussian tail

estimate (4.16), yields

P(Xn ≥ xn) =
(
1 + o(1)

) 1√
2π xn

exp

(
−x2

n

2
+O

( x3
n

Δn

))
.
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In general the correction term O(x3
n/Δn) from the Cramér-Petrov series does

not go to zero, however for xn = o(Δn) it is negligible compared to x2
n/2. Hence,

if we are only interested in a rough asymptotics on the exponential scale, we
may drop it and write

P(Xn ≥ xn) = exp
(
−x2

n

2

(
1 + o(1)

))
.

This asymptotic statement can be lifted to a full moderate deviation principle
[22, Chapter 3.7], where probabilities of more general sets are examined.

Theorem 3.1. [28, Theorem 1.1] Let (Xn)n∈N be a sequence of random vari-
ables with E[Xn] = 0, V(Xn) = 1 that satisfy condition (Sγ) with n-dependent
Δn but fixed γ ≥ 0. Suppose that Δn → ∞. Then, for every sequence an → ∞
with

an = o(Δ1/(1+2γ)
n ),

the sequence (Xn/an)n∈N satisfies the moderate deviation principle with speed
a2n and rate function I(x) = x2/2.

Thus for every Borel set A ⊂ R, the lower and upper bounds

lim inf
n→∞

1

a2n
logP

(Xn

an
∈ A
)
≥ − inf

x∈int(A)

x2

2

lim sup
n→∞

1

a2n
logP

(Xn

an
∈ A
)
≤ − inf

x∈cl(A)

x2

2

hold, where the infimum and supremum are taken over the interior respectively
closure of A.

The scale Δ
1/(1+2γ)
n is not merely technical. For sums of i.i.d. random vari-

ables that satisfy Cramér’s condition or have Weibull tails, the critical scale

Δ
1/(1+2γ)
n corresponds to the scale at which the tail behavior switches to Cramér

large deviations or heavy-tailed behavior. Precisely, let Yi, i ∈ N, be i.i.d. ran-
dom variables with E[Yi] = 0, V(Yi) = 1. Set

Sn := Y1 + · · ·+ Yn, Xn =
1√
n
Sn.

If E[exp(tYi)] < ∞ for |t| < δ, then Xn satisfies condition (Sγ) with γ = 0 and
Δn = cδ

√
n for some suitable constant c > 0. Furthermore by the Cramér LDP,

for x ≥ 0,

lim inf
n→∞

1

Δ2
n

logP
(Xn

Δn
≥ x
)
= lim inf

n→∞
1

(cδ)2
1

n
logP(

Sn

n
≥ xcδ)

≥ −I(cδx)

(cδ)2
, I(x) = sup

t∈R

(
tx− logE[etY1 ]

)
,

similarly for the upper bound. Thus (Xn/Δn)n∈N satisfies a large deviation
principle with speed Δ2

n, however the rate function I(x) is in general different
from x2/2.
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If Yi is integer-valued and P(Yi = k) = (1 + o(1))c exp(−kα) with α =
1/(1 + γ) ∈ (0, 1), then on the one hand, by Lemma 2.8 applied to the Yi’s and
κj(Xn) = n−j/2

∑n
i=1 κj(Yi), the variable Xn satisfies condition (Sγ) with Δn

of the order of
√
n, and on the other hand, for sn � n1/(2−α)

P(Sn = sn) = nc exp(−sαn + o(sαn)
)

as n → ∞, see Nagaev [85]. In the previous asymptotics, the unlikely event that
Sn = sn is best realized by making one out of the n summands very large—this
is the typical heavy-tailed behavior [33], different from the collective behavior
underpinning large and moderate deviations. The scale s∗n = n1/(2−α) naturally
appears when solving for sαn = s2n/n. As a consequence, for

an � 1√
n
n1/(2−α) = n1/[2(1+2γ)] = constΔ1/(1+2γ)

n ,

(meaning an/Δ
1/(1+2γ)
n → ∞) and x > 0, we have

1

a2n
logP

(Xn

an
≥ x
)
=

1

a2n
logP(Sn ≥

√
nanx) = (1 + o(1))

1

a2n

(√
nanx

)α → 0

which is again different from −x2/2.
A more involved example illustrating the role of the critical scale for function-

als in a fixed Wiener chaos is given by Schulte and Thäle [102, Proposition 3].
More generally, the domain of validity of the moderate deviation principle

should be related to the small steps sequence for subexponential random vari-
ables studied by Denisov, Dieker and Shneer [23], in turn related to the sequence
Λ(n) in Ibragimov and Linnik [64, Chapter 11] and in Nagaev [86] (N∗∗

n ) in [34,
Lemma 2.5]. The small steps sequence in general is smaller than the bound-
ary of the big-jump domain. The latter corresponds to sequences bn for which
P(Sn = bn) ∼ nP(Y1 = bn), i.e. the dominant effect is having one large sum-
mand.

The connection with heavy-tailed variables suggests that different bounds on
cumulants—reflecting the behavior of other heavy-tailed laws, e.g. log-normal—
might lead to generalizations of Theorem 3.1. This corresponds to a generaliza-
tion of Linnik’s condition (see Section 2.4) of the form E[exp(h(X))] < ∞ with
functions h(x) different from cxα. Such generalized Linnik conditions are treated
by Ibragimov and Linnik in a chapter on “narrow zones of normal attraction”
[64, Chapter 11], the class of functions h and the domains of attraction were
further improved by Nagaev [86]. However we are not aware of a corresponding
generalized Statulevičius condition.

3.2. Mod-phi convergence

Let (Xn)n∈N be a sequence of normalized real-valued random variables such
that each Xn satisfies condition (Sγ) for some n-dependent Δn > 0 as in the
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previous subsection. Then we may define a function Rn on the axis of purely
imaginary numbers by

E
[
eitXn

]
= E
[
eitZ
]
Rn(it). (3.1)

If γ = 0, then for |t| < Δn and some θ = θn(t) ∈ [−1, 1],

Rn(it) = exp
(κ3(Xn)Δn

3!

(it)3

Δn
+ θΔ2

n

(t/Δn)
4

1− |t|/Δn

)
.

If κ3(Xn)Δn converges to some constant c3 ∈ R, then it is natural to rescale

variables as t = Δ
1/3
n s. In view of Δ2

n(Δ
1/3
n /Δn)

4 = Δ
2−8/3
n → 0 we obtain

lim
n→∞

Rn

(
iΔ1/3

n s
)
= exp

(c3
6
(is)3

)
uniformly on compact sets. Let us define η(z) := z2/2, ψ(z) := exp(c3z

3/6),

and Yn := Δ
1/3
n Xn, then

lim
n→∞

exp
(
−Δ2/3

n η(is)
)
E
[
eisYn

]
= ψ(is) (3.2)

uniformly on compact sets. The convergence (3.2) is a key ingredient to the
notion of mod-phi convergence, here mod-Gaussian convergence of the sequence

(Yn)n∈N with speed Δ
2/3
n and limiting function ψ(z). Different full definitions of

mod-phi convergence, given functions η, ψ, and a speed sequence, impose slightly
different additional conditions [66, 21, 39]. For example, one may or may not
impose that the convergence (3.2) extends from the purely imaginary axis to
a complex strip (which would require γ = 0 in the Statulevičius condition),
that η(z) is the Lévy exponent of some infinitely divisible law, or that ψ(z) is
non-zero on a complex strip.

Mod-Gaussian convergence was introduced by Jacod, Kowalski, and Nikegh-
bali [66]. The original motivation was in random matrix theory and analytic
number theory. Concretely, a result by Keating and Snaith [69] as summarized
in [66] says that the determinant ZN of a random matrix in U(N), distributed
according to the uniform measure (Haar measure) on U(N), satisfies for all
λ ∈ C with Reλ > −1,

lim
N→∞

1

Nλ2 E
[
|ZN |2λ

]
=

(G(1 + λ))2

G(1 + 2λ)
, (3.3)

withG some special function. Eq. (3.3) is clearly in the spirit of (3.2)—set λ = is,
YN = log |ZN |2, and make adequate choices of the speed and limiting function.
Subsequent developments include mod-Poisson convergence for random combi-
natorial structures [6], random vectors, proving mod-Gaussian convergence with
dependency graphs, and a systematic study of asymptotic statements on prob-
abilities when mod-phi convergence holds true, see the monograph [39]. The
asymptotic bounds and their proofs share some similarities with the bounds on
which we focus in this survey, see the discussion [39, Section 5.3].
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3.3. Analytic combinatorics. Singularity analysis

Discrete probability and analytic combinatorics [43] share a common complex-
analytic toolbox. It is often of advantage to work with generating functions
G(z) =

∑∞
n=0 gnz

n. In discrete probability, the coefficient gn represent a prob-
ability measure on N0. In analytic combinatorics, the coefficients are instead
related to counting problems, e.g. counting the number of trees on n vertices.
When the generating function is well-understood, probabilities or cardinalities
can be recovered by complex contour integrals, using Cauchy’s formula. These
formulas are similar to inversion formulas that express a probability density
function or cumulative distribution function in terms of the characteristic func-
tion (Fourier transform).

Understanding probabilities then boils down to understanding parameter-
dependent contour integrals, for which a plethora of methods are available,
for example saddle-point and steepest descent methods, and singularity analy-
sis [43]. Singularity refers to the singularities of the function G(z) in the complex
plane, among which the dominant singularity z = R, the radius of convergence
of G(z). Transfer theorems go from asymptotic expansions of G(z) near its dom-
inant singularity to asymptotic behavior of the coefficients as n → ∞, a process
related to Tauberian theorems for inverse Laplace transforms [43, Chapter VI].

Cumulants fit in very naturally: for an integer-valued, heavy-tailed random
variable X, the dominant singularity of the probability generating function
G(z) = E[zX ] is at z = 1, and

G(et) = exp
(∑
j≥1

κj

j!
tj
)

(z = et → 1, t → 0).

However, even though singularity analysis deals with Taylor expansions with
zero radius of convergence, Weibull-like variables do not belong to the class
amenable to singularity analysis [43, Chapter VI.6] and therefore the methods
described in the book by Flajolet and Sedgewick [43] are not directly applicable
(see nevertheless [34] and the references therein).

The methods extend to multivariate generating functions [90] and to se-
quences of generating functions. The latter enter the stage naturally when work-
ing with sequences of random variables, and allow for a derivation of limit laws in
random combinatorial structures. The simplest setting is when generating func-
tions can be approximated by powers of simpler generating functions (think of
independent random variables!), leading to the framework of quasi-powers, see
Hwang [62] and [43, Chapter IX.5]. The relation between Hwang’s quasi-powers
and mod-phi convergence is commented upon in [39, Remark 1.2].

3.4. Dependency graphs

Let Yα, α ∈ I, be real-valued random variables indexed by some set I of cardi-
nality N ∈ N. The mixed cumulants of the Yα’s are given by an inverse Möbius
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transform of mixed moments as

κ(Yα1 , . . . , Yαr ) =
∑

{B1,...,Bm}
(−1)m−1(m− 1)!

m∏
�=1

E

[∏
i∈B�

Yα�

]
(3.4)

with summation over set partitions {B1, . . . , Bm} of {1, . . . , r} of variable num-
ber of blocks m ∈ {1, . . . , r}. A classical reference for (3.4) is Leonov and
Shiryaev [76], an early mention of Möbius inversion is found in Schützenberger
[103]; a detailed historical discussion is given by Speicher1. Mixed cumulants of
independent variables vanish. The cumulants of X :=

∑
α∈I Yα are

κr(X) =
∑

(α1,...,αr)∈Ir

κ(Yα1 , . . . , Yαr ).

Now assume that the Yα’s have a dependency structure encoded by a dependency
graph G. The latter is a graph G = (I, E(G)) with vertex set I with the following
property: if I1 and I2 are disjoint subsets of I not linked by an edge {α, β} in G,
then Yα, α ∈ I1 and Yβ , β ∈ I2 are independent. Féray, Méliot, and Nikeghbali
prove a beautiful tree bound for cumulants.

Lemma 3.2. [39, Section 9.3] Suppose that G = (I, E(G)) is a dependency
graph for Yα, α ∈ I. Assume in addition that |Yα| ≤ A almost surely. For
r ∈ N, let Tr be the set of tree graphs with vertex set {1, . . . , r}. Then for all
α1, . . . , αr ∈ I,∣∣κ(Yα1 , . . . , Yαr )

∣∣ ≤ 2r−1Ar
∑
T∈Tr

∏
{i,j}∈E(T )

(
1{αi=αj} + 1{αi 	=αj , {αi,αj}∈E(G)}

)
.

(3.5)

The sum over trees is equal to the number of spanning trees of the graph H
with vertex set {1, . . . , r} for which {i, j} is an edge if and only if either αi = αj

or αi 	= αj and {αi, αj} is an edge of the dependency graph.
When the dependency graph has maximum degree D, it is easily checked that

for each fixed tree T ∈ Tr and all α1 ∈ I,∑
α2,...,αr∈I

∏
{i,j}∈E(T )

(
1{αi=αj} + 1{αi 	=αj , {αi,αj}∈E(G)}

)
≤ (D + 1)r−1.

Summing over α1 gives an additional factor N = #I. Combining with Cayley’s
formula #Tr = rr−2, one finds∣∣κr(X)

∣∣ ≤ rr−2 2NA
(
2A(D + 1)

)r−1
, (3.6)

see [39, Theorem 9.8]. Stirling’s formula implies that the sum X =
∑

α Yα,
suitably normalized, satisfies the Statulevičius condition (Sγ) with γ = 0.

1Blog entry from 2 July 2020:
https://rolandspeicher.com/tag/moment-cumulant-formula/. Last consulted on 1 February
2021.

https://rolandspeicher.com/tag/moment-cumulant-formula/
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Applications of the bound (3.6) are found in [39] and [28]. We make two addi-
tional remarks. The first remark concerns the appearance of trees. Tree bounds
as in Lemma 3.2—with functions u(α, β) ≥ 0 rather than indicators that {α, β}
is in some dependency graph—come up naturally in random fields and statis-
tical mechanics, see for instance Duneau, Iagolnitzer, and Souillard [30]. The
existence of tree bounds is sometimes called strong mixing. Tree bounds feature
prominently in the framework of complete analyticity for Gibbs measures, see
condition IIb in Dobrushin and Shlosman [25]. The bound (3.6) extends to such
soft tree bounds because∑

α1,...,αr∈I

∑
T∈Tr

∏
{i,j}∈E(Tr)

u(αi, αj) ≤ Nrr−2
(
max
α∈I

∑
β∈I

u(α, β)
)r−1

.

Similar considerations appear with weighted dependency graphs introduced by
Féray [37] and in particular uniform weighted dependency graphs [40, Definition
43]. Weighted dependency graphs have been applied, for example, to the Ising
model [29], and to many other examples (not covered by statistical mechanics)
[37].

Our second remark is of a speculative nature: Lemma 3.2, and its proof in [39]
is intriguing because of many similarities with the theory of cluster expansions.
In fact the proof of Lemma 3.2 brings up, for a connected graph H, the quantity∑

G⊂H(−1)#E(G)−1 (summation over spanning subgraphs) [39, Lemma 9.12].
This object is centerstage in the theory of cluster expansions and bounding it
by trees is fairly standard, see Scott and Sokal [104] and the references therein.
Connections between cluster expansions, dependency graphs, and combinatorics
have been studied intensely in the context of the Lovász local lemma [104]. The
combinatorial proofs by Féray, Méliot, and Nikeghbali open up the intriguing
perspective of yet another fruitful connection between cluster expansions and
(weighted) dependency graphs.

4. Toolbox

Here we collect a few general lemmas that are of independent interest.

4.1. Characteristic functions, Kolmogorov distance, and smoothing
inequality

One key ingredient in the proof of Theorem 2.2 is a bound on the Kolmogorov
distance of two measures in terms of an integral involving the characteristic
functions. Estimates of this type are fairly classical and enter proofs of the
Berry-Esseen inequality following Berry’s strategy [10], see for example [35,
Chapter XVI], [92, Chapter 5.1] and the survey on smoothing inequalities by
Bobkov [12]. For asymptotic expansions, e.g. Edgeworth expansions that capture
correction terms in normal approximations, it is customary to deal not only with
probability measures but also with signed measures whose density is a Gaussian
multiplied by a polynomial [35, Chapter XVI.4].



The method of cumulants for the normal approximation 213

If μ is a finite signed measure on R, write μ = μ+ − μ− for the Jordan
decomposition of μ. The cumulative distribution function is Fμ(x) = μ((−∞, x])
and the characteristic function is χμ(t) =

∫
R
exp(itx)μ(dx).

Lemma 4.1. Let μ and ν be two finite signed measures on R with total mass
1. Let Y be an auxiliary continuous random variable whose probability density
function ρY is even, i.e., ρY (y) = ρY (−y) for all y ∈ R. Assume that μ has a
Radon-Nikodym derivative with respect to Lebesgue measure bounded in absolute
value by q > 0, and that the negative part of ν, if non-zero, satisfies ν−(R) ≤ η.
Then

sup
x∈R

|Fμ(x)− Fν(x)|

≤ 1

1− 2P(|Y | ≥ y0)

([
εqy0+η

]
P(|Y | ≤ y0)+

1

2π

∫ ∞

−∞

∣∣χεY (t)
∣∣ ∣∣χμ(t)−χν(t)

∣∣dt
|t|
)
,

for all ε ≥ 0 and every y0 > 0 with P(|Y | ≥ y0) <
1
2 .

Remark. If ν is a probability measure, i.e., ν− = 0 and η = 0, then Lemma 4.1
is due to Zolotarev [112] as cited in [101, Lemma 2.5]. Our extension to signed
measures ν is needed to fix an erroneous application of Zolotarev’s lemma to
the normal law μ ∼ N (0, 1) and a signed measure ν that is not necessarily
absolutely continuous. Another extension to signed measures is found in [113,
Theorem 2], under the condition that the atoms of the signed measures form a
discrete subset of R.

Lemma 4.1 is applied to a normal law μ = N (0, 1)—thus q = 1/
√
2π—

and the random variable Y with probability density function and characteristic
function given by

ρY (y) =
1− cos y

πy2
, χY (t) = (1− |t|)1[−1,1](t). (4.1)

The choice ρY of smoothing density was already made by Berry [10]. Write
ε = 1/T , then the integral error term becomes

1

2π

∫ ∞

−∞

∣∣χεY (t)
∣∣ ∣∣χμ(t)−χν(t)

∣∣dt
|t| =

1

2π

∫ T

−T

(
1− |t|

T

)
|χX(t)−χZ(t)|

dt

|t| . (4.2)

In the proof of Theorem 2.2 we choose T = 1/ε of the order of
√
s, see Section 7.6.

We follow [101] and choose y0 = 3.55. A numerical evaluation yields P(|Y | ≤
y0) ≈ 0.819717 and

C1 :=
y0P(|Y | ≤ y0)

1− 2P(|Y | ≥ y0)
� 4.5509, C2 :=

1

1− 2P(|Y | ≥ y0)
� 1.5639. (4.3)

The numerical values are better than the values appearing in the smoothing
inequality in [35, Chapter XVI.3, Lemma 1]. Assume that ν is a probability
measure and write Jε for the integral term. Then

sup
x∈R

|Fμ(x)− Fν(x)| ≤
24

π
qε+ 2Jε. (4.4)
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We note 24/π � 7.34 > 4.5509 and 2 > 1.5639, hence Lemma 4.1 with y0 = 3.55
yields better constants than Lemma 1 in [35, Chapter XVI.3].

The proof of Lemma 4.1 is based on classical inversion formulas. Recall that
if the characteristic function χ of a random variable X is integrable, then the
variable has a probability density function given by

ρ(x) =
1

2π

∫ ∞

−∞
e−itxχ(t)dt

and the cumulative distribution function F is given by

F (x) = lim
a→−∞

∫ x

a

ρ(y)dy = lim
a→−∞

1

2π

∫ ∞

−∞

(∫ x

a

e−itydy
)
χ(t)dt

= lim
a→−∞

1

2π

∫ ∞

−∞

e−itx − eita

−it
χ(t)dt.

For general random variables, the previous formula for F (x) holds true in every
point x of continuity of F .

The proof of Lemma 4.1 is adapted from the proof of Theorem 2 in [113], see
also Lemma 1 in [35, Chapter XVI.3]. To help the reader grasp the probabilistic
content, we first prove the lemma when μ and ν are probability measures on R.

Proof of Lemma 4.1 when μ and ν are probability measures. Let X and Z be
two random variables with respective distributions μ and ν. We may assume
without loss of generality that X,Y, Z are defined on a common probability
space (Ω,F ,P) and that Y is independent from X and Z. We have, in every
point of continuity x of FX+εY and FZ+εY ,

FX+εY (x)− FZ+εY (x) = lim
a→−∞

1

2π

∫ ∞

−∞

e−itx − eita

−it
χY (εt)

(
χX(t)− χZ(t)

)
dt.

If
∫
R
| 1tχY (εt)(χX(t)− χZ(t))|dt = ∞, the lemma is trivial, so we only need to

treat the case where t �→ 1
tχY (εt)(χX(t) − χZ(t)) is integrable. The Riemann-

Lebesgue lemma then yields the simplified expression

FX+εY (x)− FZ+εY (x) =
1

2π

∫ ∞

−∞
e−itx χY (εt)

(
χX(t)− χZ(t)

) dt
−it

,

from which we deduce the bound

sup
x∈R

∣∣FX+εY (x)−FZ+εY (x)
∣∣ ≤ 1

2π

∫ ∞

−∞

∣∣χY (εt)
∣∣ ∣∣χX(t)−χZ(t)

∣∣dt
|t| =: Jε. (4.5)

This proves the lemma in the case ε = 0. For ε > 0, we need to bound the
Kolmogorov distance of X and Z by that of X + εY and Z + εY . The relevant
inequalities are called smoothing inequalities [35, 12]. We condition on values
of Y and distinguish cases according to |Y | ≥ y0 or |Y | ≤ y0. We start with
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|Y | ≤ y0. We wish to exploit supR |F ′
X(x)| ≤ q and the monotonicity of FZ .

Notice that, for every y′ ∈ [−y0, y0],

FZ

(
x0 + ε(y0 − y′)

)
− FX

(
x0 + ε(y0 − y′)

)
≥ FZ(x0)− FX(x0)− qε(y0 − y′),

FZ

(
x0 − ε(y0 + y′)

)
− FX

(
x0 − ε(y0 + y′)

)
≤ FZ(x0)− FX(x0) + qε(y0 + y′).

(4.6)
Because of the independence of Y from X and from Z, we can reinterpret
the inequalities as almost sure inequalities conditioned on Y = y′. The second
inequality yields

1{|Y |≤y0}E
[(

1{Z+εY≤x0−εy0} − 1{X+εY≤x0−εy0}
) ∣∣∣Y ]

≤ 1{|Y |≤y0}

(
FZ(x0)− FX(x0) + qεy0 + qεY

)
a.s.

We take expectations on both sides, use E[Y 1{|Y |≤y}] = 0 from the parity of Y ,
and deduce

P(Z + εY ≤ x0 − εy0, |Y | ≤ y0)− P(X + εY ≤ x0 − εy0, |Y | ≤ y0)

≤
(
FZ(x0)− FX(x0) + qεy0

)
P(|Y | ≤ y0).

Using the notation
D := sup

x∈R

|FZ(x)− FX(x)|.

this implies

FZ(x0)− FX(x0)

≥ P(Z + εY ≤ x0 − εy0, |Y | ≤ y0)− P(X + εY ≤ x0 − εy0, |Y | ≤ y0)

P(|Y | ≤ y0)
− qεy0

=
E

[
1{|Y |≤y0}E

[
1{Z≤x0−ε(Y+y0)} − 1{X≤x0−ε(Y+y0)} | Y

]]
P(|Y | ≤ y0)

− qεy0

≥ −
supx∈R

∣∣FX+εY (x)− FZ+εY (x)
∣∣

P(|Y | ≤ y0)
−D

P(|Y | > y0)

P(|Y | ≤ y0)
− qεy0

≥ − Jε
P(|Y | ≤ y0)

−D
P(|Y | > y0)

P(|Y | ≤ y0)
− qεy0, (4.7)

where we used (4.5) for the last estimate and in the third line, we have used the
inequality ∣∣P(Z + εY ≤ x0, |Y | > y0)− P(X + εY ≤ x0, |Y | > y0)

∣∣
=
∣∣∣E[1{|Y |>y0}E

[
1{Z≤x0−εY } − 1{X≤x0−εY } | Y

]]∣∣∣
=
∣∣∣E[1{|Y |>y0}(FZ(x0 − εY )− FX(x0 − εY )

]∣∣∣
≤ DP(|Y | > y0).
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By the same arguments the first inequality in (4.6) yields

P(Z + εY ≤ x0 + εy0, |Y | ≤ y0)− P(X + εY ≤ x0 + εy0, |Y | ≤ y0)

≥
(
FZ(x0)− FX(x0)− qεy0

)
P(|Y | ≤ y0)

and

FZ(x0)− FX(x0)

≤ P(Z + εY ≤ x0 + εy0, |Y | ≤ y0)− P(X + εY ≤ x0 + εy0, |Y | ≤ y0)

P(|Y | ≤ y0)
+ qεy0

≤ Jε
P(|Y | ≤ y0)

+D
P(|Y | > y0)

P(|Y | ≤ y0)
+ qεy0. (4.8)

With (4.7) and (4.8) we get∣∣FZ(x0)− FX(x0)| ≤
Jε

P(|Y | ≤ y0)
+D

P(|Y | > y0)

P(|Y | ≤ y0)
+ qεy0. (4.9)

Taking the sup over x0 ∈ R and solving for D gives

D ≤ qεy0P(|Y | ≤ y0) + Jε
P(|Y | ≤ y0)− P(|Y | > y0)

≤ qεy0P(|Y | ≤ y0) + Jε
1− 2P(|Y | > y0)

,

where we used P(|Y | ≤ y0) − P(|Y | > y0) = 1 − 2P(|Y | > y0) > 0 by the
assumption on y0. This concludes the proof of the lemma.

Proof of Lemma 4.1 for signed measures μ and ν. Let

D := sup
x∈R

∣∣Fμ(x)− Fν(x)
∣∣ (4.10)

and
Dε := sup

x∈R

∣∣∣ν ∗ PεY

(
(−∞, x]

)
− μ ∗ PεY

(
(−∞, x]

)∣∣∣, (4.11)

where PεY is the law of εY and μ∗PεY the convolution of μ and PεY . Arguments
similar to the proof of Eq. (4.5) yield

Dε ≤
1

2π

∫ ∞

−∞

∣∣χY (εt)
∣∣ ∣∣χμ(t)− χν(t)

∣∣dt
|t| . (4.12)

It remains to bound D in terms of Dε. For signed measures the cumulative
distribution function is no longer monotone increasing however

Fν(x0 + u)− Fν(x0) = ν((x0, x0 + u]) ≥ −ν−(R) = −η

for all x0 ∈ R and u ≥ 0. Therefore (4.6) becomes

Fν

(
x0+ε(y0 − y′)

)
− Fμ

(
x0+ε(y0 − y′)

)
≥ Fν(x0)− Fμ(x0)− qε(y0 − y′)− η,

Fν

(
x0−ε(y0 + y′)

)
− Fμ

(
x0−ε(y0 + y′)

)
≤ Fν(x0)− Fμ(x0)+ qε(y0 + y′) + η

(4.13)
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for all y′ ∈ [−y0, y0]. We integrate over y′ with respect to the law PY of Y , use∫ y

−y
y′PY (dy

′) = 0 because of the parity of Y , and obtain∫ y0

−y0

(
Fν

(
x0 + ε(y0 − y′)

)
− Fμ

(
x0 + ε(y0 − y′)

))
PY (dy

′)

≥
(
Fν(x0)− Fμ(x0)− [qεy0 + η]

)
P(|Y | ≤ y0),∫ y0

−y0

(
Fν

(
x0 − ε(y0 + y′)

)
− Fμ

(
x0 − ε(y0 + y′)

))
PY (dy

′)

≤
(
Fν(x0)− Fμ(x0) + qεy0 + η

)
P(|Y | ≤ y0),

(4.14)

which replaces (4.7) and (4.8). The left-hand sides can be rewritten with the
help of convolutions. Let PεY be the distribution of εY , then∫ ∞

−∞
Fμ

(
x0 + ε(y0 − y′)

)
PY (dy

′)

=

∫
R

(∫
R

1(−∞,x0+εy0](x+ εy′)μ(dx)

)
PY (dy

′) =
(
μ ∗PεY

)(
(−∞, x0 + εy0]

)
.

A similar identity holds true with Fν and ν instead of Fμ and μ. For the integral
over R \ [−y0, y0], we note∣∣∣∫

R\[−y0,y0]

(
Fμ

(
x0+ε(y0−y′)

)
−Fν

(
x0+ε(y0−y′)

))
PY (dy

′)
∣∣∣ ≤ D P(|Y | > y0).

We write the integral over [−y0, y0] as the difference of the integral over R and
R \ [−y0, y0], apply the triangle inequality, and deduce∫ y0

−y0

(
Fν

(
x0 + ε(y0 − y′)

)
− Fμ

(
x0 + ε(y0 − y′)

))
PY (dy

′) ≤ Dε +D P(|Y | > y0)

with Dε given by (4.11). Similarly,∫ y0

−y0

(
Fν

(
x0−ε(y0+y′)

)
−Fμ

(
x0−ε(y0+y′)

))
PY (dy

′) ≥ −Dε−D P(|Y | > y0).

Combining this with (4.14), we find

Dε +D P(|Y | > y0) ≥
(
Fν(x0)− Fμ(x0)−

[
qεy0 + η]

)
P(|Y | ≤ y0),

−Dε −D P(|Y | > y0) ≤
(
Fν(x0)− Fμ(x0) + qεy0 + η

)
P(|Y | ≤ y0)

(4.15)

hence

P(|Y | ≤ y0) |Fν(x0)− Fμ(x0)| ≤ D P(|Y | > y0) +Dε + (qεy0 + η)P(|Y | ≤ y0).
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We take the supremum over x0 ∈ R, obtain an inequality with D on both sides
from which we deduce

D ≤ 1

P(|Y | ≤ y0)− P(|Y | > y0)

(
Dε + (qεy0 + η)P(|Y | ≤ y0)

)
.

To conclude, we note that the denominator on the right-hand side is equal to
1− 2P(|Y | > y0) and bound Dε by (4.12).

4.2. Tails and exponential moments of the standard Gaussian

The Mills ratio of a continuous random variable is the ratio of its survival
function and its probability density function. For standard normal laws, the
asymptotic behavior of the Mills ratio [45] is

P(Z ≥ x)
√
2π

−1
exp(−x2/2)

= (1 + o(1))
1

x
(x → ∞). (4.16)

Eq. (4.16) is complemented by the following lemma.

Lemma 4.2. Let Z be a standard normal variable. Then we have, for all β ≥ 0,

E
[
e−βZ1{Z≥0}

]
= eβ

2/2
P(Z ≥ β) ≥ 1√

2π(β + 1)
.

Moreover for all β > 0 and η ∈ (−β, β),

E
[
e−(β+η)Z1{Z≥0}

]
=

β

β + θη
E
[
e−βZ1{Z≥0}

]
for some θ ∈ [−1, 1].

Proof. We compute

E
[
e−βZ1{Z≥0}

]
=

1√
2π

∫ ∞

0

e−βu−u2/2du =
1√
2π

eβ
2/2

∫ ∞

0

e−(u+β)2/2du

=
1√
2π

eβ
2/2

∫ ∞

β

e−y2/2dy = eβ
2/2

P(Z ≥ β).

Next, we note

P(Z ≥ β) =
1√
2π

∫ ∞

β

e−y2/2dy ≥ 1√
2π

∫ ∞

β

e−y2/2
(
1− y

(1 + y)2

)
dy

=
1√
2π

[
−exp(−y2/2)

1 + y

]y=∞

y=β
=

1√
2π

exp(−β2/2)

β + 1
.

We set ψ(β) := exp(β2/2)P(Z ≥ β) = E[exp(−βZ)1{Z≥0}] and q(β) := βψ(β).
Clearly ψ is monotone decreasing. We check that q(β) is monotone increasing.
Indeed,

q′(β) = (1 + β2)eβ
2/2

P(Z ≥ β)− β√
2π

.
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We compute

1√
2π

β

1 + β2
e−β2/2 =

1√
2π

∫ ∞

β

(
− d

dy

y

1 + y2
e−y2/2

)
dy

=
1√
2π

∫ ∞

β

e−y2/2 y
4 + 2y2 − 1

(y2 + 1)2
dy

≤ 1√
2π

∫ ∞

β

e−y2/2dy = P(Z ≥ β)

and deduce q′(β) ≥ 0 for all β ≥ 0, so q(β) is indeed monotone increasing. By
the monotonicity of ψ and q, if η ∈ (−β, 0), then

ψ(β) ≤ ψ(β + η) ≤ 1

β + η
βψ(β).

Similarly, if η ∈ (0, β), then

β

β + η
ψ(β) ≤ ψ(β + η) ≤ ψ(β).

In both cases ψ(β + η)/ψ(β) = β/(β + θη) for some θ ∈ [0, 1].

4.3. Integrals of monotone functions and Kolmogorov distance

Lemma 4.3. Let F and G be two cumulative distribution functions of some
probability measures and f : [0,∞) → R+ a monotone decreasing, continuous
function with limy→∞ f(y) = 0. Then∣∣∫ ∞

−∞
f1[0,∞)dF −

∫ ∞

−∞
f1[0,∞)dG

∣∣ ≤ 2f(0) sup
y∈R

|F (y)−G(y)|.

The lemma extends to cumulative distribution functions of finite signed measures
with total mass 1.

If F and G are continuous at 0 (i.e., the associated measures have no atom
at 0), we may write

∫∞
0

fdF and
∫∞
0

fdG without creating ambiguities.

Proof. The lemma is a straightforward consequence of an integration by parts for
Riemann-Stieltjes integrals (roughly,

∫∞
0

fdF = −
∫∞
0

Fdf + boundary term).
For n ∈ N, set

fn := f(0)1{0} +
∞∑
k=0

f(k+1
n )1(k/n,(k+1)/n],

further define ank+1 := f( kn ) − f(k+1
n ) ≥ 0. Let μ be the measure on R with

μ((−∞, x]) = F (x). Summing by parts, we get∫ ∞

−∞
fn1[0,∞)dF = f(0)μ({0}) +

∞∑
k=0

(
f(0)− an1 − · · · − ank+1

)(
F
(
k+1
n )− F

(
k
n

))
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= f(0)
(
μ({0}) + 1− F (0)

)
−

∞∑
�=0

an�+1

∞∑
k=�

(
F
(
k+1
n )− F

(
k
n

))
= f(0) lim

ε↘0

(
1− F (−ε)

)
−

∞∑
�=0

an�+1

(
1− F

(
�
n )
)
.

A similar representation holds true for the integral against G.
Since 0 ≤

∑∞
�=0 a

n
�+1 ≤ f(0), we deduce∣∣∣∫ ∞

−∞
fn1[0,∞)dF −

∫ ∞

−∞
fn1[0,∞)dG

∣∣∣ ≤ 2f(0) sup
y

|F (y)−G(y)|.

We pass to the limit n → ∞, note fn ↗ f because of the continuity and
monotonicity of f , and obtain the lemma.

4.4. Positivity of truncated exponentials

Let

expm(u) :=
m∑

k=0

uk

k!

denote the truncated exponential function.

Lemma 4.4. We have exp2n(u) > 0 for all u ∈ R and n ∈ N0.

The analogous statement for the exponential series truncated after odd in-
tegers 2n + 1 is false, since exp2n+1(u) is a polynomial that goes to −∞ as
u → −∞.

Proof. We follow [101, pp. 37–38]. For u ≥ 0 the inequality is obvious, so we
need only treat u < 0. Set

ak =
u2k−1

(2k − 1)!
+

u2k

(2k)!
=

u2k−1

(2k − 1)!

(
1 +

u

2k

)
(k ≥ 1).

If u ≤ −2k, then ak ≥ 0, so if u ≤ −2n, then ak ≥ 0 for all k = 1, . . . , n and
exp2n(u) = 1 + a1 + · · · + an > 0. If −2n < u < 0, then for all k ≥ n + 1, we
have u > −2k hence ak < 0. It follows that

exp2n(u) = exp(u)−
∞∑

k=n+1

ak > exp(u) > 0.

An alternative proof is based on Taylor’s theorem with integral remainder:
for u < 0 and even m,

exp(u)− expm(u) =
1

m!

∫ u

0

(u− t)m+1et dt = − 1

m!

∫ 0

u

sm+1eu−sds > 0

hence expm(u) ≥ exp(u) ≥ 0.
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5. Concentration inequality. Proof of Theorem 2.5

For the proof of Theorem 2.5 we follow the proof presented in [101] for the first
part (up until (5.5) below), but then take a short-cut in order to avoid cum-
bersome numerical evaluations; instead we exploit a relation between truncated
exponentials and Poisson distributions, which we learnt about from Rudzkis and
Bakshaev [98].

The first step of the proof consists in applying Markov’s inequality to the
truncated exponential exp2n(x), which is monotone increasing on R+. This
yields, for every h > 0 and n ∈ N, and x ≥ 0,

P(X ≥ x) ≤ E[exp2n(hX)]

exp2n(hx)
=

1

exp2n(hx)

2n∑
k=0

hk

k!
mk. (5.1)

We check that
2n∑
k=0

hk

k!
mk ≤ expn

( 2n∑
j=2

hj

j!
|κj |
)
. (5.2)

It is enough to show that for each k = 2, . . . , 2n, the moment mk is smaller than
the coefficient of hk of the series obtained by expanding the right-hand side of
the inequality. By definition of the cumulants, the moment mk is equal to the
coefficient of hk in the formal power series exp(

∑∞
j=2 h

jκj/j!), which gives

mk =

∞∑
r=1

1

r!

∑
j1,...,jr≥2:
j1+···+jr=k

κj1

j1!
· · · κjr

jr!
.

For k ≤ 2n, the only non-zero contributions are from r ≤ n and 2 ≤ j� ≤ 2n,
therefore

|mk| ≤
n∑

r=1

1

r!

∑
2≤j1,...,jr≤2n:
j1+···+jr=k

|κj1 |
j1!

· · · |κjr |
jr!

.

The right-hand side is equal to the coefficient of hk in expn
(∑n

j=2 |κj |hj/j!).
This completes the proof of (5.2).

Next we show that for a specific x-dependent choice of h and n, we may
bound

2n∑
j=2

|κj |
j!

hj ≤ hx

2
. (5.3)

Consider first the case H = 1. Choose h := x(xΔ)1/(1+γ)/(x2 + (xΔ)1/(1+γ)) so
that

1

hx
=

1

x2
+

1

(xΔ)1/(1+γ)
. (5.4)

By the assumptions on the cumulants, |κj |/j! ≤ j!γ/(21+γΔ
j−2

) and hence

2n∑
j=2

|κj |hj

j!
≤ h2

2

2n∑
j=2

(j!
2

)γ( h
Δ

)j−2
.
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A straightforward induction over n shows that for j ≤ 2n, we have j!/2 ≤
(2n)j−2, thus if we pick n ≤ hx/2 then j!/2 ≤ (hx)j−2 for j ≤ 2n and

2n∑
j=2

|κj |
j!

hj ≤ h2

2

2n∑
j=2

(
(hx)γ

h

Δ

)j−2

=
h2

2

2n∑
j=2

qj−2, q := (hx)γ
h

Δ
.

Noticing q = (hx)1+γ/(Δx) < 1, we deduce

2n∑
j=2

|κj |
j!

hj ≤ h2

2

1

1− q
.

Set q̃ = q1/(1+γ), then q < q̃ < 1 and by (5.4), 1 = h
x + q̃ hence x = h/(1 − q̃)

and
2n∑
j=2

|κj |
j!

hj ≤ h2

2

1

1− q̃
=

hx

2
.

This completes the proof of (5.3).
The bounds (5.1), (5.2) and (5.3) yield

P(X ≥ x) ≤ expn(hx/2)

exp2n(hx)
(5.5)

for 2n ≤ hx. If we had exponentials instead of truncated exponentials, then the
right-hand side of the previous inequality would be exp(−hx/2) and we would
be done, in the case H = 1.

Let us choose n := �(hx)/2�, then 2n ≤ hx < 2n + 2. Let N2n be a Poisson
random variable with parameter 2n. Then

e−hx exp2n(hx) ≥ e−(2n+2) exp2n(2n) = e−2
P(N2n ≤ 2n).

The variable N2n is equal in distribution to the sum of 2n i.i.d. Poisson variables
with parameter 1. Applying the central limit theorem, one finds that

lim
n→∞

P(N2n ≤ 2n) =
1

2
.

As a consequence, there exist c,m > 0 such that for all sufficiently large hx ≥ m
(hence large n),

exp2n(hx) ≥ c ehx ≥ c ehx/2 expn(hx/2).

Together with (5.5) this gives

P(X ≥ x) ≤ 1

c
e−hx/2

for all hx ≥ m. Replacing 1/c by C := max(1/c, exp(m/2)) we obtain an in-
equality that is true for all values of hx. This completes the proof of the theorem
when H = 1.

For general H > 0, define X̃ := X/
√
H. Then X̃ satisfies the assumption of

the theorem with H = 1 and Δ replaced with Δ̃ = Δ
√
H and the proof is easily

concluded.
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6. Bounds under Cramér’s condition. Proof of Theorem 2.1

Here we prove Theorem 2.1 on random variables that have exponential mo-
ments (S), which corresponds to s = ∞ in condition (S∗). This helps explain
the strategy for finite s, and some of the estimates are reused for finite s. The
Cramér-Petrov series

∑∞
j=3 λjx

j is defined in Appendix A. Proposition A.2
shows that under the conditions of Theorem 2.1, we have

|λj | ≤
Δ2/2

(3Δ/10)j
.

Proof of Theorem 2.1. The proof of Theorem 2.1 comes in several steps:

1. Introduce a tilted variable Xh, as often done in the proof of Cramér’s large
deviation principle, and a centered normalized version X̂h with E[X̂h] = 0

and V[X̂h] = 1.

2. Estimate the Kolmogorov distance between the law of X̂h and the standard
normal distribution by comparing characteristic functions.

3. Undo the tilt: express P(X ≥ x) in terms of X̂h, conclude with the help
of step (2).

The exponential moments E[exp(tX)] are finite for all t ∈ (−Δ,Δ) (or t ∈ C

with |Re t| ≤ Δ), and the Taylor series of the cumulant generating function
ϕ(t) = logE[exp(tX)] has radius of convergence at least Δ,

ϕ(t) = logE[etX ] =
t2

2
+

∞∑
j=3

κj

j!
tj (|t| < Δ).

Let I(x) = supt∈R(tx− ϕ(t)) be the Cramér rate function. In order to estimate
P(X ≥ x) with x > 0 we work with a tilted random variable Xh, given by

P(Xh ∈ B) = e−ϕ(h)
E[exp(hX)1B(X)],

assuming the equation
x = ϕ′(h)

admits a solution h ∈ (0,Δ). The use of tilted variables is fairly standard in the
proof of Cramér large deviation principle. Now, the key idea is to approximate
the distribution of Xh by that of a normal random variable with mean x and
variance σ2(h) := ϕ′′(h). Equivalently, defining

X̂h :=
Xh − x

σ(h)
,

we approximate L (X̂h) ≈ N (0, 1). The error in the normal approximation is
quantified by looking first at characteristic functions. We have

χh(t) := E[exp(itX̂h)] = E

[
exp
(
it
Xh − x

σ(h)

)]
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= exp
(
−ϕ(h)− it

x

σ(h)

)
E

[
exp
(
hX + it

X

σ(h)

]
= exp

(
ϕ
(
h+ i t

σ(h)

)
− ϕ(h)− it x

σ(h)

)
, (6.1)

for all t ∈ R that are small enough so that |h + it/σ(h)| ≤ T < Δ. A Taylor
approximation for ϕ at h shows for some θ ∈ [−1, 1]

ϕ
(
h+i t

σ(h)

)
−ϕ(h)− it x

σ(h) =
1
2ϕ

′′(h)
(

it
σ(h)

)2
+
1

6
ϕ′′′(t+iθ t

σ̃(h) )t
3 = − t2

2 +O(t3).

Our cumulant bounds allow for an easy bound on the third derivative: if z ∈ C

satisfies |z| ≤ T < Δ, then

|ϕ′′′(z)| ≤
∞∑
j=3

|κj |
|z|j−3

(j − 3)!
≤ 1

Δ

∞∑
n=1

n
( |z|
Δ

)n−1 ≤ 1

Δ

T/Δ

(1− T/Δ)2
. (6.2)

For T bounded away from Δ, we deduce that

χh(t) = exp
(
− t2

2

(
1 +O(

t

Δ
)
))

which, for large Δ, is close to the characteristic function exp(− t2

2 ) of the stan-
dard normal variable. Careful estimates based on the smoothing inequality [35,
Lemma 2, Chapter XVI.3]

sup
y∈R

∣∣P(X̂h ≤ y)− P(Z ≤ y)
∣∣ ≤ 1

π

∫ T

−T

∣∣∣χh(t)− exp(−t2/2)

t

∣∣∣dt+ 24

πT

1√
2π

show that the Kolmogorov distance between L (X̂h) and the normal distribution
is of order O( 1

Δ ): for all δ ∈ (0, 1), there exists a constant Cδ > 0 such that
whenever the tilt parameter h = h(x) exists and is in [0, δΔ], then

D(X̂h, Z) := sup
y∈R

∣∣P(X̂h ≤ y)− P(Z ≤ y)
∣∣ ≤ Cδ

Δ
.

The next step consists in undoing the tilt: we express the probability we are
after in terms of the tilted recentered variable X̂h by

P(X ≥ x) = eϕ(h)
E

[
e−hXh1{Xh≥x}

]
= eϕ(h)−hx

E

[
e−hσ(h)X̂h1{X̂h≥0}

]
.

An easy lemma on Kolmogorov distances (Lemma 4.3) shows∣∣∣E[e−hσ(h)X̂h1{X̂h≥0}

]
− E

[
e−hσ(h)Z1{Z≥0}

]∣∣∣ ≤ 2D(X̂h, Z) ≤ 2Cδ

Δ
.

Further noting ϕ(h)− hx = −I(x), we get

P(X ≥ x) = e−I(x)
(
E

[
e−hσ(h)Z1{Z≥0}

]
+ θ

2Cδ

Δ

)
(6.3)
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for some θ ∈ [−1, 1]. The tilted variance σ2(h) is close to 1 because

|σ2(h)− 1| = |ϕ′′(h)− ϕ′′(0)| ≤ h

Δ

by the bound (6.2) on the third derivative. The tilt parameter h is close to x
because

|x− h| = |ϕ′(h)− h| ≤
∞∑
j=3

|h|j−1

(j − 1)!
|κj | ≤ Δ

(h/Δ)2

1− h/Δ
, (6.4)

which yields x− h = O(h2/Δ). Altogether we get

hσ(h) = x
(
1 +O

(
h
Δ

))
.

Bounds on the standard normal distribution and a completion of squares given
in Lemma 4.2, together with 1

1+O(h/Δ) = 1 +O(h/Δ), yield

E

[
e−hσ(h)Z1{Z≥0}

]
=

1

1 +O(h/Δ)
E

[
e−xZ1{Z≥0}

]
=
(
1 +O(h/Δ)

)
ex

2/2
P(Z ≥ x).

Inserting this expression into (6.3) we get

P(X ≥ x) = e−I(x)+x2/2
((

1 +O( h
Δ )
)
P(Z ≥ x) + θ

Cδ

Δ
e−x2/2

)
.

We factor out P(Z ≥ x), use the lower bound for P(Z ≥ x) from Lemma 4.2,
remember (6.4), and obtain

P(X ≥ x) = e−I(x)+x2/2
P(Z ≥ x)

(
1 +O

(
x+1
Δ

))
.

By Appendix A, given δ ∈ (0, 1), there exists a constant cδ > 0 such that for all
x ∈ [0, cδΔ], the Cramér-Petrov series converges, and the equation ϕ′(h) = x
has a unique solution h = h(x) and this solution is in [0, δΔ]. Going through the
previous estimates carefully, we see that there is a constant Cδ > 0 such that
for all x ∈ [0, cδΔ],

P(X ≥ x) = P(Z ≥ x)
(
1 + θCδ

x+1
Δ

)
exp
( ∞∑
j=3

λjx
j
)
.

7. Bounds with finitely many moments. Proof of Theorem 2.2

Now we turn to condition (S∗) that |κj | ≤ (j−2)!/Δj−2 for j = 3, . . . , s+2 with
3 ≤ s ≤ 2Δ2. Remember that the random variables are centered and normalized
as E[X] = 0, V(X) = 1.
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7.1. Introducing a modified tilted measure

The Taylor series of ϕ(t) may have radius of convergence zero, so we work
instead with the truncated functions

ϕ̃(t) =
s∑

j=2

κj

j!
tj , eϕ̃(t) =:

∞∑
j=0

m̃j

j!
tj . (7.1)

Notice m̃j = E[Xj ] =: mj for j ≤ s + 2. The random variable X may have
infinite exponential moments, so the exponential tilt is no longer possible; we
replace the exponential exp(tx) in the tilt by

gt(x) := exps(tx) + x2r̃(t) (7.2)

with

exps(tx) :=

s∑
j=0

(tx)j

j!
, r̃(t) :=

∞∑
j=s+1

1

j!
m̃jt

j . (7.3)

The truncated exponential is fairly natural, the additional term x2r̃(t) in gt(x)
ensures that the tilted measure μh defined below has total mass 1. For small
h = h(x) such that

x = m̃(h) = ϕ̃′(h) and σ̃2
h := ϕ̃′′(h),

we introduce a signed measure μh on R by

μh(B) = e−ϕ̃(h)
E

[
gh(X)1{(X−x)/σ̃h∈B}

]
. (7.4)

Because of

E[gh(X)] =

s∑
j=0

mj

j!
hj + E[X2]

∞∑
j=s+1

m̃j

j!
hj = eϕ̃(h), (7.5)

the signed measure is normalized, i.e., μh(R) = 1, however the function gh may
take negative values so μh is not necessarily a probability measure. Nevertheless,
we will see that μh is close to a normal distribution. For later purposes we note
the inverse relation to (7.4): for all Borel sets B ⊂ R,

P(X ∈ B) = eϕ̃(h)

∫
R

1

gh(σ̃hy + x)
1B

(
σ̃hy + x

)
dμh(y). (7.6)

Later we evaluate the function ϕ̃(z) for complex parameters z. A visual summary
of various quantities that are introduced for proofs is given in Figure 1 below.
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7.2. Moment estimates

The key step of the proof will be, just as in the case s = ∞, to show that the
Fourier transform χh(t) of μh is close to exp(−t2/2), for small t, so that we can
apply Zolotarev’s lemma. A new feature compared to s = ∞ is that we have
to deal with truncation errors. In order to estimate them, it is helpful to have
bounds on the quantities m̃j and on truncated moments.

Lemma 7.1. Let m̃k be given by (7.1). We have for all k ∈ N,

1

k!
|m̃k| ≤ max

( 1√
k/(2e)

k
,

1

(Δ/
√
e)k

)
=

{
1/
√
k/(2e)

k
, k ≤ 2Δ2,

1/(Δ/
√
e)k, k > 2Δ2.

Moreover the moments mk := E[Xk] satisfy mk = m̃k for k = 0, 1, . . . , s+ 2.

Remark. For small k, the m̃k’s satisfy a bound inherited from the moments of
Gaussian variables. For large k, the m̃k’s have a behavior closer to the moments
of a random variable that has exponential moments E[exp(tY )] up to order
|t| < Δ, e.g., an exponential variable Y ∼ Exp(Δ). Indeed, for Z ∼ N (0, 1) as
k → ∞,

1

k!
E
[
|Z|k

]
=

1

k!

2k/2Γ(k+1
2 )√

π
∼

√
2

k!

(k
e

)k/2
∼ 1√

πk(k/e)k/2
≤ 1√

k/(2e)
k
,

where we have used Stirling’s formula Γ(x + 1) ∼
√
2πx(x/e)x for the Gamma

function and for the factorial k! = Γ(k+1). On the other hand the moments of
an exponential random variable Y ∼ Exp(Δ) are given by

1

k!
E
[
Y k
]
=

1

Δk
≤ 1

(Δ/
√
e)k

.

Proof of Lemma 7.1 . We have

1

k!
m̃k =

�k/2∑
r=1

1

r!

∑
j1+···+jr=k
j�=2,...,s

κj1 · · ·κjr

j1! · · · jr!
. (7.7)

Hence

∣∣∣ 1
k!
m̃k

∣∣∣ ≤ �k/2∑
r=1

1

r!

∑
j1+···+jr=k
j�=2,...,s

(
r∏

�=1

1

j�(j� − 1)

)
1

Δk−2r

≤
�k/2∑
r=1

1

r!

(
s∑

j=2

1

j(j − 1)

)r
1

Δk−2r
.
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Using
∑∞

j=2
1

j(j−1) =
∫ 1

0

(
− log(1− t)

)
dt = 1, we obtain for Δ2 ≤ k/2

∣∣∣ 1
k!
m̃k

∣∣∣ ≤ 1

Δk

�k/2∑
r=1

1

r!
Δ2r ≤ 1

Δk
eΔ

2 ≤ 1

Δk
ek/2.

For Δ2 ≥ k/2, we estimate instead

∣∣∣ 1
k!
m̃k

∣∣∣ ≤ �k/2∑
r=1

1

r!

1√
k/2

k−2r
≤ 1√

k/2
k
ek/2.

The moments E[Xk], k ≤ s+ 2, are given by a formula similar to (7.7), but in
theory the range of summation indices is now j� = 2, . . . , s + 2. However, from
j1 + · · ·+ jr = k and j� ≥ 2 we get that all indices must be smaller or equal to
k − 2 ≤ s, so we are back to Eq. (7.7).

Let us quickly explain how Lemma 7.1 affects the parameter choices and the
bounds on truncation errors. For z ∈ C bounded away from Δ/

√
e and

√
s/(2e),

the remainder term r̃(z) from (7.3) is bounded by

|r̃(z)| ≤
∞∑

j=s+1

|z|j
(Δ/

√
e)j

+

∞∑
j=s+1

|z|j√
s/(2e)

j

= O
(( |z|

Δ/
√
e

)s+1)
+O

(( |z|√
s/(2e)

)s+1)
,

where we have estimated max(x, y) ≤ x+ y for x, y ≥ 0. In the bound there is
nothing to be gained from having s larger than 2Δ2. Indeed, if s > 2Δ2, then it
is the first term that dominates, and it corresponds to the bound obtained for
s = 2Δ2. This is why, in assumption (S∗), we do not bother with s > 2Δ2. It
will be convenient to work with

s ≤ 2Δ2, |z| < a :=

√
s

4e
.

Then for all k ≥ s, we have
√

k
2e ≥

√
s
2e =

√
2 a and Δ√

2
≥ 1√

e

√
s
2 =

√
2a by

the assumption s ≤ 2Δ2, hence

min
(√ k

2e
,
Δ√
2

)
≥

√
2a for all k ≥ s

and
1

k!
|m̃k| ≤

1

(
√
2a)k

for all k ≥ s. (7.8)

It is in this form that Lemma 7.1 is used later on.
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In Lemma 7.8 below we need to estimate sums of truncated moments, which

are of the type
∑s

k=0
zk

k! E[|X|k1{|X|≥b}], for some additional truncation parame-

ter b ≥ 1. Because of E[Xk] = m̃k for k = 2, . . . , s+2, the bound from Lemma 7.1
extends to the moments E[Xk], k ≤ s, and we get for k ≤ s/2:

E
[
|X|k1{|X|≥b}

]
≤ 1

bk
E
[
X2k

]
≤ 1

bk
(2k)!

min
(
k/e,Δ2/e

)k =
1

bk
(2k)!

(k/e)k
, (7.9)

where we have used 2k ≤ s ≤ 2Δ2. By Stirling’s formula,

(2k)!

k!(k/e)k
= (1 + o(1))4k

√
2 (k → ∞),

so we deduce
1

k!
E
[
|X|k1{|X|≥b}

]
≤ C

4k

bk
(7.10)

for k ≤ s/2, with C ≥
√
2 some constant independent of s. This bound has the

drawback of not being small for k = 0, moreover we need to proceed differently
for k > s/2. Therefore the bound (7.10) is complemented by the following
lemma.

Lemma 7.2. For 30 ≤ s ≤ 2Δ2, a :=
√

s/(4e) and b := 4a, we have

1

k!
E
[
|X|k1{|X|≥b}

]
≤
{√

2/a�b, 0 ≤ k ≤ b,√
2/ak, b < k ≤ s.

Note that b =
√
4s/e ≥ 1 and b =

√
s 2√

e
< s

2 for s ≥ 30. Set

mk(b) := E
[
|X|k1{|X|≥b}

]
.

Proof. For the proof, we distinguish the cases 0 ≤ k ≤ s/2 and k > s/2. For
1 ≤ k ≤ s/2, we proceed as in (7.9). With Stirling’s formula [96]

e1/(12n+1)
√
2πn(n/e)n ≤ n! ≤ e1/(12n)

√
2πn(n/e)n,

we obtain
1

bk
(2k)!

k!(k/e)k
≤ 1

ak

√
2e

1
24k− 1

12k+1 ≤
√
2

ak

since for k ≥ 1 we have 1
24k − 1

12k+1 ≤ 0. It follows that (7.10) holds true with

C =
√
2, for k = 1, . . . , s/2. This proves in particular the assertion of Lemma 7.2

for b < k ≤ s
2 . For 0 ≤ k ≤ �b�, using b ≥ 1, we have

mk(b)

k!
≤ 1

k!
E

[
|X|k |X|�b−k

b�b−k
1{|X|≥b}

]
≤ 1

�b�!E
[
|X|�b1{|X|≥b}

]
=

1

�b�!m�b(b).

We combine this with the bound (7.10) with C =
√
2—which is applicable

because b ≤ s/2—and obtain the first inequality in the lemma.
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For s/2 ≤ k ≤ s and k even, we estimate mk(b) ≤ E[|X|k] = E[Xk] = m̃k

and by Lemma 7.1,

1

k!
mk(b) ≤

1

[min(
√
k/(2e),Δ2/

√
e)]k

=
1√

k/(2e)
k
≤ 1√

s/(4e)
k
=

1

ak
.

If k is odd, we handle E[|X|k] 	= E[Xk] by bounding the expectation by an even
moment:

mk(b) = E
[
|X|k1{|X|≥b}

]
≤ 1

b
E
[
|X|k+1

]
=

1

b
E
[
Xk+1

]
=

1

b
m̃k+1

hence
1

k!
mk(b) ≤

k + 1

b

m̃k+1

(k + 1)!
≤ k + 1

b

1√
(k + 1)/(2e)

k+1
.

Now
k + 1

√
k + 1

k+1
= (k + 1)−

k−1
2 ≤

(s
2
+ 1
)−(k−1)/2

hence

1

k!
mk(b) ≤

s/2 + 1

4
√
s/(2e)

1√
(s/2 + 1)/(2e)

k+1

=
s+ 2

8
√
s/(4e)

1√
(s+ 2)/(4e)

1√
(s+ 2)/(4e)

k

=
4e
√
s+ 2

8
√
s

1√
(s+ 2)/(4e)

k
≤ e

2

√
1 +

2

s

1

ak
≤

√
2

ak
for s ≥ 30,

since e
2

√
1 + 2

s ≤ 1.41 ≤
√
2 for s ≥ 30.

7.3. Bounds on tilt parameters

Remember the choice s ≤ 2Δ2, a =
√
s/(4e) ≤ Δ/

√
2e. From now on θ des-

ignates a generic constant in [−1, 1], not always the same, possibly dependent
on other constants in statements; for example, a = b + θc means “there exists
θ = θ(a, b, c) ∈ [−1, 1] such that a = b + θc. When the quantities involved are
complex, θ is a complex number of modulus smaller than or equal to 1.

Lemma 7.3. Assume that s ≤ 2Δ2. Then for all x ∈ [0, 2
3a], the equation

ϕ̃′(h) = x has a unique solution h ∈ [0, a]. In addition, if x = 2
3aδ with δ ∈ [0, 1],

then the solution h is in [0, δa] and

x = h
(
1 + θ

δ

3

)
, σ̃2

h = ϕ′′(h) = 1 + θ 0.751 δ > 0.

Note that the polynomial equation ϕ̃′(h) = x may have additional solutions
h > 2

3a. The constant 0.751 replaces the constant 0.75 from [101, Eq. (2.21)],
which we were not able to reproduce.



The method of cumulants for the normal approximation 231

Proof. Set q := 1/
√
2e so that a ≤ qΔ < Δ/2. Fix δ ∈ [0, 1]. For h ∈ [0, δa], we

have h/Δ ≤ qδ and

|ϕ̃′′(h)− 1| =
∣∣∣ s∑
j=3

κj

(j − 2)!
hj−2

∣∣∣ ≤ ∞∑
j=3

( h

Δ

)j−2

=
h/Δ

1− h/Δ
≤ q

1− q
δ ≤ 0.751δ.

(7.11)
It follows that ϕ̃′′(h) > 0 on [0, δa] and ϕ̃′(·) is a monotone increasing bijection
from [0, δa] onto [0, ϕ̃′(δa)]. Next we bound

|ϕ̃′(h)− h| ≤ h

s∑
k=3

1

k − 1

( h
Δ

)k−2

≤ h
(h/Δ

2
+

1

3

(h/Δ)2

1− h/Δ

)
= h

h

Δ

(1
2
+

1

3

h/Δ

1− h/Δ

)
≤ hδq

(1
2
+

1

3

q

1− q

)
≤ 1

3
δh. (7.12)

It follows in particular that ϕ̃′(δa) ≥ 2
3δa. Therefore, for x to be in the image

[0, ϕ̃′(δa)] it is sufficient that 0 ≤ x ≤ 2
3δa. Thus ϕ̃′ is a monotone increasing

bijection from [0, δa] onto an interval containing 2
3δa. Specializing to δ = 1 we

see that for every x ∈ [0, 2
3a] there is a unique h ∈ [0, a] such that ϕ̃′(h) = x. If

in addition x = 2
3δa with δ ∈ [0, 1], then the solution h must be in [0, δa] and

the proof is concluded with (7.11) and (7.12).

Lemma 7.4. We have ϕ̃(h) ≥ 0 for all h ∈ [0, a].

Proof. We have

h ≤ a =

√
s

4e
≤ Δ√

2e
<

Δ

2

and

ϕ̃(h) = h2
(1
2
+

s∑
j=3

κj

j!
hj−2

)
≥ h2

(1
2
−

∞∑
j=3

1

j(j − 1)

( h
Δ

)j−2
)

≥ h2
(1
2
− 1

6

h/Δ

1− h/Δ

)
= h2 3− 4h/Δ

6(1− h/Δ)
≥ 0.

Lemma 7.5. For 0 ≤ h ≤ δa with δ ≤ 1, we have |r̃(h)| ≤ (δ/
√
2)s+1

1−1/
√
2
.

Proof. By the definition of r̃(h) in (7.3), the bound (7.8) yields

|r̃(h)| ≤
∞∑

k=s+1

hk

(
√
2a)k

≤ (δ/
√
2)s+1

1− δ/
√
2
.

Lemma 7.6. For s ≥ 30 and h ∈ [0, δa], the function gh given in (7.2) is
monotone increasing on [0,∞) and satisfies gh(u) ≥ 1 for all u ∈ R+.

Proof. Since the assertion of the lemma is trivially true for h = 0, we assume
h > 0. We start from

g′h(u) = h

s−1∑
k=0

(hu)k

k!
+ 2ur̃(h) = h

(
exps−1(hu) + 2hu

r̃(h)

h2

)
.
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By the definition of r̃(h) in (7.3) together with (7.8), i.e. |m̃k| ≤ (
√
2a)−k for

k ≥ s, and h ∈ (0, δa]

|r̃(h)|
h2

≤
∞∑

k=s+1

hk−2

(
√
2a)k

≤ 1

2a2

∞∑
k=s−1

δk
√
2
k
=

1

2a2
1

1− δ√
2

( δ√
2

)s−1

≤ 2
( δ√

2

)s−1

. (7.13)

For the last inequality we have used that for s ≥ 30, we have

2a2
(
1− δ√

2

)
≥ s

2e

(
1− 1√

2

)
≥ 1

2
.

Therefore
|r̃(h)|
h2

≤ 2
( 1√

2

)s−1

≤ 1

2
.

We conclude

g′h(u) ≥ h
(
exps−1(hu)− hu

)
= h
(
1 +

s−1∑
k=2

(hu)k

k!

)
≥ 0

and gh is monotone increasing. In particular, gh(u) ≥ gh(0) = 1 for all u ∈
R+.

7.4. Fourier transform of the tilted measure: a first bound

The Fourier transform of the signed measure μh is

χh(t) = e−ϕ̃(h)
E

[
gh(X)eit(X−x)/σ̃h

]
.

Motivated by Eq. (6.1), we set

χ̃h(t) := exp
(
ϕ̃(h+ it/σ̃h)− ϕ̃(h)− itx/σ̃h

)
.

With the analogue of (7.5) for z = h+ it/σ̃h instead of h we see

χh(t) = χ̃h(t) + e−ϕ̃(h)−itx/σ̃hE

[
gh(X)eitX/σ̃h − gh+it/σ̃h

(X)
]
. (7.14)

Eq. (7.14) is a substitute for Eq. (6.1). The term χ̃h(t) is easily treated with the
Taylor series of ϕ̃. Remember the choice s ≤ 2Δ2, a =

√
s/(4e) ≤ Δ/

√
2e.

Lemma 7.7. Assume that s ≤ 2Δ2. Fix 0 < δ < δ2 < 1, set a :=
√
s/(4e) and

T := (δ2 − δ)aσ̃h, see Figure 1. Then for all h ∈ [0, δa] and t ∈ [−T, T ] we have

∣∣χ̃h(t)− exp(−t2/2)
∣∣ ≤ |t|

T

(
e−t2/4 − e−t2/2

)
.
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h

t
σ̃h

a

δ2a

(δ2 − δ)a

−(δ2 − δ)a

δa

h ≤ δa

|t|
σ̃h

≤ (δ2 − δ)a = T
σ̃h

Fig 1. A summary of parameter choices in Lemma 7.7. The function ϕ̃(z) is evaluated at
z = h + it/σ̃h with 0 ≤ h ≤ δa and |t| ≤ (δ2 − δ)aσ̃h = T (shaded rectangle), which is

contained in the disk |z| ≤ δ2a. The parameter a =
√

s/(4e) enters the moment bound (7.8).

Proof. Let z := h+ it/σ̃h. Then |z| ≤ δ2a. A third order Taylor expansion of ϕ̃
yields, for some θ ∈ [0, 1],

ϕ̃
(
h+ i t

σ̃h

)
− ϕ̃(h)− i txσ̃h

= −1

2
t2 +

1

3!
ϕ̃′′′(h+ iθ t

σ̃h

)(
i t
σ̃h

)3
.

In |z| < Δ, the third derivative is bounded as∣∣∣ϕ̃′′′(z)
∣∣∣ ≤ s∑

j=3

|κj |
(j − 3)!

|z|j−3 ≤
s∑

j=3

(j − 2)

Δj−2
|z|j−3 ≤ d

du

( ∞∑
k=0

( u
Δ

)k)∣∣∣∣∣
u=|z|

=
1

Δ

1

(1− |z|/Δ)2
.

Set L := 3Δ(1− |z|/Δ)2σ̃3
h, then

χ̃h(t) = exp
(
−1

2
t2
(
1 +

θ

3(1− |z|/Δ)2σ̃3
h

t

Δ

))
= exp

(
−1

2
t2
(
1 + θ

t

L

))
for some θ ∈ C with |θ| ≤ 1. Assuming that |t| ≤ T ≤ L/2, we have∣∣∣e− 1

2 t
2(1+θ t

L ) − e−
1
2 t

2
∣∣∣ ≤ e−

1
2 t

2
(
e|t|

3/(2L) − 1
)
= e−

1
2 t

2
∞∑
k=1

1

k!

( |t|3
2L

)k
= e−

1
2 t

2 |t|
∞∑
k=1

1

k!

( t2
4

)k (4|t|)k−1

(2L)k−1

4

2L
≤ |t|

T
e−

1
2 t

2(
e

1
4 t

2 − 1
)
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=
|t|
T

(
e−

1
4 t

2 − e−
1
2 t

2)
.

It remains to check T ≤ L/2. To that aim we use the lower bound for σ̃2
h from

Lemma 7.3 together with |z| ≤ δ2a and we evaluate

T

L/2
=

(δ2 − δ)aσ̃h

3Δ(1− |z|/Δ)2σ̃3
h

≤ δ2 − δ

1− 0.751 δ

a/Δ

(1− δ2a/Δ)2
≤ δ2 − δ

1− 0.751 δ
< 1.

The last inequality is equivalent to δ2 < 1 + (1− 0.751)δ, it holds true because
δ2 < 1.

Lemma 7.8. Assume that 30 ≤ s ≤ 2Δ2. Fix δ2 ∈ (0, 1), set a :=
√
s/(4e) and

further assume that a−1 ≤ δ22. Then for all h ≥ 0 and t ∈ R with |h+i t
σ̃h

| ≤ δ2a,
we have

|χh(t)− χ̃h(t)| ≤ 4
√
2

δ
�4a
2

1− δ2
.

Proof. We will use (7.14). By the definition of gh, we have

gh(X)eitX/σ̃h − gh+it/σ̃h
(X)

=
(
exps(hX)eitX/σ̃h − exps((h+ i t

σ̃h
)X)
)
+X2

(
r̃(h)eitX/σ̃h − r̃(h+ i t

σ̃h
)
)

(7.15)

By (7.14) we have to evaluate the expected value of (7.15). Set z := h+ it/σ̃h;
notice |h| ≤ |z|. With Lemma 7.1, the expectation of the second term in (7.15)
is bounded in absolute value by

I2 := E

[
X2
∣∣r̃(h)eitX/σ̃h − r̃(h+ it/σ̃h)

∣∣] ≤ E[X2]
(
|r̃(h)|+ |r̃(h+ it/σ̃h)|

)
≤ 2

∞∑
k=s+1

1

k!
|m̃k| |z|k ≤ 2

∞∑
k=s+1

(δ2a)
k

(
√
2a)k

, (7.16)

where we have used E[X2] = 1, |z| ≤ δ2a and 1
k! |m̃k| ≤ 1

(
√
2a)k

for k ≥ s as

derived in (7.8). For the first term in (7.15), we remember exps(y) = exp(y) −∑∞
k=s+1

1
k!y

k and deduce

exps(hX)eitX/σ̃h − exps((h+ i t
σ̃h

)X) = −
∞∑

k=s+1

Xk

k!

(
eitX/σ̃hhk − (h+ i t

σ̃h
)k
)
.

The intuition is of course that this term should be small, however taking ex-
pected values we obtain moments E[Xk] with k ≥ s+1, over which we have little
control. Therefore we introduce an additional truncation parameter b := 4a > 0
and use the previous expression for |X| ≤ b only: we estimate, with the help of
k! ≥ (k/e)k ≥ (s/e)k for k ≥ s as well as b/(s/e) ≤ 1/a and |z|/a ≤ δ2

I
(1)
1 :=

∣∣∣E[1{|X|≤b}

(
exps(hX)eitX/σ̃h − exps((h+ i t

σ̃h
)X)
)]∣∣∣
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≤ 2

∞∑
k=s+1

(b|z|)k
k!

≤ 2

∞∑
k=s+1

(b|z|)k
(s/e)k

≤ 2

∞∑
k=s+1

δk2 . (7.17)

For |X| > b, we use instead | exps(y)| ≤
∑s

k=0 |y|k/k!, which yields

I
(2)
1 :=

∣∣∣E[1{|X|>b}

(
exps(hX)eitX/σ̃h − exps((h+ i t

σ̃h
)X)
)]∣∣∣

≤ 2

s∑
k=0

|z|k
k!

E
[
|X|k1{|X|≥b}

]
.

Using the bound on the truncated moments provided by Lemma 7.2 and |z|/a ≤
δ2, we can further estimate

1

2
I
(2)
1 ≤

�b∑
k=0

√
2
|z|k
a�b

+

s∑
k=�b+1

√
2
|z|k
ak

≤
�b∑
k=0

√
2
|z|k
a�b

+

s∑
k=�b+1

√
2δk2 . (7.18)

The condition a−1 ≤ δ22 allows us to treat the sum over 0 ≤ k ≤ �b� using

|z|k/a�b ≤ δk2/a
�b−k ≤ δ

2�b−k
2 . We get

I
(2)
1 ≤ 2

√
2
( �b∑
k=0

δ
2�b−k
2 +

s∑
k=�b+1

δk2

)
≤ 2

√
2
( 2�b∑
�=�b

δ�2 +
s∑

k=�b+1

δk2

)

≤ 4
√
2

s∑
k=�b

δk2 ,

where we have used again 2b ≤ s. Altogether

I
(2)
1 + I

(1)
1 + I2 ≤ 4

√
2

s∑
k=�b

δk2 + 2

∞∑
k=s+1

δk2 + 2

∞∑
k=s+1

( δ2√
2

)k
≤ 4

√
2

δ
�b
2

1− δ2
.

The proof is concluded with |χh(t) − χ̃h(t)| ≤ e−ϕ̃(h)(I
(1)
1 + I

(2)
1 + I2) and the

lower bound ϕ̃(h) ≥ 0 from Lemma 7.4.

Lemma 7.9. Assume that 30 ≤ s ≤ 2Δ2. Fix 0 < δ < δ2 < 1, set a :=
√

s/(4e)
and T := (δ2 − δ)aσ̃h. Further assume that a−1 ≤ δ22. Then for all h ∈ [0, δa]
and t ∈ R with |t| ≤ T , we have

∣∣χh(t)− exp(−t2/2)
∣∣ ≤ |t|

T

(
e−t2/4 − e−t2/2

)
+ 4

√
2

δ
�4a
2

1− δ2
.

Proof. The lemma is an immediate consequence from the Lemmas 7.7 and 7.8.

We want to plug this bound into Zolotarev’s lemma. The first part χ̃h(t) is
treated exactly as it was for s = ∞. The second term is problematic: because of
|z| ≥ |h|, it does not go to zero as t → 0 and the integral of the error estimate
against dt/t diverges. So another bound is needed for very small t.
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7.5. Fourier transform of the tilted measure: a second bound.

An alternative bound for very small t is derived with a Taylor expansion of the
Fourier transform,

χh(t) = 1 + it

∫
R

y dμh(y) + θ
t2

2

∫
R

y2d|μh|(y), (7.19)

see Eq. (4.14) in [35, Chapter VI.4]. When s = ∞, the mean and second moment
of the tilted normalized measure are 0 and 1, respectively. For finite s, we have
instead the following lemma.

Lemma 7.10. Assume that s is even and satisfies 30 ≤ s ≤ 2Δ2. Further
assume that x ∈ [0, 2

3δa] with δ ∈ (0, 1) and a =
√

s/(4e). Then∫
R

ydμh(y) = θ 0.0023 δs+1,

∫
R

y2d|μh|(y) = 1 + θ 0.07724 δs+1.

Proof. First we check that the order of magnitude O(δs+1) is correct. We eval-
uate∫

R

y dμh(y) = e−ϕ̃(h)
E

[
gh(X)

X − x

σ̃h

]
= σ̃−1

h

(
e−ϕ̃(h)

E
[
Xgh(X)

]
− x
)
. (7.20)

By the definition of gh and in view of E[Xk] = mk = m̃k for k ≤ s + 2 (see
Lemma 7.1), we have

E
[
Xgh(X)

]
=

s∑
j=0

hj

j!
mj+1 +m3r̃(h) =

d

dh
eϕ̃(h) −

∞∑
j=s+1

hj

j!
m̃j+1 +m3r̃(h).

In view of ϕ̃′(h) = x, the first term is cancelled by −x in (7.20), we find∫
R

y dμh(y) = σ̃−1
h e−ϕ̃(h)

(
−

∞∑
j=s+1

hj

j!
m̃j+1 +m3r̃(h)

)
= O(δs+1), (7.21)

where we have used (7.8) and h ≤ δa. For the second moment, we need to
evaluate ∫

R

y2 d|μh|(y) = e−ϕ̃(h)
E

[
|gh(X)|

(X − x

σ̃h

)2]
.

Since s is even, the truncated exponential is positive by Lemma 4.4 and the
triangle inequality yields

exps(u)− u2|r̃(h)| ≤ |gh(u)| ≤ exps(u) + u2|r̃(h)| (u ∈ R)

hence

J1 − J2 ≤
∫
R

y2 d|μh|(y) ≤ J1 + J2 (7.22)
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with

J1 :=
exp(−ϕ̃(h))

σ̃2
h

E

[
exps(hX)(X − x)2

]
,

J2 :=
exp(−ϕ̃(h))

σ̃2
h

E

[
X2|r̃(h)| (X − x)2

]
.

We evaluate

J1 =σ̃−2
h e−ϕ̃(h)

E

[
exps(hX)(X2 − 2xX + x2)

]
=σ̃−2

h e−ϕ̃(h)
s∑

k=0

hk

k!
(mk+2 − 2xmk+1 + x2mk)

=σ̃−2
h e−ϕ̃(h)

{(
(eϕ̃)′′(h)− 2x(eϕ̃)′(h) + x2eϕ̃(h)

)
−

∞∑
k=s+1

hk

k!

(
m̃k+2 − 2xm̃k+1 + x2m̃k

)}
.

The terms involving ϕ̃(h) and its derivatives combine to

σ̃−2
h e−ϕ̃(h)

(
(eϕ̃)′′(h)− 2x(eϕ̃)′(h) + x2eϕ̃(h)

)
=

1

σ̃2
h

(
ϕ̃′′(h) + ϕ̃′(h)2 − 2xϕ̃′(h) + x2

)
= 1

(remember x = ϕ̃′(h) and σ̃2
h = ϕ̃′′(h)), consequently

J1 = 1− σ̃−2
h e−ϕ̃(h)

∞∑
k=s+1

hk

k!

(
m̃k+2 − 2xm̃k+1 + x2m̃k

)
= 1 +O(δs+1). (7.23)

For J2, we evaluate by Lemma 7.5

J2 = σ̃−2
h e−ϕ̃(h)|r̃(h)|(m4 − 2xm3 + x2) = O(δs+1). (7.24)

It follows that
∫
R
y2d|μh|(y) = 1 +O(δs+1).

Next we bound the constants in front of δs+1. By Lemmas 7.3 and 7.4, we
have σ̃h ≥ 1− 0.751 = 0.249 and ϕ̃(h) ≥ 0. Consequently

0 < σ̃−1
h exp(−ϕ̃(h)) ≤ 2.0041, 0 < σ̃−2

h exp(−ϕ̃(h)) ≤ 4.017. (7.25)

Moreover, we can estimate the third and fourth moment by

|m3| = |κ3| ≤
1

Δ
≤ 1

a
√
2e

by the cumulant bound and Δ2 ≥ s
2 = 2e a2 and

|m4| = |κ4 + 3κ2
2| ≤

2

Δ2
+ 3 ≤ 3 +

2

15
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for Δ2 ≥ s
2 ≥ 15. For r̃(h) and the power series in h, we use (7.8) and h ≤ δa,

set u = h/(
√
2a) and obtain

|r̃(h)| ≤ us+1

1− u
,

∞∑
k=s+1

hk

k!
|m̃k+1| ≤

1√
2a

d

du

∞∑
k=s+2

uk =
us+1

√
2a

( (s+ 2)

1− u
+

u

(1− u)2

)
,

∞∑
k=s+1

hk

k!
|m̃k+2| ≤

1

2a2
d2

du2

∞∑
k=s+3

uk

=
us+1

2a2

( (s+ 3)(s+ 2)

1− u
+ 2

(s+ 3)u

(1− u)2
+ 2

u2

(1− u)3

)
.

We use the notation

Uj := sup
u∈[0, 1√

2
]

uj−1

(1− u)j
=

⎧⎪⎨⎪⎩
2 +

√
2, j = 1

4 + 3
√
2, j = 2

10 + 7
√
2, j = 3

,

where the latter representation follows from monotonicity. With this notation
we have, in view of (7.21), (7.24), (7.23) together with us+1 ≤ (δ/

√
2)s+1, (7.25)

and x ≤ 2
3a = 2

3

√
s
4e ≤

√
2

3
√
e
Δ resp. x2 ≤ s

9e∣∣∣∫
R

y dμh(y)
∣∣∣ ≤ 2.0041(δ/

√
2)s+1

(
1√
2a

((s+ 2)U1 + U2) +
1

a
√
2e

U1

)
,

J2 ≤ 4.017(δ/
√
2)s+1U1(3 +

2

15
+ 2x

1

Δ
+ x2),

≤ 4.017(δ/
√
2)s+1U1(3 +

2

15
+

2
√
2

3
√
e
+

s

9e
)

|J1 − 1| ≤ 4.017(δ/
√
2)s+1

( 1

2a2
(U1(s+ 3)(s+ 2) + 2(s+ 3)U2 + 2U3)

+
4

3
√
2
((s+ 2)U1 + U2) +

s

9e
U1

)
.

From a =
√

s
4e ≥

√
30
4e together with the representations of Uj , j = 1, 2, 3 and

estimate of the form s+2√
2
s+1 ≤ 32√

2
31 resp. (s+3)(s+2)√

2
s+1 ≤ 33·32√

2
31 we immediately get∣∣∣∫

R

y dμh(y)
∣∣∣ ≤ δs+10.0023

J2 ≤ δs+10.0015

|J1 − 1| ≤ δs+10.07577

and hence ∣∣∣∫
R

x2d|μh|(x)− 1
∣∣∣ ≤ |J1 − 1|+ |J2| ≤ 0.07724δs+1.
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Lemma 7.11. Under the assumptions of Lemma 7.10, we have∣∣χh(t)− exp(−1
2 t

2)
∣∣ ≤ δs+1 0.0023 |t|+ (1 + 0.0387 δs+1)t2

for all t ∈ R.

Proof. We combine Eq. (7.19), Lemma 7.10 and | exp(−1
2 t

2)− 1| ≤ 1
2 t

2

∣∣χh(t)− exp(−1
2 t

2)
∣∣ = ∣∣∣1 + θt 0.0023 δs+1 + θ

t2

2

(
1 + θ 0.0773 δs+1

)
− e−t2/2

∣∣∣
≤ 0.0023 δs+1|t|+ t2

2
(1 + 0.0773 δs+1) +

t2

2
.

Combining Lemmas 7.9 and 7.11, we get

∣∣χh(t)− exp(−1
2 t

2)
∣∣ ≤ min

(
t
T

(
e−t2/4 − e−t2/2

)
+ 4

√
2
δ
�4a
2

1− δ2
, δs+1 0.0023 |t|+ (1 + 0.0387 δs+1)t2. (7.26)

Notice that this upper bound is integrable against dt/t. The bound is valid if
the assumptions of both lemmas are met. For future reference we summarize
these assumptions, see Figure 1.

Assumption 7.12. The quantities s ∈ N, x ≥ 0, δ, δ2 ∈ [0, 1] satisfy the
following:

• 30 ≤ s ≤ 2Δ2 and s is even. We set a :=
√

s
4e .

• x ∈ [0, 2
3δa].

• 0 < δ < δ2 < 1 and a−1 ≤ δ22 . We set T := (δ2 − δ)aσ̃h, with h ∈ [0, δa]
the solution of ϕ̃′(h) = x.

• Fourier transforms are evaluated at t ∈ [−T, T ].

7.6. Normal approximation for the tilted measure

Armed with the bound (7.26) and Lemma 4.1 we can bound the Kolmogorov
distance between the normal law and the tilted signed measure μh. Set

Dh := sup
y∈R

∣∣μh

(
(−∞, y]

)
− P(Z ≤ y)

∣∣.
Lemma 7.13. Fix δ ∈ (0, 1). Then, there exists C(δ) > 0 and sδ ∈ N such that
for all h ∈ (0, δa) and all even s ≥ sδ with s ≤ 2Δ2, we have

Dh ≤ C(δ)√
s
. (7.27)
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Proof. Fix δ2 ∈ (δ, 1). Clearly for sufficiently large s, the condition δ22 > a−1

in Assumption 7.12 is satisfied. We apply Lemma 4.1 to ν = μh (the signed
tilted measure), μ = N (0, 1) the standard normal distribution, q = 1/

√
2π, and

ε = 1/T with T of the order of
√
s, which gives

Dh ≤ C1√
2π

1

T
+

C2

π

∫ T

0

(
1− t

T

)∣∣χh(t)− e−t2/2
∣∣dt
t
+ C3μ

−
h (R) (7.28)

with C1 and C2 the numerical constants defined in Eq. (4.3) and

C3 =
C1

3.55
≈ 1.282.

The third term in (7.28) is missing in [101] because of an erroneous application
of Zolotarev’s lemma, see the remark after Lemma 4.1.

For T of the order of
√
s, clearly the first term on the right-hand side of (7.28)

is of the order of 1/
√
s. The measure μh was defined in (7.4), its negative part

is given by

μ−
h (R) = e−ϕ̃(h)

E
[
(gh)−(X)

]
≤ e−ϕ̃(h)

E
[
X2r̃(h)

]
= e−ϕ̃(h)r̃(h),

where we used the positivity of the truncated exponential shown in Lemma 4.4.
Lemma 7.4 and 7.5 give

μ−
h (R) ≤

(δ/
√
2)s+1

1− 1/
√
2

= O
(( 1√

2

)s)
, (7.29)

which decays exponentially fast as s → ∞ and is negligible compared to 1/
√
s.

In the integrand in the second term in (7.28) we bound (1− |t|/T ) ≤ 1, split
the domain of integration into two subintervals [0, t0] and [t0, T ] for some t0 > 0,
and apply (7.26). This yields two contributions. The first one is bounded by∫ t0

0

∣∣χh(t)− e−t2/2
∣∣dt
t

≤
∫ t0

0

(
O(δs+1) + (1 +O(δs+1))t

)
dt

= t0O(δs+1) +
t20
2
(1 +O(δs+1)).

Using Lemma 7.9 we find that the second contribution is bounded by∫ T

t0

∣∣χh(t)−e−t2/2
∣∣dt
t

≤ 2

T

∫ ∞

t0

e−t2/4dt+

∫ T

t0

O(δ
�4a
2 )

dt

t
≤ C

T
+O(δ

�4a
2 ) log

T

t0
.

Choose t0 = δ
�4a/2
2 , then we get in the limit s → ∞ at fixed δ2∫ T

0

∣∣χh(t)− e−t2/2
∣∣dt
t

= O
( 1√

s

)
+O

(
δ
�4a
2

(
s+ log δ2 + log s)

)
= O

( 1√
s

)
.

(7.30)
We combine Eqs. (7.28), (7.29), (7.30) and arrive at Dh = O(1/

√
s). Precise

bounds depend on δ and δ2 but not on the exact value of h ∈ (0, δ) or x = ϕ̃′(h)
and the proof is complete.
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Lemma 7.13 is all that is needed for the proof of Theorem 2.2. For the reader
interested in numerical values, we add two further bounds, following [101, Equa-
tions (2.48) and (2.55)]. Set

t20 :=
4
√
2δ

�4a
2

1− δ2
. (7.31)

The main idea for the following lemma is then to split the domain of integration
[0, T ] into the intervals [0, t0] and [t0, T ].

Lemma 7.14. Under Assumption 7.12, we have∫ T

0

∣∣χh(t)− e−t2/2
∣∣dt
t

≤
√
2π

T

√
2− 1

2
+ t20

(
0.5203 + max(log

T

t0
, 0)
)
. (7.32)

Proof. We refine the bounds from the proof of Lemma 7.13 as in [101, Eq. (2.46)].
The fraction with δ2, which we denote by t0 according to (7.31), appeared in
the error bound on Fourier transforms in Lemma 7.8. The bound (7.26) yields∫ t0

0

∣∣χh(t)− e−t2/2
∣∣dt
t

≤ 0.0023 δs+1t0 + (1 + 0.0387 δs+1)
t20
2
. (7.33)

and, if T ≥ t0,∫ T

t0

∣∣χh(t)− e−t2/2
∣∣dt
t

≤ 1

T

∫ T

t0

(e−t2/4 − e−t2/2) dt+ t20

∫ T

t0

dt

t

≤
√
2π

T

√
2− 1

2
+ t20 log

T

t0
. (7.34)

To that aim we note, first, that, because of δ < δ2 < 1 and 4a ≤ 2
√
s ≤ s, we

have

δs+1

t0
≤ δ

s+1−�4a
2

√
1− δ2

4
√
2

≤ 2−5/4

Therefore (7.33) is bounded by

t20
(
0.0023× 2−5/4 +

1.0387

2
) ≤ t20 0.5203. (7.35)

If T ≥ t0, the inequality (7.32) follows by adding up (7.33) and (7.34) and
combining with (7.35). If T ≤ t0, then the integral from zero to T is bounded
by the integral from zero to t0 and (7.33) holds true because the right-hand
side of (7.32) is larger than the right-hand side of (7.33). We insert the bound
into (7.28), combine with (7.29), and obtain the lemma.

Lemma 7.15. Let s be an even integer with 30 ≤ s ≤ 2Δ2. Fix δ ∈ [0, 1) and
x ∈ [0, 2

3δa] and define h ∈ [0, δa] by ϕ̃′(h) = x. Define

δ2 := 1− 1− δ

2s1/4
.
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Then Assumption 7.12 is satisfied and

Dh ≤ 22.52

(1− δ)
√
s

(
0.8 + s exp

(
−1

2
(1− δ)s1/4

))
.

Proof. The only conditions to be checked in Assumption 7.12 are δ22 ≥ a−1 and
0 < δ < δ2 < 1. The second inequality follows from

0 < 1− δ2 =
1− δ

2s1/4
< 1− δ.

The first inequality holds true because

√
a δ2 ≥

( s

4e

)1/4(
1− 1

2s1/4

)
= (4e)−1/4

(
s1/4 − 0.5

)
.

For s = 30, the last expression is approximately equal to 1.0135 hence in par-
ticular larger than 1, which by monotonicity extends to all of s ≥ 30. Thus
Assumption 7.12 holds true and we may apply the bounds from Lemma 7.13
and Lemma 7.14.

We want to extract from (7.28) and (7.32) a bound expressed directly in terms
of s, δ, and numerical constants. In order to bound 1/T with T = (δ2 − δ)aσ̃h,
we remember the bound σ̃2

h = ϕ̃′′(h) ≥ 1− 0.751 from Lemma 7.3 and bound

T ≥
√
0.249

√
s

4e

(
1− 1

2s1/4

)
(1− δ) ≥ 0.118 (1− δ)

√
s (7.36)

for s ≥ 30. In order to bound t20 defined in (7.31), we note, first, 4a = 2
√

s/e ≥√
s, hence �4a� ≥ √

s− 1 and, second,

δ
√
s

2 ≤ exp
(
−(1− δ)s1/4/2

)
,

where we have used the standard inequality 1−x ≤ exp(−x). As a consequence,

t20 ≤ 4
√
2

δ2(1− δ2)
δ
√
s

2 ≤ 4
√
2

1− 1/(2s1/4)

2s1/4

1− δ
exp
(
−(1− δ)s1/4/2

)
.

It remains to take care of t20 max(log(T/t0), 0) in (7.32). We bound log(T/t0) by
a constant times s1/4. In view of Lemma 7.3 and δ2 − δ ≤ 1 we have

log T ≤ log(aσ̃h)) ≤
1

2
log 1.751 +

1

2
log

s

4e
.

It is easily checked that x−1 log x is maximal at x = e hence log x ≤ x/e and
log x = 4 log x1/4 ≤ 4x1/4/e, therefore

log T ≤ 1

2
log
(1.751

4e
s
)
≤ 2

e

(1.751
4e

)1/4
s1/4 ≤ 0.47 s1/4.
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Furthermore, by the definition of t0

− log t0 ≤ 1

2

(
−4a log δ2 − log(4

√
2) + log(1− δ2)

)
≤ −2a log δ2 = −

√
s

e
log δ2.

It is easily checked that x(log x − 1) is minimal at x = 1, from which one
deduces the inequality log x ≥ 1 − 1/x. We apply the inequality to log δ2, use
(1− 1/(2s1/4))−1 ≤ 1.272 for s ≥ 30, and find

− log δ2 ≤ 1− δ2
δ2

≤ 1− δ

2s1/4
1

1− 1/(2s1/4)
≤ 0.64 s−1/4.

It follows that

log T − log t0 ≤
(
0.47 +

0.64√
e

)
s1/4 ≤ 0.86 s1/4

and for s ≥ 30

0.5203 + max
(
log

T

t0
, 0
)
≤ 1.0805 s1/4.

We insert this bound into (7.32), combine with (7.36) and (7.28) for C1 and C2

defined by (4.3), and find that Dh ≤ A+B + C with

A =
1

T

( C1√
2π

+
C2

π

√
2π

√
2− 1

2

)
≤ 1

(1− δ)
√
s

1

0.118

(4.551√
2π

+
1.564√

2π
(
√
2− 1)

)
≤ 18

(1− δ)
√
s
.

and

B =
C2

π
t20 × 1.0805 s1/4

≤ 4.551

π
× 1.0805× 8

√
2

1− 1/(2× 301/4)

√
s

1− δ
exp
(
−1

2
(1− δ)s1/4

)
≤ 22.5193

√
s

1− δ
exp
(
−1

2
(1− δ)s1/4

)
.

and finally for s ≥ 30

C = C3μ
−
h (R) ≤ 4.38

( δ√
2

)s+1

≤ 10−4 δs+1.

Notice
δs+1 = δ

(
1− (1− δ)

)s ≤ e−(1−δ)s ≤
√
s e−(1−δ)s1/4/2.

The lemma follows by adding up the bounds for A, B, and C.



244 H. Döring et al.

7.7. Undoing the tilt

The relation (7.6) yields

P(X ≥ x) = eϕ̃(h)

∫ ∞

0

gh(σ̃hy + x)−1dμh(y),

which we want to bring into the form

P(X ≥ x) = eϕ̃(h)−hx
(
E
[
e−hσ̃hZ1{Z≥0}

]
+ error term

)
.

Let

I1(h) :=

∫ ∞

0

gh(σ̃hy + x)−1dμh(y)− E

[
gh(σ̃hZ + x)−11{Z≥0}

]
,

I2(h) := E
[
gh(x+ σ̃hZ)−11{Z≥0}

]
so that

P(X ≥ x) = eϕ̃(h)
(
I1(h) + I2(h)

)
. (7.37)

Lemma 7.16 below says that I1(h) is small, Lemma 7.17 says that I2(h) is
approximately equal to E[exp(−hx− hσ̃hZ)1{Z≥0}].

Lemma 7.16. For s ≥ 30, h ∈ [0, δa] and x <
√
s/(3

√
e) let Dh be the Kol-

mogorov distance between μh and the normal distribution N (0, 1). Then

|I1(h)| ≤ 2.0004Dh exp(−hx).

Proof. We apply Lemma 4.3 to f(y) = 1/gh(σ̃hy + x), which is monotone de-
creasing by Lemma 7.6, and get

|I1(h)| ≤ 2gh(x)
−1 sup

y∈R

∣∣μh

(
(−∞, y]

)
− P(Z ≤ y)

∣∣ = 2gh(x)
−1Dh.

We have for all u ≥ 0 and suitable θ = θh,u ∈ [−1, 1]

gh(x) = exps(hx) +
1

2
(hx)2

2r̃(h)

h2
=
(
1 + θ

2r̃(h)

h2

)
exps(hx).

A Taylor expansion for the exponential shows exp(hx) = exps(hx) + θ (hx)s+1

(s+1)!

hence

exps(hx) = ehx
(
1− θ

(hx)s+1

(s+ 1)!

)
.

Under our assumptions on h and x we have

0 ≤ hx ≤ δ

√
s

4e

√
s

3
√
e
=

s

e

δ

6
.

We estimate with the aid of Stirling

(hx)s+1

(s+ 1)!
≤ (s/e)s+1

(s+ 1)!

(δ
6

)s+1

≤
(δ
6

)s+1

.
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Altogether, combining also with (7.13) and s ≥ 30,

gh(x)
−1 ≤ exp(−hx)

(1− (δ/
√
2)s−5)(1− (δ/6)s+1)

≤ 1.0002 e−hx (7.38)

and the lemma follows.

Lemma 7.17. Under Assumption 7.12, we have

I2(h) = e−hx

(
E
[
exp(−hσ̃hZ)1{Z≥0}

]
(1 + θ(δ/

√
2)s−5)(1 + θδs+1)

+ θ
1.0002√

2π
e−s/8

)
.

Proof. We split the expectations in two contributions, one belonging to Z ≤ b1
for some well-chosen truncation parameter b1 and another contribution belong-
ing to Z > b1. On the event Z ≤ b1, we are going to estimate gh(x+ σ̃hZ)−1 in
a way similar to Lemma 7.16 (where we had looked at gh(x)

−1 only). The event
Z > b1 is shown to give a negligible contribution. Set

b1 :=
b− x

σ̃h
≥ 5

3
a.

The bound uses σ̃h ≤ 2 (see Lemma 7.3), b = 4a and x ≤ 2
3a. For Z = y ≥ b1,

we note 0 ≤ gh(x + σ̃hZ)−1 ≤ gh(x)
−1 and bound gh(x)

−1 as in (7.38). This
yields

0 ≤ E
[
gh(x+ σ̃hZ)−11{Z≥b1}

]
≤ 1.0002 exp(−hx)P(Z ≥ b1).

Next consider Z = y ∈ [0, b1]. Then u := x+ σ̃hy ≤ b, moreover

hu ≤ hb ≤ (δa)(4a) = δ
s

e

and
(hu)s+1

(s+ 1)!
≤ (s/e)s+1

(s+ 1)!
δs+1 ≤ δs+1.

Proceeding as in the proof of Lemma 7.16, we see that

exp(−hu)

(1 + (δ/
√
2)s−5)(1 + δs+1)

≤ gh
(
u)−1 ≤ exp(−hu)

(1− (δ/
√
2)s−5)(1− δs+1)

.

We substitute u = x+ σ̃hZ, take expectations, and find

E
[
gh(x+ σ̃hZ)−11{Z∈[0,b1]}

]
=

E
[
exp(−hx− hσ̃hZ)1{Z∈[0,b1]}

]
(1 + θ(δ/

√
2)s−5)(1 + θδs+1)

.

On the right-hand side, replacing the constraint Z ∈ [0, b1] by Z ≥ 0 we obtain
an upper bound. For a lower bound we note

E
[
exp(−hσ̃hZ)1{Z∈[0,b1]}

]
≥ E
[
exp(−hσ̃hZ)1{Z≥0}

]
− P(Z ≥ b1).
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Combining everything, we get

I2(h) ≤
E
[
exp(−hx− hσ̃hZ)1{Z≥0}

]
(1 + θ(δ/

√
2)s−5)(1 + θδs+1)

+ 1.0002 exp(−hx)P(Z ≥ b1)

and

I2(h) ≥
E
[
exp(−hx− hσ̃hZ)1{Z≥0}

]
(1 + θ(δ/

√
2)s−5)(1 + θδs+1)

− 1.0002 exp(−hx)P(Z ≥ b1).

Finally we estimate

P(Z ≥ b1) ≤
1√
2π

∫ ∞

b1

y

b1
e−y2/2dy ≤ 1

b1
√
2π

e−b21/2 ≤ 1√
2π

e−s/8.

In the last inequality we have used b1 ≥ 1 and 4b21 ≥ 100
9 a2 = 100

9
s
4e � 1.02 s ≥ s.

7.8. Cramér-Petrov series

The function L̃(x) defined in (2.7) is for h = t(x) equal to

L̃(x) = ϕ̃(h)− hx+
1

2
x2.

We can now estimate the absolute value of L̃.

Lemma 7.18. Suppose 0 ≤ x <
√
s/(3

√
e) with s ≤ 2Δ2. Then |L̃(x)| ≤

1.2x3/Δ.

We emphasize that the lemma does not need the assumption s ≥ 30 or s
even.

Proof. To conclude, we follow [101, p. 31] to bound L̃(x), starting from

L̃(x) =
1

2
h2 +

s∑
j=3

κj

j!
hj − hx+

1

2
x2 =

1

2
(h− x)2 +

s∑
j=3

κj

j!
hj ,

which gives

|L̃(x)| ≤ x2
(1
2

(h
x
− 1
)2

+
h2

x2

s∑
j=3

hj−2

j(j − 1)Δj−2

)
.

Set s′ := 2Δ2, a′ :=
√

s′/(4e), and δ′ := x/( 23a
′). Because of 2

3a
′ ≥ 2

3a =√
s/(3

√
e), we have δ′ < 1. It is easily checked that Lemma 7.3 also holds

true for primed quantities. In particular, the solution h of ϕ̃′(h) = x satisfies
h ≤ δ′a′ = δ′Δ/

√
2e. It follows that

s∑
j=3

hj−2

j(j − 1)Δj−2
≤ δ′

∞∑
j=3

(1/
√
2e)j−2

j(j − 1)
≤ 0.0924 δ′,
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where we used a numerical evaluation of the series. By Lemma 7.3 applied to
primed variables, x = h(1 + θδ′/3), therefore (h/x)2 ≤ 9/4 and(h

x
− 1
)2

≤
( δ′/3

1− δ′/3

)2
≤ δ′ 2

( 1/3

1− 1/3

)2
≤ δ′

4
.

Altogether

|L̃(x)| ≤ Cx2δ′ = Cx2 x

2Δ/(3
√
2e)

≤ 1.17x2 x

Δ

with C = 0.3329.

Lemma 7.19. Suppose 0 ≤ x < Δ/(3
√
e). Then L̃(x) =

∑∞
j=3 λ̃jx

j with λ̃j

the coefficients given after Definition A.3. The series is absolutely convergent
in |x| ≤ 0.3Δ.

Proof. Let b̃k be the coefficients from Eq. (A.7). By Proposition A.5, the series

H(x) =
∞∑
k=1

b̃kx
k

has radius of convergence larger or equal to 0.3Δ. Because of

2

3
a =

2

3

√
s

4e
≤

√
2

3
√
e
Δ < 0.3Δ,

it follows that H(x) is absolutely convergent for all x ∈ [0, 2
3a]. The definition

of the coefficient b̃k ensures that ϕ̃′(H(x)) = x whenever H(x) is convergent.
Since H(x) → 0 when x → 0, Lemma 7.3 guarantees that H(x) = h(x) for
all sufficiently small x. Because of h = h(x) ∈ [0, δa] and ϕ̃′′(h) 	= 0 on [0, a]
(again by Lemma 7.3), the holomorphic inverse function theorem shows that
h(x) is analytic in [0, 2

3a). Therefore the equality h(x) = H(x) extends to all of

[0, 2
3a). The series representation for L̃(x) then follows from the considerations

in Appendix A.

7.9. Theorem 2.2—Conclusion of the proof

In the evaluation of E[exp(−hσ̃hZ)1{Z≥0}] appearing in the approximation for
I2(h) from Lemma 7.17 we would like to replace hσ̃h by x, and control the error
with Lemma 4.2. To that aim we first compare hσ̃h with x.

Lemma 7.20. Let δ ∈ [0, 1], x = 2
3δa, and h ∈ [0, δa] the solution of ϕ̃′(h) = x.

Then

E
[
e−hσ̃hZ1{Z≥0}

]
=

1

1 + θ 0.86 δ
ex

2/2
P(Z ≥ x).

Proof. We show first ∣∣∣hσ̃h

x
− 1
∣∣∣ ≤ 0.86δ. (7.39)
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This bound replaces [101, Eq. (2.53)] which looks incorrect. We start as in [101]
and note

hσ̃2
h − x = hϕ̃′′(h)− ϕ̃′(h)

=
s∑

j=2

( 1

(j − 2)!
− 1

(j − 1)!

)
κjh

j−1 = θ
s∑

j=3

j − 2

j − 1
h
( h
Δ

)j−2

.

The sum is non-negative and can be bounded from above, with q = 1/
√
2e and

h ≤ δa ≤ δqΔ, by h multiplied with

s∑
j=3

j − 2

j − 1
(qδ)j−2 ≤ qδ

(1
2
+

s−4∑
k=1

(qδ)k
)
≤ qδ

(1
2
+

q

1− q

)
≤ 0.537 δ.

Therefore we have hσ̃2
h−x = θ0.537δh. Combining with the bound x = h(1+θ δ

3 )
from Lemma 7.3, we get

hσ̃2
h

x
= 1 + θδh

0.537

h(1 + θδ/3)
= 1 + θ δ

0.537

1− 1/3
= 1 + θ 0.8055 δ.

Eq. (2.53) in [101] is the same but with σ̃h instead of σ̃2
h, which looks like a

typo. We have to work a bit more to get rid of the square of the tilted variance.
We deduce with the help of the inequality

√
1 + u ≤ 1 + 1

2u that

hσ̃h =
√
hx(1 + θ0.8055δ) = x

√
1 + θ0.8055δ

1 + θδ/3

≤ x
(
1 +

1

2

(0.8055 + 1/3)δ

2/3

)
≤ x(1 + 0.8542 δ).

For the lower bound, we exploit the concavity of u �→
√
1− u on [0, 1], which

implies that the difference quotient 1
u (
√
1− u− 1) is monotone decreasing. Let

u =
(0.8055 + 1/3)δ

1 + δ/3
, u∗ =

0.8055 + 1/3

1 + 1/3
= 0.8542.

Then u ≤ u∗ and

hσ̃h

x
− 1 =

√
1 + θ0.8055δ

1 + θδ/3
− 1 ≥

√
1− u− 1 ≥

√
1− u∗ − 1

u∗ u.

We notice

1−
√
1− u∗

u∗ ≤ 0.7237,
u

δ
≤ 0.8055 + 1/3 ≤ 1.139

and conclude
hσ̃h

x
− 1 ≥ −0.7237 · 1.139 δ ≥ −0.8243 δ.
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The bound (7.39) for hσ̃h/x follows. In other words, for η := hσ̃h−x we showed
|η/x| ≤ 0.86 δ. Therefore Lemma 4.2 yields

E
[
e−hσ̃hZ1{Z≥0}

]
=

x

x+ θη
E
[
e−xZ1{Z≥0}

]
=

1

1 + θη/x
ex

2/2
P(Z ≥ x).

Now we can turn to the proof of Theorem 2.2. We distinguish the cases s ≥ 30
and s ≤ 29. The bound on L̃(x) has already been proven in Lemma 7.18, it holds
true for all s ≤ 2Δ2.

Proof of Theorem 2.2 when s ≥ 30. We start from P(X ≥ x) = eϕ̃(h)(I1(h) +
I2(h)), see (7.37). Lemma 7.16 on I1(h), Lemma 7.15 on the Kolmogorov dis-
tance Dh, and the lower bound for P(Z ≥ x) from Lemma 4.2 yield

|I1(h)| ≤ e−hx 45.05√
s

(
0.8 + s exp

(
−1

2
(1− δ)s1/4

))
≤ e−hx+x2/2

P(Z ≥ x)
113 (x+ 1)√

s

(
0.8 + s exp

(
−1

2
(1− δ)s1/4

))
.

(7.40)

Lemmas 7.17 and 7.20 yield

I2(h) = C e−hx+x2/2
P(Z ≥ x) + θ

exp(−hx)√
2π

1.0002 e−s/8 (7.41)

with

C :=
(
(1 + θ(δ/

√
2)s−5)(1 + θδs+1)(1 + θ 0.86δ)

)−1

.

In C, we bound 1 + θδs+1 ≥ 1− δ and, using s ≥ 30

(1 + θ(δ/
√
2)s−5)(1 + θ 0.86 δ) ≥ 1− δ

(
0.86 + 2−25/2

)
=: 1− cδ

with c ≤ 0.8602. The function δ �→ (1− cδ)−1 is convex on [0, 1], therefore

1

δ

( 1

1− cδ
− 1
)
≤ 1

δ

( 1

1− cδ
− 1
)∣∣∣∣

δ=1

=
c

1− c
≤ 6.2.

We deduce

C ≤ 1 + 6.2 δ

1− δ
= 1 +

7.2 δ

1− δ
.

For a lower bound for C, we use 1/(1 + x) ≥ 1− x which gives

C ≥ (1− δs+1)
(
1− (δ/

√
2)s+1

)
(1− δ/6)

≥ 1− δs+1 − (δ/
√
2)31 − δ/6− δ63

1
√
2
31

1

6

≥ 1− δ(1 + 2−31/2 + 1/6 +
1

√
2
31

1

6
),
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which is certainly larger than 1− 7.2 δ/(1− δ). Thus we have checked

C = 1 + θ
7.2 δ

1− δ
.

We insert this bound into (7.41), combine with the lower bound P(Z ≥ x) ≥
exp(−x2)/(

√
2π(x+ 1)) from Lemma 4.2, and obtain

I2(h) = e−hx+x2/2
P(Z ≥ x)

(
1 + θ

7.2 δ

1− δ
+ θ 1.0002 (x+ 1)e−s/8

)
. (7.42)

Because of x = 2
3δa = δ

√
s/(3

√
e) we have

7.2 δ =
7.2x√
s/(3

√
e)

≤ 35.4
x√
s
.

Moreover, 1.0002
√
s e−s/8 ≤ 1 for all s ≥ 30. It follows that

I2(h) = e−hx+x2/2
P(Z ≥ x)

(
1 + θ

36.4 (x+ 1)

(1− δ)
√
s

)
. (7.43)

Finally we add up the estimates (7.40) and (7.43) for I1(h) and I2(h), remember
Eq. (7.37), and obtain

P(X ≥ x) = eL̃(x)
P(Z ≥ x)

(
1 + θ

x+ 1

(1− δ)
√
s

(
127 + 113 s e−(1−δ)s1/4/2

))
.

Because of δ = x/(
√
s/(3

√
e)), this completes the proof of the theorem when s

is even and s ≥ 30.

Proof of Theorem 2.2 when s < 30. If s ≤ 30, then x ≤ √
s/(3

√
e) ≤ 1.2. By

Lemma 7.18 and s ≤ 2Δ2,

|L̃(x)| ≤ 1.2x2 x

Δ
≤ 1.2x2 1

3

√
s

Δ2e
≤ 1.23

√
2

3
√
e

≤ 0.5.

Using P(Z ≥ 1.2) ≥ 0.115, we get

eL̃(x)
P(Z ≥ x)

(
1 + f(δ, s)

x+ 1√
s

)
≥ e−0.5 0.115

(
1 +

127√
30

)
≥ 1.6 ≥ P(X ≥ x).

Furthermore

P(X ≥ x)

exp(L̃(x))P(Z ≥ x)
− 1 ≥ −1 ≥ − 127√

30
≥ −f(δ, s)

x+ 1√
s

.

This completes the proof of the inequality.
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8. Bounds for Weibull tails. Proof of Theorem 2.3

Recall that in Theorem 2.3 we assume condition (Sγ), i.e. |κj(X)| ≤ j!1+γ

Δj−2

for j ≥ 3. The main idea is to use Theorem 2.2 (which uses condition (S∗),

i.e. |κj(X)| ≤ (j−2)!
Δj−2 , j ∈ {3, . . . , s + 2}). However, in general (Sγ) does not

imply (S∗), but this is true if Δ in (S∗) is replaced by some Δs. For this
purpose, we set for s ∈ N

Δs :=
Δ

6(s+ 2)γ
, (8.1)

where we choose s depending on Δ and γ later.

Lemma 8.1. Let s ≥ 4. If |κj | ≤ j!1+γ/Δj−2 for all j ≥ 3 then we have
|κj | ≤ (j − 2)!/Δj−2

s for all j = 3, . . . , s+ 2.

Proof. We show j!1+γ ≤ (j−2)!(6(s+2)γ)j−2 for j = 3, . . . , s+2 or equivalently,

j(j − 1)j!γ ≤ (6(s+ 2)γ)j−2 (j = 3, . . . , s+ 2).

The proof is by a finite induction over j. For j = 3, the inequality reads 6 · 6γ ≤
6(s + 2)γ and it holds true because of s ≥ 4. For the induction step, we note
that if the inequality holds true for j − 1 ≥ 3 with j − 1 < s+ 2 then

j(j − 1)j!γ =
j

j − 2
jγ
(
(j − 1)(j − 2)(j − 1)!γ

)
≤ 2(s+ 2)γ (6(s+ 2)γ)j−3 ≤ (6(s+ 2)γ)j−2.

Set

s = sγ := 2
⌊1
2

(Δ2

18

)1/(1+2γ)⌋
− 2. (8.2)

Before we can apply Theorem 2.2 with this s and Δs we note some relations
between s and Δs resp. Δ and (below Lemma 8.2) a relation between Δs and
Δγ , where Δγ was given in (2.8) and appears in the formulation of Theorem
2.3. Since we will see that the statement Theorem 2.3 is trivially true for Δ
sufficiently small, some of the following estimates are stated for large values of
Δ only.

Lemma 8.2. The even integer s defined in (8.2) satisfies s ≤ 2Δ2
s. If Δ ≥

201+2γ, then in addition s ≥ 4 and

√
s ≥

√
0.82

(√2Δ

6

)1/(1+2γ)

. (8.3)

In [101] it is claimed that the bound s ≥ 4 and the inequality (8.3) (with 0.95
instead of

√
0.82 ≈ 0.9, see [101, Eq. (2.64)]) holds true for Δ > 101+2γ , which

looks incorrect.

Proof. We note

s(s+ 2)2γ ≤ (s+ 2)1+2γ ≤ Δ2

18
,
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which gives s ≤ 2Δ2
s. For the lower bound, if Δ ≥ 201+2γ , then (Δ

2

18 )
1

1+2γ ≥
400

18
1

1+2γ
≥ 400

18 ≥ 22 and

s ≥
(Δ2

18

)1/(1+2γ)

− 4 ≥ 22− 4 ≥ 4

as well as

s ≥
(Δ2

18

)1/(1+2γ)(
1− 4

( 18

Δ2

)1/(1+2γ))
≥
(Δ2

18

)1/(1+2γ)(
1− 4 · 18

400

)
= 0.82

(√2Δ

6

)2/(1+2γ)

.

We note that Δs, which we introduced in order to use Theorem 2.2 and Δγ :=
(Δ/

√
18)1/(1+2γ)

6 , which appears in Theorem 2.3, satisfy the following inequalities:

Δs ≥
1

6
Δ
(Δ2

18

)−γ/(1+2γ)

=
√
18 · 1

6

( Δ√
18

)1/(1+2γ))
=

√
18Δγ ≥ 4Δγ . (8.4)

We also note that in (8.4) we have Δs =
√
18Δγ if in the definition of s in (8.2)

we neglect the floor function. Further, we have

Δs

Δγ
=

Δ

6(s+ 2)γ
1

1
6 (Δ/

√
18)

1
1+2γ

≤ Δ1− 1
1+2γ

√
18

1
1+2γ 1

2γ
(

1
2 (Δ

2/18)
1

1+2γ − 1
)γ

=
√
18

1(
1− 2

(
18
Δ2

) 1
1+2γ

)γ ≤
√
18

(
1

1− 9
100

)γ

≤
√
18(1.1)γ . (8.5)

Together with Lemma 8.2, which reads
√
s ≥ 6

√
0.82Δγ , (8.5) implies that for

Δ ≥ 201+2γ , the quantity Δ2
s/s

2 is bounded by some constant that does not
depend on Δ. We further note that from the definition of s we have

s ≤ 2(1/2(Δ2/18)1/(1+2γ)) = 36Δ2
γ . (8.6)

Next, let λ̃k, k ≥ 3, be the coefficients defined with the help of the truncated
functions below Definition A.3, with s given by (8.2). Set

L̃(x) :=
∞∑
j=3

λ̃jx
j . (8.7)

The function appears naturally when applying Theorem 2.2 in the proof of
Theorem 2.3. A first rough estimate for L̃(x) is obtained as follows. Because
of Lemma 8.1 we can apply the bound for λ̃j from Proposition A.5 (remember

λ̃k = −b̃k−1/k) with Δs instead of Δ, which gives

|λ̃j | ≤
1

0.6 j(j − 1)

1

(0.3Δs)j−2
for all j ≥ 3. (8.8)
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Consequently for |x| ≤ 0.3Δs we have

|L̃(x)| ≤ x3

0.3Δs

∞∑
j=3

1

0.6 j(j − 1)
=

x3

0.36Δs
≤ x3

1.54Δγ
. (8.9)

This bound should be compared to |L(x)| ≤ C ′x3/Δ in Theorem 2.1 and
|L̃(x)| ≤ 1.2x2/Δ in Theorem 2.2. Notice, however, that x3/Δs can be fairly
large. Therefore in some circumstances it can be useful to write L̃(x) as a poly-
nomial in x, obtained by truncating the Cramér-Petrov series, plus a correction
term that is small when x is small compared to Δs.

Lemma 8.3. Suppose that condition (Sγ) holds true with Δ > 201+2γ. Let s be
the integer from (8.2) and

m := min
(⌈ 1

γ

⌉
+ 1, s

)
. (8.10)

Then

L̃(x) =

m∑
j=3

λjx
j + θCγ

( x

Δγ

)m+1

(8.11)

for some constant Cγ > 0 and all x ∈ (0,Δγ).

Proof. We use λ̃k = λk for k ≤ s (see (A.8)) and split

∞∑
j=m+1

λ̃jx
j =

s∑
j=m+1

λjx
j +

∞∑
j=s+1

λ̃jx
j . (8.12)

The first sum on the right-hand side is set to zero if m = s. For the second sum
we use (8.8) and obtain

∞∑
j=s+1

|λ̃j |xj ≤
∞∑

j=s+1

1

j(j − 1)

1

0.6

xj

(0.3Δs)j−2
=

5x2

3

∞∑
j=s+1

1

j(j − 1)

( x

0.3Δs

)j−2

≤ 5x2

3s2
(x/(0.3Δs))

s−1

1− x/(0.3Δs)
≤ 5(0.3)2Δ2

s

3s2
(x/(0.3Δs))

s+1

1− x/(0.3Δs)

≤ 0.15
Δ2

s

s2
1

1− x/(0.3Δs)
(x/Δγ))

s+1.

Here, we used Δs ≥ 4Δγ (see (8.4)) for the last inequality. The factor 1
1−x/(0.3Δs)

is bounded for x ∈ (0,Δγ) and also Δ2
s/s

2 is bounded by some constant that
does not depend on Δ (see (8.5)). Hence, we get

∞∑
j=s+1

|λ̃j |xj ≤ C ′
γ

( x

Δγ

)s+1

(8.13)

for some constant C ′
γ > 0 and all x ∈ (0,Δγ).
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If m = s, then (8.11) follows, with Cγ = C ′
γ .

If m < s, we use the bound from Proposition A.6, which yields

s∑
j=m+1

|λj |xj ≤ x2
s∑

j=m+1

(j + 1)!γ
(15x

Δ

)j−2

≤ (m+ 3)!γ x2(s+ 2)−(m−1)γ
s∑

j=m+1

(s+ 2)(j−2)γ
(15x

Δ

)j−2

≤ (m+ 3)!γ x2(s+ 2)−(m−1)γ (2.5x/Δs)
m−1

1− 2.5x/Δs

≤ (m+ 3)!γ

6.25

Δ2
s

(s+ 2)(m−1)γ

(2.5x/Δs)
m+1

1− 2.5x/Δs
. (8.14)

Notice that Δγ ≤ 0.25Δs ≤ Δs/2.5, hence the geometric series in the previous
inequality are indeed absolutely convergent for x ∈ (0,Δγ).

By Lemma 8.2, for large s (i.e. large Δ, see (8.2)), s is of the order of Δ2
s

and if in addition x is of the order of Δs (and strictly smaller than Δs/2.5)
then (8.14) is of the order of

Δ2
s

Δ
2γ(m−1)
s

,

which stays bounded because m ≥ 1 + 1/γ. It follows that for some constant
C ′′

γ > 0 and all x ∈ (0,Δγ),

s∑
j=m+1

|λj |xj ≤ C ′′
γ

( x

Δγ

)m+1

.

We combine this bound with (8.13) and obtain (8.11) for m < s. The case m = s
was already addressed above, the proof is complete.

Proof of Theorem 2.3. We start with the proof for Δ ≥ 201+2γ . Set Δγ :=
1
6 (Δ

√
2/6)1/(1+2γ) and let Δs and s be as in Eqs. (8.1) and (8.2). By Lemma 8.2,

for Δ ≥ 201+2γ , we have

Δγ ≤
√
s

6
√
0.82

≤
√
s

3
√
e
.

For δ := x/Δγ we have x = δΔγ ≤ δ
√
s/(3

√
e). Theorem 2.2 is stated for

equality x = δ
√
s/(3

√
e) but it extends to x ≤ δ

√
s/(3

√
e) because f(s, δ) is

monotone increasing in δ. Therefore we obtain

P(X ≥ x) = eL̃(x)
P(Z ≥ x)

(
1 + θf(δ, s)

x+ 1√
s

)
L̃ given in (8.7). Then

f(δ, s) =
1

1− δ

(
127 + 113 s e−(1−δ)s1/4/2

)
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≤ 1

1− δ

(
127 + 113 · 36Δ2

γ exp
(
−1

2
(1− δ)(3

√
eΔγ)

1/2
))

≤ 1

1− δ

(
127 + 113 · 36Δ2

γ exp
(
−(1− δ)

√
Δγ

))
,

where we used (8.6) for the first inequality. Hence we have

1√
s
f(δ, s) ≤ 1

Δγ

1

6
√
0.82

1

1− δ

(
127 + 113 · 36Δ2

γ exp
(
−(1− δ)

√
Δγ

))
≤ 1

Δγ

1

1− δ

(
24 + 749Δ2

γ exp
(
−(1− δ)

√
Δγ

))
=

1

Δγ
g(δ,Δγ)

Then we obtain for Δ ≥ 201+2γ

P(X ≥ x) = eL̃(x)
P(Z ≥ x)

(
1 + θg(δ,Δγ)

x+ 1

Δγ

)
, x ∈ [0,Δγ). (8.15)

We check that (8.15) is trivial for Δ ≤ 201+2γ as follows. For 0 < Δ < 201+2γ

we have

0 ≤ x < Δγ ≤ 1

6

(
201+2γ

√
2

6

) 1
1+2γ

≤ 5
√
2

9
≤ 0.8.

By (8.9) we have for x ∈ [0,Δγ)

|Lγ(x)| ≤
x3

1.54Δγ
≤ x2

1.54
≤ 0.42

We supplement this with the inequality

g(δ,Δγ)
x+ 1

Δγ
=

1

1− δ

(
24 + 749Δ2

γ exp
(
−(1− δ)

√
Δγ

))x+ 1

Δγ
≥ 24.

This implies

(
1− Φ(x)

)
eLγ(x)

(
1 + g(δ,Δγ)

x+ 1

Δγ

)
≥ 0.79 · 0.65 · 25 ≥ 12 ≥ 1 ≥ 1− FX(x)

as well as

1− FX(x)

eLγ(x)
(
1− Φ(x)

) − 1 ≥ −1 ≥ −24 ≥ −g(δ,Δγ)
x+ 1

Δγ
.

This proves that (8.15) is also true for Δ ≤ 201+2γ . The statement on L̃γ = L̃
in the theorem follows from Eq. (8.9) and Lemma 8.3.

9. Berry-Esseen bound. Proof of Theorem 2.4

The proof of Theorem 2.4 is similar to the proof of the normal approximation
of the tilted measure for the proof of Theorem 2.2, see Section 7.6. The primary
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ingredients are a smoothing inequality, e.g. Lemma 4.1, and bounds on the
characteristic function of X. The bounds on characteristic functions are similar
to the bounds from Sections 7.4 and 7.5, the estimates are slightly easier because
we do not need to take tilt parameters into account.

Proof of Theorem 2.4. Replacing the exponentials by their second-order Taylor
approximations, we immediately get∣∣E[eitX]− e−t2/2

∣∣ ≤ t2

for all t ∈ R, compare Section 7.5. But now suppose first that Δ > 201+2γ .
Define Δγ , s := sγ , and mγ as in (2.9) and Δs = Δ/(6(s + 2)γ) as in (8.1). In
Section 8 we showed that s ≤ 2Δ2

s and s ≥ 4, moreoverX satisfies condition (S∗)
with Δs instead of Δ, i.e., |κj | ≤ (j − 2)!/Δj−2

s for j = 3, . . . , s+ 2. Let ϕ̃(t) =
t2

2 +
∑s

j=1 κjt
j/j!. We split∣∣E[eitX]− e−t2/2

∣∣ ≤ ∣∣E[eitX]− eϕ̃(it)
∣∣+ ∣∣eϕ̃(it) − e−t2/2

∣∣. (9.1)

For |t| ≤ Δs, we have∣∣∣ϕ̃(it) + t2

2

∣∣∣ ≤ t2
s∑

j=3

(t/Δs)
j−2

j(j − 1)
≤ t3

2Δs
.

In the last inequality we have used
∑∞

j=3 1/[j(j−1)] =
∑∞

j=2 (1/j − 1/(j + 1)) =
1/2. For the first term on the right-hand side of (9.1), we use a couple of relations
from Section 7.1, notably (7.5), involving the truncated moments m̃j and the
functions gt(x) = exps(tx) + x2r̃(t), which give∣∣E[eitX]− eϕ̃(it)

∣∣ = ∣∣E[eitX − git(X)
]∣∣ ≤ E

∣∣eitX − exps(itX)
∣∣+ |r̃(it)|,

which is similar to (7.15) with h = 0 (note gh(x) = 1 when h = 0) and added
expected values. Let us assume that s ≥ 30, which is the case when Δ is large
enough, so that the bounds from Section 7.4 and 7.5 are applicable. Let a :=√
s/(4e) and δ2 ∈ (0, 1) with δ−2

2 ≤ a. Then, proceeding as in Lemma 7.8, we
obtain the upper bound∣∣E[eitX]− eϕ̃(it)

∣∣ ≤ 4
√
2

δ
�4a
2

1− δ2
(|t| ≤ δ2a).

We deduce∣∣E[eitX]− e−t2/2
∣∣ ≤ 4

√
2

δ
�4a
2

1− δ2
+ e−t2/2

∣∣et3/(2Δs) − 1
∣∣ (|t| < δ2a).

A reasoning similar to Lemma 7.13 shows that the Kolmogorov distance between
the normal law and the law of X is bounded by some constant times 1/

√
s hence

also by some constant times 1/Δγ ,

sup
x∈R

∣∣∣P(X ≥ x)− P(Z ≥ x)
∣∣ ≤ C

Δγ
.

This holds true if Δ is large enough so that s = sγ is larger than 30, say Δ ≥ Δ∗.
For smaller Δ, the bound is trivially true if we choose C ≥ 2 supΔ≤Δ∗ Δγ .
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Appendix A: Cramér-Petrov series

Here we recall some facts on the Cramér-Petrov series, also called Cramér series,
for the reader’s convenience. The series was introduced by Cramér [19] and
appeared in a limit theorem subsequently improved by Petrov [91], see [92,
Theorem 5.23] or [64, Chapter 8]. The recurrence relation (A.2) below can be
found in [101].

A.1. When Cramér’s condition is satisfied

Even though we are primarily interested in heavy-tailed variables, the definition
of the Cramér-Petrov series is best understood by looking first at a random
variable that satisfies Cramér’s condition. Thus let X be a real-valued random
variable X such that

E[exp(tX)] < ∞

for all t ∈ (−Δ,Δ), for some Δ > 0. Further assume that X is not almost surely
constant so that the variance σ2 is non-zero. Then the cumulant generating
function ϕ(t) = logE[exp(tX)] is analytic in some neighborhood of the origin
and the Taylor expansion

ϕ(t) = μt+
1

2
σ2t2 +

∞∑
j=3

κj

j!
tj

has a strictly positive radius of convergence. Recall I(x) = supt∈R(tx− ϕ(t)).

Proposition A.1. Let X be a real-valued random variable that is not almost
surely constant. Assume E[exp(tX)] < ∞ for all t ∈ (−Δ,Δ) for some Δ > 0.
Let μ = E[X] and σ2 = V(X). Then the Taylor expansion of I at μ = E[X] is
of the form

I(μ+ τ) =
τ2

2σ2
−

∞∑
j=3

λjτ
j (A.1)

and has non-zero radius of convergence. The coefficients (λj)j≥3 are given by
λk = −bk−1/k with coefficients (bk)k≥2 computed recursively as follows: b1 =
1/σ2 and for all k ≥ 2,

bk = − 1

σ2

k∑
r=2

κr+1

r!

∑
1≤j1,...,jr≤k−1:

j1+···+jr=k

bj1 · · · bjr . (A.2)

The coefficients bk have a significance of their own: for small t,

ϕ′(t) = μ+ τ ⇔ t =
τ

σ2
+

∞∑
k=2

bkτ
k.
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Proof. The restriction of the cumulant generating function to (−Δ,Δ) is strictly
convex and in C∞((−Δ,Δ)), its derivative ϕ′ is a strictly increasing smooth
bijection from (−Δ,Δ) onto some open interval (a, b) ⊂ R, and ϕ′′(t) > 0
on (−Δ,Δ). Therefore the inverse map (ϕ′)−1 : (a, b) → (−Δ,Δ) is smooth
as well, i.e., (ϕ′)−1 ∈ C∞((a; b)). By standard facts on Legendre transforms,
setting tx := (ϕ′)−1(x), we have for all x ∈ (a, b)

I(x) = txx− ϕ(tx), ϕ′(tx) = x, I ′(x) = tx, I ′′(x) =
1

ϕ′′(tx)
.

In view of ϕ′(0) = μ and ϕ′′(0) = σ2, we have tμ = 0 and

I(μ) = 0, I ′(μ) = 0, I ′′(μ) =
1

σ2
,

a well-known property of the Cramér rate function I(x). Consequently the Tay-
lor series of I(x) at x = μ is of the form (A.1) with

λj = − 1

j!

dj

dxj
I(x)

∣∣∣
x=μ

.

From the analyticity of the cumulant generating function ϕ(t) at t = 0, the fact
ϕ′′(0) = 1 	= 0, and the holomorphic inverse function theorem, we know that
there exist complex open neighborhoods U, V ⊂ C of t = 0 and μ respectively
such that ϕ′ is a bijection from U onto V with holomorphic inverse (ϕ′)−1 : V →
U . In particular, its Taylor series around μ has non-zero radius convergence.
Thus

t(τ) := (ϕ′)−1(μ+ τ) =

∞∑
k=0

bkτ
k

for suitable coefficients bk ∈ R, and the series is absolutely convergent for suffi-
ciently small t. The first two terms are easily seen to be b0 = 0 and b1 = 1/σ2,
thus

t(τ) =
τ

σ2
+

∞∑
k=2

bkτ
k. (A.3)

Therefore

I(μ+ τ) =

∫ τ

0

I ′(μ+ u)du =

∫ τ

0

t(u)du =
τ2

2σ2
+

∞∑
k=2

bk
τk+1

k + 1

hence the Taylor series of I and (ϕ′)−1 around μ have the same radius of con-
vergence, moreover

λk = −bk−1

k
(k ≥ 3).

The coefficients bk from (A.3) are computed as follows: we must have

μ+ τ = ϕ′(t(τ)) = μ+ σ2
(∑
k≥1

bkτ
k
)
+

∞∑
r=2

κr+1

r!

( ∞∑
j=1

bjτ
j
)r
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for all sufficiently small τ . The left- and right-hand sides are power series in
τ and therefore must have all their coefficients equal. The coefficients of order
zero and one are equal because μ = μ and 1 = b1σ

2. For orders k ≥ 2, we obtain
the equation

0 = σ2bk +

∞∑
r=2

κr+1

r!

∑
j1,...,jr≥1:
j1+···+jr=k

bj1 · · · bjr .

In the second summand, because of j� ≥ 1, the only relevant contributions come
from r ≤ k and 1 ≤ j1, . . . , jr ≤ k − 1, so the recurrence relation for the bk’s
follows.

An immediate consequence is the following: If σ2 = 1, then each coefficient
λj is a polynomial of the cumulants κ3, . . . , κj . Explicit formulas for the first
few coefficients b1, . . . , b4 are given in [101, p. 19], see also [64, Eq. (7.2.20)].

It is instructive to work out an explicit bound on the radius of convergence.

Proposition A.2. Assume E[X] = 0, V[X] = 1 and |κj | ≤ (j − 2)!/Δj−2 for
all j ≥ 3. Then the radius of convergence of the Cramér-Petrov series is at least
3
10Δ.

Notice
√
2

3
√
e
≈ 0.2859 < 0.3 so the radius of convergence from Proposition A.2

is slightly better than the lower bound 2/(3
√
e) to the radius of convergence to

the Cramér-Petrov series proven in [101].

Proof. We bound the radius of convergence of the series
∑

k bkτ
k with the help

of Lagrange inversion, a trick used for the virial expansion in classical statistical
mechanics [74]. The radius of convergence of

∑
j

κj

j! t
j is at least Δ (obvious),

and for |t| < Δ we have

|ϕ′′(t)| ≤ 1

1− |t|/Δ .

and ∣∣∣ϕ′(t)

t
− 1
∣∣∣ ≤ ∞∑

j=3

|κj |
(j − 1)!

|t|j−2 ≤
∞∑
j=3

1

j − 1

|t|j−2

Δj−2

=
1

|t|/Δ
[
− log

(
1− |t|

Δ

)
− |t|

Δ

]
=: ε

( |t|
Δ

)
. (A.4)

By the Lagrange inversion formula [43, Appendix A.6], the coefficient of τk in
the expansion of t(τ) is equal to 1/k times the coefficient of tk−1 in the expansion
of (ϕ′(t)/t)−k, which we write as

bk = [τk]t(τ) =
1

k
[tk−1]

(ϕ′(t)

t

)−k

. (A.5)

Since coefficients in convergent integrals can be extracted by complex contour
integrals, it follows that

bk =
1

k

1

2πi

∮
1

(ϕ′(t)/t)k
dt

tk
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with the contour of integration a circle |t| = r with r ∈ (0,Δ). It follows that

|bk| ≤
1

krk−1
sup
|t|=r

1

|ϕ′(t)/t|k (r ∈ (0,Δ))

which yields, together with (A.4),

|bk| ≤
1

krk−1(1− ε(r/Δ))k
(r ∈ (0,Δ)).

Let us choose r = Δ/2. Then

ε(r/Δ) = ε(
1

2
) = 2(log 2− 1

2
) = log 4− 1 � 0.386 ≤ 0.4

hence r(1− ε(r/Δ)) ≥ 1
2Δ(1− 0.4) = 0.3Δ and

|bk| ≤
r

k

1

(r[1− ε( 12 )])
k
≤ Δ

2k

1

(0.3Δ)k
. (A.6)

Therefore the radius of convergence of
∑

k bkt
k and

∑
j λjt

j is at least 0.3Δ.

A.2. When X has moments up to order s ≥ 3

More generally, we adopt the recurrence relation from Proposition A.1 as a
definition of coefficients bk and λk.

Definition A.3. Fix s ≥ 3. Let X be a real-valued random variable with mean
E[X] = μ and variance σ2 = V(X) > 0. Assume E[|X|s] < ∞. Then we define
coefficients b1, . . . , bs−1 and λ2, . . . , λs as follows:

• b1 := 1/σ2.
• b2, . . . , bs−1 are defined recursively by (A.2).
• λk := −bk−1/k for k = 1, . . . , s.

If s = ∞, the series
∑∞

j=0 λj+3τ
j is called Cramér-Petrov series.

A substitute for Proposition A.1 is the following. Define

ϕ̃(t) :=

s∑
j=1

κj

j!
tj , κ̃j :=

{
κj , j ≤ s,

0, j > s.

Let (b̃k)k≥1 and (λ̃k)k≥2 be the coefficients defined by b̃1 = 1/σ2, λ̃k = −b̃k−1/k,
and the recurrence relation (A.2) with κ̃r+1 instead of κr+1 or equivalently,

b̃k = − 1

σ2

s−1∑
r=2

κr+1

r!

∑
1≤j1,...,jr≤k−1:

j1+···+jr=k

b̃j1 · · · b̃jr . (A.7)

A finite induction over k shows that

∀k ∈ {2, . . . , s− 1} : b̃k = bk, ∀k ∈ {2, . . . , s} : λ̃k = λk. (A.8)
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Proposition A.4. Under the assumptions of Definition A.3, there exist open
intervals (−ε, ε′) � 0, (μ− δ, μ+ δ) such that the following holds true:

(a) ϕ̃′ is a bijection from (−ε, ε′) onto (μ− δ, μ+ δ).
(b) The series

∑∞
k=1 b̃kτ

k and
∑∞

k=3 λ̃kτ
k have radius of convergence larger

or equal to δ.
(c) If t ∈ (−ε, ε′) and τ ∈ (−δ, δ), then

ϕ̃′(t) = μ+ τ ⇔ t =

∞∑
k=1

b̃kτ
k.

(d) For x ∈ (μ− δ, μ+ δ) and t ∈ (−ε, ε′) the solution of ϕ̃′(t) = x, we have

Ĩ(x) := tx− ϕ̃(t) = − x2

2σ2
+

∞∑
j=3

λ̃jx
j .

Proof. Parts (a) and (b) follow from the holomorphic inverse function theorem.
The function ϕ̃′ : C → C is a polynomial, so in particular holomorphic. Its
derivative at 0 is ϕ̃′′(0) = 1

σ2 	= 0, and at 0 it takes the value ϕ̃′(0) = μ.
Therefore there exist open neighborhoods U, V ⊂ C of 0 and μ, respectively,
such that ϕ̃′, restricted to U , is a bijection from U onto V with holomorphic
inverse2 (ϕ′)−1.

Let δ > 0 be such that the open disk B(μ, δ) := {z ∈ C | |z − μ| < δ} is
contained in V and (−ε, ε′) := (ϕ̃′)−1((μ−δ, μ+δ)). Then part (a) of the lemma
is clearly satisfied. The Taylor series of (ϕ̃′)−1 at μ has radius of convergence at
least δ. A reasoning completely analogous to the proof of Proposition A.1 shows
that the coefficients of the Taylor series are equal to b̃k. Part (b) and (c) of the
lemma follow.

For (d), we note

d

dx
Ĩ(x) = (ϕ̃′)−1(x)+x

1

ϕ̃′′((ϕ̃′)−1(x)
−ϕ̃′((ϕ̃′)−1(x)

) 1

ϕ̃′′((ϕ̃′)−1(x)
= (ϕ̃′)−1(x)

and conclude by an argument similar to the proof of Proposition A.1.

Eq. (A.6) in the proof of Proposition A.2 has a counterpart as well.

Proposition A.5. Assume E[X] = 0, V(X) = 1, and |κj | ≤ (j − 2)!/Δj−2 for
all j = 3, . . . , s. Then

|b̃k| ≤
Δ

2k

1

(0.3Δ)k

for all k ≥ 2.

The proof is similar to the proof of Eq. (A.6) and is omitted.

2Strictly speaking, we should write (ϕ̃′|U )−1, since ϕ̃′ with domain C is not injective.
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We conclude with a representation of the coefficients λk needed in the proof
of Proposition A.6 below. We assume E[X] = 0 and V(X) = 1. Eq. (A.8) and
the analogue of (A.5) for b̃k instead of bk yields

λk = − b̃k−1

k
= − 1

k(k − 1)
[tk−2]

( ϕ̃′(t)

t

)−(k−1)

= − 1

k(k − 1)
[tk−2]

(
1 +

s∑
j=3

κj

(j − 1)!
tj−2

)−(k−1)

(A.9)

for all k ≤ s.

A.3. Bounds under the Statulevičius condition

Proposition A.6. Under condition Sγ , the coefficients λk of the Cramér-Petrov
series

∑
k≥3 λkx

k satisfy

|λk| ≤
(k + 2)!γ

(Δ/15)k−2
(k ≥ 3).

The proposition is a slightly improved version of [101, Eq. (2.67)].

Proof. By Eq. (A.9) (applied to s = k), we have

λk = − 1

k(k − 1)
[tk−2]

(
1 +

k∑
j=3

κj

(j − 1)!
tj−2

)−(k−1)

.

Let gk > 0 be such that |κj | ≤ j!/gj−2
k for all j = 3, . . . , k; a bound for gk is

given shortly. Then Cauchy’s inequality yields

|λk| ≤
1

k(k − 1)
inf
r
r−(k−2)

(
1−

k∑
j=3

j
( r
gk

)j−2
)−(k−1)

.

The infimum is over intervals r ∈ [0, α] on which the denominator is non-zero.
We write r = ρ gk, bound the sum by a series, and obtain

|λk| ≤
g
−(k−2)
k

k(k − 1)
inf
ρ
ρ−(k−2)

(
1−

∞∑
j=3

jρj−2
)−(k−1)

.

A numerical evaluation yields

inf
ρ
ρ−1
(
1−

∞∑
j=3

jρj−2
)−1

� 14.5 ≤ 15

and the minimum is attained at ρ � 0.126 ≤ 0.13, therefore

|λk| ≤
g
−(k−2)
k

k(k − 1)
0.13 · 15k−1 ≤ 2

(15/gk)
(k−2)

k(k − 1)
. (A.10)
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In order to get a bound on gk, we check that

j!1/(j−2) ≤ (k + 2)!1/(k−2) (j = 3, . . . , k) (A.11)

or equivalently, j!k−2 ≤ (k + 2)!j−2. The proof is by induction over k ≥ j at
fixed j ≥ 3. For k = j, the claim is obviously true. For the induction step, we
note that for all k ≥ j ≥ 3, we have j! ≤ 3! jj−3 hence

j!

(k + 3)j−2
≤ 3! jj−3

(j + 3)j−2
≤ 3!

j + 3
≤ 1.

Therefore, under the induction hypothesis (k + 2)!j−2 ≥ j!k−2, we have

(k + 3)!j−2 = (k + 3)j−2(k + 2)!j−2 ≥ (k + 3)j−2j!k−2 ≥ j!k−1.

This completes the induction. Condition (Sγ) and Eq. (A.11) yield |κj | ≤
j!/gj−2

k for all j ≤ k by choosing

1

gk
=

1

Δ
(k + 2)!γ/(k−2).

We deduce from (A.10) that

|λk| ≤
2

k(k − 1)
(15/Δ)k−2(k + 2)!γ ≤ (15/Δ)k−2(k + 2)!γ .

Acknowledgments

We thank Zakhar Kabluchko, Christoph Thäle and all members of the DFG
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[39] Féray, V., Méliot, P. L. and Nikeghbali, A. (2016). Mod-φ conver-
gence. SpringerBriefs in Probability and Mathematical Statistics. Springer,
Cham Normality zones and precise deviations. MR3585777
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[48] Grote, J. and Thäle, C. (2018). Concentration and moderate devi-
ations for Poisson polytopes and polyhedra. Bernoulli 24 2811–2841.
MR3779703
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[84] Möhle, M. and Pitters, H. (2015). Absorption time and tree length
of the Kingman coalescent and the Gumbel distribution. Markov Process.
Related Fields 21 317–338. MR3442826

https://www.ams.org/mathscinet-getitem?mr=0920273
https://www.ams.org/mathscinet-getitem?mr=2218558
https://www.ams.org/mathscinet-getitem?mr=1794265
https://www.ams.org/mathscinet-getitem?mr=2725505
https://www.ams.org/mathscinet-getitem?mr=2959306
https://www.ams.org/mathscinet-getitem?mr=3771744
https://www.ams.org/mathscinet-getitem?mr=0163711
https://www.ams.org/mathscinet-getitem?mr=3479242
https://www.ams.org/mathscinet-getitem?mr=0123345
https://www.ams.org/mathscinet-getitem?mr=3779051
https://www.ams.org/mathscinet-getitem?mr=3007210
https://www.ams.org/mathscinet-getitem?mr=0907286
https://www.ams.org/mathscinet-getitem?mr=3444307
https://www.ams.org/mathscinet-getitem?mr=4021875
https://arxiv.org/abs/1908.09020
https://www.ams.org/mathscinet-getitem?mr=1652936
https://www.ams.org/mathscinet-getitem?mr=3442826


The method of cumulants for the normal approximation 269

[85] Nagaev, A. V. (1968). Local limit theorems with regard to large de-
viations when Cramér’s condition is not satisfied. Litovsk. Mat. Sb. 8
553–579. Selected Transl. in Math. Stat. Probab. 11, 249–278 (1973).
MR0243590

[86] Nagaev, S. V. (1965). Some limit theorems for large deviations. Teor.
Verojatnost. i Primenen 10 231–254. English translation in Theor. Prob-
ability Appl. 10 (1965), 214–235. MR0185644

[87] Nourdin, I. and Peccati, G. (2010). Cumulants on the Wiener space.
J. Funct. Anal. 258 3775–3791. MR2606872

[88] Pan, G.,Wang, S. and Zhou, W. (2017). Limit theorems for linear spec-
trum statistics of orthogonal polynomial ensembles and their applications
in random matrix theory. J. Math. Phys. 58 103301. MR3709450

[89] Peccati, G. and Taqqu, M. S. (2011). Wiener chaos: moments, cumu-
lants and diagrams. Bocconi & Springer Series 1. Springer, Milan; Bocconi
University Press, Milan A survey with computer implementation, Supple-
mentary material available online. MR2791919

[90] Pemantle, R. and Wilson, M. C. (2013). Analytic combinatorics in
several variables. Cambridge Studies in Advanced Mathematics 140. Cam-
bridge University Press, Cambridge. MR3088495

[91] Petrov, V. V. (1954). Generalization of Cramér’s limit theorem. Uspehi
Matem. Nauk (N.S.) 9 195–202. MR0065058

[92] Petrov, V. V. (1995). Limit theorems of probability theory. Oxford Stud-
ies in Probability 4. The Clarendon Press, Oxford University Press, New
York Sequences of independent random variables, Oxford Science Publi-
cations. MR1353441

[93] Pitters, H. (2017). On the number of segregating sites.
arXiv:1708.05634.

[94] Pitters, H. (2019). The number of cycles in a random permutation and
the number of segregating sites jointly converge to the Brownian sheet.
arXiv:1903.04906.

[95] Rider, B. and Virág, B. (2007). The Noise in the Circular Law and the
Gaussian Free Field. International Mathematics Research Notices 2007.
rnm006. MR2361453

[96] Robbins, H. (1955). A Remark on Stirling’s Formula. American Mathe-
matical Monthly 62 402–405. MR0069328

[97] Rota, G. C. and Shen, J. (2000). On the combinatorics of cumulants.
J. Combin. Theory Ser. A 91 283–304. In memory of Gian-Carlo Rota.
MR1779783

[98] Rudzkis, R. and Bakshaev, A. (2017). General theorems on large de-
viations for random vectors. Lith. Math. J. 57 367–390. MR3685166

[99] Rudzkis, R., Saulis, L. and Statuljavičus, V. (1978). A general
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