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Abstract: The recently introduced framework of universal inference pro-
vides a new approach to constructing hypothesis tests and confidence re-
gions that are valid in finite samples and do not rely on any specific regu-
larity assumptions on the underlying statistical model. At the core of the
methodology is a split likelihood ratio statistic, which is formed under data
splitting and compared to a cleverly selected universal critical value. As
this critical value can be very conservative, it is interesting to mitigate the
potential loss of power by careful choice of the ratio according to which
data are split. Motivated by this problem, we study the split likelihood
ratio test under local alternatives and introduce the resulting class of non-
central split chi-square distributions. We investigate the properties of this
new class of distributions and use it to numerically examine and propose an
optimal choice of the data splitting ratio for tests of composite hypotheses
of different dimensions.

MSC2020 subject classifications: Primary 62E20, 62F03.
Keywords and phrases: Chi-square distribution, likelihood ratio test,
local alternatives, universal inference.

Received March 2022.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6632
2 Background on the split likelihood ratio test . . . . . . . . . . . . . . 6633
3 Asymptotic theory for the SLRT . . . . . . . . . . . . . . . . . . . . 6634

3.1 Asymptotic distribution . . . . . . . . . . . . . . . . . . . . . . 6635
3.2 Optimal splitting ratio . . . . . . . . . . . . . . . . . . . . . . . 6639

4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6643
4.1 Power of the SLRT in regular setting . . . . . . . . . . . . . . . 6643
4.2 Influence of the splitting ratio . . . . . . . . . . . . . . . . . . . 6644
4.3 Power of the SLRT in irregular setting . . . . . . . . . . . . . . 6646

5 Extension to the cross-fit SLRT . . . . . . . . . . . . . . . . . . . . . 6647
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6649
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6649

∗This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 83818). Further, this work has been funded by the German Federal Ministry of Education
and Research and the Bavarian State Ministry for Science and the Arts. The authors of this
work take full responsibility for its content.

6631

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/22-EJS2099
mailto:david.strieder@tum.de
mailto:mathias.drton@tum.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


6632 D. Strieder and M. Drton

1. Introduction

Likelihood ratio tests provide powerful solutions to a broad range of hypothesis
testing problems. However, their implementation generally relies on asymptotic
approximations whose validity requires the underlying statistical models to sat-
isfy a number of regularity conditions. When these conditions are not met, the
needed distribution-theoretic insights may be difficult to obtain; see, e.g., [1, 3].
Recent work of Wasserman, Ramdas and Balakrishnan [8] addresses this chal-
lenge by providing a split likelihood ratio test that is universally applicable to
problems with i.i.d. samples. In this universal inference methodology, the data
are split into two parts: one part is used to form a maximum likelihood esti-
mate of a distribution under the full model, and the remaining data are used to
compare the likelihood under the estimate versus the null hypothesis. Crucially,
the independence of the split data allows one to apply a universal critical value,
which merely depends on the chosen significance level and is guaranteed to be
conservative even for finite samples. The resulting methodology makes it possi-
ble to conduct rather simple analyses of complicated composite hypotheses. For
example, Strieder et al. [5] recently used the approach to construct hypothesis
tests for causal effects in a setting with unknown causal structure.

The initial work in [8] and the follow-up paper by Dunn et al. [2] investigate
the performance of the universal inference framework in the Gaussian case and
under consideration of point hypotheses/construction of confidence regions. Un-
surprisingly, the universal framework is rather conservative. To cite the authors:
“our methods may not be optimal, though we do not yet fully understand how
close to optimal they are beyond special cases (uniform, Gaussian).” During the
review period, the independent work of Tse and Davison [6] was announced to
appear, which covers different aspects of related problems.

The goal of the present paper is to expand our insights about the behavior of
the split likelihood ratio test, as introduced in more detail in Section 2. In par-
ticular, we seek to shed light on the impact of the dimensionality of the tested
null and alternative hypotheses. To this end, we study the case of smooth hy-
potheses in regular parametric models that are differentiable in quadratic mean.
Under similar conditions, Wasserman, Ramdas and Balakrishnan [8] studied in
their initial work the diameter of confidence sets corresponding to the inverted
split likelihood ratio tests. We extend our insights about the limit behaviour of
the split likelihood ratio test by deriving precise limit theory and calculating
the large-sample asymptotic distribution allowing for local alternatives. This
distribution belongs to a “split-version” of noncentral chi-square distributions,
for which moments may be derived explicitly. We then use this new class of non-
central split chi-square distributions to propose a new routine for calculating the
optimal splitting ratio for the split likelihood ratio test based on the dimension-
ality of the tested null and alternative hypotheses (Section 3). Furthermore, we
use this new class of distributions to conduct numerical experiments that analyze
the power and the optimal choice of the splitting ratio for the split likelihood
ratio (Section 4). The simulations suggest, in particular, that while in lower
dimensional settings an even split performs well, in higher dimensions a lower
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splitting ratio is advantageous and our proposed new splitting ratio significantly
improves power. In an experiment with factor analysis models, we demonstrate
that our proposal may also lead to a power gain in irregular settings. This and
other findings are further discussed in the concluding Section 6.

Notation In the remainder, the symbols P→, a.s.−→ and D→ stand for conver-
gence in probability, almost sure convergence and convergence in distribution,
respectively. The stochastic Landau symbol oP (1) indicates convergence to zero
in probability. If not stated otherwise, the limits refer to n → ∞. With Id we
denote the d × d identity matrix, and Nd(0, Id) is the standard normal distri-
bution in R

d. For a given vector X ∈ R
d we denote the vector of its first p

components by X[p].

2. Background on the split likelihood ratio test

Let {Pθ : θ ∈ Θ} be a given (parametric) statistical model, with parameter
space Θ ⊂ R

d. The distributions Pθ are assumed to be dominated by a measure
μ, and we write pθ for the μ-density of Pθ. Given an i.i.d. sample X1, . . . , Xn

from an unknown distribution Pθ in the model, we are interested in testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ \ Θ0 (1)

for a subset Θ0 ⊂ Θ. Universal inference solves this problem by appealing to a
likelihood ratio, however, one that is built using data splitting.

To split the data, one chooses a fraction m0 ∈ (0, 1) and partitions the n
data points into two disjoint subsets D0 = {X1,0, . . . , X�m0n�,0} and D1 =
{X1,1, . . . , X�m1n�,1}, where m1 ≡ 1 −m0. In order to lighten notation in sub-
sequent derivations, we simply write m0n for �m0n	 and m1n for 
m1n�. Let

�k(θ) =
mkn∑
i=1

log pθ(Xi,k), k = 0, 1,

be the log-likelihood functions based on D0 and D1, respectively. Let θ̂n,0 :=
argmaxθ∈Θ0

�0(θ) be the maximum likelihood estimator (MLE) of θ under H0

and based on D0. Furthermore, let θ̂n,1 := argmaxθ∈Θ�1(θ) be the MLE of θ
under the full model and based on D1. Now the split likelihood ratio statistic is
defined as

Λn := 2
(
�0(θ̂n,1) − �0(θ̂n,0)

)
. (2)

As shown in [8], an application of Markov’s inequality yields for any α ∈ (0, 1)
that under H0 : θ ∈ Θ0 we have

Pθ

(
Λn > −2 log(α)

)
≤ αEθ

[∏m0n
i=1 p

θ̂n,1
(Xi,0)∏m0n

i=1 p
θ̂n,0

(Xi,0)

]
≤ αEθ

[
Eθ

[∏m0n
i=1 p

θ̂n,1
(Xi,0)∏m0n

i=1 pθ(Xi,0)

∣∣∣D1

]]
≤ α.
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Here, we used the fact that θ̂n,1 is fixed when we condition on D1, and for any
fixed θ∗ ∈ Θ it holds that

Eθ

[∏m0n
i=1 pθ∗ (Xi,0)∏m0n
i=1 pθ(Xi,0)

]
≤

∫ m0n∏
i=1

pθ∗(Xi,0) = 1.

Therefore, the decision rule

reject H0 if Λn > −2 log (α) (3)

constitutes a valid level α test. Notably, this split likelihood ratio test (SLRT)
holds level α in finite samples and without any regularity conditions.

Remark 2.1. The MLE θ̂n,1 could be replaced by any other estimator and the
test would continue to be valid. While this may be of interest for computational
reasons, we focus in the following on the asymptotically efficient maximum like-
lihood estimator. However, the analysis can be extended in a similar fashion for
any asymptotic linear estimator, see Remark 3.2.

In the following, we derive the asymptotic distribution of the split likelihood
ratio Λn and use it to study the power of the SLRT and the impact of the
splitting ratio m0. Our calculation of the limiting distribution of Λn is couched
in the classical framework of local alternatives in models that are differentiable
in quadratic mean.

3. Asymptotic theory for the SLRT

Let θ0 be a point in the interior of Θ. Assume that θ0 ∈ Θ0 and define the
sequence of parameters θn = θ0 + h/

√
n for a choice of h ∈ R

d. Suppose then
that for each (large) n we are given an i.i.d. sample of size n from the local
alternative Pθn . Suppose further that the considered model possesses the usual
smoothness properties that lead to chi-square limits for the ordinary likelihood
ratio, see, e.g., [7]. Specifically, we assume that:

(A1) The model {Pθ : θ ∈ Θ} is differentiable in quadratic mean at θ0, with
derivative (i.e., score function) �̇θ0 . Its Fisher information Eθ0 [�̇θ0 �̇Tθ0 ] =
I(θ0) is nonsingular, and there exists a measurable function �̇ with
Eθ0 [�̇2] < ∞ such that

| log pθ1(x) − log pθ2(x)| ≤ �̇(x)‖θ1 − θ2‖

for all θ1, θ2 in a neighborhood of θ0.
(A2) The maximum likelihood estimators θ̂n,0 and θ̂n,1 are consistent estimators

for θ0 under Pθ0 .
(A3) The local parameter spaces Hn :=

√
n(Θ0 − θ0) converge to a set H0.

Assumption (A3) uses the notion of convergence of sets in the sense of [7],
that is, the local parameter spaces Hn converge to the limit hypothesis H0, if
the set H0
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a) is the set of all limits limhn of converging sequences with hn ∈ Hn and
b) contains all limits limi→∞ hni of converging sequences with hni ∈ Hni .

Further, we note that the set convergence is guaranteed to hold when Θ0 is
defined by polynomial equations and inequalities, in which case the limit H0 is
the tangent cone of Θ0 at θ0 [1].

3.1. Asymptotic distribution

Theorem 3.1 (Asymptotic distribution of the split likelihood ratio statistic).
Suppose the considered statistical model {Pθ : θ ∈ Θ} satisfies assumptions (A1)-
(A3). Then under Pθn with θn = θ0 + h/

√
n, the split likelihood ratio statistic

from (2) satisfies

Λn
D−→ ‖X +

√
m0I(θ0)1/2h− I(θ0)1/2H0‖2 − ‖X −

√
m0
m1

Y ‖2,

where X,Y ∼ Nd(0, Id) independent and ‖x−H0‖ = infh∈H0 ‖x− h‖.
Proof. The proof is based on classical local asymptotic normality results. As
shown in Theorem 7.12 of [7], our assumption (A1) implies the existence of the
Fisher information and the uniform approximation

sup
‖h‖≤Mn

∣∣∣∣∣log
n∏

i=1

pθ0+h/
√
n

pθ0
(Xi) −

1√
n

n∑
i=1

hT �̇θ0(Xi) + 1
2h

T I(θ0)h

∣∣∣∣∣ = oPθ0
(1)

(4)
for Mn a slowly diverging sequence in R. Via the results collected in [7], as-
sumption (A2) implies that consistent MLEs are

√
n-consistent, which entails

that both our split sample MLEs θ̂n,0 and θ̂n,1 are
√
n-consistent under Pθ0 .

Define ψ̂n,1 := √
m1n(θ̂n,1 − θ0), Gn,0 := 1√

m0n

∑m0n
i=1 �̇θ0(Xi,0) and Gn,1 :=

1√
m1n

∑m1n
i=1 �̇θ0(Xi,1). Let B(Mn) = {h ∈ R

d : ‖h‖ ≤ Mn} be the ball of radius
Mn. Similarly to the proof of Theorem 16.7 in [7] but accounting for the split
sample, we obtain from (4) and the

√
n-consistency of θ̂n,0 and θ̂n,1 that

Λn = 2
(
�0(θ̂n,1) − �0(θ̂n,0)

)
= 2

(
log

m0n∏
i=1

pθ0+ψ̂n,1/
√
m1n

pθ0
(Xi,0) − sup

h∈Hm0n

log
m0n∏
i=1

pθ0+h/
√
m0n

pθ0
(Xi,0)

)

= 2
(√

m0

m1
ψ̂T
n,1Gn,0 −

m0

2m1
ψ̂T
n,1I(θ0)ψ̂n,1

− sup
h∈Hm0n∩B(Mn)

(
hTGn,0 −

1
2h

T I(θ0)h
))

+ oPθ0
(1)

= ‖I(θ0)−1/2Gn,0 − I(θ0)1/2[Hm0n ∩B(Mn)]‖2

− ‖I(θ0)−1/2Gn,0 −
√

m0

m1
I(θ0)1/2ψ̂n,1‖2 + oPθ0

(1).
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By Theorem 5.39 in [7], the MLE θ̂n,1 is asymptotically linear with ψ̂n,1 =
I(θ0)−1Gn,1 + oPθ0

(1). Hence,

Λn = ‖I(θ0)−1/2Gn,0 − I(θ0)1/2[Hm0n ∩B(Mn)]‖2 (5)

− ‖I(θ0)−1/2Gn,0 −
√

m0

m1
I(θ0)−1/2Gn,1‖2 + oPθ0

(1).

Now we use Le Cam’s Lemmas to show contiguity of Pθ0 and Pθn . Applying (4),

log
dP⊗n

θn

dP⊗n
θ0

= log
(

m0n∏
i=1

pθ0+h/
√
n

pθ0
(Xi,0)

m1n∏
i=1

pθ0+h/
√
n

pθ0
(Xi,1)

)

= 1√
n

(
m0n∑
i=1

hT �̇θ0(Xi,0) +
m1n∑
i=1

hT �̇θ0(Xi,1)
)

− 1
2h

T I(θ0)h + oPθ0
(1).

The central limit theorem yields that under Pθ0 ,⎛⎜⎝ Gn,0
Gn,1

log dP⊗n
θn

dP⊗n
θ0

⎞⎟⎠ D−→ N2d+1 (μ,Σ) ,

where

μ :=

⎛⎝ 0
0

−1
2h

T I(θ0)h

⎞⎠ , Σ :=

⎡⎣ I(θ0) 0 √
m0I(θ0)h

0 I(θ0)
√
m1I(θ0)h√

m0I(θ0)h
√
m1I(θ0)h hT I(θ0)h

⎤⎦ .

By Le Cam’s first lemma, the probability measures Pθ0 and Pθn are thus mutu-
ally contiguous and therefore oPθ0

(1) and oPθn
(1) interchangeable. By Le Cam’s

third lemma, it follows that under Pθn we have(
Gn,0
Gn,1

)
D→ N2d

((√
m0I(θ0)h√
m1I(θ0)h

)
,

[
I(θ0) 0

0 I(θ0)

])
. (6)

We may now use this joint convergence in (5) and arrive at our claim by ob-
serving that for any converging sequence of random vectors Xn

D→ X and any
sequence of converging sets Hn → H it holds that

‖Xn −Hn‖ D→ ‖X −H‖;

see Lemma 7.13 in [7]. Indeed, our assumption (A3) implies the convergence
Hm0n ∩B(Mn) → H0 and our claim follows.

Remark 3.2. Throughout this work we use the MLE θ̂n,1 to solve the estima-
tion task on data set D1. Suppose we employ instead a suboptimal, asymptoti-
cally linear estimator θ̃n,1, that is,

√
m1n(θ̃n,1 − θ0) = 1√

m1n
I(θ0)−1

m1n∑
i=1

g̃(Xi,1) + oPθ0
(1),
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with Var[g̃(Xi,1)] � I(θ0), where � denotes the Loewner order. Tracing the
proof of Theorem 3.1, one obtains that

Λ̃n
D−→ ‖X +

√
m0I(θ0)1/2h− I(θ0)1/2H0‖2 − ‖X −

√
m0
m1

Ỹ ‖2, (7)

where X, Ỹ are independent, X ∼ Nd(0, Id) and Ỹ ∼ Nd(μỸ , VỸ ) with μỸ �= 0
and VỸ � Id. In fact, we may assume that VỸ is diagonal with diagonal entries
(VỸ )jj ≥ 1. (Otherwise, apply an orthogonal transformation to X −

√
m0
m1

Ỹ

to diagonalize VỸ .) The second part of the representation of the asymptotic
distribution is thus

‖X −
√

m0
m1

Ỹ ‖2 D=
d∑

i=1

(
1 + m0

m1
(VỸ )ii

)
Z2
i ≥

(
1 + m0

m1

) d∑
i=1

Z2
i ,

where Zi ∼ N (−
√

m0
m1

(μỸ )i, 1) are independent. Now,
∑d

i=1 Z
2
i ∼ χ2

d(λ) with
noncentrality parameter λ > 0. Since χ2

d(λ) is stochastically larger than a (cen-
tral) χ2

d-distribution, we obtain from (7) that the limiting distribution when
using a suboptimal estimator is stochastically smaller than the limit distribu-
tion of Theorem 3.1 with the MLE. Using a suboptimal estimator on D1 thus
leads to a decrease in power for the SLRT.

In the sequel, we investigate properties of the limiting distribution of the split
likelihood ratio statistic in the smooth case, where the original null hypothesis is
a k-dimensional smooth manifold and the limiting set H0 is thus a k-dimensional
tangent space. We start by introducing the arising new class of distributions,
noncentral split chi-square distributions, that depends on four parameters, the
dimension of the parameter space, the dimension of the null hypothesis, the
splitting ratio, and a noncentrality parameter.

Definition 3.3 (Noncentral split chi-square distribution). Let d ∈ N, p ∈
{0, . . . , d}, δ ≥ 0, and m0 ∈ (0, 1). The d-dimensional noncentral split chi-square
distribution with p degrees of freedom, noncentrality parameter δ and splitting
ratio m0, denoted splitm0

-χ2
p,d(δ), is the distribution of

‖X[p] +
√
m0h‖2 − ‖X −

√
m0

1−m0
Y ‖2 ∼ splitm0

-χ2
p,d(δ),

where X,Y ∼ Nd(0, Id) independent and h ∈ R
p such that hTh = δ.

We emphasize that the noncentral split chi-square distribution is well-defined
in that it depends on the vector h only through its norm δ. This follows from
the invariance of the standard normal distribution of X and Y under orthogonal
rotations analogously to the classical noncentral chi-square distribution.

While the classical noncentral chi-square distribution is the distribution of
the squared distance from a standard normal vector to some fixed point in
the space, the noncentral split chi-square distribution is the distribution of the
difference of two squared distances. The first part is the squared distance from
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a standard normal vector to a fixed point in the space. However, a second part
arises from splitting the data into two subsets, namely, the squared distance of
two independent standard normal vectors scaled according to the splitting ratio.
Notice that the two parts are not independent.

In the following we calculate the first moments of this new class of distribu-
tions. In Section 3.2 we use the calculated moments to approximate the non-
central split chi-square distribution and thus the asymptotic behavior of the
SLRT.

Corollary 3.4 (Moments of the noncentral split chi-square distribution). Let
Z ∼ splitm0

-χ2
p,d(δ). Then

1. E[Z] = p− d− d m0
1−m0

+ m0δ,
2. Var[Z] = 2(d− p) + 4d m0

1−m0
+ 2d m2

0
(1−m0)2 + 4m0δ.

Proof. Let

ε ∼ N2d

(
0,
[
m−1

0 Id 0
0 m−1

1 Id

])
,

and define

μ :=

⎛⎜⎜⎝
h
0
h
0

⎞⎟⎟⎠ , A :=

⎡⎢⎢⎣
0 0 Idp 0
0 −Idk 0 Idk

Idp 0 −Idp 0
0 Idk 0 −Idk

⎤⎥⎥⎦ ,

with h ∈ R
p such that hTh = δ. Then the quadratic form m0(ε + μ)TA(ε + μ)

follows a splitm0
-χ2

p,d(δ) distribution and we can use properties of quadratic
forms to calculate moments of the noncentral split chi-square distribution.

Using E[(ε+μ)TA(ε+μ)] = tr[AΣ]+μTAμ, a short calculation yields the claim
for the expectation and the claimed variance follows via Var[(ε+μ)TA(ε+μ)] =
2 tr[AΣAΣ] + 4μTAΣAμ.

Remark 3.5. Higher moments can be calculated via the cumulants κn(εTAε) =
2n−1(n−1)! tr[An] with the following formulas for moments of quadratic forms:

1. E[(εTAε)1] = κ1.
2. E[(εTAε)2] = κ2

1 + κ2.
3. E[(εTAε)3] = κ3

1 + 3κ1κ2 + κ3.
4. E[(εTAε)4] = κ4

1 + 6κ2
1κ2 + 3κ2

2 + 4κ1κ3 + κ4.

Formulas for moments up to order ten can be found in [4].

Due to the rotational invariance of the standard normal distribution, we may
study the limit of the SLRT in the smooth case, where the limiting hypothe-
sis is a k-dimensional tangent space, by simply assuming that I(θ0)1/2H0 is a
coordinate subspace, i.e., I(θ0)1/2H0 = {0}p × R

k with d = p + k.

Corollary 3.6. If the rotated limiting hypothesis I(θ0)1/2H0 = {0}p × R
k is a

coordinate subspace, then the asymptotic distribution from Theorem 3.1 follows a
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d-dimensional noncentral split chi-square distribution with p degrees of freedom,
noncentrality parameter h̃T h̃ and splitting ratio m0. That is

Λ∞
D= ‖X[p] +

√
m0h̃[p]‖2 − ‖X −

√
m0
m1

Y ‖2 ∼ splitm0
-χ2

p,d(h̃T
[p]h̃[p]),

with X,Y ∼ Nd(0, Id) independent and h̃ = [I(θ0)1/2h][p].

Proof. We look at the first part of the limiting distribution from Theorem 3.1.
With X ∼ Nd(

√
m0I(θ0)1/2h, Id) we have

‖X − I(θ0)1/2H0‖2 = inf
θ∈Rk

(
X −

(
0
θ

))T (
X −

(
0
θ

))
= XT

[p]X[p],

and the claim follows immediately.

Remark 3.7. Under the null hypothesis, the limiting distribution of the split
likelihood ratio test statistic reduces to the following difference of dependent
(scaled) chi-square distributions

Λn
D→ ‖X[p]‖2 − ‖X −

√
m0
m1

Y ‖2, (8)

with X,Y ∼ Nd(0, Id) independent.

The limiting null distribution in (8) clearly shows the asymptotic difference
between the LRT and the SLRT. For the SLRT, a new second term arises in the
limit that behaves like a scaled chi-square distributed random variable where the
scaling factor depends only on the chosen splitting ratio. Furthermore, looking
at Corollary 3.4, the limiting distribution has a negative expectation under the
null hypothesis.

The SLRT uses the conservative critical value −2 log(α) that is universally
valid but whose adoption may come with a loss of power. In Figures 1 and 2
we illustrate the source of this loss of power in different settings by comparing
the universal threshold (SLRT) of the SLRT with (simulated) quantiles of a split
chi-square distribution (Asym), the limiting distribution under the null hypoth-
esis (8). The difference between the universal threshold and the quantile of the
limiting distribution is smaller for lower significance level α and thus, the power
loss, which stems from employing an universal threshold, is less noteworthy for
low significance levels. Furthermore, the universal threshold is asymptotically
more accurate for smaller splitting ratios. Moreover, we observe that using the
universal threshold is asymptotically less precise for higher dimensions of the pa-
rameter space and for higher dimensional hypotheses. In Section 4.1 we further
analyze the power loss from using the universal threshold in simulations.

3.2. Optimal splitting ratio

The main advantage of the SLRT over classical likelihood methods is its flex-
ibility for settings where asymptotic distributions are difficult to obtain. This
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Fig 1. Quantile of splitm0 -χ2
p,6 compared to the universal threshold.

Fig 2. Quantile of splitm0 -χ2
p,60 compared to the universal threshold.

flexibility that stems from using only the general Markov inequality to control
the type I error comes at the price of a potential loss of power. In the smooth
setting of Theorem 3.1, we could improve the asymptotic power of the SLRT by
using quantiles from the calculated asymptotic distribution, but such an asymp-
totic SLRT is not of practical relevance as the testing problem could then be
better solved using the standard LRT, see Section 4.1.

Instead, our focus will remain on the SLRT with its conservative critical
value −2 log(α), and our goal is to provide a new method for choosing the
splitting ratio m0 that helps retain power. The idea behind our proposed method
is simple. Having access to the asymptotic distribution of the split likelihood
ratio, the noncentral split chi-square distribution, we choose the splitting ratio
that achieves the highest (asymptotic) power. Given both the dimensions of
the null and alternative hypotheses and a significance level α, we minimize the
cumulative distribution function of the noncentral split chi-square distribution
at −2 log(α) with respect to the splitting ratio. To achieve a meaningful and
comparable power, we propose to scale the unknown noncentrality parameter
such that the best-performing method achieves a power of 0.8. We note that this
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Fig 3. Optimal splitting ratio against dimension of parameter space.

tuning parameter of our method can easily be adapted if practitioners prefer to
choose the best-performing method in different power levels. However, in our
experience the effect of this tuning parameter on the performance is negligible
across reasonable power levels.

As we are still lacking dedicated numerical routines to evaluate the cumu-
lative distribution function of the noncentral split chi-square distribution, we
use Monte Carlo approximations via repeated sampling from a noncentral split
chi-square distribution. Using these approximations, we then choose the best-
performing splitting ratio over a fine grid.

Figure 3 displays our results for the optimal choice of the splitting ratio
against the dimension of the parameter space for different regimes of the null
hypothesis space k. We observe that the underlying dimension of the null hy-
pothesis k is crucial for the optimal choice of the splitting ratio. For comparison
Figure 3 additionally shows the difference to the existing proposal for the choice
of the splitting ratio by Dunn et al. [2]. To obtain a high power they propose to
use the split ratio

m0 = 1 −
√

4d2 + 8d log(1/α) − 2d
4 log(1/α) , (9)

which minimizes the squared radius of the universal inference confidence set
for the mean vector of a Gaussian distribution. In contrast to what our results
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Algorithm 1 Optimal splitting ratio
Input: d, p, α
initialize δ small
power ← 0.5
while power< 0.8 do

exp(m0) ← p− d− d m0
1−m0

+ m0δ � Define functions in split m0

var(m0) ← 2(d− p) + 4d m0
1−m0

+ 2d m2
0

(1−m0)2 + 4m0δ

target(m0) ← pnorm(−2 log(α),exp(m0),
√

var(m0))
(min, value) ← minimize target(m0) for m0 in (0, 1) � Optimization
power ← 1-value
increase δ

end while
return min

suggest, their proposed split does not depend on the dimension of the null
hypothesis. This dimensionality is, however, incorporated in our proposed choice
of the splitting ratio.

Note that analytically the split (9), proposed by Dunn et al. [2], converges
to 0.5 for high dimensions d. In a similar fashion, our proposed splitting ratio
converges to 0.5 for high dimensions when testing a fixed number of parameters
to be constant, that is d − k is fixed. However, we can see that the optimal
splitting ratio varies with the dimension of the tested hypothesis space, thus,
e.g. in settings where the number of tested, fixed parameters in the hypothesis
grows proportional with the dimension, a splitting ratios below 0.5 is beneficial,
even in the limit.

Further, due to the impact of the noncentrality parameter and the complexity
of the limit distribution, it is difficult to determine the optimal splitting ratio
analytically. To avoid extensive Monte Carlo approximation for the calculation
of the optimal splitting ratio, we additionally propose the following computa-
tionally fast alternative. Instead of using extensive simulations to approximate
the noncentral split chi-square distribution, we employ normal approximations
with the expectation and variance calculated based on Corollary 3.4. This then
leads to Algorithm 1, which very quickly determines an optimal splitting ratio
based on the dimension of the null hypothesis k, the dimension of the parameter
space d, and the significance level α via repeated minimization of values of the
standard Gaussian cdf (the pnorm function in R).

Our simple algorithm constitutes a fast solution to obtain an optimal split-
ting ratio based on normal approximations of the limit distribution. Without
considering the variance, our algorithm can be interpreted as maximizing the ex-
pectation of the limit distribution of the SLRT, see Corollary 3.4. However, this
expectation depends on the distance of the local alternative δ. Thus, to achieve
a meaningful choice between the different splitting ratios, we first scaled δ to
represent a setting where the test still has power against the local alternative
but the task is nevertheless non-trivial. Furthermore, to get some more intuition
for the behaviour of our proposed splitting ratio, Figure 4 provides a visual rule
of thumb for the choice of the optimal splitting ratio based on the ratio of the
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Fig 4. Rule of thumb for the choice of the split ratio in high dimensions.

dimension of the hypothesis space and the dimension of the parameter space
derived in a high-dimensional setting. We found the impact of the significance
level α in this high-dimensional setting to be negligible. For further simplicity
and easy computation, this visual rule of thumb can be approximated with the
function m0 = − exp(−2.7k

d − 1.05) + 0.52.
In Section 4.2 we analyze the performance of both proposed methods, the

Monte Carlo method and the normal approximation variant numerically and
show that it outperforms the existing proposal by Dunn et al. [2] in regular
settings. Further, in Section 4.3 we show that this splitting ratio leads to optimal
power even in the investigated irregular settings.

4. Simulations

We present the results of a simulation study that investigates the asymptotic
behavior of the SLRT and compare its performance in different model settings,
namely, regular and irregular settings, different dimensions of the parameter
space d, different dimensions of the null hypothesis space k, and different split-
ting ratios m0. All reported quantities are computed from simulations with
100,000 replications and if not stated otherwise we use the significance level
α = 0.05.

4.1. Power of the SLRT in regular setting

How much does using the universal threshold cost in terms of power asymptot-
ically? In the following, we explore this question by comparing the power of the
SLRT using the two different critical values, the standard universal threshold
(SLRT) and the quantile of the asymptotic distribution (Asym). To this end we
consider samples from a d-dimensional multivariate standard normal distribu-
tion with mean vector (θ, . . . , θ) with θ = 0.1 and test the hypothesis that the
first d− k entries of θ equal zero.

Figures 5 and 6 display the (simulated) power of both variants as well as that
of the classical LRT against the sample size. In this regular setting where the
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Fig 5. Power against sample size in Gaussian setting with θ = 0.1, d = 6.

Fig 6. Power against sample size in Gaussian setting with θ = 0.1, d = 60.

classical asymptotic distribution theory holds, the LRT outperforms the SLRT
also when using the asymptotically correct quantiles. Furthermore, we see again
that the power loss from using the universal threshold is larger in higher dimen-
sions and higher dimensional null hypothesis settings. The simulations show that
the choice of the splitting ratio plays an important role in the performance of
the SLRT, especially in higher dimensional settings. In the following, we further
examine the impact of the optimal choice of the splitting ratio in simulations.

4.2. Influence of the splitting ratio

In the following experiments, we analyze the influence of the splitting ratio
on the asymptotic power of the SLRT. To this end, we sample data from a
noncentral split chi-square distribution and calculate the power for testing the
hypothesis of a zero noncentrality parameter δ. Figures 7 and 8 show the (sim-
ulated) power against the splitting ratio for the two different critical values,
the universal threshold (SLRT) and the asymptotic quantile (Asym). We can see
that in the lower dimensional setting a splitting ratio above 0.5 performs best
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Fig 7. Power of SLRT against splitting ratio, d = 6, δ = 40.

Fig 8. Power of SLRT against splitting ratio, d = 60, δ = 180.

while in the higher dimensional setting a smaller splitting ratio below 0.5 seems
beneficial, especially for a lower dimensional null hypothesis.

Figure 9 quantifies the improvement in power that can be achieved with our
proposed (empirical) optimal splitting ratio (emp.optim) and the fast estimation
routine (est.optim) that uses a normal approximation instead of extensive
simulations to approximate the power of the SLRT. We compare the power
for different noncentrality parameters δ ∈ {100, 250} plotted as ‘dashed’ and
‘solid’ lines respectively. Figure 9 displays that our fast estimation routine of the
optimal split leads to valid approximations with a similarly good performance
as the empirical optimal splitting ratio and further that there is a notable gain
in power by using our new proposed optimal splitting ratios compared to the
split (9) by Dunn et al. [2], especially in higher dimensions.

This is even more apparent in Figure 10, where we calculated the power for
two different regimes of increasing noncentrality parameter δ. For each dimen-
sion of the parameter space, we chose the smallest δ such that the test with our
new proposed optimal splitting ratio achieves a power of 0.8 and 0.65 respec-
tively. While our methods, therefore, keep the power level, the split from (9)
leads to a rapid loss of power in higher dimensions.
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Fig 9. Power for fixed noncentrality parameter and k = 5 (left); k = 1
6 d (right).

Fig 10. Power for increasing noncentrality parameter and k = 5 (left); k = 1
6 d (right)

4.3. Power of the SLRT in irregular setting

Our proposed optimal splitting ratio is based on the limit distribution of the
SLRT obtained under regularity conditions. In the following, we show that this
optimal choice of the splitting ratio leads to an improvement in power even in
irregular settings. To this end, we investigate the performance of the SLRT in
the one-factor analysis setting with 12 observed variables. Assuming zero means,
the one-factor model is given by the family of normal distributions N12(0,Σ)
with Σ ∈ F12,1 := {Ω + ΓΓT : Ω ∈ R

12×12
>0 diagonal, Γ ∈ R

12}. In the follow-
ing experiment, we consider testing the one-factor model against the saturated
alternative, that is, the entire cone of positive definite matrices PD(12). Note
that the hypothesis defines a 24-dimensional subset of the 78-dimensional pa-
rameter space, thus, our algorithm suggests using the optimal splitting ratio
0.41 while (9) suggests using the splitting ratio 0.51. Drton [1] shows that in
this one-factor analysis setting the hypothesis space has singularities at loadings
Γ with less than 3 nonzero values and thus, at those points, classic asymptotic
distribution theory for likelihood ratio tests is not valid.

Figure 11 displays the power of the SLRT under alternatives around irreg-
ular and regular points using the two different splitting ratios. More specifi-
cally, we set Ω as the diagonal matrix with all diagonal entries equal 1/5 and
Γ = (5, 5, 0, ..., 0) for the irregular and Γ = (5, 5, 5, 0, ..., 0) for the regular setting,
respectively. Then we sampled n = 2000 data points from a two-factor alterna-
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Fig 11. Power of SLRT in one-factor analysis.

tive N12(0,Σ) with Σ = Ω + ΓΓT + Γ2ΓT
2 , where Γ2 = (h/

√
12, ..., h/

√
12) with

varying values of the norm h of the second factor loading Γ2. We observe, that
the optimality of our proposed splitting ratio extends to this irregular setting
and our splitting ratio outperforms the splitting ratio suggested by Dunn et al.
[2] in all settings.

5. Extension to the cross-fit SLRT

The SLRT and the universal inference framework starts with randomly splitting
the available data. Thus, the value of the split likelihood ratio statistic still
varies given a fixed data set, depending on the random split. It is natural to
think about reducing this randomness by aggregating the results of different
splits at the cost of performing more computations. Already in their initial
work Wasserman, Ramdas and Balakrishnan [8] propose the cross-fit SLRT, a
variant of the SLRT where the test statistic is calculated twice with alternating
roles of the two data sets. Then, both results are averaged to obtain the cross-fit
split likelihood ratio statistic 1

2 (Λn +Λswap
n ), where Λswap

n is defined by (2) with
the roles of D0 and D1 swapped.

Similar to the proof of Theorem 3.1 we can derive the asymptotic distribution
of the cross-fit split likelihood ratio statistic.

Corollary 5.1. Under assumptions (A1)-(A3), the cross-fit split likelihood ratio
statistic satisfies under Pθn with θn = θ0 + h/

√
n

Λn + Λswap
n

D−→ ‖X +
√
m0I(θ0)1/2h− I(θ0)1/2H0‖2 − ‖X −

√
m0
m1

Y ‖2

+ ‖Y +
√
m1I(θ0)1/2h− I(θ0)1/2H0‖2 − ‖Y −

√
m1
m0

X‖2,

where X,Y ∼ Nd(0, Id) independent and ‖x−H0‖ = infh∈H0 ‖x− h‖.
Since this cross-fit variant of the SLRT only splits the data once and then

uses the same data sets twice with alternating roles, the limit distribution is still
generated by two independent random variables. Analogous to the SLRT, we can
thus calculate the expectation and variance of the arising limit distribution in
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the smooth setting of Corollary 3.6, where the limiting hypothesis is a coordinate
subspace, in the same way as the proof of Corollary 3.4 by exploiting properties
of quadratic forms.

Corollary 5.2. In the smooth setting of Corollary 3.6 the expectation and vari-
ance of the limit distribution of the cross-fit split likelihood ratio test statistics
is given by

1. E[ 12 (Λ∞ + Λswap
∞ )] = p− d− 1

2d
(

m0
1−m0

+ 1−m0
m0

)
+ 1

2δ,
2. Var[ 12 (Λ∞ + Λswap

∞ )] = (d− p)
(
1 + m0

1−m0
+ 1−m0

m0

)
+ d

(
2 + m0

1−m0
+ 1−m0

m0

)
+1

2d
(

m2
0

(1−m0)2 + (1−m0)2
m2

0

)
+ δ,

where δ = [I(θ0)1/2h]T[p][I(θ0)1/2h][p].

Furthermore, analogously to Section 3.2, we can employ the limit distribution
to determine the optimal splitting ratio and obtain the intuitive result that for
the cross-fit SLRT an even split of m0 = 0.5 is optimal in all dimensions.

Remark 5.3. For an equal splitting ratio m0 = 0.5 the cross-fit split likelihood
ratio statistic has the same expectation but a lower variance than the split
likelihood ratio statistic in the limit. Thus, in situations where the method has
power, the cross-fit SLRT further improves upon the SLRT.

The cross-fit SLRT employs equal weights w0 = 0.5 to combine both test
statistics and obtain the cross-fit split likelihood ratio test statistic, that is
w0Λn+(1−w0)Λswap

n . Using equal weights is intuitive for an even splitting ratio
m0 = 0.5, since both test statistics are expected to perform similarly. However,
considering the results from the previous section, for different splitting ratios,
it might be beneficial to vary the weights and emphasize the better-performing
test statistic. Furthermore, the idea of the cross-fit SLRT of swapping the roles
of the two data sets allows us to derive properties of the limit distribution and is
conceptually simple. Nevertheless, in view of our previous analysis, subsampling
provides a promising alternative. Instead of using the same split data set with
swapped roles to calculate the second test statistic, we repeat the process of
randomly splitting the available data. Such a method has a similar computa-
tional burden as the cross-fit SLRT, however, we can make use of the optimal
splitting ratio for both test statistics. Note that this subsampling procedure can
be extended to multiple repeats and thus, further decrease the randomness of
the splits at the cost of computation time.

Figure 12 compares the performance of the different extensions of the SLRT in
the one-factor analysis setting introduced in Section 4.3. We display the power
of the cross-fit SLRT with different splitting ratios m0 and different weights
w0 as well as the subsampling alternative with our proposed optimal splitting
ratio m0 = 0.41. As previously mentioned, under the assumption of fixed, equal
weights w0 = 0.5, the best-performing splitting ratio for the cross-fit SLRT is an
even split m0 = 0.5. However, for an uneven splitting ratio, we can emphasize
the better-performing test statistic by adjusting the weights to achieve similar
performance. Furthermore, Figure 12 shows that using our proposed optimal
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Fig 12. Power of cross-fit(m0, w0) and subsampling SLRT in one-factor analysis.

splitting ratio for both test statistics in a subsampling procedure outperforms
the competition in all settings.

6. Conclusion

The split likelihood ratio test (SLRT) is a flexible tool that provides valid level α
tests in finite samples even when classical regularity conditions are not satisfied.
The underlying universal approach of splitting the data allows one to conduct
rather simple analyses even in complicated settings. In general, this flexibility
leads to a rather conservative method and, thus, it is of interest to carefully
choose the splitting ratio in order to mitigate possible loss of power.

In order to provide new insights about the performance of the SLRT we
studied its asymptotic behavior in the setting of smooth hypotheses. Our study
gives rise to a new class of distributions, noncentral split chi-square distribu-
tions, that appear as limiting distributions of the SLRT. The split chi-square
distribution depends on the dimensions of both null and alternative hypotheses
and not only the difference of the dimensions. Naturally, it also depends on the
chosen data splitting ratio. Using the new class of distributions, we analyzed
the power of the SLRT in extensive simulations, and we proposed a new routine
for calculating the optimal splitting ratio for the SLRT that significantly boosts
power, especially in higher dimensions.
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