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Abstract: Depth functions have become increasingly powerful tools in
non-parametric inference for multivariate data as they measure a degree of
centrality of a point with respect to a distribution. A multivariate risk sce-
nario is then represented by a depth-based lower level set of the risk factors,
meaning that we consider a non-compact setting. The aim of this paper is
to study the asymptotic behavior of level sets of a general multivariate
depth function and a particular multivariate risk measure, the Covariate-
Conditional-Tail-Expectation (CCTE) based on a depth function. More
precisely, given a probability measure P on Rd and a depth function D(·, P ),
we are interested in the α-lower level set LD(α) :=

{
z ∈ Rd : D(z, P ) ≤ α

}
.

First, we present a plug-in approach in order to estimate LD(α), then we
derive consistency of its estimator under some regularity conditions. In a
second part, we provide a consistent estimator of the CCTE for a general
depth function with a rate of convergence and we consider the particular
case of Mahalanobis depth. Finally, a simulation study complements the
performances of our estimator and an application on real data is presented.
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1. Introduction

The estimation of level sets LG(c) :=
{
x ∈ Rd : G(x) ≥ c

}
, where G is an un-

known function on Rd, has received attention recently (Cuevas et al. [16], Gold-
stein and Messer [36], Molchanov [54]). The motivation of studying such level
sets lays on the various possible applications. For example, for the density func-
tion we can cite the work of Müller and Sawitzki [56], Polonik [61] in mode
estimation, Hartigan [37], Cuevas et al. [14, 15] for clustering, and Devroye and
Wise [22], Baillo et al. [2], Desforges et al. [21], Scott and Nowak [64], Park et al.
[59] for pattern recognition or detection of abnormal behavior in a system. For
regression level set estimation, it is known that nonparametric regression (see
e.g. [46]) provides a natural model for image analysis; for example, the estima-
tion of regression level sets has been studied by Cavalier [7], Laloë and Servien
[48]. For cumulative distribution function (c.d.f) level set estimation, in Coblenz
et al. [12] a nonparametric estimation procedure for particular level sets of cop-
ulas is presented. In Coblenz et al. [11] confidence regions for these level sets are
provided. Additionally, Di Bernardino and Rulliere [25], Di Bernardino et al.
[23, 24] propose to define risk measures in multivariate hydrological or financial
models using c.d.f level sets as risk regions. One classical estimator of such level
sets is the plug-in one: if Ĝn(x) is an available estimator of G(x), then one can
estimate LG(c) by LĜn

(c) :=
{
x ∈ Rd : Ĝn(x) ≥ c

}
.

In this paper, we first consider the problem of depth level sets estimation.
Indeed, depth based level sets have gained attention in the last three decades as
a key tool for the visualization and exploration of multivariate data (see Donoho
and Gasko [26]). Depth level sets are also a natural extension of the notion of
quantiles to multivariate data, and can be used for outlier detection (see e.g.
Febrero et al. [33], Dai and Genton [17]), as well as for supervised classification
(see Ruts and Rousseeuw [63], Hubert et al. [42], Jörnsten [44]) or rank and sign
testing (see Liu and Singh [50], Hettmansperger and Oja [40]). Further, Müller
[55] derived simple distribution-free tests for regression based on the so-called
likelihood depth which is the density function, while Denecke and Müller [19]
studied convergence of the latter depth for the correlation coefficient. Roughly
speaking, a depth is a function D which provides, for any probability measure,
a center-outward ordering of points in Rd (see for instance [29, 70, 49]). He
and Einmahl [39] have recently studied extreme quantile regions induced by the
halfspace depth and showed their interest in a real world financial application



6586 S. Armaut et al.

using the daily international market price indices of three countries (USA, UK
and Japan). In this paper, we both address the problem of the estimation of
depth based level set and the definition and estimation of one depth based risk
measure.

Broadly speaking, a risk measure is a mapping from a set of d-dimensional
random variables (d ≥ 1) to R, and is used to determine the amount of an
asset (or assets/goods) to be kept in reserve in order to cover for unexpected
losses. The Conditional-Tail-Expectation (CTE) [20], also known as “expected
shortfall”, has been widely used in the literature on risk measures. It charac-
terizes the conditional expected loss given that the loss exceeds a critical loss
threshold. Formally, given a real random variable X with distribution function
FX, the CTE at level α ∈ (0, 1) is defined as:

CTEα(X) := E[X |X > VaR(α)], (1.1)

where
VaR(α) := inf {t ∈ R : FX(t) ≥ 1 − α}

is the well-known Value at Risk which corresponds to the univariate quantile of
order 1 − α of X (α is small). Thus, the CTE is nothing but the mathematical
description of an average loss in the worst 100 · α% risk scenario. Further, the
CTE has a close relation to the zonoid depth, introduced by Koshevoy and
Mosler [47]: in the univariate case the α-trimmed region of the zonoid depth is
given by [

E[X |X ≤ QX(α)],E[X |X ≥ QX(1 − α)]
]
,

where QX(α) denotes the quantile function of X. This link is established in
Cascos and Molchanov [6].

However, considering a single risk factor is restrictive, as we can easily imag-
ine correlated risk factors that could be studied together. One possibility is to
consider quantile regions of the risk factors distribution. In the multivariate
case, a wide panel of multivariare quantiles has been reviewed in the literature
[8, 9, 39]. The study of multivariate quantile regions has increasingly been pur-
sued in the last decades as a tool to model multivariate risk regions, especially
those based on a multivariate distribution function ([3, 18, 13]), or on a depth
function.

An interesting classical problem in the theory of risk is to study the behavior
of an expected cost Y ∈ R associated to d ≥ 1 risk factors which are hetero-
geneous in nature. In econometrics, for instance, one can be interested in an
average return (which measures the performance of a portfolio for a certain
period of time) with respect to d ≥ 1 risk factors X ∈ Rd. On another note,
one can also be interested in the impact of climate change (via d risk factors)
on high temperatures. Regarding the risk literature, conditional quantiles have
been widely studied, especially to provide predictive environmental models. We
can mention the work of Wang and Li [67] who studied extreme conditional
quantiles of a response variable Y given covariates X = x and demonstrates
their usefulness through a power transformation model. More recently, Girard
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et al. [35] studied conditional extremes Y given a covariate X by means of con-
ditional expectiles in heteroscedastic regression models with heavy-tailed noise
and showcased their fruitfulness on an actuarial and financial real dataset. Early
attempts at tackling conditional quantiles can be found in Gardes and Girard
[34], Wang et al. [68] and references therein.

To address this kind of risk assessment problems, Di Bernardino et al. [24] pro-
posed studying the behavior of a covariate variable Y on the level sets of the dis-
tribution of a d-dimensional vector of risk factors X. More precisely, they define
and estimate the multivariate Covariate-Conditional-Tail-Expectation (CCTE)
given by:

CCTEα(Y,X) := E[Y |X ∈ LFX
(α)], α ∈ (0, 1), (1.2)

where
LFX

(α) :=
{
x ∈ Rd : FX(x) ≥ 1 − α

}
,

is the α-upper level set of FX. However, this CCTE based on the distribution
function only considers canonical directions. For instance, it could consider an
average cost associated to high or low temperatures, but not to high and low
temperatures at the same time. Therefore, instead of studying the level sets
LFX

(α), Torres et al. [65] studied the level sets LFRX
(α) of a rotation R of the

distribution. In other words, oriented orthant are considered in order to inves-
tigate other risk regions. We propose here a more general approach, replacing
the distribution function by a depth function. This can be useful in financial
or environmental applications and here we present in Section 4.3 a real world
environmental application by collecting data of power consumption and tem-
peratures for the region of Nice, France. This can be interesting in forecasting
problems of electricity loads in order to help mitigate energy supply interrup-
tion risks and allow for long-term forecasts to plan future capacity investments.
Moreover, electric companies could use forecasted heat/cold waves (such like
the intense heat events that France has experienced in 2022) to anticipate fu-
ture power consumption. This may be useful in order to calibrate the electricity
production over the period of interest. On the mathematical side for instance,
Dudek [27] and Oreshkin et al. [57] proposed models for short and mid-term
electricity load forecasting respectively, based on patterns of daily cycles (or
lags) of load time series.

In order to deal with risk regions, we consider here the lower-level sets of a
depth function and propose a depth-based CCTE defined by:

CCTED,α(Y,X) := E[Y |X ∈ LD(α)], α > 0, (1.3)

where LD(α) =
{
x ∈ Rd : D(x, PX) ≤ α

}
is the α-depth-based lower level set.

We derive rates of convergence for an estimator of CCTED which is closely
linked to the rate of convergence of the depth level set in terms of symmetric
difference, or the Hausdorff distance in smooth depth cases.

The paper is organized as follows. In Section 2, we introduce some notations,
tools and the mathematical definition of a depth function. Section 3 is devoted
to our main results: in Section 3.1 we study the general asymptotic behavior
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of our depth level set estimator, in Section 3.2 a construction and consistency
and convergence rates of our CCTED estimator are given. In subsection 3.2.1
results are derived in a general setting in which we discuss the existing classical
depths, while in subsection 3.2.2 we provide consistency and convergence rates
of the CCTED in the particular case of Mahalanobis depth. Illustrations and
simulations are presented in Section 4 along with a real world application. Sec-
tion 5 wraps up our work as a conclusion part. Finally, proofs are postponed to
Section 6 where Section 6.1 complements level set estimation Section 3.1 with
more details.

2. Notations and definitions

This section is dedicated to introducing some useful notations and tools. We
begin by general notations before focusing on depth functions.

2.1. General notations

In the sequel, we denote by N the set of positive integers and a∨ b = max(a, b).
Let AΔB = (A\B) ∪ (B\A) be the symmetric difference between the sets
A and B, and λd designate the Lebesgue measure on Rd, d ≥ 1. We con-
sider Rd endowed with the Euclidean norm ‖ · ‖ and its unit sphere Sd−1 :={
u ∈ Rd : ‖u‖ = 1

}
. Also, tx is the transpose of a d-dimensional real vector x.

Let

‖f‖∞ := ess supx∈Rd |f(x)|

be the essential supremum of a given function f .
When dealing with random variables, we assume that they are defined on a

common underlying probability space (Ω,A ,P), and we assume that Rd, d ≥ 1,
is equipped with the Borel σ-algebra B(Rd). Furthermore, for any real number
q > 0, let Lq(Ω) := Lq(Ω,A ,P) denote the vector space of real-valued random
variables U for which E[|U |q] < +∞. Let P := P(Rd) be the set of all proba-
bility measures on Rd. Given an i.i.d sample S̃n := (X̃i)1≤i≤n of size n ∈ N with
Rd-valued observations from P ∈ P, we denote by P̃n := 1

n

∑n
i=1 δX̃i

the empir-
ical measure based on this finite sample. Sometimes, when there is no ambiguity,
we simply denote by P the law PX of the random vector X meaning P (A) :=
PX(A) = P(X ∈ A). Akin to the latter, P(Y,X) denominates the joint law of the
vector (Y,X) ∈ R×Rd. Subsequently, for notational convenience, we introduce
EP the mathematical expectation under P , and ES̃n

[Z] := E[Z|X̃1, · · · , X̃n]
the conditional expectation of Z knowing X̃1, · · · , X̃n. Moreover, we denote by
PS̃n

(A) := ES̃n
[1A], where A := A(X̃1, · · · , X̃n) is a subset of Rd which de-

pends on the data X1, · · · ,Xn. Thus, A(X̃1, · · · , X̃n) is a random subset, so
that PS̃n

(A) is a r.v.
As long as the asymptotics are concerned, we recall that a sequence (Xn)n∈N

of random variables (r.v.) converges in probability towards the r.v. X if for any
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ε > 0,
lim
n→∞

P (|Xn −X| ≥ ε) = 0.

Thereafter, convergence in probability is denoted by Xn
P−−−−→

n→∞
X. Recall also

that given two sequences of real numbers (un)n≥1 and (vn)n≥1, un = On(vn)
means that there exist a constant C > 0 and N ∈ N s.t. for all n ≥ N ,
|un| ≤ C|vn|. Finally, let (Xn)n∈Nr , r ≥ 1, be a set of random variables and
(un)n∈Nr be a deterministic set of positive real numbers, we recall the following
classical notation of stochastic boundedness

Xn = OP,n(un) def⇐⇒

∀ ε > 0, ∃ Mε > 0, ∃ Nε ≥ 1, ∀ n := (n1, · · · , nr) ∈ Nr,

min
1≤i≤r

ni ≥ Nε ⇒ P (Xn ≥ Mε · un) ≤ ε.

2.2. Depth functions

A depth function is a mapping which measures a degree of centrality of a
point w.r.t. an arbitrary distribution. Many depths have been proposed in the
literature, e.g., the halfspace depth (Tukey, 1975), the simplicial depth (Liu,
1990), Mahalanobis depth (Mahalanobis, 1936), the zonoid depth (Koshevoy
and Mosler, 1997) and others. These depths differ in many aspects, mainly in
the shape of trimmed regions or the deepest point (point of maximum depth).
However, they share some “desirable” properties which every depth should sat-
isfy. In our study, we follow the axiomatization of multivariate depth function as
stated in Dyckerhoff (2004) (Definition 1 in [29]), which is an alternative to the
original definition of depth introduced by Zuo and Serfling (2000) (Definition
2.1 in [70]).

Definition 2.1 (Dyckerhoff [29]). A statistical depth function is a mapping
D : Rd × P → R which is bounded, non negative, measurable in its first
argument and satisfying:
(D1) Affine invariance: for any PX ∈ P, b ∈ Rd, and any invertible size d
matrix A, D(Ax + b, PAX+b) = D(x, PX).
(D2) Upper semicontinuity: for any PX ∈ P and any α > 0 the upper level
set

{
x ∈ Rd : D(x, PX) ≥ α

}
is closed.

(D3) Monotone on rays: for each PX ∈ P, each x0 of maximal depth i.e.
D(x0, PX) = supx∈Rd D(x, PX) and each r ∈ Sd−1, the function λ ∈ R+ �→
D(x0 + λr, PX) is monotone decreasing.
(D4) Vanishing at infinity: D(x, PX) → 0 as ‖x‖ → ∞, for each PX ∈ P.

Let us note that the axiomatization of depth of Dyckerhoff [29] differs from
the axiomatization of Zuo and Serfling [70] only by property (D2), which is
replaced by a property of maximality at center. According to Dyckerhoff [29]
(Proposition 4), when X is centrally symmetric about some point x0 ∈ Rd (a
random vector X is said to be centrally symmetric distributed with center x0, if
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X−x0 and x0−X have the same distribution), then a depth function (in sense of
definition 2.1) assume maximum value at this center. So, when the definition of
depth is restricted to the set of centrally symmetric distributions, axiomatization
of Dyckerhoff implies axiomatization of Zuo and Serfling. For further details
about depth functions, the interested reader can refer to [70, 71, 72, 49].

Informally, the first property of a depth (D1) suggests that the depth of a
point x ∈ Rd does not depend on the underlying coordinate system. Property
(D2) is a regularity assumption which is central in our results (see Section 3.1),
making the axiomatization of Dyckerhoff [29] better suited to our setting. Prop-
erty (D3) illustrates the fact that as a point x ∈ Rd moves away from the point
of maximal depth (for instance the “center” of a distribution) along any fixed
ray through the center, the depth at x should decrease monotonically. Note that
(D3) and (D4) mean that the upper level sets{

x ∈ Rd : D(x, PX) ≥ α
}
, α > 0,

are bounded and starshaped about the point of maximum depth.
Let us note that properties (D2) and (D4) play a crucial role in our main

results and (D4) enables an interpretation of CCTED as a tail-conditioned
expectation.

3. Main results

In this section, we study the asymptotic behavior of general depth level sets
in terms of the pseudo-metric of the symmetric difference (i.e. the probability
under P ∈ P of the symmetric difference) in the case of smooth depths. Then,
we define a risk measure based on a general depth function, the Covariate-
Conditional-Tail-Expectation (CCTED) and we propose an estimator of the
CCTED using a plug-in estimator of the level set. We study the asymptotic
behavior of the CCTED when consistency of the level sets in terms of the volume
and the pseudo-metric of the symmetric difference is provided. Finally, we derive
results in the smooth case of Mahalanobis depth, and discuss when general non-
smooth depths are at hand.

3.1. General depth level set estimation

In this section, the problem of interest is to study depth level sets, their esti-
mation and consistency in some sense that will be specified below. Fix a depth
function D : Rd × P → R and a distribution P ∈ P. We denote

αmax(P ) := sup
x∈Rd

D(x, P ).

For a fixed α ∈ (0, αmax(P )), we define the α-lower level set of D and its plug-in
estimator based on an i.i.d sample S̃n := (X̃i)i=1,..,n from P of size n ≥ 1:

LD(α) := LD(α, P ) :=
{
x ∈ Rd : D(x, P ) ≤ α

}
, and
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Ln(α) := LD(α, P̃n) :=
{
x ∈ Rd : Dn(x) := D(x, P̃n) ≤ α

}
,

where P̃n is the empirical measure based on the sample S̃n := (X̃i)1≤i≤n. Re-
garding convergence of depth level sets, Zuo and Serfling [72] and He and Wang
[38] showed uniform depth contours convergence under some conditions on the
depth measure while Jeankyung [43] proved their n− 1

2 rate of convergence. More
recently, Brunel [4] derived concentration inequalities for the Hausdorff distance
in the case of the halfspace depth, under mild conditions on the distribution.

Here, we are interested in the rate of convergence of the random pseudo-
metric of the symmetric difference between Ln and LD: PS̃n

(Ln(α)ΔLD(α)).
For absolutely continuous distributions with some density regularity, a suffi-
cient condition to control PS̃n

(Ln(α)ΔLD(α)) is to find an upper bound for the
volume of the symmetric difference as put forward in Theorem 3.1 and Corol-
lary 3.2. Under some smoothness requirements on the depth function, according
to Theorem 3.1, the volume λd (LD(α)ΔLn(α)) of the symmetric difference be-
tween the empirical level set and its population counterpart converges to zero
and the quality of our plug-in estimator is obviously related to the quality of
our depth estimator Dn. Hereafter we introduce the regularity assumption (R)
implying our results following both the approach of Rodríguez-Casal [62] and
Cuevas et al. [16] (Proposition 3.1 in the Ph.D. thesis of [62] and Theorem 2 in
[16] resp.).

Assumption (R). Let D : Rd × P → R+ be a depth as in Definition 2.1.
Fix P ∈ P, α ∈ (0, αmax(P )) and 0 < ε < α. Denoting D(x) := D(x, P ), we
assume the following:

(i) the function x �→ D(x) is continuous on Rd and of class C 2 on the set
Kε(α) := D−1([α− ε, α + ε]),

(ii) m∇ := m∇(α, ε, P ) := infx∈Kε(α) ‖(∇D)x‖ > 0, where (∇D)x is the gradi-
ent of D(·) at x,

(iii) ‖Dn −D‖∞,Rd
P-a.s.−−−−→
n→∞

0.

Under assumption (R), one controls the volume of the symmetric difference
between Ln and LD by ‖Dn−D‖∞,Rd . An immediate result on the pseudo-metric
is hence obtained in Corollary 3.2. The proofs of both results are postponed to
Section 6. As long as validity of Assumption (R) is concerned, it is known that
many of the commonly encountered depths in the literature satisfy assumption
(R)(iii) (e.g. halfspace, simplicial, Mahalanobis, projection, depths...). Conti-
nuity of the depth function at x is obtained in most cases (mainly for absolutely
continuous distributions). Assumptions (R)(i) and (R)(ii), though, are not al-
ways satisfied by the above mentioned depths. However, (R)(i) and (R)(ii)
can be easily shown to hold for the Mahalanobis and L2 depths (see Exam-
ple 2.3 in [70]) for instance. The intuition behind those regularity conditions
is essentially the need to avoid flat depths around the level α, since the pres-
ence of plateaus generally causes structural issues in the plug-in estimation of
the level sets. One can note that a sufficient condition for a depth to have no
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plateaus is the property of strict monotonicity as studied by [30]. Under some
additional assumptions on the distribution P (e.g. absolute continuity, con-
vex support), common depth functions such as Mahalanobis, halfspace, zonoid,
weighted mean [31] depths, are strictly monotone [30]. However, in our setting,
we need a stronger condition on the depth, namely the differentiability property.
We refer the reader to Section 6.1 for more details about those technical results,
discussing especially assumption (R).

Theorem 3.1. Under assumption (R), it holds

λd (LD(α)ΔLn(α)) = O
n→∞

(
‖Dn −D‖∞,Rd

)
, P-a.s.

Corollary 3.2. Let P ∈ P be an absolutely continuous distribution with density
function f ∈ Lp(Rd,B(Rd), λd) for some p ∈ (1,+∞]. Under assumption (R),
it holds

PS̃n
(Ln(α)ΔLD(α)) = O

n→∞

(
‖Dn −D‖1− 1

p

∞,Rd

)
, P-a.s.

The proof of Theorem 3.1 relies mainly on a technical result we postpone
to Section 6.1, namely Theorem 6.1. In the latter we show that if a depth is
smooth enough in the sense of Assumption (R), its empirical version Dn is
only upper semicontinuous and Dn is a consistent estimator of D (uniformly
on Rd), then one obtains asymptotic upper bound for the Hausdorff distance
dH(∂LD(α), ∂Ln(α)) between the respective boundaries ∂LD(α) and ∂Ln(α).
To be more precise, from the approach of Cuevas et al. [16], dH(∂LD(α), ∂Ln(α))
is controlled by the supremum norm error ‖Dn−D‖∞,Rd related to the depth D.
Using Weyl’s tube formula [69] one obtains that the Hausdorff distance between
the boundaries of the level sets is an asymptotic upper bound for the volume of
the symmetric difference, and hence so is ‖Dn −D‖∞,Rd .

3.2. Depth based CCTE

3.2.1. General setting

Consider a couple (Y,X) s.t. Y is a real random variable which is dependent of
a random vector X ∈ Rd with distribution PX. In Definition 3.3, we formally
define our CCTED and propose an estimator of the latter. For n1, n2 ≥ 1, let

S̃n1 := (X̃i)i=1,..,n1 be an i.i.d n1-sample from PX, and
Sn2 := ((Yi,Xi))i=1,..,n2 be an i.i.d n2-sample from P(Y,X),

s.t. S̃n1 and Sn2 are independent.
In what follows, we provide the definition of our CCTED and its associated

estimator.

Definition 3.3 (Depth-based Covariate-Conditional-Tail-Expectation). Let X
∈ Rd be a random vector with distribution P ∈ P and Y be an integrable real
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random variable (which is dependent on X). Let α > 0 and assume P [LD(α)] >
0.

(i) The depth-based Covariate-Conditional-Tail-Expectation at level α is defined
by:

CCTED,α(Y,X) := E[Y |X ∈ LD(α)].

(ii) Its estimator based on the sample S̃n1 and Sn2 is given by:

ĈCTE
n1,n2

D,α (Y,X) :=

n2∑
i=1

Yi1Xi∈Ln1 (α)

n2∑
i=1

1Xi∈Ln1 (α)

, (3.1)

with the convention 0/0 = 0.

Our main result, namely Theorem 3.5, links the rate of convergence of the
CCTED to the one of the symmetric difference between the true and estimated
α-level set. We first state the following assumption describing a convergence
rate for the level sets:

Assumption (H0). There exists an increasing sequence of positive real num-
bers (vn1)n1≥1 s.t.

PS̃n1
(Ln1(α)ΔLD(α)) = OP,n1

(
v−1
n1

)
.

For general (non-smooth) depths, checking Assumption (H0) with a rate of
convergence seems difficult. So here, in a first place we show that ĈCTE

n1,n2

converges to CCTE provided that Dn1 converges uniformly to D. This is derived
in Theorem 3.4 using mainly the proof of Theorem 3.5. In Section 6.2, we first
give the proof of Theorem 3.5. Theorem 3.4 is proved following the guidelines
of the proof of Teorem 3.5.

Theorem 3.4. Let α > 0 and P ∈ P. Assume P [LD(α)] > 0 and there exists
r ∈ [2,∞] s.t. Y ∈ Lr(Ω). If the following two conditions are satisfied

(i) ‖Dn1 −D‖∞,Rd
P−−−−→

n1→∞
0,

(ii) P(D(X) = α) = 0, where X has distribution P ,
then ∣∣ĈCTE

n1,n2

D,α (Y,X) − CCTED,α(Y,X)
∣∣ P−−−−−−→

n1,n2→∞
0.

The key argument of the proof of Theorem 3.4 lays on the fact that for any
depth D s.t. ‖Dn1 −D‖∞,Rd

P−−−−→
n1→∞

0 and PP (D(X) = α) = 0, it holds

E
[
PS̃n1

(LD(α)ΔLn1(α))
]
−−−−→
n1→∞

0,
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so that assumption (H0) is satisfied (without an explicit rate of convergence
here) and hence the result follows from the guidelines of the proof of Theo-
rem 3.5. Note that assumption PP (D(X) = α) = 0 is not too restrictive and
can be found in depths literature, for example in Theorem 4.1 in Zuo and Ser-
fling [72] the convergence of sample depth contours is studied. Besides, any
common depth D satisfies ‖Dn1 −D‖∞,Rd

P−a.s.−−−−→
n1→∞

0, which implies convergence
in probability.

In the spirit of Di Bernardino et al. [24], Theorem 3.5 gives the rates of
convergence for CCTED. Note that in Theorem 3.5, the r-th moment of Y is
only involved in the rate (vn1)n1 .

Theorem 3.5. Let α > 0 and P ∈ P. Assume P [LD(α)] > 0, and (H0) is
satisfied and there exists r ∈ [2,∞] s.t. Y ∈ Lr(Ω). Then, it holds that∣∣ĈCTE

n1,n2

D,α (Y,X) − CCTED,α(Y,X)
∣∣ = OP,n1,n2

(
n
− 1

2
2 ∨ v

−(1− 1
r )

n1

)
.

The proofs of the main theorems can be found in Section 6 (sub-section 6.2).
Corollary 3.6 below is a straightforward consequence of Corollary 3.2 (Sec-
tion 3.1) and Theorem 3.5 when studying smooth depth.

Corollary 3.6. Let α > 0 and P ∈ P be an absolutely continous distribu-
tion with density function in Lp(Rd,B(Rd), λd) for some p ∈ (1,+∞]. Assume
P [LD(α)] > 0 and there exists r ∈ [2,∞] s.t. Y ∈ Lr(Ω). Then, under assump-
tions of Corollary 3.2 it holds∣∣ĈCTE

n1,n2

D,α (Y,X) − CCTED,α(Y,X)
∣∣ = OP,n1,n2

(
n
− 1

2
2 ∨ v

−(1− 1
r )

n1

)
,

with (vn1)n1 s.t. ‖Dn1 −D‖1− 1
p

∞ = OP,n1

(
v−1
n1

)
.

It is well known that
√
n‖Fn−F‖∞ P−−−−→

n→∞
0 where F is a given c.d.f and Fn

its empirical version (see e.g. [66]), a result from which Di Bernardino et al. [24]
derived under mild conditions O(

√
n) convergence for c.d.f based CCTE. As far

as depths are concerned, the convergence of the U-process based on simplicial
depth was shown by Dümbgen [28], while Massé [52] proved that in general the
empirical Tukey process does not converge weakly, even though its marginals
always do. To the best of our knowledge, the rate at which ‖Dn −D‖∞ goes to
zero has not been derived for existing smooth depth functions in the literature
(for instance Mahalanobis depth, or L2-depth). This is why in section 3.2.2 we
derive a rate of convergence for Mahalanobis depth.

3.2.2. Mahalanobis depth

The Mahalanobis depth function (see Definition 3.7 below) is a depth function
in the sense of Definition 2.1 (Example 2.5 in [70]), and is smooth as a function
of x (which implies the upper-semicontinuity property in the empirical case as
well).
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Fig 1. Theoretical lower-level sets based on MHD(·, P ), with P the law of a Gaussian vector
in R2.

Definition 3.7 (Mahalanobis depth, Zuo and Serfling [70]). Let X ∈ Rd be a
random vector with distribution P ∈ P. The Mahalanobis depth is defined by

MHD(x, P ) =
{ (

1 + d2
ΣX

(x, μX)
)−1 if EP [‖X ‖2] < +∞ and ΣX invertible

0 if EP [‖X ‖2] = +∞ or ΣX is singular

where μX = EP [X] is the mean vector of X and ΣX is its covariance matrix and

d2
ΣX

(x, μX) := ‖x− μX‖2
ΣX

:= t(x− μX)Σ−1
X (x− μX)

is the Mahalanobis distance.

Remark 3.8. Note that the above definition of MHD is introduced as such in
order to highlight the fact that it is restricted to distributions with invertible
covariance matrix while still remaining a depth function in the sense of Def-
inition 2.1. Furthermore, for a fixed distribution P with invertible covariance
matrix, the function x ∈ Rd �→ MHD(x, P ) is infinitely differentiable, concave,
and has x = μX as unique critical point, thus μX = arg maxx∈Rd MHD(x, P ).
And αmax(P ) := maxx∈Rd MHD(x, P ) = 1.

It is well known that Mahalanobis depth is a depth in sense of the axiomati-
zation of Dyckerhoff [29] of which the level sets have elliptical shape around the
mean (see Figure 1). A natural estimator of MHD is given by

MHDn(x) := MHD(x, P̃n) =
(
1 + t(x− μ̂n)Σ̂−1

n (x− μ̂n))
)−1

, (3.2)

where μ̂n and Σ̂n are respectively the empirical mean vector and empirical
covariance matrix based on P̃n. In order to study the rate of convergence of
the CCTED estimator based on D = MHD, we check here Assumption (H0).
According to Section 3.1, in the case of absolutely continuous distributions and
C 2 depths, the problem reduces to studying the rate of convergence of ‖Dn −
D‖∞ to zero, in probability (c.f. Section 3.1, Corollary 3.2). In Theorem 3.9
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we provide the rate of convergence (in probability) of MHDn to its population
version MHD uniformly on Rd.

Theorem 3.9. Let X be a random vector with distribution P ∈ P and invert-
ible covariance matrix, s.t. X satisfies EP [‖X ‖4] < ∞. Then, it holds that

‖MHDn −MHD‖∞,Rd = OP,n

(
n− 1

2

)
.

Finally, in Corollary 3.10, we derive the specific rate of convergence for the
CCTE based on MHD-depth. Let us note that regularity assumption (R) as
stated in Section 3.1 for Corollary 3.2 is satisfied by Mahalanobis depth (see
Proposition 6.6, Section 6.1).

Corollary 3.10. Let P ∈ P, D(·, P ) = MHD(·, P ) and α ∈ (0, 1). Assume
P [LD(α)] > 0. Under assumptions of Corollary 3.6 and Theorem 3.9, it holds
that∣∣∣ĈCTE

n1,n2

D,α (Y,X) − CCTEα(Y,X)
∣∣∣ = OP,n1,n2

(
n
− 1

2
2 ∨ n

− 1
2
(
1− 1

r

)(
1− 1

p

)
1

)
.

4. Simulations and illustrations

The present section is divided into three parts. First, Section 4.1 is dedicated
to illustrating consistency of depth level sets in terms of the pseudo-metric
(see Section 3.1) and Section 4.2 to consistency of depth based CCTE. In both
sections we work with Mahalanobis, projection and halfspace depths as a non-
exhaustive list of depth examples. About the estimation of each of the previous
depth, we use the R package ddalpha (Pokotylo et al. [60]) which has good
algorithms for computing these functions. Finally, in Section 4.3 we present a
real world environmental application. Subsequently, all the simulations are done
in dimension d = 2.

4.1. Level set estimation

The aim of the current section is to illustrate the consistency of depth level sets in
terms of the pseudo-metric as stated in Corollary 3.2, for Mahalanobis (MHD),
projection (DPJ) and halfspace (DHS) depths, and to exhibit the corresponding
rates of convergence. This convergence rate is provided for MHD in Theorem 3.9
along with Corollary 3.2 since it fulfills the smoothness requirements stated in
assumption (R) of Corollary 3.2, but this is clearly not the case for both of the
other depths. Recall nevertheless that we showed L1-consistency of the pseudo-
metric without an explicit rate of convergence for any general depth (see the
proof of Theorem 3.4, in Section 6.2).

The projection depth [70] is defined by

DPJ(x, P ) =
(

1 + sup
u∈Sd−1

| 〈u, x〉 − Med(〈u,X〉)|
MAD(〈u,X〉)

)−1
,
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where X ∼ P , Med is the median of a real r.v. and MAD(Z) = Med (|Z −
Med (Z)|) is the median absolute deviation of a real r.v. Z. The halfspace depth
is defined by

DHS(x, P ) := inf
u∈Sd−1

PP (〈u, x〉 ≥ 〈u,X〉) .

The empirical counterparts of DPJ(x, P ) and DHS(x, P ) are then given by
taking P = Pn the empirical measure based on a sample of size n from P . In
practice, one cannot always compute the population versions of the projection
or halfspace depth (at least when d ≥ 2). So, in our simulations hereafter, we
considered that the population projection/halfspace depth is computed with
a “large” sample of size 50000 in order to get an estimation of its associated
level sets (note that the halfspace calculation has exponential complexity in the
sample size n and the dimension d, see e.g. [63], thus it was not possible to use
a larger sample in a reasonable time). Now, when D = MHD, we perform a
deterministic approximation (of precision 10−8) of the theoretical mean vector
and covariance matrix, m and Σ respectively. This will provide a “population”
version of MHD depth. To be precise, we estimate the mean pseudo-metric
pn(D,α) := E[PS̃n

(LD(α)ΔLn(α))] by

p̂nN,M (D,α) := 1
NM

N∑
i=1

M∑
j=1

1Xi∈LD(α)ΔLj
n(α),

where Lj
n(α) is a j-th estimation of the empirical level set Ln(α). For all three

depths above, we took N = M = 400 and different values of n and α (see
Tables 1 to 3 in the appendix).

Thereafter, in all the simulations we consider dependent risk factors X1 and
X2 via a bivariate Frank copula (with parameter −5) with Gumbel marginals
with parameter (μ1, β1) = (0, 0.25) and (μ2, β2) = (−0.5, 0.25) respectively
(Figure 2). The bivariate Frank copula with parameter θ �= 0 is defined by:

Cθ(u, v) := −1
θ

log
(

1 +
(
1 − e−θu

) (
1 − e−θv

)
e−θ − 1

)
, (u, v) ∈ R2

so that the bivariate sample introduced above has a c.d.f given by:

F (x1, x2) := Cθ=−5(Fμ1,β1(x1), Fμ2,β2(x2)),

where Fμ,β(x) := exp
(
−e

μ−x
β

)
is the univariate c.d.f. of a Gumbel distribution

with parameter (μ, β).
Let us precise that we choose MHD because of its simplicity and the other

depths because they capture more or less the shape of the above sample as
illustrated in Figure 2. Recall that the convergence of pn(D,α) to zero as
n → ∞ is a result we proved in Theorem 3.4. As long as the speed rate of
pn(D,α) is concerned, Figure 3 seems to confirm that the case

√
n is a limit

regime (ε = 0 corresponding to dotted lines), at least for both projection and
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Fig 2. Depth contours based on a sample of dependent Gumbel marginals via a Frank Copula,
for Mahalanobis, projection and halfspace depth respectively.

Fig 3. Estimated n1/2−ε · p̂nN,M (D,α) based on a sample of dependent Gumbel marginals via
a Frank Copula, for D = MHD,DPJ and DHS respectively. The colored ribbons display a
95% confidence region for each considered level. For each level α, the filled lines correspond
to ε = 0 while the dashed ones to ε = 0.1.

halfspace depths (this illustrates condition (H0) in Section 3.2). This critical
rate is obtained from our results when D = MHD (see Theorem 3.9 along with
Corollary 3.2) but it is just an observation from the simulations for DHS and
DPJ . One could still hope for similar regimes for larger values of n or/and other
sample types, and thus for theoretical speed rates to hold for both of projection
and halfspace depths. Notice however, for low levels α, the halfspace depth
exhibit greater values of convergence error (solid red line in Figure 3, halfspace
graph with α = 0.01), contrary to what is observed for both MHD and DPJ

depths (first two graphs on Figure 3, α = 0.1). One explanation could be that
the level α = 0.01 is too extreme compared to the sample size n = 5000 chosen
for the halfspace depth so that the estimation of the level sets and hence the
pseudo-distance leads to greater error values. Not to forget that population level
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Fig 4. Estimated n1/2−ε · V̂ol
n

N,M (D,α) based on a sample of dependent Gumbel marginals
via a Frank Copula, for D = MHD,DPJ and DHS respectively. The colored ribbons display
a 95% confidence region for each considered level. For each level α, the filled lines correspond
to ε = 0 while the dashed ones to ε = 0.1.

sets aren’t at hand which makes it difficult to completely conclude our study.
According to Theorem 3.1 (see Section 3.1), another natural way to study

convergence between the level sets is in the pseudo-metric defined by the d-
dimensional volume λd(LD(α)ΔLn(α)). Similarly, using a Monte-Carlo proce-
dure, we estimate the mean pseudo-metric E[λ2(LD(α)ΔLn(α))] by

V̂ol
n

N,M (D,α) := v2

NM

N∑
i=1

M∑
j=1

1Ui∈LD(α)ΔLj
n(α),

where (Ui)1≤i≤N are i.i.d. bivariate uniform r.v. over the square [−1, 2]2 which
contains the simulated gumbel samples (see Figure 2) as well as the observed
symmetric difference. Here, v2 designates the surface area of the square [−1, 2]2,
that is v2 = 9. Also, Lj

n(α) is a j-th estimation of the empirical level set Ln(α).
As observed earlier, Figure 4 seems to depict the

√
n-speed rate of the estimator

V̂ol
n

N,M (D,α) as a critical regime for all three depths previously considered (see
also Tables 4 to 6 in the appendix). As mentioned previously, we recall that this√
n-speed rate has been theoretically derived when D = MHD. However, it is

simply an observation from the simulations when D = DHS , DPJ which is not
inconsistent with

√
n being a critical regime for both depths. Notice further that

the pseudo-metric λ2(LD(α)ΔLn(α)) makes an increase in the estimated error
compared to the probability-based pseudo-metric PX(LD(α)ΔLn(α)) (as seen
in Figure 3). This phenomenon is consistent with the fact that λ2 can account
for small probability mass regions under the law of X.

4.2. CCTE estimation

In this section, we provide an illustration of Corollary 3.10 i.e. consistency
of MHD-based CCTE. The latter provides CCTE consistency in probability
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whereas we perform L1-estimation in practice, hence we are actually illustrating
a stronger result than Corollary 3.10. For purposes of comparison, we perform
L1-estimation of the CCTE based on DPJ and DHS depths as well. According
to Theorem 3.5, the rate of convergence of CCTE is linked to the one of the
pseudo-metric. So, since convergence rates of the pseudo-metric haven’t been
derived theoretically for DPJ and DHS (see the beginning of Section 4.1), we
could not derive those associated to CCTE. Yet, we made similar observations
as for MHD for both of these depths (see Figure 5). CCTE calculations based
on the three depths above are given in Tables 7 to 12 in the appendix. Hereafter
the detailed setting is presented.

We study the estimated CCTED for cost variables Y which are dependent
on the law of X := (X1, X2) ∈ R2 and having the form:

Y = ‖X ‖2 + ε,

where ε ∼ N (0, σ2), σ2 > 0, is a gaussian noise which is independent of X. In our
simulations we will take σ2 = 0.005. Here, we choose the squared euclidian norm
defined by ‖x‖2 = |x1|2 + |x2|2. The bivariate risk factors X are sampled from
Gumbel data with a dependency structure just as in Section 4.1. Note that the
above example satisfies the assumptions of Corollary 3.10. First, we compare
ĈCTE

n1,n2

MHD,α with the theoretical CCTEMHD,α for Mahalanobis depth. For
the sake of simplicity, we take n1 = n2 = n. With the same sample used in
Section 4.1, p, r are arbitrarily large so that |ĈCTE

n

MHD,α − CCTEMHD,α |
decays to zero at most with a convergence rate O(

√
n). On another note, due to

the complexity of the level-sets as domains of integration in the computation of
the CCTE, we perform a Monte Carlo procedure to fix the “true” value of the
CCTE based on a sample of size 108 (without noise), that is:

108∑
i=1

Yi1Xi∈LMHD(α)

108∑
i=1

1Xi∈LMHD(α)

.

Recall that for the sake of computational simplicity, we provide L1-estimation for
the CCTED (which implies convergence results in probability). More precisely,
we denote ĈCTE

n

α := ĈCTE
n

α,MHD the mean of the ĈCTE
n

α,MHD based on 400
simulations. The empirical standard deviation is

σ̂ =

√√√√ 1
Nmc − 1

Nmc∑
j=1

(
ĈCTE

n

α,j − ĈCTE
n

α

)2

,

while the relative mean absolute error associated to ĈCTEn
α, denoted by RMAE,
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Fig 5. Convergence rates for Mahalanobis and halfspace depth based CCTE for bivariate
Frank Copulas with Gumbel marginals. The colored ribbons display a 95% confidence region
for each considered level. For each level α, the filled lines correspond to ε = 0 whereas the
dashed ones to ε = 0.1.

is defined as follows:

RMAEMHD := RMAEn,α = 1
Nmc

Nmc∑
j=1

∣∣ĈCTE
n

α,j − CCTEMHD,α(Y,X))
∣∣

|CCTEMHD,α(Y,X)| ,

with Nmc = 400. Note that, most of the times, one uses the Relative Mean
Squared Error (RMSE) rather than the RMAE. However, since our results are
presented with absolute value, we work here with the RMAE for which we
provide L1-estimation as well. As a matter of fact, the O(

√
n) convergence

observed in our simulations is stronger than just the result of Corollary 3.10
since in the latter rates are obtained in probability, while here we performed
L1-estimation (see Figure 5).

For the sake of comparison, we performed the same previous estimations for
the projection and halfspace depths. A similar procedure to the one of Sec-
tion 4.1 was followed when giving an approximated “theoretical” CCTEDHS

(resp. CCTEDPJ
) using a 100000-sample for the level set and 400-sample for

the mean (since both of these depths are computationally demanding). This is
summarized in Tables 9 to 12 in the appendix. Further, the RMAEDHS

(resp.
RMAEDPJ

) based on halfspace (resp. projection) depth was computed with
Nmc = 400 for each different sample size n enabling the estimation of the level
set. Regarding the overall CCTE estimations, from Figure 5, the critical regime
seems to be again

√
n. Recall this is a stronger result than our Corollary 3.10

for MHD, but it just arises from the simulations for DPJ and DHS since we
have not derived explicit rates for both of these depths. This can be one expla-
nation to the RMAE behavior for the halspace depth in this particular setup
(Figure 5). Remark further for low levels α (α = 0.1, α = 0.15 and α = 0.01 for
MHD, DPJ and DHS resp.) and any sample sizes n (n ≤ 50000 for MHD and
n ≤ 5000 for DPJ and DHS), the value of RMAE is relatively high. This may
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be explained by the fact that for small values of α there is fewer data to observe
so that it becomes more difficult to estimate the mean ĈCTE as well as the
α-level set. Indeed, for low levels α the constant A = 2/m∇ can be large since
m∇ approaches zero (see Theorem 6.1 and Remark 6.4 in Section 3.1) meaning
that the constant bounding the error (RMAE) becomes large, thus we will need
a “large” dataset to get a reasonable estimation.

4.3. Application

In this section we present a real world environmental application. The data set,
which was downloaded from RTE France1 and Meteo France2 consists of three-
hourly power consumptions and temperatures for the region of Nice (France)
over a three-year period (2019-2021), giving rise to 4377 observations. To be
more precise, observations are of the form (y,x) ∈ R × R2, where we consider
bivariate risk factors x := (t1, t2) with t1 being the temperature at a given hour
H and t2 is that six hours before. To each x is associated a cost variable y
representing the power consumption (in MWh) at hour H (see Figure 6). This
kind of problem with lagged dataset has been intensively studied for decades in
the short-term load forecasting literature. Most commonly, the aim is to forecast
one to five days ahead electric hourly load, based on weather input variables
such as one or two days-lagged temperature, humidity... For example, Dudek
[27] and Oreshkin et al. [58] proposed models for short and mid-term electricity
load forecasts respectively (i.e from hours to days ahead resp.) based on lags of
electricity load. This has become an essential task in the scheduling of accurate
electricity supplies and the management of power system.Indeed, it is possible
to forecast temperatures several days in advance. Then, knowing the behav-
ior of the cost, the electricity consumption, given the predictable covariables,
the temperatures, is useful to adapt the electricity production (by starting up
a power plant, for example). In practice, the main variable that has been in-
cluded is the air temperature, since it has been known that the demand rises on
cold days because of the use of electric space- and water-heating devices, and
on hot days, because of air conditioning. This phenomenon can be observed in
Figure 6 as the function that relates the bivariate temperature dataset to the
load is clearly non-linear and rather U-shaped. For instance, Khotanzad et al.
[45], Chow and Leung [10], Hippert et al. [41] and Elias et al. [32] used neural
networks with input vector containing the time-lagged desired forecasting vari-
able “Electric Load” and the time-lagged exogenous variables among which one
can find (hourly or daily) lagged-temperatures.

In the above setting, the empirical CCTE at level α can be interpreted as an
average power consumption knowing that temperatures are “far away” from the
usual ones (e.g. considering low values of α). This can be interesting from electric
utility companies point of view such as EDF for instance (which is the leading
French-multinational-electric utility company). Indeed, if potential great heat

1https://www.rte-france.com/
2https://meteofrance.com/

https://www.rte-france.com/
https://meteofrance.com/
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Fig 6. Illustration of the dataset.

Fig 7. Depths contours based on the sample of temperatures (xξ)ξ for Mahalanobis, projection
and halfspace depth resp.

or/and cold waves are expected in the next decade, then EDF could forecast
future average electricity investments for the considered period. In what follows,
we illustrate the behavior of ĈCTEα as a function of α for the three different
depths D presented in Figure 7 since they capture more or less the features
of the risk factors dataset. Observe that low (resp. high) values of t1 and t2
corresponds to winter periods (resp. summer periods); the other configurations
might correspond to periods in between.

In our analysis, we split the global dataset {(yξ,xξ)ξ} into two samples of size
n1 = 1800 and n2 = 4377−n1 to estimate the level set and the mean respectively
in the definition of ĈCTE. Note that in the first n1-sample, we only need the
values of the (xξ)′s. However, in the second n2-sample we removed the missing
values of (yξ)′s (i.e. NA’s, there were 26 of them) but kept the associated (xξ)′s
to add them to the first n1-sample which is useful in the estimation of the
level sets. So that now, n1 = 1826 and n2 = 2551. Observe that the dataset



6604 S. Armaut et al.

Fig 8. Empirical CCTE behavior w.r.t. α (x-axis must be read from left to right according to
the decreasing order of α).

above exhibits a dependence structure as a process indexed by time, so that the
assumption of i.i.d observations may be misleading. However, since we consider
both of the previous split datasets as data clouds in R2 and R3 resp., it is
not irrelevant to consider that they are realisations of i.i.d r.v. on the data
cloud (particularly since we took as many seasons as within each year). As one
can expect, ĈCTE

n1,n2

α increases as α decreases (Figure 8), which means when
less central and hence “riskier” data are observed the cost is more and more
significant. In other words, low values of α corresponding to all configurations
of significant temperatures (t1, t2) (low at time H and low 6 hours before H,
low at H and high 6 hours before H, etc..., see Figure 7) result naturally in
higher power consumptions. Here, depths are grouped together according to the
minimum achievable value of α. For the halfspace depth, the minimum level
we could go for was α = 0.001, while α = 0.14 was the minimum level taken
for Mahalanobis and projection depths. This may be explained by the fact that
Mahalanobis and projection depths are based on mean, covariance and median
calculations (resp.) so that one needs larger datasets to be able to reach possible
lower values of α. Whereas halfspace depth is based on proportions (observed
in halfspaces) which allow for very low values of α even if the sample size is not
“too large”.

5. Conclusion and perspectives

In this paper we provided convergence results for the plug-in estimator of the
level sets of a given multivariate depth function in terms of the pseudo-metric
under an unknown distribution. We derived a rate of convergence for Maha-
lanobis depth. In this setting we propose and estimate a new multivariate risk
measure CCTED,α(Y,X). Comparing our CCTE with existing risk measures in



Depth level set estimation and associated risk measurements 6605

terms of classical properties (monotonicity, translation invariance, homogene-
ity, subadditivity), behavior with respect to different risk scenarios is still an
interesting and open question. Another interesting topic, which is in prepara-
tion, would be to derive possible rates of convergence when the level α is no
more fixed and depends on the sample size with the aim of exploring extreme
depth-regions, this, while relying on the broad extreme value literature.

6. Proofs

In this section, we denote by

‖f‖p :=
(∫

Rd

|f(x)|pdx
) 1

p

for p < +∞, and

‖f‖∞ := ess supx∈Rd |f(x)| for p = +∞,

the Lp(Rd,B(Rd), λd) norm of f w.r.t the Lebesgue measure λd on Rd. We recall
that for A and B non-empty compact sets in (Rd, ‖ · ‖), the Hausdorff distance
between A and B is defined by

dH(A,B) = sup (supa∈A dist(a,B), supb∈B dist(b, A)),

where dist(x,A) := infa∈A ‖x− a‖.

6.1. Preliminary results

The following result is a slight modification of Proposition 3.1 in the Ph.D. the-
sis of Rodríguez-Casal [62] adapted to depth functions, and an adapted version
of Theorem 2 in Cuevas et al. [16] to depths in which we weaken the assump-
tion of continuity of the empirical depth function by an assumption of upper-
semicontinuity (u.s.c.). This is interesting since several existing depth functions
are u.s.c but not continuous. For instance, for each distribution, the halfspace
depth is u.s.c. but not continuous. The simplicial depth is u.s.c., and continuous
only for absolutely continuous distributions, particularly, the empirical version
of the simplicial depth is u.s.c. but not continuous. Theorem 6.1 is rather a tech-
nical result of which the proof can be found thereafter. We recall Assumption
(R) as stated in Section 3.1.

Assumption (R). Let D : Rd × P → R+ be a depth as in Definition 2.1.
Fix P ∈ P, α ∈ (0, αmax(P )) and 0 < ε < α. Denoting D(x) := D(x, P ), we
assume the following:

(i) the function x �→ D(x) is continuous on Rd and of class C 2 on the set
Kε(α) := D−1([α− ε, α + ε]),

(ii) m∇ := m∇(α, ε, P ) := infx∈Kε(α) ‖(∇D)x‖ > 0, where (∇D)x is the
gradient of D(·) at x,

(iii) ‖Dn −D‖∞,Rd
P-a.s.−−−−→
n→∞

0.
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Theorem 6.1. Suppose that Assumption (R) is satisfied. Then, it holds that

dH(∂L(α), ∂Ln(α)) = O
n→∞

(‖Dn −D‖∞,Rd), P-a.s..

Remark 6.2. We should mention that in Theorem 6.1 only two main properties
of a depth are sufficient for the previous result to hold, namely (D2) upper
semi-continuity and (D4) vanishing at infinity.

Remark 6.3. On one hand, if α ∈ (0, αmax(P )), then ∅ � LD(α) � Rd, so that
∂LD(α) is non-empty. On the other hand, if the empirical depth Dn converges
pointwise P-a.s. (almost-surely) to D on Rd then (cf. Theorem 4.1 in Dyckerhoff
[30]), for any α ∈ (0, αmax(P )) and P-a.s. for any n large enough, the upper-level
set {x : D(x, Pn) ≥ α} is non-empty as well as the set {x : D(x, Pn) < α}. Thus,
P-a.s., for n large enough, ∂Ln(α) is non-empty. Property (D4) vanishing at
infinity guarantees that the upper level sets are bounded. As a consequence,
the Hausdorff distance is well defined since ∂Ln(α) and ∂LD(α) are closed by
definition and bounded as they are included in compact sets ({x : Dn(x) ≥ α}
and {x : D(x) ≥ α} resp.).

Most of the depth functions commonly encountered in the multivariate depth
literature satisfy assumption (iii) of Theorem 6.1 (e.g. halfspace, simplicial, pro-
jection, Mahalanobis depths...). Continuity of the depth function at x is obtained
in most cases (for instance the simplicial depth for absolutely continuous distri-
butions as said before, the L2-depth (Zuo & Serfling, 2000), and Mahalanobis
depth). However, assumptions (i) and (ii) are not always satisfied by classical
depths, but they are satisfied by Mahalanobis and L2 depths for instance (see
Example 2.3 in [70]). Since Mahalanobis depth is infinitely differentiable in its
first argument, under some conditions it will satisfy all three assumptions of
Theorem 6.1; this will be discussed hereafter (Proposition 6.6).
Remark 6.4. In the first part of the proof of Theorem 6.1, we show that α̃ �→
{D = α̃} is locally A-Lipschitz w.r.t the Hausdorff distance in a neighborhood
of the level α, with A = 2/m∇, m∇ > 0. This means assuming that D(x) has
a non-zero gradient around the α-level set. One scenario where zero gradient
occurs is the depth level set {x : D(x) = α} such that the depth function D(x)
is flat at the level α. While studying strict monotonicity of depths, Dyckerhoff
[30] provided examples of distributions for which the halfspace depth is flat
around some level (see Supplement to [30]) but is not smooth however. Figure 9
below illustrates a special case where Dn converges pointwise from “above” to
D with a plateau. Now under assumptions of Theorem 6.1, D is continuous on
Kε(α) and m∇ > 0, there is no plateau in the graph of D for each level β such
that |α − β| ≤ γ. This condition of non-zero gradient is commonly assumed in
the literature, mostly for density level sets [5, 48, 54, 53, 51]. Notice further when
the level α approaches zero, the constant A can be large so that the estimation
of the level set becomes hard. In this case, we will need a “large” dataset to get
a reasonable estimation.

Remark 6.5. Among the four properties of a depth function, property (D4)
(vanishing at infinity) guarantees that the set Kε(α) is compact in Rd. Indeed,
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Fig 9. Example of a flat univariate depth around the α-level set. Here, L±ε
D (α) = D−1([α±ε])

and L±ε
n (α) = D−1

n ([α± ε]).

as D satisfies (D4), assumption 0 < ε < α implies Kε(α) is bounded, moreover
under assumption (i) of Theorem 6.1, D is continuous on Kε(α) so that Kε(α) is
a closed set. By denoting (HD)x the Hessian matrix of D at x, one can note that
MH := supx∈Kε(α) |||(HD)x||| < ∞, as a supremum of a continuous mapping on
a compact set.

In Proposition 6.6 below, we provide the particular version of Theorem 6.1
associated to MHD depth.

Proposition 6.6. Let X ∈ Rd be a random vector from P ∈ P s.t. EP [‖X ‖2] <
∞ and ΣX invertible. It holds

dH(∂LMHD(α), ∂Ln(α)) = O
n→∞

(‖MHDn −MHD‖∞,Rd), P-a.s..

Proof of Theorem 6.1. The proof of the theorem is divided into two main parts.
Part I. We show that under assumptions (i) and (ii) of Theorem 6.1, the

following assumption
(L): ∃ A > 0, ∃ γ > 0, ∀ β > 0, |α − β| ≤ γ ⇒ dH({D = α} , {D = β}) ≤

A|α− β|,
is satisfied with A = 2/m∇. It characterizes the locally Lipschitz behavior of

the mapping α̃ �→ {D = α̃} w.r.t the Hausdorff distance in a neighborhood of
the fixed level α > 0.

Under assumptions of Theorem 6.1, Kε(α) := D−1([α− ε, α+ ε]) is compact
and

MH := sup
x∈Kε(α)

|||HDx||| < ∞

(cf. Remark 6.5). We state the following useful lemma.

Lemma 6.7. Under the assumptions of Theorem 6.1, there exist N := Nε ≥ 1,
some points xi := xi,ε ∈ K ε

2
(α), and some positive real numbers ri := rxi ∈ R∗

+,
1 ≤ i ≤ N , s.t.

K ε
2
(α) ⊂

⋃N
i=1 B

(
xi,

ri
2

)
⊂

⋃N
i=1 B(xi, ri) ⊂ Kε(α).
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Proof of Lemma 6.7. Since ε > 0, then K ε
2
(α) is a subset of the interior of

Kε(α). Thus, for any x ∈ K ε
2
(α), there exists rx := rx(ε) > 0 s.t.

B(x, rx) ⊂ Kε(α),

that is,

K ε
2
(α) ⊂

⋃
x∈K ε

2
(α)

B
(
x,

rx
2

)
⊂

⋃
x∈K ε

2
(α)

B(x, rx) ⊂ Kε(α).

Since we have an open cover of the compact set K ε
2
(α), then the latter has a

finite sub-cover. In other words, there exist N ≥ 1, some points xi := xi,ε ∈
K ε

2
(α), and ri := rxi ∈ R∗

+, 1 ≤ i ≤ N , s.t.

K ε
2
(α) ⊂

⋃N
i=1 B

(
xi,

ri
2

)
⊂

⋃N
i=1 B(xi, ri) ⊂ Kε(α).

Hence the result.

Let 0 < γ ≤ ε/2 and x ∈ Kγ(α). For λ ∈ R, define

yλ := yλ,x = x + λ
(∇D)x

‖(∇D)x‖
,

with ‖(∇D)x‖ ≥ m∇ > 0, since Kγ(α) ⊂ Kε(α). In what follows, we take

‖yλ − x‖ = |λ| < min
1≤i≤N

ri
2 .

It holds [yλ, x] ⊂ Kε(α). Indeed, x ∈ Kγ(α) so that Lemma 6.7 applies, namely,
there exists 1 ≤ i0 ≤ N s.t. x ∈ B(xi0 , ri0/2), and for all z ∈ [yλ, x],

‖z − xi0‖ ≤ ‖z − x‖ + ‖x− xi0‖
≤ ‖yλ − x‖ + ‖x− xi0‖
= |λ| + ‖x− xi0‖

< min
1≤i≤N

ri
2 + ri0

2
≤ ri0 .

Thus, z ∈ B(xi0 , ri0) ⊂ Kε(α) (cf. Lemma 6.7). Since |λ| < min1≤i≤N ri/2,
using a Taylor expansion on the line [x, yλ] ⊂ Kε(α), it holds

D(yλ) = D(x) + 〈(∇D)x, yλ − x〉 + 1
2 〈yλ − x, (HD)x(yλ − x)〉, x ∈ [x, yλ],

then,

D(yλ) =D(x) + λ‖(∇D)x‖ + λ2

2‖(∇D)x‖2 〈(∇D)x, (HD)x(∇D)x〉 .
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Using Cauchy-Schwarz inequality, it holds

|D(yλ) −D(x) − λ‖(∇D)x‖| ≤
λ2

2‖(∇D)x‖2 ‖(∇D)x‖|||(HD)x||| · ‖(∇D)x‖

=λ2

2 |||(HD)x|||.

Since x ∈ Kε(α), then |||(HD)x||| ≤ supx∈Kε(α) |||(HD)x||| = MH < ∞. For any
|λ| < min1≤i≤N ri/2, we obtain

D(x) + λ‖(∇D)x‖ −
λ2

2 MH ≤ D(yλ) ≤ D(x) + λ‖(∇D)x‖ + λ2

2 MH . (6.1)

If 0 < λ < min1≤i≤N ri/2, then with the above inequality, we have

D(yλ) ≥ D(x)+λ inf
x∈Kε(α)

‖(∇D)x‖−
λ2

2 MH = D(x)+λ

(
m∇ − λ

MH

2

)
(6.2)

Suppose now MH > 0 (the case MH = 0 is trivial). That way, if 0 < λ <
m∇
MH

∧ min1≤i≤N ri/2, using (6.2),

D(yλ) ≥ D(x) + λm∇
2 .

Similarly, using the right hand side of inequality (6.1), for any 0 < λ < m∇
MH

∧
min1≤i≤N

ri
2 ,

D(y−λ) ≤ D(x) − λ
m∇
2 .

To sum up, for any 0 < γ ≤ ε/2, x ∈ Kγ(α) and 0 < λ < m∇
MH

∧ min1≤i≤N
ri
2 , it

holds

D(yλ) ≥ D(x) + λ
m∇
2 , (6.3)

D(y−λ) ≤ D(x) − λ
m∇
2 . (6.4)

Choose γ :=
[
m∇
4

(
m∇
MH

∧ min1≤i≤N
ri
2

)]
∧ ε

2 > 0. Now we show:

if |α− β| ≤ γ, then dH({D = α} , {D = β}) ≤ 2
m∇

|α− β|.
Assume |α− β| ≤ γ.

Let β be s.t. 0 < β−α ≤ γ. In this case, β = α+ η with 0 < η ≤ γ. First, we
have to find an upper bound for supx∈{D=β} dist(x, {D = α}). Let x ∈ {D = β},
i.e. D(x) = β = α + η. Since 0 < η ≤ γ, 0 < D(x) − α ≤ γ, i.e. x ∈ Kγ(α).
Choose λ := 2η

m∇
∈

(
0, m∇

MH
∧ min1≤i≤N

ri
2

)
so that with (6.4),

D(y−λ) ≤ D(x) − λ
m∇
2 = D(x) − η = α < D(x).

From the above inequality and the continuity property of z �→ D(z) on Kε(α) ⊃
[y−λ, x], there exists a point y ∈ [y−λ, x] s.t. D(y) = α. Moreover,

‖x− y‖ ≤ ‖x− y−λ‖ = |λ| = 2η
m∇

= 2
m∇

(β − α).
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As a consequence, for all x ∈ {D = β},

dist(x, {D = α}) ≤ ‖x− y‖ ≤ 2
m∇

|β − α|.

So
sup

x∈{D=β}
dist(x, {D = α}) ≤ 2

m∇
|β − α|.

In order to get an upper bound for supx∈{D=α} dist(x, {D = β}), we use the
inequality (6.3) by proceeding in a similar way.

The proof in the case 0 > β − α > −γ is completely analogous.
Part II. In this part, we show that the Hausdorff distance between the re-

spective boundaries of Ln(α) and LD(α) is O (‖Dn −D‖∞) up to a constant
depending on A.

Let α ∈ (0, αmax(P )).

Step 1 : we need to find an upper bound for supx∈∂L(α) d(x, ∂Ln(α)).
Let x ∈ ∂L(α). Denote εn = 2‖Dn −D‖∞. Under the assumptions of The-

orem 6.1 εn → 0 P-a.s., so that P-a.s., there exists an integer n0 := n0(ω) ≥ 1
(independent of x), s.t. for all n ≥ n0, εn ≤ γ. Taking β = α + εn, it holds

P-a.s., for all n ≥ n0, dH(∂L(α + εn), ∂L(α)) ≤ Aεn.

Thus, from the above inequality and using the continuity property of D, P-a.s.,
for all n ≥ n0, there exists un := ux,εn ∈ ∂L(α + εn) i.e. D(un) = α + εn, and
ln := lx,εn ∈ ∂L(α− εn) i.e. D(ln) = α− εn, s.t.

‖un − x‖ ≤ Aεn and ‖ln − x‖ ≤ Aεn.

Let us assume ‖Dn − D‖∞ > 0 (the case ‖Dn − D‖∞ = 0 is trivial). In this
case,

Dn(un) = Dn(un)+α+εn−D(un) ≥ α+εn−‖Dn−D‖∞ = α+‖Dn−D‖∞ > α.

Similarly, we have Dn(ln) < α. So P-a.s., for all n ≥ n0,

Dn(ln) < α < Dn(un).

For the sake of simplicity, we denote here Ln := {x : Dn(x) ≤ α}. Then, almost
surely, for all n ≥ n0, Ln is non-empty (since it contains ln). And by definition,
ln ∈ Ln ⊂ Ln. Denoting by Lc

n the complementary of Ln in Rd, it holds un ∈
Lc
n ⊂ Lc

n = (L̊n)c, that is, un /∈ L̊n. Then,

P-a.s., for all n ≥ n0, there exists zn ∈ [ln, un] ∩ ∂Ln.

Thus, P-a.s., for all n ≥ n0,

dist(x, ∂Ln(α)) ≤ ‖x− zn‖
≤ ‖x− un‖ + ‖un − zn‖
≤ ‖un − x‖ + ‖un − ln‖
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≤ ‖un − x‖ + ‖un − x‖ + ‖x− ln‖
≤ 3Aεn
= 6A‖Dn −D‖∞.

Since the previous inequality holds for all x ∈ ∂L(α), we have, P-a.s., for all
n ≥ n0,

supx∈∂L(α) d(x, ∂Ln(α)) ≤ 6A‖Dn −D‖∞.

Step 2 : Let us find an upper bound for supx∈∂Ln(α) d(x, ∂L(α)).
Let xn ∈ ∂Ln(α) := ∂Ln = {Dn ≤ α}∩{Dn > α} ⊂ {Dn ≥ α} = {Dn ≥ α},

since Dn is a.s. upper-semicontinuous, so that the upper level set based on
Dn is closed. Then, Dn(xn) ≥ α. Furthermore, since xn ∈ {Dn ≤ α}, there
exists 
n “close” enough to xn s.t. Dn(
n) ≤ α, and s.t. by continuity of D,
|D(xn) −D(
n)| ≤ εn/2. On the one hand,

D(xn) = Dn(xn) −Dn(xn) + D(xn) ≥ α− εn/2 ≥ α− εn,

on the other hand,

D(xn) = Dn(
n) −Dn(
n) + D(
n) −D(
n) + D(xn)
≤ α + εn/2 + εn/2,

so,
|D(xn) − α| ≤ εn.

Recall that, a.s. for all n ≥ n0, εn ≤ γ. Then, using property (L) with β =
D(xn), we can write

dist(xn, ∂L(α)) ≤ dH(∂L(D(xn)), ∂L(α)) ≤ A|D(xn) − α|
≤ 2A‖Dn −D‖∞.

Now we deduce that, a.s. for n large enough,

sup
x∈∂Ln(α)

d(x, ∂L(α)) ≤ 2A‖Dn −D‖∞.

Hence the result.

Proof of Proposition 6.6. (i) The function MHD(·) is infinitely differentiable
on Rd, and denoting μ = μX, we can write for any 1 ≤ k ≤ d,

∂MHD(x)
∂xk

= −MHD(x)2 ∂

∂xk

[
d∑

i,j=1
(xi − μi)(Σ−1

X )ij(xj − μj)
]

= −MHD(x)2 · 2
[

d∑
i=1

(Σ−1
X )ki(xi − μi)

]
, (Σ−1

X is symmetric)
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= −2MHD(x)2
[
Σ−1

X (x− μ)
]
k

.

So
(∇MHD)x = −2MHD(x)2Σ−1

X (x− μ).

Since MHD(x) > 0,

(∇MHD)x = 0 ⇐⇒ x = μ = μX.

Thus,
‖(∇MHD)x‖ > 0, for all x �= μX.

Now since x ∈ Rd �→ ‖(∇MHD)x‖ is continuous and Kε(α) is compact, then
there exists x0 ∈ Kε(α) in which the infimum m∇ is attained,

m∇ = ‖(∇MHD)x0‖ > 0.

The latter inequality is strict since x0 ∈ Kε(α), and μX /∈ Kε(α) (from the
assumption ε < 1 − α). Indeed,

μX ∈ Kε(α) ⇔ |MHD(μX) − α| ≤ ε ⇔ |1 − α| = 1 − α ≤ ε.

(ii) It remains to prove

‖MHDn −MHD‖∞,Rd
P-a.s.−−−−→
n→∞

0, (6.5)

by recalling that αmax(P ) = 1 for MHD depth. The result is hence a straight
forward application of Theorem 6.1. In order to prove (6.5), one can refer to the
computations in the proof of Theorem 3.9 and obtain the desired result knowing
that Σ̂n

P-a.s.−−−−→
n→∞

Σ, and μ̂n
P-a.s.−−−−→
n→∞

μ.

6.2. Proofs of Section 3

Proofs of Section 3.1.

Proof of Theorem 3.1. Denote D(·) := D(·, P ), where P ∈ P is fixed. We want
to find an upper bound for λd(LD(α)ΔLn1(α)). We introduce:


n1 = 
n1(α) := dH(∂Ln1(α), ∂LD(α)),

and the tube around the boundary ∂LD(α) of radius 
n1 defined by

Tube(∂LD(α), 
n1) :=
{
z ∈ Rd : dist(z, ∂LD(α)) ≤ 
n1

}
.

Since ∂LD(α) is a compact submanifold of dimension d − 1, and 
n1 is small
enough P-a.s. for large n1, one can make a first order approximation of the
volume of the spherical tube around ∂LD(α) of radius 
n1 using Weyl’s formula
(cf. Weyl [69], p. 461):
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Fig 10. Illustration of λd(Ln1(α)ΔLD(α)) (yellow) and the tube around LD(α) of radius �n1
(blue), with d = 2.

λd [Tube(∂LD(α), 
n1)] ≈ Ω1
n1 · k0(α) P-a.s.,

with Ω1 = 2 being the length of the unit interval {t ∈ R : |t| ≤ 1} and k0(α) the
area of the “surface” ∂LD(α). So, P-a.s. for n1 large enough,

λd(Ln1(α)ΔLD(α)) ≤ λd [Tube(∂LD(α), 
n1)]
≈ Ω1
n1 · k0(α)
:= Kd(α)
n1

≤ Kd(α)‖Dn1 −D‖∞,Rd ,

with Kd(α) a constant that may change from a line to another. We specify here
that the “≈” sign above means

an ≈ bn
def⇐⇒ an = bn + εn, εn −−−−→

n→∞
0.

In the above, the last inequality is obtained under assumptions of Theorem 6.1.

Proof of Corollary 3.2. Denote D(·) := D(·, P ), where P is absolutely contin-
uous with p-integrable density function f w.r.t the Lebesgue measure on Rd.
Under the assumptions of Theorem 3.2, when p ∈ (1,+∞), it holds P-almost-
surely

PS̃n1
(Ln1(α)ΔLD(α)) =

∫
1x∈Ln1 (α)ΔLD(α)f(x)dx

≤ λd(LD(α)ΔLn1(α))1−
1
p ‖f‖p (Hölder)



6614 S. Armaut et al.

≤ λd(LD(α)ΔLn1(α))1−
1
p ‖f‖p︸︷︷︸

< ∞

.

When p = +∞, the above inequality is trivially valid by bounding f by its
essential supremum. The proof now follows from Theorem 3.1.

Proofs of Section 3.2.

Proofs of Section 3.2.1. We first give the proof of Theorem 3.5. Theorem 3.4
will be proved following the guidelines of the proof of Teorem 3.5.

Proof of Theorem 3.5. We can write∣∣ĈCTE
n1,n2

D,α (Y,X) − CCTED,α(Y,X)
∣∣ · 1PS̃n1

(Ln1 (α))>0

=

∣∣∣∣∣
1
n2

∑n2
i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2
i=1 1Xi∈Ln1 (α)

− E[Y |X ∈ LD(α)]

∣∣∣∣∣ · 1PS̃n1
(Ln1 (α))>0

≤
∣∣∣∣∣

1
n2

∑n2
i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2
i=1 1Xi∈Ln1 (α)

− ES̃n1
[Y |X ∈ Ln1(α)]

∣∣∣∣∣ · 1PS̃n1
(Ln1 (α))>0

+
∣∣∣ES̃n1

[Y |X ∈ Ln1(α)] − E[Y |X ∈ LD(α)]
∣∣∣ · 1PS̃n1

(Ln1 (α))>0.

The proof of Theorem 3.5 is a modified version of the proof of Theorem 5.1
in Di Bernardino et al. [24]. The latter focuses on distribution functions in-
stead of depth functions. Besides, in the proof of Theorem 3.5, we show that
1PS̃n1

(Ln1 (α))>0 converges to one in probability.
First recall that, in the following, probability measures involving events which

depend on Ln1(α) are conditional expectations to the sample S̃n1 . For notational
convenience, we recall that

PS̃n1
(Ln1(α)) = P(X ∈ Ln1(α))

which is a random variable. Moreover, note that the convergence to zero in
probability implies directly the OP (1) result.

The proof of Theorem 3.5 is a direct consequence of Lemma 6.8 and Lemma
6.9 below.

Lemma 6.8. Under assumptions of Theorem 3.5, it holds that∣∣∣ES̃n1
[Y |X ∈ Ln1(α)] − E[Y |X ∈ LD(α)]

∣∣∣ = OP,n1

(
v
−
(
1− 1

r

)
n1

)
.

Proof of Lemma 6.8. On the event
{
PS̃n1

(Ln1(α)) > 0
}

, it holds

v
1− 1

r
n1

∣∣∣ES̃n1
[Y |X ∈ Ln1(α)] − E[Y |X ∈ LD(α)]

∣∣∣
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= v
1− 1

r
n1

∣∣∣∣∣ES̃n1
[Y 1X∈Ln1 (α)]

PS̃n1
(Ln1(α)) −

E[Y 1X∈LD(α)]
P (LD(α))

∣∣∣∣∣
= v

1− 1
r

n1

PS̃n1
(Ln1(α))P (LD(α))×

∣∣∣P (LD(α))ES̃n1
[Y 1X∈Ln1 (α)]

− P (LD(α))E[Y 1X∈LD(α)] + P (LD(α))E[Y 1X∈LD(α)]

− PS̃n1
(Ln1(α))E[Y 1X∈LD(α)]

∣∣∣
≤ v

1− 1
r

n1

PS̃n1
(Ln1(α))P (LD(α)) ×

(
P (LD(α))

∣∣∣ES̃n1
[Y 1X∈Ln1 (α)] − E[Y 1X∈LD(α)]

∣∣∣
+

∣∣∣P (LD(α)) − PS̃n1
(Ln1(α))

∣∣∣ ∣∣E[Y 1X∈LD(α)]
∣∣ )

≤ v
1− 1

r
n1

PS̃n1
(Ln1(α))P (LD(α))×

(∣∣∣ES̃n1
[Y 1X∈Ln1 (α)]−E[Y 1X∈LD(α)]

∣∣∣
+ E[|Y |]

∣∣∣P (LD(α)) − PS̃n1
(Ln1(α))

∣∣∣).
Under Assumption (H0) and since v−1

n1
→ 0 as n1 → ∞, it holds that

PS̃n1
(Ln1(α)ΔLD(α)) P−−−−→

n1→∞
0,

so that
PS̃n1

(Ln1(α)) P−−−−→
n1→∞

P (LD(α)) > 0,

and
P
({

PS̃n1
(Ln1(α)) > 0

})
−−−−→
n1→∞

1. (6.6)

On the one hand,

v
1− 1

r
n1

∣∣∣PS̃n1
(Ln1(α)) − P (LD(α))

∣∣∣ ≤ v
1− 1

r
n1 PS̃n1

(LD(α)ΔLn1(α)),

so we obtain
v
1− 1

r
n1

∣∣∣PS̃n1
(Ln1(α)) − P (LD(α))

∣∣∣ P−−−−→
n1→∞

0. (6.7)

On the other hand, using Hölder inequality

v
1− 1

r
n1

∣∣ES̃n1
[Y 1X∈Ln(α)] − E[Y 1X∈LD(α)]

∣∣
≤v

1− 1
r

n1 ES̃n1

[
|Y |1X∈Ln1 (α)ΔLD(α)

]
≤v

1− 1
r

n1 E
[
|Y |r

] 1
rES̃n1

[
1X∈Ln1 (α)ΔLD(α)

]1− 1
r
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=v
1− 1

r
n1 PS̃n1

(Ln1(α)ΔLD(α))1− 1
r ‖Y ‖Lr(Ω).

Since vn1PS̃n1
(Ln1(α)ΔLD(α)) = OP,n1(1), it holds

v
1− 1

r
n1

∣∣ES̃n1
[Y 1Ln1 (α)] − E[Y 1LD(α)]

∣∣ = OP,n1(1). (6.8)

Since the convergence to zero in probability implies the OP (1) result, the lemma
follows directly from (6.6), (6.7), and (6.8). The case r = +∞ is analogous.

Lemma 6.9. Under assumptions of Theorem 3.5, we obtain∣∣∣∣∣
1
n2

∑n2
i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2
i=1 1Xi∈Ln1 (α)

− E[Y |X ∈ Ln1(α)]

∣∣∣∣∣ = OP,n1,n2(n
− 1

2
2 ).

Proof of Lemma 6.9. First, we distinguish the event in which
1
n2

∑n2
i=1 1Xi∈Ln1 (α) = 0, then the one in which 1

n2

∑n2
i=1 1Xi∈Ln1 (α) �= 0.

Let 0 < ε < P [LD(α)]. Since the (Yi,Xi)1≤i≤n2 are iid so that the (Xi)1≤i≤n2

are iid, it holds that

P

(
1
n2

n2∑
i=1

1Xi∈Ln1 (α) = 0
)

= E

[
PS̃n1

(
1
n2

n2∑
i=1

1Xi∈Ln1 (α) = 0
)]

= E

[
n2∏
i=1

PS̃n1
(Xi /∈ Ln1(α))

]
= E

[
PS̃n1

(X /∈ Ln1(α))n2
]

= E
[
(1 − PS̃n1

(Ln1(α)))n21PS̃n1
(Ln1 (α))≥ε

]
+ E

[
(1 − PS̃n1

(Ln1(α)))n21PS̃n1
(Ln1 (α))<ε

]
≤ (1 − ε)n2 + P

(
PS̃n1

(Ln1(α)) < ε
)
.

Since ε ∈ (0, P (LD(α))) and PS̃n1
(Ln1(α)) P−−−−→

n1→∞
P (LD(α)) (see Lemma 6.8),

we obtain P
(

1
n2

∑n2
i=1 1Xi∈Ln1 (α) = 0

)
−−−−−−→
n1,n2→∞

0. Now on the event{
1
n2

∑n2
i=1 1Xi∈Ln1 (α) �= 0

}
∩
{
PS̃n1

(Ln1(α)) > 0
}

, we can write∣∣∣∣∣
1
n2

∑n2
i=1 Yi1Xi∈Ln1 (α)

1
n2

∑n2
i=1 1Xi∈Ln1 (α)

− ES̃n1
[Y |X ∈ Ln1(α)]

∣∣∣∣∣
=

∣∣∣∣∣
∑n2

i=1 Yi1Xi∈Ln1 (α)∑n2
i=1 1Xi∈Ln1 (α)

−
ES̃n1

[Y 1X∈Ln1 (α)]
PS̃n1

(Ln1(α))

∣∣∣∣∣
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≤ 1
1
n2

∑n2
i=1 1Xi∈Ln1 (α)

∣∣∣∣ 1
n2

n2∑
i=1

Yi1Xi∈Ln1 (α) − ES̃n1
[Y 1X∈Ln1 (α)]

∣∣∣∣
+

∣∣ES̃n1
[Y 1X∈Ln1 (α)]

∣∣∣∣∣∣ 1
1
n2

∑n2
i=1 1Xi∈Ln1 (α)

− 1
PS̃n1

(Ln1(α))

∣∣∣∣
≤ 1

1
n2

∑n2
i=1 1Xi∈Ln1 (α)

∣∣∣∣ 1
n2

n2∑
i=1

Yi1Xi∈Ln1 (α) − ES̃n1
[Y 1X∈Ln1 (α)]

∣∣∣∣
+ E[|Y |]

PS̃n1
(Ln1(α)) 1

n2

∑n2
i=1 1Xi∈Ln1 (α)

∣∣∣∣ 1
n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
(Ln1(α))

∣∣∣∣.
(R)

Let us first clarify the convergence of the denominator terms. Recall that under
Assumption (H0) of Theorem 3.5,

PS̃n1
(Ln1(α)) P−−−−→

n1→∞
P (LD(α)) > 0,

and P
({

PS̃n1
(Ln1(α)) > 0

})
−−−−→
n1→∞

1 (see the proof of Lemma 6.8). Next, we
prove

n
1
2
2

(
1
n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
(Ln1(α))

)
= OP,n1,n2(1), (6.9)

so that we obtain

1
n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
(Ln1(α)) P−−−−−−→

n1,n2→∞ 0, (6.10)

and
1
n2

n2∑
i=1

1Xi∈Ln1 (α)
P−−−−−−→

n1,n2→∞ P (LD(α)) > 0.

Let us prove (6.9). Let n1 ≥ 1 and ε > 0. Using Tchebychev inequality, we can
write P-a.s. (here the event ω ∈ Ω is one realisation of the sample S̃n1 and is
independent of ε)

PS̃n1

(∣∣∣ 1
n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
(Ln1(α))

∣∣∣ ≥ ε

)
≤

VS̃n1

( 1
n2

∑n2
i=1 1Xi∈Ln1 (α)

)
ε2

=
VS̃n1

(
1X1∈Ln1 (α)

)
n2ε2

≤ 1
n2ε2 .

Thus, taking Mε := 1/ε 1
2 it holds that

sup
n1,n2≥1

P

(
n

1
2
2

∣∣∣ 1
n2

n2∑
i=1

1Xi∈Ln1 (α) − PS̃n1
(Ln1(α))

∣∣∣ ≥ Mε

)
≤ 1

n2

(
Mε

n
1
2
2

)2
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= ε,

which means that (6.9) is satisfied. Similarly, we obtain

1
n2

n2∑
i=1

Yi1Xi∈Ln1 (α) − ES̃n1
[Y 1X∈Ln1 (α)] = OP,n1,n2

(
n
− 1

2
2

)
Hence the result.

Proof of Theorem 3.4. Let P ∈ P and X a r.v. with law P . Denoting D(x) :=
D(x, P ), remark that

E
[
PS̃n1

(LD(α)ΔLn1(α))]
]

= E
[
PS̃n1

({x : D(x) ≤ α < Dn1(x)})
]

(6.11)

+ E
[
PS̃n1

({x : Dn1(x) ≤ α < D(x)})
]
.

In the first term of the right-hand side of inequality (6.11), assuming P(D(X) =
α) = 0, it holds (using a Fubini-Tonelli type of argument)

E

[
PS̃n1

({x : D(x) ≤ α < Dn1(x)})
]

= E

[∫
x

1D(x)≤α<Dn1 (x)dP (x)
]

=
∫
x

1D(x)≤αP (Dn1(x) > α) dP (x)

=
∫
x

1D(x)<αP (Dn1(x) > α) dP (x)

≤
∫
x

1D(x)<αP
(
‖Dn1 −D‖∞,Rd > α−D(x)

)
dP (x).

In an analogous way, it holds

E[PS̃n1
({x : Dn1(x) ≤ α < D(x)})]

=
∫
x

1D(x)>αP (Dn1(x) ≤ α) dP (x)

≤
∫
x

1D(x)>αP(‖Dn1 −D‖∞,Rd > D(x) − α)dP (x).

Since ‖Dn1 −D‖∞,Rd
P−−−−→

n1→∞
0,

1D(x)>αP(‖Dn1 −D‖∞,Rd > D(x) − α) −−−−→
n1→∞

0

for a.e. x. Thus, using the Dominated Convergence Theorem, it holds∫
x

1D(x)>αP(‖Dn1 −D‖∞,Rd > D(x) − α)dP (x) −−−−→
n1→∞

0.
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So that, from equality (6.11) we conclude that

E
[
PS̃n1

(LD(α)ΔLn1(α))
]
−−−−→
n1→∞

0.

The proof now directly follows from the guidelines of the proof of Theorem 3.5.

Proofs of Section 3.2.2.

Proof of Theorem 3.9. In all of the following, depending on the context, we
denote by ‖ · ‖ the Euclidean norm in Rd or the matrix norm induced by the
Euclidean norm in Rd.

Let x ∈ Rd. Denote μ := μX and Σ := ΣX. Since Σ̂n
P-a.s.−−−−→
n→∞

Σ and Σ is

invertible, then Σ̂n is invertible for large n. Thus, for n large enough, we can
write

|MHDn(x)−MHD(x)|

=

∣∣∣∣∣ 1
1 + t(x− μ̂n)Σ̂−1

n (x− μ̂n)
− 1

1 + t(x− μ)Σ−1(x− μ)

∣∣∣∣∣
≤

∣∣∣ t(x− μ̂n)Σ̂−1
n (x− μ̂n) − t(x− μ)Σ−1(x− μ)

∣∣∣
1 + t(x− μ)Σ−1(x− μ) .

Since Σ is a positive definite symmetric and invertible matrix, we can make the
change of variable y = Σ− 1

2 (x− μ). So that,

‖MHDn −MHD‖∞,Rd ≤ sup
y∈Rd

∣∣∣‖Σ̂− 1
2

n (Σ 1
2 y + μ− μ̂n)‖2 − ‖y‖2

∣∣∣
1 + ‖y‖2 .

Now, denoting by Id the identity matrix of size d, and using a triangle inequality
then Cauchy-Schwarz inequality, it holds∣∣∣‖Σ̂− 1

2
n (Σ 1

2 y + μ− μ̂n)‖2 − ‖y‖2
∣∣∣

1 + ‖y‖2

≤

∣∣∣‖Σ̂− 1
2

n Σ 1
2 y‖2 − ‖y‖2

∣∣∣ + ‖Σ̂− 1
2

n (μ− μ̂n)‖2 + 2
∣∣∣〈Σ̂− 1

2
n Σ 1

2 y, Σ̂− 1
2

n (μ− μ̂n)
〉∣∣∣

1 + ‖y‖2

≤ ‖Σ 1
2 Σ̂−1

n Σ 1
2 − Id‖‖y‖2 + ‖Σ̂− 1

2
n (μ− μ̂n)‖2 + 2‖Σ̂−1

n ‖‖Σ 1
2 ‖‖y‖‖μ− μ̂n‖

1 + ‖y‖2 ,

This, together with the fact that 2‖y‖/(1 + ‖y‖2) ≤ 1, for all y ∈ Rd,∣∣∣‖Σ̂− 1
2

n (Σ 1
2 y + μ− μ̂n)‖2 − ‖y‖2

∣∣∣
1 + ‖y‖2
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≤ ‖Σ 1
2 Σ̂−1

n Σ 1
2 − Id‖ + ‖Σ̂− 1

2
n (μ− μ̂n)‖2 + ‖Σ̂−1

n ‖ · ‖Σ 1
2 ‖‖μ− μ̂n‖.

Now since the right hand side of the above inequality is independent of y, for
large n we obtain

‖MHDn −MHD‖∞,Rd

≤ ‖Σ 1
2 Σ̂−1

n Σ 1
2 − Id‖ + ‖Σ̂− 1

2
n ‖2‖μ− μ̂n‖

(
‖μ− μ̂n‖ + ‖Σ 1

2 ‖
)

:= An(d), (6.12)

The problem reduces to studying the asymptotic behavior of An(d). On one
hand, since Σ̂n

P-a.s.−−−−→
n→∞

Σ and μ̂n
P-a.s.−−−−→
n→∞

μ, then by the continuity theorem we
obtain

‖Σ̂− 1
2

n ‖2
(
‖μ− μ̂n‖ + ‖Σ 1

2 ‖
)

P−−−−→
n→∞

‖Σ− 1
2 ‖2‖Σ 1

2 ‖ > 0.

Furthermore, by the multivariate Central Limit theorem, it holds that n 1
2 (μ̂n −

μ) L−−−−→
n→∞

N (0,Σ). Thus (by the continuity theorem and Slutsky’s lemma),

‖Σ̂− 1
2

n ‖2‖μ−μ̂n‖
(
‖μ− μ̂n‖ + ‖Σ 1

2 ‖
)

is OP

(
n− 1

2

)
. On the other hand, to study

the first term in An(d), we define

F : H ∈ Sd(R) �→ Σ 1
2H−1Σ 1

2 ,

where Sd(R) is the vector space of all symmetric real-valued matrices of size
d. We denote S+

d (R) the set of all positive definite symmetric matrices which
is an open set in Sd(R). Using classical computations of Fréchet differentiable
functions, it holds that for all A ∈ S+

d (R), the differential of F at A is given by:

DFA : H ∈ Sd(R) �→ DFA(H) = −Σ 1
2A−1HA−1Σ 1

2 . (6.13)

By isomorphism, one can see Σ̂n as an element of R
d(d+1)

2 . Since X has all of
its components in L4, then a multivariate CLT applies, i.e. there exists M∗ ∈
S+

d(d+1)
2

(R) s.t.
√
n(Σ̂n − Σ) L−−−−→

n→∞
N (0,M∗), (6.14)

and for notational convenience, the gaussian vector N (0,M∗) could be rear-
ranged in a size d symmetric random matrix which will be denoted by E∗. For
the sake of completeness, we resume a proof of the delta method in the words
of Agresti [1] (p. 577). Using a first order Taylor expansion, for all A ∈ S+

d (R)
and X ∈ B(A, r) ⊂ S+

d (R), r > 0, we can write:

F (X) − F (A) = DFA(X −A) + R(X), with
R(X)

‖X −A‖ −−−−→
X→A

0.
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Then, P-a.s., using (6.13)

F (Σ̂n) − F (Σ) = DFΣ(Σ̂n − Σ) + R(Σ̂n),

= −Σ 1
2 Σ−1(Σ̂n − Σ)Σ−1Σ 1

2 + R(Σ̂n)

= −Σ− 1
2 (Σ̂n − Σ)Σ− 1

2 + R(Σ̂n).

This, together with (6.14), using the continuity theorem and Slutsky’s Lemma,
we obtain

√
nR(Σ̂n) =

√
n‖Σ̂n − Σ‖ R(Σ̂n)

‖Σ̂n−Σ‖
L−−−−→

n→∞
0,

so
√
nR(Σ̂n) P−−−−→

n→∞
0. In addition, from the continuity of U �→ −Σ− 1

2UΣ− 1
2 and

using (6.14), we obtain −√
nΣ− 1

2 (Σ̂n−Σ)Σ− 1
2

L−−−−→
n→∞

−Σ− 1
2E∗Σ− 1

2 . Therefore,
by continuity of the matrix norm, we deduce that

‖Σ 1
2 Σ̂−1

n Σ 1
2 − Id‖ = OP

(
n− 1

2

)
.

To conclude, it holds that An(d) = OP

(
n− 1

2

)
which implies the desired result:

‖MHDn −MHD‖∞,Rd = OP

(
n− 1

2

)
.

Proof of Corollary 3.10. The proof is a combination of Corollary 3.2, Theo-
rem 3.5 and 3.9. Indeed, under the assumptions of Corollary 3.2 and Theo-
rem 3.9, assumption (H0) of Theorem 3.5 is satisfied since

PS̃n1
(LD(α)ΔLn1(α)) = OP,n1

(
‖Dn1 −D‖1− 1

p

∞,Rd

)
(Corollary 3.2)

= OP,n1

(
v−1
n1

)
(Theorem 3.9)

with vn1 = n
1
2

(
1− 1

p

)
1 . The result is then a straightforward consequence of Theo-

rem 3.5.

Appendix A: Simulation tables

Probability based pseudo-metric.

Table 1

Estimated
√
np̂nN,M (D,α) with D = MHD.

α
n 100 1000 5000 10000 50000

0.9 0.3010 0.2627 0.3715 0.3032 0.2263
0.8 0.4339 0.3912 0.4107 0.332 0.317
0.5 0.736 0.7353 0.6793 0.7162 0.7406
0.2 0.3391 0.3284 0.3937 0.474 0.3287
0.1 0.1374 0.1187 0.1355 0.1372 0.0792
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Table 2

Estimated
√
np̂nN,M (D,α) with D = DHS .

α
n 50 100 500 1000 2500 5000

0.4 0.1984 0.1589 0.2147 0.2242 0.305 0.2821
0.1 1.0211 0.9703 0.9559 0.9003 0.927 0.7
0.05 0.8608 0.99 0.9474 0.7729 0.9078 0.9007
0.01 0.7497 0.8647 0.5923 0.4712 0.537 0.5607

Table 3

Estimated
√
np̂nN,M (D,α) with D = DPJ .

α
n 50 100 500 1000 2500 5000

0.7 0.2025 0.2056 0.2689 0.2948 0.299 0.2936
0.5 0.5802 0.6046 0.6933 0.6399 0.6951 0.6139
0.2 0.4345 0.377 0.3501 0.2829 0.2904 0.3111
0.1 0.0519 0.0491 0.0238 0.0224 0.0353 0.0346

Volume based pseudo-metric.

Table 4

Estimated
√
nV̂ol

n

N,M (D,α) with D = MHD.

α
n 100 1000 5000 10000 50000

0.9 0.1535 0.1975 0.1763 0.2538 0.2113
0.8 0.2674 0.2411 0.1737 0.2268 0.2073
0.5 0.6329 0.6136 0.6459 0.3816 0.0.3202
0.2 1.6834 1.4583 1.4001 1.9035 1.2618
0.1 2.752 2.679 2.5596 3.006 2.0608

Table 5

Estimated
√
nV̂ol

n

N,M (D,α) with D = DHS .

α
n 50 100 500 1000 2500 5000

0.4 0.0942 0.065 0.1565 0.0626 0.2093 0.1416
0.1 0.9253 1.0699 1.0213 0.5536 0.8741 0.7907
0.05 1.601 1.7863 2.1649 1.8983 1.2398 1.8646
0.01 3.5555 4.9957 5.5936 5.0859 4.3425 5.0609

Table 6

Estimated
√
nV̂ol

n

N,M (D,α) with D = DPJ .

α
n 50 100 500 1000 2500 5000

0.7 0.0118 0.0752 0.0569 0.0583 0.2025 0.0111
0.5 0.2237 0.3033 0.1046 0.7741 0.3026 0.315
0.2 2.5936 2.1085 2.1634 1.8257 2.0396 2.0062
0.1 4.2131 4.8096 4.0873 3.6664 4.5821 4.8859
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CCTE estimations.

Table 7

L1-estimation of CCTEα,MHD(Y,X) and associated RMAE for bivariate Frank Copulas
with Gumbel marginals.

n α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 0.9

CCTE = 1.4237 CCTE = 0.8831 CCTE = 0.4804 CCTE = 0.3831 CCTE = 0.3661

100
Mean 1.2744 0.8568 0.4706 0.3806 0.3636

σ̂ 0.6596 0.2678 0.0716 0.045 0.042

RMAE 0.3733 0.2360 0.1217 0.0954 0.0933

1000
Mean 1.4125 0.8758 0.4801 0.3835 0.3664

σ̂ 0.1923 0.0782 0.0233 0.0153 0.0143

RMAE 0.1056 0.0696 0.0381 0.0318 0.0310

5000
Mean 1.4213 0.8808 0.4804 0.3832 0.3661

σ̂ 0.0855 0.0377 0.0106 0.0065 0.0061

RMAE 0.0476 0.0338 0.018 0.0138 0.0134

10000
Mean 1.4178 0.8807 0.4799 0.3828 0.3659

σ̂ 0.0625 0.0271 0.0071 0.0046 0.0043

RMAE 0.0361 0.0241 0.0117 0.0095 0.0094

50000
Mean 1.4231 0.8829 0.4807 0.3833 0.3663

σ̂ 0.0283 0.0118 0.0033 0.002 0.0019

RMAE 0.0158 0.0106 0.0055 0.0042 0.0041

Table 8

Estimated
√
n · RMAEn,α based on MHD for bivariate Frank Copulas with Gumbel

marginals.

α
n 100 1000 5000 10000 50000

0.1 3.7335 3.3393 3.3635 3.6092 3.5262
0.2 2.3604 2.2021 2.3885 2.4118 2.374
0.5 1.2169 1.2038 1.2703 1.1740 1.2236
0.8 0.9539 1.0056 0.9740 0.9491 0.9415
0.9 0.9334 0.9815 0.9492 0.9433 0.9072
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Table 9

L1-estimation of CCTEα,DHS
(Y,X) based on halfspace depth and associated RMAE for

bivariate Frank Copulas with Gumbel marginals.

n α = 0.01 α = 0.05 α = 0.1 α = 0.4

CCTE = 1.0061 CCTE = 0.6492 CCTE = 0.5249 CCTE = 0.3573

50
Mean 0.7389 0.5794 0.4763 0.3558

σ̂ 0.3237 0.161 0.0987 0.0563

RMAE 0.3507 0.2177 0.167 0.1268

100
Mean 0.7765 0.5756 0.4859 0.3539

σ̂ 0.2386 0.1007 0.0689 0.0364

RMAE 0.2776 0.1615 0.1248 0.0808

500
Mean 0.9098 0.6225 0.5115 0.3552

σ̂ 0.1503 0.0583 0.0377 0.0188

RMAE 0.1473 0.08 0.0621 0.0418

1000
Mean 0.9617 0.639 0.5207 0.3573

σ̂ 0.1167 0.0423 0.0277 0.013

RMAE 0.1006 0.0538 0.0425 0.0287

2500
Mean 0.9817 0.6433 0.5216 0.3569

σ̂ 0.0734 0.0262 0.0167 0.0078

RMAE 0.06 0.0328 0.0256 0.0174

5000
Mean 0.9913 0.645 0.5229 0.3569

σ̂ 0.00545 0.019 0.0126 0.0064

RMAE 0.0453 0.0239 0.0194 0.0143

Table 10

Estimated
√
n ·RMAEn,α based on halfspace depth for bivariate Frank Copulas with Gumbel

marginals.

α
n 50 100 500 1000 2500 5000

0.01 2.4798 2.7761 3.2948 3.1802 3.0022 3.1999
0.05 1.5393 1.6151 1.7886 1.7021 1.6385 1.6933
0.1 1.1812 1.248 1.388 1.3454 1.2801 1.369
0.4 0.8969 0.8083 0.935 0.9071 0.8689 1.0102
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Table 11

L1-estimation of CCTEα,DPJ
(Y,X) based on projection depth and associated RMAE for

bivariate Frank Copulas with Gumbel marginals.

n α = 0.15 α = 0.3 α = 0.5 α = 0.8

CCTE = 1.396 CCTE = 0.5748 CCTE = 0.3938 CCTE = 0.3541

50
Mean 1.0154 0.5097 0.3744 0.3457

σ̂ 0.656 0.1324 0.0681 0.0566

RMAE 0.445 0.2104 0.1441 0.1282

100
Mean 1.1969 0.5371 0.3855 0.3535

σ̂ 0.5513 0.0986 0.0476 0.0399

RMAE 0.3279 0.1489 0.0982 0.0906

500
Mean 1.3404 0.5648 0.3908 0.3539

σ̂ 0.2447 0.0482 0.0214 0.018

RMAE 0.1441 0.0696 0.0442 0.0407

1000
Mean 1.3776 0.5669 0.3919 0.3538

σ̂ 0.1858 0.0363 0.0157 0.0128

RMAE 0.1065 0.0522 0.0313 0.0285

2500
Mean 1.3826 0.5719 0.3932 0.3545

σ̂ 0.1242 0.0218 0.0098 0.0082

RMAE 0.0697 0.03 0.0198 0.0189

5000
Mean 1.3815 0.5731 0.3936 0.3543

σ̂ 0.0822 0.0158 0.0071 0.0057

RMAE 0.445 0.0222 0.0143 0.013

Table 12

Estimated
√
n · RMAEn,α based on projection depth for bivariate Frank Copulas with

Gumbel marginals.

α
n 50 100 500 1000 2500 5000

0.15 3.1464 3.2794 3.2224 3.367 3.484 3.4328
0.3 1.4877 1.4888 1.5561 1.6503 1.4983 1.57
0.5 1.0191 0.982 0.9878 0.9911 0.9902 1.0126
0.8 0.9067 0.9059 0.9093 0.9011 0.9461 0.9162
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