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Abstract: For testing conditional independence (CI) of a response Y and a
predictor X given covariates Z, the model-X (MX) framework has been the
subject of active methodological research, especially in the context of MX
knockoffs and their application to genome-wide association studies. In this
paper, we study the power of MX CI tests, yielding quantitative insights
into the role of machine learning and providing evidence in favor of using
likelihood-based statistics in practice. Focusing on the conditional random-
ization test (CRT), we find that its conditional mode of inference allows us
to reformulate it as testing a point null hypothesis involving the conditional
distribution of X. The Neyman-Pearson lemma implies that a likelihood-
based statistic yields the most powerful CRT against a point alternative. We
obtain a related optimality result for MX knockoffs. Switching to an asymp-
totic framework with arbitrarily growing covariate dimension, we derive an
expression for the power of the CRT against local semiparametric alterna-
tives in terms of the prediction error of the machine learning algorithm on
which its test statistic is based. Finally, we exhibit a resampling-free test
with uniform asymptotic Type-I error control under the assumption that
only the first two moments of X given Z are known.
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1. Introduction

1.1. Conditional independence testing and the MX assumption

Given a predictor X ∈ R
d, response Y ∈ R

r, and covariate vector Z ∈ R
p

drawn from a joint distribution (X,Y ,Z) ∼ L, consider testing the hypothesis
of conditional independence (CI),

H0 : Y ⊥⊥ X | Z versus H1 : Y �⊥⊥ X | Z, (1.1)

using n data points

(X,Y, Z) ≡ {(Xi, Yi, Zi)}i=1,...,n
i.i.d.∼ L. (1.2)

This fundamental problem—determining whether a predictor is associated with
a response after controlling for a set of covariates—is ubiquitous across the
natural and social sciences. To keep an example in mind throughout the paper,
consider Y ∈ R

1 cholesterol level, X ∈ {0, 1, 2}10 the genotypes of an individual
at 10 adjacent polymorphic sites, and Z ∈ {0, 1, 2}500,000 the genotypes of the
individual at other polymorphic sites across the genome. Such data (X,Y, Z)
would be collected in a genome-wide association study (GWAS), with the goal of
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testing for association between the 10 polymorphic sites of interest and choles-
terol while controlling for the other polymorphic sites (1.1). CI testing is also
connected to causal inference: with appropriate unconfoundedness assumptions,
Fisher’s sharp null hypothesis of no effect of a (potentially non-binary) treat-
ment X on an outcome Y implies conditional independence. While we do not
work in a causal framework, we draw inspiration from connections to causal
inference throughout.

As formalized by Shah and Peters (2020), the problem (1.1) is fundamentally
impossible without assumptions on the distribution L(X,Y ,Z), in which case
no asymptotically uniformly valid test of this hypothesis can have nontrivial
power against any alternative. In special cases, the problem is more tractable, for
example if Z has discrete support, or if we were willing to make (semi)parametric
assumptions on the form of L(Y |X,Z) (henceforth “model-Y |X”). We will not
be making such assumptions in this work. Instead, we follow the lead of Candès
et al. (2018), who proposed to avoid assumptions on L(Y |X,Z), but assume
that we have access to L(X|Z):1

model-X (MX) assumption : L(X|Z) = f∗
X|Z for some known f∗

X|Z .
2 (1.3)

Candes et al. argue that while both model-Y |X and MX are strong assump-
tions—especially when p, d are large—in certain cases much more is known
about X|Z than about Y |X,Z. In the aforementioned GWAS example, X|Z
reflects the joint distribution of genotypes at SNPs across the genome, which
is well described by hidden Markov models from population genetics (Sesia,
Sabatti and Candès, 2019). On the other hand, the distribution Y |X,Z repre-
sents the genetic basis of a complex trait, about which much less is known. In
the context of (stratified) randomized experiments, the distribution L(X|Z) is
the propensity function (Imai and Van Dyk, 2004) (the analog of the propensity
score for non-binary treatments, Rosenbaum and Rubin (1983)) and is exper-
imentally controlled. In general causal inference contexts, the MX assumption
can be viewed as the assumption that the propensity function is known.

1.2. MX methodology and open questions

Testing CI hypotheses in the MX framework has been the subject of active
methodological research. The most popular methodology is MX knockoffs (Can-
dès et al., 2018). This method is based on the idea of constructing synthetic
negative controls (knockoffs) for each predictor variable in a rigorous way that
is based on the MX assumption; see Section 5.1 for a brief overview. Rapid
progress has been made on the construction of knockoffs in various cases (Sesia,

1Candes et al. actually require that the full joint distribution L(X,Z) is known, but this
is because they also test for conditional associations between Z and Y . We focus only on the
relationship between X and Y given Z and therefore require a weaker assumption.

2We implicitly assume that L has a density with respect to some dominating measure on
R

1+1+p, and that all conditional densities are well-defined almost surely. Here and through-
out the paper, we identify probability distributions with their densities with respect to the
appropriate dominating measure.
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Sabatti and Candès, 2019, Romano, Sesia and Candès, 2019, Bates et al., 2020a,
Huang and Janson, 2020) and on the application of this methodology to GWAS
(Sesia, Sabatti and Candès, 2019, Sesia et al., 2020). The conditional random-
ization test (CRT) (Candès et al., 2018), initially less popular than knockoffs
due to its computational cost, is receiving renewed attention as computationally
efficient variants are proposed, such as the holdout randomization test (HRT)
(Tansey et al., 2022), the digital twin test (Bates et al., 2020b), and the distilled
CRT (dCRT) (Liu et al., 2021). The dCRT in particular is a promising method-
ology because it combines good power and computational speed; we focus on
this variant of the CRT is Sections 3 and 4 of this paper. We introduce the
general CRT methodology next, while deferring the introduction of the dCRT
to Section 3.

We start with any test statistic T (X,Y, Z) measuring the association between
X and Y , given Z. Usually, this statistic involves learning some estimate f̂Y |X,Z

based on machine learning, e.g. the magnitude of the fitted coefficient for X
(when dim(X) = 1) in a cross-validated lasso (Tibshirani, 1996) of Y on X
and Z (Candès et al., 2018). To calculate the distribution of T under the null
hypothesis (1.1), first define a matrix X̃ ∈ R

n×d, where the ith row X̃i is a
sample from L(X | Z = Zi). In other words, for each sample i, resample Xi

based on its distribution conditional on the observed covariate values Zi in that
sample. We then use these resamples to build a null distribution T (X̃, Y, Z),
from which the upper quantile

C(Y,Z) ≡ Q1−α[T (X̃, Y, Z)|Y,Z] (1.4)

may be extracted (the dependence on α left implicit), where the randomness is
over the resampling distribution X̃|Y,Z. Finally, the CRT rejects if the original
test statistic exceeds this quantile:

φCRT
T (X,Y, Z) ≡

⎧⎪⎨⎪⎩
1, if T (X,Y, Z) > C(Y,Z);
γ, if T (X,Y, Z) = C(Y,Z);
0, if T (X,Y, Z) < C(Y,Z).

(1.5)

In order to accommodate discreteness, the CRT makes a randomized decision γ
when T (X,Y, Z) = C(Y,Z) so that the size of the test is exactly α. In practice,
the threshold C(Y,Z) is approximated by computing T (X̃b, Y, Z) for a large
number B of Monte Carlo resamples X̃b ∼ X|Z. For the sake of clarity, this
paper considers only the “infinite-B” version of the CRT as defined by (1.4)
and (1.5). In the causal inference setting, the CRT can be viewed as a variant
of Fisher’s exact test for randomized experiments that incorporates strata of
covariates (Zheng and Zelen, 2008, Hennessy et al., 2016), basing inference on
rerandomizing the treatment to the units.

The CI testing problem under MX has benefited from several methodological
innovations, but fundamental questions regarding power and optimality have
received less attention. Therefore, in this paper we address the following two
primary questions:
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Q1. Are there “optimal” test statistics for MX methods, in any sense?
Q2. What is the precise connection between the performance of the machine

learning algorithm and the power of the resulting MX method?

To the best of our knowledge, Q1 has not been considered before, while Q2 has
only been indirectly addressed in the context of lasso-based knockoffs (Wein-
stein, Barber and Candes, 2017, Liu and Rigollet, 2019, Fan et al., 2020, Wein-
stein et al., 2020) and CRT (Wang and Janson, 2022, Celentano, Montanari and
Wei, 2020). The present paper complements these existing works by considering
arbitrary machine learning methods. We summarize our findings next.

1.3. Our contributions

We find that for the MX CI problem, the CRT is more natural to analyze; it is
simpler to analyze than MX knockoffs and is applicable for testing even a single
conditional independence hypothesis. Thus, we focus mainly on the CRT in the
present paper. We obtain the following nontrivial answers to the questions posed
above.

A1: Conditional inference leads to finite-sample optimality against
point alternatives While the composite nonparametric alternative of the CI
problem (1.1) suggests that we cannot expect to find a uniformly most powerful
test, we may still ask what is the most powerful test against a point alternative.
Restricting our attention to tests valid conditionally on (Y,Z) (as the CRT is)
allows us to reduce the composite null to a point null. We can therefore apply
the Neyman-Pearson lemma to show (Section 2) that the optimal conditionally
valid test against a point alternative L with L(Y |X,Z) = f̄Y |X,Z is the CRT
based on the likelihood test statistic:

T opt(X;Y,Z) ≡
n∏

i=1
f̄(Yi|Xi, Zi). (1.6)

The same statistic yields the most powerful one-bit p-values for MX knockoffs
(Section 5). Despite the simplicity of this result, it has not been derived before
and appears central to the design of powerful test statistics. Since the model for
Y |X,Z is unknown, this result provides our first theoretical indication of the
usefulness of machine learning models to learn this distribution (Q2). A2 below
gives a more quantitative answer to Q2.

A2: The prediction error of the machine learning method impacts the
asymptotic efficiency of the dCRT but not its consistency It has been
widely observed that the better the machine learning method approximates
Y |X,Z, the higher power the MX method will have. We put this empirical
knowledge on a theoretical foundation by expressing the asymptotic power of
the dCRT in terms of the prediction error of the underlying machine learning
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method (Section 4). In particular, we consider semiparametric alternatives of
the form

H1 : L(Y |X,Z) = N(XTβ + g(Z), σ2). (1.7)

We analyze the power of a dCRT variant that employs a separately trained
estimator ĝ in an asymptotic regime where d = dim(X) remains fixed while
p = dim(Z) grows arbitrarily with the sample size n. We find that this test is
consistent no matter what ĝ is used, while its asymptotic power against local
alternatives βn = h/

√
n depends on the limiting mean-squared prediction error

of ĝ (denoted E2) and the limiting expected variance E[Var[X|Z]] (denoted s2).
For example, if d = 1, the dCRT power converges to that of normal location
test

N

(
hs√

σ2 + E2
, 1
)
.

This represents the first explicit quantification of the impact of machine learning
prediction error on the power of an MX method.

On the way to addressing Q2, we additionally establish a third result (Sec-
tion 3) that may be of independent interest:

A resampling-free second-order approximation to the dCRT is equiva-
lent to the dCRT and controls Type-I error under weaker assumptions
It was recently pointed out that if L(X|Z) is Gaussian, then the resampling
distribution of the dCRT test statistic can be found in closed form without
actual resampling (Liu et al., 2021). Here we show that the resampling-free
dCRT based on the first two moments of L(X|Z) is asymptotically equivalent
to the dCRT based on L(X|Z) itself. Furthermore, we show the former test has
asymptotic Type-I error control under the

MX(2) assumption: the first two moments of X|Z are known, i.e.
EL[X|Z] = μ(Z) and VarL[X|Z] = Σ(Z) for known μ(·),Σ(·).

(1.8)

This assumption is weaker than the full MX assumption, complementing exist-
ing work (Huang and Janson, 2020, Barber and Janson, 2022) on weakening
assumptions for MX methods. It also suggests that the resampling-free dCRT
may be used in place of the usual dCRT while achieving similar power and
controlling Type-I error asymptotically.

These advances shed new light on the nature of the MX problem and can
inform methodological design. Our results handle multivariate X, arbitrarily
correlated designs in the model for X, and any black-box machine learning
method to learn ĝ.

Notation Recalling equations (1.1) and (1.2), population-level variables (such
as X,Y ,Z) are denoted in boldface, while samples of these variables (such as
Xi, Yi, Zi) are denoted in regular font. Note that boldface does not distinguish
between scalars, vectors, and matrices, as it is sometimes employed. The di-
mensions of the object in this paper will be clear from context. All vectors
are treated as column vectors. We often use uppercase symbols to denote both
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random variables and their realizations (for either population- or sample-level
quantities), but use lowercase to denote the latter when it is important to make
this distinction. We use L to denote the joint distribution of (X,Y ,Z), though
we sometimes use this symbol to denote the joint distribution of (X,Y, Z) as
well. We use the symbol “≡” for definitions. We denote by cd,1−α the 1 − α
quantile of the χ2

d distribution, and by χ2
d(λ) the non-central χ2 distribution

with d degrees of freedom and noncentrality parameter λ.

2. The most powerful CRT against point alternatives

In this section, we seek the most powerful CRT against a point alternative.
To accomplish this, we make the observation—implicit in earlier works—that
the CRT is valid not just unconditionally but also conditionally on Y,Z (Sec-
tion 2.1). The latter conditioning step reduces the composite null to a point
null. This reduction allows us to invoke the Neyman Pearson lemma to find the
most powerful test (Section 2.2). Proofs are deferred to the appendix.

2.1. CRT is conditionally valid and implicitly tests a point null

Let us first formalize the definition of a level α test of the MX CI problem.
The null hypothesis is defined as the set of joint distributions compatible with
conditional independence and with the assumed model for X|Z:

L MX
0 (f∗) ≡ L0 ∩ L MX(f∗)

≡ {L : X ⊥⊥ Y | Z} ∩ {L : L(X|Z) = f∗
X|Z}

= {L : L(X,Y ,Z) = fZ · f∗
X|Z · fY |Z for some fZ , fY |Z}.

(2.1)

A test φ : (Rd×R
r ×R

p)n → [0, 1] of the MX CI problem is said to be level α if

sup
L∈L MX

0 (f∗)
EL[φ(X,Y, Z)] ≤ α. (2.2)

Recall that the CRT critical value C(Y,Z) is defined via conditional calibra-
tion (1.4). As is known to those familiar with MX, this implies that any CRT
φ = φCRT

T not only has level α in the sense of definition (2.2) but also has level
α conditionally on Y and Z:

sup
L∈L MX

0 (f∗)
EL[φ(X,Y, Z)|Y,Z] ≤ α almost surely. (2.3)

One special property of such conditionally valid tests φ is that they can be
viewed as testing a point null rather than the original composite null (1.1). To
see this, we view φ ≡ φ(X;Y,Z) as a family of hypothesis tests, indexed by
(Y,Z), for the distribution L(X|Y,Z). Note that under the MX assumption,

L ∈ L MX
0 (f∗) =⇒ L(X = x|Y = y, Z = z) =

n∏
i=1

f∗(xi|zi). (2.4)
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In words, fixing Y,Z at their realizations y, z and viewing only X as random,
L(X|Y = y, Z = z) equals a fixed product distribution for any null L. This
yields a conditional point null hypothesis, with respect to which φCRT

T (x; y, z)
is a level-α test for almost every (y, z). Note that the observations Xi in this
conditional distribution are independent but not identically distributed due to
the different conditioning events in (2.4).

We emphasize that the aforementioned observations have been under the
hood of MX papers, and the existence of a single null distribution from which
to resample X̃ is central to the very definition of the CRT. Nevertheless, we find
it useful to state explicitly what has thus far been largely left implicit. Indeed,
viewing the CRT through the conditional lens (2.3) is the starting point that
allows us to bring classical theoretical tools to bear on its analysis. We start
doing so by considering point alternatives below.

2.2. The most powerful conditionally valid test

Viewing the CRT as a test of a point null hypothesis, we can employ the
Neyman-Pearson lemma to find the most powerful CRT (in fact, the most pow-
erful conditionally valid test) against point alternatives. The following theo-
rem states that the likelihood ratio with respect to the (unknown) distribution
Y |X,Z is the most powerful CRT test statistic against a point alternative.

Theorem 2.1. Let L̄ ∈ L MX(f∗) be an alternative distribution, with condi-
tional distribution L̄(Y |X,Z) = f̄Y |X,Z . The likelihood of the data (X,Y, Z)
with respect to L̄(Y |X,Z) is

T opt(X,Y, Z) ≡
n∏

i=1
f̄(Yi|Xi, Zi). (2.5)

The CRT φCRT
T opt based on this test statistic is the most powerful conditionally

valid test of H0 : L ∈ L MX
0 (f∗) against H1 : L = L̄, i.e.

EL̄[φ(X,Y, Z)] ≤ EL̄[φCRT
T opt (X,Y, Z)] (2.6)

for any test φ satisfying the conditional validity property (2.3).

We leave open the question of whether φCRT
T opt is also the most powerful test

among not just conditionally valid tests (2.3) but also among marginally valid
tests (2.2). There do at least exist marginally valid tests that are not condition-
ally valid.

The proof of Theorem 2.1 (Appendix A) is based on the reduction in Sec-
tion 2.1 of the composite null to a point null by conditioning, followed by the
Neyman-Pearson lemma. Note that the likelihood ratio in the model L(X|Y ,Z)
reduces to the likelihood in the model L(Y |X,Z) up to constant factors; see
derivation (A.3). This argument has similar flavor to the theory of unbiased test-
ing (see Lehmann and Romano (2005, Chapter 4)), where uniformly most pow-
erful unbiased tests can be found by conditioning on sufficient statistics for nui-
sance parameters. Our result is also analogous to but different from Lehmann’s



6356 E. Katsevich and A. Ramdas

derivation of the most powerful permutation tests using conditioning followed by
the Neyman-Pearson lemma, in randomization-based causal inference (see the
rejoinder of Rosenbaum’s 2002 discussion paper (Rosenbaum, 2002), Section
5.10 of Lehmann (1986), now Lehmann and Romano (2005, Section 5.9)).

Inspecting the most powerful test given by Theorem 2.1, we find that it
depends on L̄ only through L̄(Y |X,Z). This immediately yields the following
corollary.

Corollary 1. Define the composite class of alternatives

L1(f∗, f̄) = {L ∈ L MX
0 (f∗) : L̄(Y |X,Z) = f̄Y |X,Z}

= {L : L(X,Y ,Z) = fZ · f∗
X|Z · f̄Y |X,Z for some fZ}.

Among the set of conditionally valid tests (2.3), the test ϕCRT
T opt is uniformly most

powerful against L1(f∗, f̄).

Theorem 2.1 and Corollary 1 imply that the most powerful CRT against a
point alternative is based on the test statistic defined as the measuring how well
the data (X,Y, Z) fit the distribution L̄(Y |X,Z). For example, if

f̄(Y |X,Z) = N(XTβ + ZT γ, σ2) for coefficients β ∈ R
d and γ ∈ R

p, (2.7)

then the optimal test rejects for small values of ‖Y −Xβ −Zγ‖2. In Section 5,
we establish an analogous optimality statement for MX knockoffs as well. Since
the optimal test depends on the alternative distribution L̄(Y |X,Z), CRT and
MX knockoffs implementations usually employ a machine learning step to search
through the composite alternative (not unlike a likelihood ratio test) for a good
approximation f̂Y |X,Z . These approximate models are then summarized in var-
ious ways to define a test statistic T . There is no consensus yet on the best
test statistic to use, with some authors (Candès et al., 2018, Sesia, Sabatti
and Candès, 2019, Sesia et al., 2020) using combinations of fitted coefficients
β̂ and others (Tansey et al., 2022, Bates et al., 2020b) using likelihood-based
test statistics. The above optimality results align more closely with the latter
strategy. Theorem 2.1 has inspired an extension of the CRT to the sequential
setting using a likelihood-based test statistic, accompanied by a similar optimal-
ity result (Grünwald, Henzi and Lardy, 2022). Likelihood-based test statistics
also have the advantage of avoiding ad hoc combination rules for β̂ ∈ R

d when
d > 1. It remains to be seen whether likelihood-based or coefficient-based test
statistics yield greater power in practice, but a thorough empirical comparison
is beyond the scope of this work. For now, it suffices to note that, despite its
simplicity, this is the first such power optimality result in the CRT literature.

Intuitively, the results of this section suggest that the more successful f̂Y |X,Z

is at approximating the true alternative fY |X,Z , the more powerful the corre-
sponding CRT will be. We make this relationship precise in an asymptotic set-
ting in Section 4. We prepare for these results in the next section by exploring
an easier-to-analyze asymptotic equivalent to the CRT.
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3. An asymptotic equivalent to the distilled CRT

In Section 2, we saw how to construct the optimal test against point alternatives
specified by f̄Y |X,Z . In practice, of course we do not have access to this distri-
bution, so we usually estimate it via a statistical machine learning procedure.
The goal of this section and the next is to quantitatively assess the power of
the CRT as a function of the prediction error of this machine learning proce-
dure. Specifically, we consider the power of a specific instance of the CRT (the
distilled CRT (dCRT), Liu et al. (2021)) against a set of semiparametric alter-
natives (Section 3.1). We prepare to assess the power of this test by showing its
asymptotic equivalence to the simpler-to-analyze MX(2) F -test (Section 3.2),
which is of independent interest due to its closed form and weaker assumptions
(Section 3.3). We examine the finite-sample Type-I error control of the MX(2)
F -test in numerical simulations (Section B) and put this section’s results into
perspective (Section 3.4) before moving on to stating the desired power results
in the next section (Section 4).

3.1. Semiparametric alternatives and the distilled CRT

First, we define an asymptotic framework within which we will work in Sections 3
and 4. Following a triangular array formalization, for each n = 1, 2, . . . , we have
a joint law Ln over (X,Y ,Z) ∈ R

d+r+p, where d = dim(X) remains fixed,
r = dim(Y ) = 1, and p = dim(Z) can vary arbitrarily with n. For each n,
we receive n i.i.d. samples (X,Y, Z) = {(Xi, Yi, Zi)}ni=1 from Ln. Note that we
leave implicit the dependence on n of (X,Y ,Z) and (X,Y, Z) to lighten the
notation. In this framework, it will be useful to define the mean and variance
functions

μn(Z) ≡ ELn [X|Z] and Σn(Z) ≡ VarLn [X|Z]. (3.1)

Now, consider a set of semiparametric (partially linear) alternative distribu-
tions Ln(Y |X,Z) such that

Y = XTβn + gn(Z) + ε; ε ∼ N(0, σ2), σ2 > 0 (3.2)

for ε ⊥⊥ (X,Y ,Z). Here, βn ∈ R
d is a coefficient vector, gn : Rp → R a general

function, and σ2 > 0 the residual variance. Of special interest are local alterna-
tives where βn = h/

√
n for some h ∈ R

d. We emphasize that—in this section
and throughout the paper—we use the partially linear model (3.2) exclusively
as an alternative distribution against which to assess power, rather than an ad-
ditional assumption required for Type-I error control. By Theorem 2.1, the most
powerful test against the alternative (3.2) is the CRT based on the likelihood
statistic

T opt
n (X,Y, Z) =

n∏
i=1

1
(2π)1/2

exp
(
− 1

2σ2

(
Yi −XT

i βn − gn(Zi)
)2)
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=
n∏

i=1

1
(2π)1/2

exp
(
− 1

2σ2

(
Yi − (Xi − μn(Zi))Tβn − g′n(Zi)

)2)
,

(3.3)

where
ḡn(Z) ≡ E[Y |Z] = μn(Z)Tβn + gn(Z). (3.4)

Assuming local alternatives βn = h/
√
n and taking a logarithm, we obtain

log T opt
n (X,Y, Z)

= −n

2 log(2π) − 1
2σ2

n∑
i=1

(
Yi − (Xi − μn(Zi))Th/

√
n− ḡn(Zi)

)2
≈ hT

σ2
1√
n

n∑
i=1

(Yi − ḡn(Zi))(Xi − μn(Zi)) + C,

(3.5)

where C is a constant that does not depend on X and therefore does not change
upon resampling.

Of course, inference based on T opt
n is infeasible because the function ḡn is

unknown in practice. Suppose we have learned an estimate ĝn of this function,
possibly in-sample. Then, the derivation (3.5) motivates us to base inference on
the sample covariance between X and Y after adjusting for Z:

ρ̂n(X,Y, Z) ≡ 1
n

n∑
i=1

(Yi − ĝn(Zi))(Xi − μn(Zi)). (3.6)

Consider first the case d = 1. The CRT rejecting for large values of |ρ̂n| is an
instance of the dCRT (Liu et al., 2021). The idea of the dCRT (Algorithm 1) is
to distill—usually via a machine learning regression method—the information
from the high-dimensional Z ∈ R

p×n about X and Y into a low-dimensional
summary D ∈ R

q×n, where q � p. This is accomplished using a distillation
function d : (Y,Z) �→ D. Then, the CRT is applied using a test statistic of the
form Tn(X,Y, Z) ≡ T d

n(X,Y,D) = T d
n(X,Y, d(Y,Z)). For example, the CRT

based on the statistic ρ̂n (3.6) can be expressed as the dCRT with distillation
function di(Y,Z) = (ĝn(Zi), μn(Zi)), where ĝn is learned in-sample on (Y,Z).

The dCRT was proposed for its computational speed: The computationally
expensive distillation step is a function only of (Y,Z), so it need not be refit
upon resampling X̃. By contrast, the originally proposed instance of the CRT
(Candès et al., 2018) involved learning f̂Y |X,Z on the entire sample (X,Y, Z),
and therefore the learning procedure needed to be re-applied to each resampled
dataset (X̃(b), Y, Z). The derivations (3.3) and (3.5) suggest that the dCRT is
not only computationally fast, but also a natural test to consider for power
against semiparametric alternatives (3.2). We therefore focus on this class of
tests.

In preparation to study the power of the dCRT, we extend it to d > 1 and
propose an asymptotically equivalent test that is easier to analyze.
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Algorithm 1: Distilled conditional randomization test (dCRT)
Input: {(Xi, Yi, Zi)}ni=1, distribution f∗

X|Z , distillation function d, test statistic T d
n ,

number of resamples B
1 Distill information in Z about X and Y into D ≡ d(Y, Z);
2 for b = 1, 2, . . . , B do
3 Resample X̃

(b)
i

ind∼ f∗
X|Z=Zi

, i = 1, . . . , n ;
4 end
5 Compute p̂ ≡ 1

B+1
∑B

b=1 1(T d
n(X̃(b), Y,D) ≥ T d

n(X,Y,D)).
Output: dCRT p-value p̂.
Computational cost: One p-dimensional model fit, and drawing B resamples.

3.2. A second-order approximation to the dCRT

Let us consider first the special case

Ln(X|Z) = N(μn(Z),Σn(Z)). (3.7)

In this case, the resampling distribution of ρ̂n can be computed in closed form
(Liu et al., 2021):

Ln(
√
n · ρ̂n(X̃, Y, Z) | X,Y, Z) = N(0, Ŝ2

n), (3.8)

where

Ŝ2
n ≡ 1

n

n∑
i=1

(Yi − ĝn(Zi))2Σn(Zi). (3.9)

When d = 1, the dCRT based on the statistic Tn(X,Y, Z) = |√n · ρ̂n(X,Y, Z)|
(and infinitely many resamples B) therefore rejects when Tn(X,Y, Z) > Ŝn ·
z1−α/2, requiring no resampling. To extend this to d > 1, consider the stan-
dardized quantity

Un(X,Y, Z) ≡ Ŝ−1
n

√
nρ̂n = Ŝ−1

n√
n

n∑
i=1

(Yi − ĝn(Zi))(Xi − μn(Zi)) ∈ R
d. (3.10)

It is natural to use as a test statistic the squared norm of Un:

Tn(X,Y, Z) ≡ ‖Un(X,Y, Z)‖2. (3.11)

Then, the normal resampling distribution (3.8) implies that

Ln(Tn(X̃, Y, Z)|X,Y, Z) = χ2
d. (3.12)

It follows that the dCRT based on test statistic Tn(X,Y, Z) yields the test

φN(μn,Σn)
n (X,Y, Z) ≡ 1(Tn(X,Y, Z) > cd,1−α), (3.13)

where we recall that cd,1−α is defined as the 1− α quantile of χ2
d. Note that all

tests φ in Sections 3 and 4 will be (d)CRTs based on the test statistic Tn (3.11).



6360 E. Katsevich and A. Ramdas

To ease notation, we therefore omit the subscript Tn and the superscript “CRT”
from the notation introduced in equation (1.5), replacing these with n and the
distribution of X|Z with respect to which resampling is done, respectively. For
example, the superscript in the test defined in equation (3.13) is based on the
resampling distribution X|Z ∼ N(μn(Z),Σn(Z)).

If the conditional distribution Ln(X|Z) is not Gaussian, then the dCRT φLn
n

based on Tn(X,Y, Z) will not reduce to the closed-form expression (3.13). How-
ever, we can think of the test φN(μn,Σn)

n as a kind of second-order approximation
for φLn

n as long as Ln(X|Z) has first and second moments given by μn(Z) and
Σn(Z), respectively. Indeed, it is easy to check that the resampling distribution
Ln(

√
n · ρ̂n(X̃, Y, Z) | X,Y, Z) matches that derived in the normal case (3.8) up

to two moments. Under a few assumptions, we can make this intuition precise
by showing that φLn

n is asymptotically equivalent to φ
N(μn,Σn)
n (Theorem 3.1 be-

low). We require the distribution Ln to satisfy the following moment conditions
3for fixed c1, c2 > 0:

Ln ∈ Ln(c1, c2)
≡ {Ln : ‖S−1

n ‖ ≤ c1,ELn

[
(Y − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]

]
≤ c2},

(3.14)

where
S2
n ≡ E[Ŝ2

n] = ELn

[
(Y − ĝn(Z))2Σn(Z)

]
. (3.15)

Furthermore, to avoid technical complications, we assume that the estimate ĝn
is trained on an independent dataset (whose size can vary arbitrarily with n and
is not included in the sample size n used for testing). For example, there has
been recent interest in combining observational and experimental (randomized)
data; typically, the former is much more abundant than the latter. We can think
of ĝn being trained on the former, and then used for MX inference on the latter
(Bates et al., 2020b). These training sets across n and resulting estimates ĝn
remain fixed throughout.

Theorem 3.1. Suppose that for each n, Ln is a law whose first and second
conditional moments are given by μn(Z) and Σn(Z) (3.1), which satisfies the
moment conditions (3.14) for fixed for some c1, c2 > 0. Let φLn

n be the dCRT
based on the test statistic Tn(X,Y, Z) (3.9), (3.10), (3.11), with ĝn trained out
of sample. The threshold Cn(Y,Z) of this test (1.4) converges in probability to
the χ2

d quantile:
Cn(Y,Z) Ln→p cd,1−α. (3.16)

Furthermore, if Tn(X,Y, Z) does not accumulate near cd,1−α, i.e.

lim
δ→0

lim sup
n→∞

PLn [|Tn(X,Y, Z) − cd,1−α| ≤ δ] = 0, (3.17)

3The exponents in these moment conditions can be relaxed from 4 to 2 + δ, in particular,
requiring an appropriate triangular array weak law of large numbers with 1+δ moments.
This slight weakening of moment conditions requires significantly more technical effort, so is
omitted for simplicity since it does not alter the main takeaway messages of our analysis.
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then the dCRT φLn
n is asymptotically equivalent to its second order approxima-

tion φ
N(μn,Σn)
n (3.13):

lim
n→∞

PLn [φLn
n (X,Y, Z) �= φN(μn,Σn)

n (X,Y, Z)] = 0. (3.18)

Informally, this theorem (proved in Appendix C) suggests that the CRT re-
sampling distribution of Tn(X,Y, Z) converges to χ2

d, which is the resampling
distribution of this test statistic under a normal Ln(X|Z). Note that the re-
sulting equivalence (3.18) holds for the specific instance of the CRT based on
the statistic Tn defined in via equations (3.10) and (3.11), though other kinds
of test statistics may lead to similar large-sample behavior. While Theorem 3.1
is stated for ĝn trained out of sample, we conjecture that it continues to hold
when ĝn is fit in sample, as in the original dCRT construction (Liu et al., 2021).
At least, we observe that the conditioning in the construction of the resampling
distribution Ln(

√
n · ρ̂n(X̃, Y, Z) | X,Y, Z) ensures that its mean and variance

remain equal to 0 and Ŝ2
n even when ĝn is fit in sample.

Theorem 3.1 has several consequences. First, it allows us to study the power of
the dCRT φLn

n against semiparametric alternatives (3.2) by studying instead the
simpler test φN(μn,Σn)

n . We pursue this direction in Section 4. Second, it implies
a certain robustness property of the dCRT. Indeed, suppose we run the dCRT
based on an incorrect law L′

n �= Ln, but whose first and second moments match
that of Ln and such that Ln is contiguous with respect to L′

n. Then, applying
Theorem 3.1 to Ln and L′

n implies that PLn [φL′
n

n (X,Y, Z) �= φLn
n (X,Y, Z)] → 0.

It follows that since φLn
n controls the type-I error asymptotically (in fact, also

in finite samples), then so does φL′
n

n . We omit the formal statement of this result
for the sake of brevity. Third, it suggests a distinct conditional independence
test with valid Type-I error control under the weaker assumption that only the
first two moments of Ln(X|Z) are known. We expand on this third consequence
next.

3.3. The MX(2) assumption and the MX(2) F -test

The asymptotic equivalence of φN(μn,Σn)
n to φLn

n stated in Theorem 3.1 suggests
that we may replace the dCRT based on the law Ln(X|Z) with that based on its
normal approximation N(μn(Z),Σn(Z)) while preserving Type-I error control.
Since the test φN(μn,Σn)

n requires knowledge only of the first two moments μn(X)
and Σn(Z), this means that we may control Type-I error without the full MX
assumption. To formalize this, let us define the

MX(2) assumption: the conditional mean μn(Z) ≡ ELn [X|Z]
and conditional variance Σn(Z) ≡ VarLn [X|Z] are known.

(3.19)

By analogy with definition (2.1), the MX(2) null hypothesis is defined as

L
MX(2)
0 = L

MX(2)
0 (μn(·),Σn(·)) ≡ L0 ∩ L MX(2)(μn(·),Σn(·)), (3.20)
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Algorithm 2: The MX(2) F -test
Data: {(Xi, Yi, Zi)}ni=1, μn(·) and Σn(·) in (3.1), learning method g

1 Obtain ĝn by fitting g out of sample;
2 Recall μn(Zi) ≡ ELn [Xi|Zi], set Ŝ2

n ≡ 1
n

∑n
i=1(Yi − ĝn(Zi))2Σn(Zi);

3 Set Un ≡ Ŝ−1
n√
n

∑n
i=1(Yi − ĝn(Zi))(Xi − μn(Zi)) and Tn = ‖Un‖2;

4 Compute p̂MX(2) ≡ P[χ2
d > Tn].

Output: MX(2) F -test asymptotic p-value p̂MX(2).
Computational cost: One p-dimensional model fit.

where

L MX(2)(μn(·),Σn(·)) ≡ {Ln : ELn [X|Z] = μn(Z), VarLn [X|Z] = Σn(Z)}.

Under the MX(2) assumption, the CRT is undefined because there is no con-
ditional distribution Ln(X|Z) to resample from. Nevertheless, we may define
the MX(2) F -test by running the resampling-free dCRT as though Ln(X|Z)
were normal, with the given first and second moments (Algorithm 2). We de-
note this test φ

N(μn,Σn)
n , as before. Note that a one-sided version of this test

(the MX(2) t-test) can be defined for d = 1 by rejecting for large values of
Un(X,Y, Z).

The MX(2) F -test controls the Type-I error under the MX(2) assumption, if
the moment conditions (3.14) hold and ĝn is fit out of sample.

Theorem 3.2. If Ln ∈ L
MX(2)
0 ∩Ln(c1, c2) for some c1, c2 > 0 and ĝn is fit out

of sample, then the standardized quantity Un(X,Y, Z) converges to the standard
normal:

Un(X,Y, Z) Ln→d N(0, Id). (3.21)
Therefore, the MX(2) F -test controls Type-I error asymptotically, uniformly
over the above subset of L

MX(2)
0 :

lim sup
n→∞

sup
Ln∈L

MX(2)
0 ∩Ln(c1,c2)

ELn [φN(μn,Σn)
n (X,Y, Z)] ≤ α. (3.22)

See Appendix C for a proof of this theorem. The moment assumptions can
be relaxed for pointwise error control (less desirable), but are unavoidable for
uniform type-I error control as stated in the corollary. More importantly, we
conjecture that the MX(2) F -test continues to have asymptotic Type-I error
control even if ĝn is fit in sample. One may expect this because the validity of
the MX(2) F -test derives from the correctness of (μn,Σn) rather than that of
ĝn. This conjecture is supported by the results of a simulation study presented
in Appendix B.

3.4. Comparison to existing results

Comparison to model-X literature The preceding results suggest that the
MX(2) F -test is a useful alternative to the dCRT: the power of these methods
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Table 1

Type-I error guarantee and necessity of resampling for each method compared.
Method Guarantee Resampling
CRT Finite-sample Yes
MX(2) F -test Asymptotic No
GCM test Asymptotic No

Table 2

Assumptions necessary for each method compared (excluding moment assumptions). Here,
E(·) refers to the root-mean-squared estimation error of a given quantity.

CRT MX(2) F -test GCM test
E(E[X|Z]) 0 0 op(1)
E(Var[X|Z]) 0 0 –
E(L(X|Z)) 0 – –
E(E[Y |Z]) – – op(1)
E(E[X|Z]) × E(E[Y |Z]) – – op(n−1/2)

is asymptotically the same (Theorem 3.1), while the MX(2) F -test is computa-
tionally faster because it does not require resampling (Table 1). On the other
hand, note that we have proven Type-I error control for the MX(2) F -test
only when ĝn is fit out of sample and only asymptotically, while the dCRT
gives finite-sample Type-I error control with in-sample fit ĝn (albeit under the
stronger model-X assumption). However, numerical simulations suggest good
finite-sample Type-I error control for the MX(2) F -test even when ĝn is fit in
sample. Furthermore, Theorem 3.2 shows that asymptotic Type-I error control
of MX-style methodologies can be achieved under the weaker MX(2) assump-
tion (3.19), requiring only two moments of the conditional distribution Ln(X|Z)
rather than the entire conditional distribution (Table 2). If strict Type-I error
control in finite samples is desired, however, then we must continue to rely on
the full MX assumption. Finally, note that the MX(2) assumption still requires
exact knowledge of the first and second conditional moments; we leave as an
important future direction to examine the robustness of these tests to errors in
these quantities. First steps in this direction have been taken recently (Berrett
et al., 2020, Li and Liu, 2022).

Comparison to doubly-robust literature The semiparametric model (3.2)
has been extensively studied (see e.g. the classic works by Robinson (1988),
Robins, Mark and Newey (1992)), in which context estimation of the param-
eter βn is well understood. By contrast, we do not assume the validity of the
semiparametric model, using it only as an alternative against which to evalu-
ate power. A related and perhaps more relevant line of work is non-parametric
doubly robust testing (Shah and Peters, 2020, Dukes, Avagyan and Vanstee-
landt, 2020) and estimation (van der Laan and Rose, 2011, Chernozhukov et al.,
2018). Here, the inferential target is some functional of the data-generating dis-
tribution. The most relevant such functional is the expected conditional covari-
ance ρn ≡ ELn [CovLn [X,Y |Z]]. Note that a valid test of the null hypothe-
sis H0 : ρn = 0 is also a valid test of the conditional independence hypoth-
esis H0 : X ⊥⊥ Y | Z, since conditional independence implies that ρn = 0
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(though the converse is not true in general). The quantity ρ̂n turns out to be
a consistent estimator of ρn under the MX(2) assumption (Lemma 4). Such
product-of-residuals estimators are also commonly employed in the semi- and
non-parametric literatures (Robinson, 1988, Robins, Mark and Newey, 1992, Li
et al., 2011).

To compare our results with those in non-parametric doubly robust inference,
we consider the closest representative of the latter: the generalized covariance
measure (GCM) test of Shah and Peters (2020). For d = 1, the GCM test
statistic is defined as

ρ̂GCM
n ≡ 1

n

n∑
i=1

(Yi − ĝn(Zi))(Xi − μ̂n(Zi)), (3.23)

where μ̂n(Z) and ĝn(Z) are estimates of μn(Z) = ELn [X|Z] and gn(Z) ≡
ELn [Y |Z], respectively. This statistic is shown to converge under conditional
independence to a mean-zero normal limit as long as the estimates of ELn [X|Z]
and ELn [Y |Z] are both consistent, while the product in these estimation errors
tends to zero at a rate of o(n−1/2). By contrast, the MX(2) F -test places more
weight on the model for X|Z (assuming both first and second moments of this
conditional distribution are known) while placing less weight on the model for
Y |Z (not assuming even consistency for ELn [Y |Z]). Therefore, while the MX(2)
F -test closely resembles the GCM test, the assumptions required for validity of
these two methods do not subsume each other (Table 2).

Comparison to causal inference literature Theorem 3.1 is a statement
about the asymptotic equivalence between the resampling-based CRT and the
asymptotic MX(2) F -test. The MX CRT is in the spirit of the finite-population
approach to causal inference (Fisher), whereas the MX(2) F -test is in the spirit
of the asymptotic super-population approach (Neyman). We find that research
in these two strands of work on causal inference have proceeded largely sepa-
rately from each other, and therefore connections between the two have received
relatively little attention. However, there has been a recent line of work (Ding,
2017, Wu and Ding, 2020, Zhao and Ding, 2021) focusing on the asymptotic be-
havior of the Fisher randomization test in the context of completely randomized
experiments. A similar result to Theorem 3.1 is that the Fisher randomization
test (analogous to the CRT) is asymptotically equivalent to the Rao score test
(analogous to the MX(2) F -test) in a completely randomized experiment (Ding,
2017, Theorem A.1). Theorem 3.1 can be viewed as an extension of this result to
accommodate for non-binary treatments as well as high-dimensional covariates
affecting both treatment and response.

Having found that the dCRT is a natural test to apply for power against semi-
parametric alternatives, and that this test is equivalent to the simpler MX(2)
F -test, we are ready to study the relationship between the power of the dCRT
and the quality of the underlying machine learning procedure.
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4. dCRT power against semiparametric alternatives

In this section, we present our results on the asymptotic power of the dCRT
against the semiparametric alternatives (3.2). We state these results first (Sec-
tion 4.1), then apply these to lasso-based dCRT (Section 4.2), and finally com-
pare our results to existing ones (Section 4.3). All proofs are deferred to Ap-
pendix C.

4.1. Power against semiparametric alternatives

In Theorem 4.1 below, we express the asymptotic power of the dCRT against
alternatives (3.2) in terms of the variance-weighted mean square error of ĝn:

E2
n ≡ ELn

[
(ĝn(Z) − ḡn(Z))2 · Σ−1/2

n Σn(Z)Σ−1/2
n

]
, where Σn ≡ ELn [Σn(Z)].

Recall from definition (3.4) that ḡn(Z) ≡ E[Y |Z]. Note that if (X,Z) is jointly
Gaussian, then Σn(Z) = Σn for all Z and therefore E2

n = ELn [(ĝn(Z)−ḡn(Z))2]·
Id. Our result requires the following moment assumptions:

sup
n

‖Σ−1
n ‖ < ∞, (4.1)

sup
n

ELn [‖X − μn(Z)‖8] < ∞, (4.2)

and
sup
n

ELn [(ĝn(Z) − ḡn(Z))4‖X − μn(Z)‖4] < ∞. (4.3)

Theorem 4.1. Suppose Ln and ĝn (trained out of sample) are such that the con-
ditional distribution Ln(Y |X,Z) follows the semiparametric alternative (3.2),
the moment conditions (4.1), (4.2), and (4.3) are satisfied, and that the condi-
tional variance and variance-weighted mean squared error converge:

Σn → Σ and E2
n → E2 as n → ∞. (4.4)

Then, we have the following two statements:

(a) (Consistency) If βn = β �= 0 for each n, then the dCRT φLn
n and the

MX(2) F -test φN(μn,Σn)
n are consistent:

lim
n→∞

ELn

[
φLn
n (X,Y, Z)

]
= lim

n→∞
ELn

[
φN(μn,Σn)
n (X,Y, Z)

]
= 1. (4.5)

(b) (Power against local alternatives) If βn = hn/
√
n for a convergent se-

quence hn → h ∈ R
d, then

lim
n→∞

ELn

[
φLn
n (X,Y, Z)

]
= lim

n→∞
ELn

[
φN(μn,Σn)
n (X,Y, Z)

]
= P[χ2

d(‖(σ2Id + E2)−1/2Σ1/2
h‖2) > cd,1−α].

(4.6)
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This theorem is proved in Appendix C. Recalling that χ2
d(λ) denotes the

noncentral chi-square distribution with d degrees of freedom and non-centrality
parameter λ and cd,1−α denotes the 1 − α quantile of χ2

d, the second part of
Theorem 4.1 states that the dCRT has power equal to that of a χ2 test of
a multivariate normal random vector having mean zero under the alternative
N((σ2Id + E2)−1/2Σ1/2

h, Id). This result establishes a direct link between the
estimation error in ĝn and the power of the CRT against local alternatives.
In particular, the mean-squared error term E2 contributes additively to the
irreducible error term σ2Id. We can gain intuition for this result by considering
the regression model

Y − ĝn(Z) = (X − μn(Z))Tβn + (ḡn(Z) − ĝn(Z) + ε) (4.7)

obtained from the semiparametric model (3.2) by subtracting ĝn(Z) from both
sides. The test statistic Tn is based on the quantity ρ̂n defined in equation (3.6),
which can be viewed as an unnormalized version of the fitted regression coeffi-
cients of Y − ĝn(Z) on X − μn(Z). The term ḡn(Z) − ĝn(Z) in the regression
model (4.7) contributes additively to the residual error term, so in a traditional
regression analysis we would expect the power of the test to depend on the
variance of this error term. In fact, standard large-sample OLS theory (see e.g.
Section 2.3 of Hayashi (2000)) states that the power against local alternatives of
the F -test in the regression model (4.7) is exactly the same as that of the dCRT
(and MX(2) F -test) stated in equation (4.6). Of course, the usual F -test ap-
plied to the regression (4.7) relies on the validity of this model while the dCRT
and MX(2) F -test instead rely on knowledge of Var[X|Z]. Note that Wang and
Janson (2022) also find the power of an MX test and a classical OLS test to
have the same power (see their Appendix F).

4.2. Example: Power of lasso-based CRT

A key ingredient in the power formula (4.6) is the limiting variance-weighted
mean squared error E2. This error depends on the machine learning method used
to obtain ĝn. We can leverage existing results about the asymptotic behavior of
prediction error of machine learning methods in high dimensions. In this section,
we consider the case when ĝn is trained using the lasso in the orthogonal design
case, which was studied by Bayati and Montanari (2011). Note that a recent
extension of Bayati and Montanari’s results to correlated designs (Celentano,
Montanari and Wei, 2020) can also be used in tandem with (4.6), but we focus
our exposition on the orthogonal design case for the sake of simplicity.

Setting 1 (Linear regression with orthogonal design). Consider a se-
quence of laws Ln such that Ln(X,Z) = N(0, I1+p) and such that Ln(Y |X,Z)
follows the semiparametric model (3.2), with βn = hn/

√
n for some convergent

sequence hn → h ∈ R and gn(Z) = ZT γn for a sequence γn ∈ R
p such that the

entries of
√
nγn converge weakly to a random variable Γ on R with P[Γ �= 0] > 0

and ‖√nγn‖2/p → E[Γ2] < ∞.
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Until now, we have denoted by n the sample size used for constructing tests,
leaving unspecified the size of the separate sample used to train ĝn. To get
concrete expressions for the power of the dCRT based on a specific machine
learning method to obtain ĝn, we must take the training sample size into ac-
count, which we will do via sample splitting for convenience. We therefore de-
fine the test ϕLn

n (X,Y, Z), which for some training proportion π ∈ (0, 1) split
the data into πn training observations (Xtrain, Ytrain, Ztrain) and (1 − π)n test
observations (Xtest, Ytest, Ztest). This test proceeds by first running a lasso of
Ytrain on Ztrain with regularization parameter λ to obtain an estimate γ̂πn.
The test ϕLn

n (X,Y, Z) is then obtained by running the dCRT on the test data
(Xtest, Ytest, Ztest) using the estimate ĝn(Z) = ZT γ̂πn:

ϕLn
n (X,Y, Z) ≡ φLn

(1−π)n(Xtest, Ytest, Ztest).

Note that the dependence of φLn

(1−π)n(Xtest, Ytest, Ztest) on the training data
(Xtrain, Ytrain, Ztrain) is left implicit.

Under Setting 1, we can directly use the theory of Bayati and Montanari
(2011) to obtain

lim
n→∞

E2
n = τ2

∗ − σ2 a.s. in (Xtrain, Ytrain, Ztrain), (4.8)

where (α∗, τ∗) is the unique solution of the system below:

λ = ατ(1 − (πδ)−1
E[η′(

√
πΓ + τW ;ατ)]),

τ2 = σ2 + (πδ)−1
E[(η(

√
πΓ + τW ;ατ) −

√
πΓ)2].

(4.9)

Here, W ∼ N(0, 1) is independent of Γ and η(x; θ) = (|x| − θ)+sign(x) is the
soft threshold function. This leads to the following corollary of Theorem 4.1,
proved in Appendix C:

Corollary 2. Under Setting 1, the asymptotic power of the dCRT converges to
that of a standard normal location test with alternative mean τ−1

∗ h
√

1 − π:

lim
n→∞

ELn [ϕLn
n (X,Y, Z)] = P[|N(τ−1

∗ h
√

1 − π, 1)| > z1−α/2]. (4.10)

Corollary 2 gives the power of these lasso-based methods in a very simple
form, with the prediction error of the lasso entering through the effective noise
level τ∗. The impact of the splitting proportion π on power can be seen in
the multiplication of the signal strength h by

√
1 − π. The splitting proportion

implicitly impacts the effective noise level τ∗ as well; smaller π lead to greater
effective noise levels. Note that the expectations in Corollary 2 are over both
training and test sets, while the expectations in Theorem 4.1 are over the test
set only.

4.3. Comparison to existing results

Two other power analyses of the CRT have been recently conducted (Wang and
Janson, 2022, Celentano, Montanari and Wei, 2020) in parallel to the first ver-
sion of our paper (Katsevich and Ramdas, 2020), focusing on the case where
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gn(Z) = ZT γn, ĝn is trained using the lasso, n/p → δ, and the generalized co-
variance measure test statistic ρ̂n is used. The former study considers the case
of orthogonal design (Setting 1), while the latter considers arbitrary joint Gaus-
sian distribution for (X,Z). Assuming ELn [VarLn [X|Z]] → s2 (the quantity we
called Σ in Section 4.1, with different notation to clarify that for dim(X) = 1
the covariance matrix simply becomes a variance), the works of Wang and Jan-
son (2022), Celentano, Montanari and Wei (2020) found that the power of the
CRT with in-sample lasso fit tends to that of a normal location test with alter-
native mean sh/τ∗, where τ∗ is the effective noise level from AMP theory (in
the orthogonal design case, (α∗, τ∗) are defined by equation (4.9) with π = 1)
and h is the limiting constant of the local alternatives in Setting 1.

This is a similar expression to what we found in Corollary 2 in the orthogonal
design case. Furthermore, note that τ2

∗ = σ2 + E2 (i.e. the out-of-sample pre-
diction error of the lasso). It follows that the power expression found by Wang
and Janson (2022), Celentano, Montanari and Wei (2020) is exactly the same
as what we found in part (b) of Theorem 4.1, despite the fact that their ĝn is
fit in-sample. Wang and Janson (2022) also derive a power expression for the
CRT when ĝn is fit in-sample via ordinary least squares (allowing correlated
covariates, as we do in Theorem 4.1), which also happens to coincide with ex-
pression (4.6). Such in-sample results have been obtained only for these two
test statistics, though we conjecture that such results hold more broadly. By
contrast, training ĝn on a separate sample allows us to prove Theorem 4.1 for
very broad (almost unrestricted) classes of machine learning methods ĝn.

Finally, we note a connection between Theorem 4.1 and causal inference. It
is widely known in causal inference (see e.g. Imbens and Rubin (2015, Section
7.5)) that adjustment for covariates Z in randomized experiments (a) yields
consistent estimates despite misspecification of L(Y |X,Z) and (b) improve
estimation efficiency to the extent that this adjustment captures the distribution
L(Y |X,Z). This fact mirrors the conclusions of Theorem 4.1. The asymptotic
variance of the regression-based estimator for the average treatment effect in
a completely randomized experiment is a standard result, but we are unaware
of a quantitative expression of the asymptotic efficiency of covariate-adjusted
versions of the Fisher randomization test (though some insight is provided by
Zhao and Ding (2021)).

5. Most powerful one-bit p-values for knockoffs

MX knockoffs (Candès et al., 2018) operate differently than the CRT; they si-
multaneously test the conditional associations of many variables with a response.
Given m variables X1, . . . ,Xm and a response Y , it is of interest to test the CI
hypotheses

Hj : Y ⊥⊥ Xj | X−j , j = 1, . . . ,m.

Note that j indexes variables, rather than samples. Comparing to our setup,
Xj plays the role of X and X−j plays the role of Z. In particular, we allow
Xj to be a group of variables. Like HRT, knockoffs only requires one model
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fit, so it too is computationally faster than the CRT. Among these three MX
procedures, knockoffs is currently the most popular. We briefly review it next,
and then present an optimality result in the spirit of Theorem 2.1. Its proof is
given in Appendix D.

5.1. A brief overview of knockoffs

A set of knockoff variables X̃ = (X̃1, . . . , X̃m) is constructed to satisfy condi-
tional exchangeability:

L(Xj , X̃j |X−j , X̃−j) = L(X̃j ,Xj |X−j , X̃−j), j = 1, . . . ,m (5.1)

and conditional independence

Y ⊥⊥ X̃ | X. (5.2)

Here, Xj ∈ R denotes the jth element of the vector X ∈ R
m and X−j ∈ R

m−1

denotes all elements except the jth. Also, Xi,• ∈ R
n, X•,j ∈ R

m, and X•,−j ∈
R

n×(m−1) denote the ith row, jth column, and all columns but the jth of the
matrix X ∈ R

n×m. Given such a construction, a set of knockoff variables X̃i,• is
sampled from L(X̃|X = Xi,•) for each i. Knockoff inference is then based on a
form of data-carving: variables are given an ordering τ(1), . . . , τ(m) determined
arbitrarily from ([X, X̃], Y ) as long as X•,j and X̃•,j are treated symmetrically.
Variables are then tested in that order based on one-bit p-values pj measuring
the contrast between the strength of association between X•,j and Y and that
between X̃•,j and Y . Given any statistic Tj([X, X̃], Y ) measuring the strength
of association between Xj and Y , define the one-bit p-value

pj([X, X̃], Y ) ≡
{

1
2 , if Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y );
1, if Tj([X, X̃], Y ) ≤ Tj([X, X̃]swap(j), Y ).

(5.3)

Here, [X, X̃]swap(j) is defined as the result of swapping X•,j with X̃•,j in [X, X̃]
while keeping all other columns in place. A set of variables with guaranteed
false discovery rate control is chosen via the ordered testing procedure Selective
SeqStep (Barber and Candès, 2015), applied to the p-values pj in the order τ .

5.2. Most powerful one-bit p-value

It is harder to analyze the power of knockoffs than that of the CRT for several
reasons. Knockoffs is fundamentally a multiple testing procedure, coupling the
analysis of Hj across variables j. Furthermore, the qualities of the ordering τ
and of the one-bit p-values pj both contribute to the power of knockoffs. Due to
these challenges, no optimality results are currently available for knockoffs. We
take a first step in this direction by exhibiting the test statistics Tj that lead to
most powerful one-bit p-values against a point alternative.
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Theorem 5.1. Let L̄ be a fixed alternative distribution for (X,Y ), with con-
ditional L̄(Y |X) = f̄(Y |X). Define the likelihood statistic

T opt
j ([X, X̃], Y ) ≡

n∏
i=1

f̄(Yi|Xi,•). (5.4)

Assuming that ties do not occur, that is

PL̄[T opt
j ([X, X̃], Y ) = T opt

j ([X, X̃]swap(j), Y ), X•,j �= X̃•,j ] = 0, (5.5)

we have that the above likelihood statistic yields an optimal one-bit p-value:

T opt
j ∈ arg max

Tj

P[Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y )]. (5.6)

This theorem is proved in Appendix D. The reader observes that T opt
j is

not a function of the knockoff variables or of the index j, which may at first
seem paradoxical. Recall from the definition (5.3), however, that the one-bit
p-value compares the test statistic on the original augmented design [X, X̃]
and its swapped version [X, X̃]swap(j). Therefore, the optimal one-bit p-value
checks whether the original jth variable X•,j fits with the rest of the data
better than does its knockoff X̃•,j . Therefore, the optimal one-bit p-value is
in fact a function of the knockoffs as well as the index j. A simple way of
operationalizing Theorem 5.1 is to fit a model f̂(Y |X) based on ([X, X̃], Y ) in
any way that treats original variables and knockoffs symmetrically, and then
defining Tj([X, X̃], Y ) ≡ f̂(Y |X). The above result continues to hold when Xj

is a group of variables, giving a clean way to combine evidence across multiple
variables. A conditional version of the optimality statement (5.6) holds; see
equation (D.1) in the appendix.

Theorem 5.1 requires that ties occur with probability zero (5.5). Proposition 1
below (proved in Appendix C) states that this nondegeneracy condition holds
if either Y |X or Xj |X−j , X̃ has a continuous distribution.

Proposition 1. Suppose L̄(Y |X) = gη, where η = Xjβj + f−j(X−j) and gη
is a one-dimensional exponential family with natural parameter η and strictly
convex, continuous log partition function ψ. Suppose also that Xj , βj ∈ R, with
βj �= 0. The nondegeneracy condition (5.5) holds if either

1. Xj |X−j , X̃ has a density for each X−j , X̃, or
2. gη has a density,

where the densities are with respect to the Lebesgue measure.

Finally, we remark that there are a few existing power analyses for knock-
offs, all in high-dimensional asymptotic regimes and assuming lasso-based test
statistics. Weinstein, Barber and Candes (2017) analyze the power of a knockoffs
variant in the case of independent Gaussian covariates, while Liu and Rigollet
(2019) and Fan et al. (2020) study conditions for consistency under correlated
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designs. Our finite-sample optimality result for the likelihood statistic is com-
plementary to these previous works. Recently, Theorem 5.1 inspired a more
powerful variant of knockoffs based on masked likelihood ratio statistics, which
comes with a different kind of optimality guarantee (Spector and Fithian, 2022).

6. Discussion

In this paper, we gave some answers to the theoretical questions posed in the
introduction. We presented the first finite-sample optimality results in the MX
framework and explicitly quantified how the performance of the underlying ma-
chine learning procedure impacts the asymptotic power of the CRT. Along the
way, we exhibited a weakened form of the MX assumption and a resampling-free
methodology valid under only this assumption.

The MX framework is just one setting where black-box prediction meth-
ods have been recently employed for the purpose of more powerful statistical
inference. Other examples include conformal prediction Foygel Barber et al.
(2021), classification-based two-sample testing (Kim et al., 2021) and data-
carving based multiple testing (Lei and Fithian, 2018). These methods employ
machine learning algorithms to create powerful test statistics, calibrating them
for valid inference with no assumptions about the method used. However, the
more accurate the learned model, the more powerful the inference. Our finite-
sample and asymptotic power results explicitly tie the error of the learning
algorithm to the power of the test, and thus put this common intuition on
a quantitative foundation and may thus help inform the choice and design of
machine learning methods used for inferential goals.

Another set of connections we highlighted throughout the paper is to causal
inference and semiparametric estimation. The MX CI problem has strong sim-
ilarities to the problem of testing Fisher’s strong null in a randomized exper-
iment with potentially non-binary treatment and known propensity function.
Furthermore, the CRT is similar in spirit to the Fisher randomization test. We
believe these connections can be further leveraged to address problems in the
MX framework that remain open. For example, consider the situation when the
MX assumption is only approximately correct. This is analogous to the situation
in observational studies, where the propensity score/function must be estimated.
There is a vast literature on this topic based on “double robustness/machine-
learning” (Chernozhukov et al., 2018) or targeted learning (van der Laan and
Rose, 2011). Similar ideas may help relax the MX assumption (Huang and Jan-
son, 2020) or study robustness to its misspecification (Barber, Candès and Sam-
worth, 2020). Another topic that has received little attention in the MX com-
munity is that of estimation (with the exception of Zhang and Janson (2020)).
Causal inference is a rich source of meaningful estimands (such as the dose re-
sponse function, Hirano and Imbens (2004)) and estimators (such as the proposal
of Kennedy et al. (2017) for doubly-robust dose response function estimation).
Such ideas may be directly relevant to the MX framework.

Much still remains to be done to systematically understand the theoretical
properties of MX methods. One interesting direction is to analyze the case when
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ĝn is learned on the same data as is used for testing. We saw in Section 4.3 that
Theorem 4.1 extends to lasso-based estimators ĝn learned in-sample, but the
generality of such results remains an open question. It would also be interesting
to consider alternatives beyond the linear model (3.2). A natural next step would
be to consider generalized linear models. Furthermore, the connections to causal
inference referenced above are tantalizing and deserve a dedicated treatment.
Finally, we hope that these new theoretical insights about MX methods will
lead to improved methodologies that are both statistically and computationally
efficient, along the lines of the CRT variants discussed in this paper and in
recent work (Liu et al., 2021).

Appendix A: Proof of Theorem 2.1

Proof. Let φ be any test satisfying conditional validity property (2.3). Let A
be a set of pairs (y, z), for which both φ and φCRT

T opt have level α conditionally
on Y = y, Z = z. By assumption, P[(Y,Z) ∈ A] = 1. Now, fix realizations
(y, z) ∈ A. We first claim that the conditional power of φ is bounded above by
that of φCRT

T opt , i.e.

EL̄[φ(X, y, z)|Y = y, Z = z] ≤ EL̄[φCRT
T opt (X, y, z)|Y = y, Z = z] (A.1)

In the conditional problem, the alternative L̄ induces the following distribution
for X:

L̄(X = x|Y = y, Z = z) =
n∏

i=1
f∗(xi|zi) f̄(yi|xi,zi)

f̄(yi|zi)
, (A.2)

where
f̄(yi|zi) ≡

∫
f̄(yi|xi, zi)f∗(xi|zi)dxi.

The conditional problem is therefore a test of

H0 : L(X = x|Y = y, Z = z) =
n∏

i=1
f∗(xi|zi) versus

H1 : L(X = x|Y = y, Z = z) =
n∏

i=1
f∗(xi|zi) f̄(yi|xi,zi)

f̄(yi|zi)
.

This is a simple testing problem, with point null and point alternative. By the
Neyman-Pearson lemma, the most powerful test is the one that rejects for large
values of the likelihood ratio∏n

i=1 f
∗(xi|zi) f̄(yi|xi,zi)

f̄(yi|zi)∏n
i=1 f

∗(xi|zi)
=

n∏
i=1

f̄(yi|xi, zi)
f̄(yi|zi)

∝ T opt(x, y, z), (A.3)
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verifying the conditional optimality claim (A.1). To obtain the unconditional
claim (2.6), we take an expectation over Y,Z and use the fact that P[(Y,Z) ∈
A] = 1:

EL̄[φ(X,Y, Z)] = EL̄[φ(X,Y, Z) | (Y,Z) ∈ A]
= EL̄[EL̄[φ(X,Y, Z) | Y,Z] | (Y,Z) ∈ A]
≤ EL̄

[
EL̄[φCRT

T opt (X,Y, Z) | Y,Z] | (Y,Z) ∈ A
]

= EL̄
[
φCRT
T opt (X,Y, Z) | (Y,Z) ∈ A

]
= EL̄[φCRT

T opt (X,Y, Z)].

This completes the proof.

Appendix B: Simulation: Finite sample error control of the MX(2)
F -test

In this section, we examine via numerical simulation the Type-I error control
of the MX(2) F -test in finite samples, both if ĝn is fit out of sample (the case
covered by Theorem 3.2) and if ĝn is fit in sample (conjectured). Code to re-
produce the simulation is available online at https://github.com/Katsevich-
Lab/crtpower-manuscript.

Simulation setup Recall that the MX(2) F -test is equivalent to the dCRT
in finite samples when Ln(X|Z) is Gaussian. Therefore, to test the Type-I
error control of the MX(2) F -test in a nontrivial setting, we instead consider a
discrete distribution for (X,Z). In particular, we sample (X,Z) from a Markov
chain, as described next. Such a Markovian setup has often been employed in
MX analyses of GWAS studies (Sesia, Sabatti and Candès, 2019, Sesia et al.,
2020, Bates et al., 2020b), motivated by recombination models from population
genetics.

Let’s assume for simplicity that dim(X) = 1. Define (X,Z) ∈ {0, 1}1+p to
have the distribution of a Markov chain with

initial state X ∼ Ber(πinit) and transition matrix
(

1 − πflip πflip
πflip 1 − πflip

)
.

More explicitly, we have

P[X = x,Z = z]

= πx
init(1 − πinit)1−xπ

1(z1 �=x)
flip (1 − πflip)1(z1=x)

p∏
j=2

π
1(zj �=zj−1)
flip (1 − πflip)1(zj=zj−1).

The parameters (πinit, πflip) describe the distribution of X|Z and are assumed
known. Furthermore, let the response Y be distributed as a random effects
model in Z:

Y = ZTγ + ε, γ ∼ N(0, σ2
γIp), ε ∼ N(0, σ2

ε In).

https://github.com/Katsevich-Lab/crtpower-manuscript
https://github.com/Katsevich-Lab/crtpower-manuscript
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Thus, all simulations are conducted under the null hypothesis H0 : X ⊥⊥ Y | Z.
The signal-to-noise ratio in this relationship is defined via

SNR =
E[‖Z‖2]σ2

γ

σ2
ε

.

Suppose we have ntrain and ntest training and test samples, respectively. Then,
the function ĝn is defined by running a 10-fold cross-validated ridge regression
of Y on Z using either the ntrain training samples (out of sample training) or
the ntest test samples (in sample training) and then the statistic Un(X,Y, Z) is
computed using the ntest test samples.

Simulation parameters All simulations were run with

ntrain = 100; πinit = 0.1; πflip = 0.1; σ2
ε = 1. (B.1)

On the other hand, the three parameters (ntest,SNR, p) were varied as follows:

ntest ∈ {10, 25,100}; SNR ∈ {0,1, 5}; p ∈ {20, 100,500}.

The bolded values above represent the default values for each parameter. Each of
the three parameters was varied while keeping the other two parameters at their
default values, giving a total of nine simulation settings. For each simulation
setting, the training data were generated just once, since Theorem 3.2 implicitly
conditions on the training data. The entire test data (X,Y, Z) were sampled 1000
times to generate the null distribution of Un(X,Y, Z).

Simulation results For each of the nine simulation settings, we produce nor-
mal QQ plots of the z-statistics Un(X,Y, Z) based on out of sample or in sample
training (Figures 1 and 2, respectively). When ĝn is fit out of sample (Figure 1),
we see good calibration in most cases. In particular, the test sample size im-
pacts calibration, but the SNR and the dimension do not. The test statistic’s
null distribution shows some inflation for the small sample size of ntest = 10,
but is already well-calibrated starting with ntest = 25. Therefore, the asymp-
totic Type-I error control proved in Theorem 3.2 extends to modest sample sizes
as well. Furthermore, when ĝn is fit in sample (Figure 2), we observe calibra-
tion that is as good as when ĝn is fit out of sample. This suggests that we may
apply the MX(2) F -test even with in-sample-estimated ĝn. We must bear in
mind, however, that different choices of the fixed parameters (B.1) may alter
these conclusions. In particular, smaller πinit leads to more discreteness in X
and therefore slower convergence to normality.

Appendix C: Proofs for Sections 3 and 4

C.1. Proofs of main results

Proof of Theorem 3.1. First, conclusion (C.30) of Lemma 3—which applies be-
cause of the assumption Ln ∈ L MX(2)(μn(·),Σn(·)) ∩ Ln(c1, c2)—states that
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Fig 1. Distributions of 1000 samples of Un(X,Y, Z) each from nine simulation settings under
the null, where ĝn is learned out of sample.

for
X̃1

i , X̃
2
i |Y,Z

ind∼ Ln(X|Z = Zi),
we have the convergence(

Un(X̃1, Y, Z)
Un(X̃2, Y, Z)

)
Ln→d N

((
0
0

)
,

(
Id 0
0 Id

))
. (C.1)

By the continuous mapping theorem, we find that

(Tn(X̃1, Y, Z), Tn(X̃2, Y, Z)) Ln→d χ2
d × χ2

d. (C.2)

Since χ2
d has a continuous and strictly increasing distribution function, we con-

clude using Lemma 1 that Cn(Y,Z) Ln→p Q1−α[χ2
d] = cd,1−α, proving the state-

ment (3.16).
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Fig 2. Distributions of 1000 samples of Un(X,Y, Z) each from nine simulation settings under
the null, where ĝn is learned in sample.

Next, note that for any δ > 0,

PLn [φN(μn,Σn)
n (X,Y, Z) �= φLn

n (X,Y, Z)]
= PLn [min(cd,1−α, Cn(Y,Z)) < Tn(X,Y, Z) ≤ max(cd,1−α, Cn(Y,Z))]
= PLn [min(cd,1−α, Cn(Y,Z)) < Tn(X,Y, Z) ≤ max(cd,1−α, Cn(Y,Z)),

|Cn(Y,Z) − cd,1−α| ≤ δ]
+ PLn [min(cd,1−α, Cn(Y,Z)) < Tn(X,Y, Z) ≤ max(cd,1−α, Cn(Y,Z)),

|Cn(Y,Z) − cd,1−α| > δ]
≤ PLn [|Tn(X,Y, Z) − cd,1−α| ≤ δ] + PLn [|Cn(Y,Z) − cd,1−α| > δ].

To justify the last step, suppose without loss of generality that cd,1−α≤Cn(Y,Z).
Then, note that if cd,1−α < Tn(X,Y, Z) ≤ Cn(Y,Z) and Cn(Y,Z) − cd,1−α ≤ δ
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then

|Tn(X,Y, Z) − cd,1−α| = Tn(X,Y, Z) − cd,1−α ≤ Cn(Y,Z) − cd,1−α ≤ δ.

Taking a lim sup on both sides in the display before the last and using the
convergence Cn(Y,Z) Ln→p cd,1−α, we find that

lim sup
n→∞

PLn [φN(μn,Σn)
n (X,Y, Z) �= φLn

n (X,Y, Z)]

≤ lim sup
n→∞

PLn [|Tn(X,Y, Z) − cd,1−α| ≤ δ]

+ lim sup
n→∞

PLn [|Cn(Y,Z) − cd,1−α| > δ]

= lim sup
n→∞

PLn [|Tn(X,Y, Z) − cd,1−α| ≤ δ].

Letting δ → 0 and using the assumption (3.17), we arrive at the claimed asymp-
totic equivalence (3.18). This completes the proof.

Proof of Theorem 3.2. Fix any sequence Ln ∈ L
MX(2)
0 ∩ Ln(c1, c2). Because

Ln ∈ L0, we have (X,Y, Z) d= (X̃, Y, Z), where X̃i|Y,Z ind∼ Ln(X|Z = Zi). By
conclusion (C.30) of Lemma 3, which applies because Ln∈L MX(2)(μn(·),Σn(·))∩
Ln(c1, c2) by assumption, we have Un(X,Y, Z) d= Un(X̃, Y, Z) Ln→d N(0, Id).
This verifies the asymptotic normality statement (3.21).

To show the asymptotic Type-I error control statement (3.22), it suffices to
show that for any sequence Ln ∈ L

MX(2)
0 ∩ Ln(c1, c2), we have

lim sup
n→∞

ELn [φN(μn,Σn)
n (X,Y, Z)] ≤ α. (C.3)

By the continuous mapping theorem it follows from asymptotic normality (3.21)
that Tn(X,Y, Z) = ‖Un(X,Y, Z)‖2 Ln→d χ2

d. Therefore,

lim
n→∞

ELn [φN(μn,Σn)
n (X,Y, Z)] = lim

n→∞
PLn [Tn(X,Y, Z) > cd,1−α]

= P[χ2
d > cd,1−α] = α,

from which the conclusion (C.3) follows. This completes the proof.

Proof of Theorem 4.1. In Lemma 4, we show that the estimator ρ̂n is consistent,
i.e.

ρ̂n
Ln→p Σβ. (C.4)

Next, we derive that

Tn(X,Y, Z) = ‖
√
nŜ−1

n ρ̂n‖2

= ‖
√
nŜ−1

n SnS
−1
n ρ̂n‖2 ≥

(√
nλmin(Ŝ−1

n Sn)λmin(S−1
n )‖ρ̂n‖

)2
.
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Now, we have Ŝ−1
n Sn

Ln→p Id by conclusion (C.23) of Lemma 2, so the contin-
uous mapping theorem implies that λmin(Ŝ−1

n Sn) Ln→p 1. Furthermore, we have
infn λmin(S−1

n ) > 0 by conclusion (C.42) of Lemma 5. Finally, ‖ρ̂n‖ Ln→p ‖Σβ‖
by equation (C.4), and

‖Σβ‖ ≥ λmin(Σ)‖β‖ = ‖Σ−1‖−1‖β‖ ≥
(

sup
n

‖Σ−1
n ‖

)−1

‖β‖ > 0,

since β �= 0 by assumption and assumptions (4.1) and (4.4) imply that ‖Σ−1‖ ≤
supn ‖Σ

−1
n ‖ < ∞. Putting these facts together implies that

√
nλmin(Ŝ−1

n Sn)λmin(S−1
n )‖ρ̂n‖ Ln→p ∞,

and therefore Tn(X,Y, Z) Ln→p ∞. Hence,

ELn [φN(μn,Σn)
n (X,Y, Z)] = PLn [Tn(X,Y, Z) > cd,1−α] → 1. (C.5)

The fact that Tn(X,Y, Z) Ln→p∞ also implies that lim supn→∞ PLn [|Tn(X,Y, Z)−
cd,1−α| ≤ δ] = 0 for any δ > 0. Hence, the condition (3.17) of Theorem 3.1 is
satisfied, so the conclusion (3.18) implies that

lim
n→∞

ELn [φLn
n (X,Y, Z)] = lim

n→∞
ELn [φN(μn,Σn)

n (X,Y, Z)] = 1.

Thus, we have shown the claimed consistency (4.5), so we have finished the
proof of part (a) of the theorem.

To prove part (b), we claim that it suffices to establish that

Tn(X,Y, Z) Ln→d χ2
d(‖(σ2Id + E2)−1/2Σ1/2

h‖2). (C.6)

Indeed, the limiting power of the MX(2) F -test would directly follow from this
statement. To establish that the CRT has the same limiting power, by Theo-
rem 3.1 it suffices to verify the non-accumulation condition (3.17). Letting T be
the limiting distribution in claim (C.6), this claim implies that for any δ > 0,

lim
n→∞

PLn [|Tn(X,Y, Z) − cd,1−α| ≤ δ] = P[|T − cd,1−α| ≤ δ].

Because T has a continuous distribution function, the limit above tends to zero.
Therefore, it is indeed sufficient to verify the claimed convergence (C.6). This
statement, in turn, will follow if we prove that

Un(X,Y, Z) Ln→d N((Σ1/2(σ2Id + E2)Σ1/2)−1/2Σh, Id). (C.7)

Indeed, note that

hTΣ(Σ1/2(σ2Id + E2)Σ1/2)−1Σh = hTΣ1/2(σ2Id + E2)−1Σ1/2
h



Power of model-X testing 6379

= ‖(σ2Id + E2)−1/2Σ1/2
h‖2.

To show the statement (C.7), we first rewrite Un(X,Y, Z) as follows:

Un(X,Y, Z)

= Ŝ−1
n√
n

n∑
i=1

((Xi − μn(Zi))Tβn + εi + ḡn(Zi) − ĝn(Zi))(Xi − μn(Zi))

= Ŝ−1
n

n

n∑
i=1

(Xi − μn(Zi))(Xi − μn(Zi))Thn

+ Ŝ−1
n√
n

n∑
i=1

(Y ′
i − ĝn(Zi))(Xi − μn(Zi))

≡ An + Bn,

where Y ′
i ≡ ḡn(Zi) + εi. It therefore suffices to show that

An
Ln→p (Σ1/2(σ2Id + E2)Σ1/2)−1/2Σh and Bn

Ln→d N(0, Id). (C.8)

By conclusion (C.41) of Lemma 5, there exist c1, c2 for which Ln ∈ L (c1, c2)
for each n. Therefore, we can apply Lemma 2 to conclude that

Ŝ−1
n Sn

Ln→p Id. (C.9)

By conclusion (C.43) of Lemma 5, we have that S2
n → Σ1/2(σ2Id + E2)Σ1/2, so

S−1
n → (Σ1/2(σ2Id + E2)Σ1/2)−1/2. (C.10)

Now, we apply the WLLN to find the limit of An. Since (Xi − μn(Zi))(Xi −
μn(Zi))T has expectation Σ and second moment uniformly bounded by the
eighth moment assumption (4.2), we can apply the weak law of large numbers
as well as the statements (C.9) and (C.10) to conclude that

An = (Ŝ−1
n Sn)S

−1
n

n

n∑
i=1

(Xi − μn(Zi))(Xi − μn(Zi))Thn

Ln→p (Σ1/2(σ2Id + E2)Σ1/2)−1/2Σh.

Next, we seek to find the limit of Bn. Defining Y ′, S′ 2
n ,L′

n according to (C.40)
below, we may rewrite

Bn = (Ŝ−1
n Sn)(S−1

n S′
n)S

′ −1
n√
n

n∑
i=1

(Y ′
i − ĝn(Zi))(Xi − μn(Zi)). (C.11)

By conclusion (C.43) of Lemma 5, we have

S−1
n S′

n → Id. (C.12)
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Furthermore, conclusion (C.41) of Lemma 5 gives L′
n ∈ L MX(2)(μn(·),Σn(·)) ∩

Ln(c1, c2). Therefore, L′
n satisfies the assumptions of Lemma 3, statement (C.29)

of which gives

S′ −1
n√
n

n∑
i=1

(Y ′
i − ĝn(Zi))(X̃i − μn(Zi))

Ln→d N(0, Id). (C.13)

Furthermore, L′
n ∈ L0 implies that (X,Y ′,Z) d= (X̃,Y ′,Z), which together

with the convergence (C.13) implies that

S′ −1
n√
n

n∑
i=1

(Y ′
i − ĝn(Zi))(Xi − μn(Zi))

Ln→d N(0, Id). (C.14)

Finally, putting together displays (C.9), (C.12) and (C.14) yields that Bn
Ln→d

N(0, Id). This verifies the claimed convergences (C.8) and therefore completes
the proof.

Proof of Corollary 2. First we verify the statement (4.8). To this end, first note
that

E2
n = ELn [(ĝn(Z) − ḡn(Z))2Σ−1/2

n Σn(Z)Σ−1/2
n | Xtrain, Ytrain, Ztrain]

= ELn [(ĝn(Z) − gn(Z))2 | Xtrain, Ytrain, Ztrain]
= ELn [(γ̂πn − γn)TZZT (γ̂πn − γn) | Xtrain, Ytrain, Ztrain]
= (γ̂πn − γn)TELn [ZZT ](γ̂πn − γn)
= ‖γ̂πn − γn‖2.

(C.15)

The second equality holds because for (X,Z) jointly Gaussian, Σn(Z) is con-
stant in Z, so Σ−1/2

n Σn(Z)Σ−1/2
n = 1. Therefore, the variance-weighted mean-

squared error E2
n of ĝn reduces to the squared error in the estimate γ̂πn. To

obtain the limit of the latter quantity, we appeal to Bayati and Montanari
(2011, Corollary 1.6). To verify the conditions of this corollary, it suffices to
verify part (b) of their Definition 1: that the empirical distribution of the noise
terms ε′i ≡ Yi−ZT

i γn = Xiβn + εi in the training set (say 1 ≤ i ≤ πn) converges
weakly to a random variable Λ and 1

πn

∑πn
i=1 ε

′ 2
i → E[Λ2]. These statements

hold almost surely in the training data by the strong law of large numbers if we
assume without loss of generality that Xi and εi are both defined as the first
πn elements of infinite i.i.d. sequences with distributions N(0, 1) and N(0, σ2),
respectively. Therefore, Bayati and Montanari (2011, Corollary 1.6) gives

1
p
‖
√
πnγ̂πn −

√
πnγn‖2 a.s.→ πδ(τ2

∗ − σ2), (C.16)

where the almost sure statement is with respect to the training data (Xtrain,
Ytrain, Ztrain). Since πn/p → πδ, we can cancel these terms from the above
equation to obtain

‖γ̂πn − γn‖2 a.s.→ τ2
∗ − σ2. (C.17)



Power of model-X testing 6381

Putting together equations (C.15) and (C.17) gives the claimed statement (4.8).
To apply this result, we must verify the assumptions of Theorem 4.1. The

bounded inverse assumption (4.1) holds because Σn = 1 for all n in the or-
thogonal design setting. The eighth moment assumption (4.2) holds due to the
boundedness of the eighth moments of Gaussian random variables. To verify the
moment assumption (4.3), we note that, almost surely in the training data,

sup
n

ELn [(ĝn(Z) − ḡn(Z))4‖X − μn(Z)‖4|Xtrain, Ytrain, Ztrain]

= sup
n

ELn [(Zγ̂πn −Zγn)4‖X‖4|Xtrain, Ytrain, Ztrain]

≤ sup
n

‖γ̂πn − γn‖4
ELn [‖Z‖4‖X‖4]

≤ sup
n

‖γ̂πn − γn‖4
ELn [‖Z‖8]1/2ELn [‖X‖8]1/2

< ∞.

The last inequality holds because ‖γ̂πn − γn‖4 has a finite limit according
to (C.17) and because Z and X have bounded eighth moments since they are
Gaussian. Finally, we verify assumption (4.4) by noting that Σn → Σ ≡ 1 and
E2
n → τ2

∗ − σ2 ≡ E , the latter by statement (4.8). Therefore, Theorem 4.1 gives

ELn [φLn

(1−π)n(Xtest, Ytest, Ztest)|Xtrain, Ytrain, Ztrain]
a.s.→ P[χ2

1(‖τ−1
∗ h

√
1 − π‖2) > c1,1−α].

The extra factor of
√

1 − π reflects the fact that a sample size of (1−π)n is used
for testing, so βn = hn/

√
n = hn

√
1 − π/

√
(1 − π)n. In other words, reducing

the number of samples for testing from n to (1−π)n has the effect of reducing the
alternative signal strength from hn to hn

√
1 − π. Noting that c1,1−α = z2

1−α/2,
we conclude using the dominated convergence theorem that

ELn [ϕLn
n (X,Y, Z)] = ELn

[
ELn [φLn

(1−π)n(Xtest, Ytest, Ztest)|Xtrain, Ytrain, Ztrain]
]

→ P[|N(τ−1
∗ h

√
1 − π, 1)| > z1−α/2].

This completes the proof of the corollary.

C.2. Technical lemmas

First, we state a lemma that gives a sufficient condition for the convergence of
the CRT threshold, which follows directly from Lemmas 2 and 3 of Wang and
Janson (2022).

Lemma 1 (Wang and Janson (2022)). Let Ln be a sequence of laws over
(X,Y ,Z), from which (X,Y, Z) are sampled. Furthermore, for each i sample
two independent copies

X̃1
i , X̃

2
i

i.i.d.∼ Ln(X|Z = Zi) (C.18)
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such that, given Z,

(X̃1
1 , X̃

2
1 ) ⊥⊥ · · · ⊥⊥ (X̃1

n, X̃
2
n) ⊥⊥ Y.

Suppose that Tn(X,Y, Z) is a test statistic satisfying

(Tn(X̃1, Y, Z), Tn(X̃2, Y, Z)) Ln→d T̃ × T̃ (C.19)

for some limiting random variable T̃ with continuous and strictly increasing
distribution function. Then, the CRT threshold converges in probability to the
upper quantile of T̃ :

Cn(Y,Z) ≡ Q1−α[Tn(X̃, Y, Z)|Y,Z] Ln→p Q1−α[T̃ ]. (C.20)

Lemma 2. Fix any c1, c2 > 0. For any sequence

Ln ∈ L MX(2)(μn(·),Σn(·)) ∩ Ln(c1, c2), (C.21)

we have
Ŝ2
n − S2

n
Ln→p 0 (C.22)

and
Ŝ−1
n Sn

Ln→p Id. (C.23)

Proof. To show the first convergence (C.22), we apply the WLLN to the tri-
angular array {(Yi − ĝn(Zi))2Σn(Zi)}i,n. We first verify the second moment
condition:

sup
n

ELn [‖(Y − ĝn(Z))2Σn(Z)‖2]

= sup
n

ELn [(Y − ĝn(Z))4‖Σn(Z)‖2]

≤ sup
n

ELn [(Y − ĝn(Z))4ELn [‖X − μn(Z)‖2|Z]2]

≤ sup
n

ELn [(Y − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]]

≤ c2 < ∞.

(C.24)

Therefore, by the WLLN we obtain the convergence

Ŝ2
n−S2

n = 1
n

n∑
i=1

(Yi− ĝn(Zi))2Σn(Zi)−ELn [(Y − ĝn(Z))2Σn(Z)] Ln→p 0. (C.25)

To show the second convergence (C.23), note first that

sup
n

‖S2
n‖ = sup

n
‖ELn [(Y − ĝn(Z))2Σn(Z)]‖

≤ sup
n

ELn [‖(Y − ĝn(Z))2Σn(Z)‖2]1/2 ≤ c
1/2
2 ,

(C.26)
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the last step having been derived in equation (C.24). Therefore, for every n, we
have

S2
n ∈ S ≡ {S2 : ‖S−1‖ ≤ c1, ‖S2‖ ≤ c

1/2
2 }. (C.27)

Since S is a compact subset of the open set of positive definite matrices, there
exists a δ > 0 such that Sδ = {S2 : ‖S2 − S2

0‖ ≤ δ for some S2
0 ∈ S} is also

a compact subset of the set of positive definite matrices. Since the function
S2 �→ S−1 is continuous on the compact set Sδ, it must be uniformly continuous
on this set as well. Fix γ > 0. By uniform continuity, there exists an η > 0
such that ‖S2

1 − S2
2‖ ≤ η implies that ‖S−1

1 − S−1
2 ‖ ≤ γ for all S2

1 , S
2
2 ∈ Sδ. We

therefore have that

PLn [‖Ŝ−1
n − S−1

n ‖ > γ]

= PLn [‖Ŝ−1
n − S−1

n ‖ > γ, Ŝ2
n ∈ Sδ] + PLn [‖Ŝ−1

n − S−1
n ‖ > γ, Ŝ2

n �∈ Sδ]

≤ PLn [‖Ŝ2
n − S2

n‖ > η] + PLn [Ŝ2
n �∈ Sδ]

≤ PLn [‖Ŝ2
n − S2

n‖ > η] + PLn [‖Ŝ2
n − S2

n‖ > δ].

Using the convergence (C.22), we find that the last expression tends to zero as
n → ∞, from which it follows that PLn [‖Ŝ−1

n − S−1
n ‖ > γ] → 0 as n → ∞.

Therefore,
Ŝ−1
n − S−1

n
Ln→p 0.

Multiplying this relation on the right by the bounded quantity Sn, we arrive at
the statement (C.23), which concludes the proof.

Lemma 3. Consider generating (X̃1, X̃2, Y, Z) according to (C.18) for a se-
quence of laws

Ln ∈ L MX(2)(μn(·),Σn(·)) ∩ Ln(c1, c2). (C.28)
We have

n−1/2
(
S−1
n 0
0 S−1

n

) n∑
i=1

(Yi − ĝn(Zi))
(
X̃1

i − μn(Zi)
X̃2

i − μn(Zi)

)
Ln→d N

((
0
0

)
,

(
Id 0
0 Id

))
(C.29)

and (
Un(X̃1, Y, Z)
Un(X̃2, Y, Z)

)
Ln→d N

((
0
0

)
,

(
Id 0
0 Id

))
. (C.30)

Proof of Lemma 3. Note that(
Un(X̃1, Y, Z)
Un(X̃2, Y, Z)

)
=
(
Ŝ−1
n Sn 0
0 Ŝ−1

n Sn

)
· n−1/2

(
S−1
n 0
0 S−1

n

) n∑
i=1

(Yi − ĝn(Zi))
(
X̃1

i − μn(Zi)
X̃2

i − μn(Zi)

)
.

By Lemma 2, we have that Ŝ−1
n Sn

Ln→p Id, so by Slutsky we find that the second
statement (C.30) follows from the first (C.29). Therefore, it suffices to prove the
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latter convergence. To this end, we apply the CLT to the triangular array of
vectors {

(Yi − ĝn(Zi))
(
S−1
n 0
0 S−1

n

)(
X̃1

i − μn(Zi)
X̃2

i − μn(Zi)

)}
i,n

. (C.31)

To apply the CLT, we first verify the Lyapunov condition with δ = 1:

sup
n

ELn

⎡⎣∥∥∥∥∥(Y − ĝn(Z))
(
S−1
n 0
0 S−1

n

)(
X̃1 − μn(Z)
X̃2 − μn(Z)

)∥∥∥∥∥
3
⎤⎦

≤ sup
n

‖S−1
n ‖3

ELn

[
|Y − ĝn(Z)|3(‖X̃1 − μn(Z)‖2 + ‖X̃2 − μn(Z)‖2)3/2

]
≤ sup

n
‖S−1

n ‖3
ELn

[
|Y − ĝn(Z)|3C

(
‖X̃1 − μn(Z)‖3 + ‖X̃2 − μn(Z)‖3

)]
= 2C sup

n
‖S−1

n ‖3
ELn

[
|Y − ĝn(Z)|3‖X̃1 − μn(Z)‖3

]
≤ 2C sup

n
‖S−1

n ‖3
ELn

[
(Y − ĝn(Z))4‖X̃1 − μn(Z)‖4

]3/4
= 2C sup

n
‖S−1

n ‖3
ELn

[
(Y − ĝn(Z))4ELn [‖X̃1 − μn(Z)‖4|Z]

]3/4
= 2C sup

n
‖S−1

n ‖3
ELn

[
(Y − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]

]3/4
≤ 2Cc31c

3/4
2 < ∞.

(C.32)

Here C is chosen such that (a + b)3/2 ≤ C(a3/2 + b3/2) for all a, b ≥ 0. Next, it
is easy to verify that

ELn

[
(Y − ĝn(Z))

(
S−1
n 0
0 S−1

n

)(
X̃1 − μn(Z)
X̃2 − μn(Z)

)]
=
(

0
0

)
(C.33)

and

VarLn

[
(Y − ĝn(Z))

(
S−1
n 0
0 S−1

n

)(
X̃1 − μn(Z)
X̃2 − μn(Z)

)]
=
(
Id 0
0 Id

)
. (C.34)

By the CLT, the convergence (C.29) now follows.

Lemma 4. In the setting of Theorem 4.1(a), define

ρn ≡ ELn [CovLn [X,Y |Z]] = Σnβ and ρ ≡ lim
n→∞

ρn = Σβ.

Under the assumptions of Theorem 4.1, the estimator ρ̂n defined in (3.6) is
consistent for ρ:

ρ̂n
Ln→p ρ = Σβ. (C.35)
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Proof. Note that ρ̂n is the mean of i.i.d. terms with expectation

ELn [(Y − ĝn(Z))(X − μn(Z))]
= ELn [((X − μn(Z))Tβ + ε + ḡn(Z) − ĝn(Z))(X − μn(Z))] = Σnβ.

(C.36)

These terms also have bounded second moment, since

ELn [‖(Y − ĝn(Z))(X − μn(Z))‖2]
= ELn [((X − μn(Z))Tβ + ε + ḡn(Z) − ĝn(Z))2‖X − μn(Z)‖2]
≤ CELn [(‖X − μn(Z)‖2‖β‖2 + ε2 + (ḡn(Z) − ĝn(Z))2)‖X − μn(Z)‖2]
= C‖β‖2

ELn [‖X − μn(Z)‖4] + Cσ2
ELn [‖X − μn(Z)‖2]

+ CELn [(ḡn(Z) − ĝn(Z))2‖X − μn(Z)‖2].
(C.37)

Here, C is a constant so that (a + b + c)2 ≤ C(a2 + b2 + c2) for any a, b, c ≥ 0.
Taking a supremum over n and using the assumptions (4.2) and (4.3) yields

sup
n

ELn [‖(Y − ĝn(Z))(X − μn(Z))‖2] < ∞. (C.38)

Therefore, the weak law of large numbers implies that

ρ̂n − Σnβ
Ln→p 0, (C.39)

from which the statement (C.35) follows by the assumed convergence Σn →
Σ.

Lemma 5. In the setting of Theorem 4.1, define

Y ′ ≡ ḡn(Z)+ε, S′ 2
n ≡ ELn [(Y ′−ĝn(Z))2Σn(Z)], and L′

n ≡ Ln(X,Y ′,Z).
(C.40)

Under the assumptions of Theorem 4.1(a) or 4.1(b),

there exist c1, c2 > 0 such that Ln,L′
n ∈ L (c1, c2). (C.41)

Under the assumptions of Theorem 4.1(a), we have

inf
n

λmin(S−1
n ) > 0, (C.42)

while under the assumptions of Theorem 4.1(b), we have

lim
n→∞

S2
n = lim

n→∞
S′ 2
n = Σ1/2(σ2Id + E2)Σ1/2

. (C.43)

Proof. First, we show that under the assumptions of Theorem 4.1(a) or 4.1(b),
we have Ln ∈ L (c1, c2) for some c1, c2 > 0. It suffices to show that

sup
n

‖S−1
n ‖ < ∞ (C.44)
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and
sup
n

ELn

[
(Y − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]

]
< ∞. (C.45)

To show the statement (C.44), first note that

S2
n = ELn [(Y − ĝn(Z))2Σn(Z)]

= ELn [((X − μn(Z))Tβn + Y ′ − ĝn(Z))2Σn(Z)]
= ELn [((X − μn(Z))Tβn)2Σn(Z)]

+ 2ELn [(X − μn(Z))Tβn(Y ′ − ĝn(Z))Σn(Z)]
+ ELn [(Y ′ − ĝn(Z))2Σn(Z)]

= ELn [((X − μn(Z))Tβn)2Σn(Z)] + ELn [(Y ′ − ĝn(Z))2Σn(Z)],

(C.46)

where in the last step we used the fact that

ELn [(X − μn(Z))Tβn(Y ′ − ĝn(Z))Σn(Z)]
= ELn [ELn [(X − μn(Z))|Z]Tβn(ḡn(Z) − ĝn(Z))Σn(Z)] = 0.

Furthermore,

S′ 2
n = ELn [(Y ′ − ĝn(Z))2Σn(Z)]

= ELn [(ε + ḡn(Z) − ĝn(Z))2Σn(Z)]
= ELn [ε2Σn(Z)] + ELn [2ε(ḡn(Z) − ĝn(Z))Σn(Z)]

+ ELn [(ḡn(Z) − ĝn(Z))2Σn(Z)]

= σ2Σn + Σ1/2
n E2

nΣ1/2
n = Σ1/2

n (σ2Id + E2
n)Σ1/2

n .

(C.47)

It follows that S2
n � σ2Σn, which together with assumption (4.1) implies that

sup
n

‖S−1
n ‖ ≤ sup

n
‖σ−1Σ−1/2

n ‖ = σ−1
(

sup
n

‖Σ−1
n ‖

)1/2

< ∞. (C.48)

This verifies statement (C.44). To prove statement (C.45), we write

ELn

[
(Y − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]

]
= ELn

[
((X − μn(Z))Tβn + ε + ḡn(Z) − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]

]
≤ CELn

[
(((X − μn(Z))Tβn)4ELn [‖X − μn(Z)‖4|Z]

]
+ CELn

[
ε4
ELn [‖X − μn(Z)‖4|Z]

]
+ CELn

[
(ḡn(Z) − ĝn(Z))4ELn [‖X − μn(Z)‖4|Z]

]
≤ C‖βn‖4

ELn [‖X − μn(Z)‖8] + 3Cσ4
ELn [‖X − μn(Z)‖4]

+ CELn

[
(ḡn(Z) − ĝn(Z))4‖X − μn(Z)‖4] .

Here, C a constant such that (a + b + c)4 ≤ C(a4 + b4 + c4) for all a, b, c ≥ 0.
Taking a supremum over n and using the moment assumptions (4.2) and (4.3)
along with the boundedness of the sequence βn yields the statement (C.45).
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Therefore, we have verified that Ln ∈ L (c1, c2) for some c1, c2 under the
assumptions of Theorem 4.1(a) or 4.1(b). The fact that L′

n ∈ L (c1, c2) un-
der these assumptions follows by a similar argument (omitted for the sake of
brevity), which finishes the proof of statement (C.41).

Next, we turn to proving the claim (C.42). Using the calculations (C.46)
and (C.47), we write

S2
n = ELn [((X − μn(Z))Tβ)2Σn(Z)] + Σ1/2

n (σ2Id + E2
n)Σ1/2

n . (C.49)

Note that

sup
n

‖ELn [((X − μn(Z))Tβ)2Σn(Z)]‖

≤ sup
n

‖β‖2
ELn [‖X − μn(Z)‖2

ELn [‖X − μn(Z)‖2|Z]]

= sup
n

‖β‖2
ELn [ELn [‖X − μn(Z)‖2|Z]2]

≤ sup
n

‖β‖2
ELn [ELn [‖X − μn(Z)‖4|Z]]

≤ sup
n

‖β‖2
ELn [‖X − μn(Z)‖4] < ∞,

(C.50)

the last step using the eighth moment bound (4.2). Furthermore,

sup
n

‖Σ1/2
n (σ2Id + E2

n)Σ1/2
n ‖ < ∞ (C.51)

because Σ1/2
n (σ2Id + E2

n)Σ1/2
n is a convergent sequence by assumption. Hence,

supn ‖S2
n‖ < ∞ and therefore

inf
n

λmin(S−1
n ) = inf

n
‖Sn‖−1 = inf

n
‖S2

n‖−1/2 =
(

sup
n

‖S2
n‖
)−1/2

> 0.

This completes the proof of claim (C.42).
Finally, we turn to proving claim (C.43). The claimed convergence of S′ 2

n

follows immediately from the derivation (C.47) and the assumption (4.4). To
show that S2

n has the same limit, note that the derivation (C.46) implies that

S2
n−S′ 2

n = ELn [((X−μn(Z))Tβn)2Σn(Z)] = 1
n
ELn [((X−μn(Z))Thn)2Σn(Z)].

The boundedness of the quantity ELn [((X −μn(Z))Thn)2Σn(Z)] follows by an
argument analogous to that in equation (C.50), which shows that

S2
n − S′ 2

n → 0.

This completes the proof of statement (C.43), so we are done.
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Appendix D: Proofs for Section 5

Proof of Theorem 5.1. Let us denote

[X, X̃]? ≡ ({Xj , X̃j}, X−j , X̃−j),

where {Xj , X̃j} represents the unordered pair. In other words, [X, X̃]? specifies
[X, X̃] up to a swap, hence the “?” notation:

[X, X̃]? = [x, x̃]? ⇐⇒ [X, X̃] ∈ {[x, x̃], [x, x̃]swap(j)}.

With this notation, we claim that

T opt
j ∈ arg max

Tj

P

[
Tj([X, X̃], Y )>Tj([X, X̃]swap(j), Y )

∣∣∣ [X, X̃]? =[x, x̃]?, Y =y
]

(D.1)
for every ([x, x̃], y) in the set

A ≡
{

([x, x̃], y) : T opt
j ([x, x̃], y) �= T opt

j ([x, x̃]swap(j), y)
}
. (D.2)

The conclusion (5.6) will follow because for any Tj ,

P[Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y )]

= P[Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y ), Xj �= X̃j ]

= P[Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y ), ([X, X̃], Y ) ∈ A]

= P

[
Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y )

∣∣∣ ([X, X̃], Y ) ∈ A
]

× P[([X, X̃], Y ) ∈ A]

= E

[
P

[
Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y )

∣∣∣ [X, X̃]?, Y
]∣∣∣ ([X, X̃], Y ) ∈ A

]
× P[([X, X̃], Y ) ∈ A]

≤ E

[
P

[
T opt
j ([X, X̃], Y ) > T opt

j ([X, X̃]swap(j), Y )
∣∣∣ [X, X̃]?, Y

]∣∣∣ ([X, X̃], Y ) ∈ A
]

× P[([X, X̃], Y ) ∈ A]

= P

[
T opt
j ([X, X̃], Y ) > T opt

j ([X, X̃]swap(j), Y )
]
.

The first step holds because Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y ) implies that
Xj �= X̃j , the second by the assumption (5.5), the third and fourth by proba-
bility manipulations, the fifth by the claimed conditional optimality (D.1), and
the sixth by the same logic as the first four steps.

To prove equation (D.1), fix ([x, x̃], y) ∈ A. Consider the simple hypothesis
testing problem

H0 : (Xj , X̃j) = (x̃j , xj) versus H1 : (Xj , X̃j) = (xj , x̃j), (D.3)
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where (Xj , X̃j) are endowed with their law conditional on

([X, X̃]?, Y ) = ([x, x̃]?, y).

We seek the most powerful test of level α = 1/2. Note that under the null
distribution, the knockoff exchangeability property makes both events equally
likely: P0[(Xj , X̃j) = (xj , x̃j)] = P0[(Xj , X̃j) = (x̃j , xj)] = 1/2. Therefore,
given any statistic Tj , the level 1/2 test of the simple hypothesis (D.3) rejects
when Tj([X, X̃], Y ) > Tj([X, X̃]swap(j), Y ). The knockoff statistic T opt defined
in equation (D.1) thus coincides with the most powerful test for the hypothe-
sis (D.3), which by Neyman-Pearson is given by

T opt
j ([x, x̃], y)

=
P

[
(Xj , X̃j) = (xj , x̃j)

∣∣∣ [X, X̃]? = [x, x̃]?, Y = y
]

P

[
(Xj , X̃j) = (x̃j , xj)

∣∣∣ [X, X̃]? = [x, x̃]?, Y = y
]

=
P

[
(Xj , X̃j) = (xj , x̃j)

∣∣∣ [X, X̃]? = [x, x̃]?
]
P

[
Y = y

∣∣∣[X, X̃] = [x, x̃]
]

P

[
(Xj , X̃j) = (x̃j , xj)

∣∣∣ [X, X̃]? = [x, x̃]?
]
P

[
Y = y

∣∣∣[X, X̃] = [x, x̃]swap(j)

]
=

P

[
Y = y

∣∣∣[X, X̃] = [x, x̃]
]

P

[
Y = y

∣∣∣[X, X̃] = [x, x̃]swap(j)

] = P [Y = y |Xj = xj , X−j = x−j ]
P [Y = y |Xj = x̃j , X−j = x−j ] .

The first step is given by Neyman-Pearson, the second by an application of
Bayes rule, the third by the conditional exchangeability of knockoffs (5.1), and
the last by the conditional independence of knockoffs (5.2). Finally, it is easy to
verify that

T opt
j ([X, X̃], Y ) > T opt

j ([X, X̃]swap(j), Y ) ⇐⇒
P[Y = y|Xj = xj , X−j = x−j ] > P[Y = y|Xj = x̃j , X−j = x−j ],

from which we conclude that the likelihood given in equation (5.4) is optimal
for the problem (A.1). This completes the proof.

Proof of Proposition 1. Suppose Xj |X−j , X̃ has a density with respect to the
Lebesgue measure. Since

P[T opt
j ([X, X̃], Y ) = T opt

j ([X, X̃]swap(j), Y ), X•,j �= X̃•,j ]

= E[P[T opt
j ([X, X̃], Y ) = T opt

j ([X, X̃]swap(j), Y ), X•,j �= X̃•,j | X•,−j , Y, X̃]],

it suffices to show that

P[T opt
j ([X, X̃], Y ) = T opt

j ([X, X̃]swap(j), Y ) | X•,−j , Y, X̃] = 0

for all X•,−j , Y, X̃j . Since L(Xj |X−j , X̃) has a density with respect to the
Lebesgue measure, so do L(Xj |Y ,X−j , X̃) and L(Xj |Y,X•,−j , X̃). Therefore,



6390 E. Katsevich and A. Ramdas

it suffices to show that the set

S(c;x•,−j , y) ≡ {x•,j : P(Y = y|X•,j = x•,j , X•,−j = x•,−j) = c} ⊆ R
n

has Lebesgue measure zero for all c, x•,−j , y. To see this, note that if x•,j ∈
S(c;x•,−j , y), then

c = P(Y = y|X•,j = x•,j , X•,−j = x•,−j)

=
n∏

i=1
exp(ηiyi − ψ(ηi))g0(yi)

= exp
(

n∑
i=1

(xijβj + f−j(xi,−j))yi − ψ(xijβj + f−j(xi,−j)) + log g0(yi)
)
.

It follows that

S(c;x•,−j , y) =
{
x•,j :

n∑
i=1

[xijβjyi − ψ(xijβj + f−j(xi,−j))]

= log c−
n∑

i=1
[f−j(xi,−j)yi + log g0(yi)]

}
.

(D.4)

Since ψ is strictly convex and βj �= 0, the left hand side is a strictly concave
function of x•,j , while the right hand side is a constant (with respect to x•,jβj).
Thus, S(c;x•,−j , y) is the level set of a strictly concave function, and hence has
measure zero. Indeed, the level set of a strictly convex function is the boundary
of the corresponding super-level set (which must be convex), and the boundary
of any convex set has measure zero (Lang, 1986). Thus, the conclusion (5.5)
thus follows.

Now, assume that gη has a density with respect to Lebesgue measure. Since

P[T opt
j ([X, X̃], Y ) = T opt

j ([X, X̃]swap(j), Y ), X•,j �= X̃•,j ]

= E[P[T opt
j ([X, X̃], Y ) = T opt

j ([X, X̃]swap(j), Y ), X•,j �= X̃•,j | X, X̃]],

it suffices to show that

P[P (Y |X•,j , X•,−j) = P (Y |X̃•,j , X•,−j) | X, X̃] = 0 (D.5)

for all X•,j �= X̃•,j . From expression (D.4), we see that P (Y |X•,j , X•,−j) =
P (Y |X̃•,j , X•,−j) if and only if

βj(X•,j − X̃•,j)T︸ ︷︷ ︸
slope

Y − ψ(βjXi,j + f−j(Xi,−j)) + ψ(βjX̃i,j + f−j(Xi,−j))︸ ︷︷ ︸
intercept

= 0.

Since βj �= 0 by assumption, the slope βj(X•,j − X̃•,j) �= 0 and therefore, the
set {Y : P (Y |X•,j , X•,−j) = P (Y |X̃•,j , X•,−j)} is a hyperplane (and hence has
Lebesgue measure zero). Together with the fact that Y has a density with respect
to Lebesgue measure, this implies the relation (D.5), so the conclusion (5.5)
follows.
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