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Abstract: With the deluge of digitized information in the Big Data era,
massive datasets are becoming increasingly available for learning predictive
models. However, in many practical situations, the poor control of the
data acquisition processes may naturally jeopardize the outputs of machine
learning algorithms, and selection bias issues are now the subject of much
attention in the literature. The present article investigates how to extend
Empirical Risk Minimization, the principal paradigm in statistical learning,
when training observations are generated from biased models, i.e., from
distributions that are different from that in the test/prediction stage, and
absolutely continuous with respect to the latter. Precisely, we show how
to build a “nearly debiased” training statistical population from biased
samples and the related biasing functions, following in the footsteps of
the approach originally proposed in [46]. Furthermore, we study from a
nonasymptotic perspective the performance of minimizers of an empirical
version of the risk computed from the statistical population thus created.
Remarkably, the learning rate achieved by this procedure is of the same
order as that attained in absence of selection bias. Beyond the theoretical
guarantees, we also present experimental results supporting the relevance
of the algorithmic approach promoted in this paper.
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1. Introduction

In the standard setting of binary classification, the flagship problem in statistical
learning, Z = (X,Y ) is a random pair defined on a probability space with
unknown probability distribution P . The random vector X, valued in X ⊂ R

d,
models some information supposedly useful to predict the random binary label
Y , taking its values in {−1,+1}. The objective is to build a Borelian predictive
function, i.e., a classifier, g : X → {−1,+1} that minimizes the error probability,
i.e., the risk, of the decision: LP (g) = P{Y �= g(X)}. It is well-known that the
optimal solution is given by the Bayes classifier g∗(x) = 2 I{η(x) ≥ 1/2} − 1,
where η(X) = P{Y = 1 | X} denotes the posterior probability, with minimum
risk L∗

P = E[min{η(X), 1 − η(X)}]. In practice however, P (and consequently
η) is usually unknown, and one generally resorts to a training dataset Dn =
{(X1, Y1), . . . , (Xn, Yn)}, composed of n ≥ 1 independent copies of (X,Y ).
Empirical Risk Minimization (ERM in short, see e.g., [12]) consists in solving
the minimization problem ming∈G L̂n(g), where L̂n(g) is a statistical estimator
of the risk LP (g), generally obtained by replacing P in LP with the empirical
distribution of the (Xi, Yi)’s, and G is a class of predictive rules hopefully rich
enough to contain an accurate approximant of g∗. In this case, the empirical risk
is the statistical average L̂n(g) = (1/n)

∑n
i=1 I{Yi �= g(Xi)}, denoting by I{E}

the indicator function of any event E . Under various assumptions controlling the
complexity of the class G over which the learning task is achieved (e.g., finite
VC dimension, metric entropy, or Rademacher complexity), the performance
of empirical risk minimizers (i.e., solutions to the ERM problem), measured
through the excess of risk g �→ LP (g)−L∗

P , can be classically studied by means
of concentration inequalities for empirical processes, see e.g., [5]. Although very
informative in i.i.d. settings, these generalization results nonetheless crucially
rely upon the assumption that training observations are sampled from the true
test distribution, which is often violated in practice. Motivated by the poor
control of the data acquisition process in many applications (see e.g., [44]), the
purpose of the present article is to investigate ERM in the presence of sample
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selection bias, that is to say in the situation where the samples at disposal for
learning a predictive rule g are not distributed as P , which can be viewed as a
very specific case of Transfer Learning, see [3]. As recently highlighted by [4],
[51] or [6] among others, representativeness issues do not vanish simply under
the effect of the size of the training set. Hence, ignoring selection bias issues
may dramatically jeopardize the accuracy of the outputs of machine learning
algorithms. The method we propose stands out from previous approaches for two
main reasons: (1) it encompasses a wide range of biasing scenarios, (2) it applies
to biased training distributions that may not dominate the test distribution.

Selection bias can be due to a wide variety of causes (e.g., the use of a survey
scheme to collect observations, censorship, truncation, see for instance [20] or
[47]), and the study of its impact on inference methods, as well as techniques
to remedy it, have a very long history in statistics. Depending on the nature of
the mechanism causing the sample selection bias, and on that of the statistical
information available to the learner, particular cases have been considered in the
machine learning literature, for which specific approaches have been developed.
For instance, the case where some errors occur among the labels of the training
data is studied in [24], while in [29] ERM is extended to the framework of survey
training data (when inclusion probabilities are known). In [41] and [2], authors
consider statistical learning of regression models in the context of right censored
training observations. Recently, a very special case of sample selection bias,
referred to as covariate shift, has been the subject of a good deal of attention
(though it had been already considered by [25] in a simplified version). In this
case, addressing the sample selection bias issue is made much easier by the
hypothesis stipulating that, in supervised problems, only the marginal input
distribution may possibly change, the conditional distribution of the output Y
given the input observation X being the same in the learning and predictive
stages. One may refer to [36], [39] and [22], or to the monographs [32] and [38].
In contrast to the aforementioned settings, the procedure exposed here allows
for much more complex biasing mechanisms. Specifically, survey schemes and
censorship scenarios can be seen as particular instances of our framework, see
Examples 2 and 3. Moreover, bias may apply to covariates, labels, or both at the
same time without altering the guarantees. We emphasize that despite focus has
been put on supervised learning for the sake of clarity, the presented debiasing
approach remains valid for unsupervised tasks, as long as they build upon ERM,
see Examples 4 and 5.

Methods dedicated to correct sample bias usually boil down to reweighting
the training observations with appropriate weights, based on the Importance
Sampling approach, or according to the Inverse Probability Weighting technique
(IPW in abbreviated form, see e.g., [13] or [49] in the context of linear regression
models), rather than using uniform weights. For instance, these weights are
the inverses of the first order inclusion probabilities in the case where data
are acquired by means of a survey plan, see [9] and [29], or the inverses of
estimates of the probability of not being censored when data suffer from random
censorship, see [2] and the references therein. Side information about the cause
of the selection may also be used to derive explicit forms for the appropriate
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weights, see e.g., [50], [34] in a semi-supervised framework, [14] in the context
of maximum entropy density estimation, or [23] for the adaptation of the SVM
algorithm to certain selection bias situations. More generally, if the Radon-
Nikodym derivative of the test distribution P w.r.t. the training distribution Q
(supposedly dominating P ) is known, one may simply reweight each training
observation z by (dP/dQ)(z) in order to get an unbiased estimate of the true
risk. However, this method may be inapplicable, as soon as P is not absolutely
continuous w.r.t. Q. To bypass this limitation, several techniques have been
developed, based for instance on the discrepancy distance between P and Q,
see [26] and references therein, or on their Rényi divergence, see e.g., [11]. We
point out that statistical learning based on biased samples can be viewed as
a very specific case of transfer learning, see [37], but also e.g., [28] and [48].
Several recent works in this area also provide theoretical analyses for particular
machine learning tasks without requiring the absolute continuity condition, at
the cost of additional restrictive assumptions however. Hence, a no-free-lunch
theorem for multitask learning is established in [19], as well as a method to
aggregate the datasets if the task distributions have small discrepancies with
respect to the target distribution, see the transfer exponent condition therein.
In [8, 40] the authors assume that the tasks share an (approximately) common
data representation, while [7] analyzes the specific posterior drift model, i.e., it
is assumed that the distributions of the covariates remain the same. Finally, [33]
studies transfer learning for binary classification under several assumptions on
the transfer mechanism, the marginal distributions and their smoothness. We
highlight that none of these assumptions is made in the present paper.

The perspective embraced in the present paper is quite different. We consider
multiple biased training distributions, none of them being assumed to dominate
P . In particular, the variance of the Radon-Nikodym derivatives (dP/dQ)(Z)
are not supposed to be bounded, in contrast to [11]. Instead, we leverage training
samples drawn from these biased distributions and show how to combine them
in order to construct an unbiased estimate of the target distribution P , under
mild identifiability hypotheses. The debiasing weights are defined as solutions
to a nontrivial system of equations, and do not enjoy any simple closed-form
expressions in general, in contrast to those used in the context of survey schemes
or censorship models. Precisely, we focus on the case where statistical learning
is based on training data sampled from biased sampling models, as originally
introduced in [46] in the context of asymptotic nonparametric estimation of
cumulative distribution functions, see also [16]. This very general selection bias
framework accounts for many situations encountered in practice, covering for
instance the (far from uncommon) situation where the samples available to learn
a binary classifier g(x) are sampled from conditional distributions of (X,Y )
given that X lies in specific subsets of the input space X (assuming that the
union of these subsets is equal to X’s support). In this setting, we extend ERM
to the case of biased training data with nonasymptotic guarantees about their
generalization ability. We propose to build an unbiased empirical estimator of
the test distribution P by solving a generally nontrivial system of equations,
which we use to compute a “nearly unbiased” risk estimate. We then establish
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a tail probability bound for the maximal deviations between the risk functional
and the estimate thus constructed. Based on this result, we finally prove that
minimizers of the “debiased empirical risk” achieve learning rate bounds that
are of the same order as those attained by empirical risk minimizers in absence
of any bias mechanism. If our approach builds on the distribution estimation
procedure for biased sampling models introduced in [16], note that the latter
work is restricted to the asymptotic study of cumulative distribution functions.
In contrast, we provide the first —to the best of our knowledge— nonasymptotic
guarantees for this approach, in a much more general framework. This allows
us to devise an extension of the ERM paradigm to biased training datasets
with provable finite-sample guarantees, as required in the statistical learning
literature. For the sake of completeness, the notion of biased sampling model is
recalled at length in Section 2.1 and the slightly stronger assumptions needed to
carry out a nonasymptotic analysis are detailed and discussed in Section 2.2. We
also present results from various numerical experiments, based on synthetic and
real data, that provide strong empirical evidence of the relevance of the approach
we propose. If the fact that knowledge of the biasing functions is required can be
seen at first glance as a limitation of the framework developed, one should have
in mind that absolutely no learning strategy with statistical guarantees can be
designed in absence of any understanding of the biasing mechanism at work.
Moreover, it is actually far from uncommon in practice that the latter is known
(e.g., one may know the types of images that are more easily collected, or the
profiles of individuals who most likely answer a questionnaire). Yet, the situation
where the biasing mechanism is only approximately known is of considerable
interest in practice, and investigating to which extent the statistical guarantees
established in this paper are preserved will be the subject of future research.

The rest of the article is structured as follows. In Section 2, basics on biased
sampling models are briefly recalled, and the framework for statistical learning
based on biased training samples is described at length, as well as the algorithmic
approach extending the ERM methodology to this setting. In Section 3, the
main theoretical results of this paper, guaranteeing the generalization capacity
of ERM under selection bias, are stated. Illustrative experiments are displayed
in Section 4, while technical details are deferred to the Appendix section.

2. Background and preliminaries

We first recall in Section 2.1 the biased sampling models framework developed
in [46] and [16] for asymptotic estimation of cumulative distribution functions.
Next, we present in Section 2.2 our approach to generalize ERM to the case
where training data samples are drawn from such models. Here and throughout,
we denote by δa the Dirac mass at any point a, by ‖U‖sup the essential supremum
of any real-valued random variable (r.v.) U , and by Supp(P ) the support of
any probability distribution P . Vectors are denoted by bold characters, e.g.,
v ∈ R

K = (v1, . . . , vK) for K ∈ N. The Euclidean and sup norms are denoted
by ‖ · ‖2 and ‖ · ‖∞, such that ‖v‖2

2 =
∑K

k=1 v
2
k, and ‖v‖∞ = maxk≤K |vk|.
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2.1. Biased sampling models – The statistical framework

Let Z be a random vector, taking its values in Z ⊂ R
q, where q ∈ N, with

unknown probability distribution P . If independent copies Z1, . . . , Zn of Z were
at disposal, a natural estimator of P would be the raw empirical distribution
(1/n)

∑n
i=1 δZi . In biased sampling models, as defined in [46], one cannot rely

on such observations. Instead, statistical inference must be based on K ≥ 1
independent biased i.i.d. samples Dk = {Zk,1, . . . , Zk,nk

}, of size nk ≥ 1.
We denote by n =

∑K
k=1 nk the size of the pooled sample, and by λ̂k = nk/n

the proportion of each sample among the total population. For k ≤ K, the
distribution Pk of the Zk,i is assumed to be absolutely continuous w.r.t. the test
distribution P , and related to it through a known nonnegative biasing function
ωk such that

∀k ≤ K, ∀z ∈ Z,
dPk

dP
(z) = ωk(z)

Ωk
, (2.1)

where Ωk = EP [ωk(Z)] =
∫
ωk(z)dP (z). We emphasize that, just like P , the

Ωk’s are unknown. Note that in the case of interest where ωk(Z) = I{Z ∈ Zk}
for Zk ⊂ Z, see Example 2 below for instance, it is much easier to know —or
guess— the biasing functions ωk (or equivalently the subsets Zk in which the
observations lie), rather than having access to the Ωk’s. Estimating the Ωk’s
is incidentally at the core of our debiasing procedure, see e.g., Proposition 3.
We further emphasize that, unlike the Ωk’s, knowing the biasing functions ωk

does not provide any information about the target distribution P . In particular,
knowing a stratum Zk which the observations belong to does not imply in any
way that one has access to the conditional distribution Pk = P (· | Z ∈ Zk).

The statistical framework defined by Equations (2.1) has been considered
in [16] for nonparametric estimation of a univariate cumulative distribution
function (cdf). Under mild assumptions, it is shown therein that a consistent
and asymptotically normal estimator of P can be constructed from the biased
samples Dk and the knowledge of the biasing functions ωk, for k ≤ K. The
first fundamental assumption, referred to as Assumption S in [16], guarantees
identifiability. It can be formulated as follows.

Assumption 1. The union of the supports of the biased distributions Pk is
equal to the support of distribution P :

K⋃
k=1

{
z ∈ Z : ωk(z) > 0

}
= Supp(P ) .

Of course, we have by definition
⋃K

k=1 Supp(Pk) ⊂ Supp(P ). If this inclusion
is strict, some parts of Supp(P ) shall never be covered by observations sampled
from the Pk. As may be the case, one may only hope to estimate the restriction
of P to

⋃K
k=1 Supp(Pk), and estimation on the entire support is impossible in

absence of prior knowledge. From now on, Assumption 1 is thus supposed to
be satisfied. One should pay attention to the fact that Assumption 1 does not
require that the support of a single biased distribution Pk entirely covers that of
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the target distribution P . In particular, each likelihood ratio (2.1) may vanish
on a certain measurable subset weighted by P here, i.e., for all k ≤ K, one may
have: P{ωk(Z) = 0} > 0. As discussed in the introduction, this significantly
differs from the biased learning framework developed in other works, see [1]
and the references therein, where the biased distributions are generally assumed
to dominate the test distribution as in the usual Importance Sampling setting.
Note also that Assumption 1 prevents biasing functions to vanish all at the same
time. This condition is key to invert the likelihood ratio (2.2) and be able to
recover the distribution P statistically based on samples drawn from the Pk’s.
When K = 1, this means ω1(Z) > 0 and IPW debiasing is then immediate of
course: one simply weights each observation by means of 1/ω1. In this work,
focus is naturally on situations where K ≥ 2. As shall be seen, the difficulty
caused by the possibly vanishing biasing functions can be bypassed by combining
appropriately the biased datasets, so as to compute nearly debiasing weights
through the resolution of a system of equations, see (2.6). The generic setting
described by Assumption 1 encompasses many estimation/learning problems,
ranging from stratified sampling to censorship and clustering, see Examples 2, 3,
and 4.

The second assumption required is standard in a multi-sample setting. It
stipulates that the sample sizes nk all tend to infinity as n → ∞, in a way such
that the fractions λ̂k converge towards fixed values λk > 0.

Assumption 2. There exist (λ1, . . . , λK) ∈ (0, 1)K satisfying
∑K

k=1 λk = 1
such that for all k ≤ K it holds λ̂k → λk as n → +∞.

Ignoring the bias selection issue, one may compute the empirical distribution
based on the pooled sample

P̂n = 1
n

K∑
k=1

nk∑
i=1

δZk,i
=

K∑
k=1

λ̂kP̂k ,

where P̂k = (1/nk)
∑

i≤nk
δZk,i

is the raw empirical distribution based on the
(biased) sample Dk, for k ≤ K. This discrete random measure is a natural
estimator of the linear convex combination of the Pk given by P̄ =

∑
k λkPk.

Since P̄ is different from P in general, it is then easy to see why minimizing
the raw empirical risk over the pooled sample may lead to decision rules that
generalize poorly. However, observe that P̄ is absolutely continuous w.r.t. P ,
with likelihood ratio

dP̄

dP
(z) =

K∑
k=1

λkωk(z)
Ωk

.

Under Assumption 1, the latter is strictly positive on the whole support of Z,
and we have:

dP (z) =
(

K∑
k=1

λkωk(z)
Ωk

)−1

dP̄ (z) . (2.2)
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Hence, if estimates Ω̂k of the unknown expectations EP [ωk(Z)] were at our
disposal, one could immediately form a plug-in estimator of P by replacing P̄ ,
the Ωk and the λk in Equation (2.2) with their statistical versions, namely P̂n,
the Ω̂k and the λ̂k

dP̃n(z) =
(

K∑
k=1

λ̂kωk(z)
Ω̂k

)−1

dP̂n(z) . (2.3)

In order to estimate the vector Ω = (Ω1, . . . , ΩK), note that Equation (2.2)
immediately implies that Ω is a solution (in W ∈ R

K) to the system of equations

1 =
(
Γ1(W ), . . . , ΓK(W )

)
, (2.4)

where 1 means the K-dimensional vector with all components equal to 1, and
for any k ≤ K, and all W = (W1, . . . , WK) ∈ (R+)K , the notation

Γk(W ) = 1
Wk

∫
ωk(z)∑K

l=1
λlωl(z)

Wl

dP̄ (z) . (2.5)

A natural way to approximately recover Ω thus consists in solving a statistical
version of Equation (2.4), namely

1 =
(
Γ̂1(W ), . . . , Γ̂K(W )

)
, (2.6)

where the Γ̂l(W ) are built by replacing λl and P̄ in Equation (2.5) with λ̂l

and P̂n respectively. It is important to notice that the Γ̂k (just like the Γk)
are homogeneous of degree 0. Hence, it is only possible to solve Systems (2.4)
and (2.6) up to a multiplicative factor. Hopefully, Ω can be recovered from any
solution W ∗ to System (2.4). Indeed, for all k ≤ K it holds:

Ωk = W ∗
k∫ (∑K

l=1
λlωl(z)
W∗

l

)−1
dP̄ (z)

, (2.7)

refer to Appendix A for technical details. Similarly, for any solution Ŵn to
System (2.6) and any k ≤ K, we define:

Ω̂n,k = Ŵn,k∫ (∑K
l=1

λ̂lωl(z)
Ŵn,l

)−1

dP̂n(z)
. (2.8)

Plugging estimators (2.8) into Equation (2.3), the debiased estimate P̃n is

P̃n =
K∑

k=1

nk∑
i=1

⎛⎜⎜⎜⎝
(∑K

l=1
λ̂lωl(Zk,i)

Ŵn,l

)−1

∑K
m=1

∑nm

j=1

(∑K
l′=1

λ̂l′ωl′ (Zm,j)
Ŵn,l′

)−1

⎞⎟⎟⎟⎠ δZk,i
. (2.9)
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The next assumption now aims at ensuring that the solution to System (2.6) is
asymptotically unique. The mapping from distribution P to the family of biased
distributions (Pk)k≤K , is then one-to-one. It is expressed as a graph connectivity
hypothesis, cf. Assumption C in [16].

Assumption 3. Let G be the (undirected) graph with vertices in {1, . . . ,K},
and edges between vertices k and l (k �= l) if and only if∫

I{ωk(z) > 0} · I{ωl(z) > 0}dP (z) > 0.

The graph G is connected.

In the one-dimensional case (q = 1), and under Assumptions 1 to 3, the limit
behavior (i.e., consistency, asymptotic normality) of the univariate cdf estimator
of Equation (2.9), namely z ∈ R �→ P̃n(]−∞, z]), has been investigated in [16].
It is the purpose of the subsequent analysis to show that this approach can be
successfully applied to statistical learning via ERM in the presence of selection
bias, by deriving nonasymptotic guarantees under slightly stronger assumptions.
Incidentally, the arguments which this analysis relies upon permit to establish
an exponential tail bound for the cdf estimator mentioned above, extending
the Dvoretzky-Kiefer-Wolfowitz inequality, and completing the results of [16],
see Theorem 2. In the next subsection, the notion of biased sampling model is
used in order to develop a framework for statistical learning based on biased
training examples. Before showing rigorously in the next subsection how the
ideas previously sketched permit to extend the ERM principle to this framework,
a few remarks are in order.

Remark 1 (Covariate shift). Let Z = (X,Y ) be a random pair taking
its values in X × Y with distribution P and defining a supervised predictive
problem, where X models some input information, useful to predict the output
r.v. Y . In the very specific so-called covariate shift situation, for each sampling
distribution Pk involved in the biasing model, the conditional distribution of Y
given X is the same and is thus independent from k. However, the X-marginals
are not necessarily the same and can be possibly supported on different subsets
Xk ⊂ X . Note that, in the dedicated covariate shift literature, Assumption 3 is
not stipulated in general, insofar as solving the predictive problem statistically
only requires to recover the conditional distribution. However, this assumption
is of course necessary to emulate the whole distribution P and accomplish other
tasks, unsupervised for instance, even in such a specific context, see Example 4.

Remark 2 (Truncation, missing values). We point out that, because of
Assumption 3, the biased sampling models analyzed here do not cover the case
of truncated observations, nor certain settings of missing variables. The latter
may instead be treated by different methods, such as (multiple) imputation
techniques, see e.g., [35].

We now exhibit a simple example supporting the need for a general approach
and showing in particular that solving System (2.6) cannot be avoided in general.
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Example 1 (Multivariate length biased samples). The bias sampling
model where the probability of sampling an observation is proportional to its
length is referred to as length bias. Its use is motivated by various applications,
such as estimating the distribution of the number of children with a rare anomaly
in families with proneness to engender such children [18], or correcting visibility
bias during wildlife population estimation from aerial data [10] for instance.
Refer to e.g., [30] for an overview of its applications. In the univariate case, it
corresponds to ω(z) = z, with z ∈ R+. When the learner can access two samples
(one unbiased, one length biased), an approach to recover the nonparametric
maximum likelihood estimator of P is proposed in [45]. Precisely, let D1 =
{Z1,1, . . . , Z1,n1} be an i.i.d. sample drawn from P , and D2 = {Z2,1, . . . , Z2,n2}
be an i.i.d. sample drawn from P2, the length biased version of P such that
dP2(z) = zdP (z)/

∫
R+

zdP (z). Let Z1 < . . . < Zn be the observations of the
pooled sample D1 ∪ D2 sorted in increasing order (we assume that ties cannot
occur for simplicity), and let ξi = I{Zi ∈ D1} indicate whether Zi comes from
D1 or not for i = 1, . . . , n. It is immediate to see that the cdf P that maximizes

n∏
i=1

(
dP (Zi)

)ξi ( Zi dP (Zi)∫
R+

z dP (z)

)1−ξi

(2.10)

has positive jumps only at the Zi’s, so that estimating the jumps dP (Zi) in (2.10)
is sufficient. Simple computations show that

dP (Zi) = μ̂

n2Zi + n1μ̂
, where μ̂ satisfies

n∑
i=1

Zi

n2Zi + n1μ̂
= 1 . (2.11)

Hence, maximizing (2.10) requires to solve the equation on the right hand side
of (2.11). The approach can be straightforwardly extended to the multivariate
case. Assume that the random variables observed are now valued in R

K
+ and

consider K + 1 datasets such that D0 is composed of i.i.d. realizations drawn
from P and Dk is drawn from Pk such that dPk(z) = z(k)dP (z)/

∫
R+ z(k)dP (z),

where z(k) denotes the k-th coordinate of z = (z(1), . . . , z(K)). In other words,
all datasets (except D0) are length biased according to different dimensions.
Equipped with the notations {Z1, . . . , Zn} = D0∪. . .∪DK and ξi,k = I{Zi ∈ Dk}
for i = 1, . . . , n and k = 1, . . . , K, the quantity that must be maximized writes

n∏
i=1

(
dP (Zi)

)ξi,0 K∏
k=1

(
Z

(k)
i dP (Zi)∫

R+
z(k) dP (z)

)ξi,k

.

As in the scalar case, we have: dP (Zi) = 1/
(
n0 +

∑K
k=1 nkZ

(k)
i /μ̂k

)
, where the

μ̂k’s satisfy

μ̂l =
n∑

i=1

Z
(l)
i

n0 +
∑K

k=1
nkZ

(k)
i

μ̂k

, 1 ≤ l ≤ K.
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Thus, we need to solve a system of K equations in order to recover the μ̂k’s,
which is actually a specific case of (2.6). Hence, except in certain simplistic
situations, see e.g., Appendix B, solving System (2.6) cannot be avoided to debias
biased samples in general. Although the approach based on bias sampling models
encompasses IPW, we highlight that it is much more general than the latter.

2.2. Learning from biased samples – Extending the ERM approach

Recall that Z is a random vector valued in Z ⊂ R
q, q ≥ 1, with probability

distribution P . Let Θ be a decision space and consider some loss function ψ :
R

q×Θ → R+, that is P -integrable for any decision rule θ ∈ Θ. The goal pursued
here is to solve the risk minimization problem

min
θ∈Θ

LP (θ) = EP [ψ(Z, θ)] (2.12)

where LP is called the risk function. As recalled in introduction, if independent
copies Z1, . . . , Zn of Z are available, the unknown risk LP is classically replaced
with L̂n = L

P̂n
, where P̂n = (1/n)

∑n
i=1 δZi is the empirical distribution. Here,

the training data is composed of K biased samples Dk, as defined in Section 2.1.
Note that it is a strict generalization of the standard ERM setting, insofar as
the latter can be recovered as the special case K = 1 and ω1 ≡ 1. This general
framework encompasses a wide variety of situations encountered in practice, as
illustrated by the following examples.

Example 2 (Binary classification under stratified sampling). We
place ourselves in the context of binary classification, i.e., we have Z = (X,Y ),
Z = X × {−1, +1}, q = d + 1, Θ = G, and ψ((X,Y ), g) = I{Y �= g(X)}.
Consider K ≥ 1 subsets X1, . . . , XK of the input space X , such that μ(Xk) > 0
for all k ≤ K, μ denoting X’s marginal distribution. The case where only la-
beled examples with input observations in Xk can be collected to form sample
Dk corresponds to the situation where ωk(Z) = I{X ∈ Xk}. In this case, the Pk

are the conditional distributions of Y given that X ∈ Xk.

In Example 2, selection bias is due to stratified sampling schemes, where
observations are sampled in strata of interest (the Xk’s namely). Note that in
this case the Xk’s, and therefore the ωk’s, are controlled and known by the
learner. This setting also covers many practical situations, where the training
dataset is constructed by the aggregation of different sources, and naturally
applies to other learning tasks. In such scenarios, having access to the ωk is
natural, as the learner may know the conditions in which the data have been
collected, e.g., the part of the world in which the photos have been taken, or
the profile of a user answering the questionary.

Example 3 (Regression under right censorship). Let the distribution-
free regression framework where T is a bounded random duration (i.e., a non-
negative r.v. such that ‖T‖sup < +∞), and X is a random vector valued in
X ⊂ R

d, defined on the same probability space, and supposedly useful to predict
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T . The goal is to learn a regression function h : X → R in a class H of bounded
functions with minimum quadratic risk. This corresponds to Z = (X,T ), Z =
X × R+, q = d + 1, Θ = H, and ψ((X,T ), h) = (T − h(X))2. Let K ≥ 1, and
0 < τ1 < . . . < τK−1 < τK = ‖T‖sup. Consider the case where, the samples Dk

are composed of censored observations with a deterministic right censorship, i.e.,
of copies of (X,min{T, τk}). This is equivalent to the case ωk(Z) = I{T ≤ τk},
and the Pk are the conditional distributions of (X,T ) given that T ≤ τk.

Example 3 typically arises in longitudinal experiments (e.g., medical trials,
customer behavior evaluations) that must be stopped at some point (by lack
of means for instance). Instead of discarding every observation for which the
event of interest has not occurred yet, one may register the time at which the
experiment has been stopped (the τk) and leverage this information to debias
the population.

Example 4 (Clustering). Consider an unsupervised variant of Example 2,
where Z = X ∈ R

q has distribution P and ωk(X) = I{X ∈ Xk} where Xk ⊂ X
for k = 1, . . . , K is the observable strata of the population of interest. A popular
approach to clustering consists in assuming that distribution P is an unknown
mixture of K ≥ 2 Gaussian distributions with means μ1, . . . , μK in R

q and
same covariance matrix Σ, see e.g. [15, Chapter 14]: P =

∑K
m=1 πm N (μm, Σ),

with (π1, . . . , πK) ∈ [0, 1]K s.t.
∑K

m=1 πm = 1. Denoting by θ the parameter
encoding the Gaussian mixture model and pθ(x) its likelihood, the Expectation-
Maximization algorithm (EM algorithm, see e.g., [15, Section 8.5]) computes
the optimal θ by maximizing the (log-)likelihood over the observed datapoints.
The latter can be seen as minimizing an empirical version of problem (2.12)
with ψ(X, θ) = − log pθ(X), and is therefore another particular case in which
our debiasing approach applies.

As illustrated by Examples 2, 3, and 4, the framework developed in this paper
applies to a wide variety of statistical learning problems, indifferently supervised
or unsupervised, sampling bias being determined by the covariates and/or the
output. We also point out that the vast majority of statistical techniques for
correcting sampling/selection bias relies on some Inverse Probability Weighting
approaches, e.g., Beran, Kaplan-Meier methods, Horvitz-Thompson techniques,
propensity score matching. The sole difference in these variations is the form of
the biasing functions and their arguments. The main advantage of the general
framework developed here consists in encompassing all these situations, diverse
in appearance only. It allows to derive generalization guarantees for any risk
minimization problem in the presence of selection bias. The price to pay for our
unifying framework is that the debiasing weights cannot be computed trivially
but requires the solving of System (2.6). We recall that Example 1 shows that
this step is unavoidable in general. In this context, we prove in Section 3 that,
under mild assumptions, minimizing L

P̃n
, where P̃n is defined in (2.9), allows

to attain learning rates that are of the same order, OP(1/
√
n) namely, as those

achieved in absence of any selection bias, i.e., when ωk ≡ 1 for all k ≤ K. The
minimization of the functional L

P̃n
boils down to a weighted ERM procedure,
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• Input. Samples Dk = {Zk,i, i ≤ nk}, coefficients λ̂k = nk/n, and
biasing functions ωk for k ≤ K.

• Debiasing the raw empirical distribution. Form the raw empirical
distribution based on the pooled sample

P̂n = 1
n

K∑
k=1

nk∑
i=1

δZk,i ,

(i) for k ≤ K, compute the functions given by: ∀W ∈ (R+)K ,

Γ̂k(W ) = 1
Wk

∫
ωk(z)∑K

l=1
λ̂lωl(z)

Wl

dP̂n(z);

(ii) solve (2.6), i.e., find Ŵn = (Ŵn,1, . . . , Ŵn,K) ∈ (R+)K satisfying

max
1≤k≤K

Ŵn,k/λ̂k = 1; (2.13)

(iii) for k ≤ K and i ≤ nk, compute the weights

πk,i =

(∑K

l=1(λ̂l/Ŵn,l)ωl(Zk,i)
)−1

∑K

m=1

∑nm

j=1

(∑K

l′=1(λ̂l′/Ŵn,l′)ωl′(Zm,j)
)−1 ,

so as to form the “debiased” distribution estimator given by

P̃n =
K∑

k=1

nk∑
i=1

πk,iδZk,i .

• ERM. Solve the ERM problem minθ∈Θ L̃n(θ), to produce the solution
θ̃n, with L̃n(θ) given by

L̃n(θ) def= L
P̃n

(θ) =
K∑

k=1

nk∑
i=1

πk,iψ(Zk,i, θ). (2.14)

Fig 1: ERM based on biased training samples

with debiasing weights depending on the solution to System (2.6). The learning
procedure can thus be implemented in three steps as summarized in Figure 1.

1. First, we use the raw empirical distribution P̂n to form System (2.6) by
computing the estimates Γ̂k of the Γk;

2. Next, we solve System (2.6) to build the “debiased” estimate P̃n of P ;
3. Finally, we obtain the decision rule by solving the statistical version of

Problem (2.12), in which P is replaced with P̃n.
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Discussing how to perform in practice the minimization of the nearly debiased
empirical risk estimate of Equation (2.14), or of a smooth/penalized version of
it, is beyond the scope of the present paper. However, observe that most machine
learning libraries offer the option to reweight the training observations involved
in the learning stage in a simple plug-in fashion (e.g., the sample_weight option
for scikit-learn [31]). We also highlight the generality of the above approach,
insofar as it may be straightforwardly combined with any ERM-like learning
algorithm, for a wide range of biasing scenarios. We point out however that
this generality goes along with the solving of System (2.6). This step cannot be
avoided in general, and yields nontrivial solutions, except for simplistic cases
such as that discussed in Appendix B. Finally, note that the computational cost
induced by the debiasing procedure is low, the unique difference with standard
methods lying in the computation of the weights involved in the risk functional,
which can be tackled efficiently by means of a Gradient Descent strategy. Indeed,
as can be seen in the proof of Proposition 1, solving System (2.4) is equivalent to
minimize the strongly convex function D̄, defined for all u = (u1, . . . , uK) ∈ R

K

by

D̄(u) =
∫

log
[

K∑
l=1

eulωl(z)
]
dP̄ (z) −

K∑
l=1

λlul ,

and with Hessian matrix D̄′′ ∈ R
K×K such that

[
D̄′′(u)

]
k,k′ =

∫ ⎡⎢⎣ eukωk(z)δkk′∑K
l=1 e

ulωl(z)
− eukωk(z)euk′ωk′(z)(∑K

l=1 e
ulωl(z)

)2

⎤⎥⎦ dP̄ (z) . (2.15)

By characterizing the curvature of D̄, the eigenvalues of D̄′′ thus influence the
convergence of the solution to System (2.4). Bounding away from 0 the second
smallest eigenvalue of D̄′′ is actually required in the subsequent nonasymptotic
analysis, see Assumption 7 for more details. We conclude this section with two
remarks, on the normalization (2.13) and about the possibility to use a sampling
approach instead of the reweighting, and a numerical illustration of the benefits
of the approach presented here.

Remark 3. (On normalization (2.13)) As highlighted in Section 2.1, recall
that System (2.6) is homogeneous of degree 0. Hence, normalization (2.13) is
just a way to select one Ŵn among all possible solutions. In [16] for instance,
the normalization Ŵn,K = 1 is used instead. Normalization (2.13) happens to
be more suited to our nonasymptotic analysis. In particular, it ensures that Ŵn

is unique and bounded away from 0 with high probability, see Proposition 1.

Remark 4. (Plug-in vs Sampling) From a practical perspective, modifying
the objective function using the weights computed at step (iii) in the above
scheme is not the only option. An alternative to learn the predictive rule would
be to sample observations from the distribution (2.9), given the original data.
This would generate a new (unique and nearly debiased) dataset, from which
any ERM-based learning algorithm can be run in a standard fashion.
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Fig 2: (Clustering by vanilla and debiased EM algorithms). In absence
of sampling bias (left), the vanilla EM algorithm finds the right centroids. When
the data are biased, over-represented towards the center region (right), the cen-
troids obtained through the vanilla EM algorithm are also attracted towards
the center region. In contrast, the debiased EM algorithm produces nearly the
same centroids than those obtained from the unbiased dataset.

Example 5. (Clustering, bis) Let distribution P be a mixture of two 2-d
Gaussian distributions, centered at (X1, X2) = (−1.5,−2) and (X1, X2) =
(1.5, 2) respectively. On the left of Figure 2, an unbiased dataset is displayed,
on which the vanilla EM algorithm finds the centroids accurately. The second
dataset (on the right) is actually composed of 3 samples: that on the left, for
which ω1(X) = I{X1 ≤ −0.5}, that in the middle, for which ω2(X) = I{−0.7 ≤
X1 ≤ 0.7}, and that on the right for which ω3(X) = I{0.5 ≤ X1}. The dataset
in the middle is of size n2 = 300 observations, while the left/right ones are
composed of n1 = n3 = 30 observations. As expected, the centroids found by
means of the vanilla version of the EM algorithm are heavily shifted towards the
center, whereas the debiased variant of the EM algorithm is able to leverage the
bias functions information so as to recover nearly the correct centroids.

3. Empirical risk minimization in biased sampling models

In this section, we provide theoretical guarantees for the extension of ERM to
biased training samples we have introduced in Section 2.2. Unsurprisingly, the
subsequent nonasymptotic analysis requires slightly more stringent assumptions
than those involved in the asymptotic study carried out in [16], and listed in
Section 2.1. In particular, Assumption 4 strengthens Assumption 2 in order
to control the fluctuations of the sample sizes, so as to establish finite-sample
learning rate bounds. In the same spirit, additional parameters are introduced to
guarantee that crucial quantities are bounded away from critical values. Hence,
expectations involved in Assumption 3 are supposed to be greater than κ > 0,
while the minimal positive value of the ωk is lower bounded by ε > 0 (see
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Assumption 6). Notice that this lower bound does not prevent the ωk to vanish,
preserving the generality of the approach.

Assumption 4. There exist (λ1, . . . , λK) ∈ (0, 1)K satisfying
∑K

k=1 λk = 1,
and Cλ, λ > 0 such that for all k ≤ K and n ≥ K it holds

λ ≤ λk , λ ≤ λ̂k , and
∣∣λ̂k − λk

∣∣ ≤ Cλ√
n
. (3.1)

Observe that the control of the order of magnitude of the sample sizes and
that of their fluctuations in Assumption 4 cannot be avoided, since the goal here
is to establish nonasymptotic (learning) rate bounds, see Lemma 2 in particular.

Remark 5. We point out that, in the situation where the vector of sample sizes
(n1, . . . , nK) is random, distributed as a multinomial of size n with parameters
(λ1, . . . , λk), the last bounds in Equation (3.1) simultaneously hold true for any
k and an appropriate constant Cλ with overwhelming probability. Indeed, using
Hoeffding’s inequality (see [21]) combined with the union bound for instance, one
obtains that, for any δ ∈ (0, 1), all these conditions are fulfilled with probability
larger than 1 − δ with Cλ =

√
log(K/δ)/2, and that λ ≥ mink λk − Cλ/

√
n,

provided that n > C2
λ/mink λk. Note that for simplicity, we restrict our analysis

to the situation where the sample sizes are deterministic, the random case being
a straightforward extension.

Assumption 5. For κ > 0, define Gκ the (undirected) graph with vertices in
{1, . . . ,K}, and edge between k and l (k �= l) if and only if∫

I{ωk(z) > 0} · I{ωl(z) > 0}dP (z) ≥ κ.

There exists κ > 0 such that Gκ is connected.

From an algebraic viewpoint, one may classically check whether Assumption 5
is fulfilled or not by means of a breadth-first search algorithm, or by examining
the spectrum of the Laplacian matrix of Gκ for instance, see e.g., [17]. Note
that such a verification would require to have access to P , which is unknown
in general. However, we highlight that in practice the connectivity property
that must be checked concerns Ĝn, the empirical counterpart of G defined in
Equation (3.2), which only depends on the observed empirical distributions P̂k.

Assumption 6. There exists ε > 0 such that

∀z ∈ Z, ∀k ≤ K, ε · I{ωk(z) > 0} ≤ ωk(z) ≤ 1.

In particular this implies ωk(zi) ≥ ε for all zi ∈ Dk, and Ωk ≤ 1 for all k ≤ K.
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Note that parameters κ and ε allow to quan-
tify the overlap between two biasing functions,
in a way that extends the simple overlap/non
overlap condition of [16] (recovered here by
I{κε �= 0}). The results derived below typically
hold true with probability 1− e−(κε)2n, see e.g.,
Proposition 1, confirming that no learning is
possible without overlap, but also providing the
new insight that performances improve with the
overlapping. Fig 3: Overlap control.

Remark 6. We point out that, in Example 2, Assumption 1 simply means that
X = X1 ∪ · · · ∪ XK . Assumption 6 is fulfilled with ε = 1, and Assumption 5
can be checked in a simple manner, insofar as we have: ∀1 ≤ k �= l ≤ K,
ek,l = 1 ⇔ μ (Xk ∩ Xl) ≥ κ. In Example 3, Assumption 1 is directly fulfilled,
just like Assumption 6 with ε = 1.

As discussed at the end of Section 2.2, we also introduce an assumption on the
second smallest eigenvalue of the Hessian matrix D̄′′ defined in Equation (2.15).

Assumption 7. Let U = log(K/ε)
∑K−1

t=1 2t(λκε)−t, U = [0, U ]K ⊂ R
K , and

σ > 0. See Proposition 4 in Appendix C.2 for more insights about the first two
values. For all u ∈ U , σ2(D̄′′(u)) ≥ σ, where σ2(A) denotes the second smallest
eigenvalue of a matrix A.

As revealed by the proof of Proposition 2, Assumption 7 is required to control
the deviation ‖ûn−u∗‖2 in terms of

∥∥D̂′
n(u∗)−D̄′

n(u∗)
∥∥

2, using the curvature of
D in the non-flat parts of the optimization landscape. Note that Assumption 7
is not needed in the asymptotic analysis as even the smallest possible curvature
(and we know it is strictly positive by the proof of Proposition 1 in [16]) is still
sufficient when n goes to infinity. On the opposite, to establish finite sample
bounds, we have to bound away from zero the second smallest eigenvalue of
D̄′′(u), uniformly over U , in an explicit manner. Although such a lower bound is
always attained, as D̄′′ is continuous on the compact set U , its dependence with
respect to the problem instance (i.e., the distribution P , the biasing functions
ωk, the sample proportions λk) is non-trivial. For this reason, we rather opted
for explicitly introducing a parameter σ to materialize this lower bound. The
results subsequently derived then depend on σ in a more interpretable fashion.

Equipped with these assumptions, we now carry out a detailed rate bound
analysis. The first step, described in Section 3.1, consists in showing that with
overwhelming probability the solution to System (2.6) exists, is unique, and
belongs to a compact set bounded away from 0 (Proposition 1). This crucial
property then allows to derive nonasymptotic concentration bounds for Ŵn

(Proposition 2) and next for Ω̂n (Proposition 3). The generalization results
are finally stated in Section 3.2, under a standard complexity assumption. The
guarantees for the minimizers of the debiased risk version are established in
Theorem 1, and a corollary about the excess risk is discussed. When the concept
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class is composed of indicator functions of subsets, a tighter analysis is presented
(Theorem 2), which provides an extension of the Dvoretsky-Kiefer-Wolfowitz
inequality under biased sampling models.

3.1. Existence, uniqueness, and concentration of the solution

As detailed in Section 2.2, our debiasing ERM procedure critically relies on
solving System (2.6). It is shown in [16] (Theorem 1.1 therein) that the latter
admits a unique solution if and only if a directed and statistical (i.e., with P̂k

instead of Pk) version of graph G in Assumption 3, denoted by Ĝn thereafter, is
strongly connected. From a limit perspective, the strong law of large numbers
suffices to guarantee that, with probability 1, the edges of Ĝn are asymptotically
the same as those of G. Assumption 3 then allows to conclude that Ĝn is strongly
connected and that System (2.6) admits a unique solution. This result is stated
as Corollary 1.1 in [16]. The proposition below refines this assertion from a
nonasymptotic angle. It shows that existence and uniqueness actually occur
with overwhelming probability. Uniqueness is of course understood up to the
homogeneity property. To avoid any ambiguity, Ŵn now refers to the solution
to System (2.6) satisfying maxk≤K Ŵn,k/λ̂k = 1, see Equation (2.13). Similarly,
W ∗ is assumed to verify maxk≤k W

∗
k /λk = 1. Proposition 1 also shows that both

Ŵn and W ∗ belong to a compact set bounded away from 0. This property is
key in the subsequent analysis, as Ŵn is often present in denominators, see e.g.,
Equation (2.9). Note that to keep notation simple, we use generic constants in
the statements of the results, that may have different values from one proposition
to the other. For completeness, we provide their exact values in the technical
proofs of the Appendix section. Importantly, they only depend on parameters
K,Cλ, λ, κ, ε, σ introduced in Assumptions 4, 5, 6, and 7. Although K is treated
as a constant here, note that our results remain meaningful as long as K = o(n).
If K grows linearly with n, it is immediate to see that the dataset sizes nk are
then necessarily bounded, making a consistent recovery of the P̂k’s impossible,
and the debiasing procedure bound to fail.

Proposition 1. Suppose that Assumptions 4, 5, and 6 are satisfied. Then, there
exist M, c, ρ > 0, depending only on K,λ, κ, ε, such that for all n ≥ log(M)/c,
it holds with probability at least 1 −M exp(−cn):

• the solution Ŵn to System (2.6) exists and is unique,
• for all k ≤ K, ρ ≤ Ŵn,k ≤ 1, and ρ ≤ W ∗

k ≤ 1.

The rationale behind the proof is similar to that used to establish Corol-
lary 1.1 in [16]. Rather than simply establishing that the edges of Ĝn asymptot-
ically match those of G, we bound the probability that they differ from those of
Gκ, defined in Assumption 5.

Proof. First, define the directed graph Ĝn with vertices in {1, . . . ,K} and edge
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k → l if and only if ∫
I{ωk(z) > 0}dP̂l(z) > 0. (3.2)

The graph Ĝn is said to be strongly connected if, for any pair of vertices (k, l),
there exist a directed path from k to l and a directed path from l to k. It
is proved in [46] (see also Theorem 1.1 in [16]) that this is a necessary and
sufficient condition for System (2.6) to have a unique solution. To show that
Ĝn is strongly connected, we prove that the left hand side in Equation (3.2) is
sufficiently close to (a weighted version of) the link condition in Assumption 5
with overwhelming probability. Let (k, l) be an edge in Gκ. Using Assumptions 5
and 6 we get:∫

I{ωk(z) > 0}dPl(z) =
∫

I{ωk(z) > 0}ωl(z)
Ωl

dP (z),

≥ ε

∫
I{ωk(z) > 0} · I{ωl(z) > 0}dP (z),

≥ κε.

Now, observe that the left-hand side in Equation (3.2) is the empirical version
of the above term. By Hoeffding’s inequality, for every t > 0 it holds:

P

{∫
I{ωk(z) > 0}dP̂l(z) −

∫
I{ωk(z) > 0}dPl(z) ≤ −t

}
≤ exp(−2nlt

2),

≤ exp(−2λnt2).

In particular, setting δ = exp
(
−λ(κε)2n

2

)
it holds with probability at least 1−δ:

∫
I{ωk(z) > 0}dP̂l(z) ≥

∫
I{ωk(z) > 0}dPl(z) −

κε

2 ≥ κε

2 , (3.3)

so that k → l in Ĝn. The exact same reasoning can be applied after having
switched k and l. The union bound then gives that with probability at least
1 − 2δ it holds: k → l and l → k in Ĝn. Now, Gκ = (V,E) being connected,
we know that there exists a set of edges Emin ⊂ E of cardinal K − 1 such that
Gmin = (V,Emin) is connected. Applying the above method to every edge in
Emin, we get that with probability at least 1−2(K−1)δ, every pair (k, l) linked
in Gmin is linked both ways in Ĝn. Since Gmin is connected, this means that Ĝn

is strongly connected. The proof is concluded by setting M = 2(K − 1), and
c = λ(κε)2/2. As a lengthy technical analysis is required to identify ρ, the proof
of the second claim of Proposition 1 is postponed to Appendix C.1.

The identification of a compact set, bounded away from 0 and containing Ŵn

and W ∗ with high probability, is essential to carry out a nonasymptotic analysis.
In particular, it permits to derive the following exponential concentration bound.
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Proposition 2. Suppose that Assumptions 4, 5, 6, and 7 are satisfied. Then,
there exist M,M ′, c, c′, γ, n0 > 0, depending only on K,Cλ, λ, κ, ε, σ, such that
for all t > 0 and n ≥ n0 it holds:

P

{∥∥Ŵn −W ∗∥∥
2 >

γ√
n

+ t

}
≤ Me−cn + M ′e−c′nt2 .

Note that the sup norm ‖Ŵn −W ∗‖∞ is upper bounded by the Euclidean
norm ‖Ŵn − W ∗‖2, so that the inequality in Proposition 2 is simultaneously
satisfied by |Ŵn,k − W ∗

k | for all k ≤ K. The proof uses the same reparame-
terization as for the second claim of Proposition 1. It involves some notion of
curvature related to System (2.4), that characterizes the hardness of the prob-
lem. The compactness derived in Proposition 1 is then used to uniformly lower
bound this curvature, see Assumption 7. Technical details are provided in Ap-
pendix C.2.

Using Equations (2.7) and (2.8), one can finally control the deviation of Ω̂n

with respect to Ω, as revealed by the following proposition, whose proof is
detailed in Appendix C.3.

Proposition 3. Suppose that Assumptions 4, 5, 6, and 7 are satisfied. Then,
there exist M,M ′, c, c′, γ, n0, depending only on K,Cλ, λ, κ, ε, σ, such that for
all t > 0 and n ≥ n0 it holds:

P

{∥∥Ω̂n − Ω
∥∥
∞ >

γ√
n

+ t

}
≤ Me−cn + M ′e−c′nt2 .

Hence, we have shown that, using the procedure described in Section 2.2,
we can compute an estimate Ω̂n of Ω with good nonasymptotic concentration
properties. The last step consists in analyzing the performance of the minimizers
of the debiased risk (2.14) when P̃n is built using Equation (2.3) and Ω̂n.

3.2. Generalization ability of minimizers of the debiased risk

As a first go, we introduce the following standard complexity assumption on the
class F = FΘ = {ψ(·, θ) : θ ∈ Θ}, see e.g., Equation (2.14.6) in [43].

Assumption 8. The collection of functions FΘ = {ψ(·, θ) : θ ∈ Θ} satisfies
|ψ(z, θ)| ≤ 1 for all z, θ, and is a uniform Donsker class (relative to L2) with
polynomial uniform covering numbers, i.e., there exist constants CΘ > 0 and
r ≥ 1 such that for all ζ > 0

sup
Q

N (ζ, FΘ, L2(Q)) ≤ (CΘ/ζ)r

where the supremum is taken over the set of probability measures Q on Z, and
N (ζ,FΘ, L2(Q)) is the minimum number of L2(Q) balls of radius ζ needed to
cover FΘ.



6106 S. Clémençon and P. Laforgue

Remark 7. The above hypothesis is a classic complexity assumption. Of course,
the subsequent rate bound analysis can be straightforwardly extended to settings
involving alternative complexity conditions, such as e.g., finite VC dimension,
Rademacher averages. Recall that a collection of functions FΘ of finite VC

dimension V < +∞, and with envelope function F ≡ 1, satisfies Assumption 8
with r = 2V − 2, and CΘ depending only on V , see e.g., Theorem 2.6.7 in [43].

The main argument of the subsequent analysis then consists in showing that
the uniform deviation between the nearly debiased risk and the true risk

sup
θ∈Θ

∣∣∣L̃n(θ) − L(θ)
∣∣∣ (3.4)

is small with high probability. This is however far from being as straightforward
as in the unbiased situation, since the set of random variables {L̃n(θ)−L(θ)}θ∈Θ
is not an empirical process (i.e., a collection of i.i.d. averages), and the standard
concentration inequalities therefore do not apply. Indeed, we recall that L̃n(θ)
depends on Ω̂n, which is obtained from the solution to System (2.6), and for
which no closed analytical form is available in general, see Section 2.2. To bypass
this difficulty, we decompose the excess of risk |L̃n(θ) − L(θ)| as follows. Let

ĥn,θ(z) = ψ(z, θ)
(

K∑
k=1

λ̂kωk(z)
Ω̂n,k

)−1

, and hθ(z) = ψ(z, θ)
(

K∑
k=1

λkωk(z)
Ωk

)−1

.

We have (see Lemma 2 for details):

∣∣∣L̃n(θ) − L(θ)
∣∣∣

=

∣∣∣∣∣∣
∫

ψ(z, θ)
(

K∑
k=1

λ̂kωk(z)
Ω̂n,k

)−1

dP̂n(z) −
∫

ψ(z, θ)
(

K∑
k=1

λkωk(z)
Ωk

)−1

dP̄ (z)

∣∣∣∣∣∣
=
∣∣∣∣∫ ĥn,θ(z)dP̂n(z) −

∫
hθ(z)dP̄ (z)

∣∣∣∣
≤
∥∥ĥn,θ − hθ

∥∥
∞ + ‖hθ‖∞

K∑
k=1

∣∣∣λ̂k − λk

∣∣∣ +
K∑

k=1

λ̂k

∣∣∣∣∫ hθdP̂k −
∫

hθdPk

∣∣∣∣
(3.5)

As it is assumed that |ψ(z, θ)| ≤ 1, the first term of the right hand side of (3.5)
actually depends on ‖Ω̂n−Ω‖∞ only, and can thus be bounded uniformly over Θ
using Proposition 3. Similarly, the second term depends on the |λ̂k−λk|, and can
be uniformly upper bounded using Assumption 4. Finally, the last term writes
as the sum of empirical processes, indexed by Θ, for which standard arguments
apply. This leads to the following theorem, whose complete proof can be found
in Appendix C.4.
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Theorem 1. Suppose that Assumptions 4, 5, 6, 7, and 8 are satisfied. Then,
there exist M,M ′,M ′′, c, c′, c′′, γ, n0, depending only on K,Cλ, λ, κ, ε, σ, CΘ, r,
such that for all t > 0 and n ≥ n0 it holds:

P

{
sup
θ∈Θ

∣∣∣L̃n(θ) − L(θ)
∣∣∣ > γ√

n
+ t

}
≤ Me−cn + M ′e−c′nt2 + (

√
nt)rM ′′e−c′′nt2 .

An important corollary of Theorem 1 is obtained by combining the above
bound with the following argument. Let θ̃n = argminΘ L̃n(θ), we have

L(θ̃n) − inf
θ∈Θ

L(θ) ≤ 2 sup
θ∈Θ

∣∣∣L̃n(θ) − L(θ)
∣∣∣ .

This immediately results in Corollary 1, which reveals that minimizers of the
“debiased” version of the empirical risk achieve exactly the same learning rate
as minimizers of an (unbiased) empirical risk based on n ≥ 1 independent
observations Z1, . . . , Zn drawn from the test distribution P . Notice that an
analogous bound for the expectation of the risk excess of Equation (2.14)’s
minimizers can be proved using the same argument.

Corollary 1. Suppose that the assumptions of Theorem 1 are satisfied, and
keep the same values for M,M ′,M ′′, c, c′, c′′, γ, n0. Let θ̃n be any minimizer of
the debiased risk L̃n defined in (2.14). Then, for all t > 0 and n ≥ n0 it holds:

P

{
L(θ̃n) − inf

θ∈Θ
L(θ) > 2γ√

n
+ 2t

}
≤ Me−cn + M ′e−c′nt2 + (

√
nt)rM ′′e−c′′nt2 .

Another application of particular interest is the case where q = 1 (univariate
case), and where the class F is the set composed of all indicator functions
z ∈ R �→ I{z ≤ τ}, for τ ∈ R. Recall that in the i.i.d. case, the Dvoretzky-
Kiefer-Wolfowitz (DKW) inequality, see e.g., [27], then yields: ∀t ≥ 0,

P

{
sup
z∈R

∣∣∣(P̂n − P )((−∞, z])
∣∣∣ ≥ t

}
≤ 2e−2nt2 (3.6)

where z ∈ R �→ P̂n((−∞, z]) = (1/n)
∑n

i=1 I{Zi ≤ z} denotes the empirical
cumulative distribution function based on i.i.d. observations Z1, . . . , Zn drawn
from the univariate probability distribution P . Analogously, under the sample
biasing models, the quantity (3.4) then corresponds to the maximal deviation
supz∈R

∣∣(P̃n−P )((−∞, z])
∣∣. While a functional central limit theorem for this cdf

estimator is established in [16], the application of Theorem 1 allows to refine this
statement from a nonasymptotic perspective. However, recalling that the class
composed of half-lines is of VC dimension 2, and thus satisfies Assumption 8
with r = 2V − 2 = 2, the bound obtained contains a term of order nt2e−nt2 ,
which does not match (3.6). A sharper analysis, leveraging the fact that F is
a class of indicator functions, is necessary, see Appendix C.5. The refined rate
thus achieved (Theorem 2) then matches (3.6), and provides an exact extension
of the DKW inequality under biased sampling models.
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Theorem 2. Suppose that Assumptions 4, 5, 6, and 7 are satisfied. Then, there
exist M,M ′, c, c′, γ, n0, depending only on K,Cλ, λ, κ, ε, σ, such that for all t > 0
and n ≥ n0 it holds:

P

{
sup
z∈R

∣∣∣(P̃n − P )((−∞, z])
∣∣∣ > γ√

n
+ t

}
≤ Me−cn + M ′e−c′nt2 .

Finally, we point out that the finite sample analysis carried out in this paper
can be used in the context of M -estimation as well. Indeed, under the additional
hypothesis that there exists a unique minimizer θ∗ of the true risk L(·) in the
state space Θ ⊂ R

d combined with usual smoothness/coercivity assumptions
related to the risk functional, nonasymptotic bounds for the estimation error
||θ̃n − θ|| can be classically deduced from the excess of risk bounds proved here.

4. Numerical experiments

In this section, we display numerical results illustrating the performance of the
extension of the ERM approach we propose when training data suffer from
selection bias. First, observe that the procedure is by no means computationally
expensive, the sole difference with standard methods lying in the computation
of the weights involved in the risk functional. In addition, it can be readily
implemented in a plug-in manner with most machine learning libraries, using
e.g., scikit-learn’s sample_weight option during the learning stage, see [31].

Consider first the Boston housing dataset problem. It is a regression problem,
where one has to predict the price of a house on the range [0, 50], based on 14
attributes such as the number of rooms or statistics about the neighborhood.
One can easily imagine that such a dataset is actually composed of two samples:
one dataset taken from a local estate agency, large but containing cheap houses
as the neighborhood is not very trendy, and a second one, national and unbiased
but smaller. Of course, running ERM on the pooled sample without debiasing
procedure should result in a global underestimation of the prices. To replicate
this framework, we have implemented the following protocol. From the 500
available observations, 100 are kept for the testing phase. From the remaining
400 observations, two samples are extracted: a first one of size 200, sampled
among the cheapest houses, i.e., with prices lower than 22 (see Figure 4), and
a second unbiased of size 100 (i.e., sampled uniformly at random). The biasing
functions are therefore ω1(z) = I{y ≤ 22}, and ω2(z) ≡ 1. Then, we have
trained several ERM-based algorithms, namely Ridge Regression (RR), Support
Vector Regressors (SVR), and Random Forest (RF), on the total sample of
size 300, with and without debiasing. A third model is trained on the small
unbiased sample only. All algorithms have been run with several choices of
hyperparameters around the default value. Results in terms of Mean Square
Error (MSE) on the test sample of size 100, averaged over 100 runs, are displayed
in Table 1 (top). Except for SVR with very small regularization, the debiased
procedure (db-ERM) outperforms standard ERM and ERM on the unbiased
sample (ub-ERM).
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Fig 4: House prices in Boston dataset (left), and years of education against the
proportion of people earning more than 50k$ yearly in Adult dataset (right).

Note that the previous example cannot be treated as a Covariate Shift (CS)
problem, since sample bias applies to the output, breaking the CS assumption.
However, one might argue that biasing directly the output favors too much
our procedure. In the next example, we propose a binary classification problem
where sample bias applies on the covariates. Consider the machine learning
problem associated to the Adult dataset, also known as the Census Income
dataset. It is a binary classification task, where the goal is to predict whether
a person’s income exceeds 50, 000$ a year, based on census data. As can be
seen in Figure 4 (left), the proportion of persons having an income exceeding
50k$ a year substantially depends on the number of years of education. If highly
educated people happen to be over-represented in the dataset (it is for instance
more convenient to poll people concentrated in big cities, who have usually
studied longer than people living in the countryside), it should deteriorate the
predictions in absence of a debiasing procedure. In order to highlight the interest
of our debiasing procedure, we have implemented the following experimental
protocol. From the whole dataset, 1500 observations are kept for the testing
phase. From the rest are sampled two subgroups: one of 12+ years of education
people of size 5900, and one unbiased (i.e., sampled uniformly from the entire
population) of size 100. Then, logistic regression models (LogReg) and RFs
are trained on the concatenation of the 6000 observations, with standard and
debiased ERM, as well as on the small second sample of size 100. Numerical
results are displayed in Table 1 (bottom) in terms of test prediction scores.
Again, debiased ERM shows the best performances. Another comment that can
be made is that the advantage brought by the debiasing decreases with the
capacity of the model class (i.e., small λ, big C, or large number of trees).

Hence, we have presented two learning examples, one regression task and
one classification task, which cannot be tackled through ordinary CS (either
bias applies to the target, or the conditional laws obviously change), empirically
endorsing the soundness of our debiased ERM approach. Additional experiments
leading to similar conclusions are presented in Appendix D. Notice finally that
the code used to compute the debiasing weights is publicly available as a Python
package at the following GitHub repository: plaforgue/db_learn.

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/plaforgue/db_learn
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Table 1

MSEs on Boston and prediction scores on Adult, averaged over 100 runs.

ERM db-ERM ub-ERM

Boston

RR (λ = 0) 27.41 ± 8.83 25.62 ± 6.63 28.38 ± 7.99
RR (λ = 0.1) 27.46 ± 8.90 25.59 ± 6.67 28.11 ± 7.73
RR (λ = 1) 27.94 ± 9.25 25.72 ± 6.84 28.05 ± 7.61

SVR (C = 0.1) 99.63 ± 21.55 86.29 ± 18.79 86.60 ± 18.67
SVR (C = 1) 100.02 ± 21.87 85.66 ± 19.04 86.04 ± 18.67
SVR (C = 10) 97.27 ± 22.38 88.37 ± 21.68 82.35 ± 18.60

RF (trees=10) 19.83 ± 7.13 19.11 ± 6.97 20.46 ± 6.50
RF (trees=100) 18.20 ± 6.46 17.93 ± 6.58 18.71 ± 6.10
RF (trees=1000) 18.11 ± 6.61 17.69 ± 6.59 18.54 ± 6.16

Adult

LogReg (C = 0.1) 63.87 ± 1.58 79.25 ± 1.67 78.24 ± 1.97
LogReg (C = 1) 63.81 ± 1.67 79.51 ± 1.80 77.79 ± 2.25
LogReg (C = 10) 63.87 ± 1.65 79.53 ± 1.78 78.01 ± 2.45

RF (trees=10) 39.00 ± 3.74 40.27 ± 4.16 18.48 ± 6.52
RF (trees=100) 44.37 ± 3.28 45.36 ± 3.89 23.81 ± 5.71
RF (trees=1000) 44.92 ± 3.24 46.03 ± 3.61 24.42 ± 5.51

5. Conclusion

In this article, we have provided a sound methodology to address selection bias
issues in statistical learning. We have extended the paradigmatic ERM approach
to the situation where learning is based on several biased training samples. In
contrast to alternative techniques previously documented in the literature, the
method proposed covers a wide range of sample bias scenarios, and applies to
any ERM-like learning algorithm. It relies on a preliminary debiasing of the
raw empirical risk functional in the spirit of the procedure introduced in [46]
for cumulative distribution function estimation. The nonasymptotic theoretical
analysis carried out under mild assumptions shows that the rate achieved is the
same as that attained in absence of any selection bias. Numerical experiments
are also documented, validating our theoretical findings. A natural direction
for future research is now to extend the statistical learning approach promoted
in this article to situations were the biasing models at work are only partially
known.

Appendix A: Derivation of Equation (2.7)

Some computations, omitted in the core text for the sake of readability, are
detailed below. For all k ≤ K, we have:

Ωk =
∫

ωk(z)dP (z) =
∫
ωk(z)dP (z)∫

dP (z)
=

∫
ωk(z)

(∑K
l=1

λl

Ωl
ωl(z)

)−1
dP̄ (z)∫ (∑K

l=1
λl

Ωl
ωl(z)

)−1
dP̄ (z)
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=

∫
ωk(z)

(∑K
l=1

λl

W∗
l
ωl(z)

)−1
dP̄ (z)∫ (∑K

l=1
λl

W∗
l
ωl(z)

)−1
dP̄ (z)

= W ∗
k∫ (∑K

l=1
λl

W∗
l
ωl(z)

)−1
dP̄ (z)

,

where we have successively used the fact that
∫
dP = 1, Equation (2.2), the fact

that W ∗ ∝ Ω and Equation (2.4).

Appendix B: A simplistic example

Here, we exhibit a simple example where the training data samples are biased,
but no system solving is required to form a debiased empirical distribution. The
flagship problem in supervised learning is multi-class classification and consists
in the simplest situation, where Z = (X,Y ), Y being a discrete random variable
valued in {1, . . . , Q} with Q ≥ 1 say, and the r.v. X takes its values in a
measurable space X and models some information hopefully useful to predict
Y . The parameter space Θ is a set G of measurable mappings (i.e., classifiers)
g : X → {1, . . . , Q} and the loss function is given by �(g, (x, y)) = I{g(x) �= y}
for all g in G and any (x, y) ∈ X × {1, . . . , Q}. The distribution P of the
random pair (X,Y ) can be either described by X’s marginal distribution μ and
the posterior probability η(x) = (η1(x), . . . , ηQ(x)), where ηq(x) = P{Y =
q | X = x} for q ∈ {1, . . . , Q}, or else by the ((p1, F1), . . . , (pQ, FQ))
where pq = P{Y = q} and Fq is X’s conditional distribution given Y = q with
q ∈ {1, . . . , Q}. Observe that p1 + . . . + pQ = 1, we assume that pq ∈ (0, 1) for
all q ∈ {1, . . . , Q}. It is very common that the class probabilities in the training
datasets are significantly different from those in the test stage, the pq’s namely.
We thus consider the case where, for all k ∈ {1, . . . , K}, the distribution Pk of
the k-th training dataset Dk = {(Xk,1, Yk,1), . . . , (Xk,nk

, Yk,nk
)} is described

by ((pk,1, F1), . . . , (pk,Q, FQ)), where the vector of class probabilities pk =
(pk,1, . . . , pk,Q) ∈ [0, 1]Q (note incidentally that pk,1 + . . . + pk,Q = 1) may
differ from p = (p1, . . . , pQ). We point out that it may happen that certain
class probabilities pk,q are equal to zero, so that some labels cannot be observed
among certain data samples. The likelihood function takes the form

∀(x, y) ∈ X × {1, . . . , Q}, dPk

dP
(x, y) =

Q∑
q=1

I{y = q}(pk,q/pq),

which reveals that it depends on the label y solely. Hence, in this very simple
case, we have ωk(x, y) = pk,y/py and Ωk = 1 for all (y, k) ∈ {1, . . . , Q} ×
{1, . . . , K} and there is no need for solving any system to compute a nearly
debiased empirical distribution. Observe that, for all κ > 0, vertices k and l in
{1, . . . , K} are connected in the graph Gκ iff

∑
q≤Q pk,qpl,q/pq ≥ κ. However,

in this situation the biasing functions ωk can be directly estimated from the
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data samples, replacing pk,q by nk,q/nk with nk,q =
∑nk

i=1 I{Yk,i = q} for all
(k, q) ∈ {1, . . . , K} × {1, . . . , Q} and computing

ω̂k(x, y) = p̂k,y/py,

for all (y, k) ∈ {1, . . . , Q}×{1, . . . , K}. One may then consider the estimator(
K∑

k=1

nk

n
ω̂k(x, y)

)−1

P̂n

of the distribution P .

Appendix C: Technical proofs

We now provide the technical proofs of the results stated in the paper. Recall
that for notation simplicity we used universal constants M,M ′, c, c′, γ, n0, in the
core text. For the sake of clarity, we now index them by propositions, such that
Mi,M

′
i , ci, c

′
i, γi, n0,i correspond to M,M ′, c, c′, γ, n0 for Proposition i.

C.1. Proof of Proposition 1

First, we introduce the following notation. Let D̄ and D̂n be the two functions
from R

K to R such that for all u = (u1, . . . , uK) ∈ R
K :

D̄(u) =
∫

log
[

K∑
l=1

eulωl(z)
]
dP̄ (z) −

K∑
l=1

λlul,

D̂n(u) =
∫

log
[

K∑
l=1

eulωl(z)
]
dP̂n(z) −

K∑
l=1

λ̂lul.

Let u∗ = argminu D̄(u), and similarly ûn = argminu D̂n(u). We also compute
the gradients D̄′, D̂′

n and the Hessian matrices D̄′′, D̂′′
n, of these two smooth

functions. For all u = (u1, . . . , uK) ∈ R
K and all k, k′ ≤ K, we have:

[
D̄′(u)

]
k

=
∫

eukωk(z)∑K
l=1 e

ulωl(z)
dP̄ (z) − λk,

[
D̂′

n(u)
]
k

=
∫

eukωk(z)∑K
l=1 e

ulωl(z)
dP̂n(z) − λ̂k,

[
D̄′′(u)

]
k,k′ =

∫ ⎡⎢⎣ eukωk(z)δkk′∑K
l=1 e

ulωl(z)
− eukωk(z)euk′ωk′(z)(∑K

l=1 e
ulωl(z)

)2

⎤⎥⎦ dP̄ (z),
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[
D̂′′

n(u)
]
k,k′

=
∫ ⎡⎢⎣ eukωk(z)δkk′∑K

l=1 e
ulωl(z)

− eukωk(z)euk′ωk′(z)(∑K
l=1 e

ulωl(z)
)2

⎤⎥⎦ dP̂n(z).

Observe now that Systems (2.4) and (2.6) are equivalent to D̄′(u∗) = 0 and
D̂′

n(ûn) = 0 respectively, with u∗ = log(λ/W ∗) and ûn = log(λ̂/Ŵn), where
the division and the logarithm are meant componentwise. Recall that Sys-
tems (2.4) and (2.6) are homogeneous of degree 0. Equivalently, D̄ and D̂n are
invariant under translation of vectors that are colinear with 1, i.e., D̄(u+ c1) =
D̄(u) and D̂n(u+ c1) = D̂n(u) for all u ∈ R

K and c ∈ R. To ensure uniqueness
of the solutions to Systems (2.4) and (2.6), we consider W ∗ and Ŵn such that
maxk≤K W ∗

k /λk = 1, and maxk≤K Ŵn,k/λ̂k = 1. In terms of u∗ and ûn, this
normalization writes mink≤K u∗

k = mink≤K ûn,k = 0. We now show that there
exists ρ > 0 such that for all k ≤ K it holds:

ρ ≤ Ŵn,k ≤ 1 and ρ ≤ W ∗
k ≤ 1.

The upper bounds above are immediate, insofar as for, all k ≤ K, we have:

Ŵn,k ≤ λ̂k ≤ 1 and similarly W ∗
k ≤ λk ≤ 1.

To derive ρ, we show that there exist U > 0 such that:

∀k ≤ K, ûn,k ≤ U and u∗
k ≤ U.

The proof mechanism is as follows. First, we derive a lower bound of D̂n(u),
that depends linearly on uk0 and uk1 , for any couple (k0, k1) being an edge in
Ĝn. Next, we apply this lower bound at point ûn, with k0 such that ûn,k0 = 0
(such an index exists by the normalization we impose). Combining this lower
bound with the observation that D̂n(ûn) ≤ D̂n(0), we obtain an upper bound
on ûn,k1 . Finally, this approach is used recursively to bound the neighbors of
k1, and so on and so forth. The graph Ĝn being connected by the first claim of
Proposition 1, every component ûn,k is attained after at most K − 1 iterations.

Let (k0, k1) be an edge in Ĝn. Using the definition of P̂n it holds:

D̂n(u) =
∫

log
[

K∑
l=1

eulωl(z)
]
dP̂n(z) −

K∑
l=1

λ̂lul

=
K∑

k=1

λ̂k

(∫
log

[
K∑
l=1

eulωl(z)
]
dP̂k(z) − uk

)
.

For k �= k0, it holds:∫
log

[
K∑
l=1

eulωl(z)
]
dP̂k(z) − uk ≥

∫
log(eukε)dP̂k(z) − uk = log(ε).
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For k = k0, we have:∫
log

[
K∑
l=1

eulωl(z)
]
dP̂k0(z) ≥

∫
log(ε)(1 − I{ωk1(z) > 0})dP̂k0(z)

+
∫

log(euk1 ε)I{ωk1(z) > 0}dP̂k0(z)

= log(ε) + uk1

∫
I{ωk1(z) > 0}dP̂k0(z).

From the proof of the first claim of Proposition 1 (see Equation (3.3)), we know
that it holds: ∫

I{ωk1(z) > 0}dP̂k0(z) ≥
κε

2 (C.1)

so that one gets:

D̂n(u) ≥ (1 − λ̂k0) log(ε) + λ̂k0

(
log(ε) + κε

2 uk1 − uk0

)
≥ log(ε) + λκε

2 uk1 − uk0 . (C.2)

Observe also that we have:

D̂n(ûn) ≤ D̂n(0) =
∫

log
[

K∑
l=1

ωl(z)
]
dP̂n(z) ≤ log(K). (C.3)

Combining Equation (C.2) evaluated at point ûn and Equation (C.3), we obtain:

ûn,k1 ≤ 2(log(K/ε) + ûn,k0)
λκε

. (C.4)

The last step consists in extending this bound to every ûn,k. To do so, we first set
(without loss of generality) ûn,k0 = mink≤K ûn,k = 0. Recall also the definition
of graph Gmin, as introduced in the proof of the first claim of Proposition 1.
We can then apply Equation (C.4) to all k1 that are neighbors of k0 in Gmin.
Next, notice that this method can be used in a recursive fashion, with now the
k1 as anchor points. Eventually, every ûn,k is attained, as Gmin is connected.
Equation (C.4) becoming looser and looser as it is applied, the last question is
how many recursive steps are required? The minimum number of recursive steps
needed is the biggest (among k ≤ K) shortest path (in Gmin) between k0 and
k, denoted diam(Gmin, k0). Combining all the arguments, we get:

∀k ≤ K, ûn,k ≤

(
2

λκε

)diam(Gmin,k0)+1
− 1

2
λκε − 1

log(K/ε)

≤

(
2

λκε

)K
− 1

2
λκε − 1

log(K/ε).
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Therefore, for all k ≤ K it holds:

Ŵn,k = λ̂ke
−ûn,k ≥ λe−U := ρ (C.5)

with

U =

(
2

λκε

)K
− 1

2
λκε − 1

log(K/ε). (C.6)

Finally, note that the exact same method can be applied to u∗, by substituting
P̂k with Pk in the computations.

C.2. Proof of Proposition 2

First, we prove the following lemma, ensuring that the deviation
∥∥Ŵn −W ∗∥∥

2
is upper bounded by the deviation ‖ûn − u∗‖2.

Lemma 1. Suppose that Assumption 4 is satisfied. Then it holds:∥∥∥Ŵn −W ∗
∥∥∥

2
≤ ‖ûn − u∗‖2 + Cλ

√
K

n
.

Proof. For all k ≤ K it holds:∣∣∣Ŵn,k −W ∗
k

∣∣∣ =
∣∣∣λ̂ke

−ûn,k − λke
−u∗

k

∣∣∣
≤
∣∣∣λ̂ke

−ûn,k − λ̂ke
−u∗

k

∣∣∣+ ∣∣∣λ̂ke
−u∗

k − λke
−u∗

k

∣∣∣
≤
∣∣∣e−ûn,k − e−u∗

k

∣∣∣+ ∣∣∣λ̂k − λk

∣∣∣
≤ |ûn,k − u∗

k| +
Cλ√
n

where we have used the definition of u∗ and ûn, the triangle inequality, the
fact that λ̂k ≤ 1, and that u∗

k ≥ 0, the mean value theorem on u �→ e−u

with ûn,k ≥ 0, and Assumption 4. Applying again the triangle inequality finally
yields:

∥∥∥Ŵn −W ∗
∥∥∥

2
=

√√√√ K∑
k=1

∣∣∣Ŵn,k −W ∗
k

∣∣∣2

≤

√√√√ K∑
k=1

(
|ûn,k − u∗

k| +
Cλ√
n

)2

=
∥∥∥∥|ûn − u∗| + Cλ√

n
1
∥∥∥∥

2

≤ ‖ûn − u∗‖2 + Cλ

√
K

n
.
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Next, we show that Proposition 1 allows to bound the deviation ‖ûn −u∗‖2

in terms of the deviation
∥∥∥D̂′

n(u∗) − D̄′(u∗)
∥∥∥

2
.

Proposition 4. Suppose that Assumptions 4, 5, 6, and 7 are satisfied. Then,
there exist M4, c4, n0,4, L, depending only on K,Cλ, λ, κ, ε, σ, such that for all
n ≥ n0,4 it holds with probability at least 1 −M4 exp(−c4n):

‖ûn − u∗‖2 ≤ L
∥∥∥D̂′

n(u∗) − D̄′(u∗)
∥∥∥

2
.

Proof. Define F : [0, 1] → R
K such that F (t) = D̂′

n (ûn + t(u∗ − ûn)). It holds:

F (1) − F (0) =
(∫ 1

0
F ′(t)dt

)
D̂′

n(u∗) − D̂′
n(ûn) =

(∫ 1

0

[
D̂′′

n(ûn + t(u∗ − ûn))
]
(u∗ − ûn)dt

)
D̂′

n(u∗) − D̄′(u∗) =
(∫ 1

0

[
D̂′′

n(ûn + t(u∗ − ûn))
]
dt

)
(u∗ − ûn) (C.7)

where the integral over matrices must be understood componentwise. The key
point to relate

∥∥D̂′
n(u∗)− D̄′(u∗)

∥∥
2 to ‖ûn−u∗‖2 is then to study the smallest

eigenvalues of
∫ 1
0
[
D̂′′

n(ûn + t(u∗ − ûn))
]
dt. From the definition of D̂′′

n, one can
see that its smallest eigenvalue is 0, associated to 1. Hopefully, thanks to the
normalization, ûn−u∗ is not collinear to 1 unless ûn = u∗. Let ûn−u∗ = c1+w
be the decomposition of ûn − u∗ on Span(1) ⊗ Span(1)⊥, such that 1�w = 0.
One can check that ‖w‖∞ ≥ ‖c1‖∞, so that it holds

‖ûn − u∗‖2
2 = ‖w‖2

2 + ‖c1‖2
2 ≤ ‖w‖2

2 + K‖c1‖2
∞ ≤ (K + 1)‖w‖2

2. (C.8)

Combining Equations (C.7) and (C.8), one gets∥∥∥D̂′
n(u∗) − D̄′(u∗)

∥∥∥
2
≥ σ2

(∫ 1

0

[
D̂′′

n(ûn + t(u∗ − ûn))
]
dt

)
‖w‖2

≥ inf
v∈[ûn,u∗]

σ2

(
D̂′′

n(v)
) ‖ûn − u∗‖2√

K + 1

where σ2(A) denotes the second smallest eigenvalue of a matrix A. We have now
to find a lower bound of infv∈[ûn,u∗] σ2

(
D̂′′

n(v)
)
. Let v ∈ [ûn,u

∗]. For notation
simplicity, we omit the v in the following, and use D̂′′

n and D̄′′. It holds:

σ2(D̂′′
n) = inf

‖u‖=1,
1�u=0

u�D̂′′
nu

= inf
‖u‖=1,
1�u=0

u�(D̂′′
n − D̄′′)u + u�D̄′′u
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≥ −‖D̂′′
n − D̄′′‖σ∞ + σ2(D̄′′)

where ‖A‖σ∞ denotes the Schatten ∞-norm such that ‖A‖σ∞ = ‖σ(A)‖∞, with
σ(A) the vector of singular values of a matrix A. For A ∈ R

K×K it holds:

‖A‖σ∞ ≤ ‖A‖Fr ≤ K sup
i,j

Ai,j

so that we get:

σ2(D̂′′
n) ≥ σ2(D̄′′) −K sup

i,j

∣∣[D̂′′
n]i,j − [D̄′′]i,j

∣∣.
Now, define the compact set U = [0, U ]K , with U defined in Equation (C.6). We
know from Proposition 1 that with probability at least 1 −M1 exp(−c1n) both
ûn and u∗ belong to U , so that [ûn,u

∗] ⊂ U . We can then use Assumption 7 to
lower bound σ2(D̄′′(v)) by σ > 0 uniformly on [ûn,u

∗].
Focus now on the term K supi,j

∣∣[D̂′′
n]i,j − [D̄′′]i,j

∣∣. From the definition of D̂′′
n

and D̄′′, we can see that their entries (k, k′) are the integrals of some function
comprised in [−1, 1], according to P̂n and P̄ respectively. For all i, j ≤ K,
Corollary 2 gives that for all t > 0 and n ≥ 2 log(2K)/(λt2) it holds with
probability at least 1 − 2K exp

(
−λnt2

2

)
:

∣∣[D̂′′
n]i,j − [D̄′′]i,j

∣∣ ≤ CλK√
n

+ t.

The union bound then gives that with probability 1−2K3 exp
(
−λnt2

2

)
it holds:

K sup
i,j

∣∣[D̂′′
n]i,j − [D̄′′]i,j

∣∣ ≤ CλK
2

√
n

+ Kt.

Thus, for n ≥ max
(

16C2
λK

4

σ2 , 96K2

λσ2 log(2K)
)
, it holds with probability at least

1 − 2K3 exp
(
− λσ2

32K2n
)
:

K sup
i,j

∣∣[D̂′′
n]i,j − [D̄′′]i,j

∣∣ ≤ σ

4 + σ

4 = σ

2

and consequently
σ2

(
D̂′′

n(v)
)
≥ σ

2 .

The last step consists in extending this bound uniformly over the line segment
[ûn,u

∗]. To do so, we adopt an entropic point of view: we cover the set U (in
which the line segment [ûn,u

∗] is contained with high probability) with balls,
apply the union bound for the centers of these balls, and show that within a ball,
the second smallest eigenvalue is relatively stable. By definition, note that U can
be covered with Nε = UK/(2ε)K ‖ · ‖∞-balls of radius ε. Now, let (u,v) ∈ U2
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such that ‖u − v‖∞ ≤ ε. What is the value of
∣∣σ2(D̂′′

n(u)) − σ2(D̂′′
n(v))

∣∣? As
noticed in [16], for any a ∈ R

K it holds:

a�D̂′′
n(u)a =

∫
z

K∑
k=1

pk(z)a2
k −

(
K∑

k=1

akpk(z)
)2

dP̂n(z)

with pk(z) = eukωk(z)/
∑K

l=1 e
ulωl(z). Define qk(z) = evkωk(z)/

∑K
l=1 e

vlωl(z),
and assume that ‖a‖2 = 1. It holds:∣∣∣a�D̂′′

n(u)a− a�D̂′′
n(v)a

∣∣∣
=

∣∣∣∣∣∣
∫ K∑

k=1
pk(z)a2

k −
(

K∑
k=1

akpk(z)
)2

−
K∑

k=1
qk(z)a2

k +
(

K∑
k=1

akqk(z)
)2

dP̂n(z)

∣∣∣∣∣∣
≤
∫ K∑

k=1

∣∣pk(z) − qk(z)
∣∣a2

k dP̂n(z)

+
∫ ∣∣∣∣∣

K∑
k=1

(pk(z) + qk(z))ak

∣∣∣∣∣ ·
∣∣∣∣∣

K∑
k=1

(pk(z) − qk(z))ak

∣∣∣∣∣ dP̂n(z)

≤
∫

‖p(z) − q(z)‖∞ dP̂n(z) +
∫

‖p(z) + q(z)‖2 · ‖p(z) − q(z)‖2 dP̂n(z)

≤ 3
√
K

∫
‖p(z) − q(z)‖2 dP̂n(z).

Furthermore, notice that p(z) is exactly the integrand in D̂′′
n(u), while q(z) is

the integrand in D̂′′
n(v). Using the same integral calculus as in the beginning of

the proof, and bounding the biggest eigenvalue of the matrices by K (as it is
an upper bound of the trace), we get that for all z it holds ‖p(z) − q(z)‖2 ≤
K‖u− v‖2. Therefore, we get for all a ∈ R

K such that ‖a‖2 = 1:∣∣∣a�D̂′′
n(u)a− a�D̂′′

n(v)a
∣∣∣ ≤ 3K2‖u− v‖∞,

and consequently∣∣∣σ2

(
D̂′′

n(u)
)
− σ2

(
D̂′′

n(v)
)∣∣∣ ≤ 3K2‖u− v‖∞.

Now, let (u1, . . . ,uNε) be an ε-coverage of U . Applying the union bound, we get
that with probability at least 1− 2K3UK

(2ε)K exp
(
− λσ2

32K2n
)

for any i ≤ Nε it holds:

σ2

(
D̂′′

n(ui)
)
≥ σ

2 .

Let v ∈ [ûn,u
∗] ⊂ U . By definition, there exists i ≤ Nε such that ‖v−ui‖∞ ≤ ε.

Therefore, we get:

σ2

(
D̂′′

n(v)
)
≥ σ2

(
D̂′′

n(ui)
)
− 3K2ε.



Statistical learning from biased training samples 6119

Taking the infimum, we have with probability 1 − 2K3UK

(2ε)K exp
(
− λσ2

32K2n
)

inf
v∈[ûn,u∗]

σ2

(
D̂′′

n(v)
)
≥ σ

2 − 3K2ε.

Choosing ε = σ
12K2 , we have with probability 1−2K2K+3 ( 6U

σ

)K exp
(
− λσ2

32K2n
)

inf
v∈[ûn,u∗]

σ2

(
D̂′′

n(v)
)
≥ σ

4 .

Collecting all arguments, for all n ≥ 16C2
λK

4/σ2 it holds with probability 1 −
M1 exp(−c1n) − 2K2K+3 ( 6U

σ

)K exp
(
− λσ2

32K2n
)
:∥∥∥D̂′

n(u∗) − D̄′(u∗)
∥∥∥

2
≥ σ

4
√
K + 1

‖ûn − u∗‖2.

The proof is finally concluded by setting M4 = 2 max
(
M1; 2K2K+3 ( 6U

σ

)K )
,

c4 = min
(
c1; λσ2/(32K2)

)
, n0,4 = max

(
16C2

λK
4/σ2; log(M4/c4)

)
, and L =

4
√
K + 1/σ.

The following key lemma allows to decompose the deviation
∣∣ ∫ ĥndP̂n −∫

hdP̄
∣∣ into different pieces that are more easily controllable. It is used for

instance to bound
∣∣L̃n(θ) − L(θ)

∣∣, see Equation (3.5).

Lemma 2. Let ĥn : Z → R, h : Z → R be two real-valued functions. We have∣∣∣∣ ∫ ĥndP̂n −
∫

hdP̄

∣∣∣∣
≤
∥∥ĥn − h

∥∥
∞ + ‖h‖∞

K∑
k=1

∣∣∣λ̂k − λk

∣∣∣ +
K∑

k=1

λ̂k

∣∣∣∣∫ hdP̂k −
∫

hdPk

∣∣∣∣ .
Proof. It holds∣∣∣∣ ∫ ĥn(z)dP̂n(z) −

∫
h(z)dP̄ (z)

∣∣∣∣
≤
∣∣∣∣∣
∫

ĥn(z)dP̂n(z) −
∫

h(z)dP̂n(z)

∣∣∣∣∣+
∣∣∣∣∫ h(z)dP̂n(z) −

∫
h(z)dP̄ (z)

∣∣∣∣
≤ sup

z

∣∣∣ĥn(z) − h(z)
∣∣∣+ ∣∣∣∣∣

K∑
k=1

λ̂k

∫
h(z)dP̂k(z) −

K∑
k=1

λk

∫
h(z)dPk(z)

∣∣∣∣∣
≤ sup

z

∣∣∣ĥn(z) − h(z)
∣∣∣+ ∣∣∣∣∣

K∑
k=1

λ̂k

∫
h(z)dP̂k(z) −

K∑
k=1

λ̂k

∫
h(z)dPk(z)

∣∣∣∣∣
+

∣∣∣∣∣
K∑

k=1
λ̂k

∫
h(z)dPk(z) −

K∑
k=1

λk

∫
h(z)dPk(z)

∣∣∣∣∣
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≤ sup
z

∣∣∣ĥn(z) − h(z)
∣∣∣+ sup

z
|h(z)|

K∑
k=1

∣∣∣λ̂k − λk

∣∣∣
+

K∑
k=1

λ̂k

∣∣∣∣∫ h(z)dP̂k(z) −
∫

h(z)dPk(z)
∣∣∣∣

Corollary 2. Let ĥn : Z → R and h : Z → R be two real-valued functions.
Assume that there exist a, b ∈ R

2 such that: a ≤ h(z) ≤ b for all z ∈ Z. If
Assumption 4 is satisfied, then for all t > 0 and n ≥ (b− a)2 log(2K)/(2λt2), it
holds with probability at least 1 − 2K exp

(
− 2λnt2

(b−a)2

)
:∣∣∣∣ ∫ ĥn(z)dP̂n(z) −

∫
h(z)dP̄ (z)

∣∣∣∣ ≤ sup
z

∣∣∣ĥn(z) − h(z)
∣∣∣+ CλK supz |h(z)|√

n
+ t.

Proof. Using Lemma 2 and Assumption 4, we have∣∣∣∣ ∫ ĥn(z)dP̂n(z) −
∫

h(z)dP̄ (z)
∣∣∣∣

≤ sup
z

∣∣∣ĥn(z) − h(z)
∣∣∣+ CλK supz |h(z)|√

n
+

K∑
k=1

λ̂k

∣∣∣∣∫ hdP̂k −
∫

hdPk

∣∣∣∣ .
Now, applying Hoeffding’s inequality gives that, for all t > 0 and all k ≤ K,

P

{∣∣∣∣ ∫ hdP̂k −
∫

hdPk

∣∣∣∣ > t

}
≤ 2 exp

(
− 2nkt

2

(b− a)2

)
≤ 2 exp

(
− 2λnt2

(b− a)2

)
.

The proof is concluded by applying the union bound.

Proposition 5. Suppose that Assumption 4 is verified. Then, for all t > 0 and
n ≥ log(2K2)/(2λt2), it holds with probability at least 1 − 2K2 exp

(
−2λnt2

)
:∥∥∥D̂′

n(u∗) − D̄′(u∗)
∥∥∥

2
≤ 2CλK

3/2
√
n

+
√
Kt.

Proof. Apply Corollary 2 for every component k of D̂′
n(u∗)− D̄′(u∗) with ĥn =

eu
∗
kωk/(

∑
l e

u∗
l ωl) − λ̂k and h = eu

∗
kωk/(

∑
l e

u∗
l ωl) − λk, and the union bound

permits to conclude.

Proof of Proposition 2. Combining Lemma 1, Propositions 4 and 5, we have
that it holds with probability at least 1 −M4 exp(−c4n) − 2K2 exp(−2λnt2):∥∥∥Ŵn −W ∗

∥∥∥
2
≤ ‖ûn − u∗‖2 + Cλ

√
K

n

≤ L
∥∥∥D̂′

n(u∗) − D̄′(u∗)
∥∥∥

2
+ Cλ

√
K

n
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≤ L

(
2CλK

3/2
√
n

+
√
Kt

)
+ Cλ

√
K

n

= L
√
Kt + Cλ

√
K(2LK + 1)√

n
.

The proof is concluded by setting γ2 = Cλ

√
K(2LK + 1), M2 = M4, c2 = c4,

M ′
2 = 2K2, c′2 = 2λ/(L2K), and n0,2 = n0,4.

C.3. Proof of Proposition 3

Recall that by Proposition 1, it holds with probability 1 −M1 exp(−c1n):

∀k ≤ K, ρ ≤ Ŵn,k ≤ 1, and ρ ≤ W ∗
k ≤ 1.

This implies for all z ∈ Z:

ρ ≤
(

K∑
l=1

λ̂lωl(z)
Ŵn,l

)−1

≤ 1
ελ

, and ρ ≤
(

K∑
l=1

λlωl(z)
W ∗

l

)−1

≤ 1
ελ

.

Using the above inequalities and the mean value theorem on t �→ 1/t, we get for
all k ≤ K:

∣∣∣Ω̂n,k − Ωk

∣∣∣ =

∣∣∣∣∣∣∣∣∣
Ŵn,k∫ (∑K

l=1
λ̂lωl

Ŵn,l

)−1
dP̂n

− W ∗
k∫ (∑K

l=1
λlωl

W∗
l

)−1
dP̄

∣∣∣∣∣∣∣∣∣
≤ 1∫ (∑K

l=1
λ̂lωl

Ŵn,l

)−1
dP̂n

∣∣∣Ŵn,k −W ∗
k

∣∣∣

+ W ∗
k

∣∣∣∣∣∣∣∣∣
1∫ (∑K

l=1
λ̂lωl

Ŵn,l

)−1

dP̂n

− 1∫ (∑K
l=1

λlωl

W∗
l

)−1
dP̄

∣∣∣∣∣∣∣∣∣
≤ 1

ρ

∣∣∣Ŵn,k −W ∗
k

∣∣∣+ 1
ρ2

∣∣∣∣∣∣
∫ (

K∑
l=1

λ̂lωl

Ŵn,l

)−1

dP̂n −
∫ (

K∑
l=1

λlωl

W ∗
l

)−1

dP̄

∣∣∣∣∣∣ .
(C.9)

The first term in Equation (C.9) can be bounded using Proposition 2. For
the second, we can use Corollary 2. First we must compute:∣∣∣∣∣∣
(

K∑
l=1

λ̂lωl(z)
Ŵn,l

)−1

−
(

K∑
l=1

λlωl(z)
W ∗

l

)−1∣∣∣∣∣∣ ≤
(

1
ελ

)2
∣∣∣∣∣
K∑
l=1

λ̂lωl(z)
Ŵn,l

−
K∑
l=1

λlωl(z)
W ∗

l

∣∣∣∣∣
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≤
(

1
ελ

)2 K∑
l=1

∣∣∣λ̂l − λl

∣∣∣
Ŵn,l

+ λl

∣∣∣∣∣ 1
Ŵn,l

− 1
W ∗

l

∣∣∣∣∣
≤
(

1
ελ

)2
(
CλK

ρ
√
n

+ 1
ρ2

K∑
l=1

λl

∣∣∣Ŵn,l −W ∗
l

∣∣∣) .

Proposition 2 then allows to bound the last term with overwhelming probability.

Next, applying Corollary 2 with ĥn =
(∑

l
λ̂lωl

Ŵn,l

)−1

and h =
(∑

l
λlωl

W∗
l

)−1
, we

obtain that for all t1, t2 > 0 with probability at least 1 − M2 exp(−c2n) −
M ′

2 exp(−c′2nt
2
1) − 2K exp(−2ε2λ3nt22) it holds for all k ≤ K:∣∣∣Ω̂n,k − Ωk

∣∣∣
≤ 1

ρ

(
t1 + γ2√

n

)
+ 1

ρ2

(
CλK

ε2λ2ρ
√
n

+ 1
ε2λ2ρ2

(
t1 + γ2√

n

)
+ CλK

ελ
√
n

+ t2

)

= t1

(
1
ρ

+ 1
ε2λ2ρ4

)
+ t2

ρ2 +
(
γ2

ρ
+ CλK

ε2λ2ρ3
+ γ2

ε2λ2ρ4
+ CλK

ελρ2

)
1√
n
.

The proof is concluded by setting M3 = M2, c3 = c2, M ′
3 = 2 max

(
M ′

2; 2K
)
,

c′3 = max

⎛⎜⎝ c′2

4
(

1
ρ + 1

ε2λ2ρ4

)2 ; ε
2λ3ρ4

2

⎞⎟⎠ ,

γ3 = γ2

ρ
+ CλK

ε2λ2ρ3
+ γ2

ε2λ2ρ4
+ CλK

ελρ2 ,

and n0,3 = n0,2.

C.4. Proof of Theorem 1

Let θ ∈ Θ. The first step of the proof consists in using Lemma 2 with the choices

ĥn,θ(z) = ψ(z, θ)
(∑K

k=1
λ̂kωk(z)

Ω̂n,k

)−1

, and hθ(z) = ψ(z, θ)
(∑K

k=1
λkωk(z)

Ωk

)−1
.

We obtain∣∣∣L̃n(θ) − L(θ)
∣∣∣

=

∣∣∣∣∣∣
∫

ψ(z, θ)
(

K∑
k=1

λ̂kωk(z)
Ω̂n,k

)−1

dP̂n(z) −
∫

ψ(z, θ)
(

K∑
k=1

λkωk(z)
Ωk

)−1

dP̄ (z)

∣∣∣∣∣∣
=
∣∣∣∣∫ ĥn(z, θ)dP̂n(z) −

∫
h(z, θ)dP̄ (z)

∣∣∣∣
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≤ sup
z

∣∣∣ĥn,θ(z) − hθ(z)
∣∣∣ + sup

z
|hθ(z)|

K∑
k=1

|λ̂k − λk| +
K∑

k=1
λ̂k

∣∣∣∣∫ hθ d(P̂k − P )
∣∣∣∣

≤ sup
z

∣∣∣ĥn,θ(z) − hθ(z)
∣∣∣ + CλK supz |hθ(z)|√

n
+ max

k≤K

∣∣∣∣∫ hθ d(P̂k − P )
∣∣∣∣ .
(C.10)

Now, by the definitions of Ω̂n and Ω, for all k ≤ K, we have

ελρ ≤ Ω̂n,k ≤ 1
ρ
, and ελρ ≤ Ωk ≤ 1.

Hence, for all z ∈ Z it holds

0 ≤
(

K∑
k=1

λ̂kωk(z)
Ω̂n,k

)−1

≤ 1
ελρ

, and 0 ≤
(

K∑
k=1

λkωk(z)
Ωk

)−1

≤ 1
ελ

.

As |ψ(z, θ)| ≤ 1, this implies that supz,θ |hθ(z)| ≤ 1/(ελ). And we also have

∣∣∣ĥn,θ(z) − hθ(z)
∣∣∣ =

∣∣∣∣∣∣ψ(z, θ)
(

K∑
k=1

λ̂kωk(z)
Ω̂n,k

)−1

− ψ(z, θ)
(

K∑
k=1

λkωk(z)
Ωk

)−1∣∣∣∣∣∣
≤
(

1
ελρ

)2
∣∣∣∣∣

K∑
k=1

λ̂kωk(z)
Ω̂n,k

−
K∑

k=1

λkωk(z)
Ωk

∣∣∣∣∣ ,
≤
(

1
ελρ

)3
CλK√

n
+
(

1
ελρ

)4 K∑
k=1

λk

∣∣∣Ω̂n,k − Ωk

∣∣∣ .
Plugging into Equation (C.10), and taking the supremum over θ ∈ Θ, we obtain

sup
θ∈Θ

∣∣∣L̃n(θ) − L(θ)
∣∣∣ ≤( 1

ελρ

)3
CλK√

n
+
(

1
ελρ

)4 K∑
k=1

λk

∣∣∣Ω̂n,k − Ωk

∣∣∣
+ CλK

ελ
√
n

+ max
k

sup
θ∈Θ

∣∣∣∣∫ hθ(z)d(P̂k − P )(z)
∣∣∣∣ (C.11)

Thus, we have bounded supθ∈Θ |L̃n(θ) − L(θ)| by a sum involving: (1) non-
random terms scaling as O(1/

√
n), (2) random terms independent from θ which

can be controlled using Proposition 3, and (3) the supremum of an empirical
process. We can now use standard arguments such as chaining [42, 43] to bound
this last term. Let k ≤ K, and t > 0, we have

P

{
sup
θ∈Θ

∣∣∣∣∫ hθ(z)d(P̂k − P )(z)
∣∣∣∣ > t

}
(C.12)

= P

{
sup
θ∈Θ

∣∣∣∣∫ ελh(z, θ)d(P̂k − P )(z)
∣∣∣∣ > ελt

}
.
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By applying Theorem 2.14.9 in [43] to the class

GΘ =
{
ελh(·, θ) : θ ∈ Θ

}
=

⎧⎨⎩ελ

(
K∑

k=1

λkωk(·)
Ωk

)−1

ψ(·, θ) : θ ∈ Θ

⎫⎬⎭
which also satisfies Assumption 8, since it is a pointwise multiplication of FΘ ={
ψ(·, θ) : θ ∈ Θ

}
by a function with values in [0, 1], we obtain that (C.12) is

upper bounded by(
Δελ

√
nkt√
r

)r

e−2(ελ)2nkt
2 ≤

(
Δελ√

r

)r

n
r
2 tre−2ε2λ3nt2 (C.13)

where Δ is a constant that depends only on CΘ. Finally, plugging (C.13) with
the union bound and Proposition 3 into (C.11), we get that with probability at
least 1 −M3e

−c3n −M ′
3e

−c′3nt
2
1 −K

(
Δελ√

r

)r
n

r
2 tr2 e−2ε2λ3nt22

sup
θ∈Θ

∣∣∣L̃n(θ) − L(θ)
∣∣∣ ≤ (

1
ελρ

)3
CλK√

n
+
(

1
ελρ

)4(
γ3√
n

+ t1

)
+ CλK

ελ
√
n

+ t2 ,

or again, we have with probability at least 1−M3e
−c3n−M ′

3 exp
(
− c′3(ελρ)

8nt2

4

)
−

K
(

Δελ

2
√
r

)r
n

r
2 tr exp

(
− ε2λ3nt2

2

)
sup
θ∈Θ

∣∣∣L̃n(θ) − L(θ)
∣∣∣ ≤ γ√

n
+ t ,

with
γ = CλK

(ελρ)3 + γ3

(ελρ)4 + CλK

ελ
.

The proof is concluded by setting M = M3, c = c3, M ′ = M ′
3, M ′′ = K

(
Δελ

2
√
r

)r
,

c′ = c′3(ελρ)8/4, c′′ = (ε2λ3)/2, and n0 = n0,3.

C.5. Proof of Theorem 2

Let F =
{
z �→ I{z ≤ τ} : τ ∈ R

}
. As discussed in the main body of the

paper, applying Theorem 1 to F in a straightforward fashion yields a bound
that does not match the standard DKW inequality. To match the rate of the
DKW inequality, we have to develop a refined analysis, specifically tailored to
classes which are composed of indicator functions. We introduce the following
complexity assumption [43, Chapter 14], that strengthens Assumption 8.

Assumption 9. The class F = FC is composed of indicator functions of sets,
i.e., FC = {z �→ I{z ∈ C} : C ∈ C}, with C a collection of sets of satisfying for
some constants CC > 0 and r ≥ 1

sup
Q

N (ζ, C, L1(Q)) ≤ (CC/ζ)r.
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Furthermore, for k ≤ K and δ > 0, let Ck,δ = {C ∈ C : |Pk(C) − 1/2| < δ}. We
also assume the existence of C ′

C, r
′, r′′ such that for every δ ≥ ζ > 0

sup
k≤K

N (ζ, Ck,δ, L1(Pk)) ≤ C ′
C δr

′
ζ−r′′ .

Note that a class FC of finite VC dimension V < +∞ verifies the first in-
equality with r = V − 1, and CC that depends only on V , see e.g., Theorem
2.6.4 in [43]. Under Assumption 9, a tighter control of the empirical processes
in decomposition (3.5) is possible, yielding the following theorem.

Theorem 3. Suppose that Assumptions 4, 5, 6, 7, and 9 are satisfied. Then,
there exist M,M ′,M ′′, c, c′, c′′, γ, n0, depending only on K,Cλ, λ, κ, ε, σ, CC , C

′
C,

r, r′, and r′′ such that for all t > 0 and n ≥ n0 it holds:

P

{
sup
θ∈Θ

∣∣∣L̃n(θ)−L(θ)
∣∣∣ > γ√

n
+ t

}
≤ Me−cn+M ′e−c′nt2 +(nt2)r

′′−r′M ′′e−c′′nt2 .

Proof. The proof follows the same path as that of Theorem 1. In particular, we
start from the same decomposition (C.11), but Assumption 9 now allows a better
control on the empirical processes that compose the last term. Specifically, for
every k ≤ K, Theorem 2.14.14 in [43] gives that

P

{
sup
C∈C

∣∣∣∣∫ hC(z)d(P̂k − P )(z)
∣∣∣∣ > t

}
≤ Δ(ελ

√
nkt)2r

′′−2r′e−2ε2λ2nkt
2

≤ Δ(ελ
√
nt)2r

′′−2r′e−2ε2λ3nt2

where Δ is a constant that depends only on CC , C
′
C , r, r

′, and r′′. Plugging into
Equation (C.11), we get that supC∈C

∣∣∣L̃n(C)−L(C)
∣∣∣ ≤ γ√

n
+ t with probability

at least 1 −M3e
−c3n −M ′

3 exp
(
− c′3(ελρ)

8nt2

4

)
−KΔ(ελ

√
nt)2r′′−2r′ e−

ε2λ3nt2

2 .
We conclude by setting M = M3, c = c3, M ′ = M ′

3, c′ = c′3(ελρ)8/4, M ′′ =
KΔ(ελ)2r′′−2r′ , c′′ = (ε2λ3)/2, and n0 = n0,3.

Theorem 2 is actually a corollary of Theorem 3, applied to the class F ={
z �→ I{z ≤ τ} : τ ∈ R

}
.

Proof of Theorem 2. The class F =
{
z �→ I{z ≤ τ} : τ ∈ R

}
satisfies Assump-

tion 9 with r = r′ = r′′ = 1, see [43, page 247]. Applying Theorem 3, we
obtain

P

{
sup
z∈R

∣∣∣(P̃n − P )((−∞, z])
∣∣∣ > γ√

n
+ t

}
≤ Me−cn + M ′e−c′nt2 + M ′′e−c′′nt2

≤ Me−cn + 2 max(M ′;M ′′)e−min(c′;c′′)nt2 .
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Appendix D: Additional experiments

In this section we provide additional experimental results, both on a synthetic
estimation problem (Appendix D.1) and real data learning applications, see
Appendix D.2.

D.1. Estimation experiments

Recall that the synthetic data here consist of 1000 train and 300 test realizations
of a 3-dimensional Gaussian random vector. The goal is to predict the norm of
the realizations through different learning algorithms: Linear Regression (LR),
Kernel Ridge Regression (KRR), Support Vector Regression (SVR) and Random
Forest (RF). They are implemented with default hyperparameters, as focus is
not on the performances per se, but rather on the impact of the debiasing
for a given model. The biasing functions ωk used here are indicator functions
of subspaces of R

3. These functions (or equivalently the subsets) are chosen
according to twelve different scenarios, so as to contrast the debiasing effects.
When one biasing function is the identity (i.e., one subspace is R3), the algorithm
is also trained on the sole unbiased sample. However, this approach does not
benefit from the whole dataset, and performances reported compare unfavorably
to debiased ERM. Numerical results are gathered in Tables 2 and 3. For scenarios
in which no subspace is R

3, two lines are displayed: the upper one corresponds
to the standard ERM (ERM), while the second one is achieved through the
debiased approach we promote (db-ERM). When one subspace is R

3, a third
line is displayed, which corresponds to the result obtained with training on the
sole unbiased sample (ub-ERM).

We now thoroughly describe the first six scenarios, that depict situations
where selection bias applies directly to the norm of the realizations, and whose
visualizations are available in Figure 5. To understand scenario a), one must have
in mind that 1.5 is approximately the median value of ‖x‖ when x ∼ N (03, I3)
(see the χ2(3) law). Hence, partitioning the whole space using I{‖x‖ ≤ 1.6} and
I{‖x‖ ≥ 1.4} (the two subspaces must intersect) divides R3 into parts of roughly
equal importance. Considering two samples of equal size, each associated to one
of these biasing functions, should therefore be almost equivalent to considering
blindly the concatenated sample. Consequently, debiasing ERM in this scenario
should not lead to any particular improvement, what is verified empirically.
As no subset is the full space, no third line is provided. On the contrary, if
the samples were of different sizes, one should expect an improvement when
using debiasing ERM. In order to emphasize this effect, scenario b) considers
even strongly concentrated points around 0, with I{‖x‖ ≤ 0.8}. A sample of
size 900 is drawn from this part of the space, which usually represents 10% of
the distribution, while a 100 long unbiased sample completes the scenario. As
expected, the debiasing ERM appears to be less fooled by the outnumbered
examples with small norm, and induces a significant improvement compared
to the naive ERM. Furthermore, ERM based the sole unbiased sample is also
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Fig 5: Different scenarios when selection bias applies to the vector’s norm
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Table 2

Mean Squared Errors by 4 Algorithms on the 6 Norm Biased Scenarios.

LR KRR SVR RF

a) ERM 4.6e-1 ± 4.0e-2 6.8e-2 ± 2.9e-2 6.6e-3 ± 2.7e-3 3.4e-2 ± 6.7e-3
db-ERM 4.6e-1 ± 4.0e-2 6.3e-2 ± 2.8e-2 6.5e-3 ± 2.6e-3 3.4e-2 ± 6.6e-3

ERM 1.3e+0 ± 9.8e-2 3.2e-1 ± 7.5e-2 3.8e-2 ± 1.2e-2 1.5e-1 ± 3.2e-2
b) db-ERM 4.8e-1 ± 4.8e-2 1.8e-1 ± 5.6e-2 4.4e-2 ± 1.3e-2 1.2e-1 ± 2.8e-2

ub-ERM 4.8e-1 ± 4.9e-2 3.4e-1 ± 7.8e-2 3.0e-2 ± 9.7e-3 1.3e-1 ± 2.8e-2

ERM 7.2e-1 ± 6.6e-2 1.1e-1 ± 3.7e-2 1.0e-2 ± 4.0e-3 5.2e-2 ± 1.1e-2
c) db-ERM 4.6e-1 ± 3.8e-2 7.7e-2 ± 3.1e-2 1.0e-2 ± 3.7e-3 4.5e-2 ± 9.0e-3

ub-ERM 4.6e-1 ± 3.8e-2 1.0e-1 ± 3.7e-2 1.1e-2 ± 4.1e-3 4.6e-2 ± 8.9e-3

d) ERM 7.0e-1 ± 6.6e-2 1.0e-1 ± 3.6e-2 9.8e-3 ± 3.8e-3 5.1e-2 ± 1.0e-2
db-ERM 4.6e-1 ± 3.8e-2 7.5e-2 ± 3.1e-2 9.9e-3 ± 3.6e-3 4.4e-2 ± 8.5e-3

e) ERM 4.6e-1 ± 4.0e-2 6.2e-2 ± 2.7e-2 6.2e-3 ± 2.5e-3 3.4e-2 ± 6.7e-3
db-ERM 4.6e-1 ± 3.8e-2 6.0e-2 ± 2.7e-2 6.2e-3 ± 2.4e-3 3.3e-2 ± 6.3e-3

ERM 7.1e-1 ± 6.8e-2 1.0e-1 ± 3.6e-2 9.7e-3 ± 3.6e-3 5.1e-2 ± 1.1e-2
f) db-ERM 4.6e-1 ± 3.9e-2 7.4e-2 ± 3.0e-2 9.9e-3 ± 3.4e-3 4.4e-2 ± 8.8e-3

ub-ERM 4.7e-1 ± 4.1e-2 1.7e-1 ± 5.1e-2 1.7e-2 ± 5.8e-3 6.9e-2 ± 1.5e-2

globally outperformed. Scenario c) is similar to scenario b), with less imbalanced
samples. Debiasing ERM remains the most successful approach, but by expected
lower margins. What happens if one attempts to fight the selection bias towards
03 by considering a second sample biased towards great norms, rather than an
unbiased one? It is the purpose of scenarios d) and e) to investigate this option,
using I{‖x‖ ≥ 0.5} as a second biasing function. Almost no change can be
acknowledged when the sample sizes are the same as in scenario c) (see scenario
d)). However, the advantage of debiasing ERM decreases with the proportion of
small norm points, as illustrated by scenario e). Finally, scenario f) illustrates
that the number of samples is of low importance. If the sample biased towards
small norms is large enough, debiasing ERM outperforms all other methods,
even if two additional samples are considered, one biased towards large norms,
and one unbiased. All numerical results can be found in Table 2 and attest that:
1) ignoring selection bias may have dramatic consequences 2) discarding some
data and learning only on the unbiased sample – when it exists – is not a viable
solution either, thus endorsing the debiased approach we promote.

One may however argue that results presented in Table 2 overestimate the
debiasing effect, as bias occur precisely on the problem’s target. We now present
similar results obtained when selection bias applies on on one component of the
Gaussian only, and not on the norm itself. Again, six different scenarios have
been investigated, and depicted in Figure 6, while complete numerical results
are gathered in Table 3. Scenarios g) and h) are analogous to scenarios b) and
c), except that only one component, x0, is now biased towards small values
using I{|x0| < 0.1}. The improvements induced by debiasing ERM remains
substantial, and decrease expectedly as the unbiased sample becomes larger
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(scenario h)). Scenario i) illustrates that debiasing ERM may improve the results
even if a bias applies on large values, using I{x0 > 1.5} for instance. However,
this bias does not distort the predictions towards small norm values, inducing
smaller squared norm errors, hence the smaller benefit of debiasing. Scenario j)
is analogous to scenario a), but with 3 samples, and leads to similar conclusions:
when the blind concatenated sample is very similar to an unbiased sample (the
interval |x0| < 0.1 indeed represents 10% of the distribution), debiased ERM
is of lower interest. But when the proportions are not respected anymore, as
in scenario k), it significantly increases the performances. Finally, scenario l)
involves 4 samples, with similar conclusions as above. Again, and although bias
does not apply on the target itself, but rather on one simple covariate, the
debiasing approach naturally yields improvements, both upon the standard and
the unbiased methods.

Table 3

Mean Squared Errors by 4 Algorithms on the 6 First Component Biased Scenarios

LR KRR SVR RF

ERM 5.6e-1 ± 5.7e-2 2.0e-1 ± 5.8e-2 1.5e-2 ± 5.4e-3 1.4e-1 ± 3.2e-2
Sc. g) db-ERM 4.8e-1 ± 4.5e-2 1.6e-1 ± 5.3e-2 3.8e-2 ± 1.3e-2 8.6e-2 ± 2.1e-2

ub-ERM 4.8e-1 ± 4.6e-2 3.4e-1 ± 8.1e-2 3.0e-2 ± 1.0e-2 1.3e-1 ± 3.0e-2

ERM 4.9e-1 ± 4.7e-2 8.7e-2 ± 3.4e-2 8.3e-3 ± 3.2e-3 4.4e-2 ± 9.1e-3
Sc. h) db-ERM 4.6e-1 ± 4.0e-2 7.6e-2 ± 3.1e-2 1.0e-2 ± 3.5e-3 4.1e-2 ± 8.1e-3

ub-ERM 4.6e-1 ± 4.0e-2 1.0e-1 ± 3.7e-2 1.1e-2 ± 3.9e-3 4.6e-2 ± 9.3e-3

ERM 5.5e-1 ± 4.8e-2 6.7e-2 ± 2.9e-2 6.7e-3 ± 2.3e-3 3.9e-2 ± 7.9e-3
Sc. i) db-ERM 4.6e-1 ± 3.8e-2 6.7e-2 ± 2.9e-2 8.7e-3 ± 3.0e-3 3.8e-2 ± 7.8e-3

ub-ERM 4.6e-1 ± 3.9e-2 1.0e-1 ± 3.7e-2 1.1e-2 ± 3.9e-3 4.6e-2 ± 9.0e-3

Sc. j) ERM 4.6e-1 ± 4.0e-2 6.4e-2 ± 2.9e-2 6.4e-3 ± 2.6e-3 3.3e-2 ± 6.9e-3
db-ERM 4.6e-1 ± 4.0e-2 6.3e-2 ± 2.9e-2 6.5e-3 ± 2.6e-3 3.3e-2 ± 6.8e-3

Sc. k) ERM 4.9e-1 ± 4.6e-2 8.7e-2 ± 3.5e-2 8.3e-3 ± 3.4e-3 4.4e-2 ± 9.2e-3
db-ERM 4.6e-1 ± 4.0e-2 7.6e-2 ± 3.3e-2 1.0e-2 ± 3.7e-3 4.1e-2 ± 8.6e-3

ERM 4.9e-1 ± 4.7e-2 8.6e-2 ± 3.3e-2 8.2e-3 ± 3.2e-3 4.4e-2 ± 8.8e-3
Sc. l) db-ERM 4.6e-1 ± 4.0e-2 7.5e-2 ± 3.1e-2 9.9e-3 ± 3.5e-3 4.1e-2 ± 8.3e-3

ub-ERM 4.7e-1 ± 4.2e-2 2.0e-1 ± 5.8e-2 2.0e-2 ± 7.0e-3 8.1e-2 ± 1.7e-2

D.2. Second experiments on the Adult dataset

In this subsection, we present another experiment on the Adult dataset showing
the benefit of the debiasing approach we promote. Following a similar reasoning
as that of Section 4, first notice that the age of the subject has a strong impact on
his/her probability to earn more than 50k$ a year (see Figure 7(a)). Moreover,
and as for the example based on years of education, this scenario cannot be cast
as a Covariate Shift problem. Indeed, the conditional laws cannot be assumed
to remain identical. Figure 7(b) illustrates this phenomenon by showing the
dependence of the income with respect to the years of education by age group.
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Fig 6: Different scenarios when selection bias applies to vector’s first dimension
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Fig 7: Proportion of people earning more than 50k with respect to age (left),
and with respect to years of education by age group (right)

Table 4

Prediction errors on the Adult dataset, bias on age, averaged over 100 runs.

LogReg RF

Standard ERM 21.26 ± 1.24 16.48 ± 0.52
Debiased ERM 19.10 ± 1.09 15.91 ± 0.62
Unbiased Sample 22.04 ± 1.96 19.54 ± 1.17

Clearly, middle age people take more advantage of their education than younger
people, which is totally normal as they are working for a longer period. This
observation makes simple covariate shift impossible to consider here. If middle
age people happen to be over-represented in the training dataset, it should
induce a general over-estimation of the probability, unless our general debiasing
procedure is used. This setting has been simulated as follows. From the initial
observations, 5 000 are kept for the testing phase. From the rest are sampled
two subgroups: one of middle age people of size 9 900, and one unbiased (i.e.,
sampled from the entire population) of size 100. A Logistic Regression (LogReg)
and a Random Forest (RF) are then trained on the concatenation of the 10 000
observations, with and without debiasing procedure, as well as on the small
second sample of size 100 only. Numerical results are summarized in Table 4
in terms of prediction errors. Again, the debiased version of the ERM yields
the best performances, and for both algorithms. The gaps are however less
spectacular than that presented in Section 4. It is probably due to a softer
biasing effect than the one achieved when it applies to the years of education.
The less striking difference between conditional laws (Figure 4 and Figure 7(b))
is another marker that the debiasing effect expected in this latter example is
less important.
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