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1. Introduction

1.1. Problem setup

Suppose we have two independent random samples {X01, . . . , X0n0} and {X11,
. . . , X1n1} from two populations with cumulative distribution functions (CDFs)
F0 and F1, respectively. The dimension of Xij can be one or greater than one. We
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assume that the CDFs F0 and F1 are linked through a semiparametric density
ratio model (DRM) (Anderson, 1979, Qin, 2017),

dF1(x) = exp{α + β�q(x)}dF0(x) = exp{θ�Q(x)}dF0(x), (1.1)

where dFi(x) denotes the density of Fi(x) for i = 0 and 1; θ = (α,β�)� are
the unknown parameters for the DRM; Q(x) = (1, q(x)�)� with q(x) being a
prespecified, nontrivial function of dimension d; and the baseline distribution
F0 is unspecified. We further assume that the main parameters of interest can
be express and/or certain auxiliary information about F0, F1, and θ is available
in the form of functionally independent unbiased estimating equations (EEs):

E0{g(X;ψ,θ)} = 0, (1.2)

where E0(·) refers to the expectation operator with respect to F0, ψ consists of
the main parameters of interest and/or nuisance parameters and has dimension
p, g(·; ·) is r-dimensional, and r ≥ p. In this paper, our goal is twofold:

(1) we develop new and general semiparametric inference procedures for (ψ,θ)
and (F0, F1) along with their quantiles under Model (1.1) with unbiased
EEs in (1.2);

(2) we propose a new testing procedure on the validity of (1.2) under Model
(1.1), which leads to a practical validation method on the usefulness of
the auxiliary information.

The semiparametric DRM in (1.1) provides a flexible and useful platform
for combining information from multiple sources (Qin, 2017). It enables us to
utilize information from both F0 and F1 to improve inferences on the unknown
model parameters and the summary population quantities of interest (Chen and
Liu, 2013, Cai et al., 2017, Zhuang et al., 2019). With the unspecified F0, the
DRM embraces many commonly used statistical models including distributions
of exponential families (Kay and Little, 1987). For example, when q(x) = log x,
the DRM includes two log-normal distributions with the same variance with
respect to the log-scale, as well as two gamma distributions with the same scale
parameter; when q(x) = x, it includes two normal distributions with different
means but a common variance and two exponential distributions with different
rates. Moreover, it has a natural connection to the well-studied logistic regression
if one treats D = 0 and 1 as indicators for the observations from F0 and F1,
respectively. Among others, Anderson (1979) and Qin and Zhang (1997) noticed
that the DRM is equivalent to the logistic regression model via the fact that

P (D = 1|x) = exp{α∗ + β�q(x)}
1 + exp{α∗ + β�q(x)}

, (1.3)

where α∗ = α + log{P (D = 1)/P (D = 0)}.
The EEs in (1.2) play two important roles. First, they can be used to de-

fine many important summary population quantities such as the ratio of the
two population means, the centered and uncentered moments, the generalized
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entropy class of inequality measures, the CDFs, and the quantiles of each pop-
ulation. See Example 1 below and Section 7.1 for more examples. Second, they
provide a unified platform for the use of auxiliary information. With many data
sources being increasingly available, it becomes more feasible to access auxiliary
information, and using such information to enhance statistical inference is an im-
portant and active research topic in many fields. Calibration estimators, which
are widely used in survey sampling, missing data problems and causal inference,
rely heavily on the use of auxiliary information; see Wu and Thompson (2020)
and the references therein. Many economics problems can be addressed using
similar methodology. For instance, knowledge of the moments of the marginal
distributions of economic variables from census reports can be used in combi-
nation with microdata to improve the parameter estimates of microeconomic
models (Imbens and Lancaster, 1994). Examples 2 and 3 below illustrate the
use of auxiliary information through EEs in the form of (1.2).
Example 1 (The mean ratio of two populations). The ratio of the means of
two positive skewed distributions is often of interest in biomedical research (Zhou
et al., 1997, Wu et al., 2002). Let μ0 and μ1 be the means with respect to F0
and F1, respectively. Further, let δ = μ1/μ0 denote the mean ratio of the two
populations. For inference on δ, a common assumption is that both distributions
are lognormal (Zhou et al., 1997, Wu et al., 2002). To alleviate the risk of
parametric assumptions, we could use the DRM in (1.1) with q(x) = log x or
q(x) = (log x, log2 x)� depending on whether or not the variances with respect
to the log-scale are the same. Then, under the DRM (1.1), δ can be defined
through the following EE:

g(x;ψ,θ) = δx− x exp{θ�Q(x)},
with ψ = δ. When additional information is available, we may add more EEs
to improve the estimation efficiency; see Section 4.1 for further detail.
Example 2 (Retrospective case-control studies with auxiliary information).
Consider a retrospective case-control study with D = 1 or 0 representing diseased
or disease-free status, and X representing the collection of risk factors. Note that
the two samples are collected retrospectively, given the diseased status. Let F0
and F1 denote the CDF of X given D = 0 and D = 1, respectively. Assume
that the relationship between D and X can be modeled by the logistic regression
specified in (1.3). Then, using the equivalence between the DRM and the logistic
regression discussed above, F0 and F1 satisfy the DRM (1.1).

Qin et al. (2015) used covariate-specific disease prevalence information to
improve the power of case-control studies. Specifically, let X = (Y,Z)� with Y
and Z being two risk factors. Assume that we know the disease prevalence at
various levels of Y : φ(al−1, al) = P (D = 1|al−1 < Y ≤ al) for l = 1, . . . , k.
Let π = P (D = 1) be the overall disease prevalence. Using Bayes’ formula,
the information in the φ(al−1, al)’s can be summarized as E0{g(X;ψ,θ)} = 0,
where ψ = π and the lth component of g(x;ψ,θ) is

gl(x;ψ,θ) = I(al−1 < x ≤ al)
[

π

1 − π
exp{θ�Q(x)} − φ(al−1, al)

1 − φ(al−1, al)

]
. (1.4)
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Chatterjee et al. (2016) improved the internal study by using summary-level
information from an external study. Suppose X = (Y �, Z�)�, where Y is avail-
able for both the internal and external studies, while Z is available for only
the internal study. Assume that the external study provides the true coefficients
(α∗

Y ,β
∗
Y ) for the following logistic regression model, which may not be the true

model:

h(Y ;αY ,βY ) = P (D = 1|Y ) = exp(α + β�
Y Y )

1 + exp(α + β�
Y Y )

.

This assumption is reasonable when the total sample size n = n0 + n1 satisfies
n/nE → 0, where nE is the total sample size in the external study. Further,
assume that the joint distribution of (D,X) is the same for both the internal
and external studies. Let h(y) = h(y;α∗

Y ,β
∗
Y ). In Section 7.2, we argue that if

the external study is a prospective case-control study, then E0{g(X;ψ,θ)} = 0,
where

g(x;ψ,θ) = [−(1 − π)h(y) + π exp{θ�Q(x)}{1 − h(y)}](1, y�)� (1.5)

with ψ = π; if the external study is a retrospective case-control study, then
E0{g(X;θ)} = 0, where

g(x;θ) = [−(1 − πE)h(y) + πE exp{θ�Q(x)}{1 − h(y)}](1, y�)� (1.6)

with πE being the proportion of diseased individuals in the external study.

Example 3 (A two-sample problem with common mean). Tsao and Wu (2006)
considered two populations with a common mean. This type of problems occurs
when two “instruments” are used to collect data on a common response variable,
and these two instruments are believed to have no systematic biases but differ
in precision. The observations from the two instruments then form two samples
with a common population mean. In the literature, there has been much interest
in using the pooled sample to improve inferences. A common assumption is that
the two samples follow normal distributions with a common mean but different
variances (Tsao and Wu, 2006). To gain robustness with respect to the paramet-
ric assumption, we may use the DRM (1.1) with q(x) = (x, x2)�. Under this
model, the common-mean assumption can be incorporated via the EE:

E0{X exp{θ�Q(X)} −X} = 0. (1.7)

1.2. Literature review

The DRM has been investigated extensively because of its flexibility and effi-
ciency. For example, it has been applied to multiple-sample hypothesis-testing
problems (Fokianos et al., 2001, Cai et al., 2017, Wang et al., 2017, 2018) and
quantile and quantile-function estimation (Zhang, 2000, Chen and Liu, 2013,
Chen et al., 2021a). These inference problems can be viewed as special cases,
without auxiliary information, of the first goal to be achieved in this paper.
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Other applications of the DRM include receiver operating characteristic (ROC)
analysis (Qin and Zhang, 2003, Chen et al., 2016, Yuan et al., 2021), inference
under semiparametric mixture models (Qin, 1999, Zou et al., 2002, Li and Qin,
2011, Li et al., 2017, Yuan et al., 2022), the modeling of multivariate extremal
distributions (de Carvalho and Davison, 2014), and dominance index estimation
(Zhuang et al., 2019). Recently, Li et al. (2018) studied maximum empirical
likelihood estimation (MELE) and empirical likelihood ratio (ELR) based con-
fidence intervals (CIs) for a parameter defined as ψ =

∫
u(x;θ)dF0(x), where

u(·; ·) is a one-dimensional function. They did not consider auxiliary informa-
tion, and because of the specific form of ψ, their results do not apply to the
mean ratio discussed in Example 1. Zhang et al. (2022) investigated the ELR
statistic for quantiles under the DRM and showed that the ELR-based confi-
dence region of the quantiles is preferable to the Wald-type confidence region.
Again, they did not consider auxiliary information. In summary, the existing lit-
erature on DRMs focuses on cases where there is no auxiliary information, and
furthermore, there is no general theory available to handle parameters defined
through the EEs in (1.2).

Using the connection of the DRM to the logistic regression model, Qin et al.
(2015) studied the MELE of θ and the ELR statistic for testing a parameter
in θ under Model (1.1) with the unbiased EEs in (1.4). Chatterjee et al. (2016)
proposed constrained maximum likelihood estimation for the unknown param-
eters in the internal study using summary-level information from an external
study. In Section 7.2, we argue that their results are applicable to the MELE of
θ under Model (1.1) with the unbiased EEs in (1.5) but not to the MELE of θ
under Model (1.1) with the unbiased EEs in (1.6). Furthermore, they did not
consider the ELR statistic for the unknown parameters. Qin et al. (2015) and
Chatterjee et al. (2016) focused on how to use auxiliary information to improve
inference on the unknown parameters, and they did not check the validity of
that information or explore inferences on the CDFs (F0, F1) and their quantiles.

1.3. Our contributions

With two-sample observations from the DRM (1.1), we use the empirical likeli-
hood (EL) of Owen (1988, 2001) to incorporate the unbiased EEs in (1.2). We
show that the MELE of (ψ,θ) is asymptotically normal, and its asymptotic
variance will not decrease when an EE in (1.2) is dropped. We also develop
an ELR statistic for testing a general hypothesis about (ψ,θ), and show that
it has a χ2 limiting distribution under the null hypothesis. The result can be
used to construct the ELR-based confidence region for (ψ,θ). Similar results
are obtained for inferences on (F0, F1) and their quantiles. Finally, we construct
an ELR statistic with the χ2 null limiting distribution to test the validity of
some or all of the EEs in (1.2).

We make the following observations:

(1) Our results on the two-sample DRMs contain more advanced development
than those in Qin and Lawless (1994) for the one-sample case.
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(2) Our inferential framework and theoretical results are very general. The re-
sults in Qin et al. (2015) and Chatterjee et al. (2016) for case-control stud-
ies are special cases of our theory for an appropriate choice of g(x;ψ,θ)
in (1.2). Our results are also applicable to cases that are not covered by
these two earlier studies, e.g., Example 2 with the EEs in (1.6) and Ex-
ample 3.

(3) Our proposed ELR statistic, to our best knowledge, is the first formal
procedure to test the validity of auxiliary information under the DRM or
for case-control studies.

(4) Our proposed inference procedures for (F0, F1) and their quantiles in the
presence of auxiliary information are new to the literature.

The rest of this paper is organized as follows. In Section 2, we develop the
EL inferential procedures and study the asymptotic properties of the MELE
of (ψ,θ). We also investigate the ELR statistics for (ψ,θ) and for testing the
validity of the EEs in (1.2). In Section 3, we discuss inference procedures for
(F0, F1) and their quantiles. Simulation results are reported in Section 4, and
two real-data examples are presented in Section 5. We conclude the paper with a
discussion in Section 6. For convenience of presentation, all the technical details
are given in the Section 7.

2. Empirical likelihood and inference on (ψ, θ)

In this section, we first develop the EL formulation under the DRM (1.1) with
the unbiased EEs in (1.2). With two samples {X01, . . . , X0n0} and {X11, . . . ,
X1n1} from F0 and F1, respectively, the full likelihood is

1∏
i=0

ni∏
j=1

dFi(Xij).

Under the one-sample EL formulation of Owen (2001), the baseline distribution
function F0(x) would have been modeled as F0(x) =

∑n0
j=1 pjI(X0j ≤ x), where

pj = dF0(X0j) for j = 1, . . . , n0. Under the two-sample DRM (1.1), we use the
combined sample to model the baseline function F0(x) as

F0(x) =
1∑

i=0

ni∑
j=1

pijI(Xij ≤ x), (2.1)

where pij = dF0(Xij) for i = 0, 1 and j = 1, . . . , ni. Note that the size of the
combined sample is n = n0 + n1. With (2.1) and under the DRM (1.1), the EL
function is given by

Ln =

⎧⎨
⎩

1∏
i=0

ni∏
j=1

pij

⎫⎬
⎭
⎡
⎣ n1∏
j=1

exp
{
θ�Q(X1j)

}⎤⎦ . (2.2)
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The feasible pij ’s satisfy two sets of constraints given by

C1 =
{

(F0,θ) : pij > 0,
1∑

i=0

ni∑
j=1

pij = 1,

1∑
i=0

ni∑
j=1

pij exp{θ�Q(Xij)} = 1
}

(2.3)

and

C2 =

⎧⎨
⎩(F0,ψ,θ) :

1∑
i=0

ni∑
j=1

pijg(Xij ;ψ,θ) = 0

⎫⎬
⎭ , (2.4)

where the set of constraints C1 ensures that F0 and F1 are CDFs and the set of
constraints C2 is induced by the EEs in (1.2).

Using the Lagrange multiplier method and for the given ψ and θ, it can be
shown that the maximizer of the EL function is given by

pij = 1
n

1
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

,

where the Lagrange multipliers λ and ν = (ν1, · · · , νr)� are the solutions to the
following set of r + 1 equations:

1∑
i=0

ni∑
j=1

exp{θ�Q(Xij)} − 1
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

= 0, (2.5)

1∑
i=0

ni∑
j=1

g(Xij ;ψ,θ)
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

= 0. (2.6)

The profile empirical log-likelihood of (ψ,θ) is given by

	n(ψ,θ) = −
1∑

i=0

ni∑
j=1

log
{

1 + λ
[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

}

+
n1∑
j=1

θ�Q(X1j).

The MELEs of ψ and θ are then defined as (ψ̂, θ̂) = arg maxψ,θ 	n(ψ,θ).
We now establish the asymptotic distribution of (ψ̂, θ̂). Throughout the pa-

per, we assume that the total sample size n = n0 + n1 → ∞ and λ∗ → n1/n
for some constant λ∗ ∈ (0, 1). This assumption indicates that both n0 and n1
go to infinity at the same rate. For simplicity and convenience of presentation,
we write λ∗ = n1/n and assume that it is a constant. This does not affect our
technical development.
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Let η = (ψ�,θ�)� be the vector of parameters and η∗ be the true value
of η. We further define

ω(x;θ) = exp
{
θ�Q(x)

}
, ω(x) = ω(x;θ∗), h(x) = 1 + λ∗ {ω(x) − 1} ,

h1(x) = λ∗ω(x)
h(x) , G(x;η) = (ω(x;θ) − 1, g(x;θ,β)�)�, G(x) = G(x;η∗),

Aθθ = (1 − λ∗)E0
{
h1(X)Q(x)Q(x)�

}
,

Aθu = A�
uθ = E0

{
∂G(X;η∗)

∂θ

}�
−E0

{
h1(X)Q(x)G(X)�

}
,

Aψu = A�
uψ = E0

{
∂G(X;η∗)

∂ψ

}�
, Auu = E0

{
G(X)G(X)�

h(X)

}
.

Noting that ω(·), h(·), h1(·) and G(·) depend on ψ∗ and/or θ∗, we drop these
redundant parameters for notational simplicity.

Theorem 1. Assume that the regularity conditions in Section 7.3.1 are satisfied.
As the total sample size n = n0 + n1 goes to infinity, we have

n1/2(η̂ − η∗) → N
(
0,J−1)

in distribution, where

J = UV −1U�, U =
(

0 Aψu

Aθθ Aθu

)
, and V =

(
Aθθ 0
0 Auu

)
.

In the absence of the constraints C2 in (2.4), we can maximize the EL function
in (2.2) with respect only to the CDF constraints C1 in (2.3) to obtain the MELE
θ̃ of θ. Qin and Zhang (1997) and Keziou and Leoni-Aubin (2008) noticed that
θ̃ equivalently maximizes the following dual likelihood:

	nd(θ) = −
1∑

i=0

ni∑
j=1

log
{

1 + λ∗
[
exp

{
θ�Q(Xij)

}
− 1
]}

+
n1∑
j=1

{
θ�Q(X1j)

}
. (2.7)

That is, θ̃ = arg maxθ 	nd(θ).

Corollary 1. Under the conditions of Theorem 1,

(a) if r = p, the asymptotic variance of n1/2(θ̂ − θ∗) is the same as that of
n1/2(θ̃ − θ∗);

(b) if r > p, the asymptotic variance matrix of n1/2(η̂ − η∗) cannot decrease
if one EE in (1.2) is dropped.
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We provide some further comments on the results presented in Corollary 1.
First, when the dimensions of the parameters ψ and the EEs are equal, we can
solve ∫

g(X;ψ, θ̃)dF̃0(x) = 0

to get the estimator ψ̃ of ψ, where F̃0(x) is the MELE of F0 without the
constraints C2 in (2.4). Because of the result in Corollary 1(a), the estimators
ψ̃ and ψ̂ share the same asymptotic property. Second, Corollary 1(b) indicates
that additional auxiliary information leads to more efficient estimation of η.

The proposed semiparametric method provides a way to find the point esti-
mator of the unknown parameters, which has the asymptotic normality analogue
to the parametric estimator. The semiparametric framework also creates a nat-
ural platform for hypothesis tests using the ELR statistic. We consider a general
null hypothesis

H0 : H(η) = 0,

where the function H(·) is q × 1 with q ≤ p + d + 1, and the derivative of this
function is of rank q. This null hypothesis forms a third set of constraints

C3 =
{
η = (ψ�,θ�)� : H(η) = 0

}
.

The ELR statistic for testing H0 is then defined as

Rn = 2
{

sup
ψ,θ

	n(ψ,θ) − sup
η∈C3

	n(ψ,θ)
}
.

The next theorem establishes the asymptotic distribution of the ELR statistic
Rn under the null hypothesis H0.

Theorem 2. Assume that the conditions of Theorem 1 hold. Under H0, as
n → ∞, the ELR statistic Rn → χ2

q in distribution.

The result of Theorem 2 is very general due to the general form of the func-
tion H(·). First, it is applicable to testing problems that focus on some of the
parameters in η. For example, if we wish to test H0 : ψ = ψ0, we can choose
H(η) = ψ −ψ0. Let R∗

n(ψ) be the ELR function of ψ. That is,

R∗
n(ψ) = 2

{
sup
ψ,θ

	n(ψ,θ) − sup
θ

	n(ψ,θ)
}
.

Then R∗
n(ψ0) has a chi-squared null limiting distribution with p degrees of

freedom. Second, the result can be used to construct confidence regions for some
of the parameters in η. For example, we can construct an ELR-based confidence
region for the parameter ψ at the nominal level 1 − a as

{ψ : R∗
n(ψ) ≤ χ2

q,1−a}, (2.8)

where χ2
q,1−a is the 100(1 − a)th quantile of the χ2

q distribution.
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The use of valid auxiliary information leads to improved inference on η. How-
ever, if the information is not properly specified in terms of unbiased estimating
functions, the resulting estimator of η may be biased (Qin et al., 2015). Our
last major theoretical result in this section is to construct an ELR statistic for
testing the validity and usefulness of the auxiliary information. Let

Wn = 2
{

sup
(η,F0)∈C1

logLn − sup
(η,F0)∈C1∩C2

logLn

}

= 2
{
	nd(θ̃) − 	n(ψ̂, θ̂)

}
. (2.9)

Theorem 3. Under the conditions of Theorem 1 and as n → ∞, we have
Wn → χ2

r−p in distribution if (1.2) is correctly specified.

We can also test the validity of some but not all of the EEs in (1.2). To do
so, we partition the EEs in (1.2) into two parts:

g(x;ψ,θ) =
(

g1(x;ψ,θ)
g2(x;ψ,θ)

)
,

where g1(·) and g2(·) are of dimension r − m and m with r − m ≥ p. We are
interested in testing H0 : E0{g2(X;ψ,θ)} = 0. Let 	n1(ψ,θ) be the profile em-
pirical log-likelihood of (ψ,θ) that uses the auxiliary information only through
E0{g1(x;ψ,θ)} = 0. That is,

	n1(ψ,θ) = −
1∑

i=0

ni∑
j=1

log
{

1 + λ
[
exp{θ�Q(Xij)} − 1

]
+ ν�

1 g1(Xij ;ψ,θ)
}

+
n1∑
j=1

θ�Q(X1j),

where λ and ν1 are the solution to
1∑

i=0

ni∑
j=1

exp{θ�Q(Xij)} − 1
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�

1 g1(Xij ;ψ,θ)
= 0,

1∑
i=0

ni∑
j=1

g(Xij ;ψ,θ)
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�

1 g1(Xij ;ψ,θ)
= 0.

Then the ELR statistic for testing H0 : E0{g2(X;ψ,θ)} = 0 can be constructed
similar to (2.9) as

W ∗
n = 2

{
sup
ψ,θ

	n1(ψ,θ) − sup
ψ,θ

	n(ψ,θ)
}
.

Corollary 2. Under the conditions of Theorem 1 and as n → ∞, we have
W ∗

n → χ2
m if E0{g2(X;ψ,θ)} = 0 is true.
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3. Inferences on CDFs and quantiles

In this section, we discuss inferences on the CDFs F0 and F1 and their quantiles.
For convenience of presentation, we assume that the dimension of Xij is one.

We first construct point estimators of F0 and F1. Let λ̂ and ν̂ be the solutions
to (2.5) and (2.6) with (ψ,θ) replaced by (ψ̂, θ̂). The MELEs of pij are then
given as

p̂ij = 1
n

1

1 + λ̂
[
exp{θ̂�

Q(Xij)} − 1
]

+ ν̂�g(Xij ; ψ̂, θ̂)
.

The MELEs of F0 and F1 are then defined as

F̂0(x) =
1∑

i=0

ni∑
j=1

p̂ijI(Xij ≤ x)

and

F̂1(x) =
1∑

i=0

ni∑
j=1

p̂ij exp{θ̂�
Q(Xij)}I(Xij ≤ x).

We now present results on the asymptotic properties of the MELEs F̂0(x)
and F̂1(x) of the two population CDFs F0(x) and F1(x). Let

W = V −1U�J−1UV −1 −
(

0 0
0 A−1

uu

)
,

and
B∗

0(x) =
(

B0θ(x)
B0u(x)

)
, B∗

1(x) =
(

B1θ(x)
B1u(x)

)
,

where

B0θ(x) = E0 {h1(X)Q(X)I(X ≤ x)} ,

B1θ(x) = λ∗ − 1
λ∗ E0 {h1(X)Q(X)I(X ≤ x)} ,

B0u(x) = E0

{
G(X)
h(X) I(X ≤ x)

}
, B1u(x)=E0

{
ω(X)G(X)

h(X) I(X ≤ x)
}
.

Furthermore, let F̃0(x) and F̃1(x) be the MELEs of F0 and F1 under the DRM
when there is no auxiliary information. We refer to Qin and Zhang (1997) for
the forms of F̃0(x) and F̃1(x) and their asymptotic properties. Denote x ∧ y =
min(x, y).

Theorem 4. Assume that the conditions of Theorem 1 are satisfied.

(a) For any l, s ∈ {0, 1} and real numbers x and y in the support of F0, as
n → ∞,

√
n

(
F̂l(x) − Fl(x)
F̂s(y) − Fs(y)

)
→ N

(
0,Σls(x, y)

)
,
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where
Σls(x, y) =

(
σll(x, x) σls(x, y)
σsl(y, x) σss(y, y)

)

with

σij(x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
− Fi(x)Fj(y) + B∗

i (x)�WB∗
j (y)

for any i, j ∈ {l, s}.
(b) If r = p, the asymptotic variance-covariance matrix Σls(x, y) reduces to

the same one of
√
n
(
F̃l(x) − Fl(x), F̃s(x) − Fs(x)

)�.
(c) If r > p, the asymptotic variance matrix Σls(x, y) cannot decrease if one

EE in (1.2) is dropped.

Theorem 4 indicates that the MELEs F̂0(x) and F̂1(x) have asymptotic
properties similar to those of η̂. That is, they are asymptotically normally dis-
tributed; they are asymptotically equivalent to F̃0(x) and F̃1(x) when r = p;
and they become more efficient when r > p.

In the second half of this section we discuss the estimation of the quantiles
of Fi(x) for i = 0 and 1. For any τ ∈ (0, 1), we define the τth-quantile of Fi as
ξi,τ = inf{x : Fi(x) ≥ τ} and its MELE as

ξ̂i,τ = inf{x : F̂i(x) ≥ τ}. (3.1)

Similarly, the estimator of ξi,τ based on F̃i(x) is defined as

ξ̃i,τ = inf{x : F̃i(x) ≥ τ}. (3.2)

See Zhang (2000) and Chen and Liu (2013) for the asymptotic properties of ξ̃i,τ .
We refer to ξ̂i,τ as the “DRM-EE” quantile estimators and ξ̃i,τ as the “DRM”
quantile estimators.

The Bahadur representation is a useful tool for studying the asymptotic prop-
erties of quantile estimators. In the following theorem, we show that the DRM-
EE quantile estimators are Bahadur representable. Let fi(x) be the probability
density function of Fi(x) for i = 0 and 1.

Theorem 5. Assume that the conditions of Theorem 1 are satisfied. Further,
for i = 0, 1 and any τ ∈ (0, 1), assume that fi(x) is continuous and positive at
x = ξi,τ . Then ξ̂i,τ admits the Barhadur representation

ξ̂i,τ = ξi,τ + τ − F̂i(ξi,τ )
fi(ξi,τ )

+ Op

(
n−3/4(logn)1/2

)
.

The following theorem shows that the DRM-EE quantile estimators have
asymptotic properties similar to those of the MELEs of η, F0(x), and F1(x).

Theorem 6. Assume that the conditions in Theorem 5 hold for x = ξl,τl and
x = ξs,τs .
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(a) As n → ∞,
√
n

(
ξ̂l,τl − ξl,τl
ξ̂s,τs − ξs,τs

)
→ N(0,Ωls),

where

Ωls =
(

σll(ξl,τl , ξs,τs)/f2
l (ξl,τl) σls(ξl,τl , ξs,τs)/fl(ξl,τl)fs(ξs,τs)

σsl(ξs,τs , x)/fs(ξs,τs)fl(ξl,τl) σss(ξs,τs , ξs,τs)/f2
s (ξs,τs)

)
.

(b) If r = p, the asymptotic variance matrix Ωls of the DRM-EE quantile
estimators is the same as that for the DRM quantile estimators;

(c) if r > p, the asymptotic variance matrix Ωls of the DRM-EE quantile
estimators cannot decrease if one EE in (1.2) is dropped.

Using the results of Theorems 4 and 6, we may construct confidence regions
and/or test hypotheses on the CDFs at some fixed points and for quantiles
through the Wald-type statistics. However, methods based on the Wald-type
statistics require a consistent estimator of the corresponding asymptotic vari-
ance. It is more attractive to use the results in Corollary 2 to construct the
ELR-based confidence region for the CDFs at some fixed points and for quan-
tiles.

Suppose we are interested in constructing a (1−a)-level CI for a CDF at some
fixed point x0 for i = 0 or 1. Denote the parameter of interest as ζ = Fi(x0).
Let

g∗1(x;θ, ζ) =
{

I(x ≤ x0) − ζ, i = 0
exp{θ�Q(x)}I(x ≤ x0) − ζ, i = 1 .

We further define 	∗n1(ψ,θ, ζ) to be the profile empirical log-likelihood of (ψ,θ, ζ)
under Model (1.1) with the unbiased EEs in (1.2) and E0{g∗1(X;θ, ζ)} = 0. Then
the ELR function of ζ is defined as

Rn1(ζ) = 2{	n(ψ̂, θ̂) − sup
ψ,θ

	∗n1(ψ,θ, ζ)}.

We can similarly define the ELR function for a quantile ξ at the quantile
level τ for i = 0 or 1, i.e., ξ = ξi,τ . Let

g∗2(x;θ, ξ) =
{

I(x ≤ ξ) − τ, i = 0
exp{θ�Q(x)}I(x ≤ ξ) − τ, i = 1 .

We further define 	∗n2(ψ,θ, ξ) to be the profile empirical log-likelihood of (ψ,θ, ξ)
under Model (1.1) with the unbiased EEs in (1.2) and E0{g∗2(X;θ, ξ)} = 0. Then
the ELR function of ξ is defined as

Rn2(ξ) = 2{	n(ψ̂, θ̂) − sup
ψ,θ

	∗n2(ψ,θ, ξ)}.

Using Corollary 2, we have the following results for Rn1(ζ∗) and Rn2(ξ∗),
where ζ∗ and ξ∗ are the true values of ζ and ξ.
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Corollary 3. Under the conditions of Theorem 1, as n → ∞, both Rn1(ζ∗) and
Rn2(ξ∗) converge in distribution to χ2

1.

Corollary 3 enables us to construct the ELR-based CI for ζ and ξ. For exam-
ple, the ELR-based CI for ξ with level 1−a can be constructed as {ξ : Rn2(ξ) ≤
χ2

1,1−a}.

4. Simulation studies

We conducted simulation studies to investigate three aspects of the proposed
semiparametric inference procedures:

(1) The performance of the inference procedures for ψ;
(2) The power of the ELR test for the validity and usefulness of the auxiliary

information;
(3) The performance of the inference procedures for the population quantiles.

We consider four combinations of sample sizes (n0, n1): (50, 50), (50, 150), (100,
100), and (200, 200). For each simulation setting, the number of simulation runs
is 2,000.

4.1. Simulation studies for inferences on ψ

4.1.1. Simulation setup

We start by exploring the first aspect of the proposed semiparametric infer-
ence procedures. In the simulations, F0 and F1 are the CDFs of LN(0, 1) and
LN(0.5, 1), respectively, where LN(a, b) denotes the lognormal distribution with
mean a and variance b, both with respect to the log scale. It is easy to show that
F0 and F1 satisfy the DRM in (1.1) with Q(x) = (1, log x)�. The parameter of
interest is the mean ratio ψ = δ = μ1/μ0 which was discussed in Example 1.

To examine the usefulness of auxiliary information, we construct another
variable Z using the following model:

Z = 1 + 0.5X + ε and ε ∼ N(0, 1). (4.1)

That is, given Xij , Zij is generated from (4.1), for i = 0, 1, j = 1, · · · , ni. Hence,
the two-sample data consist of T ij = (Xij , Zij)� for i = 0, 1, j = 1, · · · , ni. We
treat μz0 = E(Z|D = 0), the population mean of covariate Z for the first group
(i.e., the D = 0 group), as the known auxiliary information. Let the CDFs of T
given D = 0 and D = 1 be F 0 and F 1, respectively. It can be checked that F 0
and F 1 satisfy the DRM with Q(x, z) = (1, log x)�.

To explore the effect of misspecified estimating equations for the auxiliary
information, we introduce a bias by using κμz0 instead of the true value μz0
for E(Z|D = 0). We consider κ = 0.90, 0.95, 1.00, 1.05, 1.10. Note that κ = 1.00
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corresponds to correctly specified auxiliary information. We incorporate the
biased/unbiased auxiliary information into our problem by setting ψ = δ and

g(t;ψ,θ) =
(
δx− x exp{θ�Q(x)}, z − κμz0

)�
in (1.2).

4.1.2. Performance of point estimators

We compare three point estimators:

(i) EMP: δ̄ = μ̄1/μ̄0, where μ̄i = n−1
i

∑ni

j=1 xij for i = 0 and 1;
(ii) DRM: δ̃ = μ̃1/μ̃0, where μ̃i =

∫
xdF̃i(x) for i = 0 and 1;

(iii) DRM-EE: δ̂ = μ̂1/μ̂0, where μ̂i =
∫
xdF̂i(x) for i = 0 and 1.

Note that the asymptotic properties of δ̃ and δ̂ are covered in Theorem 1. The
performance of each estimator is evaluated by the relative bias (RB) and the
mean squared error (MSE). Simulation results on the three point estimators are
presented in Table 1.

Table 1

RB (%) and MSE (×100) of three point estimators of the mean ratio

DRM-EE
(n0, n1) EMP DRM κ = 1 κ = 0.9 κ = 0.95 κ = 1.05 κ = 1.1

(50, 50)
RB 3.37 1.46 1.15 12.73 6.83 −4.24 −9.32

MSE 20.03 12.50 9.61 16.59 12.07 9.00 9.96

(50, 150) RB 3.70 1.75 0.89 16.61 8.50 −6.11 −12.41
MSE 12.91 8.07 4.67 13.94 7.46 4.92 7.50

(100, 100) RB 1.86 1.21 0.89 12.32 6.48 −4.35 −9.20
MSE 9.35 6.17 5.08 10.46 6.78 5.11 6.56

(200, 200) RB 0.90 0.46 0.53 11.87 6.06 −4.62 −9.27
MSE 4.88 3.15 2.56 7.03 3.84 2.92 4.60

We first compare the results reported in the third to fifth columns, i.e., EMP,
DRM, and DRM-EE with correctly specified auxiliary information (DRM-EE
with κ = 1). We see that the EMP estimator has the largest RBs and MSEs in all
cases. The estimator of DRM-EE with κ = 1 has the best performance, followed
by the DRM estimator. This suggests that using correctly specified auxiliary
information improves the estimation efficiency, which agrees with Corollary 1 in
Section 2. We also note that as the sample size increases, all three estimators
have improved performance and the gaps between the three estimators become
less pronounced, especially between DRM and DRM-EE.

The sensitivity of the DRM-EE estimator with respect to misspecified aux-
iliary information can be observed from the last four columns of Table 1. The
DRM-EE estimator for κ �= 1 are clearly not as good as the estimator for κ = 1.
The absolute value of the RB increases as κ moves further away from 1.
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4.1.3. Performance of confidence intervals

We compare four CIs for δ:

(i) EMP-NA: Wald-type CI for δ based on the asymptotic normality of log δ̄;
(ii) EMP-EL: Owen (2001)’s ELR-based CI for δ;
(iii) DRM: the ELR-based CI for δ in (2.8) without auxiliary information;
(iv) DRM-EE: the ELR-based CI for δ in (2.8) with auxiliary information.

The performance of a CI is evaluated in terms of coverage probability (CP) and
average length (AL). The simulation results for the four CIs at the 95% nominal
level are shown in Table 2.

Table 2

CP (%) and AL of four CIs for the mean ratio at 95% nominal level
DRM-EE

(n0, n1) EMP-NA EMP-EL DRM κ = 1 κ = 0.9 κ = 0.95 κ = 1.05 κ = 1.1

(50, 50)
CP 92.6 91.6 94.5 94.2 90.7 93.9 92.1 88.1
AL 1.65 1.65 1.41 1.23 1.38 1.30 1.16 1.10

(50, 150) CP 92.9 92.2 95.6 94.3 78.1 91.4 88.5 75.9
AL 1.33 1.31 1.15 0.84 1.00 0.92 0.77 0.71

(100, 100) CP 94.9 93.9 95.3 94.3 85.6 92.5 92.0 85.1
AL 1.18 1.20 1.00 0.88 0.98 0.93 0.84 0.80

(200, 200)
CP 93.8 93.3 94.6 94.7 75.3 89.0 90.4 78.4
AL 0.84 0.86 0.70 0.62 0.69 0.66 0.60 0.58

As we can see in the third to sixth columns, EMP-NA and EMP-EL are
comparable but are clearly inferior to DRM and DRM-EE (κ = 1) in terms of
CP and AL. The CPs of the CIs for DRM and DRM-EE with κ = 1 are close to
the nominal level for all sample size combinations. This suggests that the limiting
distributions provide accurate approximations to the finite-sample distributions
of the ELR statistics. The ALs of the CIs for DRM-EE with κ = 1 are always
shorter than other CIs, a strong evidence that using correctly specified auxiliary
information improves the performance of a CI. On the other hand, misspecified
auxiliary information results in inaccurate CIs. As κ moves further away from
1, the CP of the ELR-based CI shifts away from the nominal value.

4.1.4. Power of the validity test

In this section, we explore the second aspect of the proposed semiparametric
inference procedures on the power of the ELR test for the validity of the auxil-
iary information. The null hypothesis for the ELR test is H0 : E0(z−κμz0) = 0.
According to Theorem 3 and Corollary 2, the ELR statistic has a χ2

1 limiting
distribution under the null hypothesis. We consider misspecified auxiliary in-
formation with κ = 0.90, 0.95, 1.05, 1.10 as the alternatives. Table 3 gives the
simulated power (κ �= 1) and type I error rate (κ = 1) of the ELR test at the
5% significance level.

We observe from Table 3 that the type I error rates of the ELR tests are
close to the 5% nominal level in all cases, which suggests that the limiting
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Table 3

Power and type I error rate of the ELR test (%) at 5% significance level
(n0, n1) κ = 0.9 κ = 0.95 κ = 1 κ = 1.05 κ = 1.1
(50, 50) 21.43 8.76 5.36 9.41 20.48
(50, 150) 27.33 10.08 5.37 10.13 22.97
(100, 100) 36.44 11.26 5.51 13.61 32.48
(200, 200) 62.98 20.66 5.15 19.16 55.23

distribution for the ELR test works very well. As κ deviates from 1 and the
sample size increases, the power of the test increases, as expected.

4.2. Simulation studies for inferences on quantiles

4.2.1. Simulation setup

The third aspect of the proposed semiparametric inference procedures is infer-
ence on population quantiles with auxiliary information. In the simulations, we
consider two distributional settings:

(1) f0 ∼ N(18, 4) and f1 ∼ N(18, 9);
(2) f0 ∼ Gam(6, 1.5) and f1 ∼ Gam(8, 1.125).

Here N(a, b) denotes the normal distribution with mean a and variance b and
Gam(a, b) is the gamma distribution with shape parameter a and scale param-
eter b. We are interested in estimating and constructing CIs for the quantiles of
F0 and F1 at the levels τ = 0.10, 0.25, 0.5, 0.75, 0.90.

4.2.2. Performance of quantile estimators

We compare four quantile estimators:

(i) EMP: the quantile estimator based on the empirical CDFs;
(ii) EL: the quantile estimator based on the MELEs of the CDFs in Tsao and

Wu (2006), in which a common mean is assumed;
(iii) DRM: the DRM based quantile estimator in (3.2);
(iv) DRM-EE: our proposed quantile estimator in (3.1) with the common-mean

assumption or the EE (1.7) in Example 3.

The DRM and DRM-EE methods are calculated with the correctly spec-
ified q(x), where q(x) = (x, x2)� for the normal distributional setting and
q(x) = (x, log x)� for the gamma distributional setting. The performance of
an estimator is evaluated by the RB and MSE. The general patterns of the
simulation results for the four methods are similar in the two settings. Hence,
Table 4 presented here is only for the normal setting; the results under gamma
distributions are included in Section 7.4.

Table 4 shows that the RBs are negligibly small for all methods under all
scenarios. The EMP estimator has the largest MSEs. The DRM-EE quantile
estimators have the smallest MSEs due to its use of additional information, and
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Table 4

RB (%) and MSE (×100) for quantile estimators (normal distributions)
N(18, 4) N(18, 9)

(n0, n1) τ EMP EL DRM DRM-EE EMP EL DRM DRM-EE

(50, 50)

0.10
RB −0.58 0.08 0.25 0.19 −1.07 −0.10 0.17 −0.07

MSE 23.87 19.88 18.85 16.32 59.74 44.17 46.26 37.35

0.25
RB 0.04 0.02 0.15 0.14 0.01 −0.06 −0.14 −0.25

MSE 14.73 12.25 12.23 9.57 33.32 22.42 29.22 18.11

0.50
RB −0.21 0.03 0.04 0.03 −0.43 0.03 0.00 0.03

MSE 12.47 9.93 10.06 7.76 29.21 16.25 25.08 11.10

0.75
RB −0.01 −0.01 −0.08 −0.07 −0.05 0.02 0.03 0.14

MSE 13.92 11.81 11.97 9.64 34.86 21.55 29.68 16.95

0.90
RB −0.62 −0.08 −0.21 −0.18 −0.87 0.08 −0.08 0.10

MSE 23.36 21.36 19.51 17.66 53.89 43.03 46.50 37.61

(50, 150)

0.10
RB −0.60 0.01 0.26 0.17 −0.28 0.09 0.17 0.13

MSE 23.91 18.16 16.36 11.49 17.62 14.72 16.05 13.34

0.25
RB 0.04 0.02 0.14 0.12 0.06 0.03 −0.01 −0.03

MSE 14.81 10.08 11.22 6.64 11.00 8.67 10.20 7.88

0.50
RB −0.21 0.07 0.04 0.04 −0.10 0.05 0.05 0.06

MSE 12.39 7.69 9.09 4.59 8.97 6.92 8.15 5.84

0.75
RB −0.01 0.02 −0.10 −0.05 −0.06 −0.04 −0.01 0.00

MSE 13.90 10.24 10.87 6.49 10.49 8.18 9.89 7.71

0.90
RB −0.61 −0.03 −0.20 −0.12 −0.30 −0.02 −0.04 −0.02

MSE 23.32 19.87 17.26 12.94 17.04 14.93 16.25 14.40

(100, 100)

0.10
RB −0.35 0.03 0.10 0.09 −0.34 0.15 0.23 0.11

MSE 11.82 10.05 9.13 7.86 25.71 19.44 22.01 16.62

0.25
RB −0.17 0.03 0.04 0.04 −0.18 0.02 0.03 −0.06

MSE 7.42 6.20 6.33 5.04 15.56 9.84 13.54 8.01

0.50
RB −0.11 0.03 0.01 0.03 −0.15 0.03 0.07 0.05

MSE 6.07 4.81 5.21 3.88 13.53 7.87 11.53 5.41

0.75
RB −0.17 0.01 −0.05 −0.02 −0.30 −0.05 0.01 0.02

MSE 7.37 6.20 6.10 5.02 15.95 9.94 13.60 7.94

0.90
RB −0.35 −0.02 −0.11 −0.08 −0.45 −0.05 −0.05 −0.02

MSE 11.82 10.83 9.40 8.24 25.37 19.69 22.77 17.23

(200, 200)

0.10
RB −0.12 0.04 0.13 0.10 −0.29 −0.05 0.01 −0.02

MSE 5.77 5.01 4.50 3.91 13.65 10.89 11.81 8.94

0.25
RB −0.06 0.02 0.05 0.04 −0.12 0.02 −0.04 −0.04

MSE 3.58 3.00 3.03 2.41 8.37 5.04 7.30 4.18

0.50
RB −0.04 0.03 0.02 0.01 −0.15 −0.03 −0.02 0.00

MSE 3.02 2.40 2.57 1.99 7.07 3.99 6.04 2.80

0.75
RB −0.10 −0.03 −0.03 −0.04 −0.16 0.00 0.00 0.03

MSE 3.60 3.04 3.06 2.49 8.39 5.05 7.26 4.03

0.90
RB −0.18 −0.02 −0.05 −0.04 −0.18 0.06 0.01 0.06

MSE 5.90 5.24 4.68 4.10 12.78 10.16 11.75 8.75

the results agree with Theorem 6. We also notice that the EL and DRM quantile
estimators are comparable.

4.2.3. Performance of confidence intervals

We compare three CIs:

(i) EMP: Owen (2001)’s ELR-based CI for quantiles;
(ii) DRM: the ELR-based CI under the DRM without the common-mean as-

sumption (Zhang et al., 2022);
(iii) DRM-EE: the proposed ELR-based CI.

The construction of CIs for the quantiles under the two-sample EL method with
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Table 5

CP (%) and AL for 95% CIs of 100τ%-quantiles (normal distributions)
N(18, 4) N(18, 9)

(n0, n1) τ EMP DRM DRM-EE EMP DRM DRM-EE

(50,50)

0.10
CP 94.5 94.3 94.2 94.4 94.5 94.8
AL 1.96 1.74 1.61 2.94 2.89 2.48

0.25 CP 95.9 95.1 95.2 95.0 94.8 94.2
AL 1.60 1.40 1.25 2.36 2.18 1.64

0.50 CP 94.3 94.6 95.4 93.8 94.8 95.4
AL 1.32 1.28 1.11 1.98 1.98 1.36

0.75 CP 95.2 94.3 94.8 95.2 94.8 95.1
AL 1.59 1.39 1.24 2.36 2.16 1.63

0.90 CP 94.2 94.5 93.9 94.3 95.0 94.9
AL 1.97 1.74 1.62 2.97 2.92 2.50

(50,150)

0.10
CP 94.5 94.3 95.0 93.7 94.7 94.7
AL 1.96 1.62 1.38 1.63 1.63 1.49

0.25 CP 95.9 95.1 95.2 95.8 95.4 95.3
AL 1.60 1.33 1.02 1.34 1.28 1.11

0.50 CP 94.3 95.1 95.5 94.4 96.0 96.0
AL 1.32 1.20 0.86 1.16 1.16 0.97

0.75 CP 95.2 94.5 94.8 95.3 95.8 96.1
AL 1.59 1.31 1.00 1.32 1.27 1.10

0.90 CP 94.2 94.8 94.2 95.2 94.6 94.3
AL 1.97 1.62 1.39 1.65 1.63 1.50

(100,100)

0.10
CP 95.6 95.0 95.2 95.9 94.3 95.2
AL 1.42 1.20 1.12 2.12 1.95 1.67

0.25 CP 95.7 94.4 95.4 94.9 95.3 95.1
AL 1.10 1.00 0.89 1.66 1.51 1.14

0.50 CP 94.8 94.7 95.2 95.2 96.1 95.5
AL 0.96 0.90 0.79 1.45 1.38 0.94

0.75 CP 95.2 94.7 95.5 95.3 95.8 95.5
AL 1.09 0.98 0.87 1.62 1.51 1.14

0.90 CP 95.5 94.2 94.3 95.6 95.2 94.8
AL 1.43 1.21 1.13 2.15 1.96 1.66

(200,200)

0.10
CP 93.8 95.4 95.1 94.5 94.4 94.9
AL 0.93 0.84 0.79 1.39 1.36 1.16

0.25 CP 95.8 95.7 95.3 95.0 95.0 94.0
AL 0.77 0.69 0.62 1.14 1.06 0.80

0.50 CP 94.9 95.0 94.6 95.2 94.9 95.4
AL 0.68 0.63 0.55 1.03 0.96 0.66

0.75 CP 94.9 95.5 95.2 95.0 95.2 95.4
AL 0.76 0.69 0.62 1.14 1.07 0.81

0.90 CP 95.0 94.4 95.0 93.7 94.5 94.6
AL 0.94 0.85 0.79 1.41 1.37 1.18

the common-mean assumption has not been discussed in the literature, and
hence is not included in the simulation. The CP and AL are used to compare
CIs. We present the simulation results for the normal case in Table 5. The
results for the gamma distributions display similar patterns and are included in
Section 7.4.

The CIs for all the methods have satisfactory performance in terms of CP.
However, the CIs using the DRM-EE method have the shortest AL. The results
indicate that the limiting distribution of the ELR statistic in Corollary 3 works
very well, and additional auxiliary information leads to shorter CIs.
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5. Two real-data applications

The first dataset (Simpson et al., 1975) is from a randomized airborne pyrotech-
nic seeding experiment, which is designed to test whether seeding clouds with
silver iodide increase rainfall. The measurements are the amount of rainfall (in
acre-feet) from 52 isolated cumulus clouds, half of which were randomly cho-
sen and massively injected with silver iodide smoke. The rest were untreated.
We use D = 0 to indicate untreated clouds and D = 1 for seeded clouds. We
estimate the mean ratio δ of the two populations and construct CIs for δ.

To use our proposed method to analyze the dataset, we need to choose an
appropriate q(x) in the DRM (1.1). Simpson et al. (1975) and Krishnamoorthy
and Mathew (2003) argued that this dataset is highly skewed. This suggests
that the two-sample data can be fitted by the DRM with q(x) = log x. The
goodness-of-fit test of Qin and Zhang (1997) gives a p-value of 0.568, which
indicates that the DRM with q(x) = log x provides an adequate fit to the
two-sample data. Since there is no auxiliary information available, we analyze
the data using DRM and the other methods discussed in Section 4.1. For the
point estimates, the EMP method gives 2.685, while our proposed DRM based
estimate is 2.369. As we have demonstrated in Section 4.1.2, DRM provides
smaller MSEs and RBs than EMP, so we expect that the DRM estimate is
more accurate. We consider the three CIs at the 95% nominal level, EMP-NA,
EMP-EL, and DRM. Table 6 presents the lower bound (LB), the upper bound
(UB), and the length of the CIs. The EMP-NA CI is significantly longer than
the others, and DRM provides the shortest CI. This agrees with the simulation
results in Section 4.1.3. The LBs of all three CIs are greater than 1, indicating
that the seeded clouds slightly increase rainfall.

Table 6

Summary of 95% CIs for δ (cloud data)

LB UB Length
EMP-NA 1.13 6.36 5.23
EMP-EL 1.41 5.24 3.83

DRM 1.21 4.89 3.68

The second dataset (Hawkins, 2002) is from a clinical study of cyclosporine
measurements in blood samples of organ transplant recipients. In total, 56 as-
say pairs for cyclosporine are obtained by a standard approved method, high-
performance liquid chromatography (HPLC), and an alternative radioimmunoas-
say (RIA) method. We would like to investigate whether the RIA assay is essen-
tially equivalent to the HPLC assay. The results in Hawkins (2002) and Bebu
and Mathew (2008) indicate that the measurements from the two methods can
be modeled by lognormal distributions and have a common mean. Since the
quantiles are important characteristics of the population, we consider inference
on these quantities at τ = 0, 25, 0.50, 0.75.

Our methods and theory are applicable to two independent samples, but in
this dataset, two methods are used to measure the same blood sample, so the
two measurements may be correlated. To demonstrate the value of auxiliary
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information, we randomly split the 56 blood samples into two equal groups. We
use D = 0 to indicate the HPLC method for the first group and D = 1 to indicate
the RIA method for the second group. This gives two independent samples,
shown in Table 7. We set q(x) in the DRM (1.1) to q(x) = (log x, log2 x)�. For
this choice, the goodness-of-fit test of Qin and Zhang (1997) gives a p-value of
0.839. An ELR test to check the validity of the common-mean assumption gives
a p-value of 0.530. This preliminary analysis indicates that the DRM with the
common-mean assumption is reasonable.

Table 7

Measurements from HPLC and RIA methods in two independent samples
HPLC (D = 0) RIA (D = 1)

77 87 93 109 109 129 130 38 98 108 109 111 118 125
153 156 159 185 198 203 227 130 144 149 162 165 169 172
244 245 271 280 285 318 336 204 218 234 235 293 294 303
339 340 440 498 521 556 578 311 341 376 404 406 477 679

We use the methods of Section 4.2 to analyze the independent samples. Ta-
ble 8 summarizes the point estimates and 95% CIs. Note that the EL method
does not specify how to construct CIs for quantiles with the common-mean as-
sumption. We also provide the results of analyzing the original 56 pairs using
the EMP method; these are recorded under “EMP–ALL” in Table 8 and serve as
the benchmarks. Table 8 shows that the DRM-EE CIs are always shorter than
the DRM and EMP CIs. This is in line with our simulation results. Although
each independent sample is half the size of the original sample, the DRM-EE
quantile estimates and CIs are similar to the EMP-ALL quantile estimates and
CIs. This indicates that our method can combine information from two samples
and effectively utilize available auxiliary information.

Table 8

Summary of point estimates and 95% CIs for quantiles (cyclosporine data)
HPLC (D = 0) RIA (D = 1)

τ Estimate LB UB Length Estimate LB UB Length

0.25

EMP-ALL 127 109 159 50 141 118 162 50
EMP 130 93 198 105 125 108 165 105
EL 130 – – – 130 – – –

DRM 144 109 185 76 129 108 162 54
DRM-EE 130 109 165 56 130 109 162 53

0.5

EMP-ALL 206 159 271 112 196 162 287 112
EMP 227 156 318 162 172 144 294 162
EL 227 – – – 204 – – –

DRM 234 162 303 141 198 149 280 131
DRM-EE 218 162 280 118 204 162 280 118

0.75

EMP-ALL 336 271 402 131 311 287 408 131
EMP 336 240 432 192 303 218 388 192
EL 336 – – – 311 – – –

DRM 339 280 477 197 311 235 406 171
DRM-EE 318 280 404 124 336 280 406 126
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6. Discussion

We have proposed new and general semiparametric inference procedures to uti-
lize the combined information from two samples as well as auxiliary information
formulated through unbiased EEs. We have established the asymptotic normal-
ity of the MELEs of the unknown parameters in the DRMs and/or defined
through EEs and the chi-square limiting distributions for the ELR statistics on
the parameters. We have also derived efficiency results for estimating these pa-
rameters and obtained similar results for inference on the CDFs and population
quantiles. We have developed an ELR test for checking the validity and useful-
ness of auxiliary information, and conducted simulation studies to evaluate the
power of the test. Our theoretical results and simulation studies demonstrated
that the use of DRMs and auxiliary information leads to improved efficiency of
statistical inferences.

We have focused on two-sample data under the DRM (1.1) in the current
paper. This leads to many interesting potential research topics. First, we may
generalize our results to multiple-sample DRMs (Chen and Liu, 2013) with un-
biased EEs. Second, we may study other types of parameters, such as the ROC
curve and the area under the curve. Third, in Example 2 (a retrospective case-
control study with auxiliary information), it is assumed that the ratio of the
total sample size for the internal study to the total sample size for the external
study goes to 0. This assumption ensures that the uncertainty of the regression
coefficient from the external study is negligible. If the sample sizes of the internal
and external studies are comparable, then the variation of the regression coeffi-
cient cannot be ignored. Simply discarding the uncertainty may not guarantee
efficiency with the auxiliary information (Zhang et al., 2020). We may general-
ize the method of Zhang et al. (2020) from the one-sample case to case-control
studies with uncertainty in the regression coefficient for the external study. We
hope to address these problems in future research. Forth, in our asymptotic
framework, we assume that λ∗ ∈ (0, 1), or both sample sizes n0 and n1 go to
infinity at the same rate. It would be interesting to study the asymptotic results
when n1/n → 0 or n0/n → 0. We leave this for future investigation. Fifth, as
we observed in Section 4, misspecified auxiliary information may lead to biased
results. This is the main motivation for our proposed test on the validity and
usefulness of the auxiliary information. It would be desirable to have a robust
method to incorporate auxiliary information, which results in improved infer-
ence when the auxiliary information is correctly specified and also leads to valid
inference when the auxiliary information is misspecified. Li and Tseng (2008)
and Li and Wu (2010) proposed two-stage estimators for two-stage design sur-
vival data by combining the first and the second stage estimators. The proposed
methods improve the second stage estimator even when population distributions
in the two stages are different. Chen et al. (2021b) and Zhai and Han (2022) sug-
gested a penalized EL method under a one-sample setting to utilize the auxiliary
information from heterogeneous populations. The ideas of two-stage estimators
and the penalized EL method maybe potentially useful in our current setup
to develop a robust method for combining auxiliary information. We plan to
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explore them in future research.

7. Appendix

7.1. Examples of summary quantities

In this section, we provide some examples to demonstrate that the EEs

E0{g(X;ψ,θ)} = 0

can define many important summary quantities.

Example 4 (Means and variances). Let μi and σ2
i be the mean and variance

of Fi for i = 0, 1. Further, let ψ = (μ0, μ1, σ
2
0 , σ

2
1)� and

g(x;ψ,θ) =

⎛
⎜⎜⎝

x− μ0
x exp{θ�Q(x)} − μ1

x2 − μ2
0 − σ2

0
x2 exp{θ�Q(x)} − μ2

1 − σ2
1

⎞
⎟⎟⎠ .

Then these means and variances can be defined through E0{g(X;ψ,θ)} = 0.
The general uncentered and centered moments can be defined similarly.

Applying the results in Theorem 2 in the main paper, we can construct an
ELR statistic for testing H0 : σ2

0 = σ2
1, which to our best knowledge is new for

such a testing problem.

Example 5 (Generalized entropy class of inequality measures). Suppose the
Xij’s are positive random variables. Let

GE
(ξ)
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ξ2−ξ

{∫∞
0

(
x
μi

)ξ
dFi(x) − 1

}
, if ξ �= 0, 1,

−
∫∞
0 log

(
x
μi

)
dFi(x), if ξ = 0,∫∞

0
x
μi

log
(

x
μi

)
dFi(x), if ξ = 1

be the generalized entropy class of inequality measures of the ith population,
i = 0, 1. We assume that GE

(ξ)
i exists. In our setup, (GE

(ξ)
0 , GE

(ξ)
1 )� together

with (μ0, μ1) can also be defined through the EEs. For illustration, we consider
ξ = 1.

Let ψ = (μ0, μ1, GE
(1)
0 , GE

(1)
0 )� and

g(x;ψ,θ) =

⎛
⎜⎜⎜⎝

x− μ0
x exp{θ�Q(x)} − μ1

x log(x/μ0) − μ0GE
(1)
0

x log(x/μ1) exp{θ�Q(x)} − μ1GE
(1)
1

⎞
⎟⎟⎟⎠ .

Then (GE
(ξ)
0 , GE

(ξ)
1 )� together with (μ0, μ1) can be defined through E0{g(X;ψ,

θ)} = 0. For other values of ξ, we can define the corresponding EEs similarly.



EL Inference with EEs under DRMs 5345

Applying the results in Theorem 2 in the main paper, we can also construct
an ELR statistic for testing H0 : GE

(ξ)
0 = GE

(ξ)
1 . Again, to our best knowledge

this ELR statistic is new for such testing problems.

Example 6 (Cumulative distribution functions). Suppose we are interested in
ζ0 = F0(x0) and ζ1 = F1(x1), where x0 and x1 are fixed points. Let ψ = (ζ0, ζ1)�
and

g(x;ψ,θ) =
(

I(x ≤ x0) − ζ0
exp{θ�Q(x)}I(x ≤ x1) − ζ1

)
.

Then (ζ0, ζ1)� can be defined through E0{g(X;ψ,θ)} = 0.
Applying the results in Theorem 2 in the main paper, we can also construct

an ELR-based CI for ζ0 or ζ1 or an ELR-based confidence region for (ζ0, ζ1)�.

Example 7 (Quantiles). Suppose we are interested in ξ0,τ0 = inf{x : F0(x) ≥
τ0} and ξ1,τ1 = inf{x : F1(x) ≥ τ1}, where τ0, τ1 ∈ (0, 1). Let ψ = (ζ0, ζ1)� and

g(x;ψ,θ) =
(

I(x ≤ ξ0,τ0) − τ0
exp{θ�Q(x)}I(x ≤ ξ1,τ1) − τ1

)
.

Then (ξ0,τ0 , ξ1,τ1)� can be defined through E0{g(X;ψ,θ)} = 0.
Applying the result of Corollary 2 or 3 in the main paper, we can also con-

struct an ELR-based CI for ξ0,τ0 or ξ1,τ1 or an ELR-based confidence region for
(ξ0,τ0 , ξ1,τ1)�.

7.2. Summary-level information from external case-control studies

Let {(Yi, Di) : i = 1, . . . , nE} be the data from an external study, where Di = 0
or 1 indicates that the individual is from a disease-free or diseased group. We
model the relationship between D and Y through a logistic regression model,
which may not be the true model:

h(Y ;αY ,βY ) = P (D = 1|Y ) = exp(αY + β�
Y Y )

1 + exp(αY + β�
Y Y )

. (7.1)

Let

a(αY ,βY ) = 1
nE

nE∑
i=1

{Di − h(Yi;αY ,βY )}(1, Y �)�,

which are the score functions based on the logistic regression model in (7.1).
Further, let (α∗

Y ,β
∗
Y ) be the solution to E{a(αY ,βY )} = 0. That is,

E{a(α∗
Y ,β

∗
Y )} = 0.

Note that (α∗
Y ,β

∗
Y ) may not be known exactly. We can solve the score equations

a(αY ,βY ) = 0 to obtain the estimator (α̂Y , β̂Y ). That is, a(α̂Y , β̂Y ) = 0.
Assume that we have access to the estimator (α̂Y , β̂Y ) but not necessarily to
the individual-level data {(Yi, Di) : i = 1, . . . , nE}.
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When the total sample size n = n0 + n1 for the internal study satisfies
n/nE → 0, we can use (α̂Y , β̂Y ) for (α∗

Y ,β
∗
Y ). This will cause a negligible error

for inference for the internal study. In the following, we assume that (α∗
Y ,β

∗
Y )

is known and we denote h(y) = h(y;α∗
Y ,β

∗
Y ).

Next, we discuss how to summarize the information from E{a(α∗
Y ,β

∗
Y )} = 0

into unbiased EEs with respect to F0, which is the setup in the main paper.
When the external study is a prospective case-control study, by defining the
unknown overall disease prevalence π = P (D = 1), we have

E{a(α∗
Y ,β

∗
Y )}

= E
[
{D − h(Y )}(1, Y �)�

]
(7.2)

= E0

(
[−(1 − π)h(Y ) + π exp{θ�Q(X)}{1 − h(Y )}](1, Y �)�

)
, (7.3)

where we have used the law of total expectation and the DRM (1.1) in the last
step.

When the external study is a retrospective case-control study, we have

E{a(α∗
Y ,β

∗
Y )}

= −(1 − πE)E0{h(Y )(1, Y �)�} + πEE1[{1 − h(Y )}(1, Y �)�}], (7.4)

where E1 represents the expectation operators with respect to F1, and πE is the
proportion of diseased individuals in the external case-control study. Note that
πE is a known and fixed value.

Using the DRM (1.1), we further get

E{a(α∗
Y ,β

∗
Y )}

= E0

(
[−(1 − πE)h(Y ) + πE exp{θ�Q(X)}{1 − h(Y )}](1, Y �)�

)
.(7.5)

Summarizing (7.3) and (7.5), we have that if the external study is a prospec-
tive case-control study, then E0{g(X;ψ,θ)} = 0, where

g(x;ψ,θ) = [−(1 − π)h(y) + π exp{θ�Q(x)}{1 − h(y)}](1, y�)�

with ψ = π; if the external study is a retrospective case-control study, then
E0{g(X;θ)} = 0, where

g(x;θ) = [−(1 − πE)h(y) + πE exp{θ�Q(x)}{1 − h(y)}](1, y�)�.

Similarly, we summarize the information from E{a(α∗
Y ,β

∗
Y )} = 0 into unbi-

ased EEs with respect to the joint distribution of (D,Y ), which is the setup in
Chatterjee et al. (2016). Note that when the external study is a retrospective
case-control study, (7.4) can be equivalently written as

E{a(α∗
Y ,β

∗
Y )}

= E

[
1 − πE

1 − π
(1 −D){D − h(Y )}(1, Y �)�
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+ πE

π
D{D − h(Y )}(1, Y �)�

]
. (7.6)

Summarizing (7.2) and (7.6), we have that if the external study is a prospec-
tive case-control study, then E{u(D,Y )} = 0, where

u(D,Y ) = {D − h(Y )}(1, Y �)�;

if the external study is a retrospective case-control study, then E{u(D,Y ;π)} =
0, where

u(D,Y ;π) = 1 − πE

1 − π
(1 −D){D − h(Y )}(1, Y �)� + πE

π
D{D − h(Y )}(1, Y �)�.

Note that the method and theory in Chatterjee et al. (2016) are applicable
when there is no unknown parameter in the functions u(·). Hence, their general
results do not apply when the external study is a retrospective case-control
study.

7.3. Proofs

7.3.1. Regularity conditions

The asymptotic results in this paper are established under the following regu-
larity conditions. We use || · || to denote the Euclidean norm, i.e., || · ||2 is the
sum of squares of the elements.
C1. The total sample size n = n0 +n1 → ∞ and λ∗ → n1/n for some constant

λ∗ ∈ (0, 1).
C2. The two CDFs F0 and F1 satisfy the DRM (1.1) with a true parameter

value θ∗, and
∫

exp{θ�Q(x)}dF0(x) < ∞ in a neighborhood of the true
value θ∗.

C3.
∫
Q(x)�Q(x)dF0(x) exists and is positive definite.

C4. E0 {g(X;ψ∗,θ∗)} = 0, E0 {∂g(X;ψ∗,θ∗)/∂η} has rank p, and∫
G(x)G(x)�dF0(x) exists and is positive definite, where G(x) is defined

before Theorem 1.
C5. G(x;η) is twice differentiable with respect to η, and ||G(x,η)||3,

||∂G(x,η)/∂η||2, and ||∂G(x,η)/{∂η∂ητ}|| are bounded by some inte-
grable function R(x) with respect to both F0 and F1 in the neighborhood
of η∗.

Conditions C1–C3 ensure that the quadratic approximation of the dual like-
lihood 	nd(θ) in (2.7) is applicable. Condition C2 guarantees the existence of
finite moments of Q(x) in a neighborhood of θ∗. Condition C3 is an identi-
fiability condition, and it ensures that the components of Q(x) are linearly
independent under both Fi’s, and hence the elements of Q(x) except the first
cannot be constant functions. Conditions C3 and C4 together ensure that U
and V in Theorem 1 have full rank, guaranteeing that J is invertible. Condi-
tions C1–C5 guarantee that quadratic approximations of the profile empirical
log-likelihood 	n(ψ,θ) are applicable.
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7.3.2. Some preliminary results

Recall that the profile empirical log-likelihood of (ψ,θ) is

	n(ψ,θ) = −
1∑

i=0

ni∑
j=1

log
{

1 + λ
[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

}

+
n1∑
j=1

θ�Q(X1j),

where the Lagrange multipliers satisfy

1∑
i=0

ni∑
j=1

exp{θ�Q(Xij)} − 1
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

= 0,

1∑
i=0

ni∑
j=1

g(Xij ;ψ,θ)
1 + λ

[
exp{θ�Q(Xij)} − 1

]
+ ν�g(Xij ;ψ,θ)

= 0.

Then 	n(ψ,θ) can be rewritten as

	n(ψ,θ) = inf
λ,ν

ln(ψ,θ, λ,ν),

where

ln(ψ,θ, λ,ν)

= −
1∑

i=0

ni∑
j=1

log
{

1 + λ
[
exp

{
θ�Q(Xij)

}
− 1
]

+ ν�g(Xij ;ψ,θ)
}

+
n1∑
j=1

{θ�Q(X1j)}.

Equivalently, 	n(ψ,θ) = ln(ψ,θ, λ,ν) with λ and ν being the solution to

∂ln(ψ,θ, λ,ν)
∂λ

= 0 and ∂ln(ψ,θ, λ,ν)
∂ν

= 0.

With the above preparation, it can be verified that the maximum empirical
likelihood estimate (MELE) (ψ̂, θ̂) of (ψ,θ) and the corresponding Lagrange
multipliers (λ̂, ν̂) satisfy

∂ln(ψ̂, θ̂, λ̂, ν̂)
∂θ

=0, ∂ln(ψ̂, θ̂, λ̂, ν̂)
∂β

=0, ∂ln(ψ̂, θ̂, λ̂, ν̂)
∂λ

=0, ∂ln(ψ̂, θ̂, λ̂, ν̂)
∂ν

=0.

To investigate the asymptotic properties of ψ̂ and θ̂, we need their approxi-
mations. We first find the first and second derivatives of ln(ψ,θ, λ,ν).
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Recall that η = (ψ�,θ�)� and u = (λ,ν�)�. The MELE and true value of
η are η̂ = (ψ̂

�
, θ̂

�
)� and η∗ = (ψ∗�,θ∗�)�. Let γ = (η�,u�)�. We further

define

û = (λ̂, ν̂�)�, u∗ = (λ∗,01×r)�, γ̂ = (η̂�, û�)�, γ∗ = (η∗�,u∗�)�.

In the following, we use ln(γ) and g(x;η) to denote ln(ψ,θ, λ,ν) and g(x;ψ,θ).
• First and second derivatives of ln(γ)

After some straightforward algebraic manipulations, the first derivatives of
ln(γ) are found to be:

∂ln(γ)
∂ψ

= −
1∑

i=0

ni∑
j=1

{∂g(Xij ;η)/∂ψ}�ν
1 + λ {ω(Xij ;θ) − 1} + ν�g(Xij ;η) ,

∂ln(γ)
∂θ

= −
1∑

i=0

ni∑
j=1

λω(Xij ;θ)Q(Xij) + {∂g(Xij ;η)/∂θ}�ν
1 + λ {ω(Xij ;θ) − 1} + ν�g(Xij ;η) +

n1∑
j=1

Q(X1j),

∂ln(γ)
∂u

= −
1∑

i=0

ni∑
j=1

G(Xij ;η)
1 + λ {ω(Xij ;θ) − 1} + ν�g(Xij ;η) .

Then the first derivatives at the true values η∗ and u∗ are

Sn = ∂ln(γ∗)
∂γ

=

⎛
⎜⎝

∂ln(γ∗)
∂ψ

∂ln(γ∗)
∂θ

∂ln(γ∗)
∂u

⎞
⎟⎠ =

⎛
⎝ 0

Snθ

Snu

⎞
⎠ ,

where

Snθ =
n1∑
j=1

Q(X1j) −
1∑

i=0

ni∑
j=1

h1(Xij)Q(Xij), Snu = −
1∑

i=0

ni∑
j=1

G(Xij)
h(Xij)

.

Similarly, we calculate the second derivatives of ln(γ). Evaluating them at
γ∗ gives:

∂2ln(γ∗)
∂γ∂γ� =

⎛
⎜⎜⎝

0 0 ∂2ln(γ∗)
∂θ∂u�

0 ∂2ln(γ∗)
∂β∂β�

∂2ln(γ∗)
∂β∂u�

∂2ln(γ∗)
∂u∂θ�

∂2ln(γ∗)
∂u∂β�

∂2ln(γ∗)
∂u∂u�

⎞
⎟⎟⎠ , (7.7)

where h0(x) = (1 − λ∗)/h(x) = 1 − h1(x) and

∂2ln(γ∗)
∂ψ∂u� =

(
∂2ln(γ∗)
∂u∂ψ�

)�
= −

1∑
i=0

ni∑
j=1

{∂G(Xij ;η∗)/∂ψ}�
h(Xij)

;

∂2ln(γ∗)
∂θ∂θ� = −

1∑
i=0

ni∑
j=1

h0(Xij)h1(Xij)Q(Xij)Q(Xij)�;
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∂2ln(γ∗)
∂θ∂u� =

(
∂2ln(γ∗)
∂u∂θ�

)�

=
1∑

i=0

ni∑
j=1

h1(Xij)Q(Xij)G(Xij)�

h(Xij)
−

1∑
i=0

ni∑
j=1

{∂G(Xij ;η∗)/∂θ}�
h(Xij)

;

∂2ln(γ∗)
∂u∂u� =

1∑
i=0

ni∑
j=1

G(Xij)G(Xij)�

h(Xij)2
.

• Some useful lemmas
We first review a lemma from the supplementary material of Qin et al. (2015),

which helps to ease the calculation in our proofs. In the following, we assume
that the DRM (1.1) is satisfied as required in Condition C2.

Lemma 1. Suppose that S is an arbitrary vector-valued function. Let E0(·)
represent the expectation operator with respect to F0 and X refer to a random
variable from F0. Then we have for j = 1, · · · , n1,

E {S(X1j)} = E0 {ω(X)S(X)} and E

⎧⎨
⎩

1∑
i=0

ni∑
j=1

S(Xij)

⎫⎬
⎭=nE0 {S(X)h(X)} .

Proof. Under the DRM with true parameter θ∗, we have

E {S(X1j)} =
∫

S(x)dF1(x) =
∫

S(x)ω(x)dF0(x) = E0 {ω(X)S(X)} .

Using the fact that λ∗ = n1/n and the definition of the function h(·), we
further have

E

⎧⎨
⎩

1∑
i=0

ni∑
j=1

S(Xij)

⎫⎬
⎭ = n0E0 {S(X)} + n1E0 {ω(X)S(X)}

= n [(1 − λ∗)E0 {S(X)} + λ∗E0 {ω(X)S(X)}]
= nE0 [{(1 − λ∗) + λ∗ω(X)}S(X)]
= nE0 {ω(X)S(X)} .

This completes the proof.

Recall that

Aθθ = (1 − λ∗)E0
{
h1(X)Q(X)Q(X)�

}
,

Aθu = A�
uθ = E0

{
∂G(X;η∗)

∂θ

}�
− E0

{
h1(X)Q(X)G(X)�

}
,

Aψu = A�
uψ = E0

{
∂G(X;η∗)

∂ψ

}�
, Auu = E0

{
G(X)G(X)�

h(X)

}
.

Applying Lemma 1, after some algebra, we have the following Lemma.
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Lemma 2. (a) With the form of ∂2ln(γ∗)/(∂γ∂γ�) defined in (7.7), we have

− 1
n
E

{
∂2ln(γ∗)
∂γ∂γ�

}
= A =

⎛
⎝ 0 0 Aψu

0 Aθθ Aθu

Auψ Auθ −Auu

⎞
⎠ .

(b) Let S∗
n = (S�

nθ,S
�
nu)�. Then as n → ∞,

n−1/2S∗
n → N(0,Γ)

in distribution with

eθ =
(

1
0d×1

)
, eu =

(
1

0r×1

)
, C=

(
Aθθeθ

−λ∗(1 − λ∗)Auueu

)
,

and Γ=
(

Aθθ 0
0 Auu

)
− 1

λ∗(1 − λ∗)CC�.

Proof. For (a): Note that Conditions C3 and C4 ensure that A is well defined.
The results then follow by applying Lemma 1 to each term of E{∂2ln(γ∗)/
(∂γ∂γ�)}. We use E

{
∂2ln(γ∗)/(∂θ∂θ�)

}
as an illustration; for the other en-

tries, the idea is similar and we omit the details.
With Lemma 1 and the fact that h0(x)h(x) = 1 − λ∗, we have

− 1
n
E

{
∂2ln(γ∗)
∂θ∂θ�

}
= 1

n
E

⎧⎨
⎩

1∑
i=0

ni∑
j=1

h0(Xij)h1(Xij)Q(Xij)Q(Xij)�
⎫⎬
⎭

= (1 − λ∗)E0
{
h1(X)Q(X)Q(X)�

}
= Aθθ.

For (b): Conditions C2–C4 ensure that E(S∗
n) and V ar(S∗

n) are well defined.
We first use the results in Lemma 1 to show that E(S∗

n) = 0. For E(Snθ),

E(Snθ) = n1E{Q(X11)} − nE0{h(X)h1(X)Q(X)}
= n1E0{ω(X)Q(X)} − nE0{λ∗ω(X)Q(X)}
= 0.

The last step follows from the fact that λ∗ = n1/n.
The unbiasedness of the EEs leads to

E(Snu) = −nE0{G(X;η∗)} = 0.

Hence, we have E(S∗
n) = 0.

Since S∗
n is a summation of independent random vectors, by the central limit

theorem,
n−1/2S∗

n → N(0,Γ)

for some Γ. Next, we show that Γ has the form claimed in the lemma.
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We start with the variances of n−1/2Snθ and n−1/2Snu. Note that

Snθ =
n1∑
j=1

h0(X1j)Q(X1j) −
n0∑
j=1

h1(X0j)Q(X0j).

With the help of Lemma 1, we have

V ar(n−1/2Snθ) = 1
n
V ar

⎛
⎝ n1∑

j=1
h0(X1j)Q(X1j) −

n0∑
j=1

h1(X0j)Q(X0j)

⎞
⎠

= λ∗E0
{
h0(X)2ω(X)Q(X)Q(X)�

}
+(1 − λ∗)E0

{
h1(X)2Q(X)Q(X)�

}
−λ∗E0 {h0(X)ω(X)Q(X)}E0

{
h0(X)ω(X)Q(X)�

}
−(1 − λ∗)E0 {h1(X)Q(X)}E0

{
h1(X)Q(X)�

}
.

Using the definitions of functions h1(·) and h0(·) and the fact that λ∗ = n1/n,
we further have

V ar(n−1/2Snθ) = (1 − λ∗)E0
{
h1(X)Q(X)Q(X)�

}
−1 − λ∗

λ∗ E0 {h1(X)Q(X)}E0
{
h1(X)Q(X)�

}
= Aθθ − {λ∗(1 − λ∗)}−1Aθθeθ (Aθθeθ)� .

Similarly, we calculate the variance of n−1/2Snu as

V ar(n−1/2Snu)

= 1
n
V ar

⎧⎨
⎩−

1∑
i=0

ni∑
j=1

G(Xij)
h(Xij)

⎫⎬
⎭

= 1
n

1∑
i=0

ni∑
j=1

E0

{
G(Xij)G(Xij)�

h(Xij)2

}
− 1

n

n0∑
j=1

E0

{
G(X0j)
h(X0j)

}
E0

{
G(X0j)�

h(X0j)

}

− 1
n

n1∑
j=1

E0

{
ω(X1j)G(X1j)

h(X1j)

}
E0

{
ω(X1j)G(X1j)�

h(X1j)

}

= Auu − (1 − λ∗)E0

{
G(X)
h(X)

}
E0

{
G(X)�

h(X)

}

− λ∗E0

{
ω(X)G(X)

h(X)

}
E0

{
ω(X)G(X)�

h(X)

}
.

It can easily be verified that

(1 − λ∗)E0

{
G(X)
h(X)

}
+ λ∗E0

{
ω(X)G(X)

h(X)

}
= E0 {G(X)} = 0,
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which implies that

E0

{
{ω(X) − 1}G(X)

h(X)

}
= − 1

λ∗E0

{
G(X)
h(X)

}
= Auueu.

Therefore,

V ar(n−1/2Snu) = Auu − λ∗(1 − λ∗)Auueu(Auueu)�.

Lastly, we consider the covariance between n−1/2Snθ and n−1/2Snu:

Cov(n−1/2Snθ, n
−1/2Snu)

= − 1
n
Cov

⎛
⎝ n1∑

j=1
h0(X1j)Q(X1j) −

n0∑
j=1

h1(X0j)Q(X0j),
1∑

i=0

ni∑
j=1

G(Xij)�

h(Xij)

⎞
⎠

= − 1
n

n1∑
j=1

Cov

(
h0(X1j)Q(X1j),

G(X1j)�

h(X1j)

)

+ 1
n

n0∑
j=1

Cov

(
h1(X0j ; )Q(X0j),

G(X0j)�

h(X0j)

)

= λ∗E0 {ω(X)h0(X)Q(X)}E0

{
ω(X)G(X)�

h(X)

}

− (1 − λ∗)E0 {h1(X)Q(X)}E0

{
G(X)�

h(X)

}

= (1 − λ∗)E0 {h1(X)Q(X)}E0

{
{ω(X) − 1}G(X)�

h(X)

}
= Aθθeθ(Auueu)�.

Then Γ = V ar(n−1/2S∗
n) has the form claimed in the lemma. This completes

the proof.

7.3.3. Proof of Theorem 1

Recall that γ̂ = (η̂�, û�)� is the MELE of γ. Using an argument similar to that
in Qin and Lawless (1994) and Qin et al. (2015), we have that η̂ = η∗+Op(n−1/2)
and û = u∗ + Op(n−1/2). To develop the asymptotic approximation of η̂, we
apply the first-order Taylor expansion to ∂ln(γ̂)/∂γ at the true value γ∗. This,
together with Condition C5, gives

0 = Sn + ∂2ln(γ∗)
∂γ∂γ� (γ̂ − γ∗) + op(n1/2).

With the law of large numbers and Lemma 2, we have

1
n

∂2ln(γ∗)
∂γ∂γ� = 1

n
E

{
∂2ln(γ∗)
∂γ∂γ�

}
+ op(1) = −A + op(1). (7.8)
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Hence, we can write(
0 0
0 Aθθ

)
(η̂ − η∗) +

(
Aψu

Aθu

)
(û− u0) = 1

n

(
0

Snθ

)
+ op(n− 1

2 ); (7.9)

(
Auψ Auθ

)
(η̂ − η∗) −Auu(û− u0) = 1

n
Snu + op(n− 1

2 ). (7.10)

Recall that

U =
(

0 Aψu

Aθθ Aθu

)
, V =

(
Aθθ 0
0 Auu

)
, and J = UV −1U�. (7.11)

Conditions C3 and C4 ensure that U , V , and J have full rank. Then (7.9)
and (7.10) together imply that

n1/2(η̂ − η∗) = J−1UV −1(n−1/2S∗
n) + op(1).

Applying Lemma 2 and Slusky’s theorem, we have as n → ∞

n1/2(η̂ − η∗) → N(0,Σ)

in distribution with Σ = J−1UV −1V ar(n−1/2S∗
n)V −1U�J−1.

Recall that

V ar(n−1/2S∗
n) = Γ=V − 1

λ∗(1 − λ∗)CC� and C =
(

Aθθeθ
−λ∗(1 − λ∗)Auueu

)
.

Since

Aψueu = 0 and Aθueu = 1
λ∗E0 {h1(X)Q(X)} = 1

λ∗(1 − λ∗)Aθθeθ,

we have

UV −1C = UV −1
(

Aθθeθ
−λ∗(1 − λ∗)Auueu

)

=
(

−λ∗(1 − λ∗)Aψueu
Aθθeθ − λ∗(1 − λ∗)Aθueu

)
= 0.

This leads to Σ = J−1 and completes the proof.

7.3.4. Proof of Corollary 1

Part (a). The results in Theorem 1 imply that

n1/2(θ̂ − θ∗) → N (0,Jθ)

in distribution, where

Jθ =
{
Aθθ+AθuA

−1
uuAuθ −AθuA

−1
uuAuψ

(
AψuA

−1
uuAuψ

)−1
AψuA

−1
uuAuθ

}−1
.
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From the definitions of Auψ and Auu, we have

Auψ =
(

0
E0

{
∂g(X;η∗)

∂ψ

} )

and

Auu =

⎛
⎝ E0

{
{ω(X)−1}2

h(X)

}
E0

{
{ω(X)−1}g(X;η∗)

h(X)

}
E0

{
{ω(X)−1}g(X;η∗)�

h(X)

}
E0

{
g(X;η∗)g(X;η∗)�

h(X)

}
⎞
⎠ .

We write
A−1

uu =
(

A11
uu A12

uu

A21
uu A22

uu

)
.

When r = p, we have

(
AψuA

−1
uuAuψ

)−1 =
[
E0

{
∂g(X;η∗)

∂ψ

}�
A22

uuE0

{
∂g(X;η∗)

∂ψ

}]−1

=
[
E0

{
∂g(X;η∗)

∂ψ

}�]−1(
A22

uu

)−1
[
E0

{
∂g(X;η∗)

∂ψ

}]−1

.

This leads to

A−1
uuAuψ

(
AψuA

−1
uuAuψ

)−1
AψuA

−1
uu

=
(

A12
uu

(
A22

uu

)−1
A21

uu A12
uu

A21
uu A22

uu

)

= A−1
uu −

(
A11

uu −A12
uu

(
A22

uu

)−1
A21

uu 0
0 0

)
.

It can be verified that Aθueu = {λ∗(1 − λ∗)}−1Aθθeθ and
{
A11

uu −A12
uu

(
A22

uu

)−1
A21

uu

}−1
= E0

{
{ω(X) − 1}2

h(X)

}

= 1
λ∗(1 − λ∗)

{
1 − e�θ Aθθeθ

λ∗(1 − λ∗)

}
.

By the Woodbury matrix identity, the variance matrix Jθ can be simplified as

Jθ =
{
Aθθ +

{
Aθθeθ

λ∗(1 − λ∗)

}[
E0

{
{ω(X) − 1}2

h(X)

}]−1{
Aθθeθ

λ∗(1 − λ∗)

}�}−1

= A−1
θθ − eθe

�
θ

λ∗(1 − λ∗) .

This is the same as the asymptotic variance of n1/2(θ̃− θ∗) shown in Lemma 1
of Qin and Zhang (1997) under Conditions C1–C3.
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Part (b). For r > p, let Um,V m,Jm denote the corresponding U ,V ,J
matrices obtained by using only the first m EEs of g(x;η). With Theorem 1,
to complete the proof of this part it suffices to show that

Jm ≥ Jm−1.

From the definition of the matrix U , we notice that Um has one more col-
umn than Um−1, and we denote this extra column um. Then we have Um =
(Um−1, um). Following the proof of Corollary 1 of Qin and Lawless (1994), we
have

V −1
m ≥

(
V −1

m−1 0
0 0

)
. (7.12)

Therefore,

Jm = UmV −1
m U�

m

≥ (Um−1, um)
(

V −1
m−1 0
0 0

)
(Um−1, um)�

= Jm−1, (7.13)

as required. This completes the proof.

7.3.5. Proof of Theorem 2

Recall that the null hypothesis forms a constraint

C3 = {η : H(η) = 0} ,

and the ELR statistic for testing H0 : H(η) = 0 is defined as

Rn = 2
{

sup
ψ,θ

	n(ψ,θ) − sup
η∈C3

	n(ψ,θ)
}

= 2
{
	n(ψ̂, θ̂) − 	n(ψ̌, θ̌)

}
,

where
(ψ̌, θ̌) = arg max

η∈C3
	n(ψ,θ).

In the following steps, we find the approximations of 	n(ψ̂, θ̂) and 	n(ψ̌, θ̌).
We first derive the approximation of ln(γ) when γ is in the n−1/2 neighbor-

hood of its true value γ∗. Applying the second-order Taylor expansion to ln(γ),
and using (7.8) and Condition C5, we have

ln(γ) = ln(γ∗) + S�
n (γ − γ∗) − n

2 (γ − γ∗)�A(γ − γ∗) + op(1)

= ln(γ∗) +
(

0 S�
nθ

)
(η − η∗) + S�

nu(u− u0)

−n

2 (η − η∗)�
(

0 0
0 Aθθ

)
(η − η∗) + n

2 (u− u∗)�Auu(u− u∗)
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−n(η − η∗)�
(

Aψu

Aθu

)
(u− u∗) + op(1).

Setting the derivative of ln(γ) with respect to u equal to zero gives

u− u∗ = A−1
uu

(
Auψ Auθ

)
(η − η∗) −A−1

uu

(
1
n
Snu

)
+ op(n− 1

2 ).

Substituting the approximation of u−u∗ into ln(γ) leads to an approximation
of 	n(ψ,θ):

	n(ψ,θ) = ln(γ∗) + (η − η∗)�UV −1S∗
n − n

2 (η − η∗)�J(η − η∗)

− 1
2nS

�
nuA

−1
uuSnu + op(1). (7.14)

With the approximation of η̂ in (7.14), we then have

	n(ψ̂, θ̂) = ln(γ∗) + 1
2nS

∗�
n V −1U�J−1UV −1S∗

n − 1
2nS

�
nuA

−1
uuSnu + op(1).

Next, we find an approximation for η̌ = (ψ̌
�
, θ̌

�
)�. We first define

	∗n(ψ,θ,v) = 	n(ψ,θ) + nv�H(η),

where v is the Lagrange multiplier. Then η̌ and the corresponding Lagrange
multiplier v̌ satisfy

∂	∗n(ψ̌, θ̌, v̌)
∂ψ

= 0, ∂	∗n(ψ̌, θ̌, v̌)
∂θ

= 0, ∂	∗n(ψ̌, θ̌, v̌)
∂v

= 0. (7.15)

It is easy to verify that γ̌ = γ∗ + Op(n−1/2) and v̌ = Op(n−1/2) (Qin and
Lawless, 1995, Qin et al., 2015).

Let h∗ = ∂H(η∗)/∂η. When η is in the n−1/2 neighborhood of the true value
η∗, we approximate H(η) with H(η) = h∗(η−η∗) + op(n−1/2). Together with
the approximation of 	n(ψ,θ) in (7.14), we approximate 	∗n(ψ,θ,v) at an n−1/2

neighbor of (ψ�
0 ,θ

�
0 ,01×q)� with

	∗n(ψ,θ,v) = ln(γ∗) + (η − η∗)�UV −1S∗
n − n

2 (η − η∗)�J(η − η∗)

+nv�h∗(η − η∗) − 1
2nS

�
nuA

−1
uuSnu + op(1).

Applying the first-order Taylor expansion to (7.15), we have(
J −h∗�

−h∗ 0

)(
η̌ − η∗

v̌

)
= 1

n

(
UV −1S∗

n

0

)
+ op(n− 1

2 ).

Hence,

n1/2(η̌ − η∗)
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= (I,0)
(

J −h∗�

−h∗� 0

)−1(
n−1/2UV −1Sn

0

)
+ op(1)

= {J−1 − J−1h∗�(h∗J−1h∗�)−1h∗J−1}UV −1(n−1/2S∗
n) + op(1),(7.16)

where I is the identity matrix with dimension p + d + 1.
Substituting the expression of η̌ in (7.16) into (7.14) gives

	n(ψ̌, θ̌)

= ln(γ∗) − 1
2nS

�
nuA

−1
uuSnu + op(1)

+ 1
2nS

∗�
n V −1U�{J−1 − J−1h∗�(h∗J−1h∗�)−1h∗J−1}UV −1S∗

n.

Hence, the ELR statistic Rn can be written as

Rn = 1
n
S∗�

n V −1U�J−1h∗�(h∗J−1h∗�)−1h∗J−1UV −1S∗
n + op(1).

We find that J−1/2h∗�(h∗J−1h∗�)−1h∗J−1/2 is an idempotent matrix with
rank q. Further, as n → ∞,

J−1/2UV −1(n−1/2S∗
n) → N(0, I)

in distribution. Therefore, the limiting distribution of Rn is χ2
q under H0.

7.3.6. Proofs of Theorem 3 and Corollary 2

We start with the proof of Theorem 3. Recall that the ELR statistic for testing
the validity of the EEs is defined as

Wn = 2
{
	nd(θ̃) − 	n(ψ̂, θ̂)

}
.

We first find an approximation of 	nd(θ̃). Applying the second-order Taylor
expansion to 	nd(θ̃) at the true value θ∗, we have

	nd(θ̃) = 	nd(θ∗) + (θ̃− θ∗)� ∂	nd(θ∗)
∂θ

+ 1
2(θ̃− θ∗)� ∂2	nd(θ∗)

∂θ∂θ� (θ̃− θ∗) + op(1).

The fact that ν∗ = 0 implies 	nd(θ∗) = ln(γ∗). According to Qin and Zhang
(1997), it is easy to verify that

θ̃ − θ∗ = 1
n
A−1

θθ

∂	nd(θ∗)
∂θ

+ op(n−1/2), ∂	nd(θ∗)
∂θ

= Snθ,

and
1
n

∂2	nd(θ∗)
∂θ∂θ� = −Aθθ + op(1).
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Then
	nd(θ̃) = ln(γ∗) + 1

2nS
�
nθA

−1
θθ Snθ + op(1).

Hence, the ELR statistic can be written as

Wn = 2
{
	nd(θ̃) − 	n(ψ̂, θ̂)

}
= 1

n
S�

nθA
−1
θθ Snθ + 1

n
S�

nuA
−1
uuSnu − 1

n
S∗�

n V −1U�J−1UV −1S∗
n

= 1
n
S∗�

n V −1(V −U�J−1U)V −1S∗
n + op(1). (7.17)

Since V is a positive-definite matrix, we define an inner product on the vector
space R

2+d+r as < a, b >V −1= a�V −1b for any vector a, b in the vector space.
Recall that

C =
(

Aθθeθ
−λ∗(1 − λ∗)Auueu

)
.

The vector C and each row in U are linearly independent in the inner product
space because UV −1C = 0. Let V be the inner product space spanned by the
vector C and each row in U . Then there exists an orthogonal complement B of
the subspace V with the dimension r− p. Let the columns of C∗ be the basis of
the orthogonal complement B. Then C∗ satisfies C∗�V −1(C,U�) = 0. Define
M� = (C∗,C,U�), which satisfies

MV −1M� =

⎛
⎝ C∗�V −1C∗ 0 0

0 C�V −1C 0
0 0 J

⎞
⎠ .

With the above construction, M is a full rank matrix and can be inverted.
We can write the inverse of MV −1M� as

(M�)−1V M−1 =

⎛
⎝ (C∗�V −1C∗)−1 0 0

0 (C�V −1C)−1 0
0 0 J−1

⎞
⎠ .

Then

V = M�(M�)−1V M−1M
= C∗(C∗�V −1C∗)−1C∗� + C(C�V −1C)−1C� + U�J−1U .

Note that

C�V −1S∗
n = e�θ Snθ − λ∗(1 − λ∗)e�uSnu

= n1 −
1∑

i=0

ni∑
j=1

h1(Xij) + λ∗(1 − λ∗)
1∑

i=0

ni∑
j=1

ω(Xij) − 1
h(Xij)

= 0.
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This helps to simplify Wn as

Wn = 1
n
S∗�

n V −1C∗(C∗�V −1C∗)−1C∗�V −1S∗
n + op(1).

According to Lemma 2, we have

V ar
(
n−1/2S∗

n

)
= V − 1

λ∗(1 − λ∗)CC�.

Together with the fact that V −1/2{C∗(C∗�V −1C∗)−1C∗�}V −1/2 is idempo-
tent with rank r − p and C∗�V −1C = 0, we have

V ar
[
n−1/2{V −1/2C∗(C∗�V −1C∗)−1C∗�V −1}S∗

n

]
= V −1/2C∗(C∗�V −1/C∗)−1C∗�V −1/2.

Therefore, Wn asymptotically follows χ2
r−p under H0 as n → ∞.

We now prove Corollary 2. Let S∗
n1 be the first d + r − m + 2 elements of

S∗�
n , U1 be the first r −m columns of U , V 1 be the upper (d + r −m + 2) ×

(d + r −m + 2) matrix of V , and J1 = U1V
−1
1 U�

1 . Further, let 	n1(ψ,θ) be
the profile empirical log-likelihood of (ψ,θ) using only g1(x;η) and

(ψ̂
∗
, θ̂

∗
) = arg max

ψ,θ
	n1(ψ,θ).

Following the techniques used to obtain (7.17), we have

2
{
	nd(θ̃) − 	n1(ψ̂

∗
, θ̂

∗
)
}

= S∗�
n1 V

−1
1 (V 1 −U�

1 J
−1
1 U1)V −1

1 S∗
n1 + op(1).

Then, the ELR statistic W ∗
n has the following approximation:

W ∗
n = 2{	n1(ψ̂

∗
, θ̂

∗
) − 	n(ψ̂, θ̂)}

= 2
{
	nd(θ̃) − 	n(ψ̂, θ̂)

}
− 2

{
	nd(θ̃) − 	n1(θ̂

∗
, β̂

∗
)
}

= 1
n

[
S∗�

n V −1(V −U�J−1U)V −1S∗
n

− S∗�
n1V

−1
1 (V 1 −U�

1 J
−1
1 U1)V −1

1 S∗
n1

]
+ op(1).

With the technique used to prove Corollary 1, we have

V −1(V −U�J−1U)V −1 ≥
(

V −1
1 {V 1 −U�

1 J
−1
1 U1}V −1

1 0
0 0

)
.

Then
1
n

[
S∗�

n V −1(V −U�J−1U)V −1S∗
n−S∗�

n1 V
−1
1 (V 1 −U�

1 J
−1
1 U1)V −1

1 S∗
n1

]
≥0.
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Recall that as n → ∞,

1
n
S∗�

n V −1(V −U�J−1U)V −1S∗
n → χ2

r−p

in distribution. We can similarly prove that as n → ∞,

1
n
S∗�

n1V
−1
1 (V 1 −U�

1 J
−1
1 U1)V −1

1 S∗
n1 → χ2

r−m−p

in distribution.
By the arguments in Qin and Lawless (1994), we conclude that

W ∗
n → χ2

(r−p)−(r−m−p) = χ2
m

in distribution as n → ∞.

7.3.7. Proof of Theorem 4

For (a): We start with some preparation. For any x in the support of F0, let

F0(x,γ) = 1
n

1∑
i=0

ni∑
j=1

I(Xij ≤ x)
1 + λ {ω(Xij ;θ) − 1} + ν�g(Xij ;ψ,θ) ,

F1(x,γ) = 1
n

1∑
i=0

ni∑
j=1

ω(Xij ;θ)I(Xij ≤ x)
1 + λ {ω(Xij ;θ) − 1} + ν�g(Xij ;ψ,θ) .

Then

F̂0(x) = F0(x, γ̂), F0(x,γ∗) = 1
n

1∑
i=0

ni∑
j=1

I(Xij ≤ x)
h(Xij)

,

F̂1(x) = F1(x, γ̂), F1(x,γ∗) = 1
n

1∑
i=0

ni∑
j=1

ω(Xij)I(Xij ≤ x)
h(Xij)

.

Next, we explore the properties of the first derivatives of F0(x,γ) and F1(x,γ)
at the true value γ∗. Define

∂F0(x,γ∗)
∂γ

=

⎛
⎜⎝

∂F0(x,γ∗)
∂ψ

∂F0(x,γ∗)
∂θ

∂F0(x,γ∗)
∂u

⎞
⎟⎠ ,

∂F1(x,γ∗)
∂γ

=

⎛
⎜⎝

∂F1(x,γ∗)
∂ψ

∂F1(x,γ∗)
∂θ

∂F1(x,γ∗)
∂u

⎞
⎟⎠ ,

where
∂F0(x,γ∗)

∂ψ
= ∂F1(x,γ∗)

∂ψ
= 0,

∂F0(x,γ∗)
∂θ

= − 1
n

1∑
i=0

ni∑
j=1

h1(Xij)h(Xij)Q(Xij)I(Xij ≤ x),
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∂F0(x,γ∗)
∂u

= − 1
n

1∑
i=0

ni∑
j=1

G(Xij)
{h(Xij)}2 I(Xij ≤ x),

∂F1(x,γ∗)
∂θ

= 1
n

1∑
i=0

ni∑
j=1

ω(Xij)
h(Xij)

h0(Xij)Q(Xij)I(Xij ≤ x),

∂F1(x,γ∗)
∂u

= − 1
n

1∑
i=0

ni∑
j=1

ω(Xij)
{h(Xij)}2G(Xij)I(Xij ≤ x).

Applying Lemma 1, we have the following results for E
{

∂F0(x,γ∗)
∂γ

}
and

E
{

∂F1(x,γ∗)
∂γ

}
.

Lemma 3. With the form of ∂F0(x,γ∗)/∂γ and ∂F1(x,γ∗)/∂γ defined above,
we have

−E

{
∂F0(x,γ∗)

∂γ

}
= B0(x) =

⎛
⎝ 0

B0θ(x)
B0u(x)

⎞
⎠ =

(
0

B∗
0(x)

)
,

−E

{
∂F1(x,γ∗)

∂γ

}
= B1(x) =

⎛
⎝ 0

B1θ(x)
B1u(x)

⎞
⎠ =

(
0

B∗
1(x)

)
.

Note that B0θ(x), B1θ(x), B0u(x), and B1u(x) have been defined before
Theorem 4. We now move to the joint asymptotic normality of F̂l(x) and F̂s(y).
We first find an approximation for F̂l(x) for l = 0 and 1. Applying the first-order
Taylor expansion to F̂l(x) and using the results in Lemma 3, we have

F̂l(x) = Fl(x,γ∗) −B∗
l (x)�(γ̂∗ − γ∗) + op(n−1/2)

= Fl(x,γ∗) − (0,Blθ(x)�)(η̂∗ − η∗) −B0u(x)�(û− u∗) + op(n−1/2).

Using the relationship in (7.10) and the definitions of the matrices U and V
in (7.11), we have

F̂l(x) = Fl(x,γ∗) −B∗
l (x)�V −1U�(η̂∗ − η∗)+ 1

n
Blu(x)�A−1

uuSnu+op(n−1/2)

= Fl(x,γ∗) −B∗
l (x)�

{
V −1U�(η̂∗ − η∗)

−
(

0 0
0 A−1

uu

)(
1
n
S∗

n

)}
+ op(n−1/2).

Recall that η̂ − η∗ = J−1UV −1(n−1S∗
n) + op(n−1/2). The approximation of

F̂l(x) is then given by

F̂l(x) = Fl(x,γ∗) − 1
n
B∗

l (x)�WS∗
n + op(n−1/2)
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with
W = V −1U�J−1UV −1 −

(
0 0
0 A−1

uu

)
.

Note that Fl(x) = E0{Fl(x,γ∗)}. Then

n1/2{F̂l(x) − Fl(x)} = n1/2{Fl(x,γ∗) − Fl(x)} − n−1/2B∗
l (x)�WS∗

n + op(1).

The two leading terms are summations of independent random variables and
both have mean zero. Hence, as n → ∞,

√
n

(
F̂l(x) − Fl(x)
F̂s(y) − Fs(y)

)
→ N

(
0,Σls(x, y)

)
,

where
Σls(x, y) =

(
σll(x, x) σls(x, y)
σsl(y, x) σss(y, y)

)
.

To complete the proof of (a), we need to argue that Σls(x, y) has the form
claimed in the lemma. According to the expression of F̂l(x) − Fl(x), we have

σll(x, x) = nV ar {Fl(x,γ∗)} + n−1V ar(B∗
l (x)�WS∗

n)
− 2Cov

{
Fl(x,γ∗),B∗

l (x)�WS∗
n

}
;

σss(y, y) = nV ar {Fs(y,γ∗)} + n−1V ar(B∗
s(y)�WS∗

n)
− 2Cov

{
Fs(y,γ∗),B∗

s(y)�WS∗
n

}
;

σls(x, y) = nCov {Fl(x,γ∗), Fs(y,γ∗)} − Cov
{
Fl(x,γ∗),B∗

s(y)�WS∗
n

}
− Cov

{
Fs(y,γ∗),B∗

l (x)�WS∗
n

}
+ B∗

l (x)�{n−1V ar(WS∗
n)}B∗

s(y);
σsl(y, x) = σls(x, y).

Next, we calculate the covariances and variances appearing above. We start
with the covariance and variance related to Fl(x,γ∗) and Fs(y,γ∗). Let x∧ y =
min{x, y}. Using Lemma 1, we have

nCov {F0(x,γ∗), F0(y,γ∗)}

= (1 − λ∗)Cov

{
I(X01 ≤ x)
h(X01)

,
I(X01 ≤ y)
h(X01)

}

+λ∗Cov

{
I(X11 ≤ x)
h(X11)

,
I(X11 ≤ y)
h(X11)

}

= E0

{
I(X ≤ x ∧ y)

h(X)

}
− (1 − λ∗)E0

{
I(X ≤ x)
h(X)

}
E0

{
I(X ≤ y)
h(X)

}

−λ∗E0

{
ω(X)I(X ≤ x)

h(X)

}
E0

{
ω(X)I(X ≤ y)

h(X)

}
.

After some algebra, we have that for any x in the support of F0,

B0u(x)�eu = E0

{
ω(X)I(X ≤ x)

h(X)

}
−E0

{
I(X ≤ x)
h(X)

}
,
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F0(x) = E0

{
I(X ≤ x)
h(X)

}
+ λ∗B0u(x)�eu.

Then the covariance nCov {F0(x,γ∗), F0(y,γ∗)} is simplified as

nCov {F0(x,γ∗), F0(y,γ∗)}

= E0

{
I(X ≤ x ∧ y)

h(X)

}
− λ∗B0u(x)�eue�uB0u(y)

−λ∗B0u(x)�euE0

{
I(X ≤ y)
h(X)

}
− λ∗E0

{
I(X ≤ x)
h(X)

}
e�uB0u(y)

−E0

{
I(X ≤ x)
h(X)

}
E0

{
I(X ≤ y)
h(X)

}

= E0

{
I(X ≤ x ∧ y)

h(X)

}
− λ∗B0u(x)�eue�uB0u(y)

−λ∗B0u(x)�eu
[
F0(y) − λ∗e�uB0u(y)

]
−E0

{
I(X ≤ x)
h(X)

}
F0(y)

= E0

{
I(X ≤ x ∧ y)

h(X)

}
− F0(x)F0(y) − λ∗(1 − λ∗)B0u(x)�eue�uB0u(y).

The covariances nCov {F0(x,γ∗), F0(y,γ∗)} and nCov {F0(x,γ∗), F1(y,γ∗)}
can be found in a similar manner. For nCov {F1(x,γ∗), F1(y,γ∗)}, we have

nCov {F1(x,γ∗), F1(y,γ∗)}

= E0

{
ω2(X)I(X ≤ x ∧ y)

h(X)

}
−λ∗E0

{
ω2(X)I(X ≤ x)

h(X)

}
E0

{
ω2(X)I(X ≤ y)

h(X)

}

− (1 − λ∗)E0

{
ω(X)I(X ≤ x)

h(X)

}
E0

{
ω(X)I(X ≤ y)

h(X)

}

= E0

{
ω2(X)I(X ≤ x ∧ y)

h(X)

}
− F1(x)F1(y) − λ∗(1 − λ∗)B1u(x)�eue�uB1u(y)

and

nCov {F0(x,γ∗), F1(y,γ∗)}

= E0

{
ω(X)I(X ≤ x ∧ y)

h(X)

}
− (1 − λ∗)E0

{
I(X ≤ x)
h(X)

}
E0

{
ω(X)I(X ≤ y)

h(X)

}

− λ∗E0

{
ω(X)I(X ≤ x)

h(X)

}
E0

{
ω2(X)I(X ≤ y)

h(X)

}

= E0

{
ω(X)I(X ≤ x ∧ y)

h(X)

}
− F0(x)F1(y) − λ∗(1 − λ∗)B0u(x)�eue�uB1u(y).

In summary, for any l, s ∈ {0, 1}, we get

nCov {Fl(x,γ∗), Fs(y,γ∗)} = E0

{
ωl+s(X)I(X ≤ x ∧ y)

h(X)

}
− Fl(x)Fs(y)
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−λ∗(1 − λ∗)Blu(x)�eue�uBsu(y). (7.18)

Next, we consider the cross-terms with S∗
n. We present the calculation of

Cov {F0(x,γ∗),S∗
n} as an illustration. Using Lemma 1, we get

Cov {F0(x,γ∗),Snθ}

= 1
n
Cov

⎧⎨
⎩

1∑
i=0

ni∑
j=1

I(Xij≤x)
h(Xij)

,

n1∑
j=1

h0(X1j)Q(X1j)�−
n0∑
j=1

h1(X0j)Q(X0j)�
⎫⎬
⎭

= λ∗Cov

{
I(X11 ≤ x)
h(X11)

, h0(X11)Q(X11)�
}

−(1 − λ∗)Cov

{
I(X01 ≤ x)
h(X01)

, h1(X01)Q(X01)�
}

=
[
E0{h0(X)I(X ≤ x)} − 1 − λ∗

λ∗ E0{h1(X)I(X ≤ x)}
]
E0{h1(X)Q(X)�}.

It can be checked that

E0{h1(X)Q(X)} = 1
1 − λ∗Aθθeθ,

E0{h0(X)I(X ≤ x)} − 1 − λ∗

λ∗ E0{h1(X)I(X ≤ x)}=−(1 − λ∗)B0u(x)�eu.

Then we have

Cov {F0(x,γ∗),Snθ} = −B0u(x)�eu(Aθθeθ)�.

Similarly,

Cov {F0(x,γ∗),Snu}

= − 1
n
Cov

⎧⎨
⎩

1∑
i=0

ni∑
j=1

I(Xij ≤ x)
h(Xij)

,

1∑
i=0

ni∑
j=1

G(Xij)�

h(Xij)

⎫⎬
⎭

= −λ∗Cov

{
I(X11 ≤ x)
h(X11)

,
G(X11)�

h(X11)

}
−(1−λ∗)Cov

{
I(X01 ≤ x)
h(X01)

,
G(X01)�

h(X01)

}

= −E0

{
I(X ≤ x)G(X)�

h(X)

}

+ 1
1−λ∗

[
E0{h0(X)I(X ≤ x)}− 1−λ∗

λ∗ E0{h1(X)I(X≤x)}
]
E0{h0(X)G(X)�}

= −E0

{
I(X ≤ x)G(X)�

h(X)

}
−B0u(x)�eu · E0{h0(X)G(X)�}

= −B0u(x)� + λ∗(1 − λ∗)B0u(x)�eu(Auueu)�,

where in the last step we used the facts that

B0u(x) = E0

{
I(X ≤ x)G(X)

h(X)

}
and E0{h0(X)G(X)} = −λ∗(1−λ∗)Auueu.
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Recall that
C =

(
Aθθeθ

−λ∗(1 − λ∗)Auueu

)
.

Hence,

Cov {F0(x,γ∗),S∗
n} = −

(
0

B0u(x)

)�
−B0u(x)�euC�.

The covariance between F1(x,γ∗) and S∗
n can be found in a similar manner;

the details are omitted. We conclude that for any x in the support of F0,

Cov {Fl(x,γ∗),S∗
n} = −

(
0

Blu(x)

)�
−Blu(x)�euC�, l ∈ {0, 1}.

We now return to the form of Σ(x, y). Recall that

n−1V ar(Sn) = Γ = V − 1
λ∗(1 − λ∗)CC� and UV −1C = 0.

This leads to

B∗
l (x)�WΓ = B∗

l (x)�V −1U�J−1U −
(

0
Blu(x)

)�
−Blu(x)�euC�

= B∗
l (x)�V −1U�J−1U + Cov {Fl(x,γ∗),S∗

n} .

Consequently, for l = 0, 1, the summation of the last two terms in σll(x, x) is

n−1V ar(B∗
l (x)�WS∗

n)−2Cov
{
Fl(x,γ∗),B∗

l (x)�WS∗
n

}
=

[
B∗

l (x)�WΓ − 2Cov {Fl(x,γ∗),S∗
n}
]
WB∗

l (x)

=
[
B∗

l (x)�V −1U�J−1U +
(

0
Blu(x)

)�
+ Blu(x)�euC�

]
WB∗

l (x)

= B∗
l (x)�WB∗

l (x) + λ∗(1−λ∗)Blu(x)�eue�uBlu(x). (7.19)

Combining (7.18) and (7.19) leads to

σll(x, x) = E0

{
ω2l(X)I(X ≤ x)

h(X)

}
− Fl(x)2 + B∗

l (x)�WB∗
l (x). (7.20)

Using similar steps to derive (7.19), we find that the summation of the last
three terms in σls(x, y) is

B∗
l (x)�WB∗

s(y) + λ∗(1 − λ∗)Blu(x)�eue�uBsu(y). (7.21)

Combining (7.18) and (7.21) gives

σls(x, y) = E0

{
ωl+s(X)I(X ≤ x ∧ y)

h(X)

}
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−Fl(x)Fs(y) + B∗
l (x)�WB∗

s(y). (7.22)

Summarizing (7.20) and (7.22), we conclude that for any i, j ∈ {l, s}

σij(x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
−Fi(x)Fj(y) + B∗

i (x)�WB∗
j (y), (7.23)

which is as claimed in the lemma. This completes the proof of (a).
For (b): We prove that the claim in (b) is correct for l = 0 and s = 1. The

proofs for the other cases are similar and are omitted.
We first simplify the matrix W . Let M�

q = (C,U�). Then Mq is full rank
and therefore invertible. Note that

V = M�
q (M�

q )−1V M−1
q Mq = M�

q (MqV
−1M�

q )−1Mq.

Recall that UV −1C = 0 and J = UV −1U�. Then

MqV
−1M�

q =
(

C�V −1C 0
0 J

)

and
V = C(C�V −1C)−1C� + U�J−1U .

Note that

C�V −1C = e�θ Aθθeθ + {λ∗(1 − λ∗)}2e�uAuueu

= (1 − λ∗)E0{h1(X)} + {λ∗(1 − λ∗)}2E0

[
{ω(X) − 1}2

h(X)

]
= λ∗(1 − λ∗),

where we use the fact that

λ∗E0

[
{ω(X) − 1}2

h(X)

]
+ E0

{
ω(X) − 1
h(X)

}
= 0

in the last step. The matrix V is expressed as

V = {λ∗(1 − λ∗)}−1CC� + U�J−1U .

This expression helps us to simplify W as

W = V −1U�J−1UV −1 −
(

0 0
0 A−1

uu

)

= V −1{U�J−1U − V }V −1 +
(

A−1
θθ 0
0 0

)

=
(

A−1
θθ 0
0 0

)
− {λ∗(1 − λ∗)}−1V −1CC�V −1
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=
(

A−1
θθ 0
0 0

)
− {λ∗(1 − λ∗)}−1

(
eθ

−λ∗(1 − λ∗)eu

)(
eθ

−λ∗(1 − λ∗)eu

)�
.

Substituting W into (7.23) and using the fact that

B∗
0(x)�

(
eθ

−λ∗(1 − λ∗)eu

)
= λ∗F0(x),

B∗
1(x)�

(
eθ

−λ∗(1 − λ∗)eu

)
= −(1 − λ∗)F1(x),

we find that for any i, j ∈ {l, s}

σij(x, y) = E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
+Biθ(x)�A−1

θθBjθ(y)− δijFi(x)Fj(y),

where

δij =

⎧⎪⎨
⎪⎩

(1 − λ∗)−1
, i = j = 0

(λ∗)−1, i = j = 1
0, i �= j

.

This form is the same as that in Chen and Liu (2013) for the two-sample
case, which completes the proof of (b).

For (c): Recall that Um,V m, and Jm denote the corresponding U ,V , and
J matrices obtained by using only the first m EEs of g(x;η). We further define
Σ(m)

ls (x, y) = {σ(m)
ij (x, y)}i,j∈{l,s} and B

∗(m)
l (x) to denote the corresponding

matrix Σls(x, y) and vector Bl(x) obtained by using the first m EEs.
From the definitions of these matrices and vectors, we notice the relationships:

Um = (Um−1, um) and

V m =
(

V m−1 ϑm−1,m
ϑm,m−1 ϑm,m

)
; B

∗(m)
l (x) =

(
B

∗(m−1)
l (x)
blm(x)

)
,

where um, ϑm−1,m, ϑm,m, and blm(x) are the extra terms coming from the mth
dimension of the EEs.

With the fact that

W = V −1(U�J−1U − V )V −1 +
(

A−1
θθ 0
0 0

)
,

the entry in the covariance matrix Σ(m)
ls (x, y) can be written as

σ
(m)
ij (x, y)

= E0

{
ωi+j(X)I(X ≤ x ∧ y)

h(X)

}
− Fi(x)Fj(y) + Biθ(x)�A−1

θθBjθ(y)

−B
∗(m)
i (x)�V −1

m (V m −U�
mJ−1

m Um)V −1
m B

∗(m)
j (x)

for any i, j ∈ {l, s}.
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Therefore,

Σ(m−1)
ls (x, y) − Σ(m)

ls (x, y)

=
(

B
∗(m)
l (x)

B∗(m)
s (y)

)�

(V m −U�
mJ−1

m Um)V −1
m

(
B

∗(m)
l (x)

B∗(m)
s (y)

)

−
(

B
∗(m−1)
l (x)

B∗(m−1)
s (y)

)�

(V m−1 −U�
m−1J

−1
m−1Um−1)V −1

m−1

(
B

∗(m−1)
l (x)

B∗(m−1)
s (y)

)
.

Using the results in (7.12) and (7.13), we have

V −1
m {V m −U�

mJ−1
m Um}V −1

m

≥
(

V −1
m−1 0
0 0

){(
V m−1 ϑm−1,m
ϑm,m−1 ϑm,m

)

−
(

U�
m−1
u�
m

)
J−1

m−1(Um−1, um)
}(

V −1
m−1 0
0 0

)

≥
(

V −1
m−1{V m−1 −U�

m−1J
−1
m−1Um−1}V −1

m−1 0
0 0

)
.

This implies that Σ(m−1)
ls (x, y)−Σ(m)

ls (x, y) ≥ 0. This completes the proof of (c).

7.3.8. Proof of Theorem 5

We first introduce two lemmas that will be helpful in the proof of Theorem 5.
The following lemma establishes the convergence rate of ξ̂i,τ .

Lemma 4. Assume the conditions of Theorem 5 are satisfied. For each fixed
τ ∈ (0, 1) and i = 0, 1, we have

ξ̂i,τ − ξi,τ = Op(n−1/2).

Proof. We concentrate on the case i = 0; the case i = 1 can be proved similarly.
Let Δn = supx |F̂0(x) − F0(x)|. It suffices to show that (Chen and Liu, 2013,
Chen et al., 2021a)

Δn = Op(n−1/2). (7.24)

Define

F̄0(x) = 1
n

1∑
i=0

ni∑
j=1

I(Xij ≤ x)

1 + λ∗
[
exp{θ̂�

Q(Xij)} − 1
] .

Then

Δn = sup
x

|F̂0(x) − F0(x)|
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≤ sup
x

|F̂0(x) − F̄0(x)| + sup
x

|F̄0(x) − Fi(x)|

= Δn1 + Δn2,

where
Δn1 = sup

x
|F̂0(x) − F̄0(x)|

and
Δn2 = sup

x
|F̄0(x) − F0(x)|.

Following the proof of Theorem 3.1 in Chen and Liu (2013) and Lemma 1 in
Chen et al. (2021a), we can verify that

Δn2 = Op(n−1/2).

With this result, the claim (7.24) is proved if Δn1 = Op(n−1/2).
As preparation, we argue that

(np̂ij)−1 = 1+ λ̂[exp{θ̂�
Q(Xij)}−1]+ ν̂�g(Xij ; ψ̂, θ̂) ≥ 1−λ∗ +op(1) (7.25)

or equivalently p̂ij ≤ n−1{1 − λ∗ + op(1)}−1 = Op(1/n). Note that

(np̂ij)−1 ≥ 1 − λ̂ + ν̂�g(Xij ; ψ̂, θ̂) ≥ 1 − λ̂− ‖ν̂‖max
ij

‖g(Xij ; ψ̂, θ̂)‖.

By Condition C5,

max
ij

‖g(Xij ; ψ̂, θ̂)‖ ≤ max
ij

R1/3(Xij) = op(n1/2),

which, together with γ̂ − γ∗ = Op(n−1/2), implies that (7.25) is valid.
We now return to argue that Δn1 = Op(n−1/2). After some algebra, we have

F̂0(x) − F̄0(x)

=
1∑

i=0

ni∑
j=1

p̂ij
(λ∗ − λ̂)

[
exp{θ̂�

Q(Xij)} − 1
]
− ν̂�g(Xij ; ψ̂, θ̂)

1 + λ∗
[
exp{θ̂�

Q(Xij)} − 1
] I(Xij ≤ x).

Using (7.25), we have

|F̂0(x) − F̄0(x)| ≤ Op(1/n)
1∑

i=0

ni∑
j=1

|λ̂− λ∗|
[
exp{θ̂�

Q(Xij)} + 1
]

1 + λ∗
[
exp{θ̂�

Q(Xij)} − 1
] I(Xij ≤ x)

+Op(1/n)
1∑

i=0

ni∑
j=1

|ν̂�g(Xij ; ψ̂, θ̂)|
1 + λ∗

[
exp{θ̂�

Q(Xij)} − 1
]I(Xij ≤ x)

≤ Op(1/n)
1∑

i=0

ni∑
j=1

|λ̂− λ∗|
λ∗(1 − λ∗)I(Xij ≤ x)
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+Op(1/n)
1∑

i=0

ni∑
j=1

|ν̂�g(Xij ; ψ̂, θ̂)|
1 − λ∗ I(Xij ≤ x). (7.26)

By Condition C5,

Δn1 = sup
x

|F̂0(x) − F̄0(x)| ≤ Op(1)|λ̂− λ∗| + Op(1) 1
n

1∑
i=0

ni∑
j=1

{
‖ν̂‖R1/3(Xij)

}
,

which, together with γ̂ − γ∗ = Op(n−1/2), implies that Δn1 = Op(n−1/2). This
completes the proof.

Lemma 5. Under the regularity conditions, for any c > 0 and i = 0, 1, we have

sup
x: |x−ξi,τ |<cn−1/2

|{F̂i(x)−F̂i(ξi,τ )}−{Fi(x)−Fi(ξi,τ )}| = Op(n−3/4(log(n))1/2).

Proof. We prove this lemma for i = 0; the case i = 1 is equivalent. Without loss
of generality we assume x ≥ ξ0,τ . Note that

|{F̂0(x) − F̂0(ξ0,τ )} − {F0(x) − F0(ξ0,τ )}|
≤ |{F̂0(x) − F̂0(ξ0,τ )} − {F̄0(x) − F̄0(ξ0,τ )}|

+|{F̄0(x) − F̄0(ξ0,τ )} − {F0(x) − F0(ξ0,τ )}|. (7.27)

Following the proof of Lemma A.2 in Chen and Liu (2013), we can verify that

sup
x: 0≤x−ξ0,τ<cn−1/2

|{F̄0(x)−F̄0(ξ0,τ )}−{F0(x)−F0(ξ0,τ )}| = Op(n−3/4(log(n))1/2).

Consequently, we need to show only that the first term in (7.27) has a higher
order than n−3/4(log(n))1/2 uniformly in 0 ≤ x− ξ0,τ < cn−1/2.

With the technique used to obtain (7.26), we have

|{F̂0(x) − F̂0(ξ0,τ )} − {F̄0(x) − F̄0(ξ0,τ )}|

≤ Op(1/n)
1∑

i=0

ni∑
j=1

|λ̂− λ∗|
λ∗(1 − λ∗)I(ξ0,τ < Xij ≤ x)

+Op(1/n)
1∑

i=0

ni∑
j=1

‖ν̂‖R1/3(Xij)
1 − λ∗ I(ξ0,τ < Xij ≤ x)

= Op(n−1/2) 1
n

1∑
i=0

ni∑
j=1

{1 + R1/3(Xij)}I(ξ0,τ < Xij ≤ x).

By Condition C5, E0{1 + R1/3(X)} < ∞ and E1{1 + R1/3(X)} < ∞, then
uniformly in x

E0[{1 + R1/3(X)}I(ξ0,τ < Xij ≤ x)] = Op(n−1/2)
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and
E1[{1 + R1/3(X)}I(ξ0,τ < Xij ≤ x)] = Op(n−1/2).

Therefore,

sup
x: 0≤x−ξ0,τ<cn−1/2

|{F̂0(x) − F̂0(ξ0,τ )} − {F̄0(x) − F̄0(ξ0,τ )}| = Op(n−1).

This completes the proof.

We are now ready to prove Theorem 5. By Lemma 4, for i = 0, 1,

Fi(ξ̂i,τ ) − Fi(ξi,τ ) = fi(ξi,τ )(ξ̂i,τ − ξi,τ ) + Op((ξ̂i,τ − ξi,τ )2)
= fi(ξi,τ )(ξ̂i,τ − ξi,τ ) + Op(n−1). (7.28)

Note that F̂i(ξ̂i,τ ) = τ + Op(n−1). Replacing x by ξ̂i,τ in Lemma 5 and us-
ing (7.28) yields

τ − F̂i(ξi,τ ) = fi(ξi,τ )(ξ̂i,τ − ξi,τ ) + Op(n−3/4(log(n))1/2).

This completes the proof.

7.3.9. Proof of Theorem 6

The results in (a) and (b) are direct consequences of Theorems 4 and 5.
For (c): We note that

Ωls =
(

1/fl(ξl,τl) 0
0 1/fs(ξs,τs)

)
Σls(ξl,τl , ξs,τs)

(
1/fl(ξl,τl) 0

0 1/fs(ξs,τs)

)
.

Then Theorem 4(c) implies the results in (c). This completes the proof.

7.4. Additional simulation under the gamma distributional setting

Table 9 presents the four quantile estimates under gamma distributions. Table 10
presents the three CIs for quantiles under gamma distributions. The general
summary statements are similar to those for normal distributions, and hence
are omitted.
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Table 9

RB (%) and MSE (×100) for quantile estimators (gamma distributions)
Γ(8, 1.125) Γ(6, 1, 5)

(n0, n1) τ EMP EL DRM DRM-EE EMP EL DRM DRM-EE

(50, 50)

0.10
RB −2.25 −0.05 0.25 0.16 −1.40 0.71 1.26 0.65

MSE 29.71 25.04 23.26 20.29 31.70 26.96 26.66 22.88

0.25 RB 0.01 −0.04 0.08 0.03 0.75 0.30 0.47 −0.06
MSE 25.02 19.93 21.38 16.39 32.91 24.71 27.78 20.32

0.50 RB −1.03 −0.04 −0.15 −0.02 −0.74 −0.07 0.28 −0.08
MSE 30.99 23.20 25.91 17.32 40.46 25.74 35.52 19.68

0.75 RB −0.13 −0.02 −0.33 −0.13 −0.02 −0.20 0.15 0.12
MSE 48.41 35.85 42.11 28.23 65.70 43.10 57.48 33.81

0.90
RB −1.85 0.15 −0.47 −0.20 −1.93 0.01 0.12 0.14

MSE 99.19 86.91 83.12 62.28 133.79 110.01 120.28 86.79

(50, 150)

0.10
RB −2.25 0.05 0.41 0.32 −0.36 0.36 0.42 0.33

MSE 29.98 23.32 20.31 15.18 10.40 9.74 9.86 9.10

0.25 RB −0.02 0.01 0.03 −0.02 0.19 0.09 0.12 −0.03
MSE 25.11 17.45 19.28 11.05 10.58 9.27 9.89 8.61

0.50 RB −1.03 0.02 −0.18 −0.01 −0.21 0.01 0.12 −0.03
MSE 31.26 17.31 22.92 9.55 14.17 11.46 12.98 10.15

0.75 RB −0.15 0.04 −0.45 −0.16 −0.06 −0.18 0.02 −0.06
MSE 48.19 27.80 36.99 15.98 21.18 17.52 19.94 15.74

0.90
RB −1.83 0.42 −0.56 −0.09 −0.62 −0.05 0.11 0.03

MSE 99.26 74.83 74.58 43.00 44.60 40.83 40.68 36.31

(100, 100)

0.10
RB −1.03 0.07 0.41 0.32 −0.92 0.25 0.35 0.15

MSE 14.47 13.00 11.19 9.91 16.95 14.43 14.18 11.95

0.25 RB −0.54 0.06 0.06 0.03 −0.52 −0.02 0.10 −0.12
MSE 12.76 10.64 10.81 8.35 15.41 11.85 13.73 9.82

0.50 RB −0.48 0.03 −0.03 −0.02 −0.41 0.02 0.14 −0.03
MSE 15.70 11.67 12.92 8.89 20.57 13.41 17.58 9.84

0.75 RB −0.61 −0.04 −0.19 −0.14 −0.71 −0.17 0.04 −0.06
MSE 24.94 18.73 19.98 13.73 32.29 20.67 27.94 16.02

0.90
RB −0.94 0.05 −0.20 −0.09 −1.11 0.03 0.01 0.09

MSE 48.17 42.30 41.07 31.30 70.72 54.02 57.47 40.26

(200, 200)

0.10
RB −0.44 0.04 0.24 0.16 −0.50 0.15 0.15 0.07

MSE 7.03 6.34 5.54 4.80 8.17 7.06 6.80 5.81

0.25 RB −0.29 0.01 0.08 0.05 −0.31 −0.04 −0.01 −0.10
MSE 6.53 5.24 5.19 3.92 7.59 5.89 6.52 4.79

0.50 RB −0.23 0.02 −0.03 −0.03 −0.31 −0.11 −0.02 −0.07
MSE 7.83 5.84 6.15 4.25 9.90 6.03 8.39 4.76

0.75 RB −0.38 −0.12 −0.11 −0.10 −0.29 0.05 0.02 0.03
MSE 11.98 9.21 10.19 7.24 17.41 11.09 14.98 8.33

0.90
RB −0.48 0.00 −0.09 −0.07 −0.42 0.09 0.08 0.13

MSE 23.81 20.31 19.73 15.34 36.06 26.76 31.15 20.87
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Table 10

CP (%) and AL for three 95% CIs of 100τ%-quantile (gamma distributions)
Γ(8, 1.125) Γ(6, 1.5)
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