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Abstract: Statistical inference for normal mixture models with unknown
number of components has long been challenging due to the issues of non-
identifiability, degenerated Fisher matrix, and boundary parameters. In this
paper, a penalized likelihood estimation procedure is proposed for mixtures
of normals with unknown number of components to achieve both the order
selection consistency and the root-n convergence rate for the component pa-
rameters estimators. We show that the proposed new estimator could avoid
being trapped in certain degenerated regions of the nonidentifiable subset
of the parameter space for over-fitted normal mixture models so that a reg-
ular asymptotic quadratic Taylor expansion of the mixture log-likelihood
could be derived. With a suitable penalty function on mixing proportions,
the new estimator is proved to be consistent on the order selection, and
have an asymptotic normal distribution. Our derived sparsity conditions
also reveal some surprising but interesting differences among some com-
monly used penalty functions and explain why the performance of some
popularly used penalty functions, such as Lasso and SCAD, provide un-
satisfactory results in the order selection. Extensive simulations and a real
data analysis are conducted to demonstrate the effectiveness of the newly
proposed estimator.
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1. Introduction

Finite mixture models are important statistical tools to model a heterogeneous
population, and can be applied for cluster analysis, latent class analysis, discrim-
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inant analysis, image analysis, survival analysis, disease mapping, meta analy-
sis, and more. See, e.g. [25, 14, 30]. Compared to the traditional one-component
parametric model, the likelihood based estimation and inference for mixture
models are more challenging, especially when the number of components is un-
known. Difficulties for the mixture model inference arise due to the possible
lack of the point identification, the degeneration of the Fisher information ma-
trix, and the true model parameters lying on the boundary of the parameter
space. Various approaches are proposed to tackle these issues. [31] proved that
the maximum likelihood estimator (MLE) is strongly consistent in the quotient
topological space where the likelihood can not be distinguished. [13] obtained
parallel results in the Euclidean space, and further provided justification for the
bootstrap inference method. How to choose the number of components (also
noted as an order selection) for mixture models has long been a challenging
problem. See, for example, [9], [26], [2], [5], [7], and [35].

Among many researches, the convergence rate of the mixture model esti-
mation with unknown number of components is notoriously complicated and
challenging. Unlike one component parametric models, the minimax conver-
gence rate and the pointwise convergence rate could be quite different. The
minimax rate describes the best performance in the worst situation. One il-
lustration example is to consider the difference between f ∼ φ(x; 0, 1) and
fn = 1

2{φ(x;n−1/3, 1) + φ(x;−n−1/3, 1)}, where φ(x;μ, σ2) is the probability
density function of a normal distribution with mean μ and variance σ2. The
fact

fn = f + n−2/3φ′′(x; 0, 1) + o(n−2/3) (1.1)

clearly indicates that the minimax convergence rate in this special case is slower
than n−1/3. [3] proved that the optimal minimax convergence rate of estimating
a mixing distribution is n−1/4 when the number of components is unknown.
This result is challenged by [17] and [16] that the optimal minimax convergence
rate could be slower and may depend on the number of overfitted components.

On the other hand, the pointwise convergence rate can be as fast as n−1/2

when the number of component is unknown. The pointwise rate is the speed of
estimating a fixed but unknown density when the sample size goes to infinity. It
is not hard to show that a two-step procedure could yield an n−1/2 convergence
rate estimator with the first step providing a consistent order selection and a
second step estimating the mixture model given the selected number of compo-
nents in the first step. See for example, [20] and [16]. The number of components
can be consistently estimated via the BIC [19] or more complicated penalized
likelihood methods such as [4]. [4] applied a penalty to the differences of loca-
tion parameters to merge components when the differences are shrunk to zero.
Both the order of the mixture model and the mixing distribution can thus be
consistently estimated. The two step procedure described above suffers from the
issues of irregular likelihood function and heavy computation. [18] proposed a
new type of penalized likelihood approach with penalty on mixing proportions,
which could simultaneously conduct order selection and parameter estimation.
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[1] generalized the results of [18] in finite mixture model not limited to mixture
of normal, and provided a conventional proof without using complicated local
conic representation as in [18].

We consider the estimation of over-fitted mixture models that contain more
components than true ones, as the information about an upper bound on the
number of components is relatively easy to obtain. Unlike the representative
example (1.1), the nonidentifiable subset of the parameter space for the over-
fitted normal mixture contains regions where the Fisher matrix is not fully
degenerated. The core idea of this paper is to introduce a penalty to prevent the
estimator for over-fitted normal mixture models from being in degenerated areas
of the nonidentifiable subset so that the mixture log-likelihood has a regular
asymptotic quadratic Taylor expansion. As a result, the worst case is avoided
and a regular root-n convergence rate estimator can be established for normal
mixture models with unknown number of components.

We first propose a penalized likelihood method with a penalty on the dif-
ference of component parameters. We prove that the resulting estimator is in
the non-degenerated area of the nonidentifiable subset of the parameter space,
and establish a root-n convergence rate for the proposed estimator. We fur-
ther impose an additional penalty on mixing proportions to provide a sparse
estimation of the proportion parameters and thus enable an order selection for
mixture models. We prove that the order of the mixture model can be selected
consistently, and the resulting parameter estimators are root-n consistent and
asymptotically normal. An EM algorithm is proposed to find the penalized like-
lihood estimator, and proved to have an ascent property. Simulation studies and
a real-data analysis are conducted to assess the finite sample performance of the
penalized estimation.

Our derived sparsity conditions for the penalty on mixing proportions also
reveal some surprising but interesting differences among commonly used penal-
ties in constrained penalized MLE optimization. For example, our results reveal
why the performance of some popularly used penalty functions, such as the
L1 penalty [34, LASSO] and the smoothly clipped absolute deviation penalty
[10, SCAD] provide unsatisfactory results in the order selection. However, some
other penalties such as the minimax concave penalty [37, MCP], the truncated
L1-penalty [32, TLP], and the log-type penalties proposed by [18] can satisfy
the sparsity condition with properly chosen tuning parameter. Our simulation
studies also confirm above findings.

The rest of this paper is organized as follows. Section 2 introduces a root-n
consistent penalized likelihood estimation method for overfitted mixtures of nor-
mals. In Section 3, we derive the condition for the penalty function to achieve a
sparse estimation of mixing proportions. The consistency of the order selection
and the asymptotic distribution for the identifiable parameters are established.
An EM algorithm is provided and its ascent property is established. In Section
4, simulations and a real-data analysis are conducted to assess the finite sam-
ple performance of the proposed penalized likelihood method. Conclusions and
discussions are given in Section 5. Detailed proofs are given in the Appendix.



5152 M. Huang et al.

2. Penalized model estimation for over-fitted mixture models

2.1. Motivating example

Suppose that samples X1, X2, · · · , Xn are generated from the normal distribu-
tion N(μ0

1, 1) with mean μ0
1 and variance 1. Assuming that μ0

1 is known, we fit
the above samples using the following two-component normal mixture model:

f(x;ψ) = (1 − π)φ(x;μ0
1, 1) + πφ(x;μ2, 1), (2.1)

where ψ = (π, μ2)t. [27] also studied the above model and showed the nonregular
asymptotic properties (such as diverging to ∞) of the likelihood ratio test. The
nonidentifiable subset of the parameter space corresponding to the true model
N(μ0

1, 1) is Ω0 = {ψ : f(x;ψ) = φ(x;μ0
1, 1)} = {(π, μ2) : π(μ2 − μ0

1) = 0}.
Any point lies in the nonidentifiable subset yields the same density function as
φ(x;μ0

1, 1). If π = 0, parameter μ2 is nonidentifiable, and if μ2 = μ0
1, parameter

π is nonidentifiable. Given samples X1, X2, · · · , Xn, the log-likelihood function
is

�(ψ) =
n∑

i=1
log f(Xi;ψ), (2.2)

and the Fisher information is given by

I(ψ) =

⎛⎜⎝ Eψ
(φ(x;μ2,1)−φ(x;μ0

1,1))
2

f2(x;ψ) Eψ
πφ′(x;μ2,1)(φ(x;μ2,1)−φ(x;μ0

1,1))
f2(x;ψ)

Eψ
πφ′(x;μ2,1)(φ(x;μ2,1)−φ(x;μ0

1,1))
f2(x;ψ) Eψ

(πφ′(x;μ2,1))2
f2(x;ψ)

⎞⎟⎠ .

If ψ̄ = (0, μ0
1)t, the Fisher information is I(ψ̄) =

(
0 0
0 0

)
. If ψ̄ = (π, μ0

1)t with

π �= 0, the Fisher information is

I(ψ̄) =
(

0 0
0 Eψ̄

(πφ′(x;μ0
1,1))

2

f2(x;ψ̄)

)
.

If ψ̄ = (0, μ2)t with μ2 �= μ0
1, the Fisher information is

I(ψ̄) =
(
Eψ̄

(φ(x;μ2,1)−φ(x;μ0
1,1))

2

f2(x;ψ̄) 0
0 0

)
.

A Taylor’s expansion of (2.2) on ψ̄ ∈ Ω0 is

�(ψ) − �(ψ̄) = ∂�(ψ̄)
∂ψt

(ψ − ψ̄) + 1
2n · (ψ − ψ̄)t(−I(ψ̄) + op(1))(ψ − ψ̄) + R(ψ∗),

(2.3)

where ψ∗ lies between ψ and ψ̄, and R(ψ∗) is a Lagrangian remainder of the
Taylor’s expansion. For the traditional likelihood approach, the key to prove
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the existence of a root-n consistent estimator [24] is that the quadratic term
of a Taylor expansion dominates all other terms in the likelihood expansion.
This result holds when the information matrix is positive definite under some
regularity conditions. However, for model (2.1) and the point (0, μ0

1) ∈ Ω0 which
represents the true density, the Fisher information is fully degenerated and
thus the quadratic term does not dominate other terms uniformly over the
root-n boundary of the neighborhood of (0, μ0

1). This is one of the reasons why
statistical inference is not easy for mixture models when the model parameters
are not identifiable.

Interestingly, if the Taylor’s expansion (2.3) is taken at ψ̄ = (0, μ2) with μ2
not converge to μ0

1, it can be shown that the quadratic term is asymptotically
bounded away from 0. More specifically, for ψ = ψ̄ + ( C√

n
, 0),

n · (ψ − ψ̄)tI(ψ̄)(ψ − ψ̄) = n · ( C√
n
, 0)I((0, μ2))(

C√
n
, 0))t

= n( C√
n

)2Eψ̄

{φ(x;μ2, 1) − φ(x;μ0
1, 1)}2

f2(x; ψ̄)

→ C2Eψ̄

{φ(x;μ2, 1) − φ(x;μ0
1, 1)}2

f2(x; ψ̄)
> 0.

Therefore, with a sufficient large |C|, the quadratic term dominates all other
terms in the likelihood expansion. Noted that the quadratic term is also non-
degenerate at (π, μ0

1) when π is bounded away from 0. This would support the
methodology of [4] and [29]. See section 5 for further discussion.

Now we define Ω∗ = {(0, μ2) : μ2 �= μ0
1}, which is a subset of the nonidentifi-

able subset Ω0, and called target subset in this paper. From the above analysis
we know that the target subset Ω∗ is a desired region of estimation which can
also identify the true model with the redundant component having a zero com-
ponent proportion. More importantly, at any point in the newly defined target
subset Ω∗ ⊂ Ω0, the likelihood can be expanded with a positive quadratic term
that dominates all other terms and the traditional technique of the MLE can be
employed. Hence, we propose to impose a penalty to prevent the estimate of μ2
from being close to μ0

1 so that our target region corresponding to the true model
is Ω∗ instead of the whole nonidentifiable subset Ω0. The penalized likelihood
function is given by

�(π, μ2) =
n∑

i=1
log[(1 − π)φ(Xi;μ0

1, 1) + πφ(Xi;μ2, 1)] + αP (|μ2 − μ0
1|), (2.4)

for some α > 0, where P (·) is a penalty function imposed to prevent the estimate
of μ2 from being close to μ0

1 (see comments after (2.10) for more discussion about
the penalty function P (·)). For example, P (·) ≡ Pγ(·) could be a truncated log
function which is flat after a threshold γ > 0, i.e., for x > 0, the derivative of
the penalty is

P ′
γ(x) = 1

x
I(x ≤ γ). (2.5)



5154 M. Huang et al.

Fig 1. An illustration of maximum likelihood estimation and penalized maximum likelihood
estimation.

It can be shown that under some mild conditions (see Proposition 1 below),
the maximum penalized likelihood estimator (either global or local) of μ2 does
not converge to μ0

1. Therefore, the quadratic term is positive and dominates
other terms in the likelihood expansion. The root-n consistency of the penalized
likelihood estimator for π can then be established. See Corollary 1 below for
more detail.

We next give a simple illustration of the difference between the standard
maximum likelihood estimator and the penalized likelihood estimator (2.4). We
set μ0

1 = 0 and generate 100 observations from one component model N(0, 1). We
fit the generated data using a mixture of two normals. The two estimation results
are depicted in Figure 1. The maximum likelihood estimate (MLE) converges to
the nonidentifiable subset Ω0 = {(π, μ) : 0× (−∞,+∞) or [0, 1]× 0}, while the
penalized maximum likelihood estimate (PMLE) converges to the target subset
Ω∗ = {(0, μ2) : μ2 �= 0}. Note, however, many PMLE roots might represent
small clusters (with very small proportions) in the tail of the sample. Therefore,
the PMLE proposed in this section can not be directly applied to perform model
selection, i.e., choose the number of components. In next section, we propose
to add a second penalty on mixing proportions to force those small proportions
(corresponding to nonexisting components) to exactly 0, and hence provide a
sparse estimation of component proportions resulting in automatic choice of
number of components.

2.2. Penalized model estimation and its root-n consistency

We assume that the density of a finite mixture of normals has the following form

f0(x, ψ0) =
M0∑
m=1

πm0φ(x;μm0, σ
2
m0), (2.6)
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where ψ0 = (π10, · · · , πM0,0, μ10, σ
2
10, · · · , μM0,0, σ

2
M0,0)

t, M0 is the number of
components, and all mixing proportions πm0 are strictly positive and sum up
to 1, i.e., πm0 > 0, and

∑M0
m=1 πm0 = 1. In addition, the component parameters

{μm0, σ
2
m0} are assumed to be different, i.e., no two pairs of {μm0, σ

2
m0} are the

same. Since the finite mixture of normals is identifiable up to the label switching
[33, 36], M0 in (2.6) is the smallest number of components for a mixture model
to have the same density as f0.

Note that the number of components (the order) is typically unknown in
practice. We next propose a simultaneous consistent order selection and root
n consistent parameter estimator for the model (2.6). Given an upper bound
M > M0, an over-fitted/enlarged normal mixture model has the following form

f(x;ψ) =
M∑

m=1
πmφ(x;μm, σ2

m), (2.7)

where ψ = (π1, π2, · · · , πM , μ1, σ
2
1 , · · · , μM , σ2

M )t takes value in the parameter
space Ω ⊂ R

d with d = 3M−1, the mixing proportions πm ≥ 0 and sum up to 1.
For simplicity of explanation and the technical proof, we assume the parameter
space Ω for ψ is compact. Compactness assumption is necessary for the proofs
of theoretical properties in this paper. Combining with other methods to relax
the assumption, such as [8] and [6], could be a future research.

As there are multiple ways to represent the true M0-component mixture by
an over-fitted M -component mixture, the larger model is no longer identifiable.
Without losing clarity, we reuse the notations Ω0 and Ω∗ in Section 2.1. Define
Ω0 as the nonidentifiable subset that yields the same density as the true density
f0(x) in (2.6), i.e.,

Ω0 =
{
ψ :

M∑
m=1

πmφ(x;μm, σ2
m) =

M0∑
m=1

πm0φ(x;μm0, σ
2
m0)

}
.

In order to provide consistent order selections and root-n consistent parameter
estimates, we restrain our attention on the following target subset of Ω0:

Ω∗ = {ψ ∈ Ω0 : (μs, σ
2
s) �= (μk, σ

2
k) for 1 ≤ s < k ≤ M}, (2.8)

in which no two pairs of component parameters are the same and hence all
redundant components have zero component proportions. In Lemma 1, we will
prove that at any point in the newly defined target subset Ω∗ ⊂ Ω0, the likeli-
hood can be expanded with a positive quadratic term that dominates all other
terms, and hence the traditional technique of the MLE can be employed.

The defined target subset in this paper is closely related to the concept of
parsimonious subset defined in [1], but they are different in many ways. The
parsimonious subset only restricts that no two pairs of component parameters
are the same for components with positive proportion parameters, while the
component parameters can be the same when their proportions are zero. The
new definition of target subset is more concise, and ensures that the proposed
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penalized estimator in (2.10) below can eliminate unnecessary mixture compo-
nents with an automatic choice of the number of components.

Remark 1. Because the mixture of normal is identifiable, the mixing distri-
bution is unique. Hence if we force any two pairs of component parameters to
be different, the number of nonzero mixing proportions of ψ in Ω∗ will be ex-
actly M0, and the corresponding component parameters will be equal to those
true parameters of ψ0 up to a label switching. There are M −M0 zero mixing
proportions, and the corresponding component parameters are arbitrary but no
two pairs of component parameters are the same. Without loss of generality, we
reorder the parameter in Ω∗ such that if ψ∗

0 ∈ Ω∗, then ψ∗
0 = (π10,0, θ10, θ2),

where π10 = (π10, · · · , πM0,0)t, θ10 = (μ10, σ
2
10, · · · , μM0,0, σ

2
M0,0)

t, and θ2 is the
arbitrary component parameters corresponding to the zero mixing proportions.
Therefore, the M0-component mixture model (2.6) can be identified by the first
M0 components of Ω∗.

We first propose a penalized method to ensure estimated component pa-
rameters to be different. Let X1, X2, · · · , Xn be i.i.d. random samples from an
M0-component mixture (2.6). The log-likelihood function of an over-fitted M -
component mixture (M > M0) is

�(ψ) =
n∑

i=1
log

{
M∑

m=1
πmφ(Xi;μm, σ2

m)
}
, (2.9)

and the proposed penalized log-likelihood function is

�̃(ψ) = �(ψ) + α
∑

1≤s<k≤M

P (d(ηs, ηk)), (2.10)

where ηj = (μj , σ
2
j ) and d(ηs, ηk) is a distance measure between component

parameter ηs and ηk, such as the Euclidean distance |ηsk| = {(μk − μs)2 +
(σ2

k − σ2
s)2}1/2 adopted in this article, α > 0 is a tuning parameter, and P (·)

is a nondecreasing function defined on (0,∞) such that limx→0 P (x) → −∞ to
prevent any two component parameters from getting too close. To reduce the
estimation bias for separate mixture components, we also assume that P (d) is a
flat function when d is larger than a threshold γ > 0, i.e., P ′(d) = 0 when d > γ.
Therefore, the penalty will not affect the estimation when d > γ. Similar ideas
have also been adopted by fold concave penalties such as SCAD [10] or MCP
[37]. In this article, we will use the truncated log function described in (2.5) for
P (·). If σ2

m = σ2 for m = 1, · · · ,M , and assumed known, then there is only
one parameter μm in each component. Note that (2.4) is a special case of (2.10)
with M = 2.

Let Ω1 and Ω2 be two closed sets in R
d, and D(Ω1,Ω2) be a metric between

Ω1 and Ω2 such that

D(Ω1,Ω2) = inf
ψ1∈Ω1

inf
ψ2∈Ω2

||ψ1 − ψ2||, (2.11)
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where || · || is the Euclidean distance, and Ω1 and Ω2 are allowed to be single
points. When both Ω1 and Ω2 are single points, this metric is the same as the
classic Euclidean distance.

Proposition 1. Suppose that ψ̂ = (π̂1, π̂2, · · · , π̂M , μ̂1, σ̂
2
1 , · · · , μ̂M , σ̂2

M )t is a
maximizer of �̃(ψ), then D(ψ̂,Ω0) = op(1), and |η̂sk| = {(μ̂k − μ̂s)2 + (σ̂2

k −
σ̂2
s)2}1/2 does not converge to zero in probability for any sub-sequence and any

pair of (s, k), 1 ≤ s < k ≤ M .

Proposition 1 states that the penalized maximum likelihood estimate of (2.10)
can consistently estimate the mixing distribution and asymptotically has differ-
ent component parameter estimates. Therefore, if the penalized maximum likeli-
hood estimate gives a consistent distribution estimator of the true distribution,
such as in [31] and [13], then the corresponding parameter estimate must be
located in the neighborhood of the target subset Ω∗. At the points in Ω∗, we
can prove the dominance of the quadratic term of the log-likelihood’s Taylor
expansion over other terms as we did in the motivating example in Section 2.1,
and further prove the root-n consistency of the resulting estimator.

We use and highlight the following notations:
(1) An open subset ωε that contains Ω∗,

ωε = {ψ ∈ Ω : D(ψ,Ω∗) ≤ ε}, ε > 0.

(2) For any point ψ ∈ Ω, ψ∗
0(ψ) ∈ Ω∗ is the closest point in Ω∗ to ψ based on

the Euclidean distance. Therefore, D(ψ,Ω∗) = D(ψ,ψ∗
0(ψ)).

Regularity Conditions for likelihood function

(R1) For all x, the density f(x;ψ) admits all third derivatives for all ψ ∈ ωε,∣∣∣∣∂3 log f(x;ψ)
∂ψj∂ψk∂ψl

∣∣∣∣ ≤ Mjkl(x),

where Eψ∗
0
Mjkl(x) ≤ +∞ for all j, k, l and for all ψ∗

0 ∈ Ω∗.
(R2) f(x;ψ) has a support that does not depend on ψ, and the first and second

logarithmic derivatives of f(x;ψ) satisfy the equations

Eψ

[
∂ log f(x;ψ)

∂ψj

]
= 0 for j = 1, · · · , d,

Ijk(ψ) = Eψ

[
∂ log f(x;ψ)

∂ψj

∂ log f(x;ψ)
∂ψk

]
= Eψ

[
−∂2 log f(x;ψ)

∂ψj∂ψk

]
,

for j, k = 1, · · · , d.
(R3) For any ψ ∈ ωε/Ω0 and its closet point ψ∗

0(ψ) in Ω∗, the information matrix
has the property that (ψ − ψ∗

0(ψ))tI(ψ∗
0(ψ))(ψ − ψ∗

0(ψ)) > 0, where

I(ψ) = E

{[
∂ log f(x;ψ)

∂ψ

] [
∂ log f(x;ψ)

∂ψ

]t}
.
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Remark 2. The target subset Ω∗ is located on the boundary of parameter
space, which does not satisfy the standard assumption that the true point is an
interior point. In addition, the positive-definiteness of the Fisher information
matrix at the truth point does not hold in the whole nonidentifiable subset
Ω0. Condition (R3) states that the quadratic form of the information matrix is
positive around Ω∗.

For the mixture of normal distribution, it is not difficult to verify that condi-
tions (R1) and (R2) are satisfied. The following Lemma 1 states that the mixture
of normal, including the motivating example in Section 2.1, also satisfies condi-
tion (R3). The proof is given in Appendix.

Lemma 1. Let f(x, ψ) be the mixture of normal defined in (2.7). For any
ψ /∈ Ω0 and its closest point ψ∗

0(ψ) in Ω∗,

(ψ − ψ∗
0(ψ))tI(ψ∗

0(ψ))(ψ − ψ∗
0(ψ)) > 0.

Note that any point in Ω0 can be considered as a truth point since they all
represent the same true model in (2.6). Given Proposition 1 and Lemma 1, we
are able to prove that the penalized maximum likelihood estimate of (2.10) have
a root-n convergence rate to the subset Ω∗ ⊂ Ω0 that yields the same density as
the true density f0(x) in (2.6). The result is presented in the following theorem.

Theorem 1. Under conditions (R1)–(R3), there exists a local maximizer ψ̂ of
�̃(ψ) in (2.10) such that D(ψ̂,Ω∗) = Op(n−1/2), i.e., ||ψ̂−ψ∗

0(ψ̂)|| = Op(n−1/2).

Note that according to Remark 1, ψ∗
0(ψ̂) = (π10,0, θ10, θ2(ψ̂)) for some θ2(ψ̂)

which depends on ψ̂, but ψ∗
0(ψ̂) produces the true density f0(x) in (2.6) for any

ψ̂ since ψ∗
0(ψ̂) ∈ Ω0. The similar idea of defining the truth point ψ∗

0(ψ̂) has also
been used by [31] and [13].

Theorem 1 indicates that a part of ψ̂ which forms an M0-component mixture
of normal will converge to the true parameter ψ0 with a root-n convergence rate.
Theorem 1 also indicates that the estimate of mixing proportions on the extra
M−M0 components will converge to 0 in probability with a root-n convergence
rate, but the estimate of other component parameters, corresponding to the
extra non-existing M −M0 components, could be arbitrary. We summarize the
results as follows.

Corollary 1. There exists a partition of ψ̂ = (π̂1, π̂2, θ̂1, θ̂2), such that

||(π̂1, π̂2, θ̂1) − (π10,0, θ10)|| = Op(n−1/2).

As explained in Figure 1, the result in Corollary 1 only tells us the estimated
component proportions corresponding to those non-existing components will be
small (but not exactly 0) and hence the PMLE ψ̂ is difficult to be applied di-
rectly to choose the number of components in practice. In Section 3, we propose
adding a second penalty on mixing proportions to provide a sparse estimation
of component proportions resulting in an automatic choice of number of com-
ponents.
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Note that our result does not contradict to the slower minimax rates in [3],
[17] and [16]. Taking model (1.1) as an illustration example, the slower mini-
max rates indicate that with sample size n, we cannot distinguish one compo-
nent model f from two-component model fn with very close component means.
But if the data is actually generated by f , our estimation procedure ensures a
root-n convergence rate. On the other hand, if data is actually generated from
a two-component model fn0 with fixed n0 in (1.1), our estimation could yield a
“wrong” one-component model when the sample size n is not significantly larger
than n0. Actually, no estimation procedure works well in this situation, which
is the consequence of lower minimax rate. However, when the sample size n is
large enough, our estimation will enter into the two-component regime, and the
convergence rate is still root-n.

3. Order selection and asymptotic properties

The penalized estimate via �̃(ψ) does not automatically provide an estimate of
the number of components, although the estimated mixing proportions of the
redundant M −M0 components are expected to be small. Leveraging the idea
of variable selection through penalized regression, we further propose adding a
suitable penalty on the mixing proportions to automatically shrink some esti-
mated proportions to 0, thereby resulting an automatic order estimation for the
mixture models. The proposed penalized log-likelihood is

�p(ψ) = �(ψ) + α
∑

1≤s<k≤M

P (|ηsk|) − n
M∑

m=1
pλ(πm), (3.1)

where pλ(πm) is a penalty function on mixing proportion πm. Since π ≥ 0, we
will ignore the sign of parameter in pλ(·) and p′λ(·) for simplicity. [18] investigated
a special case of (3.1), where α = 0 since they did not impose any penalty on
the difference of component parameters. The penalties on mixing proportions
proposed by [18] have two forms

pλ,log(π) = λ log
(
δ + π

δ

)
, (3.2)

and
pλ,logscad(π) = λ log

(
δ + pλ,scad(π)

δ

)
, (3.3)

where p′λ,scad(π) = I(π ≤ λ) + (aλ−π)+
(a−1)λ I(π > λ) is proportional to the SCAD

penalty function, and δ is a small positive value. Substituting pλ,scad(π) for
π in the second penalty of [18] can avoid excessive penalty for large π. These
penalties are quite different from commonly used fold concave penalties such
as SCAD or MCP. In this paper, we consider a general form of the penalty
on mixing proportions, and investigate conditions for the penalty function that
could provide a consistent order selection. The results reveal some new surprising
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differences among commonly used penalties such as LASSO, SCAD, and MCP,
and could be used to guide the choice of penalty for mixing proportions.

We first establish the consistency result of the penalized estimate of (3.1).

Regularity conditions on the penalty on mixing proportions
(R4) pλ(π) is second order continuous differentiable for π > 0 except at a set

with 0 measure. In addition, p′λ(0) := p′λ(0+) and pλ(0) = 0.
(R5) an = max1≤m≤M0{p′λ(πm0)} = O(n−1/2).
(R6) bn = max1≤m≤M0{p′′λ(πm0)} → 0 as n → 0.
Remark 3. Conditions (R5)–(R6) are taken from [11]. Condition (R5) guaran-
tees the unbiasedness property for large mixing proportions and the existence of
a root-n consistent estimator. Condition (R6) guarantees that the impact of the
penalty function on the penalized likelihood estimators is less significant than
the likelihood function.
Theorem 2. Under conditions (R1)–(R6), there exisit a local maximizer ψ̃ of
(3.1) such that D(ψ̃,Ω∗) = Op(n−1/2), i.e., there exists a point ψ∗

0(ψ̃) ∈ Ω∗

such that ||ψ̃ − ψ∗
0(ψ̃)|| = Op(n−1/2).

Based on Theorem 2, we can see that the penalized estimate ψ̃ of (3.1) is
also root-n consistent. In Section 3.2, we will establish its oracle properties and
order selection consistency for choosing the number of components.

3.1. Computing algorithm and tuning

Next we introduce a computation algorithm and a tuning parameter selection
method for the proposed penalized log-likelihood function �p(ψ) in (3.1). We
employ an EM gradient algorithm [21] to increase the penalized log-likelihood
�p(ψ) after each iteration based on a surrogate function. Note that the EM
algorithm can be interpreted as a special case of MM algorithm.

The penalized complete log-likelihood function has the form of

�c(ψ) =
n∑

i=1

M∑
m=1

[zim log πm+zim logφ(Xi;μm, σ2
m)]

+ α
∑

1≤s<k≤M

Pγ(|ηsk|) − n
M∑

m=1
pλ(πm),

where zim are the unobserved indicator variables representing the component-
membership of the observation Xi, i.e., zim = 1 if Xi belongs to the m-th
component and 0, otherwise.

In E-step, given the observed data and the current parameter estimation ψ(l),
update the conditional expectation of zim given ψ(l) and observations, i.e.,

h
(l)
im = E(zim|ψ(l)) = π

(l)
m φ(Xi;μ(l)

m , σ
2(l)
m )

M∑
j=1

π
(l)
j φ(Xi;μ(l)

j , σ
2(l)
j )

. (3.4)
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In M-step, we construct a minorizing function of �c(ψ) in light of the MM-EM
relation [22]. Note that

∑n
i=1

∑M
m=1 him log[πmφ(Xi;μm, σ2

m)] is a minorizing
function of �(ψ) up to a constant. Since pλ(·) is concave,

−pλ(πm) ≥ −pλ(π(l)
m ) − p′λ(π(l)

m )(πm − π(l)
m )

holds for all πm and the equation holds at π(l)
m , hence −pλ(π(l)

m )−p′λ(π(l)
m )(πm−

π
(l)
m ) provides a minorizing function of −pλ(πm).
Based on the convexity of the Euclidean norm || · ||, we have

||x|| ≥ ||x0|| +
(x− x0)tx0

||x0||
= xtx0

||x0||
.

Then, together with the nondecreasing function Pγ(·), we have

Pγ(|ηmj |) ≥
{

log[(μ(l)
m − μ

(l)
j )(μm − μj) + (σ2(l)

m − σ
2(l)
j )(σ2

m − σ2
j )]

− log(|η(l)
mj |)

}
× I(|η(l)

mj | ≤ γ),

which is a minorizing function of the second term of �p(ψ) and has the linear
approximation{

(μ(l)
m − μ

(l)
j )

|η(l)
mj |2

(μm − μ(l)
m ) −

(σ2(l)
m − σ

2(l)
j )(σ2(l)

m )2

|η(l)
mj |2

( 1
σ2
m

− 1
σ

2(l)
m

) − log(|η(l)
mj |)

}
× I{|η(l)

mj | ≤ γ}.

Hence, we can transfer the maximization of �p(ψ) to the maximization of the
surrogate function Q(ψ|ψ(l)), in which the first term of �p(ψ) is replaced by∑n

i=1
∑M

m=1 him log[πmφ(Xi;μm, σ2
m)], the second term of �p(ψ) is replaced by

α
M∑

m=1

∑
j �=m

{
(μ(l)

m − μ
(l)
j )

|η(l)
mj |2

(μm − μ(l)
m ) −

(σ2(l)
m − σ

2(l)
j )(σ2(l)

m )2

|η(l)
mj |2

( 1
σ2
m

− 1
σ

2(l)
m

)
}
×

I{|η(l)
mj | ≤ γ},

and the third term term of �p(ψ) is replaced by n
∑M

m=1 p
′
λ(π(l)

m )(πm−π
(l)
m ). The

update of πm is then

π(l+1)
m =

n∑
i=1

h
(l)
im

n− n
M∑
j=1

π
(l)
j p′λ(π(l)

j ) + np′λ(π(l)
m )

. (3.5)

The updated estimation of μm and σ2
m are

μ(l+1)
m =

n∑
i=1

h
(l)
imXi + ασ

2(l)
m d

(l)
1

n∑
i=1

h
(l)
im

, (3.6)
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and

σ2(l+1)
m =

n∑
i=1

h
(l)
im(Xi − μ

(l)
m )2 + 2αd(l)

2

n∑
i=1

h
(l)
im

, (3.7)

respectively, where d
(l)
1 =

∑
j �=m(μ(l)

m − μ
(l)
j )I{|η(l)

mj | ≤ γ}/|η(l)
mj |2, and d

(l)
2 =∑

j �=m(σ2(l)
m − σ

2(l)
j )(σ2(l)

m )2I{|η(l)
mj | ≤ γ}/|η(l)

mj |2.
In M step, π(l)

m will be set to zero when it is small enough, e.g., less than
10−6, and then the corresponding component can be eliminated. This algorithm
enables us to simultaneously estimate the unknown parameters and the number
of components. The above derivation also indicates that the proposed algorithm
poses the desired ascent property via a standard argument of MM algorithm.

Proposition 2. The updating parameter sequence ψ(l)(l = 1, 2, · · · ), based on
the EM iteration of (3.4)–(3.7), nondecrease the penalized log-likelihood function
�p(ψ) in (3.1), i.e.,

�p(ψ(l+1)) ≥ �p(ψ(l)), l = 1, 2, . . . .

Selection of Tuning Parameters
For model (3.1), the selection of tuning parameters α,γ and λ in �p(ψ) can

be conducted by the BIC approach:

BIC =
n∑

i=1
log[

M̃∑
m=1

π̃mφ(Xi; μ̃m, σ̃2
m)] − 1

2D̃f log(n), (3.8)

and D̃f is the number of free parameters corresponding to components with
positive mixing proportions in the estimated model. For example, if the esti-
mated model has k positive mixing proportions, then the free parameters are
(μ1, . . . , μk, σ1, . . . , σk, π1, . . . , πk−1) with D̃f = 3k−1. But this approach could
be computationally expensive. Based on our empirical experience, the estimation
is not very sensitive to the choice of γ and a relative large value of γ between 5
and 10 usually works well. Hence, we suggest using a fixed large value of γ, say 5,
and then selecting the other two tuning parameters by the above BIC criterion.
For model (2.10), we can simply apply the BIC criterion with a 2-dimensional
grid search.

3.2. Oracle properties

In this section, we establish the order selection consistency for the number of
components and asymptotic normality for the penalized estimates. For each
ψ = (π1, π2, θ1, θ2), we assume it is permuted such that ψ is closest to the truth
point ψ∗

0(ψ) ∈ Ω∗ among all possible component permutations of ψ, where
ψ∗

0(ψ) = (π10,0, θ10, θ2). Hence, θ1 contains the parameters of the first M0
components, and θ2 contains the parameters of the last M −M0 components.
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Theorem 3. Under conditions (R1)–(R6), there exists a maximizer ψ̃ of (3.1)
with π̃ = (π̃1, π̃2, · · · , π̃M )t satisfying the following results.

a. Let M̃ be the estimated number of components corresponding to positive
estimated mixing proportions. Given the condition that for some small
ε > 0

p′λ(πl) −
M0∑
m=1

πm0p
′
λ(πm0) > 0, (3.9)

when πl < ε, l = M0+1, · · · ,M , we have M̃ → M0 with probability tending
to one, and P (π̃l = 0) → 1, l = M0 + 1, · · · ,M .

b. Asymptotic normality:
√
n(I(ψ0) + Σ){(π̃1, θ̃1) − ψ0 + (I(ψ0) + Σ)−1b} → N(0, I(ψ0)),

where I(ψ0) is the Fisher information matrix of model (2.6),

Σ = diag{p′′λ(π10), · · · , p′′λ(πM0,0), 0, · · · , 0︸ ︷︷ ︸
2M0

},

and
b = (p′λ(π10), · · · , p′λ(πM0,0), 0, · · · , 0︸ ︷︷ ︸

2M0

)t.

Theorem 3 states that we can consistently estimate the number of components
via the proposed penalized likelihood method, and the estimator is as efficient
as if the true number of component were known. It can be verified that folded
concave penalties [12], including SCAD and MCP, satisfy condition (3.9), and
hence can be employed as an order selection penalty when the sample size is
sufficiently large.

However, the Lasso penalty does not satisfy the condition (3.9). Lasso pro-
posed by [34] has the form of p′λ,lasso(π) = λ. It can be shown that p′λ,lasso(πl)−∑M0

m=1 πmp′λ,lasso(πm) = 0, which violates the condition (3.9). Our numerical
studies also confirm that Lasso dose not work well for all sample sizes consid-
ered, even for large sample size such as 2,000 and 20,000.

Based on our empirical experience, for finite sample performance, the order
selection/sparsity recovery will not work well if p′λ(πl) −

∑M0
m=1 πm0p

′
λ(πm0) is

close to 0 for πl in a neighborhood region of 0. Therefore, a practical guide is
to choose the penalty pλ(π) such that p′λ(π) decreases fast when π moves away
from 0.

For SCAD, the continuous differential function of SCAD penalty is

p′λ,scad(π) = λ{I(π ≤ λ) + (aλ− π)+
(a− 1)λ I(π > λ)}, (3.10)

where a > 2 controls the concavity of the penalty function, and λ > 0 is the
maximum value of derivative. Notice that similar to Lasso, the SCAD derivative
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is λ when π ≤ λ, and linearly decreases to zero as π increases. When λ is small,
p′λ(πl)−

∑M0
m=1 πm0p

′
λ(πm0) < λ will be also small and thus close to 0. When λ

is large such that πm0 ≤ λ or aλ, p′λ(πl)−
∑M0

m=1 πm0p
′
λ(πm0) will be also close

to 0. Therefore either when λ is small or large p′λ(πl) −
∑M0

m=1 πm0p
′
λ(πm0) will

be close to 0, which makes it difficult for SCAD to choose an appropriate λ if
it exists, and explains the unsatisfactory finite sample performance of SCAD in
our numerical studies.

[18] proposed two log type penalties given in (3.2) and (3.3), respectively,
which have steeper first derivatives than SCAD. The first derivatives are given
by

p′λ,log(π) = λ · 1
δ + π

, (3.11)

and
p′λ,logscad(π) = λ ·

p′λ,scad(π)
δ + pλ,scad(π) , (3.12)

where δ is a very small positive number, say 10−6 or o(n− 1
2 log−1 n). Compared

with SCAD, p′λ,log(π) and p′λ,logscad(π) are strictly decreasing functions of π,
and decrease very fast when π is small so that p′λ(πl) −

∑M0
m=1 πm0p

′
λ(πm0) is

not close to 0.
It is worth pointing out that the penalty functions, such as MCP [37], with

two flexible tuning parameters to control the strength and concavity, respec-
tively, also have good performance on sparse estimation of mixing proportions
in finite sample. The MCP has the form

p′λ,mcp(π) = (λ− π

a
)+, (3.13)

where a > 0. Unlike SCAD, when a is a small value, p′λ,mcp(π) decreases fast as
π increases.

The truncated L1 penalty [32, TLP], which approximates the L0 penalty, also
performs well on sparse estimation with

p′λ,tlp(π) = λ

τ
I(π < τ), (3.14)

where τ > 0 is a tuning parameter controlling the degree of approximation.
Note that p′λ,tlp(π) = 0 when π ≥ τ . Therefore, a small τ can be selected such
that τ < πm0 for some or all m′ s so that p′λ,tlp(πl) is large when πl is close to
0 and

∑M0
m=1 πm0p

′
λ,tlp(πm0) is much smaller than p′λ,tlp(πl).

4. Simulation and application

4.1. Simulation

In this section, we conduct simulations to demonstrate the finite sample perfor-
mance of the penalized likelihood methods (2.10) and (3.1).
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Example 1. We generate observations from a three-component normal mixture
model with parameters

(μ1, σ1, π1) = (−4, 1, 1/3), (μ2, σ2, π2) = (0, 1.2, 1/3), (μ3, σ3, π3) = (4, 1, 1/3).

To explore the performance of the penalized estimation (2.10), our studies
are based on scenarios with different sample sizes n, with 500 replicates for
each scenario. The maximum number of components is set to be M = 10.
We first obtain initial values by a K-means algorithm. Given the results of K-
means clustering, the initial mean, variance and proportion of each component
are estimated by the sample mean, sample variance, and the sample mixing
proportion, respectively. Table 1 summarizes the mean of parameter estimates
for the components of the three largest estimated proportions. The values in
brackets are the corresponding standard errors of the estimate. We perform
2-dimensional grid search for parameters α and γ, where the grid values are
(1, 3, 5, 7, 14, 18) for α, and (1, 5, 10) for γ. Noted that a good choice of γ depends
on the scale of the data, and the searching range of tuning parameters should be
adjusted according the data scale. Under the BIC criterion, the γ = 5 is selected,
while the selected value of α varies. It can be seen that the sum of three largest
component proportions is greater than 0.9 with suitable choices of α and γ. In
addition, a larger value of γ may yield better estimation of proportions, while
causing larger bias for the estimated location parameters.

Table 1

Parameter estimates with the estimation (2.10) for Example 1.

Sample size Threshold μ1 σ1 π1 μ2 σ2 π2 μ3 σ3 π3

n=200

γ = 1 -3.771 0.604 0.195 0.055 0.680 0.175 3.826 0.593 0.192
(0.968 0.211 0.049) (1.376 0.281 0.039) (0.854 0.191 0.047)

γ = 5 -3.946 0.996 0.298 0.020 1.245 0.288 3.928 1.014 0.292
(0.469 0.300 0.063) (0.666 0.407 0.073) (0.395 0.312 0.061)

γ = 10 -3.966 1.006 0.295 0.043 1.541 0.328 3.921 1.064 0.294
(0.511 0.369 0.067) (0.799 0.520 0.097) (0.518 0.423 0.075)

n=400

γ = 1 -3.882 0.642 0.192 0.033 0.687 0.170 3.880 0.636 0.192
(0.818 0.178 0.041) (1.393 0.210 0.034) (0.836 0.184 0.044)

γ = 5 -4.025 0.984 0.297 -0.014 1.291 0.299 4.010 0.963 0.298
(0.308 0.217 0.046) (0.501 0.292 0.061) (0.301 0.197 0.045)

γ = 10 -4.069 0.967 0.293 -0.034 1.585 0.348 4.078 0.961 0.298
(0.330 0.219 0.045) (0.566 0.354 0.070) (0.273 0.204 0.047)

Given the threshold γ = 1, 5, and 10, we further implement the penalized
estimation (3.1) using the penalty function log-scad, TLP, MCP, SCAD, and
Lasso with 500 replicates. Redundant component will be removed if the cor-
responding estimated mixing proportion is below the pre-determined threshold
10−6. Table 2 shows the accuracy of the order selection, with ∗ representing the
results of γ = 5 that is chosen by BIC. Note that TLP and log-scad penalties
satisfy the condition in Theorem 3 and perform well for both n = 200 and
400, as expected. However, SCAD and Lasso penalty do not work well which
is consistent with the discussions after Theorem 3. Based on Theorem 3 and
the discussions followed, Lasso does not satisfy the sparsity condition for the
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consistent order selection no matter how large the sample size is, and SCAD
does not have good finite sample performance. The result of MCP is somewhat
unsatisfactory and sensitive to the choice of γ. When the number of components
is correctly selected by the TLP penalty, we present the mean and standard de-
viation of the simulation results in Table 3. It can be seen in Table 3 that the
performance is satisfactory and the penalized estimation (3.1) is insensitive to
the choice of γ, unlike the estimation (2.10) reported in Table 1.

To better compare the performances of order selection, we further conduct
the method (3.1) in the case of n = 2000, 20000 and γ = 5. Figure 2 presents the
histograms of the estimated numbers of components for these five penalties. The
log-type penalty and TLP give good results as expected. When the sample size
increases, SCAD shows some improvement in the order selection, although still
not very satisfactory. However, Lasso shows no improvement when the sample
size increases.

Table 2

Accuracy of the order selection for Example 1.

Penalty Threshold n=200 n=400
Underfitted Correct Overfitted Underfitted Correct Overfitted

γ = 1 0.020 0.980 0.000 0.000 0.996 0.004
log-scad γ = 5 0.014* 0.984* 0.002* 0.000* 0.992* 0.008*

γ = 10 0.014 0.984 0.002 0.000 0.992 0.008
γ = 1 0.032 0.964 0.004 0.004 0.982 0.014

TLP γ = 5 0.020* 0.976* 0.004* 0.004* 0.992* 0.004*
γ = 10 0.020 0.976 0.004 0.004 0.984 0.012
γ = 1 0.118 0.556 0.326 0.008 0.702 0.290

MCP γ = 5 0.044* 0.788* 0.168* 0.006* 0.852* 0.142*
γ = 10 0.028 0.876 0.096 0.006 0.920 0.074
γ = 1 0.000 0.000 1.000 0.000 0.000 1.000

SCAD γ = 5 0.000* 0.000* 1.000* 0.000* 0.000* 1.000*
γ = 10 0.000 0.060 0.940 0.000 0.012 0.988
γ = 1 0.000 0.000 1.000 0.000 0.000 1.000

Lasso γ = 5 0.000* 0.000* 1.000* 0.000* 0.000* 1.000*
γ = 10 0.000 0.000 1.000 0.000 0.000 1.000

Example 2. We consider a more complicated case where some mixture compo-
nents overlap, with two of the components having the same mean but different
variances. We generate observations from a four-component normal mixture
model with

(μ1, σ1, π1) = (−4, 0.1, 0.2), (μ2, σ2, π2) = (−4, 1.2, 0.3), (μ3, σ3, π3) = (0, 1, 0.2),

and (μ4, σ4, π4) = (4, 1, 0.3). Methods for obtaining initial values and tuning
parameters are the same as in Example 1.

Table 4 shows the mean and standard deviation of the parameter estimates
for the components corresponding to the four largest estimated proportions,
based on estimation method (2.10) and 500 replicates. According to the BIC,
the threshold γ = 5 is selected. Similar to Example 1, when γ and α increase,
the mixing proportions of the four largest component proportions increase and
the rest six component proportions are shrunk to 0.
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Table 3

Parameter estimates based on the method (3.1) for Example 1.

Sample size Threshold μ1 σ1 π1 μ2 σ2 π2 μ3 σ3 π3

n=200

γ = 1 -4.017 0.983 0.331 0.014 1.301 0.349 4.008 0.981 0.320
(0.192 0.146 0.047) (0.260 0.384 0.071) (0.207 0.140 0.046)

γ = 5 -4.015 0.985 0.331 0.012 1.291 0.348 4.007 0.983 0.321
(0.191 0.148 0.046) (0.249 0.323 0.070) (0.206 0.139 0.046)

γ = 10 -4.016 0.984 0.330 0.011 1.306 0.350 4.007 0.981 0.320
(0.191 0.145 0.048) (0.251 0.325 0.072) (0.206 0.140 0.046)

n=400

γ = 1 -3.996 0.990 0.332 -0.000 1.240 0.337 3.997 1.002 0.331
(0.135 0.078 0.035) (0.177 0.206 0.047) (0.138 0.102 0.031)

γ = 5 -3.996 0.990 0.332 -0.000 1.237 0.337 3.997 1.002 0.331
(0.135 0.077 0.035) (0.177 0.203 0.047) (0.137 0.103 0.031)

γ = 10 -3.997 0.989 0.331 -0.002 1.246 0.338 3.998 1.002 0.331
(0.136 0.078 0.036) (0.181 0.205 0.048) (0.138 0.101 0.031)

Table 4

Parameter estimates based on the method (2.10) for Example 2.
n Threshold μ1 σ1 π1 μ2 σ2 π2 μ3 σ3 π3 μ4 σ4 π4

n=200

γ = 1 -3.983 0.113 0.221 -3.895 0.932 0.210 0.476 0.623 0.131 4.042 0.588 0.169
(0.263 0.065 0.042) (0.919 0.220 0.066) (1.877 0.266 0.030) (0.709 0.208 0.046)

γ = 5 -4.016 0.110 0.220 -3.716 1.472 0.291 0.288 0.961 0.163 4.062 0.971 0.257
(0.194 0.034 0.046) (0.654 0.363 0.076) (0.935 0.504 0.066) (0.408 0.307 0.059)

γ = 10 -3.965 0.117 0.222 -3.408 1.747 0.319 0.508 1.045 0.157 4.082 0.971 0.256
(0.451 0.074 0.052) (0.770 0.517 0.087) (1.194 0.737 0.094) (0.418 0.366 0.067)

n=400

γ = 1 -4.000 0.105 0.205 -4.061 0.985 0.218 0.041 0.717 0.135 4.044 0.622 0.171
(0.018 0.063 0.026) (0.501 0.150 0.056) (1.821 0.265 0.031) (0.667 0.180 0.043)

γ = 5 -4.001 0.105 0.211 -3.796 1.472 0.300 0.270 1.023 0.172 4.072 0.931 0.266
(0.014 0.016 0.023) (0.346 0.173 0.045) (0.637 0.371 0.040) (0.293 0.209 0.050)

γ = 10 -4.002 0.112 0.220 -3.597 1.706 0.305 0.430 1.171 0.171 4.101 0.945 0.268
(0.015 0.027 0.026) (0.448 0.229 0.054) (0.689 0.571 0.055) (0.299 0.227 0.052)

Table 5

Accuracy of order selection for Example 2.

Penalty Threshold n=200 n=400
Underfitted Correct Overfitted Underfitted Correct Overfitted

γ = 1 0.204 0.780 0.016 0.020 0.972 0.008
log-scad γ = 5 0.212* 0.764* 0.024* 0.012* 0.984* 0.004*

γ = 10 0.228 0.756 0.016 0.012 0.984 0.004
γ = 1 0.064 0.752 0.184 0.020 0.892 0.088

TLP γ = 5 0.052* 0.832* 0.116* 0.020* 0.940* 0.040*
γ = 10 0.112 0.804 0.084 0.024 0.944 0.032
γ = 1 0.004 0.024 0.972 0.004 0.024 0.972

MCP γ = 5 0.028* 0.244* 0.728* 0.048* 0.324* 0.628*
γ = 10 0.096 0.340 0.564 0.092 0.424 0.484
γ = 1 0.000 0.000 1.000 0.000 0.000 1.000

SCAD γ = 5 0.000* 0.004* 0.996* 0.000* 0.000* 1.000*
γ = 10 0.000 0.016 0.984 0.000 0.004 0.996
γ = 1 0.000 0.000 1.000 0.000 0.000 1.000

Lasso γ = 5 0.000* 0.000* 1.000* 0.000* 0.000* 1.000*
γ = 10 0.000 0.000 1.000 0.000 0.000 1.000

Table 5 presents the order selection results of the method (3.1) for different
sample sizes and penalties. The performances of log-scad, TLP and MCP penal-
ties improve as the sample size increases. The results of γ = 5 (selected by BIC)
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Fig 2. The histograms of the estimated number of components for Example 1 with γ = 5.

Table 6

Parameter estimates based on the method (3.1) for Example 2.
n Threshold μ1 σ1 π1 μ2 σ2 π2 μ3 σ3 π3 μ4 σ4 π4

n=200

γ = 1 -4.001 0.101 0.204 -4.002 1.159 0.291 -0.059 1.018 0.210 4.000 0.987 0.293
(0.020 0.054 0.037) (0.362 0.229 0.049) (0.317 0.389 0.057) (0.187 0.155 0.041)

γ = 5 -4.001 0.099 0.205 -3.999 1.186 0.292 -0.027 1.014 0.205 3.998 0.989 0.296
(0.019 0.018 0.034) (0.252 0.233 0.049) (0.321 0.405 0.056) (0.179 0.144 0.039)

γ = 10 -4.001 0.099 0.204 -3.994 1.173 0.293 -0.001 1.008 0.205 4.005 0.980 0.294
(0.020 0.018 0.034) (0.278 0.283 0.051) (0.318 0.397 0.055) (0.179 0.143 0.040)

n=400

γ = 1 -4.000 0.100 0.203 -4.014 1.174 0.295 -0.018 1.011 0.202 4.002 0.998 0.300
(0.014 0.012 0.022) (0.160 0.125 0.032) (0.192 0.297 0.036) (0.124 0.098 0.027)

γ = 5 -4.000 0.100 0.203 -3.998 1.195 0.297 0.000 1.001 0.200 4.002 0.998 0.300
(0.014 0.013 0.022) (0.172 0.137 0.031) (0.182 0.287 0.035) (0.123 0.100 0.026)

γ = 10 -4.000 0.100 0.204 -3.997 1.188 0.295 0.004 1.016 0.201 4.006 0.996 0.299
(0.014 0.013 0.022) (0.182 0.184 0.033) (0.204 0.331 0.039) (0.123 0.101 0.028)
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Fig 3. The histograms of the estimated number of components for Example 2 with γ = 5.

are marked by ∗. In addition, MCP is undesirable in detecting the true order
while log-scad and TLP provide better results.

Table 6 presents the parameter estimates with the penalty TLP, which demon-
strates that the performance of the penalized estimate is satisfactory and insen-
sitive to the choice of γ. To further investigate the performance of SCAD and
Lasso, Figure 3 presents the histograms of the estimated number of components
for γ = 5. As the sample size increases, SCAD shows some improvement of order
selection, while the Lasso does not show any improvement similar to what we
have observed in Example 1.

In terms of order selection, we further compare our method with the tradi-
tional BIC method, and the penalized method in [18], which corresponds to (3.1)
with α = 0. The results of the traditional BIC and [18]’s method (under log-
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scad and TLP) are presented in Table 7 for both settings of Example 1 and
Example 2. Together with the results in Table 2 and Table 5, we can see that
BIC only works well in Example 1 with sample size n = 400. For Example 2
with more-overlapped component setting, both our method and [18]’s method
outperform BIC significantly. Compared with [18]’s method, including a further
penalty on component difference enables our method to provide better accuracy
in order selection, especially in the case of n = 200.

Table 7

Order selection accuracy based on BIC and [18] for Examples 1 and 2

Method n=200 n=400
Underfitted Correct Overfitted Underfitted Correct Overfitted

BIC 0.054 0.906 0.040 0.000 0.992 0.008
Example 1 log-scad 0.034 0.960 0.006 0.000 0.996 0.004

TLP 0.020 0.886 0.094 0.000 0.948 0.052
BIC 0.152 0.234 0.614 0.018 0.274 0.708

Example 2 log-scad 0.250 0.728 0.022 0.022 0.966 0.012
TLP 0.070 0.682 0.248 0.002 0.736 0.262

4.2. Application

We apply our method to the Bean plants data investigated in [28] and [5].
Bean is an autogamous species whose crop (grains or pods) needs fertilization.
For the sake of full production in fields, an F1 hybrid, whose female parent is
cytoplasmic male sterile, requires nuclear fertility restoration genes-preferably
dominant ones-from its male parent. Hence, it is significant to find nuclear genes
that induce fertility restoration. [28] conducted an experiment where 150 F2
bean plants were obtained by self-crossing the eight F1 plants, and suggested
the analysis made on the square root of the total number of grains per plant.
To test whether there exists a major restoration gene in an F2 population,
[28] considered a three-component normal mixture model with known mixing
proportions and equal variance for the distribution of number of grains per
plant,

1
4φ(x;μ1, σ

2) + 1
2φ(x;μ2, σ

2) + 1
4φ(x;μ3, σ

2). (4.1)

The requirement of a three-component normal mixture for the data implies
the existence of a major restoration gene. They used the LRT to test the null
hypothesis μ1 = μ2 = μ3 and the resulting p-value is 0.002%. [5] noted that
this result may be biased since the simulated null rejection rates are larger
than the nominal ones systematically. [5] then carried out the EM-test under
a two-component normal mixture model with the equal variance assumption,
and found the corresponding p-value is 1.0%. In addition, due to the lack of
suitability of the equal variance assumption, they conducted the EM-test with
an unequal assumption, resulting in a p-value of around 0.003%, and claimed
tha a two-component mixture model with unequal variance can fit the data just
as well as the model (4.1) with equal variance suggested by [28].
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Fig 4. The histograms of the square root of the total number of grains per plant, the fitted
density curve of model (3.1) and (4.1).

We perform our method under the assumptions of both equal variance and
unequal variance settings with M = 10. The initial values are obtained by K-
means algorithm. The penalized likelihood method selects a four-component
normal mixture model with BIC = −429.7721 under the equal variance setting,
and selects a two-component normal mixture model with BIC = −428.4997
under the unequal variance setting. Figure 4 presents the estimated density
curve of model (3.1) and (4.1), where PMLE1 represents the fitted curve of
unequal variance, PMLE2 represents the fitted curve of equal variance, and
MLE represents the fitted curve based on the model (4.1). Our results indicate
that a two-component mixture model with unequal variance can fit the data
well, which agrees with the results of [5], and provides further justifications for
the EM test in the analysis of Bean plants data.

5. Conclusion and discussion

The minimax convergence rate and the pointwise convergence rate are quite
different for mixture models with over-fitted components. In this paper, we fo-
cus on how to efficiently achieve the best possible root-n pointwise rate, and
perform consistent order selection and statistical inference for finite mixture
models with unknown number of components. We show that such an optimal
convergence rate can be obtained by penalties on the difference between pairs
of component parameters for finite normal mixture models. The proposed pe-
nalized method is motivated by our new concept of target subset, which ensures
the elimination of unnecessary extra components. With unknown number of
components but upper bounds for finite normal mixture models, we show that
there exists certain parameter space (non-degenerated space) where the over-
fitted mixture log-likelihood can still have a regular quadratic Taylor expansion,
and thus a root-n consistent estimator is achievable. Our result also indicates
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that the root-n pointwise convergence rate can be achieved without a first step
of order selection or imposing a penalty on mixing proportions. Note that our
method could suffer from the issue of unbounded maximal risk [23], e.g., in the
case that some proportion parameters being decreased at the 1/

√
n rate as the

sample size n increases.
We further propose an order selection method with an additional penalty

on the mixing proportions. We show that the proposed order selection method
is consistent, and establish the asymptotic normality of the proposed param-
eter estimators. Noted that [18] provides a

√
n-consistent estimator which is

also model selection consistent, without using a first penalty to bound the dis-
tance between component parameters. By introducing the first penalty in our
work, together with proposition 1, our new method simplifies the proofs so that
they are more in line with traditional proofs of the

√
n-consistency of MLE. In

addition, based on our numerical studies, including a further penalty on com-
ponent differences also improves the accuracy in order selection. We provide
conditions required for the consistent order selection. These conditions reveal
why the performance of some popularly used penalty functions, such as Lasso
and SCAD, provide unsatisfactory results in the order selection, while others
could be useful, such as TLP and log-type penalties. It will be our future in-
terest to investigate the testing problem under the penalized setting. We ex-
pect that the testing distribution follows the traditional chi-square distribution
under the proposed penalized method if we can force the estimation in the
non-degenerated parameter space. In addition, the extension to multivariate
Gaussian mixture deserves further studies, in which the distance computation
of component covariance matrices and EM algorithm could be more compli-
cated.

It is of interest to discussion the duality between our methodology and that
of [4] and [29]. In our approach, a penalty is introduced to ensure that mixture
components are bounded away from each other, and redundant components are
eliminated based on the sparse mixing proportions. In the latter approach, a
penalty is used to ensure that mixing proportions are bounded away from zero
and nearby mixture components are merged. Both approaches lead to consistent
parameter estimators, and consistent model selection. In the motivating exam-
ple, it can be shown that quadratic term of (2.3) is non-degenerate at (0, μ2)
for μ2 bounded away from μ0

1, which is essential for our methedology. It is also
non-degenerate at (π, μ0

1) when π is bounded away from 0, this could be viewed
as a support for the latter approaches, that consistent estimation and consistent
model selection are reasonable.

Appendix: Proofs

Proof of Proposition 1 We assume that σm lies in a compact subset of
(0,∞) for all m = 1, . . . ,M , and the whole parameter space of ψ, denoted by
Ω, is also compact.
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First, we prove that

1
n

n∑
i=1

log[f(Xi;ψ)/f(Xi; ψ̄)] < 0 (A.1)

almost surely for any ψ /∈ Ω0 and any ψ̄ ∈ Ω∗. By Jensen’s inequality, we have

Eψ̄ log[f(x;ψ)/f(x; ψ̄)] < logEψ̄[f(x;ψ)/f(x; ψ̄)] = 0

According to the law of large number, there exist some C > 0 such that

1
n

n∑
i=1

log[f(Xi;ψ)/f(Xi; ψ̄)] < −C,

almost surely for any ψ /∈ Ω0. Because the space of ψ is compact, we have

sup
ψ∈Ωc

n∑
i=1

log[f(Xi;ψ)/f(Xi; ψ̄)] < −Cn,

for any compact set Ωc ⊂ Ω that is disjoint of Ω0.
Because the penalty function P (|ηsk|) is bounded above (for the truncated

log function with a threshold γ > 0, the upbound is log(γ)),

sup
ψ∈Ωc

�̃(ψ) − �̃(ψ̄) ≤ −Cn.

Therefore, the penalized maximum log-likelihood estimate ψ̂ must satisfy
D(ψ̂,Ω0) = op(1), where the distance measure D is defined in (2.11).

Since each component of the true mixture density function is distinct, the
penalty term P (|ηsk|) is constant and hence finite when evaluated at ψ̄. Let ψ̃ be
the ordinary MLE of ψ that maximizes

∑n
i=1 log[f(Xi;ψ)]. Since the parameter

space is assumed to be compact, based on the proof of Theorem 2.1 of [15],

sup
ψ∈Ω

{
1
n

n∑
i=1

sψ(Xi)
}2

= Op(1) and lim
n→∞

inf
ψ∈Ω

1
n

n∑
i=1

{s−ψ (Xi)}2 > 0.

Therefore, based on the Inequality 1.2 of [15],

n∑
i=1

log[f(Xi; ψ̃)/f(Xi; ψ̄)] ≤ 1
2 sup

ψ∈Ω

{
∑n

i=1 sψ(Xi)}2∑n
i=1{s−ψ (Xi)}2 = Op(1),

where
sψ(x) = f(x;ψ)/f(x; ψ̄) − 1

||f(x;ψ)/f(x; ψ̄) − 1||2
,

s−ψ (x) = min{0, sψ(x)}, and ‖ · ‖2 is the L2 normal.
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Based on the definition of penalized maximum log-likelihood estimate
(PMLE), we have

0 ≤ �̃(ψ̂) − �̃(ψ̄) =
n∑

i=1
log[f(Xi; ψ̂)/f(Xi; ψ̄)]

+ α
∑

1≤s<k≤M

P (|η̂sk|) − α
∑

1≤s<k≤M

P (|ηsk0|)

≤
n∑

i=1
log[f(Xi; ψ̃)/f(Xi; ψ̄)] + α

∑
1≤s<k≤M

P (|η̂sk|) + Op(1),

(A.2)
Therefore,

α
∑

1≤s<k≤M

P (|η̂sk|) ≥ −
[

n∑
i=1

log{f(Xi; ψ̃)/f(Xi; ψ̄)}
]

+ Op(1) = Op(1),

which implies η̂sk does not converge to 0 in probability for any subsequence.
This completes the proof.

Proof of Lemma 1 Define ψ∗
0(ψ) ∈ Ω∗ as the nearest point to ψ in Euclidian

distance. According to Remark 1, the form of ψ∗
0(ψ) is (π10,0, θ10, θ2), then

ψ − ψ∗
0(ψ) = (vt,0t)t with

v = (π1 − π10, · · · , πM0 − πM0,0, πM0+1, · · · , πM , μ1 − μ10, · · · , σ2
M0

− σ2
M0,0)

t.

Let I(ψ∗
0(ψ)) be the fisher information and give the corresponding matrix divi-

sion
I(ψ∗

0(ψ)) =
(
I11(ψ∗

0(ψ)) I12(ψ∗
0(ψ))

I21(ψ∗
0(ψ)) I22(ψ∗

0(ψ))

)
.

Applying matrix calculation, we have

(ψ − ψ∗
0(ψ))tI(ψ∗

0(ψ))(ψ − ψ∗
0(ψ)) = vtI11(ψ∗

0(ψ))v.

It suffices to prove that I11(ψ∗
0(ψ)) is positive definite, that is, to prove all

diagonal elements of I11(ψ∗
0(ψ)) are positive. By condition (R2), we have that

Iπmπm(ψ∗
0(ψ)) = Eψ0

[
φ(x;μm0, σ

2
m0)

f0

]2

, m = 1, · · · ,M0,

Iπmπm(ψ∗
0(ψ)) = Eψ0

[
φ(x;μm, σ2

m)
f0

]2

, m = M0 + 1, · · · ,M.

By exchanging the order of integration and differentiation for the densities

Iμmμm(ψ∗
0(ψ)) = Eψ0

[
πm0φ

′
μ(x;μm0, σ

2
m0)

f0

]2

, m = 1, · · · ,M0,
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Iσmσm(ψ∗
0(ψ)) = Eψ0

[
πm0φ

′
σ2(x;μm0, σ

2
m0)

f0

]2

, m = 1, · · · ,M0,

where φ′
μ(x;μ, σ2) and φ′

σ2(x;μ, σ2) represent the first derivative of μ and σ2.
This completes the proof.

Proof of Theorem 1 The proof is similar to that of [13] which considers
all the points on the boundary of some sufficient small stripe surrounding Ω0.
Following Proposition 1, the maximum likelihood of (2.10) will be located in
the neighborhood of Ω∗. Let ωn ⊂ ωε be a C/

√
n-neighborhood of Ω∗, we just

need to show that for a large constant C, �̃(ψ) < �̃(ψ∗
0(ψ)) at all points on the

boundary of ωn.
By the Taylor expansion of the likelihood function, we have

�̃(ψ) − �̃(ψ∗
0(ψ)) =S1 + S2 + S3

+ α
∑

1≤s<k≤M

P (|ηsk|) − α
∑

1≤s<k≤M

P (|ηsk0|), (A.3)

with

S1 = C√
n

∂�(ψ∗
0(ψ))

∂ψt
u = C ·Op(1),

S2 = 1
2ut ∂

2�(ψ∗
0(ψ))

∂ψ∂ψt
u = −C2

2 utI(ψ∗
0(ψ))u + op(1),

S3 = C3

6n3/2

d∑
j,k,l=1

ujukul

(
n∑

i=1
γjkl(Xi)Mjkl(Xi)

)
= Op(1/

√
n),

where u is the unit direction vector of ψ−ψ∗
0(ψ) with ||u|| = 1, and 0 ≤ γjkl ≤ 1

by condition (R1). Note that ||∂
(ψ
∗
0 (ψ))

∂ψt || = Op(
√
n), since

P

(∥∥∥∥∂�(ψ∗
0(ψ))

∂ψt

∥∥∥∥ ≥ L
√
n

)
≤

E
∥∥∥∂
(ψ∗

0 (ψ))
∂ψt

∥∥∥2

L2n
=

d∑
j=1

n∑
i=1

E

[(
∂f(Xi;ψ∗

0 (ψ))
∂ψj

)2
]

L2n

=
n

d∑
j=1

Ijj(ψ∗
0(ψ))

L2n
≤ dC1

L2 ,

where the first inequality holds because of Markov’s inequality, then the equa-
tion holds since {Xi}ni=1 are independent, and the last inequality holds due to
condition (R3).
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Based on Proposition 1, the following term

α
∑

1≤s<k≤M

P (|ηsk|) − α
∑

1≤s<k≤M

P (|ηsk0|)

is also bounded by a large positive constant. Hence, by choosing a sufficient
large C, the second term of Taylor expansion dominates all other term. This
completes the proof.

Proof of Proposition 2 The penalized log-likelihood function is

�p(ψ) = �(ψ) + α
∑

1≤s<k≤M

Pγ(|ηsk|) − n

M∑
m=1

pλ(πm), (A.4)

it is sufficient to prove that Q(ψ|ψ(l)) can be a minorizing function of the ob-
served log-likelihood �p(ψ).

For the normal mixture model, it is easy to know that
n∑

i=1

M∑
m=1

him log[πmφ(Xi;μm, σ2
m)]

is a minorizing function of �(ψ). By the property of pλ(·),

−pλ(πm) ≥ −pλ(π(l)
m ) − p′λ(π(l)

m )(πm − π(l)
m )

holds for all πm and the equation holds at π(l)
m , so −p′λ(π(l)

m )(πm−π
(l)
m ) provides

a minorizing function of −pλ(πm) [22].
In the view of the convexity of the Euclidean norm || · ||,

||x|| ≥ ||x0|| +
(x− x0)tx0

||x0||
= xtx0

||x0||
.

Then, combining with the nondecreasing function Pγ(·), we have

Pγ(|ηsk|) ≥
{

log[(μ(l)
s − μ

(l)
k )(μs − μk) + (σ2(l)

s − σ
2(l)
k )(σ2

s − σ2
k)] − log(|η(l)

sk |)
}

× I(|η(l)
sk | ≤ γ),

which is a minorizing function of the second term of �p(ψ). Hence, we can trans-
fer maximization of �p(ψ) to the surrogate function Q(ψ|ψ(l)). The ascending
property follows a standard argument of MM algorithm.

Proof of Theorem 2 It is sufficient to show that �p(ψ) < �p(ψ∗
0(ψ)) at all

points on the boundary of n−1/2-neighborhood of Ω∗. Using pλ(·) ≥ 0, we have

�p(ψ) − �p(ψ∗
0(ψ)) ≤ �̃(ψ) − �̃(ψ∗

0(ψ)) − n

M0∑
m=1

(pλ(πm) − pλ(πm0))

� I1 + I2.
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By Taylor expansion we have

|I2| = | − n

M0∑
m=1

[p′λ(πm0)(πm − πm0) + 1
2p

′′
λ(πm0)(πm − πm0)2(1 + op(1))]|

≤ nan||ψ − ψ∗
0(ψ)|| + 1

2nbn||ψ − ψ∗
0(ψ)||2(1 + op(1))

By the proof in Theorem 1 and condition (R5)–(R6), with a sufficient large C,
I2 is dominated by −C2

2 utI(ψ∗
0(ψ))u. This complete the proof.

Proof of Theorem 3 To prove part (a), we first prove that

�p(π1,0, θ1, θ2) = max
π2:0≤||π2||≤C/

√
n
�p(π1, π2, θ1, θ2)

with probability tending to 1, for any ψ = (π1, π2, θ1, θ2) ∈ ωn. It is sufficient
to show that

∂�∗(ψ)
∂πl

< 0 for πl < C/
√
n,

where l = M0 + 1, · · · ,M . The partial derivatives of �∗(ψ) about πl is

∂�∗(ψ)
∂πl

= nAnl(ψ) − np′λ(πl) − β,

where

Anl(ψ) = 1
n

n∑
i=1

φ(Xi;μl, σ
2
l )

M∑
m=1

πmφ(Xi;μm, σ2
m)

.

For l = 1, · · · ,M0, it is known that ∂
∗(ψ̃)
∂πl

= 0. Then similar to the derivation
of Theorem 3, we have

β = n

(
1 −

M0∑
m=1

πmp′λ(πm) + o(1)
)
.

Therefore, the partial derivative is rewritten as

∂�∗(ψ)
∂πl

= n

{
(Anl(ψ) − 1) −

(
p′λ(πl) −

M0∑
m=1

πmp′λ(πm)
)

+ o(1)
}
.

By the law of large number, we have

E0

(
φ(Xi;μl, σ

2
l )∑M

m=1 πmφ(Xi;μm, σ2
m)

)
= 1 +

∫
φ(Xi;μl, σ

2
l )
(
f(Xi;ψ∗

0(ψ))
f(Xi;ψ) − 1

)
dXi

≤ 1 + max
∣∣∣∣f(Xi;ψ∗

0(ψ))
f(Xi;ψ) − 1

∣∣∣∣ .
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Since ||ψ − ψ∗
0(ψ)|| = Op(n−1/2), we have

|f(x;ψ∗
0(ψ)) − f(x;ψ)| = Op(n−1/2).

Therefore, as n → ∞ we have Anl(ψ) → 1 with probability tending to one.
Hence, the sign of derivative ∂
∗(ψ)

∂πl
is completely determined by the sign of(

p′λ(πl) −
∑M0

m=1 πmp′λ(πm)
)
.

It is obvious that �p(π1,0, θ1, θ2) = �p(π1, θ1), which does not depend on
θ2. Let (π̃1, θ̃1) be a local maximizer of �p(π1, θ1). We now show that ψ̃ =
(π̃1,0, θ̃1, θ2) is a local maximizer of �p(ψ) for any θ2 such that ψ̃ lies in the
n−1/2-neighborhood of Ω∗. For all ψ ∈ ωn, we have

�p(ψ) − �p(ψ̃) = [�p(ψ) − �p(π1, θ1)] + [�p(π1, θ1) − �p(π̃1, θ̃1)]
≤ �p(ψ) − �p(π1, θ1) < 0.

This complete the proof of part (a).
To prove part (b), consider the partial derivative of �p(ψ) about ϕ = (π1, θ1)

∂�p(ψ)
∂ϕj

∣∣∣∣
ψ=ψ̃

= ∂�(ϕ̃)
∂ϕj

+α

⎧⎨⎩ ∑
1≤s<k≤M0

∂P (|η̃sk|)
∂ϕj

⎫⎬⎭ I(M0 < j≤3M0) − np′λ(π̃j)I(1 ≤ j ≤ M0)

= 0, for j = 1, · · · , 3M0.

Note that (π̃1, θ̃1) is a consistent estimator, by a Taylor’s expansion around ψ0,
we have

1
n

∂�(ψ0)
∂ϕj

+
3M0∑
i=1

{
1
n

∂2�(ψ0)
∂ϕj∂ϕi

+ op(
1
n

)
}

(ϕ̃i − ϕi0) + O(α
n

)I(M0 < j ≤ 3M0)

− {p′λ(πj0) + [p′′λ(πj0) + op(1)](π̃j − πj0)} I(1 ≤ j ≤ M0) = 0

By Slutsky’s theorem and the central limit theorem, we have
√
n(I(ψ0) + Σ){(π̃1, θ̃1) − ψ0 + (I(ψ0) + Σ)−1b} → N(0, I(ψ0)).

This complete the proof of part (b).
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