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Abstract: We consider an analysis of variance type problem, where the
sample observations are random elements in an infinite dimensional space.
This scenario covers the case, where the observations are random functions.
For such a problem, we propose a test based on spatial signs. We develop
an asymptotic implementation as well as a bootstrap implementation and
a permutation implementation of this test and investigate their size and
power properties. We compare the performance of our test with that of
several mean based tests of analysis of variance for functional data stud-
ied in the literature. Interestingly, our test not only outperforms the mean
based tests in several non-Gaussian models with heavy tails or skewed dis-
tributions, but in some Gaussian models also. Further, we also compare
the performance of our test with the mean based tests in several models
involving contaminated probability distributions. Finally, we demonstrate
the performance of these tests in three real datasets: a Canadian weather
dataset, a spectrometric dataset on chemical analysis of meat samples and
a dataset on orthotic measurements on volunteers.
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1. Introduction

Analysis of variance based on ranks of real valued observations was studied by
[27]. Suppose that we have n =

∑K
k=1 nk independent real valued observations

{Xki : i = 1, . . . , nk; k = 1, . . . ,K} from K groups. We are interested in test-
ing whether the distributions of the groups are same or not. We rank all the
observations together, and let rki be the rank of the ith observation in the kth

group. Let r̄k· = n−1
k

∑nk

i=1 rki and r̄·· = n−1 ∑K
k=1 nk r̄k· = 0.5(n + 1). The test

statistic for the Kruskal-Wallis test is

Wn = (n− 1)
∑K

k=1 nk(r̄k· − r̄··)2∑K
k=1

∑nk

i=1(rki − r̄··)2
,

and a large value of Wn indicates that the distributions of the groups are not
same. When the groups have the same continuous distribution, the distribu-
tion of Wn is independent of the underlying distribution of the groups. The
usual mean based ANOVA test is developed assuming that the distributions of
the groups are Gaussian. It is well-known that the Kruskal-Wallis test exhibits
better performance than the mean based ANOVA test when the groups have
non-Gaussian distributions with heavy tails.

In [29], [30] and [31], several nonparametric tests based on multivariate spa-
tial signs and ranks were investigated. In [12, 13], spatial signs were employed to
generalize the Kruskal-Wallis test in a multivariate analysis of variance setup.
Those spatial signs and ranks are intrinsically related to spatial quantiles inves-
tigated in [11] and [25]. Consider independent multivariate observations {Xki :
i = 1, . . . , nk; k = 1, . . . ,K} from K groups, and n =

∑K
k=1 nk. Define r(x) =

n−1 ∑K
k=1

∑nk

i=1 s (x − Xki) and r̄k· = n−1
k

∑nk

i=1 r(Xki), where s (x − y) = (x−
y)/‖x−y‖ for x �= y and s (0) = 0. Note that when the observations are univari-
ate, r (Xki) = n−1(2 rank(Xki)−(n+1)), where rank(Xki) is the rank of the uni-
variate observation Xki within the pooled sample. Let rk (x) = n−1

k

∑nk

i=1 s(x−
Xki) and Σ̂n = (n −K)−1 ∑K

k=1
∑nk

i=1 rk (Xki) rk (Xki)t. The test statistic for
the Choi-Marden one-way ANOVA test is

Mn =
K∑

k=1

nk(r̄k·)tΣ̂
−1
n r̄k·,

which is used to test the equality of the distributions of the groups. Unlike the
Kruskal-Wallis test for univariate data, the Choi-Marden test is not distribution-
free under the null hypothesis, and the authors implemented it using the asymp-
totic distribution of the test statistic. But, like the Kruskal-Wallis test, the
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Choi-Marden test usually exhibits better powers and asymptotic relative effi-
ciencies when the underlying distributions of the groups are non-Gaussian with
heavy tails. When the observations Xki are random functions, considered as
random elements in an appropriate L2 space, instead of finite dimensional ran-
dom vectors, the Choi-Marden one-way ANOVA test cannot be directly applied
for them. This is because in this case, the underlying space is an infinite di-
mensional Hilbert space, and the estimated covariance operator Σ̂n in an in-
finite dimensional space is not invertible and cannot be used to standardize
the test statistic. Methodology for functional data, which are infinite dimen-
sional in nature, and also high dimensional data requires non-involvement of
the inverse of the sample covariance (see, e.g., [26, 22] for some methods in
high dimensional data developed without using the inverse of the sample covari-
ance).

Analysis of variance for functional data has been investigated by several au-
thors. An ANOVA test for functional data based on the L2 distance between the
group means in the sample was proposed in [15]. In [33], [37] and [35], hypothe-
sis testing in a linear model involving functional responses was investigated. In
[8], a similar testing procedure was described in functional linear models and
ANOVA, and demonstrated its utility in investigating brain electrical activity.
In [39], a test of ANOVA was described, where the test statistic is obtained
by integrating the pointwise F-statistic for the functional observations. In [38],
another test of ANOVA was proposed, where the test statistic is the supremum
of the pointwise F-statistic. In [23], a test of ANOVA was introduced, where
the functional observations are projected on a number of principal components
of the sample covariance operator, rendering the test as a test for finite di-
mensional observations. In [18], a permutation test of ANOVA was described
for functional data. In [14], a test of ANOVA for functional data was described
based on random projections. In [1], the procedures by [33] and [14] was adapted
in an ANOVA problem for spatially correlated functional data. In [21], an L2-
norm based ANOVA procedure was used, which is similar to those proposed
by [33] and [37], for weakly dependent functional time series. All these tests in
the literature involving functional data are based on the mean of the response,
as in the classical univariate and multivariate ANOVA problems. Recently, an
ANOVA procedure was proposed in [34] based on the pairwise distances of the
observations.

In this paper, we construct a test for one-way ANOVA for infinite dimensional
data based on spatial signs, and describe implementations of this test based on
the asymptotic distribution as well as a permutation procedure and a bootstrap
procedure. We found that this test exhibits superior performance than the mean
based tests in non-Gaussian heavy-tail processes, contaminated Gaussian and
non-Gaussian processes and skewed processes. In the case of some Gaussian
models also, our test outperforms the mean based tests. We demonstrate the
usefulness of our testing procedure in simulated and real datasets.
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2. A test based on spatial signs

In the context of functional data analysis, sample observations are considered
as real valued random functions defined over some domain, which may be an
interval, a rectangle, or some other set. The space of such functions can be
considered as an L2 space by equipping it with an appropriate L2-norm. It is
well known that such an L2 space will be a separable Hilbert space when it is
associated with a Borel σ-field and a σ-finite measure. In other words, one can
model those random functions as random elements in a separable Hilbert space.
The advantage of this approach is that the methodology is readily applicable
to diverse types of data that can be viewed as elements in a separable Hilbert
space, and we develop an ANOVA procedure for such data.

We consider a sample of n independent observations in a separable Hilbert
space H, which is divided into K groups with the kth group having nk obser-
vations for k = 1, . . . ,K. The members of the kth group are denoted as Xki

for i = 1, . . . , nk. We assume that all the observations are independent, and for
each of the groups, the observations within that group have identical distribu-
tion. Let the probability distribution of the kth group be denoted as Pk. We are
interested in testing whether all the distributions Pk are the same or not. So,
the null hypothesis is

H0 : P1 = P2 = · · · = PK . (2.1)

We assume that the distributions Pk are non-atomic probability distributions
on the separable Hilbert space H equipped with the Borel σ-field. Also, the
treatment effects are assumed to alter the underlying distributions of the groups.
The literature on ANOVA for functional data described in section 1 is usually
concerned with treatment effects which specifically alter the means of the groups.
Our setup, which is inspired from the setups considered in [27] for univariate
observations and in [12] for multivariate observations, covers the case where the
treatment effects alter the means of the underlying distributions of the groups,
as well as cases where the treatment effects alter the underlying the distributions
of the groups but not necessarily the means of the groups.

Define s(x) = ‖x‖−1x for x �= 0 and s(0) = 0. Consider the quantity
E[s(Xk1 − Xl1)], which is the expected direction vector from the random el-
ement Xl1 to the random element Xk1. If the distributions Pk and Pl are same,
then we have E[s(Xk1−Xl1)] = E[s(Xl1−Xk1)] = −E[s(Xk1−Xl1)] = 0. Define
R(x) = n−1 ∑K

k=1
∑nk

i=1 s(x−Xki). Note that R(x) is the average spatial sign of
the point x with respect to the combined sample, which is the average of all di-
rection vectors from the data points to x. R(x) can also be viewed as the spatial
rank of x in the combined sample of all the observations (cf. [12], [30]). Also de-
fine R̄k = n−1

k

∑nk

i=1 R (Xki). Note that E[R̄k] = n−1 ∑K
l=1 nlE[s(Xk1−Xl1)] =

0 for all k under H0 in (2.1). So, if one is interested to test H0, the test may
be carried out based on the magnitudes of R̄k, k = 1, . . . ,K. A high magnitude
will indicate that H0 in (2.1) is not true.

Define Un =
(√

n1R̄1, . . . ,
√
nKR̄K

)
. Note that Un is a random element in

the product Hilbert space H × H × · · · × H = HK . Clearly, E[Un] = 0 under
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the null hypothesis H0 in (2.1). Based on this idea discussed above, we define
the test statistic

SSn = ‖Un‖2 =
K∑

k=1
nk

∥∥R̄k

∥∥2
.

We shall reject H0 in (2.1) when SSn is significantly large. We call the resulting
test the SS test. The normalization using the √

nk terms in the definition of
Un is done so that its asymptotic distribution is non-degenerate, as described
in Theorem 2.1. The asymptotic distribution of SSn under H0 in (2.1) is ob-
tained from this theorem in Corollary 2.2, which is used to derive the asymptotic
implementation of the test.

R̄k can be expressed as a weighted sum of sample means of spatial signs.
Define νkl = E [s(Xk1 − Xl1)] and ν̂kl = (nknl)−1 ∑nk

ik=1
∑nl

il=1 (Xkik − Xlil).
Let ν̂ = (ν̂11, . . . , ν̂KK)′ be the vector containing all the sample means of
spatial signs. Let 0K denote the vector of K null elements, and let ak =
(z′1, . . . , z′k, . . . , z′K)′, where zi = 0K for all i �= k, and zk = n−1(n1, . . . , nK)′.
So, for each k, ak is a K2-dimensional vector of weights whose sum is 1.
Then, √nkR̄k = (

√
nk/n)a′

k

√
nν̂ for all k. Define the matrix of weights An =(

(
√
n1/n)a1, . . . , (

√
nK/n)aK

)′
. We have Un = An

√
nν̂. It can be verified

that when n−1nk → λk ∈ (0, 1) for all k as n → ∞, An converges to a non-null
matrix, say, A, and the covariance operator of

√
nν̂ also converges, say, to Γ.

Then, the covariance operator of Un converges to AΓA′ as n → ∞. Note that
AΓA′ is a K × K matrix of covariance operators. The (k1, k2)th element of
this matrix is σk1k2 , which is described in Theorem 2.1. A similar approach for
deriving the asymptotic distribution of a rank-based statistic for univariate data
was developed in [6].

Theorem 2.1. Assume that n−1nk → λk ∈ (0, 1) for all k as n → ∞. Let
Xi, Yj and Zk be independent random elements having the distributions of the
ith, the jth and the kth group of the sample, respectively. Define C(i, j, k) =
Cov (E [s (Xi − Zk) | Zk] , E [s (Yj − Zk) | Zk]) and Σ = (σk1k2)K×K , where

σk1k2 =
√
λk1λk2

K∑
l=1

λl [C(k1, k2, l) − C(l, k2, k1) − C(k1, l, k2)]

+
K∑

l1=1

K∑
l2=1

λl1λl2C(l1, l2, k1)I(k1 = k2).

Then, [Un −E [Un]] w−→ G (0,Σ) as n → ∞, where G (0,Σ) denotes a Gaus-
sian random element in HK with mean 0 and covariance operator Σ.

Corollary 2.2. Assume that n−1nk → λk ∈ (0, 1) for all k as n → ∞. Under
H0 in (2.1), we have E [Un] = 0. Consequently, Un

w−→ G (0,Σ) and SSn =
‖Un‖2 w−→ ‖W‖2 as n → ∞, where W is a random element having distribution
G (0,Σ).
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The p-value of the SS test in the asymptotic implementation is given by
P [‖W‖2 ≥ the observed value of SSn]. The p-value can be numerically com-
puted using a Monte Carlo procedure. However, since Σ is unknown, to im-
plement the test, we need to estimate the covariance operator Σ from the
sample. Let ⊗ be the outer product on H such that for every x,y ∈ H,
x ⊗ y : H → H is a linear operator defined by (x ⊗ y)(w) = 〈w,x〉y. Note
that for i, j, k ∈ {1, . . . ,K},

C(i, j, k) = E [E [s(Xi − Zk) | Zk] ⊗E [s(Yj − Zk) | Zk]]
− E [s(Xi − Zk)] ⊗ E [s(Yj − Zk)] ,

where Xi, Yj and Zk are independent random elements having the distributions
of the ith, the jth and the kth group, respectively. Let

Cn(i, j, k)

= 1
nk − 1

nk∑
lk=1

⎡⎣( 1
ni

ni∑
li=1

s (Xili − Xklk)
)

⊗

⎛⎝ 1
nj

nj∑
lj=1

s
(
Xjlj − Xklk

)⎞⎠⎤⎦
−
(

1
nink

ni∑
li=1

nk∑
lk=1

s (Xili − Xklk)
)

⊗

⎛⎝ 1
njnk

nj∑
lj=1

nk∑
lk=1

s
(
Xjlj − Xklk

)⎞⎠ ,

where i, j, k ∈ {1, . . . ,K}. The estimate of Σ is defined as

Σ̂n =
(
σ

(n)
k1k2

)
K×K

, where

σ
(n)
k1k2

=
√
nk1nk2

n

K∑
l=1

nl

n
[Cn(k1, k2, l) − Cn(l, k2, k1) − Cn(k1, l, k2)]

+
K∑

l1=1

K∑
l2=1

nl1nl2

n2 Cn(l1, l2, k1)I(k1 = k2).

Using the estimated covariance operator Σ̂n, we generate independent obser-
vations from the distribution G

(
0, Σ̂n

)
. Let us denote the generated observa-

tions as W1, . . . ,WN , where N is a suitably large number. Then the approxi-
mate p-value of the SS test is given by the proportion of ‖Wi‖2 values greater
than or equal to the observed value of SSn. A similar estimation procedure for
the p-value is described in [15] for their test of ANOVA for functional data.

For the asymptotic validity of this procedure, the estimated covariance op-
erator needs to asymptotically consistent, which is established in the following
theorem.

Theorem 2.3. Assume that n−1nk → λk ∈ (0, 1) for all k as n → ∞. Then,
Σ̂n −→ Σ almost surely as n → ∞ in the operator norm.

When the number of observations in any of the groups is small, the asymp-
totic null distribution of the test statistic described in Corollary 2.2 may not
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be a good approximation of its finite sample distribution. For such cases, we
can implement the test based on a bootstrap procedure (see, e.g., [17]) or a
permutation procedure.

When the null hypothesis is true, the distributions of all the groups are
same, and the natural estimator of that common underlying distribution is the
empirical distribution of the pooled sample of all the groups. So, in our bootstrap
procedure, we draw a random sample of size n with replacement from the pooled
sample and assign them to the groups so that given the original sample {Xki |
k = 1, . . . ,K; i = 1, . . . , nk}, the observations in the bootstrap sample {X∗

ki |
k = 1, . . . ,K; i = 1, . . . , nk} are independent and identically distributed, and
for every k and i, we have P [X∗

ki = Xlj ] = n−1 for all l and j. From the
bootstrap sample, we compute the bootstrap value of the statistic SS∗

n. By
repeating this procedure Mb times independently, we get Mb values of SS∗

n. The
p-value of this testing procedure is given by the proportion of the Mb values of
SS∗

n higher than the actual value of SSn. When an observation is repeated in
the bootstrap sample, we use the convention of s(0) = 0 while computing the
statistic SS∗

n.
Next, we describe the permutation implementation. Since the underlying dis-

tributions of all the groups in the sample are identical when the null hypothesis
is true, we generate a random permutation of the pooled sample, then assign
the first n1 elements in that permuted sample to the first group, the next n2
elements to the next group, and so on. From this permuted sample, we compute
the value of the test statistic, which is denoted as SS#

n . We get Mp values of
SS#

n by repeating this procedure Mp times independently. The p-value of the
permutation implementation of the test is given by the proportion of the Mp

values of SS#
n higher than the actual value of SSn.

The advantage of the permutation implementation is that no observation is
repeated in the generated sample unlike the bootstrap implementation. However,
in our simulation analysis, we did not find any discernible difference between
the performances of the two implementations. In principle, the permutation
implementation can also be developed based on all possible permutations of
the sample instead of a fixed number of random permutations. However, the
number of all permutations of (1, . . . , n) increases very rapidly with n, which
makes the permutation implementation computationally very expensive even for
a moderate n. The test based on random permutations is prescribed to cover for
such situations. We use the permutation implementation of the test for small
sample sizes.

The validity of the implementations of our test is established in the following
theorem.

Theorem 2.4. Let n−1nk → λk ∈ (0, 1) for all k as n → ∞. Under H0
in (2.1), for every 0 < α < 1, the size of a level α test based on the asymptotic
procedure or the bootstrap procedure or the permutation procedure described above
converges to α as n → ∞ and Mb,Mp → ∞.

Note that the testing procedure is based on the magnitudes of the quanti-
ties R̄k’s, and the distance between R̄k and E[R̄k] converges to 0 in proba-
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bility for all k as n → ∞ irrespective of H0 in (2.1). Also, for all k, E[R̄k] =
n−1 ∑K

l=1 nlE[s(Xk1 − Xl1)] −→
∑K

l=1 λlE[s(Xk1 − Xl1)] as n → ∞. Recall
that when the underlying distributions of the K groups are identical, i.e., when
H0 in (2.1) holds, E[R̄k] = 0 for all k. When the distributions of the groups are
not identical such that the asymptotic limit of E[R̄k] is nonzero for at least one
k, the power of all the implementations of the test converges to 1 as the sample
size increases, which we state in the next theorem.

Theorem 2.5. Assume that n−1nk → λk ∈ (0, 1) for all k as n → ∞. When
H0 in (2.1) is not true such that

∑K
l=1 λlE[s(Xk1 − Xl1)] �= 0 for any k, we

have ‖E [Un]‖ → ∞ as n → ∞, and SSn
P−→ ∞ as n → ∞. As a consequence,

for every 0 < α < 1, the power of a level α test based on each of the asymptotic
procedure, the bootstrap procedure and the permutation procedure converges to 1
as n → ∞ and Mb,Mp → ∞.

The standard setup of ANOVA with location shift is a special case of our
general setup. In the literature on ANOVA for functional data, most of the
authors concentrated on this setup with certain additional assumptions required
for their tests. In this setup, it is assumed that

Xki = μk + εki, (2.2)

where εki’s are independent random elements in H having identical distribution
P0, and μk’s are fixed elements in H. We are interested in testing whether the
μk’s are identical for all k or not, i.e.,

H′
0 : μ1 = μ2 = · · · = μK . (2.3)

When H′
0 in (2.3) is true, all the underlying distributions of the K groups are

same in the setup (2.2), and hence H0 in (2.1) holds. Note that the existence of
the mean or covariance or any other moment of the error distribution P0 is not
assumed in the setup (2.2). This relaxation enables the methodology developed
here to be applicable in heavy-tailed processes which have no moments. In the
ANOVA with location shift setup for functional data considered in [15], [33], [37],
[35], [39], [38], [23] and [18], it is additionally assumed that the error distribution
P0 has mean 0 and a covariance operator. Thus our setup (2.2) covers the
ANOVA with location shift setup considered by the other authors, but does not
assume the existence of the mean or the covariance operator of εki’s.

The validity and the asymptotic consistency of the different implementations
of the SS test in the ANOVA with location shift setup follow from the result
below.

Theorem 2.6. Let n−1nk → λk ∈ (0, 1) for all k as n → ∞. Under H′
0 in (2.3),

for every 0 < α < 1, the sizes of a level α test based on the asymptotic procedure,
the bootstrap procedure and the permutation procedure described above converge
to α as n → ∞ and Mb,Mp → ∞. Further, when H′

0 in (2.3) is not true
and when the support of P0 is not contained in a straight line in H, we have∑K

l=1 λlE[s(Xk1 − Xl1)] �= 0 for every k, and hence for every 0 < α < 1, the
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power of a level α test based on each of the procedures converges to 1 as n → ∞
and Mb,Mp → ∞.

The condition that the support of P0 is not contained in a straight line
in H essentially means that P0 is not degenerate in any direction in H, and
this condition holds for all the common non-degenerate distributions like the
Gaussian processes, the t processes, etc.

We have framed the null hypothesis as the equality of the distributions un-
derlying the groups. However, the test statistic SSn is based on spatial signs,
and can be used in a heteroscedastic situation also. The methodology developed
here covers heteroscedastic situations, where the null hypothesis is

H∗
0 :

K∑
l=1

λlE[s(Xk1 − Xl1)] = 0 for all k,

where λk = limn→∞ n−1nk ∈ (0, 1) for all k. If
√
n(n−1nk − λk) → 0 as n → ∞

for all k, then using arguments similar to those in the proof of Corollary 2.2,
it can be verified that SSn

w−→ ‖W‖2 as n → ∞ under H∗
0, where W is as

described in Corollary 2.2. This indicates that results analogous to Theorem 2.4
and Theorem 2.5 can be established under H∗

0, which guarantee the validity of
the test procedures for testing H∗

0.
The null hypothesis H∗

0 holds in many heteroscedastic setups. For example,
consider any distribution P , which is symmetric with respect to the origin 0, i.e.,
for P being the distribution of the random element X, it is also the distribution
of −X. Let c1, . . . , cK be positive constants, μ be a fixed element, and Pk be
the distribution of the random element μ+ ckX for k = 1, . . . ,K. Let X′ be an
independent copy of X. Then,

s(Xk1 − Xl1)
d= s(ckX − clX′) d= s(−ckX + clX′) d= −s(ckX − clX′)

for all k and l, which implies that E[s(Xk1 − Xl1)] = 0 for all k and l, and
H∗

0 is satisfied. Examples of such symmetric distributions P include all centered
Gaussian processes and centered t processes.

3. Comparison of different tests

In this section, we shall compare the asymptotic and finite sample performance
of the SS test with those of several other tests in the literature. Theorem 2.6
in the preceding section implies that our SS test is consistent under any fixed
alternative. Similar consistency under fixed alternative holds for several of the
mean based tests. Hence, in order to compare the asymptotic performance of
these tests, we consider a class of shrinking alternatives:

μk = (1/
√
n)δk for k = 1, . . . ,K, where δ1, . . . , δK ∈ H are fixed. (3.1)

Similar shrinking alternatives were considered in [39] and [38]. Note that the
Frechét derivative of s(x) = ‖x‖−1x exists at all x �= 0, and we denote it as
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s(1)(x)(·). The expression for s(1)(x)(·) is given in the proof of Lemma B.1. From
the following theorem, we derive the asymptotic power of the SS test under the
class of shrinking alternatives in (3.1).

Theorem 3.1. Let X and X′ be independent random elements having iden-
tical distribution P0. Let n−1nk → λk ∈ (0, 1) for all k as n → ∞, and
δ̄ =

∑K
l=1 λlδl. Assume that P0 is non-atomic and not contained in any straight

line in H, and E
[
‖X − X′‖−1

]
< ∞. Then, under (3.1), E [Un] → U0 =

(u1, . . . ,uK) as n → ∞, where uk = E
[
s(1) (X − X′)

] (√
λk

(
δk − δ̄

))
for

all k = 1, . . . ,K. Consequently, Un
w−→ G (U0,Σ) as n → ∞, and SSn =

‖Un‖2 w−→‖U0−
∑∞

i=1〈U0,βi〉‖
2+

∑∞
i=1

(
〈U0,βi〉 + √

αiZi

)2, where α1, α2, . . .
is the decreasing sequence of eigenvalues of Σ, βi is the corresponding eigen-
vector of αi for all i, and Z1,Z2, . . . are independent standard normal random
variables. Further, U0 �= 0 if δk �= δl for at least one pair of k and l.

3.1. Description of other tests

We describe below the tests in the literature with which we compare the per-
formance of the SS test in this paper. We compare the finite sample powers
against fixed alternatives and the asymptotic powers against shrinking alter-
natives of these tests. Though our testing procedures are also applicable for
heteroscedastic data, several of the testing procedures with which we compare
the performance of our test were presented for the homoscedastic case (see, e.g.,
[33, 37, 35, 39]). For this reason, we restrict the comparison of performances in
the simulation study to the homoscedastic setup. The real datasets we consider
for the comparison of performances also do not exhibit heteroscedasticity.

The tests in the literature, which we consider here, are developed for the case
where the observations are real-valued square-integrable random functions on
an interval [a, b], i.e., Xki(·) : [a, b] → R is a random function for all k and i. So,
Xki(·) is an element of the L2[a, b] space, which is a separable Hilbert space,
and ‖x‖ =

(∫
‖x(t)‖2dt

)1/2 for x ∈ L2[a, b]. Define X̄k·(t) = n−1
k

∑nk

i=1 Xki(t)
and X̄··(t) = n−1 ∑K

k=1
∑nk

i=1 Xki(t) for all t ∈ [a, b].
We call the test of ANOVA for functional data proposed by [15] as the CFF

test. From the methodology developed in [37], an L2 norm based test of ANOVA
can be derived, which we call the ZC test. In [33] and [35], another test for
functional linear models was proposed, and we call the corresponding test of
ANOVA as the F-type test. The test of ANOVA described in [39] is denoted
here as the GPF test, and the test proposed in [38] is called the F-max test
following the authors. We call the permutation test given by [18] as the GS test.
The random projection based test proposed in [14] is denoted here as the CAFB
test. The test by [23] is denoted as the HR test. The detailed descriptions of the
test statistics and the implementations of the tests are presented in Appendix A.

We shall compare the finite sample performance of the SS test with all the
above tests. For the asymptotic power comparison against shrinking alternatives,
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we consider all the tests except the F-type test, the CAFB test and the GS test.
The F-type test is excluded from the asymptotic power comparison because
the F-type test and the ZC test have identical asymptotic performance. The
CAFB test and the GS test are also excluded from asymptotic power comparison
because the authors of these tests did not study their asymptotic distributions,
and we found it difficult to derive their asymptotic distributions.

For the comparison of the asymptotic power against shrinking alternatives,
we need the mathematical expressions of the asymptotic powers of these tests in
this setup. The asymptotic power of the F-max test under (3.1) is derived from
Proposition 3 in [38], and that of the GPF test under (3.1) is obtained from
Proposition 3 in [39]. From Theorem 4.17 and Remark 4.11 in [36], we get that
the ZC test and the F-type test are asymptotically equivalent, and hence have
the same asymptotic power. The expressions of the asymptotic powers of the
CFF test, the ZC test and the HR test under the class of shrinking alternatives
described in (3.1), where H = L2[a, b], are derived in Appendix A.

3.2. Asymptotic power study of different tests

We compare the asymptotic powers of the tests under the class of shrinking
alternatives described in (3.1) in probability models with 3 groups. Note that for
a random element V following Gaussian process G, its corresponding t process
with k degrees of freedom can be obtained by dividing V by

√
χ/k, where χ is

a chi-square random variable with k degrees of freedom independent of V. We
denote this t process as tk,G. The derivation of the asymptotic powers of the
tests except the SS test requires that E

[
‖X‖2

]
< ∞, and for X following a tk,G

distribution with k ≥ 3, E
[
‖X‖2

]
< ∞. We take H = L2[a, b], and consider the

standard Brownian motion (SBM) over [a, b] along with its corresponding t3 and
t4 processes as particular cases of P0, where P0 is as described below (2.2). The
interval [a, b] is taken as [0.25, 0.75], which ensures that Xki (t) is non-degenerate
at every t ∈ [a, b] for P0 being any of the processes mentioned above.

We take the shifts in the groups under (3.1) as δ1 = 0, δ2 = c1η1 and
δ3 = c2η2. Here, c1, c2 are real valued constants and η1,η2 ∈ H are defined
as η1(t) = t and η2(t) = (t − 0.25)(0.75 − t) for t ∈ [0.25, 0.75]. Also, we take
λ1 = λ2 = λ3 = 1/3. The nominal level is fixed at 5%. To generate asymptotic
power curves, we fix c1 and vary c2 in an interval.

The asymptotic powers of the tests in the setup described above are presented
in Figure 1. We observe that the performance of the SS test is better than all
the other tests for both the Gaussian and the non-Gaussian processes.

3.3. Finite sample performance in simulated data

We compare the finite sample power of the SS test, the CFF test, the ZC test,
the F-max test, the GPF test, the HR test, the CAFB test and the GS test in
the setup (2.2) with 3 groups. We consider the same space H = L2[a, b] with
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Fig 1. Asymptotic power curves of the SS test (−), CFF test (++), ZC test (· · · ), F-max
test (– –), GPF test (××) and HR test (◦◦) under nominal level 5% in SBM and associated
t processes.

[a, b] = [0.25, 0.75] as in subsection 3.2. For the cases of the distribution P0, we
consider the following three collections:

• Gaussian and t processes: The cases of the distribution P0 are the SBM
and its associated t1 and t3 processes.

• Contaminated models: Here, the distribution P0 is replaced with a mixture
distribution (1−p)P0 +pP (s), where p is the proportion of contamination,
s is a positive number and P (s) is the distribution of the random element
sX, where X follows P0. We take p = 0.25 and s = 5. The cases of
the distribution P0, which are replaced with the respective contaminated
models, are the SBM and its associated t1 and t3 processes as above.

• Skewed distributions: Three skewed distributions are considered:
1. Geometric Brownian motion: P0 is the distribution of the process

G1(t) = exp[B(t)], where B(t) is an SBM.
2. Squared Brownian motion: P0 is the distribution of the process

G2(t) = (B(t))2, where B(t) is an SBM.
3. Squared t process: P0 is the distribution of the process G3(t) =

(T(t))2, where T(t) is the t3,SBM process.

Note that the covariance operator of P0 exists for all the cases above except the
t1,SBM process and the contaminated t1,SBM process. Most of the other tests,
which we consider here for comparison of powers, require the existence of the co-
variance operator for the validity of their theoretical properties. However, in this
finite sample power study, we consider in addition the heavy-tailed t1,SBM and
the contaminated t1,SBM processes to investigate the finite-sample performance
of the tests under such non-Gaussian heavy-tailed distributions.

The observations from these distributions, which are random functions, are
generated on an equispaced grid of length 100 on the interval [a, b].

The shifts in the 3 groups are taken as μ1 = 0, μ2 = c1η1 and μ3 =
c2η2, where c1, c2 are constants and η1,η2 ∈ H are defined by η1(t) = t and
η2(t) = (t− 0.25)(0.75− t) for t ∈ [0.25, 0.75], which are the same as considered
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Table 1

Estimated sizes of the SS test, CFF test, ZC test, F-max test, GPF test, F-type test, HR
test, CAFB test and GS test in the Gaussian and t processes (nominal level 5%).

P0 (n1, n2, n3) SS CFF ZC F-max GPF F-type HR CAFB GS
SBM (20, 20, 20) 0.054 0.054 0.060 0.064 0.061 0.051 0.081 0.032 0.048
SBM (4, 4, 4) 0.056 0.110 0.125 0.044 0.102 0.013 0.305 0.031 0.052
t1,SBM (20, 20, 20) 0.053 0.014 0.016 0.017 0.015 0.014 0.025 0.025 0.055
t1,SBM (4, 4, 4) 0.058 0.041 0.080 0.021 0.045 0.001 0.183 0.039 0.057
t3,SBM (20, 20, 20) 0.049 0.053 0.054 0.053 0.051 0.048 0.081 0.030 0.052
t3,SBM (4, 4, 4) 0.055 0.089 0.095 0.029 0.090 0.002 0.270 0.031 0.054

in subsection 3.2. Note that when c1 = c2 = 0, H′
0 in (2.3) is satisfied. So,

taking c1 = c2 = 0, we estimate the sizes of the tests at nominal level 5%.
To generate power curves, we fix c1 and vary c2 in an interval, and estimate
the powers of the tests corresponding to those values of c1 and c2. Specifically,
we choose 20 equispaced values of c2 in an interval which spans most of the
power range of the SS test. The specific values of the constants vary among the
distributions.

To investigate the performances of the asymptotic and the permutation im-
plementations of the SS test, we consider two cases of group sizes. We take
n1 = n2 = n3 = 20 in the first case, where the asymptotic implementation
of the SS test is used, and n1 = n2 = n3 = 4 in the second case, where the
permutation implementation is used. We estimate the sizes and the powers of
the tests under nominal level 5% based on 1000 independent replications.

To get observations from the chosen distributions of Xki in (2.2), we first
generate observations εki from P0, then add the appropriate μk to get the Xki

observations. For each of the cases of P0 in the power study, we generate 1000
independent sets {εki | εki ∼ P0 are independent, i = 1, . . . , nk; k = 1, 2, 3},
then obtain the corresponding 1000 independent sets {Xki = μk + εki | μ1 =
0,μ2 = c1η1,μ3 = c2η2, i = 1, . . . , nk; k = 1, 2, 3}. For different values of c2, the
sets of observations {εki} are kept same. This eliminates the random fluctuation
in the estimated power curves arising from the random sampling process, and
the estimated power curves are relatively smooth. The 1000 independent sets
of the εki observations used to estimated the sizes of the tests for different
underlying distributions P0 are generated independently from those in the power
study.

Results for the Gaussian and t processes

The estimated sizes of the tests in the the Gaussian and t processes are presented
in Table 1, and the estimated power curves of the tests are plotted in Figure 2.
We note that only the SS test and the GS test have sizes close to the nominal
level irrespective of the group sizes or underlying distributions. The F-max test,
the F-type test and the CAFB test tend to have lower sizes for small group sizes
or non-Gaussian heavy tail processes (i.e., t1,SBM and t3,SBM), while the sizes of
the CFF test, the ZC test and the GPF test are sometimes significantly higher
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Fig 2. SS test (−), CFF test (++), ZC test (· · · ), F-max test (– –), GPF test (××), F-type
test (�), HR test (◦), CAFB test (�) and GS test (�) under nominal level 5% in SBM and
associated t processes: 1st row: n1 = n2 = n3 = 20, 2nd row: n1 = n2 = n3 = 4.

than the nominal level and sometimes somewhat lower than the nominal level.
The size of the HR test is always significantly higher than the nominal level for
small group sizes, and so it is omitted from the power comparison for the case
of n1 = n2 = n3 = 4.

For n1 = n2 = n3 = 20, we note in Figure 2 that the performance of the SS
test in case of SBM is sometimes narrowly beaten by only the HR test. However,
the HR test also exhibits an estimated size over 8.5% in that case, considerably
higher than the nominal level, indicating it is biased towards rejecting the null
hypothesis. For the non-Gaussian heavy tail processes (i.e., t1,SBM and t3,SBM),
the performance of the SS test is significantly better than all other tests.

When the group sizes are small, i.e., n1 = n2 = n3 = 4, and P0 is the SBM,
we notice that the power of the SS test is narrowly exceeded by that of the
CFF test, the ZC test and the GPF test. However, in this case, the CFF test,
the ZC test and the GPF test have sizes over 10% indicating their bias towards
rejecting the null hypothesis. In the case of P0 being t1,SBM here, the SS test
exhibits better performance than all other tests. For P0 being t3,SBM, the power
curve of the SS test is very close to that of the best performing test.

Results for the contaminated models

Since the SS test exhibits superior performance in distributions having heavy
tails, we were motivated to investigate its performance in contaminated models.
The contaminated models introduce impurities in the covariance operator of the
groups but do not affect the means. We consider the same choices of η1, η2, n1,
n2 and n3 as in the uncontaminated models. Under the nominal level 5%, we
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Table 2

Estimated sizes of the SS test, CFF test, ZC test, F-max test, GPF test, F-type test, HR
test, CAFB test and GS test in the Gaussian and t processes under covariance impurity

(nominal level 5%).

P0 (n1, n2, n3) SS CFF ZC F-max GPF F-type HR CAFB GS
SBM (impurity) (20, 20, 20) 0.046 0.047 0.046 0.045 0.046 0.043 0.049 0.027 0.045
SBM (impurity) (4, 4, 4) 0.058 0.034 0.056 0.012 0.026 0.000 0.198 0.032 0.037
t1,SBM (impurity) (20, 20, 20) 0.053 0.019 0.018 0.017 0.019 0.016 0.023 0.039 0.057
t1,SBM (impurity) (4, 4, 4) 0.054 0.024 0.047 0.008 0.030 0.000 0.172 0.030 0.045
t3,SBM (impurity) (20, 20, 20) 0.054 0.039 0.039 0.032 0.041 0.038 0.052 0.028 0.048
t3,SBM (impurity) (4, 4, 4) 0.043 0.031 0.042 0.014 0.038 0.000 0.196 0.027 0.038

Fig 3. SS test (−), CFF test (++), ZC test (· · · ), F-max test (– –), GPF test (××), F-
type test (�), HR test (◦), CAFB test (�) and GS test (�) under nominal level 5% in
SBM and associated t processes with impurities: 1st row: n1 = n2 = n3 = 20, 2nd row:
n1 = n2 = n3 = 4.

estimate the sizes and the powers of the tests and present them in Table 2 and
Figure 3, respectively.

In Table 2, we note that the estimated sizes of the SS test is always close to
the nominal level 5%. The estimated sizes of the GS test is close to the nominal
level most of the times. The sizes for the HR test are significantly high for
small group sizes, i.e., n1 = n2 = n3 = 4, and hence it is omitted in the power
comparison for n1 = n2 = n3 = 4 in Figure 3. The sizes of the other tests are
often considerably lower than the nominal level. In Figure 3, we notice that the
power of the SS test is nearly always higher than the powers of all other tests.
In comparison to the cases presented in Figure 2, the difference between the
performances of the SS test and other tests increases for SBM and t3,SBM and
n1 = n2 = n3 = 20.
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Fig 4. SS test (−), CFF test (++), ZC test (· · · ), F-max test (– –), GPF test (××), F-type
test (�), HR test (◦), CAFB test (�) and GS test (�) under nominal level 5% in the skewed
models: 1st row: n1 = n2 = n3 = 20, 2nd row: n1 = n2 = n3 = 4.

Results for the skewed distributions

We consider three skewed distributions as described before. The third case,
which is the squared t process given by G3(t) = (T(t))2, T(t) being the t3,SBM
process, can also be considered as a skewed and heavy-tailed process. However,
the geometric Brownian motion also has heavy tails. We denote the case of P0
being the geometric Brownian motion as GBM, the case of the squared Brownian
motion as (SBM)2 and the case of the squared t3,SBM process as (t3,SBM)2.
The estimated sizes under the nominal level 5% are presented in Table 3. The
estimated powers under the nominal level 5% are depicted in Figure 4.

Table 3

Estimated sizes of the SS test, CFF test, ZC test, F-max test, GPF test, F-type test, HR
test, CAFB test and GS test in the skewed distributions (nominal level 5%).

P0 (n1, n2, n3) SS CFF ZC F-max GPF F-type HR CAFB GS
GBM (20, 20, 20) 0.051 0.043 0.044 0.051 0.048 0.038 0.093 0.029 0.046
GBM (4, 4, 4) 0.047 0.076 0.092 0.048 0.082 0.007 0.281 0.035 0.054
(SBM)2 (20, 20, 20) 0.055 0.035 0.034 0.041 0.037 0.031 0.106 0.034 0.035
(SBM)2 (4, 4, 4) 0.047 0.061 0.070 0.049 0.068 0.002 0.361 0.029 0.044
(t3,SBM )2 (20, 20, 20) 0.051 0.020 0.022 0.031 0.030 0.022 0.049 0.030 0.049
(t3,SBM )2 (4, 4, 4) 0.044 0.036 0.041 0.037 0.041 0.000 0.285 0.026 0.043

In Table 3, the estimated sizes of the SS test is again found to be always very
close to the nominal level 5%. The estimated sizes of the GS test is also close
to the nominal level. The estimated sizes for the HR test are significantly high
for small group sizes, i.e., n1 = n2 = n3 = 4, and so we omit it in the power
comparison for n1 = n2 = n3 = 4 in Figure 4. In Figure 4, it can be seen that
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the power of the SS test is almost uniformly higher than the powers of all other
tests for higher sample sizes, i.e., n1 = n2 = n3 = 20. But for the lower sample
sizes n1 = n2 = n3 = 4 also, the power of the SS test is either the highest or
very close to the highest among the tests.

Comparison of the asymptotic and permutation implementations

We compare the sizes of the asymptotic and the permutation implementations
of the SS test for 3 groups with n1 = n2 = n3 = 5, 10, 20 and 40, and compare
their powers with n1 = n2 = n3 = 10 for the distributions considered previ-
ously in this subsection. The number of random permutations taken is 1000,
and the sizes and the powers are estimated based on 1000 independent repli-
cations with nominal level 5%. All the results pertaining to this investigation
are presented in Appendix C. We notice there that the powers of the two im-
plementations are very close to each other. However, when n1 = n2 = n3 = 5,
the size of the asymptotic implementation is sometimes somewhat smaller than
the nominal level. The estimated sizes for the permutation implementation are
always close to the nominal level. These findings indicate that the permutation
implementation has power similar to the asymptotic implementation, while the
asymptotic implementation may be slightly more conservative when the group
sizes are small. This points to the utility of the permutation implementation for
small group sizes. We suggest using the permutation implementation when the
minimum group size is less than or equal to 5 and the total sample size is less
than or equal to 20.

The permutation implementation is found to be computationally expensive
compared to the asymptotic implementation. We found that when n1 = n2 =
n3 = 5, the computation of a single p-value using the permutation implementa-
tion takes on average nearly twice the time taken by the asymptotic implemen-
tation. When n1 = n2 = n3 = 10, 20 and 40, the factors are on average around
7, 22 and 60, respectively.

The code for the SS test is written in R and the numerically heavy portions
are implemented using the Rcpp package.

For univariate, multivariate and high-dimensional data, several authors in-
vestigated and demonstrated the utility of Studentizing the bootstrap or the
permutation test statistic (see, e.g., [24], [16] and [32]). In [16], it was demon-
strated that Studentization leads to better performance of the test particularly
when the underlying distribution is non-Gaussian or heavy-tailed. However, in
the setup considered in this paper, Studentization of the permutation or the
bootstrap procedures would significantly increase the computational complex-
ity of the testing method due to the involvement of the covariance operator, the
calculation of which in our case is found to be quite expensive computationally.
Further, the performance of our testing procedures is found to be considerably
less affected by the non-Gaussian tails compared to other tests in the litera-
ture. We investigated the performance of the Studentized test statistic in all the
probability models described in this subsection, and found that despite taking
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considerably more time to yield output, the Studentized test shows no signifi-
cant gain in estimated power over the usual non-Studentized test. In fact, we
found that the estimated powers and sizes of the non-Studentized test are very
close to the those of the Studentized test. Based on these findings, we do not
recommend using Studentization with our procedures.

4. Analysis of real data

We compare the performance of the tests in three real datasets: the Canadian
Temperature data, the Tecator data and the Orthosis data.

The Canadian Temperature dataset, analyzed in [36], contains the daily tem-
perature records over 365 days at 35 Canadian weather stations situated in
three regions: 15 in Eastern Canada, 15 in Western Canada, and 5 in Northern
Canada. One may be interested to know whether there is a statistically signifi-
cant effect of location on the temperature curves over theses three regions. This
leads to an ANOVA problem with three groups with a total of 35 observations,
where each observation is a daily temperature curve, and the three groups are
the three regions. Since the sizes of the groups are small, we apply the permuta-
tion implementation of the SS test, and the other tests are implemented based
on the advices of their authors.

The Tecator dataset, available in the ‘caret’ package in R, contains the per-
centage values of moisture, fat and protein contents of 215 meat samples along
with their absorbance spectra in the wavelength range 850–1050 nm. Moisture,
fat and protein contents were measured by analytical chemistry, while a Tecator
Infratec Food and Feed Analyzer was used to record the absorbance spectrum.
We divide the observations in three groups by the value of the protein content
such that the 33% of the observations with the lowest protein content are in the
first group, the 33% with the highest protein content are in the third group and
the rest in the second group. The group sizes are found to be 72, 69 and 74. We
are interested to know whether their is a significant effect of the protein content
over the absorption spectra curves, and we get an ANOVA problem with three
groups.

The Orthosis dataset, analyzed in [39], contains orthotic measurements on a
volunteer under four experimental conditions. For each condition, 10 observa-
tions were recorded, and each observation depicts the moments of force over a
fixed time duration at the knee of the volunteer. Each observation is recorded
at a fixed grid of length 256, and we consider them as functional observations.
We are interested in whether the experimental conditions have same effect, and
consequently get an ANOVA problem with 4 groups with 10 observations in
each group. On visual inspection, we found that the observations corresponding
to one of the conditions are far away from the other observations, and so we
discard that group from our analysis. Hence, we get an ANOVA problem with
3 groups with 10 observations in each group.

The p-values of all the tests in each of the 3 datasets are presented in Table 4.
We notice that all the tests exhibit very small p-values in every dataset.
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Table 4

P-values of the tests in the real datasets.
Data SS CFF ZC F-max GPF F-type HR CAFB GS

Canada 0 0 0 0 0 0 0 0 0
Tecator 0 0.001 0.002 0.001 0.002 0.002 0.002 0 0.002
Orthosis 0 0 0 0 0 0 0 0 0

Table 5

Estimated sizes and powers of the tests in the size and power study in real datasets under
nominal level 5%. In Canadian Temperature data, n1 = n2 = n3 = 4, in Tecator data,

n1 = n2 = n3 = 23, and in Orthosis data, n1 = n2 = 3 and n3 = 4.
Data Size/Power SS CFF ZC F-max GPF F-type HR CAFB GS

Canada Size 0.055 0.069 0.071 0.038 0.073 0.009 0.303 0.032 0.051
Canada Power 0.997 0.993 0.993 0.994 0.983 0.741 1 0.921 0.984
Tecator Size 0.053 0.047 0.049 0.049 0.048 0.042 0.067 0.033 0.041
Tecator Power 0.501 0.339 0.347 0.498 0.326 0.319 0.359 0.476 0.322
Orthosis Size 0.041 0.028 0.094 0.020 0.104 0 0.138 0.034 0.050
Orthosis Power 0.535 0.448 0.613 0.076 0.678 0.006 0.573 0.200 0.539

Since the p-values of all the tests in all the datasets are found to be sta-
tistically significant, we carry out a size and power study of the tests based
on subsampling in each of the datasets. To estimate the sizes of the tests, we
divide each of the K groups randomly in K subgroups, carry out the tests
on those subgroups and then take the mean of the rejection rates within the
groups as an estimate of the size in this subsampling process. If a group has
too few observations to draw K distinct random subgroups from it, we omit it
from the size study. To estimate the powers of the tests in a dataset, we draw
the K random subgroups from the K groups separately, carry out the tests.
The nominal level is 5% everywhere. The sizes and the powers of the tests are
estimated based on 1000 independent replications of the above procedure. Sim-
ilar procedures of size and power study in real datasets were described in [10]
and [20]. When the number of observations in the subsamples are small, we
implement the SS test based on the permutation procedure with 1000 random
permutations.

In the Canadian Temperature data, since the third group has only 5 obser-
vations, it is omitted from the size study in subsampling but included in the
power study. The size of each of the 3 subgroups in this dataset is fixed at 4.
Due to the small size of the subgroups, the SS test is implemented based on
the permutation procedures. In Table 5, we present the estimated sizes and the
estimated powers of the tests in the size and power study. The nominal level is
5% everywhere. The SS test is implemented based on the permutation proce-
dure in those two datasets. In the Tecator dataset, the tests are implemented
using their usual asymptotic procedure.

In the power study of the tests in the Canadian Temperature data, we found
that the estimated powers of all the tests except the F-type test and the CAFB
test are very close to 1. In the corresponding size study, we found that the
estimated size of the HR test is very far from the nominal level. On the other
hand, the estimated size of the F-type test is rather low compared to the nominal
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level. In the size study in the Tecator data, we found that all the tests have their
estimated sizes close to the nominal level. In the corresponding power study, the
SS test demonstrates the highest power, though the F-max test and the CAFB
test have powers close to that of the SS test. In the power study in the Orthosis
data, we see that the ZC test, the GPF test, the HR test and the GS test
exhibit higher estimated powers than the SS test. However, the estimated sizes
of the ZC test, the GPF test and the HR test in the corresponding size study
are found to be significantly higher than the nominal level, which indicates
that their powers may be overestimated. The GS test has estimated size very
close to the nominal level and slightly higher power than the SS test in this
dataset.

In the case of the Tecator data, the second derivatives of the curves may also
be considered as observations and a similar size and power study may be carried
out. However, when we carried out this study, we found that all the p-values of
the tests are 0, and the all the powers to be 1.

5. Concluding remarks

In this paper, we have developed a test for multisample comparison using spatial
signs. The sample is assumed to consist of Hilbert space valued random elements.
We described three implementations for this test: one is based on the asymptotic
distribution of the test statistic, one is based on a bootstrap procedure and the
other is based on a permutation procedure. The asymptotic implementation is
faster, and it is recommended for moderate to large sample sizes. But for small
sample sizes, its size tends to be lower than the nominal level. We observed the
bootstrap and the permutation procedures to behave almost identically, and so
choose the permutation procedure for the implementation in suitable scenarios.
The permutation procedure, though computationally costly than the asymptotic
procedure, exhibits satisfactory performance under the null hypothesis irrespec-
tive of the sample size unlike the asymptotic procedure. Further, its power is
very similar to the asymptotic implementation. So, the permutation procedure
is recommended for small sample sizes.

In our simulation study, we found that the test exhibits substantially superior
performance than other mean based ANOVA for functional data in the literature
when the underlying distribution is non-Gaussian with heavy tails or skewed.
In the Gaussian models considered by us, we found that our test beats most of
the other mean based tests, if not all, and the performance of our test is almost
always very close to the best among the mean based tests. Our test also exhibits
better performance in contaminated models than the other tests.

The above discussion implies the advantage of using our test in a general
situation, where it is unknown whether the data are truly Gaussian and without
any contamination.
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Appendix A: Description of the other tests and asymptotic powers

The test statistic of the CFF test ([15]) is CFFn =
∑

k<l nk

∥∥X̄k· − X̄l·
∥∥2. We

have used the implementation of the CFF test suggested in [15] for homoscedas-
tic samples because all the simulation models we consider are homoscedastic and
the real data we consider do not exhibit heteroscedasticity, and we take 1000
bootstrap samples for its implementation.

The test statistic of the ZC test ([37]) is ZCn =
∑K

k=1 nk

∥∥X̄k· − X̄··
∥∥2, and

the test statistic of the F-type test ([33, 35]) is

Fn =
(K − 1)−1 ∑K

k=1 nk

∥∥X̄k· − X̄··
∥∥2

(n−K)−1 ∑K
k=1

∑nk

i=1
∥∥Xki − X̄k·

∥∥2 .

The parameter estimation for implementing the ZC test and the F-type test for
moderate or large sample sizes was done following the so-called ‘naive method’
(see subsection 2.1 in [18]) instead of the ‘bias-reduced method’, because we did
not see any significant difference in performances for those two implementations,
and the ‘naive method’ involves less computation. For small samples sizes, these
two tests are implemented based on 1000 bootstrap samples using the R package
‘fdANOVA’ (see [19]).

The test statistic of the GPF test ([39]) is

FGn =
∫
T

(K − 1)−1 ∑K
k=1 nk

(
X̄k·(t) − X̄··(t)

)2
(n−K)−1 ∑K

k=1
∑nk

i=1
(
Xki(t) − X̄k·(t)

)2 dt,

and the test statistic of the F-max test ([38]) is

FMn = sup
t∈[a,b]

(K − 1)−1 ∑K
k=1 nk

(
X̄k·(t) − X̄··(t)

)2
(n−K)−1 ∑K

k=1
∑nk

i=1
(
Xki(t) − X̄k·(t)

)2 .
The GPF test and the F-max test are implemented according to the advice
of the respective authors, and the number of bootstrap samples used for the
implementation of the F-max test is 1000.

The GS test ([18]) is a permutation test of ANOVA based on the basis func-
tion representation of the functional observations, where the test statistic is
similar to that of the F-type test. The GS test is implemented based on the
function in the R package ‘fdANOVA’ using the Fourier basis and the BIC
criterion and 1000 permutations.

The CAFB test ([14]) is based on random projections of the sample. To imple-
ment the test, we generate 30 random directions following standard Brownian
motion on which the sample observations are projected. Then, we carry out
the univariate ANOVA procedure described in section 3 in [5] on the projected
observations as suggested in [14]. The test of ANOVA for the functional obser-
vations is then decided based on the p-values of the univariate ANOVA. The
reader is referred to [14] for further details on the implementation of this test,
including the p-value computation.
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We need to define a few quantities to describe the test statistic of the HR
test ([23]), which is based on d principal component scores of the sample in the
following way. Define Ωnk : [a, b] × [a, b] → R as

Ωnk (s, t) = n−1
k

nk∑
i=1

(
Xki(s) − X̄k·(s)

) (
Xki(t) − X̄k·(t)

)
for k = 1, . . . ,K. Let Ωn = n−1 ∑K

k=1 nkΩnk and φn1, . . . ,φnd be the eigen-
functions corresponding to the d largest eigenvalues of Ωn. Define

ξ̄ki = (〈Xki,φn1〉 , . . . , 〈Xki,φnd〉)
t
, ξ̄k· = n−1

k

nk∑
i=1

ξ̄ki,

Ψnk = n−1
k

nk∑
i=1

(
ξ̄ki − ξ̄k·

) (
ξ̄ki − ξ̄k·

)t
, ξ̄·· =

(
K∑

k=1

nkΨ−1
nk

)−1 K∑
k=1

nkΨ−1
nk ξ̄k·.

The test statistic of the HR test is defined as

HRn =
K∑

k=1

nk

(
ξ̄k· − ξ̄··

)t Ψ−1
nk

(
ξ̄k· − ξ̄··

)
.

In [23], there was no clear direction on the number of principal components to
be used for implementing the HR test. So, we have taken the number so that
the chosen principal components explain at least 90% of the variance present in
the sample. In other words, we choose the number d such that the sum of the d
largest eigenvalues of the sample covariance operator Ωn is at least 90% of the
sum of all its eigenvalues.

We derive here the asymptotic powers of the CFF test, the ZC test and
the HR test under the class of shrinking alternatives described in (3.1), where
H = L2[a, b].

For u = (u1, . . . ,up)t, v = (v1, . . . ,vp)t, where u1, . . . ,up,v1, . . . ,vp ∈ H,
define utv as utv =

∑p
i=1〈ui,vi〉. Matrix operations between elements in H or

scalars are defined analogously. For the result on the HR test, we need to further
define the following quantities. Define Ωk,Ω : [a, b] × [a, b] → R as Ωk (s, t) =
E [(Xk1(s) − E [Xk1(s)]) (Xk1(t) − E [Xk1(t)])] and Ω =

∑K
k=1 λkΩk for k =

1, . . . ,K. Let φ1, . . . ,φd be the eigenfunctions corresponding to the d largest
eigenvalues of Ω. Define dk = (〈δk,φ1〉 , . . . , 〈δk,φd〉)

t, ξki = (〈Xki,φ1〉 , . . . ,
〈Xki,φd〉)t, Ψk = E

[
(ξk1 − E [ξk1]) (ξk1 − E [ξk1])

t
]

and

AKd×Kd

= IKd −

⎡⎢⎢⎣
√
λ1Ψ−1/2

1
...√

λKΨ−1/2
K

⎤⎥⎥⎦
(

K∑
k=1

λkΨ−1
k

)−1 [√
λ1Ψ−1/2

1 , . . . ,
√
λKΨ−1/2

K

]
.
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One can verify that AKd×Kd is an idempotent matrix of degree d(K − 1). Let
VKd×Kd be such that

AKd×Kd = VKd×Kd

[
Id(K−1) 0d(K−1)×d

0d×d(K−1) 0d×d

]
Vt

Kd×Kd.

Define MKd×1 = Vt
Kd

[√
λ1Ψ−1/2

1 dt
1, . . . ,

√
λKΨ−1/2

K dt
K

]t
, and let M̃d(K−1)×1

be the truncated column vector obtained by dropping the bottom d elements
from MKd×1. We have the following theorem on the asymptotic powers of the
three tests.

Theorem A.1. Consider the class of shrinking alternatives described in (3.1),
and assume E[‖X‖2] < ∞, where X has distribution P0, and that n−1nk →
λk ∈ (0, 1) for all k as n → ∞. Let Y1, . . . ,YK be independent zero-mean
Gaussian random elements with the covariance operator of P0 denoted as Γ.
For α ∈ (0, 1), let CFF (α), ZC(α) and HR(α) denote the asymptotic powers
at level α of the CFF test, the ZC test, and the HR test, respectively, under (3.1)
with n → ∞. Then, we have the following.

(a) CFF (α) = P [
∑

k<l λk‖λkδk + Yk −
√

λk/λl(λlδl + Yl)‖2 ≥ Q1(1 − α)],
where Q1 (1 − α) is the (1 − α)-quantile of the distribution of the random
variable

∑
k<l λk‖Yk −

√
λk/λlYl‖2.

(b) Let γ1, γ2, . . . be the sequence of eigenvalues of Γ, and χ2
1,χ

2
2, . . . be an

infinite sequence of independent χ2
K−1 random variables. Further, let IK

denote a K × K matrix of identity operators, p0 =
(√

λ1, . . . ,
√
λK

)t,
and Z =

(√
λ1δ1 + Y1, . . . ,

√
λKδK + YK

)t. Then, ZC(α) = P [Zt(IK −
p0pt

0)Z ≥ Q2(1 − α)], where Q2 (1 − α) is the (1 − α)-quantile of the
distribution of the random variable

∑∞
i=1 γiχ

2
i .

(c) Let χ be a random variable following a non-central chi-square distribution
with ((K − 1) d) degrees of freedom and

∥∥M̃d(K−1)×1
∥∥2 being its noncen-

trality parameter. Then, HR(α) = P [χ ≥ Q3 (1 − α)], where Q3 (1 − α) is
the (1 − α)-quantile of the central chi-square distribution with ((K − 1) d)
degrees of freedom.

Appendix B: Proof of mathematical results

Proof of Theorem 2.1. Define s̃ (X,Y) = s (X − Y) − E [s (X − Y)], where X
and Y are independent random elements. Define

Sk = 1
n

K∑
l=1

nl

[
1
nk

nk∑
ik=1

E [s̃ (Xkik ,Xl1) | Xkik ] + 1
nl

nl∑
il=1

E [s̃ (Xk1,Xlil) | Xlil ]
]
,

Vkl

= 1
nknl

nk∑
ik=1

nl∑
il=1

[s̃ (Xkik ,Xlil)−E[s̃ (Xkik ,Xl1) |Xkik ]−E[s̃ (Xk1,Xlil) |Xlil ]] ,
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where ik = 1, . . . , nk, il = 1, . . . , nl and k, l = 1, . . . ,K. We have R̄k−E
[
R̄k

]
=

Sk+n−1 ∑K
l=1 nlVkl. Also, define Wn =

(√
n1S1, . . . ,

√
nKSK

)
, and s̄ (X,Y) =

s̃ (X,Y) − E [s̃ (X,Y) | X] − E [s̃ (X,Y) | Y]. Note that

E [s̄ (X,Y) | X] = E [s̄ (X,Y) | Y] = E [s̄ (X,Y)] = 0 (B.1)
and ‖s̄ (X,Y)‖ ≤ 6. (B.2)

From (B.1), we get that for every case other than (k, ik, l1, il1) = (k, jk, l2, jl2)
and (k, ik, l1, il1) = (l2, jl2 , k, jk),

E
[〈

s̄
(
Xkik ,Xl1il1

)
, s̄

(
Xkjk ,Xl2jl2

)〉]
= 0. (B.3)

Since Vkl = (nknl)−1 ∑nk

ik=1
∑nl

il=1 s̄ (Xkik ,Xlil), from (B.2) and (B.3) we get
that for all k,

E

⎡⎣∥∥∥∥∥√nk
1
n

K∑
l=1

nlVkl

∥∥∥∥∥
2⎤⎦ −→ 0 as n → ∞,

which implies ‖[Un −E [Un]] − Wn‖ =

√√√√ K∑
k=1

∥∥∥∥∥√nk
1
n

K∑
l=1

nlVkl

∥∥∥∥∥
2

P−→ 0

(B.4)

as n → ∞. Next, we consider Sk. It can be verified that

Cov
(√

nk1Sk1 ,
√
nk2Sk2

)
=

√
nk1nk2

n

K∑
l=1

nl

n
[C(k1, k2, l) − C(k1, l, k2) − C(l, k2, k1)]

+
K∑

l1=1

K∑
l2=1

nl1nl2

n2 C(l1, l2, k1)I(k1 = k2). (B.5)

Since n−1nk → λk ∈ (0, 1) for all k as n → ∞, from (B.5), we have for all k1
and k2,

Cov
(√

nk1Sk1 ,
√
nk2Sk2

)
−→ σk1k2 as n → ∞. (B.6)

Since E [Wn] = 0, from (B.6) and an application of Theorem 1.1 in [28],
we get Wn

w−→ G (0,Σ) as n → ∞, which, along with (B.4), implies that
[Un − E [Un]] w−→ G (0,Σ) as n → ∞.

Proof of Corollary 2.2. When H0 in (2.1) is true, Xk1 is an independent copy
of Xl1 for k �= l, which, along with the fact that s(0) = 0 by definition, gives
E[s(Xk1 − Xl1)] = 0 for all k, l. So,

E
[√

nkR̄k

]
=

√
nk

K∑
l=1

nl

n
E [s (Xk1 − Xl1)] = 0
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for all k, and consequently, E [Un] = 0. Therefore from Theorem 2.1, we have
Un

w−→ G (0,Σ) as n → ∞. Hence, from an application of the mapping theorem
[3, Theorem 2.7, p. 21], we get ‖Un‖2 w−→ ‖W‖2 as n → ∞, where W is a
random element having distribution G (0,Σ).

Proof of Theorem 2.3. Note that the class of compact operators on a separable
Hilbert space is closed [2, p. 164] and separable [2, p. 168] with respect to the
operator norm. So, the class of compact operators on a separable Hilbert space
is a separable Banach space with respect to the operator norm, and we denote
it as C. We have

Cn(k1, k2, l) = nl

nl − 1C(1)
n (k1, k2, l) − C(2)

n (k1, l) ⊗ C(2)
n (k2, l), (B.7)

where C(1)
n (j, k, l) = 1

nlnjnk

nl∑
il=1

nj∑
ij=1

nk∑
ik=1

s
(
Xjij − Xlil

)
⊗ s (Xkik − Xlil)

and C(2)
n (k, l) = 1

nknl

nk∑
ik=1

nl∑
il=1

s (Xkik − Xlil) for j, k, l ∈ {1, . . . ,K}.

First, we shall consider the term C(1)
n (k1, k2, l) and the following cases of the

triplet (k1, k2, l) separately: (a) k1, k2, l are all distinct, (b) k1 = k2 �= l, (c)
k1 = l �= k2, (d) k2 = l �= k1 and (e) k1 = k2 = l. These five cases cover all
possible cases of (k1, k2, l).

Assume that k1, k2, l are all distinct. Define Φ1 (x,y, z) = s (x − z)⊗s (y − z)
for x,y, z ∈ H. Since Φ1 (x,y, z) is a finite-rank operator, it belongs to the
separable Banach space C. Therefore,

C(1)
n (k1, k2, l) = 1

nlnk1nk2

nl∑
il=1

nk1∑
ik1=1

nk2∑
ik2=1

Φ1
(
Xk1ik1

,Xk2ik2
,Xlil

)
is a 3-sample UB-statistic [4, p. 15]. Since ‖Φ1‖ ≤ 1 and n−1nk → λk ∈ (0, 1)
for all k as n → ∞, from Theorem 3.2.1 in [4, p. 79], we get

C(1)
n (k1, k2, l)

a.s.−→ E [s (Xk11 − Xl1) ⊗ s (Xk21 − Xl1)] (B.8)

as n → ∞ in the operator norm. Next, assume k1 = k2 �= l. Define Φ2 (x1,x2;y)
= 2−1[s (x1 − y)⊗s (x2 − y)+s (x2 − y)⊗s (x1 − y)] and Φ3 (x,y) = s (x − y)⊗
s (x − y). Clearly, Φ2 (x1,x2;y) ,Φ3 (x,y) ∈ C, and since ‖Φ2‖ ≤ 1 and ‖Φ3‖ ≤
1, from Theorem 3.2.1 in [4, p. 79], we get

C(1)
n (k1, k2, l) = nk1 − 1

nk1

1
nl

(
nk1
2
) nl∑

il=1

∑
1≤ik1<jk1≤nk1

Φ2
(
Xk1ik1

,Xk1jk1
;Xlil

)
+ 1

nk1

1
nlnk1

nl∑
il=1

nk1∑
ik1=1

Φ3
(
Xk1ik1

,Xlil

)
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a.s.−→ E [s (Xk11 − Xl1) ⊗ s (Xk12 − Xl1)] (B.9)

as n → ∞ in the operator norm. Next, assume k1 = l �= k2. Define Φ4 (x1,x2;y)
= 2−1[s (x1 − x2) ⊗ s (y − x2) + s (x2 − x1) ⊗ s (y − x1)]. Since ‖Φ4‖ ≤ 1, we
get

C(1)
n (k1, k2, l) = nk1 − 1

nk1

1(nk1
2
)
nk2

∑
1≤ik1<jk1≤nk1

nk2∑
ik2=1

Φ4
(
Xk1ik1

,Xk1jk1
;Xk2ik2

)
a.s.−→ E [s (Xk11 − Xk12) ⊗ s (Xk21 − Xk12)] (B.10)

as n → ∞ in the operator norm. Next, assume k2 = l �= k1. Arguing similarly
as in the case k1 = l �= k2, we get

C(1)
n (k1, k2, l)

a.s.−→ E [s (Xk11 − Xk22) ⊗ s (Xk21 − Xk22)] (B.11)

as n → ∞ in the operator norm. Finally, assume k1 = k2 = l. Define

Φ5 (x1,x2,x3) = (3!)−1
∑
σ

s
(
xσ(1) − xσ(3)

)
⊗ s

(
xσ(2) − xσ(3)

)
,

where the sum is carried out over all 6 permutations of (1, 2, 3), and

Φ6 (x1,x2) = 2−1 [s (x1 − x2) ⊗ s (x1 − x2) + s (x2 − x1) ⊗ s (x2 − x1)] .

Since ‖Φ5‖ ≤ 1 and ‖Φ6‖ ≤ 1, from Theorem 3.1.1 in [4, p. 73], we get

C(1)
n (k1, k2, l)

= 1
n3
k1

nk1∑
hk1=1

nk1∑
ik1=1

nk1∑
jk1=1

s
(
Xk1ik1

− Xk1hk1

)
⊗ s

(
Xk1jk1

− Xk1hk1

)
= (nk1 − 1)(nk1 − 2)

n2
k1

1(
nk1
3
) ∑

1≤hk1<ik1<jk1≤nk1

Φ5
(
Xk1ik1

,Xk1jk1
,Xk1hk1

)
+ nk1 − 1

n2
k1

1(
nk1
2
) ∑

1≤ik1<jk1≤nk1

Φ3
(
Xk1ik1

,Xk1jk1

)
a.s.−→ E [s (Xk11 − Xk13) ⊗ s (Xk12 − Xk13)] (B.12)

as n → ∞ in the operator norm. Therefore, from (B.8), (B.9), (B.10), (B.11)
and (B.12), we get that for all k1, k2, l ∈ {1, . . . ,K},

C(1)
n (k1, k2, l)

a.s.−→ E [s (Xk11 − Xl1) ⊗ s (Xk21 − Xl1)]
= E [E [s(Xk11 − Xl1) | Xl1] ⊗ E [s(Xk21 − Xl1) | Xl1]] (B.13)

as n → ∞ in the operator norm, where, if k1 = l or k2 = l, Xk11 or Xk21 are
considered to be independent copies of Xl1, respectively. Next, we consider the
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term C(2)
n (k, l). Note that if k = l, C(2)

n (k, l) = 0 and E [s(Xk11 − Xl1)] = 0.
When k �= l, C(2)

n (k, l) is a 2-sample UB statistic, and we have

C(2)
n (k, l) a.s.−→ E [s(Xk11 − Xl1)] (B.14)

as n → ∞ in the operator norm. Therefore, from (B.7), (B.13) and (B.14), we
have

Cn(k1, k2, l)
a.s.−→ C(k1, k2, l). (B.15)

as n → ∞ in the operator norm. Since n−1nk → λk for all k as n → ∞,
from (B.15) we have σ

(n)
k1k2

a.s.−→ σk1k2 as n → ∞ in the operator norm for all
k1, k2, and hence Σ̂n

a.s.−→ Σ as n → ∞ in the operator norm.

Proof of Theorem 2.4. The proof for the test based on the asymptotic procedure
follows from Corollary 2.2.

We now prove the theorem for the bootstrap implementation. Let S(n1,...,nK)
denote the original sample {Xki | k = 1, . . . ,K; i = 1, . . . , nk} and define S =
∪{S(n1,...,nK) | n1 ≥ 1, . . . , nK ≥ 1}. Let {X∗

ki | k = 1, . . . ,K; i = 1, . . . , nk}
denote a bootstrap sample. Define R∗(x) = n−1 ∑K

k=1
∑nk

i=1 s(x − X∗
ki), R̄∗

k =
n−1
k

∑nk

ik=1 R∗ (X∗
kik

)
, U∗

n=
(√

n1R̄∗
1 , . . . ,

√
nKR̄∗

K

)
and SS∗

n=
∑K

k=1 nk

∥∥R̄∗
k

∥∥2

= ‖U∗
n‖2. Define P ∗[ · ] = P [ · | S], E∗[ · ] = E[ · | S], Cov∗[ ·, · ] = Cov[ ·, · | S]

and E∗[ · | Z] = E[ · | Z,S] for any random element Z. Also, let “ P∗
−→” imply

convergence in probability given S, and “ w∗
−→” imply convergence in distribution

given S. Define s̃∗
(
X∗

kik
,X∗

lil

)
= s

(
X∗

kik
− X∗

lil

)
− E∗ [s (X∗

kik
− X∗

lil

)]
. Note

that

E∗ [s̃∗ (X∗
kik

,X∗
lil

) ∣∣ X∗
kik

]
= E∗ [s̃∗ (X∗

kik
,X∗

l1
) ∣∣ X∗

kik

]
and E

[
s̃∗
(
X∗

kik
,X∗

lil

) ∣∣ X∗
lil

]
= E

[
s̃∗
(
X∗

k1,X∗
lil

) ∣∣ X∗
lil

]
.

Also, define

S∗
k = 1

n

K∑
l=1

nl

[
1
nk

nk∑
ik=1

E∗[s̃∗(X∗
kik

,X∗
l1)|X∗

kik
] + 1

nl

nl∑
il=1

E[s̃∗(X∗
k1,X∗

lil
)|X∗

lil
]
]

and

V∗
kl = 1

nknl

nk∑
ik=1

nl∑
il=1

[
s̃∗(X∗

kik
,X∗

lil
) −E∗[s̃∗

(
X∗

kik
,X∗

l1
)
|X∗

kik
]

−E∗[s̃∗
(
X∗

k1,X∗
lil

)
|X∗

lil
]
]
.

We have R̄∗
k−E∗ [R̄∗

k

]
= S∗

k+n−1 ∑K
l=1 nlV∗

kl. Let W∗
n =

(√
n1S∗

1, . . . ,
√
nKS∗

K

)
.
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Using virtually identical arguments used while proving (B.4), one can show that

‖[U∗
n −E∗ [U∗

n]] − W∗
n‖ =

√√√√ K∑
k=1

∥∥∥∥∥√nk
1
n

K∑
l=1

nlV∗
kl

∥∥∥∥∥
2

P∗
−→ 0 as n → ∞.

(B.16)

Note that for any k, l, ik, il,

E∗ [s (X∗
kik

− X∗
lil

)]
= n−2

K∑
q=1

K∑
r=1

nq∑
iq=1

nr∑
ir=1

s
(
Xqiq − Xrir

)
= 0,

which implies E∗ [R̄∗
k

]
= 0 for all k, and hence E∗ [U∗

n] = 0. Hence, from (B.16),
we get

‖U∗
n − W∗

n‖ =

√√√√ K∑
k=1

∥∥∥∥∥√nk
1
n

K∑
l=1

nlV∗
kl

∥∥∥∥∥
2

P∗
−→ 0 as n → ∞. (B.17)

Next, define F ∗
k

(
X∗

lil

)
= E∗ [s̃∗ (X∗

k1,X∗
lil

)
| X∗

lil

]
for all k, l and il,

En = 1
n3

K∑
m=1

K∑
k=1

K∑
l=1

nm∑
im=1

nk∑
ik=1

nl∑
il=1

s (Xkik − Xmim) ⊗ s (Xlil − Xmim)

−
{

1
n2

K∑
k=1

K∑
l=1

nk∑
ik=1

nl∑
il=1

s(Xkik−Xlil)
}
⊗
{

1
n2

K∑
k=1

K∑
l=1

nk∑
ik=1

nl∑
il=1

s(Xkik−Xlil)
}

and

E =
K∑

m=1

K∑
k=1

K∑
l=1

λkλlλmE [s (Xk1 − Xm1) ⊗ s (Xl1 − Xm1)]

−
{

K∑
k=1

K∑
l=1

λkλlE [s (Xk1 − Xl1)]
}

⊗
{

K∑
k=1

K∑
l=1

λkλlE [s (Xk1 − Xl1)]
}
.

Note that for all k and l, E∗ [F ∗
k

(
X∗

lil

)]
= 0, and one can verify that for all

k, l1, l2,

E∗ [F ∗
l1

(
X∗

kik

)
⊗ F ∗

l2

(
X∗

kik

)]
= En. (B.18)

Using the fact that s̃∗
(
X∗

kik
,X∗

lil

)
= −s̃∗

(
X∗

lil
,X∗

kik

)
, we derive

S∗
k = − 1

n

K∑
l=1
l �=k

nl

nk

nk∑
ik=1

F ∗
l

(
X∗

kik

)
+ 1

n

K∑
l=1
l �=k

nl∑
il=1

F ∗
k

(
X∗

lil

)
. (B.19)
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Since Cov∗ (F ∗
l1

(
X∗

kik

)
, F ∗

l2

(
X∗

lil

))
= 0 for (k, ik) �= (l, il) and for all l1, l2,

from (B.18) and (B.19), we get

Cov∗ (√nk1S∗
k1
,
√
nk2S∗

k2

)
=
(
I (k1 = k2) −

√
nk1nk2

n

)
En. (B.20)

Using arguments similar to those in the proof of Theorem 2.3, we get that
En

a.s.−→ E as n → ∞ in the operator norm, and hence, from (B.20), we get

Cov∗ (√nk1S∗
k1
,
√
nk2S∗

k2

) a.s.−→
(
I (k1 = k2) −

√
λk1λk2

)
E as n → ∞.

(B.21)

Define Σ∗ =
(
σ∗

k1k2

)
K×K

, where σ∗
k1k2

=
(
I (k1 = k2) −

√
λk1λk2

)
E for k1, k2 =

1, . . . ,K. Since E∗ [S∗
k] = 0 for all k, we have E [W∗

n] = 0, which, along
with (B.21) and an application of Theorem 1.1 in [28], implies that W∗

n
w∗
−→

G (0,Σ∗) as n → ∞. Therefore, from (B.17), we get U∗
n

w∗
−→ G (0,Σ∗) as

n → ∞, and since Σ∗ is independent of S, we have the unconditional conver-
gence

U∗
n

w−→ G (0,Σ∗) as n → ∞. (B.22)

It can be verified that when the null hypothesis H0 in (2.1) is true, we have
Σ∗ = Σ, where Σ is as defined in Theorem 2.1. From Corollary 2.2 and using
arguments similar to those used in its proof, we get that under H0 in (2.1),
the asymptotic distribution of SS∗

n is identical to that of SSn. Hence under H0
in (2.1), for every 0 < α < 1, the size of a level α test based on the bootstrap
procedure converges to α as n → ∞ and Mb → ∞.

Next, we prove the theorem for the permutation method. Let σn denote
a random permutation of (1, . . . , n), and {X#

ki | k = 1, . . . ,K; i = 1, . . . , nk}
denote the permuted sample obtained by applying σn to the original sample.
Define R#(x) = n−1 ∑K

k=1
∑nk

i=1 s(x−X#
ki) and R̄#

k = n−1
k

∑nk

ik=1 R#
(
X#

kik

)
.

So, SS#
n =

∑K
k=1 nk

∥∥∥R̄#
k

∥∥∥2
. Given the original sample, all possible realizations

of the permuted sample {X#
ki | k = 1, . . . ,K; i = 1, . . . , nk} are equally likely.

Also, under the null hypothesis H0 in (2.1), the underlying distributions of all
the classes are identical. So, the joint distribution of {X#

ki | k = 1, . . . ,K; i =
1, . . . , nk} is the same as that of the original sample. Hence, under H0 in (2.1),
the distribution of SS#

n is the same as the distribution of the original test
statistic SSn for all n. Therefore, under H0 in (2.1), the asymptotic distribution
of SS#

n is the same as that of SSn, which is given in Corollary 2.2. So, as n → ∞
and M → ∞, the empirical distribution of SS#

n converges to the asymptotic
null distribution of SSn. Hence under H0 in (2.1), for every 0 < α < 1, the size
of a level α test based on the permutation procedure converges to α as n → ∞
and M → ∞.

Proof of Theorem 2.5. Since for all k, E[R̄k] →
∑K

l=1 λlE[s(Xk1 − Xl1)] as
n → ∞, if

∑K
l=1 λlE[s(Xk1 −Xl1)] �= 0 for any k, we have

∥∥E [√
nkR̄k

]∥∥ → ∞
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as n → ∞ for that k, and this implies ‖E [Un]‖ → ∞ as n → ∞. Consequently,
from Theorem 2.1, we have ‖Un‖ ≥ ‖E [Un]‖ − ‖Un − E [Un]‖ P−→ ∞ as n →
∞. Therefore,

SSn = ‖Un‖2 P−→ ∞ as n → ∞. (B.23)

From (B.23) and Corollary 2.2, we get that for every 0 < α < 1, the power
of a level α test based on the asymptotic procedure converges to 1 as n → ∞.

Next, from (B.22), we get that SS∗
n is stochastically bounded whether the null

or the alternative is true. Hence, from (B.23), we get that for every 0 < α < 1,
the power of a level α test based on the bootstrap procedure converges to 1 as
n → ∞ and Mb → ∞.

Next we prove the theorem for the permutation procedure. Recall R̄#
k defined

in the proof of Theorem 2.4. We shall show that nk‖R̄#
k ‖2 is stochastically

bounded for all k, and this would imply that SS#
n is stochastically bounded

under the null as well as the alternative hypotheses. Then the proof would
follow from (B.23). It can be verified that

nk

∥∥∥R̄#
k

∥∥∥2

= nk

K∑
l1=1
l1 �=k

K∑
l2=1
l2 �=k

1
n2n2

k

nk∑
i1=1

nk∑
i2=1

i1 �=i2

nl1∑
j1=1

nl2∑
j2=1

(l1,j1) �=(l2,j2)

〈
s
(
X#

ki1
− X#

l1j1

)
, s

(
X#

ki2
− X#

l2j2

)〉

+ nk

K∑
l=1
l �=k

n2
l

n2
1

n2
kn

2
l

nk∑
i1=1

nk∑
i2=1

i1 �=i2

nl∑
j=1

〈
s
(
X#

ki1
− X#

lj

)
, s

(
X#

ki2
− X#

lj

)〉

+ nk

K∑
l1=1
l1 �=k

K∑
l2=1
l2 �=k

1
n2n2

k

nk∑
i=1

nl1∑
j1=1

nl2∑
j2=1

(l1,j1) �=(l2,j2)

〈
s
(
X#

ki − X#
l1j1

)
, s

(
X#

ki − X#
l2j2

)〉

+ nk

K∑
l=1
l �=k

n2
l

n2
1

n2
kn

2
l

nk∑
i=1

nl∑
j=1

〈
s
(
X#

ki − X#
lj

)
, s

(
X#

ki − X#
lj

)〉
.

Let E# [·] denote the conditional expectation given the original sample. We get
that for (k, i1), (k, i2), (l1, j1) and (l2, j2) all distinct,

E#
[〈

s
(
X#

ki1
− X#

l1j1

)
, s

(
X#

ki2
− X#

l2j2

)〉]
= 0,

for (k, i1), (k, i2) and (l, j) all distinct,

E#
[〈

s
(
X#

ki1
− X#

lj

)
, s

(
X#

ki2
− X#

lj

)〉]
= (n− 3)!

n!
∑

(i,j,k)∈Pn
3

〈s (Yi − Yk) , s (Yj − Yk)〉 ,
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for (k, i), (l1, j1) and (l2, j2) all distinct,

E#
[〈

s
(
X#

ki − X#
l1j1

)
, s

(
X#

ki − X#
l2j2

)〉]
= (n− 3)!

n!
∑

(i,j,k)∈Pn
3

〈s (Yi − Yk) , s (Yj − Yk)〉 ,

and for (k, i) �= (l, j),

E#
[〈

s
(
X#

ki − X#
lj

)
, s

(
X#

ki − X#
lj

)〉]
= (n− 2)!

n!
∑

(i,j)∈Pn
2

〈s (Yi − Yj) , s (Yi − Yj)〉 ,

where Pn
k is the collection of all permutations of size k drawn from (1, . . . , n), and

Yi, Yj and Yk are the ith, jth and the kth elements of the sample, respectively.
Define

Rn,1 = (n− 3)!
n!

∑
(i,j,k)∈Pn

3

〈s (Yi − Yk) , s (Yj − Yk)〉 ,

and Rn,2 = (n− 2)!
n!

∑
(i,j)∈Pn

2

〈s (Yi − Yj) , s (Yi − Yj)〉 .

From the above discussion, we get

E

[
nk

∥∥∥R̄#
k

∥∥∥2
]

= E [Rn,1]

⎡⎣∑
l �=k

(nk + nl − 2)nl

n2 +
∑

l1 �=l2 �=k

nl1nl2

n2

⎤⎦+ E [Rn,2]
1
n

∑
l �=k

nl

n
,

(B.24)

where Rn,1 = (n− 3)!
n!

∑
(i,j,k)∈Pn

3

〈s (Yi − Yk) , s (Yj − Yk)〉

and Rn,2 = (n− 2)!
n!

∑
(i,j)∈Pn

2

〈s (Yi − Yj) , s (Yi − Yj)〉 .

Now, from an application of the Cauchy-Schwarz inequality, we get that |Rn,1| ≤
1 and |Rn,2| ≤ 1. Therefore, from (B.24), we have E[nk‖R̄#

k ‖2] ≤ 2K, and con-
sequently nk‖R̄#

k ‖2 is stochastically bounded for all k. Hence, SS#
n is stochas-

tically bounded.
Hence, from (B.23), we get that for every 0 < α < 1, the power of a level α test

based on the permutation procedure converges to 1 as n → ∞ and M → ∞.
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Proof of Theorem 2.6. Under H′
0 in (2.3), H0 in (2.1) holds, and from Theo-

rem 2.4, we get that for every 0 < α < 1, the sizes of a level α test based on
the asymptotic and the permutation procedures converge to α as n → ∞ and
M → ∞.

Next, let X and X′ be independent random elements having distribution P0.
Consider a random element Z such that Z = (X + μk) − X′ with probability
λk for k = 1, . . . ,K. The spatial distribution of Z at a point z is defined as
S (z) = E [s (z − Z)] [9, p. 1205]. Since the support of P0 is not contained
in a straight line in H, it follows from the proof of Theorem 3.1 in [9] that
S (z1) �= S (z2) for z1 �= z2. So, S (μk) = 0 for all k implies μk = μl for all
k �= l. Note that S (μk) =

∑K
l=1 λlE [s (Xk1 − Xl1)], and E

[
R̄k

]
→ S (μk) as

n → ∞ since n−1nk → λk as n → ∞ for all k. When H′
0 is false, μk �= μl for

some k �= l, which implies S (μk) �= 0 for some k, and the proof follows from
Theorem 2.5.

We need the following lemma for the proof of Theorem 3.1. The arguments
used in its proof are similar to those in the proof of Proposition 2.1 in [7].

Lemma B.1. Define f : H → H by f(a) = E [s (X − X′ + a)]. Assume that
the probability measure P0 is non-atomic and not contained in any straight line
in H, and E

[
‖X − X′‖−1

]
< ∞, where X and X′ are independent random

elements having identical distribution P0. Then, the Frechét derivative of f(·) at
0 is E

[
s(1) (X − X′)

]
. Further, for any h �= 0, E

[
s(1) (X − X′)

]
(h) �= 0.

Proof. The Frechét derivative of s(x) = ‖x‖−1x at x, denoted as s(1)(x), exists
for all x �= 0, and it is a bounded linear operator on H defined by

s(1) (x) (h) = 1
‖x‖

(
h −

〈
h, x

‖x‖

〉
x

‖x‖

)
, where h ∈ H.

Note that
∥∥s(1) (x)

∥∥ ≤ ‖x‖−1. Since by assumption E
[
‖X − X′‖−1

]
< ∞,

which implies P [X − X′ = 0] = 0, we get that E
[
s(1) (X − X′)

]
exists and is

the Frechét derivative of f(a) = E [s (X − X′ + a)] at a = 0.
Next, we shall show that the operator E

[
s(1) (X − X′)

]
is bounded below.

The arguments in this part of the proof is similar to those in the proof of
Proposition 2.1 in [7]. Let Ph (·) be the orthogonal projection operator on the
orthogonal complement of h. Note that

〈
h, E

[
s(1) (X − X′)

]
(h)

〉
= E

[
1

‖X − X′‖

∥∥∥∥Ph

(
X − X′

‖X − X′‖

)∥∥∥∥2
]
.

Consider the set of all subspaces K⊆H such that Var(〈v, ‖X − X′‖−1 (X − X′)〉)
= 0 for all v ∈ K. Suppose this set is non-empty. Then, by Zorn’s lemma, it
has a maximal element, which we denote as K0. The maximality of K0 im-
plies that Var

(〈
v, ‖X − X′‖−1 (X − X′)

〉)
> 0 for all v ∈ K⊥

0 , the orthogonal
complement of K0. Since X and X′ are independent random elements having
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distribution P0, which is not contained in a straight line, K⊥
0 must have di-

mension at least 2. Let v1,v2 be two orthogonal unit vectors in K⊥
0 . Define

g (t) = Var
(〈

cos (t)v1 + sin (t)v2, ‖X − X′‖−1 (X − X′)
〉)

for 0 ≤ t ≤ 2π.
Note that g (t) > 0 for all t, because cos (t)v1 + sin (t)v2 ∈ K⊥

0 . Since g (·) is
continuous on a compact set, we get that there is l0 > 0 such that for all unit
vectors in span {v1,v2}, Var

(〈
v, ‖X − X′‖−1 (X − X′)

〉)
≥ l0. The orthogo-

nal complement of h and span {v1,v2} must have nonempty intersection, which
implies that there is a unit vector v0 ∈ span {v1,v2} such that 〈v0,h〉 = 0.
Hence, for all y ∈ H, ‖Ph (y)‖2 ≥ 〈v0,y〉2. We take M large enough such that
Var

[〈
v0, ‖X − X′‖−1 (X − X′) I (‖X − X′‖ ≤ M)

〉]
> (l0/2). Therefore,〈

h, E
[
s(1) (X − X′)

]
(h)

〉
≥ E

[
1

‖X − X′‖

∥∥∥∥Ph

(
X − X′

‖X − X′‖

)∥∥∥∥2
I (‖X − X′‖ ≤ M)

]

≥ 1
M

E

[〈
v0, ‖X − X′‖−1 (X − X′) I (‖X − X′‖ ≤ M)

〉2
]

≥ 1
M

Var
[〈

v0, ‖X − X′‖−1 (X − X′) I (‖X − X′‖ ≤ M)
〉]

≥ l0
2M > 0.

(B.25)

From (B.25), we get that for every h ∈ H,

0 <
l0

2M ‖h‖2 ≤
〈
h, E

[
s(1) (X − X′)

]
(h)

〉
≤
∥∥∥E [

s(1) (X − X′)
]
(h)

∥∥∥ ‖h‖ ,
which implies

∥∥∥E [
s(1) (X − X′)

]
(h)

∥∥∥ ≥ l0
2M ‖h‖ > 0. (B.26)

Hence, from (B.26), we get that for any h �= 0, E
[
s(1) (X − X′)

]
(h) �= 0.

Proof of Theorem 3.1. Define f : H → H by f(a) = E [s (X − X′ + a)]. From
Lemma B.1, we get that the Frechét derivative of f(·) at 0 is E

[
s(1) (X − X′)

]
.

Define Xk = Xk1 − μk for k = 1, . . . ,K. Then, X1, . . . ,XK are independent
and identically distributed random elements with common distribution P0. Since
s (x − y) = −s (y − x), we get E [s (Xk − Xl)] = −E [s (Xk − Xl)] = 0 for all
k, l. Using this fact and a Taylor expansion of f(·) at 0, we have

E [s (Xk1 − Xl1)]

= E
[
s(1) (X − X′)

]( 1√
n

(δk − δl)
)

+ o

(
1√
n
‖δk − δl‖

)
. (B.27)

Since n−1nk → λk ∈ (0, 1) for all k as n → ∞, from (B.27) we get

E
[√

nkR̄k

]
=

√
nk

K∑
l=1

nl

n
E [s (Xk1 − Xl1)]
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→ E
[
s(1) (X − X′)

] (√
λk

(
δk − δ̄

))
(B.28)

as n → ∞. From (B.28), we have E [Un] → U0 = (u1, . . . ,uK) as n → ∞,
where

uk = E
[
s(1) (X − X′)

] (√
λk

(
δk − δ̄

))
for all k = 1, . . . ,K. From Slutsky’s theorem and Theorem 2.1, we get Un

w−→
G (U0,Σ) as n → ∞. Consequently, from an application of the Karhunen-
Loeve expansion and the mapping theorem [3, Theorem 2.7, p. 21], we get
‖Un‖2 w−→ ‖U0 −

∑∞
i=1〈U0,βi〉‖

2 +
∑∞

i=1
(
〈U0,βi〉 + √

αiZi

)2 as n → ∞.
Let δ = (δ1, . . . , δK)t, D = Diag (λ1, . . . , λK), L = (λ1, . . . , λK)t, IK be

the K ×K identity matrix and 1K be the column vector of length K with all
elements equal to 1. Then, U0 = E

[
s(1) (X − X′)

] (√
D (IK − 1KLt) δ

)
. Note

that (IK − 1KLt) is a K × K idempotent matrix with trace (K − 1) and its
null space contains 1K . So, for any δ such that δk �= δl for some k and l,
(IK − 1KLt) δ �= 0, which implies

U0 = E
[
s(1) (X − X′)

] (√
D
(
IK − 1KLt

)
δ
)
�= 0

since
√

D is non-singular, and E
[
s(1) (X − X′)

]
(h) �= 0 for any h �= 0 from

Lemma B.1.

Proof of Theorem A.1. Proof of (a): Since E[‖X‖2] < ∞ and √
nkn

− 1
2 →

√
λk

as n → ∞ for all k, from Theorem 1.1 in [28] and Slutsky’s Theorem, we get(√
n1

(
X̄1· − E[X]

)
, . . . ,

√
nK

(
X̄K· −E[X]

))
w−→

(√
λ1δ1 + Y1, . . . ,

√
λKδK + YK

)
(B.29)

as n → ∞. Define g (·) , gn (·) : HK → R as

g(x1, . . . ,xK) =
∑
k<l

∥∥∥xk − λ
−1/2
l λ

1/2
k xl

∥∥∥2

and gn(x1, . . . ,xK) =
∑
k<l

∥∥∥xk − n
−1/2
l n

1/2
k xl

∥∥∥2
.

Since g (·) is a continuous function and for every x1, . . . ,xK , |gn(x1, . . . ,xK)−
g(x1, . . . ,xK)| −→ 0 as n → ∞, from (B.29), Theorem 2.7 in [3, p. 21] and an
application of Slutsky’s Theorem, we get

CFFn = gn

(√
n1

(
X̄1· − E[X]

)
, . . . ,

√
nK

(
X̄K· − E[X]

))
w−→ g

(√
λ1δ1 + Y1, . . . ,

√
λKδK + YK

)
=
∑
k<l

∥∥∥√λkδk + Yk − λ
−1/2
l λ

1/2
k

(√
λlδl + Yl

)∥∥∥2
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as n → ∞. Since under H0 described in (2.1) in the main paper, CFFn
w−→∑

k<l

∥∥∥Yk − λ
−1/2
l λ

1/2
k Yl

∥∥∥2
as n → ∞, the proof of part (a) of the theorem

follows.

Proof of (b): From the arguments in [36, p. 151], we get that under the null
hypothesis H0 in (2.1) in the main paper,

ZCn
w−→

∞∑
i=1

γiχ
2
i as n → ∞. (B.30)

Let Zn =
(√

n1
(
X̄1· −E[X]

)
, . . . ,

√
nK

(
X̄K· −E[X]

))t. Since E[‖X‖2] <

∞ and √
nkn

− 1
2 →

√
λk for all k as n → ∞, from Theorem 1.1 in [28] and Slut-

sky’s Theorem, we get that under the shrinking alternatives described in (3.1)
in the main paper, Zn

w−→ Z as n → ∞. Let pn =
(√

n1, . . . ,
√
nK

)t. We have
(IK−(pnpt

n) /n)→(IK − p0pt
0) as n → ∞. Since ZCn =

∑K
k=1 nk

∥∥X̄k· − X̄··
∥∥2

= Zt
n (IK − (pnpt

n) /n)Zn, from Theorem 2.7 in [3, p. 21] and an application
of Slutsky’s theorem, we get that under the shrinking alternatives described
in (3.1),

ZCn
w−→ Zt

(
IK − p0pt

0
)
Z as n → ∞. (B.31)

The proof follows from (B.30) and (B.31).

Proof of (c): Under the condition of the theorem, from [28] we get that there
exist independent Gaussian processes Wk with mean 0 and covariance operator
Ωk, k = 1, . . . ,K, such that

max
1≤k≤K

∥∥∥∥∥n−1/2
k

nk∑
i=1

[Xki − μk] − Wk

∥∥∥∥∥ P−→ 0

as n → ∞. Let φ1, . . . ,φd be the eigenfunctions corresponding to the d largest
eigenvalues of Ω. Define Zk = Wk −

√
λkδk for k = 1, . . . ,K. Define

zk = (〈Zk,φ1〉, . . . , 〈Zk,φK〉)t , z·· =
(

K∑
l=1

λlΨ−1
l

)−1 K∑
l=1

√
λlΨ−1

l zl

and yk = Ψ−1/2
k zk.

Note that zk’s are independent d-variate normal random vectors with dispersion
matrix Ψk and mean vector

√
λkdk. Consequently, yk’s are independent d-

variate normal random vectors with the identity matrix Id as dispersion and
mean vector

√
λkΨ−1/2

k dk. Using arguments similar to those used in the proof
of Theorem 2.1 in [23], one can show that

HRn =
K∑

k=1

(
zk −

√
λkz··

)t

Ψ−1
k

(
zk −

√
λkz··

)
+ oP (1) as n → ∞. (B.32)
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Now,

K∑
k=1

(
zk −

√
λkz··

)t

Ψ−1
k

(
zk −

√
λkz··

)

=
K∑

k=1
yt
kyk −

(
K∑

k=1

√
λkΨ−1/2

k yk

)t( K∑
k=1

λkΨ−1
k

)−1 ( K∑
k=1

√
λkΨ−1/2

k yk

)
=
[
yt

1, . . . ,yt
K

] [
yt

1, . . . ,yt
K

]t
−

⎡⎢⎣y1
...

yK

⎤⎥⎦
t
⎡⎢⎢⎣
√
λ1Ψ−1/2

1
...√

λKΨ−1/2
K

⎤⎥⎥⎦
(

K∑
k=1

λkΨ−1
k

)−1 [√
λ1Ψ−1/2

1 , . . . ,
√

λKΨ−1/2
K

]⎡⎢⎣y1
...

yK

⎤⎥⎦
=
[
yt

1, . . . ,yt
K

]
AKd×Kd

[
yt

1, . . . ,yt
K

]t
. (B.33)

Since AKd×Kd is an idempotent matrix of rank d(K − 1), from (B.33), we
get that the random variable

∑K
k=1

(
zk −

√
λkz··

)t Ψ−1
k

(
zk −

√
λkz··

)
follows a

noncentral chi square distribution with d(K − 1) degrees of freedom and non-
centrality parameter

∥∥M̃d(K−1)×1
∥∥2. The proof is complete from (B.32).

Recall that in section 2, we have estimated the covariance operator Σ in
Theorem 2.1 and Corollary 2.2 by Σ̂n. To generate observations from G

(
0, Σ̂n

)
,

the estimate Σ̂n needs to be a non-negative definite operator. The non-negative
definiteness of Σ̂n is established in the following theorem under the condition
that each of the K groups has at least two distinct observations. Clearly, this
condition is satisfied almost surely when the underlying distributions of the
groups are non-atomic.

Theorem B.2. The operator Σ̂n is non-negative definite whenever each of the
K groups has at least two distinct observations.

Proof. The non-negative definiteness of Σ̂n is established subject to the condi-
tion that each of the K groups, {Xki | i = 1, . . . , nk}, where k = 1, . . . ,K, has
at least two distinct observations. In that case, for every group of observations
{Xki|i = 1, . . . , nk}, we can find a real-valued function Fk(·), such that

1
nk

nk∑
i=1

⎧⎨⎩Fk (Xki) −
1
nk

nk∑
j=1

Fk (Xkj)

⎫⎬⎭
2

= 1. (B.34)

For example, suppose Xki1 and Xki2 be distinct observations in the kth group.
Then the sample variance of the projections on (Xki1 − Xki2) is positive, i.e.,

1
nk

nk∑
i=1

⎧⎨⎩〈Xki1 − Xki2 ,Xki〉 −
1
nk

nk∑
j=1

〈Xki1 − Xki2 ,Xkj〉

⎫⎬⎭
2

> 0,
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and one can define

Fk(x)

=

⎡⎢⎣ 1
nk

nk∑
i=1

⎧⎨⎩〈Xki1 − Xki2 ,Xki〉 −
1
nk

nk∑
j=1

〈Xki1 − Xki2 ,Xkj〉

⎫⎬⎭
2
⎤⎥⎦
− 1

2

×

〈Xki1 − Xki2 ,x〉 .

We use these functions and the fact that every covariance operator is non-
negative definite so establish the non-negative definiteness of Σ̂n.

Define

D(1)
n (i, j, k)

= 1
nk

nk∑
lk=1

[(
1
ni

ni∑
li=1

√
nk

nk − 1s (Xili − Xklk)
)
⊗

(
1
nj

nj∑
lj=1

√
nk

nk − 1s
(
Xjlj − Xklk

))]

−
(

1
nink

ni∑
li=1

nk∑
lk=1

√
nk

nk − 1s (Xili − Xklk)
)
⊗⎛⎝ 1

njnk

nj∑
lj=1

nk∑
lk=1

√
nk

nk − 1s
(
Xjlj − Xklk

)⎞⎠
and

D(2)
n (i, j, k)

=
(

1
nink

ni∑
li=1

nk∑
lk=1

s (Xili − Xklk)√
nk − 1

)
⊗

⎛⎝ 1
njnk

nj∑
lj=1

nk∑
lk=1

s
(
Xjlj − Xklk

)
√
nk − 1

⎞⎠ ,

where i, j, k ∈ {1, . . . ,K}. It can be verified that Cn(i, j, k) = D(1)
n (i, j, k) +

D(2)
n (i, j, k) for all i, j, k ∈ {1, . . . ,K}. Define the two operators Σ̂

(1)
n and Σ̂

(2)
n

as

Σ̂
(1)
n =

(
σ

(1,n)
k1k2

)
K×K

and Σ̂
(2)
n =

(
σ

(2,n)
k1k2

)
K×K

,

where

σ
(1,n)
k1k2

=
√
nk1nk2

n

K∑
l=1

nl

n

[
D(1)

n (k1, k2, l) − D(1)
n (l, k2, k1) − D(1)

n (k1, l, k2)
]

+
K∑

l1=1

K∑
l2=1

nl1nl2

n2 D(1)
n (l1, l2, k1)I(k1 = k2)
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and

σ
(2,n)
k1k2

=
√
nk1nk2

n

K∑
l=1

nl

n

[
D(2)

n (k1, k2, l) − D(2)
n (l, k2, k1) − D(2)

n (k1, l, k2)
]

+
K∑

l1=1

K∑
l2=1

nl1nl2

n2 D(2)
n (l1, l2, k1)I(k1 = k2).

Then, we have Σ̂n = Σ̂
(1)
n + Σ̂

(2)
n . We shall show that both Σ̂

(1)
n and Σ̂

(2)
n are

non-negative definite, which would imply that Σ̂n is also non-negative definite.
For k = 1, . . . ,K, define the K independent random elements X̃k by

X̃k = Xki with probability 1
nk

, i = 1, . . . , nk.

Define

S̃(1)
k =

K∑
l=1

nl

n

[√
1

nk − 1
1
nl

nl∑
il=1

s
(
X̃k − Xlil

)
+
√

1
nl − 1

1
nk

nk∑
ik=1

s
(
Xkik − X̃l

)]

and

S̃(2)
k =

K∑
l=1

nl

n

{
1

nknl

nk∑
ik=1

nl∑
il=1

s (Xkik−Xlil)
}[

Fl

(
X̃l

)√
nl (nl − 1)

+
Fk

(
X̃k

)√
nk (nk − 1)

]
.

Also define

W̃(1)
n =

(√
n1S̃(1)

1 , . . . ,
√
nK S̃(1)

K

)
and W̃(2)

n =
(√

n1S̃(2)
1 , . . . ,

√
nK S̃(2)

K

)
.

Let C̃ov(·, ·) denote the covariance between functions of X̃k with respect to the
distributions of the K random elements X̃k, k = 1, . . . ,K, conditional on all
the observations Xki. Then, using (B.34), it can be verified that

C̃ov
(√

nk1 S̃
(1)
k1

,
√
nk2 S̃

(1)
k2

)
= σ

(1,n)
k1k2

and C̃ov
(√

nk1 S̃
(2)
k1

,
√
nk2 S̃

(2)
k2

)
= σ

(2,n)
k1k2

for all k1, k2. This implies that

C̃ov
(
W̃(1)

n ,W̃(1)
n

)
= Σ̂

(1)
n and C̃ov

(
W̃(2)

n ,W̃(2)
n

)
= Σ̂

(2)
n ,

which in turn imply that Σ̂
(1)
n and Σ̂

(2)
n are covariance operators, and hence non-

negative definite. Therefore, Σ̂n is also non-negative definite whenever each of
the groups has at least two distinct observations.
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Table 6

Estimated sizes of the asymptotic and the permutation implementations of the SS test under
nominal level 5%; n1 = n2 = n3 = 5, 10, 20 and 40.

n1 = n2 = n3 = 5 n1 = n2 = n3 = 10
P0 Asymptotic Permutation Asymptotic Permutation
SBM 0.050 0.055 0.054 0.051
t1,SBM 0.047 0.047 0.052 0.045
t3,SBM 0.058 0.057 0.050 0.050
SBM with impurity 0.046 0.047 0.053 0.047
t1,SBM with impurity 0.046 0.047 0.048 0.047
t3,SBM with impurity 0.058 0.057 0.055 0.050
GBM 0.037 0.041 0.055 0.049
(SBM)2 0.036 0.047 0.053 0.057
(t3,SBM)2 0.034 0.053 0.042 0.047

n1 = n2 = n3 = 20 n1 = n2 = n3 = 40
P0 Asymptotic Permutation Asymptotic Permutation
SBM 0.057 0.043 0.051 0.053
t1,SBM 0.055 0.053 0.057 0.052
t3,SBM 0.046 0.043 0.054 0.046
SBM with impurity 0.055 0.047 0.049 0.044
t1,SBM with impurity 0.055 0.042 0.059 0.047
t3,SBM with impurity 0.054 0.050 0.045 0.041
GBM 0.052 0.044 0.050 0.046
(SBM)2 0.056 0.051 0.052 0.047
(t3,SBM)2 0.047 0.049 0.053 0.049

Appendix C: Comparison of asymptotic and permutation
implementations of the SS test

Here, we present the level and the power comparisons of the asymptotic and
the permutation implementations of the SS test. We present the estimated sizes
and the power curves of the two implementations at nominal level 5% in the
models considered in subsection 3.3. For the size study, we consider 3 groups
and the underlying distribution P0 of the groups are as in subsection 3.3 with
4 cases of the group sizes: n1 = n2 = n3 = 5, 10, 20 and 40. For the power
study, we consider the sizes of the 3 groups as 10, 10 and 10, and the underlying
distribution P0 of the groups are as in subsection 3.3. The shifts of the 3 groups,
μ1, μ2 and μ3, are kept the same as in subsection 3.3. The data generation
process is also the same. The number of random permutations taken is 1000,
and the sizes and the powers of the test procedures are estimated using 1000
independent replications.

The estimated sizes of the two implementations are presented in Table 6.
The estimated power curves are presented in Figure 5. We note that the powers
of the asymptotic and the permutation implementations are virtually identical.
But the size of the asymptotic implementation is for a few cases of the underlying
distribution somewhat lower than the nominal level of 5% when the group sizes
are small, i.e., 5. The estimated sizes of the permutation implementation are
satisfactory for both small and larger sample sizes.
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Fig 5. Estimated power curves of the asymptotic implementation (−) and the permutation
implementation (++) of the SS test under nominal level 5%.

R Codes

The R functions to compute the SS test are available in https://github.com/
joydeepchowdhury/spatialsign_functional_anova.
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