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1. Introduction

Sieve estimation represents a powerful technique to conduct semi- and nonpara-
metric inference on complex, functional parameters. The method is intuitive
and flexible: the estimators are based on the optimization of an empirical cri-
terion over a sequence of approximating parameter spaces (the so-called sieve
spaces), which are less complex than (and dense in) the original space; see e.g.
Grenander [14] for a book-length introduction.

One attractive feature of sieve estimation is that the solution to the optimiza-
tion problem is often obtained using M-estimation theory. Then, the theory of
empirical processes yields the asymptotic properties of the resulting estimators.
For book-length presentation we refer to Van Der Vaart and Wellner [31], van de
Geer [29], and Kosorok [19].

Besides its use in theoretical statistics, sieve estimation is applied also in other
fields. Just to mention some examples, sieve method is common in econometrics
(for a survey see e.g. Chen [3] and Chen et al. [5]), in finance (see e.g. Fengler
et al. [10]), in the analysis of functional magnetic resonance imaging (see e.g.
Park et al. [23] and van Bömmel et al. [28]), in environmetrics (see e.g. Muller
and Phillips [22]), in epidemiology for cohort studies (see e.g. Zhou et al. [33]),
and in biostatistics for survival analysis (see e.g. Cao et al. [2]).

Two important issues arise from the application of sieve estimation in these
research areas: (i) the modeling may require the specification of a non-convex
sieve space; (ii) anomalous records (occasionally, we use the word outliers) have
a non negligible impact on the estimates. With this regard, we remark that,
while it is clear that a suitable and fine tuned (e.g., via judicious selection of the
sieve space and of its dimension) sieve estimation can yield accurate inference
in the absence of anomalous records, there are no theoretical results on how one
can reduce and control the impact of outliers.

We aim at filling these gaps, explaining how to tackle (i) and (ii) by means
of robust sieve M-estimation on non-convex sieve spaces. The developed theory
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sheds light on the resistance of sieve estimators to outliers and on their rate of
convergence.

The paper has the following structure. In Section 2 we motivate our research
by the analysis of fMRI data. We also give an overview of our method. The
theory is developed in Section 3, Section 4 and Section 5, where we characterize
the robustness principle in the context of sieve M-estimation and we derive the
rate of convergence of the proposed estimators. Our result complements the
asymptotics already available for non-robust sieve M-estimators on non-convex
sieve space (see van de Geer [29]) and for general (robust and non-robust) sieve
M-estimators on convex sieve space (see van de Geer [30] and Van Der Vaart and
Wellner [31]). In Section 6, we illustrate how to apply our method, using both
simulated and real fMRI data. In Section 7, we mention some further, possible,
theoretical developments and additional applications. All proofs, computational
aspects and additional numerical results are available in Appendix.

2. Motivation and preview of our results

2.1. Statistical analysis of fMRI data

We consider data of type {yt,j}, with t = 1, ..., T and j = 1, ..., J , for T, J ∈ N.
The data are collected over time (t) and are observed at changing locations (j).
For instance, this kind of data arise in the statistical analysis of fMRI records;
see e.g. Lazar [21] for a book-length introduction. The fMRI is a noninvasive
method of recording brain signals via a scanner, which measures changes, due
to the oxygenation of the hemoglobin, in the magnetic field over several regions
(the so-called voxel, namely volumetric pixels) of the brain. Images are typically
acquired in axial slices, which are perpendicular to the longitudinal axis of the
body. The outcome of this data acquisition procedure is the so-called Blood
Oxygen Level Dependent (henceforth, BOLD) signal.

Two main statistical issues characterize the analysis of fMRI data. First, a
huge number of time series is stored in large datasets of 4Dimensional (3D in the
space and 1D in time) records and becomes the object of the statistical analysis.
Traditional multivariate time series models for such datasets would require as
many parameters as the number of observations, and as a consequence they
are helpless. Thus, novel techniques which deal with the high-dimensionality
of the data are needed. Among them, factor models allow for low-dimensional
representation of the high-dimensional data; see Park et al. [23] and Hallin and
Lippi [15]. Second, the recording of fMRI data is subject to an unavoidable
contamination, which is entailed, e.g., by the scanner failures or by the fact
that the experimental subjects breathe and move suddenly during the data
acquisition process. This contamination may generate anomalous records. One
approach commonly applied to deal with these records is the pre-processing:
the procedure involves identifying and removing the outliers from the recorded
signal. The resulting “cleaned” data are the input for further statistical analysis
(e.g. for dimension reduction techniques). We refer to Lazar [21], Chapter 2,
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for more details. The drawback of pre-processing is that the “cleaned” data
depends on the (subjective) choices made for the identification and the removal
of outliers.

Recently, the literature has focused on the problem arising from the analy-
sis of high-dimensional data in the presence of outliers; see e.g. Fan et al. [8],
Avella-Medina and Ronchetti [1] and related papers. These inferential proce-
dures rely on regularization techniques (a robust loss function is combined with
a penalty) and allow simultaneous estimation and variable selection when the
number of observable covariates is large. When the covariates are latent, di-
mension reduction via factor models (see, among others, Forni et al. [12], Park
et al. [23], Hallin and Lippi [15]) represents a powerful toolkit for the statisti-
cal analysis of high-dimensional fMRI data. However, the sensitivity of factor
models to the presence of anomalous records is only partially explored. Many
(if not most) extant procedures define a robust principal component analysis
(e.g. using robust estimates of the covariance matrix) to guard against outliers;
see, among others, Croux and Haesbroeck [6], Salibián-Barrera et al. [25], Fan
and Kim [7], Fan et al. [9] and reference therein. In this paper, we propose a
different approach to define a robust dimensionality reduction for fMRI data: we
combine the basic principles of infinitesimal robustness of M-estimation (Ham-
pel et al. [16]) with the flexibility of sieve methods on non-convex sieve spaces.
Our construction has the same spirit as the approach in Peña and Yohai [24],
where generalized dynamic principal components are defined for (possibly ro-
bust) dimensionality reduction. However, differently from Peña and Yohai [24],
we derive the asymptotic theory, proving consistency of our estimates.

As a potential benefit of our methodology, we mention that the developed in-
ferential procedure may enable clinicians to detect anomalous physiological pat-
terns with increased confidence, avoiding the risks related to data pre-processing
and obtaining stable (in the sense of outliers resistant) estimates of the latent
factors which determine the brain activity.

2.2. Modeling and estimation

We assume that the BOLD signal {yt,j} depends on observable and non random
covariates, say {ξj} with ξj ∈ [0, 1]d, and on a latent L-dimensional process
Zt = (Zt,1, ...,Zt,L)

�:

yt,j = m0(ξj) +

L∑
l=1

Zt,lml(ξj) + εt,j , t = 1, ..., T and L � J, (2.1)

where m0,m1, ...,mL are unknown real-valued functions of the covariates and
defined on a subset of Rd. We assume that ξ1, ..., ξJ are fixed (they represent
the voxel position) and the errors ε1,1, ..., εT,J are independent with mean zero,
constant variance and they are symmetrically distributed.

The model in (2.1) encodes the temporal dimension of the {yt,j} in the factors
(Zt) and the spatial dimension in the factor loadings (m(ξj)). Since the number
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(L) of factors is much smaller than the number (J) of time series, the model
in (2.1) achieves dimension reduction and it is a special case of the generalized
dynamic factor model considered by Forni et al. [12]. We refer to Park et al. [23]
for a related discussion.

As far as the estimation of the (L+1)-tuple of functionsm=(m0,m1, ...,mL)
�

is concerned, the extant inferential procedure is based on an orthonormal basis
of functions φ1, φ2, ..., φK : [0, 1]d → R, where K is chosen as function of J and
T ; e.g., a popular choice is a tensor B-spline basis with K knots. Then, the
(L+ 1)-tuple m is approximated by Aφ where A is a (L+ 1)×K matrix and
φ = (φ1, ..., φK)�. This characterizes the proposed inferential method as a sieve
method; more details are available in Section 6.

The estimators Ẑt and Â are defined as the solutions to the following prob-
lem:

argmin
A,z1,...,zT

J∑
j=1

T∑
t=1

γ{yt,j − (1, z�
t )Aφ(ξj)}, (2.2)

where zt are L-dimensional vectors and γ is a loss function. The squared loss
function is routinely applied in (2.2): its first order conditions are such that
the resulting Â and Ẑt are the ordinary least squares (OLS) estimates; for
implementation detail we refer to Park et al. [23]. Now, it is well known that in
the setting of independently and identically distributed observations, the OLS
estimates are sensitive to outliers: even a small number of anomalous records can
induce a large bias; see e.g. Hampel et al. [16]. In the next numerical examples
we illustrate that the same issue is observable for the OLS estimates in model
(2.1) for fMRI data. Anticipating some of the results of the next sections, we
illustrate how to cope with outliers by means of sieve M-estimates which are
a robustified version of the OLS sieve estimates. These estimates are obtained
using the Huber loss function; see equations (3.3) and (3.4) below.

2.3. Glancing at the stability of our method

We perform a sensitivity analysis to study the behaviour of the widely-applied
OLS and of our robust sieve M-estimators for the model (2.1). The aim of this
section is twofold. First, we illustrate the instability of the routinely applied sieve
estimators. Second, we glance at the robustness of the robust inferential proce-
dure developed in this paper. Additional and more detailed numerical studies
are available in Section 6.

We set d = 2 and L = 1, so we have the model yt,j = m0(ξj)+Zη,ν
t,j m1(ξj)+

εt,j , where Zη,ν
t,j = (1 − ηt,j)Zt + ηt,jνZ̃t, with Zt = βZt−1 + σut and Z̃t =

4/{1+exp[−0.1(t−T/2)]}. The error terms are Gaussian, namely εt,j ∼ N (0, 1),
ut ∼ N (0, 1), and ut and εt,j are independent, for any t and j. Moreover, we
set β = −0.5 and σ = 1. The {ηt,j} in {Zη,ν

t,j } is a double array of Bernoulli
random variables, with parameter η, which take value 1 if the (tj)-th BOLD
signal is contaminated and zero otherwise. Thus, the signal {yt,j} is randomly

contaminated by anomalous values in the latent factor process. Z̃t is a sigmoid
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over the time. The motivation behind this setting is to mimic a potential change
of the condition of the fMRI experiment. For example the patient changed his
position.

In our simulation design, we set two values of η, namely η = 0 and η = 0.05.
For η = 0 we have a sample which does not contain contaminated values: we
label this kind of sample as “clean sample”. In contrast, for η = 0.05, the
simulated BOLD signal contains some outliers and we label it “contaminated
sample”. The positive scalar ν is equal either to 5 or to 10 and it represents the
intensity of the contamination, while {Z̃t} are the contaminating values. To be
realistic, for the functions m0 and m1, we chose two horizontal images of the
brain functions, with the aim of mimicking fMRI data (see Section 6 for details).
Finally, we set T = 100, J = 64 × 64 and we use 2-dimensional B-splines basis
functions with K = 18× 18.

We conduct inference on the latent process {Zt}, on the function m =
(m0,m1)

� and on the Euclidean parameter (β, σ). We study the sensitivity
to outliers comparing the behaviour of the OLS and of the robust sieve esti-
mates applied on the clean and the contaminated sample. The outcomes are
available in Figures 1 and 2. For the sake of visualization, we focus on one slice
of the brain.

From Figure 1, we see that the instability of OLS estimated factor increases
with ν. In the presence of anomalous records, the OLS estimated factor becomes
more persistent (a spurious trend appears) and less volatile. In contrast, the ro-
bust estimation method yields a stable inference: the estimates of the latent
factor in the clean and in the contaminated sample are virtually indistinguish-
able.

In Figure 2 we compare the OLS and robust estimates of the function m0

(similar results are available for m1), when ν = 5. For the sake of visualisation,
in each plot, we display only the higher (above the third quartile) values of m̂0.
The plots illustrate that already a moderate contamination can heavily bias
the OLS estimates, inducing an artificial activated area (characterized by high
estimates of m0) in the presence of outliers. In contrast, the robust estimate of
m0 (bottom panels) remains stable, providing sensible information on the true
activated areas, even in the presence of contamination.

To elaborate further, for each estimation method we compute the relative
prediction error

PE =

∑T
t=1 ‖m̂0 +

∑L
l=1 Ẑt,lm̂l −m0 −

∑L
l=1 Zt,lml‖2J∑T

t=1 ‖m0 +
∑L

l=1 Zt,lml‖2J
(2.3)

where we write ‖f‖2J =
∑J

j=1 f(ξj)
2/J , Ẑt is the estimated latent factor at

time t and m̂ = (m̂0, m̂1)
�. For the OLS method, the PE increases exponen-

tially fast, taking values 0.101, 0.145, 0.232, for ν = 0, 5, 10, respectively. So, we
argue that OLS is fitting essentially the ouliers in the sense that it adjusts the
estimates to fit the anomalous records. In contrast, for the same values of ν,
our robust procedure implies a PE which remains essentially flat, taking values
0.103, 0.131, 0.165.
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Fig 1. Estimates of the factors Zt under no contamination (continuous line), ν = 5 (dashed
line) and ν = 10 (dotted-dashed).

Once m0, m1 and the latent factors are estimated, it is common practice to
fit a time series model on them; see e.g. Park et al. [23] for an application in the
fMRI context. In this spirit, we investigate if the stability of {Ẑt} implies also
stable maximum likelihood estimates of the parameters of the AR(1) model for

the latent factor. For η = 0, the OLS yields β̂ = −0.513, however, in the presence
of contamination (η = 5%) the estimates display a large bias: β̂ = −0.438 for

ν = 5, and β̂ = −0.187, for ν = 10. Differently, filtering the latent factors via
our robust sieve M-estimator yields stable estimates of both β and σ. Indeed,
for η = 0, the robust procedure yields β̂ = −0.511, and, in the presence of
contamination the estimates are virtually unchanged: β̂ = −0.479, for ν = 5,
and β̂ = −0.477, for ν = 10. We observe a similar pattern for the estimator of
σ.
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Fig 2. Plot of the higher values of the estimates of m0, under no contamination and with
contamination (ν = 10), with a percentage η = 5% of contaminated data.

2.4. The way ahead

The results discussed in Section 2.3 illustrate the benefits that the use of Huber
loss function can bring in the statistical analysis of fMRI data and, more gen-
erally, in the setting of sieve M-estimation. However, the motivating example
raises some questions.

First, the properties of the Huber loss function are well-known when the
parameter space is a finite-dimensional Euclidean space; see Hampel et al. [16].
It is not clear if (and how) the Huber loss function yields estimates which are
resistant to outliers also in the context of sieve estimation, where the parameter
space is infinite dimensional. Second, in model (2.1), the sieve space GS = {g :
{1, ..., T} × [0, 1]d → R : g(t, ξ) = (1, z�

t )Aφ(ξ), zt ∈ R
L,A ∈ R

(L+1)×K}
is non-convex: for any two functions g1, g2 ∈ GS , the function g1 + g2 is not
necessarily in GS . To our knowledge, the extant asymptotic results addressing
the consistency of sieve M-estimators are either for convex spaces (see Shen
and Wong [26] and van de Geer [30]) or for non-convex spaces with non robust
estimating function (see van de Geer [29]). So, for the sake of completeness, we
should prove that our robust sieve M-estimators on GS are consistent. Third, we
do not know if (and in which sense) the use of the Huber loss function should
be preferred to the use of any other loss function. For instance, one can think
of applying the 	1 loss function and obtain a median-type sieve M-estimator,
or a loss function defining a redescending M-estimator; see Hampel et al. [16]
for several example on loss functions yielding robust M-estimators. In the next
sections, we answer all these questions.
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3. Setting

3.1. Notation and basic notions

We consider observations that consist in a response variable yi ∈ R as well as
fixed covariates xi which belong to some vector space X . We moreover assume
that the pair (yi,xi), i = 1, ..., n are drawn from a common distribution such
that:

yi = g0(xi) + εi, i = 1, ..., n (3.1)

where εi are independently symmetrically distributed errors with expectation
0 and finite variance. We assume that the covariates are non random and we
denote by Qn =

∑n
i=1 δxi/n their empirical marginal distribution, where δx

denotes the distribution that assigns mass 1 at the point x and 0 elsewhere.
We also assume that g0 ∈ G, with G = B × H being the Cartesian product of
a finite dimensional space B and an infinite dimensional space H. In the case
where there is no Euclidean parameter, the model is fully non-parametric and
B = ∅. We define a collection of spaces G1,G2, ...,GS which approximate G. The
sequence is called a sieve if it is dense in the original parameter space: for any
g ∈ G there exists a projection of g, say πSg ∈ GS , such that, for a suitable
pseudo-distance d, we have d(g, πSg) → 0, as S → ∞. We refer to Grenander
[14, Ch. 8].

Often sieve spaces, are indexed by a growing Euclidian space ΘS ⊆ R
S .Then

GS = G(ΘS) = {gθ : θ ∈ ΘS} where S � n and it is allowed to increase with n.
For instance, if G is a set of continuous functions, a standard choice is the set of
the linear combinations of orthonormal basis of functions φ = (φ1, φ2, ..., φS)

T

(e.g., tensor B-spline basis) and the sieve space is GS = {gθ = θ�φ : θ ∈ ΘS}.
To estimate g, we consider the class of sieve estimators, such that the sieve

M-estimator θ̂ ∈ ΘS is the:

arg min
θ∈ΘS

n∑
i=1

γ(yi − gθ(xi)), (3.2)

for some loss function γ. We can equivalently set the following:

Definition 1 (Sieve M-estimator). Given a differentiable loss function γ : R →
R, a sieve M-estimator θ̂ is the solution to the system of estimating equations:

n∑
i=1

Ψ(yi,xi,θ) = 0, (3.3)

where the estimating function Ψ : R×X ×ΘS → R
S. Denoting ψ(u) = ∂uγ(u)

the derivative of γ and ∇θgθ(x) the gradient of gθ(x) : ΘS → R with respect to
θ it yields that

Ψ(yi,xi,θ) = ψ(yi − gθ(xi))∇θgθ(xi).
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Many kinds of loss functions can be considered. Typically, the square function
is applied, so ψ(u) = u, which defines the OLS sieve M-estimator. To achieve
resistance to outliers, in Section 4.2, we propose (and justify theoretically) to
use

ψ(c)(u) = max(min(u, c),−c). (3.4)

in (3.3). Although the proposed estimating function is standard in paramet-
ric robust regression estimation (see Hampel et al. [16]), its use for sieve M-
estimation on (possibly non-convex) sieve spaces requires additional theoretical
investigation; see Section 5.

Finally, we notice that we can cast model (2.1) in the shape as in (3.1) where
θ� = (z�

1 , ..., z�
T ,α�), with α being the stack form of A. Note that (2.2) defines

a sieve estimator as in equation (3.2), where we replace the unique sum (in n)
with a double sum (one in the time dimension and the other in the cross section).

3.2. Sketch of the theoretical construction

In the usual sieve estimation, one makes the assumption that the actual distri-
bution of the data (y,x) coincides with a reference distribution P 0, such that
EP 0(y|x) = g0(x), for g0 ∈ G and VarP 0(ε|x) ≤ C. We relax this assumption
and derive a class of sieve estimators which remain stable even when the refer-
ence distribution captures only the behavior of the majority of the data, while
some outliers have a different (unspecified) distribution.

To formalize these ideas, let M denote the space of all probability measures
G for (y,x), such that the marginal for the covariates coincides with Qn. For
any P 0 ∈ M, we define Vη(P

0) as the set of all distributions P such that
dk(P, P

0) < η, where dk is the Kolmogorov distance. We label as P cont the
actual distribution of (y,x) and we assume that it does not coincide with P 0,
rather it belongs to Vη0(P

0), for η0 ∈ [0, 1). Then, for each sieve space GS with S
fixed, we let ĝn (or ĝcontn ) denote the sieve estimation of g0 under P 0 (or P cont).
Within this setting, our aim is the definition of sieve M-estimators which are
stable when P cont ∈ Vη0(P

0). This prevents large changes of the estimators in
the presence of local departures from P 0.

To proceed further, let us call L2(Qn)-norm the norm ‖·‖n defined as ‖g‖2n =∑n
i=1 g(xi)

2/n for any function g : X → R. The triangle inequality yields

‖ĝcontn − g0‖n ≤ ‖ĝcontn − ĝn‖n + ‖ĝn − g0‖n. (3.5)

The term ‖ĝcontn − ĝn‖n in (3.5) expresses the changes in the estimates of g due
to the deviation of P cont from the reference distribution P 0: it is based on a
fixed sieve space, with a fixed S. The term ‖ĝn−g0‖n is related to the behaviour
of the sieve space as S diverges and it is obtained under the reference model P 0.
In Section 4, we show how to bound ‖ĝcontn − ĝn‖n by the theory of robust M-
estimators. Then, in Section 5, we bound ‖ĝn−g0‖n developing the asymptotics
for robust sieve M-estimators on non-convex spaces.
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4. Robust inference

4.1. The sieve reference distribution

For fixed S, we see a sieve M-estimator θ̂ as a M-functional of some distribution
P :

θ̂(P ) :

∫
Ψ(y,x, θ̂(P ))dP = 0. (4.1)

We define the random measure P 0
n = n−1

∑n
i=1 δ(yi,xi) where (yi,xi) ∼ P 0,

as well as the contaminated random measure P cont
n = n−1

∑n
i=1 δ(yi,xi) where

(yi,xi) ∼ P cont. Then by Glivenko-Cantelli lemma, P 0
n ⇒ P 0 and P cont

n ⇒
P cont weakly with dk(P

0
n , P

0) = OP (n
−1/2) and dk(P

cont
n , P cont) = OP (n

−1/2)
(Dvoretzky-Kiefer-Wolfowitz inequality).

The sieve M-estimator defined in (3.3) is an M-functional (see, e.g., Hampel
et al. [16] and van de Geer [29] among others) of the empirical distribution

function Pn: θ̂(Pn) is the solution to
∫
Ψ(y,x,θ)dPn = 0.

We assume that the following Lipschitz condition holds

‖ĝcontn − ĝn‖n ≤ Cg‖θ̂(P cont
n )− θ̂(P 0

n)‖ (4.2)

for some constant Cg ∈ R
+. Then we are going to prove that a bound on the

Euclidean norm ‖θ̂(P cont
n )−θ̂(P 0

n)‖ implies that ‖ĝcontn − ĝn‖n remains bounded.
Thanks to this property, the outliers cannot induce large changes in the sieve
M-estimates of g0.

To control ‖θ̂(P cont
n ) − θ̂(P 0

n)‖ = ‖θ̂(P cont) − θ̂(P 0)‖ + OP (n
−1/2) in (4.2),

we introduce the sieve reference distribution P θ∗
. This represents a contrived

device which we apply, in tandem with the triangle inequality, to write

‖θ̂(P cont)− θ̂(P 0)‖ ≤ ‖θ̂(P cont)− θ̂(P θ∗
)‖+ ‖θ̂(P θ∗

)− θ̂(P 0)‖. (4.3)

The latter expression is the stepping stone of our definition of robustness. In-
deed, we are going to show that both terms on the right side of (4.3) can be ap-
proximated by the influence function of the sieve M-estimator. Thus, a bounded
influence function will characterize the robustness of the sieve estimators over
a neighborhood of the sieve reference distribution.

We now introduce the sieve reference distribution. To begin with, we define
a collection of semi-parametric probability models

PS = {P θ ∈ M : P θ(y|x) = P 0(y − gθ(x) + g0(x)|x),θ ∈ ΘS}.

Any P θ ∈ PS is such that EPθ (y|x) = gθ(x) and, VarPθ (y|x) ≤ C. Also we
remark that P θ is symmetric and continuous, moreover θ̂ is Fisher consistent
over PS : θ̂(P

θ) = θ for P θ ∈ PS and dk(P
θ, P 0) ≤ ‖gθ − g0‖n. Indeed, one can

see that dk(P
θ(y|x), P 0(y|x)) ≤ |gθ(x) − g0(x)|, so dk(P

θ, P 0) ≤
∫
|gθ(x) −

g0(x)|dQn ≤ ‖gθ − g0‖n.
Definition 2 (Sieve reference distribution). We call sieve reference distribution
the distribution P θ∗

belonging to PS where θ∗ = arg infθ∈ΘS
‖gθ − g0‖n.
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We notice that, by Definition 2, P θ∗
minimizes the Kolmogorov distance

among all elements in PS . This yields that dk(P
θ∗
, P 0) ≤ Δn where we define

Δn = ‖gθ∗ − g0‖n and thus P 0 ∈ VΔn(P
θ∗
). Since P cont ∈ Vη0(P

0) we have
P cont ∈ Vη0+Δn(P

θ∗
). Therefore, we have that P cont and P 0 are both in a

neighborhood of P θ∗
. Then we control the behavior of the functional θ̂ by

bounding its changes over the neighborhood. Following Hampel et al. [16], in
the next section we show how to achieve this goal by bounding the influence
function of θ̂ at P θ∗

.

4.2. Influence function for sieve M-estimators

The sieve reference distribution is an helpful device in the characterization of
the robustness of sieve M-estimators. To see this, let D[0, 1] be the space of
empirical distribution functions on [0, 1], that is the space of right continuous
real valued functions on [0, 1] which have left hand limits. We define εi(θ) =
yi − gθ(xi), for θ ∈ ΘS . Then, for any P θ ∈ PS , we have EP θ [εi(θ)] = 0,
VarP θ [εi(θ)] ≤ C < ∞ and {εi(θ)} are i.i.d. random variables (r.v.). Let us
define P θ∗

[ε1(θ
∗)], ..., P θ∗

[εn(θ
∗)] as i.i.d. r.v. with distribution function (d.f.)

uniform (U) on the unit interval [0, 1]. Un is the empirical d.f. corresponding
to P θ∗

[ε1(θ
∗)], ..., P θ∗

[εn(θ
∗)], it follows that Pn = Un ◦ P θ∗

. We define the

induced functional τ : D[0, 1] → R
S as τ (Un) = θ̂(Un ◦ P θ∗

) = θ̂(Pn).
We label by U the class of d.f. on [0, 1]. Then, for any F ∈ U , we have

τ (F ) = θ̂(F ◦ P θ∗
), provided that the latter is well-defined. The statistical

functional θ̂ induces a functional τ on the space of d.f.’s with mass concentrated
on [0, 1]. For this reason, we focus on d.f.’s concentrated on [0,1] and view them
as elements of D[0, 1]. We refer to Fernholz [11] for a book-length presentation.

To study the behavior of the M-functional θ̂ in the presence of local depar-
tures from the reference model P θ∗

, we consider the first-order von Mises expan-
sion of the induced functional τ . Thus, for U ∈ U , we set τ (U) = θ̂(U ◦P θ∗

) =

θ̂(P θ∗
) and using the first order von Mises expansion we have:

τ (U + tH)− τ (U) = τ ′
U (H) +Rem(tH), (4.4)

where H ∈ U and t ∈ R. Let S be a collection of subsets of U . We recall, see
Fernholz [11, page 16], that τ is S-differentiable if, for t → 0, there exists τ ′

U (H)
such that t−1 Rem(tH) → 0 uniformly in H ∈ H, for all H ∈ S. The linear
function τ ′

U is called the S-derivative of τ at U . So, we state the following

Definition 3 (Sieve Influence Function). Let P ∈ M, θ̂ be a sieve M-estimator
as in Definition 1 and let τ its induced functional. We call sieve influence
function (IF s) the S-derivative (provided that there exists) τ ′

U evaluated at
(P − P θ∗

) ◦ (P θ∗
)−1 ∈ U , that is:

IF s(P ;P θ∗
, θ̂) = τ ′

U [(P − P θ∗
) ◦ (P θ∗

)−1]. (4.5)

The expression in (4.5) follows from the usual approach for statistical func-
tionals on D[0, 1], see e.g. Fernholz [11, page 39], keeping in mind that P θ∗

is an
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element of PS , indexed by θ∗ ∈ ΘS , where the Euclidean parameter is related
to the sieve space GS .

Eq. (4.4) implies that the IF s provides an approximation to the changes in
τ due to perturbation of P θ∗

:

τ (U + t[(P − P θ∗
) ◦ (P θ∗

)−1])− τ (U) � τ ′
U [(P − P θ∗

) ◦ (P θ∗
)−1]

� IF s(P ;P θ∗
, θ̂) � θ̂(P )− θ̂(P θ∗

),

(4.6)

where � has to be interpreted up to a remainder as in (4.4) (see Hampel et al.
[16] for a book-length discussion).

Given a sample of size n, a standard calculation (see Fernholz [11], page 40),
yields IF s(Pn, P

θ∗
, θ̂) = n−1

∑n
i=1 IF

s(δ(yi,xi), P
θ∗
, θ̂), which motivates the

following

Definition 4 (Robustness Principle). A sieve M-estimator θ̂ defined as in (3.3)
is robust if it induces a functional on D[0, 1] which has a bounded IF s, namely
if:

sup
y∈R

‖IF s(δ(y,x), P
θ∗
, θ̂)‖ ≤ C∗, (4.7)

for all x ∈ {x1, ...,xn}. Since we have (see, e.g., Hampel et al. [16])

IF s(δ(y,x);P
θ∗
, θ̂) =

{
−
∫

∇θΨ(y,x,θ∗)dP θ∗
}−1

Ψ(y,x,θ∗), (4.8)

a robust sieve M-estimator is obtained using a bounded, in the Euclidean norm,
Ψ(y,x,θ).

Robustness of the sieve estimator θ̂ implies its Hadamard differentiability
(S is thus the set of all compact subsets of U), yielding that for any P ∈
Vη(P

θ∗
) we have that ‖θ̂(P ) − θ̂(P θ∗

)‖ ≤ C∗η + o(η) = O(η), where C∗ > 0.

Since P 0 ∈ VΔn(P
θ∗
) and P cont ∈ Vη0+Δn(P

θ∗
), we get ‖θ̂(P cont) − θ̂(P 0)‖ ≤

‖θ̂(P cont) − θ̂(P θ∗
)‖ + ‖θ̂(P θ∗

) − θ̂(P 0)‖ = O(η0 +Δn), thus for n−1/2 < Δn

we obtain
‖θ̂(P cont

n )− θ̂(P 0
n)‖ ≤ OP (η0 +Δn). (4.9)

In the next section, we explain how this result is useful to derive the rate of
convergence of gθ̂(P cont

n ) to g0, as a function of the radius of contamination η0.

5. Asymptotics

To our knowledge, asymptotic results for sieve M-estimators are available for
convex sieve spaces and for general loss functions. For non-convex spaces, the
well-known asymptotic results are available for the least squares (OLS) sieve
M-estimator (see van de Geer [29], Park et al. [23] and reference therein). We
could not find theoretical results which guarantee the consistency of sieve M-
estimators for generic loss functions (like e.g. the Huber loss function proposed in
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this paper) and for non-convex sieve spaces. Thus, for the sake of completeness,
we prove the consistency of sieve M-estimators for a large class of convex loss
functions, when G and GS are allowed to be non-convex.

We build on van de Geer [29] and, for simplicity of notation, we remove the
θ index. To achieve consistency, the dimension of the sieve space S has to be
an increasing function of n. To emphasize the dependence on n and simplify
the notation, we write Sn = S and denote by Gn (rather than by GSn) the sieve
approximation to G. In what follows, all the expected values E(·) are taken with
respect to P 0. Moreover, we recall that ĝn = gθ̂(P 0

n)
and we use the following

notation,

∫
γgdP

0
n = n−1

n∑
i=1

γ{yi − g(xi)},
∫

γgdP
0 = n−1

n∑
i=1

E[γ{yi − g(xi)}].

(5.1)
Therefore we can write the solutions g0 and ĝn as,

g0 = argmin
g∈G

∫
γgdP

0, ĝn = argmin
g∈Gn

∫
γgdP

0
n . (5.2)

Recall that ‖·‖n denotes the L2(Qn) norm ‖g‖n = {
∑n

i=1 g(xi)
2/n}1/2 for some

g ∈ G. The solution in the sieve space is given by:

g∗n = arg inf
g∈Gn

‖g − g0‖n, (5.3)

noting that g∗n = gθ∗ . Thus, g∗n is the projection of g0 on the sieve space. We
define the sieve error (or approximation error) by

Δn := ‖g∗n − g0‖n (5.4)

and ‖ĝn − g∗n‖n is the estimation error.

Following van de Geer [29], we consider the space Fn and f̂n ∈ Fn:

Fn =

{
g − g∗n

1 + bn‖g − g∗n‖n
: g ∈ Gn

}
, f̂n =

ĝn − g∗n
1 + bn‖ĝn − g∗n‖n

. (5.5)

where {bn} is a strictly positive sequence. This yields ‖f‖n ≤ b−1
n for all f ∈ Fn.

Our theoretical developments rely on the following assumptions.

Condition 1. For some κ1 > 0 and for all |u| ≤ κ1, E[γ(εi+u)−γ(εi)] ≥ κ1u
2.

Condition 2. For some constant C3 and κ2 and for all |u| ≤ C3, E[γ(εi+u)−
γ(εi)] ≤ κ2u

2.

Condition 3. E[γ(εi − u)] has a unique minimum at u = 0.

Condition 4. There exists a constant C2 such that supf∈Fn
|f |∞ ≤ C2 < ∞

where | · |∞ denotes the supremum norm.
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Condition 5. |γ{εi − f(xi)} − γ{εi − f̃(xi)}| ≤ |Vi||f(xi)− f̃(xi)|, ∀f, f̃ ∈ Fn

where Vi are uniformly sub-Gaussian, that is

max
i=1,...,n

C2
1E

(
e|Vi|2/κ3 − 1

)
≤ σ2

0 .

Conditions 1 and 2 ensure that the loss function behaves locally quadratically
around 0 and are always satisfied by the Huber loss function, defined by:

γ(u) =

{
u2, if |u| ≤ c
2c|u| − c2, if |u| > c

Condition 2 is not met by the estimating function of the median (see Ap-
pendix B). Condition 3 is always satisfied by the Huber loss function whereas
for the least absolute deviation loss we have to assume that there exists a unique
median at 0. In Condition 5, if γ is Lipschitz continuous (as it is the case of the
Huber or the absolute value loss function), the Vi’s can be constants and there
is no need for an assumption on the tail weight of the error distribution.

To prove consistency we need two fundamental ingredients: a basic inequality
and an entropy bound; we refer to van de Geer [29] for a book-length explana-
tion. The following lemma states the basic inequality.

Lemma 1 (Basic inequality). Assume Conditions 1-4 hold. Then for some
constant λ > 0 depending on C2, C3 and κ1,

‖f̂n‖2n ≤ −λ−1

∫
(γg∗

n+f̂n
− γg∗

n
)d(P 0

n −P 0)+ 2Δnb
−1
n +

(
κ2λ

−1 − 1
)
Δn, (5.6)

where g0 and ĝn are defined as in (5.2), g∗n in (5.3), f̂n in (5.5) and Δn as
in (5.4).

The first term (the integral) in (5.6) is standard in the theory of M-estimation,
whereas the additional terms 2Δnb

−1
n +

(
κ2λ

−1 − 1
)
Δn represent the bias due

to the sieve. This term cannot be ignored: the sieve space is not assumed to
be convex. The next theorem shows that under suitable conditions on {bn},
consistency can be achieved with the same rate as the OLS sieve M-estimator.

Let Fn(δ) := {f ∈ Fn : ‖f‖n ≤ δ} and H(δ,Fn, Qn) denotes the δ-entropy
of Fn with respect to the L2(Qn)-metric. Then, we state the following

Theorem 1. Suppose that Conditions 1-5 hold. For an appropriate constant c1,

assume that there exists a function Ω(δ) ≥ max[
∫ δ

δ2/c1
H1/2{u,Fn(δ), Qn}du, δ]

such that Ω(δ)/δ2 is a non-decreasing function of δ, where 0 < δ < c1. Then for
a constant c2 depending on λ,C1, C2 and σ0, and for a sequence {δn} such that√
nδ2n ≥ c2Ω(δn), by taking b−1

n = max(2δn, ‖g∗n − g0‖n) we obtain the following
rate of convergence:

‖ĝn − g0‖n = OP (δn +Δn). (5.7)

In the literature on sieve estimation, Δn decreases as Sn → ∞ and δn typ-
ically is a function of both n and Sn. The exact specifications of Δn and δn
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depend on the space G and on its sieve approximation Gn. We refer to van de
Geer [29], Chapter 10 (p. 185), for a book-length discussion.

The theorem applies to sieve M-estimator obtained using the Huber loss
function and it implies that the resulting robust sieve M-estimator has the same
rates of convergence as for the OLS sieve M-estimator (see van de Geer [29]). We
emphasize that, if the Huber loss function is applied, the results in Theorem 1
is valid under weaker assumption: thanks to the boundedness of the estimating
function, there is no need for assuming a sub-Gaussian distribution for the errors
(see Condition 5).

In Section 4 we have seen that using the Huber functions leads to a bound on
‖θ̂(P cont)− θ̂(P 0)‖. Since ‖θ̂(P cont

n )− θ̂(P 0
n) = ‖θ̂(P cont)− θ̂(P 0)‖+OP (n

−1/2)
and n−1/2 ≤ δn for sufficiently large n, we conclude that ‖ĝcontn −g0‖n = Op(η0+
δn +Δn).

6. Application to dimensionality reduction

6.1. Dynamic semiparametric factor model

Let us come back to the semiparametric model (2.1) and let us see how Theo-
rem 1 applies to the model.

The objects of our inference are the latent process (Zt,1, ...,Zt,L) and the
(L+1)-tuple (m0, ...,mL) of unknown real-valued functions. To estimate them,
Park et al. [23] apply a sieve M-estimator, as defined using the least squares loss
function. Formula (4.8) implies that the sieve influence function of the resulting
M-estimator is unbounded, thus the estimator is not robust in the sense of
Definition 4. To achieve robustness of the estimated (space spanned by the)
factors and of the estimates of m, we propose to replace the OLS estimator
by its robust counterpart. The latter is obtained replacing the least squares
loss function with the Huber loss function. We refer to Appendix B for the
derivation of its sieve influence function and for a discussion about the problem
of uniqueness of the estimated latent factors—which are subject to the usual
sign indeterminacy.

The following corollary makes use of Theorem 1 to show consistency of the ro-
bust sieve M-estimator. To state our next result, we need the same assumptions
in Park et al. [23]. We state them:

Assumption A1. The variables ε1,1, . . . , εT,J , and Z1, . . . ,ZT are indepen-
dent. The process {Zt} is allowed to be nonrandom.

Assumption A2. We assume that Eεt,j = 0 for 1 ≤ t ≤ T, 1 ≤ j ≤ J , and for
c > 0 small enough sup1≤t≤T,1≤j≤J E exp

(
cε2t,j

)
< ∞.

Assumption A3. The functions φk may depend on the increasing indices T
and J , but are normed so that

∫
[0,1]d

φ2
k(ξ)dξ = 1 for k = 1, . . . ,K. Furthermore,

it holds that supξ∈[0,1]d ‖φ(ξ)‖ = O
(
K1/2

)
.
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Assumption A4. The vector of functions m can be approximated by φk, i.e.,

δK := sup
ξ∈[0,1]d

inf
A∈R(L+1)×K

‖m(ξ)−Aφ(ξ)‖ → 0

as K → ∞. We denote by A∗ the A that fulfills supξ∈[0,1]d ‖m(ξ)−Aφ(ξ)‖ ≤
2δK .

Assumption A5. There exist constants 0 < CL < CU < ∞ such that all eigen-
values of the matrix T−1

∑T
t=1 ZtZ�

t lie in the interval [CL, CU ] with probability
tending to one.

Assumption A6. The minimization in (2.2) runs over all values of (zt,A)
with

sup
ξ∈[0,1]d

max
1≤t≤T

‖(1, z�
t )Aφ(ξ)‖ ≤ MT

where the constant MT fulfils (with probability tending to one) max1≤t≤T ‖Zt‖ ≤
MT /Cm, for a constant Cm such that supξ∈[0,1]d ‖m(ξ)‖ < Cm.

Assumption A7. It holds that κ2 = (K + T )M2
T log(JTMT )/(JT ) → 0. The

dimension L is fixed.

Corollary 1. Suppose that model (2.1) holds and that (Ẑt, Â) is defined by the
minimization problem (2.2), where the loss function γ(·) satisfies Condition 1-4
above. Under Assumptions (A1)-(A8),

T−1
T∑

t=1

‖(1, ẐT

t )Â− (1,ZT
t )A∗‖2 = Op(κ

2 + δ2K), (6.1)

where

δK ≡ sup
ξ∈[0,1]d

inf
A∈R(L+1)×K

‖m(ξ)−Aφ(ξ)‖.

Some comments. (1) The independence assumption in A1 and in the zero
expected value condition in A2 can be weakened assuming that εj,t is a martin-
gale difference with subgaussian (or subexponential) tails, conditionally to the
past values of Zs, for 1 ≤ s ≤ t. The process {Zt} is allowed to be nonrandom
and A5 imposes a condition on the boundedness of the eigenvalues of the matrix
T−1

∑T
t=1 Z

�
t Zt. Assumption A6 is merely technical: it simplifies the proof of

the Corollary 1; we do not exclude that one may prove the same result weaken-
ing this assumption. Finally A7 is fairly standard in high-dimensional statistics:
it requires that the number of parameters grows slower than the number of ob-
servations. We refer to Park et al. [23] p. 293 for an additional discussion on
these assumptions.

(2) The rate of convergence in Corollary 1 is the same as the one in Theorem
2 of Park et al. [23] for OLS sieve M-estimator. Therefore, we conclude that
the robust sieve M-estimator obtained using the Huber loss function has the
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same rate of convergence as the widely and routinely applied sieve OLS M-
estimator. However, differently from the latter, the former guarantees stability
of the estimates in the presence of outliers.

(3) As pointed out by an anonymous referee, one may want to measure the
accuracy of our consistent sieve estimator via its limiting distribution, e.g. with
the aim of defining confidence intervals. To that purpose, one needs to derive
the limiting distribution (typically an asymptotic normality result is desired) of
the sieve M-estimators in the setting of dynamic semiparametric factor model
(2.1). Unfortunately, to the best of our knowledge, there does not yet exist such
a general theory. Asymptotic normality is available for OLS sieve M-estimators
(see e.g. Huang [17] for pointwise asymptotic normality of the spline series OLS
estimator) and for real-valued (smooth) mappings of sieve M-estimators (see
Chen [3] for a general overview of the problem and Chen et al. [4] for some
results related to the asymptotic normality of plug-in sieve M-estimators).

(4) To prove Corollary 1, {Zt} can be either non random or a stochastic
process. Our method produces robust estimates of the unobserved factors. In
practice, one often conducts additional inference on the estimated values by
time series modeling. This is the approach that we illustrate in the motivating
example of section 2.3, where the univariate latent factor is modeled by an
autoregressive process. More generally, for L-dimensional factors (L > 1) as
those analyzed in the simulation exercise of section 6.2 (Model M2), one may
consider a Vector Autoregressive (VAR) process for the (mean-adjusted) process.
In these cases, one needs to characterize the behaviour of the stochastic process
{Zt}. The main problem with these time series approaches is if the inference
based on the estimated factors coincides (in some statistical sense, see below)
with the one based on the unobserved factors. With this question in mind, as
in Park et al. [23], we introduce the following assumption:

Assumption A8 (Assumption A8). {Zt} is a strictly stationary sequence
with E (Zt) = 0, E (‖Zt‖γ) < ∞ for some γ > 2. It is strongly mixing with∑∞

i=1 α(i)
(γ−2)/γ < ∞. The matrix EZtZT

t has full rank. The process {Zt} is
independent of (ε1,1, . . . , εT,J ).

Under additional assumptions on function m and on the growth of K,J, T ,
the Theorem 3 in Park et al. [23] implies that a VAR process can be successfully
applied to model the estimated L-dimensional factors. Specifically, Theorem 3
implies that the difference between the VAR parameter estimated using Ẑt and
the (unfeasible) VAR parameter estimated using Zt is asymptotically negligible.
We refer to Park et al. paper, p.294 and p.295 for further details.

6.2. Simulation exercises

To gain further insights on the behavior of the classical (namely, OLS) and
robust estimators, we consider an extensive simulation study, with different
sample sizes and different model complexities. Precisely, we generate two classes
of semiparametric models and use the PE (see equation 2.3) to measure the
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overall performance of the different estimation methods. The first model, M1,
is a single factor model (L = 1) with a univariate covariate. The presence of
only one factor in M1 allows us to explore the behavior of the OLS and robust
estimator using various performance measures (see, PE but also dz, dm, dβ , dρ
defined below). The second model, M2, is a potentially multivariate latent factor
(L = 1, 2, 3) with bivariate covariates. For M2, we study the PE using various
sample sizes and number of factors.

For each model, we use N = 500 Monte Carlo runs. For computations we
make use of B-splines basis functions. In each run, we consider a clean sample
(as generated using the underlying factor model under the reference assump-
tions, see details below) and a contaminated sample, where outliers are obtained
replacing randomly a percentage η of the original datum (yt,j) by ycont = σ2

outt̃,
with t̃ being the realization of a r.v having a student t-distribution with five
degrees-of-freedom. For the robust estimator, we consider the Huber loss func-
tion with tuning constant c. Here below, we itemize the main aspects of the
underlying data generating process for each model.

Model M1. The clean samples are generated by:

yt,j = m0(ξj) + Ztm1(ξj) + εt,j (6.2)

with an ARMA structure on the latent: Zt = βZt−1 − ρut−1 + ut with ut ∼
N (0, 1). The error εt,j ∼ N (0, 1) is independent of ut, while ξ defines a grid
over [0, 1] and it is such that ξj = j/(J +1). We set m0(ξ) = cos(2πξ), m1(ξ) =
sin(2πξ)/[2− sin(2πξ)], β = 0.9 and ρ = 0.3.

In Table 1, we show the outcomes of the simulation study, presenting the
PE as well as additional stability measures related to the estimates of the
model parameters. Specifically, we set dz =

∑T
t=1(Ẑt − Zt)

2/
∑T

t=1 Z2
t ; dm =

‖m̂−m‖2J/‖m‖2J ; dβ = |β̂ − β|2/|β|2; dρ = |ρ̂− ρ|2/|ρ|2. In line with the the-
oretical developments, we see that the classical and robust estimator behaves
similarly when there is no contamination. However, under contamination, the
performance of the OLS estimator deteriorates, while the digits of our robust
estimators remain essentially stable. For example, PE is equal to 0.21 for both
estimators under no contamination. As the contamination rate increases, PE
is driven to 0.65 for the OLS estimator, while it remains bounded by 0.25 for
the robust estimator. Similar results hold for the other measures. These digits
confirm, in a larger Monte Carlo exercise, the results obtained in the sensitivity
analysis of Section 2.3.

To illustrate graphically the stability of the robust estimator, in Figure 3, we
display the functional boxplots (see Sun and Genton [27]) of the estimates of the
function m1. The plots show that, in the absence of contamination, the OLS and
the robust method yield similar estimates, having similar variability and similar
median curve (the curve with maximal functional depth, representing a typical
estimate). However, in the presence of contamination, the OLS estimates suffer
from a large variability, as can be remarked looking at the distance between
the first and third functional quartile (the spread is larger than in the clean
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Table 1. Summary of the performance of the estimators computed for model M1 under different scenarios; the median of each measure over 500
simulations is given, with its median absolute deviation in parentheses; we chose T = 100, J = 120, K = 18, σout = 8 and c = 3.

OLS Robust
η 0% 1% 2.5% 5% 7.5% 0% 1% 2.5% 5% 7.5%

PE 0.21 0.27 0.37 0.51 0.65 0.21 0.21 0.22 0.23 0.25
(0.02) (0.12) (0.21) (0.28) (0.33) (0.03) (0.05) (0.06) (0.09) (0.13)

dz 0.41 0.46 0.54 0.65 0.76 0.41 0.41 0.42 0.43 0.45
(0.15) (0.16) (0.21) (0.24) (0.27) (0.15) (0.15) (0.16) (0.17) (0.18)

dm 0.34 0.36 0.4 0.48 0.56 0.34 0.34 0.34 0.34 0.35
(0.21) (0.21) (0.23) (0.26) (0.29) (0.21) (0.21) (0.21) (0.21) (0.22)

dβ 0.07 0.08 0.1 0.15 0.21 0.08 0.07 0.08 0.08 0.08
(0.08) (0.11) (0.20) (0.32) (0.39) (0.08) (0.08) (0.12) (0.13) (0.13)

dρ 0.34 0.39 0.5 0.71 0.92 0.34 0.34 0.35 0.36 0.37
(0.29) (0.32) (0.48) (0.66) (0.73) (0.29) (0.30) (0.33) (0.35) (0.36)
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Fig 3. Functional boxplots of the estimates of m1. Results are obtained from 500 replications
of model M1.

sample and the quartile curves become wiggle). Moreover, looking at the median
functional curve, with and without contamination, we remark that the OLS
estimation method entails large changes in the typical estimate of m1— e.g. look
at the behaviour of the median functional curve of the OLS estimator, in the
interval ξ ∈ [0.6, 0.8], with and without contamination. In contrast, the estimates
based on our robust method remains essentially unchanged in the presence of
contamination. Figure 4 confirms this pattern, displaying the stability of the
robust estimates via the boxplot of the PE. Finally, Figure 5 shows the boxplots
for β̂, where the parameter is estimated using the maximum likelihood method
on {Ẑt} and the estimates of latent factors are obtained using either the OLS
or our robust method. In agreement with (and in complement to) the results in
Section 2.3, the plots illustrate that the robust sieve M-estimation guarantees
the numerical stability of the β̂ in the presence of contamination.

Model M2. The clean samples are generated by a L-dimensional factor models
with VAR(1) structure (with L = 1, 2, 3):

yt,j = m0(ξj) +

L∑
l=1

Zt,lml(ξj) + εt,j (6.3)

where εt,j ∼ N(0, 10), ξj are bivariate uniforms over [0, 1]2. Zt = βLZt−1+ut is
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Fig 4. Boxplots of prediction errors PE for η = 0, 1, 2.5, 5 and 7.5% contamination. Results
are obtained from 500 replications of model M1.

Fig 5. Boxplots of dβ = |β̂ − β|2/|β|2 for η = 0, 1, 2.5, 5 and 7.5% contamination. Results
are obtained from 500 replications of model M1.

a L-dimensional Vector Autoregressive (VAR) process with ut generated from
a N (0, IL). We consider the following 2-dimensional functions: m0(ξ1, ξ2) =
cos(2πξ2), m1(ξ1, ξ2) = 1.34 sin(2πξ1), m2(ξ1, ξ2) = 8.32((ξ1 − 0.5)2 + (ξ2 −
0.5)2 − 1.36), m3(ξ1, ξ2) = 8.17((ξ1 − 0.5)3 − (ξ2 − 0.5)). βL are L×L matrices.
We choose β1 = 0.95, β2 is the 2 × 2-matrix with rows from the top are equal
to (0.95,−0.2), (0, 0.8), and β3 is the 3 × 3-matrix with rows (0.95,−0.2, 0),
(0, 0.8, 0.1) and (0.1, 0, 0.6). We generate data for L = 1, 2, 3 for three different
settings with different T, J,K and we report the prediction error PE in Table 2.
We flag that, while setting 1 is low dimensional (T < J), setting 2 is a high-
dimensional setting, with a large number of time series J > T in. In Setting
3 we push even further the time series dimension T and total number of time
series J , obtaining a big data framework with T × J = 1, 250, 000 observations.

For all settings, we see that the OLS and the robust estimators perform simi-
larly without contamination. However, we remark that our robust approach out-
performs the OLS estimator in the presence of contamination. For instance, in
setting 1, the estimators yield comparable PE (0.814 and 0.853 for the OLS and
the robust estimator, respectively), when η = 0. Nevertheless, when η = 7.5%,
the PE of the OLS estimator increases to 1.51, while the robust estimator yields
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Table 2. Summary of the performance of the estimators under model M2 under different scenarios; the median of the relative prediction error PE
for each measure over 500 simulations is given, with its median absolute deviation in parentheses; we chose σout = 40 and c = 10.

OLS Robust
η 0% 1% 2.5% 5% 7.5% 0% 1% 2.5% 5% 7.5%

Setting 1 T = 200, J = 100, K = 5× 5
L=1 0.814 0.958 1.114 1.324 1.51 0.853 0.865 0.89 0.931 0.984

(0.132) (0.164) (0.206) (0.242) (0.285) (0.138) (0.144) (0.156) (0.169) (0.195)
L=2 0.072 0.087 0.107 0.137 0.166 0.075 0.076 0.079 0.083 0.088

(0.012) (0.015) (0.018) (0.020) (0.023) (0.013) (0.014) (0.014) (0.016) (0.017)
L=3 0.067 0.081 0.101 0.133 0.163 0.071 0.072 0.074 0.078 0.083

(0.012) (0.015) (0.018) (0.020) (0.023) (0.012) (0.012) (0.014) (0.015) (0.017)

Setting 2 T = 200, J = 625, K = 8× 8
L=1 0.345 0.388 0.451 0.548 0.611 0.361 0.362 0.363 0.376 0.385

(0.085) (0.098) (0.117) (0.152) (0.159) (0.088) (0.088) (0.089) (0.089) (0.093)
L=2 0.031 0.038 0.05 0.074 0.097 0.033 0.033 0.034 0.036 0.04

(0.008) (0.009) (0.008) (0.010) (0.010) (0.008) (0.008) (0.008) (0.009) (0.009)
L=3 0.028 0.034 0.046 0.069 0.094 0.03 0.03 0.031 0.033 0.037

(0.007) (0.008) (0.008) (0.008) (0.009) (0.007) (0.007) (0.008) (0.008) (0.008)

Setting 3 T = 500, J = 2500, K = 15× 15
L=1 0.183 0.212 0.243 0.285 0.328 0.191 0.196 0.197 0.199 0.204

(0.024) (0.026) (0.032) (0.035) (0.040) (0.026) (0.025) (0.026) (0.024) (0.026)
L=2 0.016 0.022 0.034 0.057 0.081 0.017 0.018 0.019 0.021 0.025

(0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002)
L=3 0.015 0.020 0.032 0.056 0.080 0.015 0.016 0.017 0.020 0.024

(0.002) (0.002) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002)
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a PE which remains fairly stable, being about 0.984. Similar considerations hold
for the other settings, even the high-dimensional ones.

6.3. Real data exercise

We illustrate the applicability of our method via an exercise on dimensional-
ity reduction for a real dataset of fMRI records. We consider an open source
data set coming from a study on either adult or young patients, in which sub-
jects are exposed to a suddenly appearing peripheral target. They are asked
to inhibit the strong urge to saccade toward the target and instead to look
toward the mirror location. The data are collected at the Brain Imaging Re-
search Center, at the University of Pittsburgh and is publicly available at
https://www.openfmri.org/; see in Geier et al. [13].

It is well known that outliers are more likely to affect data collected on
young subjects. An immaturity of the brain and a weaker ability to concentrate
typically produce some issues like head motions and mind wandering, causing
outliers and anomalous records. As a result, we think that our robust procedure
can be helpful for the analysis of the fMRI data of young patients. Thus, we
select a 12 year-old male (the seventh subject in the Geier et al. [13] dataset,
which contains 38 patients).

We apply model (2.1), where, as in the Monte Carlo experiments, we take
the voxel index (i1, i2, i3) as covariate and we set L = 2. We focus on 15 slices
of the brain, so J = 64 × 64 × 15 and T = 180. To implement our robust
sieve M-estimator, we need to select the tuning constant c. To this end, we
propose to adapt the data-driven approach of La Vecchia et al. [20] (developed
in the univariate time series setting) to our high-dimensional context. Essen-
tially, the method relies on the empirical stability of the estimates: it ensures
that the selected tuning constant is such that the resulting estimating function
coincides with the classical estimating function, in absence of contamination,
whereas, in the presence of contamination, it yields the bounded estimating
function closest to the non-robust (unbounded) one. The algorithm and the
additional numerical aspects related to its application to the current dataset
are available in the supplementary materials. Using the selected c, we com-
pute the robust estimates. For the sake of comparison, we also compute the
OLS estimates of the latent factors and of the functions m0,m1 and m2. Our
code for the estimation of robust semiparametric factor models is available at
https://github.com/JulienSB/RobDSFM.

In Figure 6, we display the robust estimates of the functions and the absolute
difference between the robust and OLS estimates. Specifically, for l = 0, 1, 2,
first we compute Δ̂ml

= |m̂OLS
l (ξ) − m̂ROB

l (ξ)|, for ξ ∈ [0, 1]3, then we plot

the brain areas where Δ̂ml
≥ tml

, with tml
being the third quartile of Δ̂ml

.
The right panels illustrate that the OLS estimates seem to emphasize the brain
activity in some regions. Looking at m0, the deviations of the OLS estimates
from the robust ones are close to the borders of the head. It is well-known (see
[32]) that these deviations are typically due to head motion. For m1 and m2,

https://www.openfmri.org/
https://github.com/JulienSB/RobDSFM
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Fig 6. Left panels: Robust estimates of m0,m1 and m2. Right panels: Δ̂ml ≥ tml for
l = 1, 2, 3.

the deviations are due to movements of the eyes and/or to some body move-
ments. Similar considerations hold for the estimates of the latent factors: see
Figure 7, where we plot the robust estimates of the factors and their difference
with OLS estimates. To investigate the robustness and the stability of our es-
timates, we perform a sensitivity analysis. Mimicking the logic applied in the
numerical examples of Section 6.2, we add outliers to the data by moving the
most influential points (as detected by the Huber weights, unreported). Then,
we compare our robust estimates to the estimates obtained using the non-robust
OLS method. To perform the sensitivity analysis, we randomly replace a per-
centage η of the original data {yt,j} by a random variable having a t-student
distribution, with 5 degrees-of-freedom. For the sake of comparison, we compute
the predicted value ŷηt,j for different values of η ∈ {0%, 2.5%, 5%, 7.5%, 10%}
and, for each method, we calculate the Relative Mean Square Error, defined as
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Fig 7. Robust estimates of the L = 2 factors (upper panels) and histograms of the difference
between least squares and robust estimates (lower panels).

RMSE(η) =
∑T

t=1

∑J
j=1(ŷ

η
t,j − ŷ0t,j)

2/
∑T

t=1

∑J
j=1(ŷ

0
t,j)

2, where ŷηt,j denotes the
predicted value of yt,j using the η-contaminated data. In line with the theo-
retical developments, the robust estimates yield a stable and bounded RMSE,
whilst the OLS estimator entails a RMSE which diverges (exponentially) fast
as η grows—the plot is available in the supplementary material.

7. Conclusion and outlook

We develop a robust sieve M-estimation procedure, when the sieve space is non-
convex, and we illustrate the use of our method for the statistical analysis of large
fMRI dataset. Further developments can be considered in terms of applications
and theory. We mention some possible research directions.

On the applications side, we foresee that our inference procedure can be
applied also in the context of longitudinal studies (consisting of fMRI data about
many patients), as in van Bömmel et al. [28]. Other potential applications are
in finance, for the modelling of the implied volatility (see Fengler et al. [10] and
Park et al. [23]), and in economics, for forecasting inflation (see Chen et al.
[5]). On the computational side, in this paper, we propose the use of a unique
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bounding constant (c) in the Huber function ψc. However, in many applications
(like e.g in the analysis of fMRI data of several patients) one might consider
different values of c, for different patients and/or for different areas of the brain.
To this end, new algorithms need to be developed for an efficient numerical
implementation of these robust inference procedures.

On the theoretical side, an open problem is related to the derivation of a
limiting distribution of the proposed robust sieve M-estimators in the context
of model (2.1). Another aspect that deserves further investigation is related to
the possibility of modeling the spatial dependence enconded in the factor load-
ings. Indeed, similarly to the approach adopted for the latent factors, one may
conjecture that under suitable assumptions (like Assumption A8), the spatial
dependence can be modeled by operating on the estimated factor loadings. How-
ever, this additional modeling step needs a careful theoretical justification that,
at present, we do not have.

Appendix A: Proofs of Theorems

Proof of Lemma 1. Because γ is convex, for α ∈ [0, 1], it holds that:

γ{yi − g(xi)} − γ{yi − g∗n(xi)} ≥ 1

α
(γ[(1− α){yi − g∗n(xi)}+ α{yi − g(xi)}]

−γ{yi − g∗n(xi)}) .

So by taking α = (1 + bn‖g − g∗n‖n)−1 we obtain

γg(xi)− γg∗
n
(xi) ≥ (1 + bn‖g − g∗n‖n)

(
γg∗

n+f (xi)− γg∗
n
(xi)

)
,

where f =
g−g∗

n

(1+bn‖g−g∗
n‖n)

∈ Fn and thus∫
(γg∗

n+f̂n
− γg∗

n
)dP 0

n ≤
∫
(γĝn − γg∗

n
)dP 0

n ≤ 0.

For n big enough, there is a constant C3, such that ‖g∗n−g0‖∞ < C3. Assuming
κ1/(C2 + C3) ≤ 1, it yields that for f ∈ Fn:∫

(γg∗
n+f − γg∗

n
)dP 0

= n−1
n∑

i=1

E (γ [εi − {f(xi) + g∗n(xi)− g0(xi)}]

−γ[εi − {g∗n(xi)− g0(xi)}])

= n−1
n∑

i=1

E (γ [εi − {f(xi) + g∗n(xi)− g0(xi)}]− γ(εi))

−E (γ[εi − {g∗n(xi)− g0(xi)}]− γ(εi))

≥ n−1
n∑

i=1

E
(
γ
[
εi − (C2 + C3)

−1κ1{f(xi) + g∗n(xi)− g0(xi)}
])
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−κ2{g∗n(xi)− g0(xi)}2

≥ n−1
n∑

i=1

(C2 + C3)
−2κ3

1{f(xi) + g∗n(xi)− g0(xi)}2 − κ2{g∗n(xi)− g0(xi)}2,

where the third inequality follows from Condition 2 and Condition 3 and the
last inequality from Condition 1, 4. We denote Δn the approximation error
‖g∗n−g0‖n.Then by the reverse triangle inequality and setting λ = (C2+C3)

−2κ3
1:∫

(γg∗
n+f − γg∗

n
)dP 0 ≥ λ‖f + (g∗n − g0)‖2n − κ2Δ

2
n

≥ λ(‖f‖n −Δn)
2 − κ2‖g∗n − g0‖2n ≥ λ(‖f‖2n +Δ2

n − 2‖f‖nΔn)− κ2Δ
2
n

≥ λ(‖f‖2n +Δ2
n−2Δnb

−1
n )−κ2Δ

2
n=λ

{
‖f‖2n +

(
1− λ−1κ2

)
Δ2

n − 2Δnb
−1
n

}
since ‖f‖n ≤ b−1

n . We obtain finally:

λ
{
‖f‖2n +

(
1− λ−1κ2

)
Δ2

n − 2Δnb
−1
n

}
≤

∫
(γg∗

n+f − γg∗
n
)dP 0

The lemma follows by substracting
∫
(γĝn − γg∗

n
)dP 0

n ≤ 0 on the left hand side
of the the previous inequality.

Proof of Theorem 1. First, note that an inequality for f̂n will be binding for
‖ĝn−g∗n‖n only if b−1

n is big enough. Indeed, ‖f̂n‖ ≤ δ implies only ‖ĝn−g∗n‖n ≤
δ+δbn‖ĝn−g∗n‖n. Thus we should require that b−1

n ≥ 2δ to obtain ‖ĝn−g∗n‖n ≤
δ+2−1‖ĝn−g∗n‖n which implies ‖ĝn−g∗n‖n ≤ 2δ. Let us call c = min

(
κ2

λ − 1, 0
)

and in a slight abuse of notation, we write ‖V ‖2n = 1
n

∑n
i=1 V

2
i . Making use of

Lemma 1, on the set where

c‖g∗n − g0‖n + 2‖g∗n − g0‖nb−1
n ≤ −λ−1

∫
(γg∗

n+f̂n
− γg∗

n
)d(P 0

n − P 0),

we use Lemma 8.5 in van de Geer [29] to obtain:

P
(
‖ĝn − g∗n‖n > 2δn ∩ ‖V ‖2n ≤ ς2

)
≤ P

(
‖f̂n‖2n > δ2n ∩ ‖V ‖2n ≤ ς2

)

≤ P

{
sup
f∈Fn

−2λ−1

∫
(γg∗

n+f − γg∗
n
)d(P 0

n − P 0) ≥ δ2n ∩ ‖Vi‖2n ≤ ς2

}

≤ c2 exp

(
− nδ4n
c224δ

2
n

)
≤ c3 exp

(
−nδ2n

c23

)
,

where c3 is a constant depending on c2. Then we obtain:

P (‖ĝn − g∗n‖n > 2δn) ≤ P
(
‖ĝn − g∗n‖n > 2δn ∩ ‖V ‖2n ≤ ς2

)
+ P

(
‖V ‖2n > ς

)
≤ c3 exp

(
−nδ2n

c23

)
+ P

(
‖V ‖2n > ς

)
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Since the Vi are sub-Gaussian, P (‖V ‖n > ς) is small for ς > ς0. Indeed Berstein’s
inequality with ς = 2ς0 implies:

P
(
‖V ‖2n > 2ς20

)
≤ exp

(
− nς20
12K1

)
.

On the set where

c‖g∗n − g0‖n + 2‖g∗n − g0‖nb−1
n ≥ −λ−1

∫
(γg∗

n+f̂n
− γg∗

n
)d(P 0

n − P 0),

we have
‖f̂n‖n ≤ 4‖g∗n − g0‖nb−1

n + 2c‖g∗n − g0‖2n.

If ‖g∗n − g0‖n ≤ b−1
n , then ‖f̂n‖2n ≤ (4 + 2c)b−2

n . This inequality will be always
binding for ‖ĝn − g∗n‖n for n sufficiently large, since b−1

n is strictly decreasing.

On the other side ‖g∗n − g0‖n > b−1
n implies that ‖f̂n‖2n ≤ (4+ 2c)‖g∗n − g0‖2n. In

order to get a binding inequality for ‖ĝn − g∗n‖n, we should impose b−1
n ≥ 2(4 +

2c)‖g∗n − g0‖2n, which is satisfied for n sufficiently large if ‖g∗n − g0‖n = O(b−1
n ).

We choose b−1
n = max {2δn, ‖g∗n − g0‖n} to satisfy the former conditions so that:

‖ĝn − g∗n‖n = OP

(
δn + ‖g∗n − g0‖n + b−1

n

)
= OP (δn + ‖g∗n − g0‖n) .

Since ‖ĝn − g0‖n ≤ 2‖ĝn − g∗n‖n + 2‖g∗n − g0‖n, the theorem follows.

Proof of Corollary 1. The proof follows along the same lines as in the proof of
Theorem 2 in Park et al. [23] and by applying Theorem 1.

Appendix B: Additional technical material

B.1. Checking Conditions 1 and 2 for the Huber loss function

We prove that Conditions 1 and 2 are satisfied for the Huber loss function
defined in (3.4).

Proof. Let’s condsider κ1,K3 ≤ b

E{γ(εi + u)− γ(εi)} =

∫ ∞

−∞
γ(εi + u)− γ(εi)dP

=

∫ ∞

b

2b(εi + u)−b2−(2bεi−b2)dP+

∫ −b

−∞
−2b(εi + u)− b2 + (2bεi + b2)dP

+

∫ b

−b

ε2i + u2 + 2uεi − ε2i dP

=

∫ ∞

b

2bu dP +

∫ −b

−∞
−2bu dP +

∫ b

−b

u2 + 2uεidP

= 2bu{P (εi ≥ b)− P (εi ≤ −b)}+ u2P (−b ≤ εi ≤ b) +

∫ b

−b

2uεidP
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= u2αP (−b ≤ εi ≤ b) + 2bu{P (εi ≥ b)− P (εi ≤ −b)}+

+ u2(1− α)P (−b ≤ εi ≤ b) +

∫ b

−b

2uεidP.

For Condition 1 we know that
∫∞
−∞ γ(εi + u) − γ(εi)dP > 0. As we can choose

α as small as we want, there exists α > 0 such that 2bu{P (εi ≥ b) − P (εi ≤
−b)} + u2(1 − α)P (−b ≤ εi ≤ b) +

∫ b

−b
2uεidP > 0, and then we choose κ1 =

αP (−b ≤ W ≤ b) to get E{γ(εi + u) − γ(εi)} ≥ κ1u
2. For Condition 2, we

can choose α possibly greater than 1, and κ2 = αP (−b ≤ εi ≤ b) to obtain
E[γ(εi + u)− γ(εi)] ≤ κ2u

2.

B.2. Identification, estimation and implementation of the
semiparametric factor model

B.2.1. Identification and estimation

For a matrix A ∈ R
n×m, we write for brevity Ai,. = (Ai,1, ...,Ai,m)�, A.,j =

(A1,j , ...,An,j)
� and we define a vector operator by vec(A) = (A�

1,., ...,A
�
n,.) ∈

R
nm. We can rewrite equation (3.1) in a more compact form:

yt,j = (1,Z�
t,.)m(ξt,j) + εt,j (B.1)

for Z ∈ R
T×L. For identification, we follow Fengler et al. [10] and we assume

that the functions ml are orthonormal in L2([0, 1]d) that is
∫
m2

l (ξ)dξ = 1 for
any l = 0, 1, ..., L and

∫
ml(ξ)ml′(ξ)dξ = 0 for l �= l′. We also assume that

the factors are ordered according to their variances as in principal component
analysis (PCA): Z�

.,1Z .,1 > Z�
.,2Z .,2 > ... > Z�

.,LZ .L. The estimator θ̂ =

(vec(Ẑ), vec(Â))� satisfies then:

Γ(α, z) =

J∑
j=1

T∑
t=1

γ{yt,j − (1, z�
t,.)Aφ(ξt,j)} = min

θ∈ΘS

!, (B.2)

for some loss function γ. From now on, we restrict the parameter space ΘS to
be the set of all θ = (vec(z), vec(A))� such that z�

.,1z.,1 > ... > z�
.,Lz.,L and

such that A is an orthonormal matrix of size (L+ 1)×K.
To emphasize the dependence on A and z, we sometimes write θ = θ(z,A).

In fact, the solution to (3.2) is not unique and as in PCA one can show that
it is determined only up to a multiplicative constant. Specifically, if θ(Ẑ, Â) is
a solution, (ẐB,B′Â) is also a solution, for any diagonal matrix B ∈ R

L×L

with diagonal elements 1 or −1 (i.e. B ∈ {B = diag(bl), b
2
l = 1, l = 1, ..., L})

and with

B′ =

(
1 0
0 B−1

)
. (B.3)

Then, we proceed as in functional PCA (see for e.g. [18]), we introduce the

unobservable matrix of random signs B̂ = argminB∈B
∑T

t=1 ‖Ẑt,.B−Zt,.‖ and

θ̂ will denote in fact θ(ẐB̂, B̂′Â), which is then unique.
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Denoting α = vec(A)T , it can be shown by some algebraic computations
that

IF s(Pn;P
θ, ϑ) = −EPθ

(
∇zzΓ(α, z) ∇αΓ(α, z)�

∇zαΓ(α, z) ∇ααΓ(α, z)

)−1 (∇zΓ(α, z)
∇αΓ(α, z),

)
(B.4)

where, denoting by φt,j the K × 1 vector φ(ξt,j) and by A the L ×K matrix
obtained by deleting the first row of A,

∇αΓ(α, z) =
J∑

j=1

T∑
t=1

ψ(εt,j)⊗ (1, z�
t,.)

�,

∇ααΓ(α, z) =

J∑
j=1

T∑
t=1

ψ̇(εt,j)φ(ξt,j)φ
�
t,j ⊗ (1, z�

t,.)
�(1, z�

t,.),

∇zΓ(α, z) = {−
∑J

j=1 ψ(ε1,j)Aφ1,j , ...,−
∑J

j=1 ψ(εT,j)AφT,j}. Let ĨL be a (L+

1)×Lmatrix such that Ĩ�
L = (0, IL) and IL denote the identity matrix of dimen-

sion L. Then we obtain: ∇zαΓ(α, z) = [
∑J

j=1 ψ̇(ε1,j)(φ1,j ⊗ (1, z�
1,.)

�)φ�
1,jA

�−
ψ(ε1,j)φ1,j ⊗ ĨL, ...,

∑J
j=1 ψ̇(εT,j)(φT,j ⊗ (1, z�

T,.)
�)φ�

T,jA
� −ψ(εT,j)φT,j ⊗ ĨL].

Finally, ∇zzΓ(α, z) is a TL × TL matrix that consists of T diagonal blocks∑J
j=1 ψ(εt,j)Aφt,jφ

�
t,jA

� for t = 1, ..., T .

B.2.2. Implementation of the robust estimation procedure

For the implementation of our estimation procedure, one can follow the approach
in Park et al. [23]. We implement the method mentioned on page 286 of Park
et al. [23] paper, which builds on the algorithm proposed by Fengler et al. [10].

Specifically, to find a solution θ̂ to (B.2), we adopt an iterative algorithm:

(i) choose an initial value for z(0),
(ii) minimize Γ(α, z(0)) with respect to α, and call the minimizer α(1),
(iii) minimize Γ(α(1), z) with respect to z.

Iterate (ii) and (iii) until convergence. To solve each of these steps, one can use
a Newton-type algorithm and use the partial derivatives of Γ computed above
in (B.4). A relevant implementation aspect of the aforementioned algorithm is
related to the selection of the tuning constant c. We provide a criterion (and an
algorithm) to deal with that.

Tuning constant selection. Let θ̂ be the estimator corresponding to the non-
robust loss function γ and θ̂c the estimator corresponding to γc the robustified
loss function with tuning constant c. Choose c1 = max{|ψ(yi − gθ̂(xi))|, i =
1, ..., n} where ψ is the non-robust score function. Define a spaced grid c1 >

c2 > ... > cm > 0 and compute the correspondent estimates, θ̂ci , i = 1, ...,m.
Compute the absolute variations AVci = ‖gθ̂ci

(xi)−gθ̂ci+1
(xi)‖n. Then we select
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Fig 8. Relative variation (RV) computed on the real data.

the optimal value c∗ = {max ci : RVck < ι, for all ck ≤ ci}, where ι > 0 is some
threshold value. Choosing the first point c1 would be equivalent as using the
non-robust method.

By design, this method leads to choose the tuning constant c the closest to
c1 (i.e. to the non-robust case) through a grid of points c1 > c2 > ... > cn given
that the variation of the point estimates is smaller than an acceptable value ι.
Intuitively, we find the closest tuning constant to the standard case while we
require stability of our estimate.

In Figure 8 we display the outcomes of the application of the described al-
gorithm to the real data example in Section 6.3. The relative variations (RV)
are computed for the data over an equidistant spaced grid of tuning constants
c1 = 1.5, c2 = 1.4, ..., c27 = 0.2. The plot suggest to choose c = 0.5: smaller
values of c do not yield large changes in the RV, which remains pretty stable
for c < 0.5.

B.3. RMSE for real-data analysis

To perform the sensitivity analysis, we randomly replace a percentage η of the
original data {yt,j} by a random variable having a t-student distribution, with 5
degrees-of-freedom. For the sake of comparison, we compute the predicted value
ŷηt,j for different values of η ∈ {0%, 2.5%, 5%, 7.5%, 10%} and, for each method,
we calculate the Relative Mean Square Error, defined as

RMSE(η) =

T∑
t=1

J∑
j=1

(ŷηt,j − ŷ0t,j)
2/

T∑
t=1

J∑
j=1

(ŷ0t,j)
2,
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Fig 9. RMSE(η) for robust (dashed line) and OLS (continuous line) estimation method, for
different values of η (on the x-axis).

where ŷηt,j denotes the predicted value of yt,j using the η-contaminated data.
In Figure 9, we display the results for the robust and least squares procedures.
In line with the theoretical developments, the robust estimates yield a stable
and bounded RMSE, whilst the OLS estimator entails a RMSE which diverges
(exponentially) fast as η grows. The plot confirms that even a small amount of
data perturbation may induce large changes in the OLS estimates, whilst our
robust procedure yields stable inference.
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