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Abstract: We provide an empirical process theory for locally stationary
processes over nonsmooth function classes. An important novelty over other
approaches is the use of the flexible functional dependence measure to
quantify dependence. A functional central limit theorem and nonasymp-
totic maximal inequalities are provided. The theory is used to prove the
functional convergence of the empirical distribution function (EDF) and to
derive uniform convergence rates for kernel density estimators both for sta-
tionary and locally stationary processes. A comparison with earlier results
based on other measures of dependence is carried out.
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1. Introduction

Empirical process theory is one of the key concepts in proving uniform conver-
gence rates and weak convergence of composite functionals. It is preferable to
have a theory which can be applied to observations which are dependent but
also nonstationary. Locally stationary processes allow for a smooth change of
the distribution over time but can locally be approximated by stationary pro-
cesses and thus provide more flexible time series models (cf. [6]). This paper
extends the theory of our recent paper [14] where we have established an empir-
ical process theory for locally stationary processes under functional dependence
considering function classes that are at least Hölder-continuous. Here, we ad-
ditionally allow for nonsmooth functions, in particular, our framework includes
(but is by far not limited to) the empirical distribution function (EDF).

The only papers that are known to the authors that explicitly deal with
functional convergence of locally stationary processes are [14] and [12]. For sta-
tionary processes, a vast range of theoretical results are available. A prominent
idea to measure dependence of random variables is given by mixing (cf. [9]). The
publications [2], [21] and [10] derive large deviation results and uniform central
limit theorems under absolute regularity (β-mixing). In [16], refined results are
available. Other general theories are based on Markov chains and other types of
mixing, cf. the overview in [14].
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Regarding the functional weak convergence of the EDF, more specific con-
ditions were derived in the literature for stationary observations. [11, Theorem
4] provide functional convergence of the EDF using bounds for covariances of
Hölder functions of the random variables. Another abstract concept was intro-
duced by [3] via S-mixing (for stationary mixing), which imposes the existence
of m-dependent approximations of the original observations. They then derive
strong approximations and uniform central limit theorems for the EDF. Other
approaches were presented in [4] and [7]. In [19] and [12] uniform central limit
theorems for the EDF were derived for stationary and piece-wise locally sta-
tionary processes under functional dependence.

Our empirical process theory is derived under the dependence concept of
functional dependence (cf. [18]). In combination with the theory of martingales
it allows for sharp large deviation inequalities (cf. [20] or [22]). We assume that
Xi = (Xij)j=1,...,d, i = 1, ..., n, is a d-dimensional Bernoulli shift process of the
form

Xi := Xi,n := Ji,n(Ai), (1.1)

where Ai = σ(εi, εi−1, ...) is the sigma-algebra generated by εi, i ∈ Z, a sequence

of i.i.d. random variables in R
d̃ (d, d̃ ∈ N), and some measurable function Ji,n :

(Rd̃)N0 → R
d, i = 1, ..., n, n ∈ N. We note that Xi still depends on n, but for

the sake of readibility we omit the dependence on n.
For a real-valued random variable W and some ν > 0, we define ‖W‖ν :=

E[|W |ν ]1/ν . If ε∗k is an independent copy of εk, independent of εi, i ∈ Z, we

define A∗(i−k)
i := (εi, ..., εi−k+1, ε

∗
i−k, εi−k−1, ...) and set X

∗(i−k)
i := X

∗(i−k)
i,n :=

Ji,n(A∗(i−k)
i ). The uniform functional dependence measure is then given by

δXν (k) = sup
i=1,...,n

sup
j=1,...,d

∥∥Xij −X
∗(i−k)
ij

∥∥
ν
. (1.2)

The value δXν measures the impact of ε0 onXk. The representation (1.1) actually
does cover a large variety of processes. We additionally allow J to vary with i
and n to cover processes which change their stochastic behavior over time. This
is exactly the form of the so-called locally stationary processes discussed in [6].

Since we are working in a time series context, many applications ask for
functions f that not only depend on the actual observation of the process but
on the whole (infinite) past Zi := (Xi, Xi−1, Xi−2, ...). In the course of this
paper, we aim to derive asymptotic properties of the empirical process

Gn(f) :=
1√
n

n∑
i=1

{
f(Zi,

i

n
)− Ef(Zi,

i

n
)
}
, f ∈ F , (1.3)

where
F ⊂ {f : (Rd)N0 × [0, 1] → R measurable}.

Let H(ε,F , ‖ · ‖) denote the bracketing entropy, that is, the logarithm of the
number of ε-brackets with respect to some distance ‖·‖ that is necessary to cover
F (this is made precise at the end of this section). We will define a distance
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Vn which guarantees weak convergence of (1.3) if the corresponding bracketing

entropy integral
∫ 1

0

√
H(ε,F , Vn)dε is finite.

Our main contributions are the following:

• We derive maximal inequalities for Gn(f) where the class F consists of
nonsmooth functions.

• We state conditions to ensure asymptotic tightness and functional conver-
gence of Gn(f), f ∈ F .

Eventhough our theory allows for general function classes, we will have a special
focus on the EDF. In particular, we derive functional convergence of the EDF
under weak conditions on the moments and the dependence structure of the
process Xi. We will see that our results typically pose weaker conditions on
the underlying dependence structure than comparable results for the stationary
case mentioned above. In particular, we compare our results with [12] where the
authors discussed the EDF of piece-wise locally stationary processes.

The paper is structured as follows. In Section 2, we present our main re-
sult Theorem 2.8, the functional central limit theorem under minimal moment
conditions. We then derive a version for stationary processes, and discuss its
application on empirical distribution functions where the underlying process is
either stationary or locally stationary. It is the aim of Section 2.6 to show a
wide range of applicability of our theory. Some assumptions are postponed to
Section 3, where a new multivariate central limit theorem for locally stationary
processes is presented. In Section 4 we provide new maximal inequalities for
Gn(f) in case of a finite and infinite function class F . In Section 5 a conclusion
is drawn. We postpone all detailed proofs to the Appendix, Section A.

We now introduce some basic notation. For a, b ∈ R, let a ∧ b := min{a, b},
a ∨ b := max{a, b}. For k ∈ N,

H(k) := 1 ∨ log(k) (1.4)

which naturally appears in large deviation inequalities. For a given finite class
F , let |F| denote its cardinality. We use the abbreviation

H = H(|F|) = 1 ∨ log |F| (1.5)

if no confusion arises. For some distance ‖·‖, let N(ε,F , ‖·‖) denote the bracket-
ing numbers, that is, the smallest number of ε-brackets [lj , uj ] := {f ∈ F : lj ≤
f ≤ uj} (i.e. measurable functions lj , uj : (R

d)N0 × [0, 1] → R with ‖uj − lj‖ ≤ ε
for all j) to cover F . Let H(ε,F , ‖ · ‖) := logN(ε,F , ‖ · ‖) denote the bracketing
entropy. For ν ≥ 1, let

‖f‖ν,n :=
( 1

n

n∑
i=1

∥∥f(Zi,
i

n

)∥∥ν
ν

)1/ν

. (1.6)
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2. A functional central limit theorem under functional dependence
and application to empirical distribution functions

A process Xi, i = 1, ..., n, is called locally stationary if for each u ∈ [0, 1],
there exists a stationary process X̃i(u) approximating Xi for i = 1, ..., n, i.e.
Xi ≈ X̃i(u) if |u − i

n | is small (cf. [6]). The exact form needed is stated in
Assumption 2.5. Thus, Xi behaves stationary around each fixed (rescaled) time
point u ∈ [0, 1], but over the whole time period i = 1, ..., n its distribution
can change drastically. Deterministic properties of the process like expectation,
covariance, spectral density or empirical distribution functions therefore also
depend on the rescaled time u ∈ [0, 1]. As an example, consider the localized
empirical distribution function of Xi,

Ĝn,hn(x, v) :=
1

nhn

n∑
i=1

K
( i/n− v

hn

)
1{Xi≤x}, (2.1)

where K : R → R is a kernel function and hn > 0 a bandwidth. The goal of this
paper is to provide a general empirical process theory which allows to show, for
instance, a functional central limit theorem of Ĝn,hn(x, v) for fixed v ∈ [0, 1] of
the form [√

nh
(
Ĝn,hn(x, v)−G(x, v)

)]
x∈R

d→ G(x)x∈R (2.2)

where (G(x))x∈R is a centered Gaussian process and G(x, v) = P(X̃0(v) ≤ x)
denotes the distribution function of X̃0(u).

Clearly, the additional localization via kernels changes the convergence rate of
the empirical process. To discuss (2.1) with the general form (1.3), we therefore
suppose that any f ∈ F has a representation

f(z, u) = Df,n(u) · f̄(z, u), z ∈ (Rd)N0 , u ∈ [0, 1], (2.3)

where f̄ is independent of n and Df,n(u) is independent of z = (zj)j∈N0 . For
the specific example given in (2.2), we would consider

F =
{
(z, u) �→ fx(z, u) :=

1√
hn

K(
u− v

hn
) · 1{z0≤x} : x ∈ R

}
,

and thus Dfx,n(u) =
1√
hn

K(u−v
hn

) and f̄x(z, u) = 1{z0≤x}.

We now introduce the necessary assumptions for our empirical process theory
based on the functional dependence measure. Based on the decomposition (2.3),
we define the following two function classes based on f̄ , which mimic the one-
step-ahead mean and variance forecast,

F̄ (1) := {(z, u) �→ E[f̄(Zi, u)|Zi−1 = z] : i ∈ Z, f ∈ F},
F̄ (2) := {(z, u) �→ E[f̄(Zi, u)

2|Zi−1 = z]1/2 : i ∈ Z, f ∈ F}.

For s ∈ (0, 1], a sequence z = (zj)j∈N0 of elements of Rd (equipped with the
maximum norm | · |∞) and an absolutely summable sequence L = (Lj)j∈N0 of
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nonnegative real numbers, we set

|z|L,s :=
( ∞∑

j=0

Lj |zj |s∞
)1/s

, |z|L := |z|L,1.

Definition 2.1. A class G is called a (L, s,R,C)-class if L = (Lj)j∈N0 is a
sequence of nonnegative real numbers, s ∈ (0, 1] and R : (Rd)N0 × [0, 1] → [0,∞)
satisfies for all u ∈ [0, 1], z, z′ ∈ (Rd)N0 , g ∈ G,

|g(z, u)− g(z′, u)| ≤ |z − z′|sL,s ·
[
R(z, u) +R(z′, u)

]
.

Furthermore, the tuple C = (CR, CG) ∈ (0,∞)2 satisfies supu |g(0, u)| ≤ CG ,
supu |R(0, u)| ≤ CR.

2.1. Main assumptions

There are two basic assumptions on f̄ connected to our main result. The first
is a compatibility condition which connects smoothness properties of F̄ (κ), κ ∈
{1, 2} with corresponding moment assumptions on the process Xi, i = 1, ..., n.

Assumption 2.2 (Compatibility condition on F). The classes F̄ (κ), κ ∈ {1, 2},
are (L, s,R,C)-classes for some L, s, R, C, and there exists p ∈ (1,∞], CX > 0
such that

sup
i,u

‖R(Zi−1, u)‖2p ≤ CR, sup
i,j

‖Xij‖ 2sp
p−1

≤ CX .

Let Dn ≥ 0 and Δ(k) ≥ 0 such that

2dCR

k−1∑
j=0

Lj(δ
X
2sp
p−1

(k − j − 1))s ≤ Δ(k), sup
f∈F

( 1

n

n∑
i=1

∣∣Df,n(
i

n
)
∣∣2)1/2

≤ Dn.

Based on Assumption 2.2, we define for f ∈ F ,

Vn(f) := ‖f‖2,n +

∞∑
k=1

min{‖f‖2,n,DnΔ(k)}, (2.4)

where ‖f‖2,n is given by equation (1.6). Clearly, Vn(f − g) can be interpreted
as a distance between f, g ∈ F , albeit it is actually a seminorm. Furthermore,
let

β(q) :=

∞∑
j=q

Δ(j). (2.5)

The following assumptions are also required when stating a multivariate cen-
tral limit theorem on the empirical process Gn(f).

Assumption 2.3. Let F̄ be an envelope function of {f̄ : f ∈ F}, that is, |f̄(·)| ≤
F̄ (·) for all f ∈ F . There exists p̄ ∈ (1,∞] such that supi,u ‖F̄ (Zi, u)‖2p̄ < ∞,

supv,u ‖F̄ (Z̃0(v), u)‖2p̄ < ∞. Furthermore, either
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• Xi is stationary, or
• for all c > 0 and f ∈ F ,

sup
u,v∈[0,1]

1

cs
E

[
sup

|a|LF ,s≤c

∣∣f̄(Z̃0(v), u)− f̄(Z̃0(v) + a, u)
∣∣2] < ∞. (2.6)

Additionally, (2.6) also holds for F̄ instead of f̄ .

Assumption 2.4. There exists some ς ∈ (0, 1] such that for every f ∈ F ,

|f̄(z, u1)− f̄(z, u2)| ≤ |u1 − u2|ς ·
(
R̄(z, u1) + R̄(z, u2)

)
,

and supu,v ‖R̄(Z̃0(v), u)‖2 < ∞.

Assumption 2.5. For each u ∈ [0, 1], there exists a process X̃i(u) = J(Ai, u),
i ∈ Z, where J is a measurable function. Furthermore, there exists some CX > 0,
ς ∈ (0, 1] such that for every i ∈ {1, ..., n}, u1, u2 ∈ [0, 1],

‖Xi − X̃i(
i

n
)‖ 2sp

p−1
≤ CXn−ς , ‖X̃i(u1)− X̃i(u2)‖ 2sp

p−1
≤ CX |u1 − u2|ς .

For Z̃i(u) = (X̃i(u), X̃i−1(u), ...) it holds that supv,u ‖R(Z̃0(v), u)‖2p < ∞.

For f ∈ F , let D∞
f,n := supi=1,...,n Df,n(

i
n ) where Df,n can be recalled in

equation (2.3).

Assumption 2.6. For all f ∈ F , the function
Df,n(·)
D∞

f,n
has bounded variation

uniformly in n, and

sup
n∈N

1

n

n∑
i=1

Df,n(
i

n
)2 < ∞,

D∞
f,n√
n

→ 0. (2.7)

One of the two following cases hold.

(i) Case K = 1 (global case): For all f, g ∈ F , u �→ E[E[f̄(Z̃j1(u), u)|Z0] ·
E[ḡ(Z̃j2(u), u)|Z0]] has bounded variation for all j1, j2 ∈ N0 and the fol-
lowing limit exists:

Σ
(1)
fg := lim

n→∞

∫ 1

0

Df,n(u)Dg,n(u) ·
∑
j∈Z

Cov(f̄(Z̃0(u), u), ḡ(Z̃j(u), u))du.

(ii) Case K = 2 (local case): There exists a sequence hn > 0 and v ∈ [0, 1]
such that suppDf,n(·) ⊂ [v − hn, v + hn]. It holds that

hn → 0, sup
n∈N

(h1/2
n ·D∞

f,n) < ∞.

The following limit exists for all f, g ∈ F :

Σ
(2)
fg := lim

n→∞

∫ 1

0

Df,n(u)Dg,n(u)du ·
∑
j∈Z

Cov(f̄(Z̃0(v), v), ḡ(Z̃j(v), v)).
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While Assumption 2.3 asks for smoothness of f̄ in the L2-sense if Xi is
nonstationary, Assumption 2.4 requires the function class F to behave smoothly
in the second argument. Assumption 2.5 formulates what it means for a process
to be locally stationary (cf. [6]). The last Assumption 2.6 mainly controls the
behavior of the factor Df,n(u) of f ∈ F (from equation (2.3)) which does not
depend on the observations. Assumption 2.6 looks rather technical but is crucial
to this context. The first part including (2.7) guarantees the right normalization
of Df,n(·). The second part ensures the convergence of the asymptotic variances
Var(Gn(f)) and covariances Cov(Gn(f),Gn(g)) with respect to the behavior of
Df,n(·).

Assumptions 2.4, 2.5 and 2.6 are needed to allow for very different function
classes F which later on becomes very important as we consider function classes
of infinite cardinality. In many special cases, however, some of these assumptions
are automatically fulfilled. For example,

• If f̄(z, u) = f̄(z) does not depend on u, Assumption 2.4 is fulfilled.
• If Xi is stationary, Assumption 2.5 is fulfilled.
• If Df,n(u) = 1, Assumption 2.6 is fulfilled.

We aslo need an additional submultiplicativity assumption on the dependence
term β(·) from (2.5).

Assumption 2.7. There exists a constant Cβ > 0 such that for each q1, q2 ∈ N,

β(q1q2) ≤ Cβ · β(q1)β(q2).

It is easily seen that Assumption 2.7 is fulfilled if Δ(k), in Assumption 2.2,
follows a polynomial (Δ(k) = ck−α for c > 0, α > 1) or exponential decay
(Δ(k) = cρk for c > 0, ρ ∈ (0, 1)), cf. [14, Lemma 7.9]. It is generally not
possible to show Assumption 2.7 if Δ(k) contains a factor of the form 1

log(k) .

2.2. A functional central limit theorem

We now state our main result. Recall the definition of Vn from (2.4). In the
space

�∞(F) = {G : F → R | ‖G‖∞ := sup
f∈F

|G(f)| < ∞}, (2.8)

the following theorem holds true.

Theorem 2.8. Suppose that F satisfies Assumptions 2.2, 2.3, 2.7, 2.5, 2.4, 2.6.
For

ψ(ε) =
√
log(ε−1 ∨ 1) log log(ε−1 ∨ e) (2.9)

suppose that

sup
n∈N

∫ 1

0

ψ(ε)
√
H(ε,F , Vn)dε < ∞.

Then in �∞(F), [
Gn(f)

]
f∈F

d→
[
G(f)

]
f∈F
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where (G(f))f∈F is a centered Gaussian process with covariances

Cov(G(f),G(g)) = lim
n→∞

Cov(Gn(f),Gn(g)) = Σ(K)

and Σ(K) is from Assumption 2.6.

Here, the weak convergence is meant in the usual sense with outer probabil-
ities. The properties of the space �∞(F) can be found in [17], for instance.

Note that it is a result of the convergence of the finite-dimensional distri-
butions in Section 3, Theorem 3.1, and asymptotic tightness in Section 4.2,
Corollary 4.5.

If further conditions in Assumption 2.2 are imposed, we derive simpler forms
of Vn which are shown in the table below. In this case we suppose that Dn ∈
(0,∞) is independent of n ∈ N and Δ(k) is of polynomial or geometric decay.
These results are proven in [14, Lemma 7.11 and Lemma 7.12].

The theorem significantly simplifies if Xi is stationary, f̄(z, u) = f̄(z0), de-
pends only on one observation and no weighting is present, i.e. Df,n(u) = 1.
Assumptions 2.3, 2.4, 2.5 and 2.6 are then directly fulfilled. These assumptions
are needed only to provide a (pointwise) central limit theorem for locally sta-
tionary processes. They basically ask for several smoothness properties of f̄ .

In more detail, let

G̃n(h) :=
1√
n

n∑
i=1

{
h(Xi)− Eh(Xi)

}
,

where Xi = J(Ai), i = 1, ..., n, is a stationary Bernoulli shift process and
H ⊂ {h : Rd → R measurable} with envelope function h̄, i.e. for h ∈ H we have
|h(·)| ≤ h̄(·), such that

h(1)(z0) = E[h(X1)|X0 = z0], h(2)(z0) = E[h(X1)
2|X0 = z0]

1/2

are Hölder continuous with exponent s and constant LH, that is, for all z, z′ ∈ R,

|h(1)(z)− h(1)(z′)| ≤ LH|z − z′|s, |h(2)(z)− h(2)(z′)| ≤ LH|z − z′|s.

Assumption 2.2 automatically is satisfied with R(·) = 1
2 and thus CR = 1

2 ,

L = LH as well as CG = max{h(1)(0), h(2)(0)}. Recall β(·) in equation (2.5)
and the functional dependence measure δXν (k) from (1.2). Then we have the
following corollary of Theorem 2.8 in notation of Assumption 2.2.

Corollary 2.9. Suppose that ‖X1‖2s < ∞ and put Dn := 1. Let Δ(k) fulfill
Δ(k) ≥ dLHδX2s(k − 1)s and there exists Cβ > 0 such that for all q1, q2 ∈ N,

β(q1q2) ≤ Cββ(q1)β(q2). (2.10)

Furthermore, ‖h̄(X1)‖2p̄ < ∞ for some p̄ > 1. Assume that

sup
n∈N

∫ 1

0

ψ(ε)
√
H(ε,H, Vn)dε < ∞,
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where ψ(ε) is from (2.9). Then it holds in �∞(H) that

[
G̃n(h)

]
h∈H

d→
[
G̃(h)

]
h∈H,

where (G̃(h))h∈H is a centered Gaussian process with covariances

Cov(G̃(h1), G̃(h2)) =
∑
k∈Z

Cov(h1(X0), h2(Xk)).

2.3. Application to empirical distribution functions of stationary
processes

As an example, consider the family of indicators

H = {hx(z0) := 1{z0≤x} : x ∈ R},

which is the function class corresponding to the empirical distribution function

[
Ĝn(x)

]
x∈R

=
[ 1
n

n∑
i=1

1{Xi≤x}

]
x∈R

=
[
G̃n(h)

]
h∈H.

Suppose that Xi, i = 1, ..., n, is stationary. Define the conditional distribution
function

Gz(x) = P(X1 ≤ x|X0 = z).

Then we have the following corollary for dependence coefficients (cf. equation
(1.2)) that follow a polynomial decay.

Corollary 2.10. Suppose that Xi is stationary and z �→ Gz(x) is Lipschitz
continuous with Lipschitz constant LG for all x ∈ R. Suppose that for some
s ∈ (0, 1

2 ], ‖X1‖2s < ∞ and δX2s(k) ≤ ck−α with α > 1
s , c > 0. Then,

[
Ĝn(x)

]
x∈R

d→
[
G̃(x)

]
x∈R

,

where G̃(x) is a Gaussian process with

Cov(G̃(x), G̃(y)) =
∑
k∈Z

Cov(1{X0≤x}, 1{Xk≤y}).

Proof of Corollary 2.10. Due to min{1, w} ≤ wa for a ∈ [0, 1], w ≥ 0, we have
that for any s ∈ (0, 1

2 ],

|Gz(x)−Gz′(x)| ≤ min{1, LG|z − z′|} ≤ Ls
G|z − z′|s.

and
|Gz(x)−Gz′(x)|1/2 ≤ min{1, (LG|z − z′|)1/2} ≤ Ls

G|z − z′|s.
Choose Δ(k) = cLG(k − 1)−αs, which is easily seen to satisfy (2.10) (in partic-
ular, β(q) < ∞ for q ∈ N) for some Cβ = Cβ(α, s, c, LG) chosen large enough.
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Table 1

Equivalent expressions of Vn and the corresponding entropy integral under the condition
that Dn ∈ (0,∞) is independent of n. We omitted the lower and upper bound constants

which are only depending on c, ρ, α and Dn. Furthermore, σ̃ = σ̃(σ) fulfills σ̃ → 0 for σ → 0.

Δ(j)
cj−α, α > 1, c > 0 cρj , ρ ∈ (0, 1), c > 0

Vn(f) ‖f‖2,n max{‖f‖−
1
α

2,n , 1} ‖f‖2,n max{log(‖f‖−1
2,n), 1}∫ σ

0

√
H(ε,F , Vn)dε

∫ σ̃
0 ε−

1
α ψ(ε)

√
H(ε,F , ‖ · ‖2,n)dε

∫ σ̃
0 log(ε−1)ψ(ε)

√
H(ε,F , ‖ · ‖2,n)dε

Note that H(ε,H, ‖ · ‖2,n) = O(log(ε−1)) for a given ε > 0 by [17, Example
19.6], since in the stationary situation of the corollary, ‖h‖2,n = E[h(X1)

2]1/2.
Since αs > 1, Table 1 implies that

∫ 1

0

ψ(ε)
√
H(γ,H, Vn)dε = O

(∫ 1

0

ψ(ε)ε−
1
αs

√
log(ε−1)dε

)
< ∞.

Corollary 2.9 now implies the assertion.

2.4. Comparison with other functional convergence results for the
empirical distribution function of stationary processes

In the literature, several functional convergence results for the empirical distri-
bution function were already provided. Here we list some approaches which are
closely related to the functional dependence measure and compare the results
to Corollary 2.10.

In [4], stationary processes of the form Xi = J(Gi) are considered where
Gi = (εi, εi−1, ...) and J is measurable. Therein, the function J itself is assumed
to fulfill a (geometrically decaying) Lipschitz condition, i.e. for any sequences
(ai), (a

′
i) with ai = a′i, i ≤ k,∣∣J((ai))− J((a′i))

∣∣ ≤ Cαk (2.11)

for some constants C,α > 0. Based on this, 1-approximation coefficients ak are
defined as upper bounds on

E
∥∥X0 − E[X0|σ(ε0, ..., εk)]

∥∥
1
≤ ak.

There is a strong connection between δX1 (k) and ak, since it is possible to choose
ak ≤

∑∞
j=k+1 δ

X
1 (j). The work of [4, Theorem 5] shows that under summability

conditions on ak, the β-mixing coefficients and monotonicity assumptions on
F = {ft : t ∈ [0, 1]}, a uniform central limit theorem for (Gn(ft))t∈[0,1] holds.
Compared to our setting, (2.11) would lead to a geometrically decaying func-
tional dependence measure δX(k). Thus, the result in our Corollary 2.10 is much
less restrictive regarding the dependence of the underlying process.

In [7, Theorem 2.1], a uniform central limit theorem for the empirical distri-
bution function is shown under β2(k) = O(k−1−γ), γ > 0, by using specifically
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designed dependence coefficients β2(k), k ∈ N0, based on the idea of absolute
regularity. We now compare this result with Corollary 2.10. In [8, Section 6.1]
it was shown that if Xi = J(Gi) is stationary and the distribution function of
X1 is Lipschitz continuous, then for any ν ∈ [0, 1] one has

β2(k) ≤ C ·
( ∞∑

j=k+1

δXν (j)ν
′
) ν

ν′(ν+1)
, ν′ = min{ν, 1},

where C > 0 is a constant independent of k. The condition β2(k) = O(k−1−γ)
now naturally provides a decay condition on δXν (k). With ν = 2s which corre-
sponds to the moments of the process we have given in Corollary 2.10, we see
after a short calculation that β2(k) = O(k−1−γ) asks for

α ≥ 1

s
+

γ

2s
+ γ + 1.

In other words, if the results from [7], [8] are transferred to the functional de-
pendence measure setting, they need a more restrictive decay condition.

Meanwhile, [3] investigates strong approximations of the multivariate empir-
ical distribution function process (that is, contrary to our approach, the results
are limited to empirical distribution functions). They assume that the stationary

process Xi = J(Gi) allows for approximations (X
(m)
i ) such that for all m, i,

P(|Xi −X
(m)
i | ≥ m−A) ≤ m−A (2.12)

with some A > 4, and for any disjoint intervals I1, ..., Ir of integers and any

positive integers m1, ...,mr, the vectors {X(m1)
i : i ∈ I1}, ..., {X(mr)

i : j ∈ Ir} are
independent provided the separation between Ik and Il is greater than mk+ml.
Under these assumptions, [3, Theorem 1, Corollary 1] shows that the empirical
distribution function of Xi weakly converges to some Gaussian process.

When having knowledge about the functional dependence measure, X
(m)
i

could be chosen as X
(m)
i = E[Xi|εi, ..., εi−m]. Then by Markov’s inequality,

P
(
|Xi −X

(m)
i | ≥ m−A

)
≤ ‖Xi −X

(m)
i ‖2s2s

m−2sA
≤

(
mA ·

∞∑
j=m+1

δX2s(j)
)2s

,

so that (2.12) leads to a decay condition on δXν (j). After a short calculation, we
see that (2.12) is fulfilled if

α ≥
( 1

2s
+ 1)A+ 1,

again a more restrictive decay condition than given in Corollary 2.10.
The work of [11] discusses the functional convergence of the multivariate

empirical distribution function under a general growth condition imposed on
the moments of

∑n
i=1{h(Xi) − Eh(Xi)}, where h ∈ Hγ are Hölder continuous

functions with exponent γ ∈ (0, 1] approximating the indicator functions. They
also relate their result to the functional dependence measure.
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2.5. Application to empirical distribution functions of locally
stationary processes

In this section, we apply our theory to the localized empirical distribution func-
tion Ĝn,hn(x, v) from (2.1) on a locally stationary process as motivated in the
beginning of Section 2. Afterwards, we compare our result with [12] and [19].

Suppose that Xi is locally stationary in the sense that for each u ∈ [0, 1],
there exists a stationary process X̃i(u) = J(Ai, u), i ∈ Z, for a measurable
function J such that

‖Xi − X̃i(
i

n
)‖2s ≤ CXn−ς , ‖X̃i(u)− X̃i(u

′)‖2s ≤ CX |u− u′|ς

for a constant CX > 0, ς ∈ (0, 1], u, u′ ∈ [0, 1] and i ∈ {1, ..., n}.
Recall G(x, v) = P(X̃1(v) ≤ x). Define the conditional distribution function

of the stationary approximation of Xi,

Gz(x, v) = P(X̃1(v) ≤ x | X̃0(v) = z).

Finally, we have to impose a regularity assumption on the distribution function
Gi(x) := P(Xi ≤ x) of the locally stationary process itself.

We have the following generalization of Corollary 2.10.

Corollary 2.11. Let v ∈ (0, 1). Suppose that there exists some LG > 0 such
that

• z �→ Gz(x, v) is Lipschitz continuous with constant LG for all x ∈ R,
• x �→ G(x, v) is Lipschitz continuous with constant LG,
• x �→ Gi(x) is Lipschitz continuous with constant LG and limx→−∞ supi,n

Gi(x) = 0, limx→+∞ infi,n Gi(x) = 1.

Assume that K : R → R is a Lipschitz continuous kernel function with∫
K(x)dx = 1 and support ⊂ [−1

2 ,
1
2 ].

Furthermore, for some s ∈ (0, 1
2 ] let supi,n ‖Xi‖2s < ∞ and δX2s(k) ≤ ck−α

with α > 1
s , c > 0.

Then for hnn → ∞, hn → 0,

[
Ĝn,hn(x, v)

]
x∈R

d→
[
G̃(x, v)

]
x∈R

,

where G̃(x, v) is a Gaussian process with

Cov(G̃(x, v), G̃(y, v)) =

∫
K(u)2du ·

∑
k∈Z

Cov(1{X̃0(v)≤x}, 1{X̃k(v)≤y}).

Proof of Corollary 2.11. We verify the conditions of Theorem 2.8. By min{1,
w} ≤ wa for a ∈ [0, 1], w ≥ 0, we have for any s ∈ (0, 1

2 ],

|Gz(x, v)−Gz′(x, v)| ≤ min{1, LG|z − z′|} ≤ Ls
G|z − z′|s.
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and

|Gz(x, v)−Gz′(x, v)|1/2 ≤ min{1, (LG|z − z′|)1/2} ≤ Ls
G|z − z′|s.

This shows Assumption 2.2 with p = ∞, R(·) = 1
2 = CR.

Choose Δ(k) = cLG(k − 1)−αs, which can easily be seen to satisfy Assump-
tion 2.7 (in particular, β(q) < ∞ for q ∈ N) for some Cβ = Cβ(α, s, c, LG)
chosen large enough. Regarding Assumption 2.3 we first have

1

cs
E sup

LG|a|≤c

[|1{Z̃0(v)≤x} − 1{Z̃0(v)+a≤x}|2]

≤ 1

cs
E|1{Z̃0(v)≤x} − 1{Z̃0(v)≤x− c

LG
}|

≤ 1

cs
(P(Z̃0(v) ≤ x)− P(Z̃0(v) ≤ x− c

LG
))

≤ 1

cs
(Gz(x, v)−Gz(x− c

LG
, v))

≤ 1

cs
min{1, c} ≤ 1.

The envelope function is the constant 1-function and satisfies the required
condition trivially. Therefore, Assumption 2.3 holds true. Assumption 2.4 is
automatically satisfied for fixed v ∈ (0, 1). For Assumption 2.6, note that
Df,n(u) =

1√
hn

K(u−v
hn

) satisfies

1

n

n∑
i=1

Df,n(
i

n
)2 ≤ 1

nhn

n∑
i=1

K(
i/n− v

hn
)2 ≤ |K|2∞ < ∞,

and D∞
f,n ≤ 1√

hn
|K|∞. Thus

D∞
f,n√
n

≤ |K|∞√
nhn

→ 0, and the support satisfies

supp[Df,n(·)] ⊂ [v − hn, v + hn]. Finally, h
1/2
n D∞

f,n ≤ |K|∞ < ∞ and, since
v ∈ (0, 1),

lim
n→∞

∫ 1

0

Df,n(u)Dg,n(u)du = lim
n→∞

1

hn

∫ 1

0

K(
u− v

hn
)2du =

∫
K(u)2du.

This shows all conditions of Assumption 2.6 (ii).
It holds that H(ε,H, ‖ · ‖2,n) = O(log(ε−1)) which is proven subsequently.
Let ε > 0. Since limx→−∞ supi,n Gi(x) = 0 and limx→+∞ infi,n Gi(x) =

1, there exists xN = xN (ε) > x1 = x1(ε) > 0 such that supi,n Gi(x1) ≤ ε,

infi,n Gi(x1) ≥ 1 − ε. Define xj+1 := x1 + j · ε2

LG
, j = 1, 2, ..., N − 1 with

N = 1+� (xN−x1)LG

ε2 �. Put x0 = −∞ and xN+1 = ∞. Then for j = 1, 2, ..., N−1
we have

‖1{·≤xj+1} − 1{·≤xj+1}‖22,n
≤ sup

i=1,...,n
E[(1{Xi≤xj+1} − 1{Xi≤xj})

2] = sup
i=1,...,n

[Gi(xj+1)−Gi(xj)]
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≤ LG|xj+1 − xj | ≤ ε2,

which shows that [1{·≤xj}, 1{·≤xj+1}], j = 0, ..., N are ε-brackets with respect to
‖ · ‖2,n. Hence, H(ε,H, ‖ · ‖2,n) = O(log(ε−1)).

Since αs > 1, Table 1 implies that∫ 1

0

ψ(ε)
√
H(γ,H, Vn)dε = O

(∫ 1

0

ψ(ε)ε−
1
αs

√
log(ε−1)dε

)
< ∞.

Theorem 2.8 now implies the assertion.

In [19] a similar result is obtained for stationary sequences and accounts for
weighted empirical processes, that is, (1 + |x|)γ/2Gz(x, v) for γ > 0.

The recently published work [12] considers functional convergence of the em-
pirical distribution function of piece-wise locally stationary processes. They im-
pose that the functional dependence measure to decay geometrically cf. [12,
assumption (A5)]. In the above Corollary 2.11 we were able to provide some
weaker assumptions in general. In particular, we only need polynomial decay
of the dependence coefficients. For instance, let us consider the linear locally
stationary processes

Xi,n =

∞∑
k=0

ak(
i

n
)εi−k,

where εi is i.i.d. with Eε1 = 0, E|ε|ν < ∞ and ak : [0, 1] → R are arbi-
trary functions with supu∈[0,1] |ak(u)| ≤ C

kα , α > 1. Then, δXν (k) = O(k−α).

In the same manner other decay rates can be realized by setting δXν (k) =
O(supu∈[0,1] |ak(u)|) for an appropriate choice of the coefficients ak(·).

We note that Assumption 2.5 also covers recursively defined time-varying
processes like the tvARMA model, cf. Proposition 2.4 in [5], defined by

p∑
j=0

αj

( t
n

)
X

(n)
t−j =

q∑
k=0

βk

( t
n

)
σ
( t− k

n

)
εt−k,

where εi is i.i.d. with Eε1 = 0, E|εi| < ∞ and αj , βk, σ : [0, 1] → R are of
bounded variation with α0(u) = β0(u) = 1, αj(u) = αj(0), βk(u) = βk(0) for
u < 0 such that

∑p
j=0 αj(u)z

j �= 0 for all u and 0 < |z| ≤ 1 + δ, δ > 0. In this

case it is not sufficient to assume a representation X
(n)
i = X̃

(n)
i (i/n).

2.6. Further applications

Our theory allows for empirical process theory of general function classes. We
illustrate further applications in two short examples.

Example 1 (Distribution of residuals): Consider the locally stationary
time series model which is defined recursively via

Xi = m(Xi−1,
i

n
) + σ(Xi−1,

i

n
)εi, i = 1, ..., n,
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where εi, i ∈ Z, is an i.i.d. sequence of random variables with Eε1 = 0, Var(ε1) =
1 and σ,m : R × [0, 1] → R. These functions can be estimated with typical
Nadaraya-Watson-type estimators

m̂(x, v) :=
1
n

∑n
i=1 Khn(v − i

n )Khn

(
x−Xi−1)Xi

1
n

∑n
i=1 Khn(v − i

n )Khn

(
x−Xi−1)

and

σ̂2(x, v) :=
1
n

∑n
i=1 Khn(v − i

n )Khn

(
x−Xi−1) ·

(
Xi − m̂(Xi−1,

i
n )

)2
1
n

∑n
i=1 Khn(v − i

n )Khn

(
x−Xi−1)

with some bounded kernel K : R → R and Kh(·) := 1
hK( ·

h ). Besides estimation
ofm(·), σ(·), it may also be of interest to derive the distribution functionGε of εi.

Following the approach of [1], we define empirical residuals ε̂i =
Xi−m̂(Xi−1,i/n)

σ̂(Xi−1,i/n)
.

Then the convergence of (Ĝε(x))x∈R,

Ĝε(x) =
1

n

n∑
i=1

1{ε̂i≤x} =
1

n

n∑
i=1

1{εi≤x· σ̂(Xi−1,i/n)

σ(Xi−1,i/n)+
m̂(Xi−1,i/n)−m(Xi−1,i/n)

σ(Xi−1,i/n) }

can be discussed with empirical process theory and analytic properties of m̂, σ̂.
Following the proof of Lemma 1 in [1], we have to define

F := {fx,d1,d2(ε, z, u) = 1{ε≤x·d2(z,u)+d1(z,u)} :

−∞ < x < ∞, d1 ∈ C1+δ
1 (R, [0, 1]), d2 ∈ C̃1+δ

1 (R, [0, 1])},

where R is the union of all domains of Xi, i = 1, ..., n, δ > 0 and C1+δ
1 (R, [0, 1])

is the class of differentiable functions d : R × [0, 1] → R (with respect to the
first component) such that

‖d‖1+δ = max{sup
x

|d(x)|, sup
x

|d′(x)|}+ sup
x,y

|d′(x)− d′(y)|
|x− y|δ ≤ 1,

and C̃1+δ
1 (R, [0, 1]) is the class of differentiable functions d : R × [0, 1] → R

(with respect to the first component) such that ‖d‖1+δ ≤ 2, infx{d(x)} ≥ 1
2 .

Then, one has to show that σ̂
σ ∈ C1+δ

1 (R, [0, 1]), m̂−m
σ ∈ C̃1+δ

1 (R, [0, 1]) based
on assumptions on m,σ,K and provide the entropy of F , so that(√

n
(
Ĝε(x)−Gε(x)

))
x∈R

=
(
Gn(fx, m̂−m

σ , σ̂σ
)
)
f
x, m̂−m

σ
, σ̂
σ
∈F

can be discussed with our theory.
The following example shows how to provide results for Nadaraya-Watson-

type estimators. In particular, we make use of the maximal inequality provided
in Section 4, Corollary 4.2.

Example 2 (Kernel density estimation): Let K : R → R be some
bounded kernel function which is Lipschitz continuous, satisfies

∫
K(u)du = 1

and has support ⊂ [−1
2 ,

1
2 ]. For some bandwidth hn > 0, put Kh(·) := 1

hK( ·
h ).
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We consider the localized density estimate of the density gX̃1(v)
of the sta-

tionary approximation X̃1(v),

ĝn,hn(x, v) =
1

n

n∑
i=1

Kh1,n(
i

n
− v)Kh2,n(Xi − x)

where h1n, h2n > 0 are bandwidths. Suppose that:

• For some s ≤ 1
2 , α > s−1, δX2s(j) = O(j−α) and supi,n ‖Xi‖2s < ∞.

• There exists pK ≥ 2s, CK > 0 such that for u large enough, |K(u)| ≤
CK |u|−pK .

• There exist constants C∞, LG > 0 such that the following holds. The con-
ditional density gXi|Xi−1=z of Xi given Xi−1 = z satisfies |gXi|Xi−1=z|∞ ≤
C∞ and for any x ∈ R, z �→ gXi|Xi−1=z(x) is Lipschitz continuous with
constant LG.

We show that if log(n)
(
nh1,nh

α(s∧ 1
2
)

α(s∧ 1
2
)−1

2,n

)−1
= O(1),

sup
x∈R,v∈[0,1]

∣∣ĝn,hn(x, v)− Eĝn,hn(x, v)
∣∣ = Op

(√ log(n)

nh1,nh2,n

)
. (2.13)

To do so, note that√
nh1,nh2,n

(
ĝn,hn(x, v)− Eĝn,hn(x, v)

)
= Gn(fx,v),

with

F = {fx,v(z, u) =
√

h1,nKh1,n(u− v) ·
√

h2,nKh2,n(z − x) : x ∈ R, v ∈ [0, 1]}.

To obtain (2.13), we use Corollary 4.2. We have for κ ∈ {1, 2},

μ(κ)(z) :=
1

h2,n
E[Kh2,n(Xi − x)κ | Xi−1 = z]κ

=
1√
h2,n

(∫
K
(y − x

h2,n

)κ
fXi|Xi−1=z(y)dy

)1/κ

= h
1
κ− 1

2
2,n

(∫
K(w)κfXi|Xi−1=z(x+ wh2,n)dw

)1/κ

.

Hence,

|μ(κ)(z)− μ(κ)(z′)|

≤ h
1
κ− 1

2
2,n

(∫
|K(w)|κ|fXi|Xi−1=z(x+ wh2,n)− fXi|Xi−1=z′(x+ wh2,n)|dw

)1/κ

.

On the other hand, |fXi|Xi−1=z(x+wh2,n)−fXi|Xi−1=z′(x+wh2,n)| ≤ min{LG|z−
z′|, C∞}. For s ≤ 1

κ , we obtain

|μ(κ)(z)− μ(κ)(z′)| ≤ h
1
κ− 1

2
2,n

(∫
|K(w)|κdw

)1/κ

·
[
C∞ min

{
1,

LG

C∞
|z − z′|

}]1/κ
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≤ h
1
κ− 1

2
2,n

(∫
|K(w)|κ

)1/κ

C
1
κ−s
∞ Ls

G|z − z′|s.

This shows that Assumption 2.2 is satisfied with R(·) = 1
2 = CR and LF =

LG and Δ(k) = LG(k − 1)−αs. As before, it is easily seen that Assumption 2.7
is satisfied.

We apply Corollary 4.2 with F̄ = |K|∞√
h2,n

=: CF̄ ,n. For the grids Vn = {in−3 :

i = 1, ..., n3}, Xn = {in−3 : i ∈ {−2�n3+ 1
2s �, ..., 2�n3+ 1

2s �}}, we obtain√
nh1,nh2,n sup

x∈Xn,v∈Vn

∣∣ĝn,hn(x, v)− Eĝn,hn(x, v)
∣∣

= sup
x∈Xn,v∈Vn

|Gn(fx,v)| = Op

(√
log(n)

)
.

The discretization of (2.13) is rather standard and postponed to the Appendix,
Section A.4. Under additional conditions on the process, it is possible to replace

Eĝn,h(x, v) by gX̃1(v)
(x) by introducing a typical bias of the order O(

√
nh3

1,n +√
nh3

2,n). However, these are purely analytical considerations and are omitted.

Remark 2.12. As mentioned in the introduction, our theory allows us to dis-
cuss functions that depend on the whole infinite past. As an example let us
consider M-estimation. In the (stationary) MA(1)-model

Xi = θεi−1 + εi

with i.i.d. εi ∼ N(0, 1), we perform a maximum likelihood estimation of θ. Then,
the quasi log-Likelihood is, up to some constants, of the form

L◦
n(θ) =

1

n

n∑
i=1

f(Z◦
i , θ), Z◦

i = (Xi, Xi−1, ..., X1, 0, 0, ...)

where f : RN× [−1, 1] → R, f(x, θ) =
∑∞

k=0(−θ)kxk,. The asymptotics of L◦
n(θ)

can then be studied via

Ln(θ) =
1

n

n∑
i=1

f(Zi, θ),

which now depends on infinitely many past observation Xi, −∞ < i ≤ n. Such
a replacement can be performed uniformly in θ with high probability, as long
as f is summable with respect to its first argument. The advantage of this
replacement lies in the fact that f does not have to depend on i.

3. A general central limit theorem for locally stationary processes

In this section, we provide a multivariate central limit theorem for Gn(f).
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It is possible to show the following analogue of a multivariate central limit
theorem for Gn(f) as in Theorem [14, Theorem 3.4]. The proof is similar to the
proof given in [14, Theorem 3.4]; the only difference appears in [14, Lemma 7.8]
for which we supply the proof in the Appendix, Section A.3, Lemma A.6 under
the different Assumptions 2.3, 2.4, 2.5 and 2.6.

Theorem 3.1. Suppose that F satisfies Assumptions 2.2, 2.3, 2.5, 2.4 and 2.6.

Let m ∈ N, f1, ..., fm ∈ F and ΣK = Σ
(K)
fk,fl

)k,l=1,...,m. Then,

1√
n

n∑
i=1

{⎛
⎜⎝

f1(Zi,
i
n )

...
fm(Zi,

i
n )

⎞
⎟⎠− E

⎛
⎜⎝

f1(Zi,
i
n )

...
fm(Zi,

i
n )

⎞
⎟⎠}

d→ N(0,ΣK),

where Σ(K) is from Assumption 2.6.

4. Maximal inequalities and asymptotic tightness under functional
dependence

We now provide an approach for empirical process theory if the class F consists
of nonsmooth functions. Our approach is based on the decomposition

Gn(f) = G
(1)
n (f) +G

(2)
n (f)

into a martingale

G
(1)
n (f) =

1√
n

n∑
i=1

{
f(Zi,

i

n
)− E[f(Zi,

i

n
)|Zi−1]

}

and a process

G
(2)
n (f) =

1√
n

n∑
i=1

{
E[f(Zi,

i

n
)|Zi−1]− Ef(Zi,

i

n
)
}

which is smooth with respect to the arguments Zi if Assumption 2.2 is fulfilled.

The second part G
(2)
n can then be controlled in a similar way as done in [14,

Section 4], therefore this term is only discussed in the Appendix. Note that [14]
cannot be directly applied because Assumption 2.2 therein asks for all elements
of a function class F to be at least Hölder continuous (or of (L, s,R,C)-class

for some L, s, R, C). The term G
(1)
n is dealt with by using a Bernstein-type

inequality for martingales. Observe that the conditional variance of G
(1)
n (f) on

Zi−1 is bounded from above by

R2
n(f) :=

1

n

n∑
i=1

E[f(Zi,
i

n
)2|Zi−1].

The first step is now to bound R2
n(f) uniformly over f ∈ F .
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4.1. Maximal inequalities

Based on β(·) from equation (2.5), we define

q∗(x) := min{q ∈ N : β(q) ≤ q · x}.

Let D∞
n (u) := supf∈F |Df,n(u)|, where Df,n is given by equation (2.3). For

ν ≥ 2, choose D∞
ν,n such that

( 1

n

n∑
i=1

D∞
n (

i

n
)ν
)1/ν

≤ D
∞
ν,n. (4.1)

Put D∞
n = D

∞
2,n. For δ > 0, let

r(δ) := max{r > 0 : q∗(r)r ≤ δ}.

The specific values for q∗(·) and r under polynomial and exponential decaying
Δ(·) are given in the table below.

Table 2

Equivalent expressions of q∗(·) and r(·) taken from [14, Lemma 7.10]. We omitted the lower
and upper bound constants which are only depending on C, ρ, α.

Δ(j)
Cj−α, α > 1 Cρj , ρ ∈ (0, 1)

q∗(x) max{x− 1
α , 1} max{log(x−1), 1}

r(δ) min{δ
α

α−1 , δ} min{ δ
log(δ−1)

, δ}

Recall Vn from equation (2.4) and H = H(|F|) = 1 ∨ log |F| as in (1.5). We
have the following theorem.

Theorem 4.1 (Controlling the variance). Let F satisfy |F| < ∞ and Assump-
tion 2.2. Then there exists some universal constant c > 0 such that the following
holds. If supf∈F ‖f‖∞ ≤ M and supf∈F Vn(f) ≤ σ, then

Emax
f∈F

∣∣∣R2
n(f)−ER2

n(f)
∣∣∣ ≤ c · min

q∈{1,...,n}

[
Dnr(

σ

Dn
)σ+CΔ(D

∞
n )2β(q) +

qM2H

n

]
.

(4.2)
Furthermore,

Emax
f∈F

∣∣∣R2
n(f)− ER2

n(f)
∣∣∣ ≤ 2c ·

[
Dnr(

σ

Dn
)σ + q∗

( M2H

n(D∞
n )2CΔ

)M2H

n

]
. (4.3)

Theorem 4.1 in conjunction with [14, Theorem 4.1] can be used to provide
uniform convergence rates for Gn(f).

Corollary 4.2 (Uniform convergence rates). Suppose that F satisfies |F| < ∞,
Assumption 2.2 for some ν ≥ 2, and Assumption 2.7. Let F̄ := supf∈F f̄ and
assume that for some ν2 ∈ [2,∞],

CF̄ ,n := sup
i,u

‖F̄ (Zi, u)‖ν2 < ∞.
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If

sup
n∈N

sup
f∈F

Vn(f) < ∞, sup
n∈N

D∞
ν2,n

D∞
n

< ∞, sup
n∈N

C2
F̄ ,n

H

n1− 2
ν2 r( σ

D∞
n
)2

< ∞,

(4.4)
then

max
f∈F

|Gn(f)| = Op(
√
H).

4.2. Asymptotic tightness

In this section, we extend the maximal inequality from Theorem 4.1 to arbitrary
(infinite) classes F . Here, the submultiplicativity assumption on β(·) from (2.5)
becomes important again.

Recall H(k) = 1∨ log(k), Dn as in Assumption 2.2, D∞
n = D

∞
2,n as in equation

(4.1) and H(ε,F , V ) as the bracketing entropy. For n ∈ N, δ > 0, define

m(n, δ, k) := r(
δ

Dn
) · D

∞
n n1/2

H(k)1/2
. (4.5)

Here, m(n, δ, k) represents the threshold for rare events in the chaining pro-
cedure. We have the following maximal inequality.

Theorem 4.3. Let F satisfy Assumption 2.2 and 2.7, and F be some envelope
function of F . Furthermore, let σ > 0 and suppose that supf∈F Vn(f) ≤ σ. Let
ψ be defined as in (2.9). Then there exists a universal constant c > 0 such that
for each η > 0,

P

(
sup
f∈F

∣∣G(1)
n (f)

∣∣ > η
)

≤ 1

η

[
c
(
1 +

D
∞
n

Dn
+

Dn

D∞
n

)
·
∫ σ

0

ψ(ε)
√
1 ∨H

(
ε,F , V

)
dε

+
√
n
∥∥F1{F> 1

4m(n,σ,N(σ
2 ,F,Vn))}

∥∥
1

]
+ c

(
1 + q∗

(
C−1

Δ C−2
β

)(D∞
n

Dn

)2)∫ σ

0

1

εψ(ε)2
dε. (4.6)

Remark 4.4. Let m > 0. The chaining procedure found in [13] for martingales
uses the fact that for functions f, g with |f | ≤ g and g(·) > m,

|G(1)
n (f)| ≤ |G(1)

n (g)|+ 2
√
n · 1

n

n∑
i=1

E[g(Zi,
i

n
)|Zi−1] ≤ |G(1)

n (g)|+ 2
√
n
R2

n(g)

m
.

Afterwards, bounds for the conditional variance R2
n(g) are applied. In our case,

these bounds are not sharp enough. We therefore employ the inequality

|G(1)
n (f)| ≤ |G(1)

n (g)|+ 2|G(2)
n (g)|+ 2

√
n
‖g‖22,n
m
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and are forced to use the “smooth” chaining technique applied on G
(2)
n (g) as in

[14, Theorem 4.4] and on R2
n(g) from Theorem 4.1.

We now obtain asymptotic equicontinuity of the process Gn(f) by using

Theorem 4.3 for G
(1)
n and [14, Theorem 4.4] for G

(2)
n .

Corollary 4.5. Let F satisfy the Assumptions 2.2, 2.7, 2.5, 2.4 and 2.3. For
ψ from (2.9), suppose that

sup
n∈N

∫ ∞

0

ψ(ε)
√

1 ∨H(ε,F , Vn)dε < ∞. (4.7)

Furthermore, let Dn,D
∞
n ∈ (0,∞) be independent of n, and

sup
i=1,...,n

D∞
n ( i

n )√
n

→ 0. (4.8)

Then, the process Gn(f) is equicontinuous with respect to V , that is, for every
η > 0,

lim
σ→0

lim sup
n→∞

P

(
sup

f,g∈F,V (f−g)≤σ

|Gn(f)−Gn(g)| ≥ η
)
= 0.

Remark 4.6. Compared to [14, Corollary 4.5], the condition (4.7) of Corol-
lary 4.5 is not optimal due to the additional (small, but nonconstant) ψ(ε)-factor
(cf. (2.9)). The reason here is that we do not approximate the distance R2

n(·)
uniformly over the class F in an external step but evaluate the needed bounds
for R2

n(·) during the chaining process. This is also the reason why our result
does not include the i.i.d. version as a special case. However, in comparison to
the results of [14, Lemma 7.12] we do not lose much due to this factor in the
presence of polynomial dependence. Even in the case of exponential decay, the
additional factor is of the same size as the factor already contributed due to
dependence.

In comparison to our approach in [14], the smoothness assumptions on f
therein, allow us to directly calculate the functional dependence measure of the
process f(Zi,

i
n ). If f itself is nonsmooth we build up our theory upon the de-

composition of Gn(f) into G
(1)
n (f) and G

(2)
n (f). The calculations regarding the

conditional expectations E[f(Zi,
i
n )|Zi−1] in G

(1)
n (f) now have to be adjusted.

This incorporates further technicalities in the proofs. More precisely, the tight-
ness argument becomes more complex. However, as a martingale difference we
can discuss it with Friedman’s martingale inequalities, which in turn lead us to
impose conditions on the variance E[f(Zi,

i
n )

2|Zi−1]
1/2. At the same time, the

proof of the central limit theorem for finite-dimensional distributions has to be
adapted to our new setting as we also have to deal with the limit distribution of
the variance. So, our theory here can be seen as a generalization of [14], although
small compromises have to be made in form of the entropy condition and proof
strategy.
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5. Conclusion

In this paper, we have developed an empirical process theory for locally station-
ary processes and function classes of possibly nonsmooth functions. Here, the
dependence was quantified with the functional dependence measure. We have
proven maximal inequalities and functional central limit theorems. An empirical
process theory for locally stationary processes is a key step to derive asymptotic
and nonasymptotic results for a large class of time series.

We have shown that our theory can be applied to empirical distribution func-
tions (EDFs) and kernel density estimators, but much more structures can be
discussed. Compared to earlier papers in the context of stationary processes
and the EDF, our results provide remarkable weak conditions on the depen-
dence decay of the process. In particular, compared to [12], we could prove that
functional weak convergence of the EDF holds under much simpler assumptions.

From a technical point of view, the linear and moment-based nature of the
functional dependence measure has forced us to modify several approaches from
[14]. A main issue was given by the fact that the dependence measure only trans-
fers decay rates of continuous functions. The nonsmooth nature of the function
class was dealt with a decomposition into a martingale and a conditional expec-
tation part.

Appendix A: Appendix

We now provide some proof details for the main sections.

A.1. Proofs of Section 2

Lemma A.1. Let Assumption 2.2 hold for some ν ≥ 2. Then for all u ∈ [0, 1],

δE[f(Zi,u)|Zi−1]
ν (k) ≤ |Df,n(u)| ·Δ(k), (A.1)

sup
i

∥∥∥ sup
f∈F

∣∣E[f(Zi, u)|Zi−1]

−E[f(Zi, u)|Zi−1]
∗(i−k)

∣∣∥∥∥
ν

≤ D∞
n (u) ·Δ(k), (A.2)

sup
i

‖f(Zi, u)‖2 ≤ |Df,n(u)| · CΔ. (A.3)

Furthermore,∥∥∥E[f(Zi, u)
2|Zi−1]

−E[f(Zi, u)
2|Zi−1]

∗(i−k)
∥∥∥
ν/2

≤ 2|Df,n(u)| · ‖f(Zi, u)‖ν ·Δ(k),(A.4)∥∥∥ sup
f∈F

∣∣E[f(Zi, u)
2|Zi−1]

−E[f(Zi, u)
2|Zi−1]

∗(i−k)
∣∣∥∥∥

ν/2
≤ D∞

n (u)2 · CΔ ·Δ(k),
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(A.5)

where CΔ := 2max{d, d̃}|LF |1Cs
XCR + Cf̄ .

Proof of Lemma A.1. Let μ̄
(1)
f,i (z, u) = E[f̄(Zi, u)|Zi−1 = z] and μ̄

(2)
f,i (z, u) =

E[f̄(Zi, u)
2|Zi−1 = z]. We have by Assumption 2.2 that

sup
i

∥∥E[f(Zi, u)|Zi−1]− E[f(Zi, u)|Zi−1]
∗(i−k)

∥∥
ν

= |Df,n(u)| · sup
i

∥∥μ̄(1)
f,i (Zi−1, u)− μ̄

(1)
f,i (Z

∗(i−k)
i−1 , u)

∥∥
ν

≤ |Df,n(u)| · sup
i

∥∥∥∣∣Zi−1 − Z
∗(i−k)
i−1

∣∣s
LF,s

∥∥∥
pν
p−1

∥∥∥R(Zi−1, u) +R(Z
∗(i−k)
i−1 , u)

∥∥∥
pν

≤ |Df,n(u)| · sup
i

∥∥∥∥∥∥
∞∑
j=0

LF,j

∣∣Xi−1−j −X
∗(i−k)
i−1−j

∣∣s
∞

∥∥∥∥∥∥
pν
p−1

×
(
‖R(Zi−1, u)‖pν +

∥∥∥R(Z
∗(i−k)
i−1 , u)

∥∥∥
pν

)

≤ |Df,n(u)| · 2dCR

k−1∑
j=0

LF,jδ pνs
p−1

(k − j − 1)s,

that is, the assertion (A.1) holds with the given Δ(k). The proof of (A.2) is
similar.

We now prove (A.3). We have

E[f(Zi, u)
2] = E[E[f(Zi, u)

2|Zi−1]] = Df,n(u)
2
E[μ̄

(2)
f,i (Zi−1, u)

2]

and thus ‖f(Zi, u)‖2 = |Df,n(u)| · ‖μ̄(2)
f,i (Zi−1, u)‖2. Since

|μ̄(2)
f,i (y, u)| ≤ |μ̄(2)

f,i (y, u)− μ̄
(2)
f,i (0, u)|+ |μ̄(2)

f,i (0, u)|,

the proof now follows the same lines as in the proof of [14, Lemma 7.3].
We now show (A.4) and (A.5). We have∣∣μ̄(2)
f,i (z, u)

2 − μ̄
(2)
f,i (z

′, u)2
∣∣ = ∣∣μ̄(2)

f,i (z, u)− μ̄
(2)
f,i (z

′, u)
∣∣ · [|μ̄(2)

f,i (z, u)|+ |μ̄(2)
f,i (z

′, u)|
]
.

We then have by the Cauchy Schwarz inequality that∥∥∥ sup
f∈F

∣∣μ̄(2)
f,i (Zi−1, u)

2 − μ̄
(2)
f,i (Z

∗(i−k)
i−1 , u)2

∣∣ ∥∥∥
ν/2

≤
∥∥∥ sup

f∈F

∣∣μ̄(2)
f,i (Zi−1, u)− μ̄

(2)
f,i (Z

∗(i−k)
i−1 , u)

∣∣ ∥∥∥
ν
· 2
∥∥∥ sup

f∈F

∣∣μ̄(2)
f,i (Zi−1, u)

∣∣ ∥∥∥
ν
.(A.6)

Since {μ̄(2)
f,i : f ∈ F , i ∈ {1, ..., n}} forms a (LF , s, R,C)-class for some LF , s, R,

C, the first factor in (A.6) is bounded by Δ(k) as before. Furthermore,

|μ̄(2)
f,i (z, u)| ≤ |μ̄(2)

f,i (z, u)− μ̄
(2)
f,i (0, u)|+ |μ̄(2)

f,i (0, u)|
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≤ |z|sLF ,s(R(z, u) +R(0, u)) + |μ̄(2)
f,i (0, u)|.

Note that ∥∥∥|Zi−1|sLF ,s ·
[
R(Zi−1, u) +R(0, u)

]∥∥∥
ν

≤
∥∥∥ ∞∑

j=0

LF,j |Zi−1−j |s∞
∥∥∥

p
p−1ν

·
(
‖R(Zi−1, u)‖pν + |R(0, u)|

)
≤ d|LF |1 sup

i,j
‖Xij‖sνsp

p−1
· (CR + |R(0, u)|)

≤ 2d|LF |1Cs
XCR.

We now obtain (A.5) from (A.6) with the given CΔ.
By the Cauchy-Schwarz inequality we have for q ≥ 2,

δ
E[f(Zi,u)

2|Zi−1]
ν/2 (k)

= sup
i

∥∥∥E[f(Zi, u)
2|Zi−1]− E[f(Zi, u)

2|Zi−1]
∗(i−k)

∥∥∥
ν/2

= |Df,n(u)| · sup
i

∥∥∥Df,n(u)
(
μ̄
(2)
f,i (Zi−1, u)

2 − μ̄
(2)
f,i (Z

∗(i−k)
i−1 , u)2

)∥∥∥
ν/2

≤ |Df,n(u)| · sup
i

∥∥∥μ̄(2)
f,i (Zi−1, u)− μ̄

(2)
f,i (Z

∗(i−k)
i−1 , u)

∥∥∥
ν

×2
∥∥∥Df,n(u)μ̄

(2)
f,i (Zi−1, u)

∥∥∥
ν

(A.7)

Furthermore,∥∥∥Df,n(u)μ̄
(2)
f,i (Zi−1, u)

∥∥∥
ν
≤ ‖E[f(Zi, u)

2|Zi−1]
1/2‖ν ≤ ‖f(Zi, u)‖ν . (A.8)

Since Assumption 2.2 holds for μ̄
(2)
f,i , the first factor in (A.7) is bounded by

Df,n(u)Δ(k) as in the proof of [14, Lemma 7.3]. Inserting this and (A.8) into
(A.7), we obtain the result (A.4).

A.2. Proofs of Section 4.1

A.2.1. Proof of Theorem 4.1

In this section, we consider

Wi(f) = E[f(Zi,
i

n
)2|Zi−1], Sn(f) :=

n∑
i=1

{
Wi(f)− EWi(f)

}
.

Then

Rn(f)
2 =

1

n

n∑
i=1

Wi(f), Rn(f)
2 − ERn(f)

2 =
1

n
Sn(f).

We obtain from Lemma A.1, (A.4) and (A.5) the following results with ν = 2.
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Lemma A.2. Suppose that Assumption 2.2 holds. Then for each i = 1, ..., n,
j ∈ N, s ∈ N ∪ {∞}, f ∈ F ,

∥∥∥ sup
f∈F

∣∣Wi(f)−Wi(f)
∗(i−j)

∣∣ ∥∥∥
1

≤ CΔD
∞
n (

i

n
)2Δ(j),

∥∥Wi(f)−Wi(f)
∗(i−j)

∥∥
1

≤ 2|Df,n(
i

n
)| · ‖f(Zi,

i

n
)‖2Δ(j),

∥∥Wi(f)‖s ≤ ‖f(Zi,
i

n
)‖22s.

We approximateWi(f) by independent variables as follows (cf. also [20], [22]).
Let

Wi,j(f) := E[Wi(f)|εi−j , εi−j+1, ..., εi], j ∈ N,

and

Sn,j(f) :=

n∑
i=1

{Wi,j(f)− EWi,j(f)}.

Let q ∈ {1, ..., n} be arbitrary. Put L := � log(q)
log(2)� and τl := 2l (l = 0, ..., L − 1),

τL := q. Then we have

Wi(f) = Wi(f)−Wi,q(f) +

L∑
l=1

(Wi,τl(f)−Wi,τl−1
(f)) +Wi,1(f)

(in the case q = 1, the sum in the middle does not appear) and thus

Sn(f) =
[
Sn(f)− Sn,q(f)

]
+

L∑
l=1

[
Sn,τl(f)− Sn,τl−1

(f)
]
+ Sn,1(f).

We write

Sn,τl(f)− Sn,τl−1
(f) =


 n
τl

�+1∑
i=1

Ti,l(f),

Ti,l(f) :=

(iτl)∧n∑
k=(i−1)τl+1

[
Wk,τl(f)−Wk,τl−1

(f)
]
.

The random variables Ti,l(f), Ti′,l(f) are independent if |i− i′| > 1. This leads
to the decomposition

max
f∈F

∣∣∣ 1
n
Sn(f)

∣∣∣ ≤ max
f∈F

1

n

∣∣Sn(f)− Sn,q(f)
∣∣

+

L∑
l=1

[
max
f∈F

∣∣∣ 1n
τl


 n
τl

�+1∑
i=1

i even

1

τl
Ti,l(f)

∣∣∣+max
f∈F

∣∣∣ 1n
τl


 n
τl

�+1∑
i=1
i odd

1

τl
Ti,l(f)

∣∣∣]
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+max
f∈F

1

n

∣∣Sn,1(f)
∣∣

=: A1 +A2 +A3. (A.9)

The next result is a uniform bound on means of independent random vari-
ables.

Lemma A.3. Assume that Qi(f), i = 1, ...,m are independent variables indexed
by f ∈ F which fulfill EQi(f) = 0, 1

m

∑m
i=1 ‖Qi(f)‖1 ≤ σQ and |Qi(f)| ≤ MQ

a.s. (i = 1, ..., n). Then there exists some universal constant c > 0 such that

Emax
f∈F

∣∣∣ 1
m

m∑
i=1

Qi(f)
∣∣∣ ≤ c

(
σQ +

MQH

m

)
, (A.10)

where H is defined by (1.5).

Proof of Lemma A.3. Let Qi = Qi(f). By Bernstein’s inequality, we have for
each f ∈ F that

P

(∣∣∣ 1
m

m∑
i=1

Qi

∣∣∣ ≥ x
)

≤ 2 exp
(
− 1

2

x2

1
m2

∑m
i=1 ‖Qi‖22 + x

MQ

m

)

≤ 2 exp
(
− 1

2

x2

MQ

m · σQ + x
MQ

m

)
,

where we used in the last step that ‖Qi‖22 = E[Q2
i ] ≤ MQ‖Qi‖1.

With standard arguments (cf. the proof of Lemma 19.33 in [17]), we conclude
that there exists some universal constant c1 > 0 with

Emax
f∈F

∣∣∣ 1
m

m∑
i=1

Qi(f)
∣∣∣ ≤ c1

(√
H(

σQMQ

m
)1/2 +

MQH

m

)
.

The result follows by using (
HσQMQ

m )1/2 ≤ 2
MQH
m + 2σQ.

We now prove Theorem 4.1 based on Lemma A.2 and Lemma A.3 and the
decomposition (A.9).

Proof of Theorem 4.1. We first discuss A2. We have

L∑
l=1

Emax
f∈F

1
n
τl

∣∣∣ ∑
1≤i≤
 n

τl
�+1,i odd

1

τl
Ti,l(f)

∣∣∣.

Since ‖Wk,j(f) − Wk,j−1(f)‖1 ≤ 2min{‖Wk(f)‖1, δWk(f)
1 (j − 1)}, we have for

each f ∈ F ,

1

τl
‖Ti,l‖1 ≤

τl∑
j=τl−1+1

1

τl

∥∥∥ (iτl)∧n∑
k=(i−1)τl+1

(Wk,j −Wk,j−1)
∥∥∥
1
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≤
τl∑

j=τl−1+1

1

τl

(iτl)∧n∑
k=(i−1)τl+1

∥∥∥Wk,j −Wk,j−1

∥∥∥
1

≤ 2

τl∑
j=τl−1+1

1

τl

(iτl)∧n∑
k=(i−1)τl+1

min{‖Wk(f)‖1, δWk(f)
1 (j − 1)}

≤ 2

τl∑
j=τl−1+1

min{ 1
τl

(iτl)∧n∑
k=(i−1)τl+1

‖Wk(f)‖1,
1

τl

(iτl)∧n∑
k=(i−1)τl+1

δ
Wk(f)
1 (j−1)}

= 2

τl∑
j=τl−1+1

min{σi,l,Δi,j,l},

where

σi,l :=
1

τl

(iτl)∧n∑
k=(i−1)τl+1

‖Wk(f)‖1, Δi,j,l :=
1

τl

(iτl)∧n∑
k=(i−1)τl+1

δ
Wk(f)
1 (j − 1).

We conclude that

1

� n
τl
�+ 1


 n
τl

�+1∑
i=1

1

τl
‖Ti,l‖1

≤ 2

τl∑
j=τl−1+1

min{ 1
n
τl


 n
τl

�+1∑
i=1

σi,l,
1
n
τl


 n
τl

�+1∑
i=1

Δi,j,l}

≤
τl∑

j=τl−1+1

min{ 1
n

n∑
i=1

‖Wi(f)‖1,
1

n

n∑
i=1

δWi
1 (j)}. (A.11)

Furthermore, it holds that

1

τl
|Ti,l| ≤ 2 sup

i
‖Wi(f)‖∞ ≤ 2‖f‖2∞ ≤ 2M2. (A.12)

By Lemma A.3, (A.10), we have with some universal constant c1 > 0 that

EA2

≤ 2c1

L∑
l=1

[
sup
f∈F

( 1

� n
τl
�+ 1


 n
τl

�+1∑
i=1

1

τl
‖Ti,l(f)‖1

)
+

2M2H

� n
τl
�+ 1

]

≤ 2c1

( L∑
l=1

sup
f∈F

τl∑
j=τl−1+1

min{ 1
n

n∑
i=1

‖Wi(f)‖1,
1

n

n∑
i=1

δ
Wi(f)
1 (j)}+ qM2H

n

)
.

(A.13)
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By Lemma A.2 and the Cauchy-Schwarz inequality for sums,

L∑
l=1

sup
f∈F

τl∑
j=τl−1+1

min{ 1
n

n∑
i=1

‖Wi(f)‖1,
1

n

n∑
i=1

δWi
1 (j)}

≤
L∑

l=1

sup
f∈F

τl∑
j=τl−1+1

min{ 1
n

n∑
i=1

‖f(Zi,
i

n
)‖22,

2

n

n∑
i=1

Df,n(
i

n
)‖f(Zi,

i

n
)‖2 ·Δ(j)}

≤
∞∑
j=1

min{sup
f∈F

‖f‖22,n, 2Dn sup
f∈F

‖f‖2,n ·Δ(j)}

= sup
f∈F

‖f‖2,n · V̄ (sup
f∈F

‖f‖2,n)

= sup
f∈F

(
‖f‖2,n · V̄ (‖f‖2,n)

)
≤ sup

f∈F

[
‖f‖2,nVn(f)

]
, (A.14)

where

V̄ (x) = x+

∞∑
j=1

min{x,DnΔ(j)} (A.15)

and in the second-to-last equality the fact that x �→ x · V̄ (x) is increasing in x.
We also have ‖Wi,0(f) − EWi,0(f)‖∞ ≤ 2‖f‖2∞ ≤ 2M2 and ‖Wi,0(f) −

EWi,0(f)‖1 ≤ 2‖Wi(f)‖1. Thus by Lemma A.3, (A.10),

EA3 ≤ Emax
f∈F

∣∣∣ 1
n

n∑
i=1

(Wi,0(f)− EWi,0(f))
∣∣∣

≤ 2c1

(
sup
f∈F

1

n

n∑
i=1

‖Wi(f)‖1 +
M2H

n

)
(A.16)

≤ 2c1

(
sup
f∈F

‖f‖22,n +
M2H

n

)
. (A.17)

Finally,

EA1 ≤
∞∑
j=q

E sup
f∈F

∣∣∣ 1
n

n∑
i=1

(Wi,j+1(f)−Wi,j(f))
∣∣∣

≤
∞∑
j=q

1

n

n∑
i=1

∥∥ sup
f∈F

|Wi,j+1(f)−Wi,j(f)|
∥∥
1
.

Since |Wi,j+1(f) − Wi,j(f)| = |E[Wi(f)
∗∗(i−j) − Wi(f)

∗∗(i−j+1)|Ai]| ≤ E

[|Wi(f)
∗∗(i−j) −Wi(f)

∗∗(i−j+1)| |Ai] where we use the notation H(Fi)
∗∗(i−j) :=

H(F∗∗(i−j)
i ) and F∗∗(i−j)

i = (εi, εi−1, ..., εi−j , ε
∗
i−j−1, ε

∗
i−j−2, ...)., we have∥∥ sup

f∈F
|Wi,j+1(f)−Wi,j(f)|

∥∥
1
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≤
∥∥E[max

f∈F
|Wi(f)

∗∗(i−j) −Wi(f)
∗∗(i−j+1)| |Ai]

∥∥
1

≤
∥∥ sup

f∈F
|Wi(f)

∗∗(i−j) −Wi(f)
∗∗(i−j+1)|

∥∥
1

=
∥∥ sup

f∈F
|Wi(f)−Wi(f)

∗(i−j)|
∥∥
1
≤ D∞

n (
i

n
)2CΔΔ(j), (A.18)

which shows that
EA1 ≤ (D∞

n )2CΔβ(q). (A.19)

Collecting the upper bounds (A.13), (A.14), (A.17) and (A.19), we obtain
that

Emax
f∈F

∣∣∣ 1
n
Sn(f)

∣∣∣ ≤ (4c1 + 1) ·
[
sup
f∈F

[
‖f‖2,nVn(f)

]
+ (D∞

n )2CΔβ(q) +
qM2H

n

]
.

(A.20)
By (A.29), Vn(f) ≤ σ implies ‖f‖22,n ≤ Dnr(

δ
Dn

)‖f‖2,n and thus

‖f‖2,n ≤ Dnr(
σ

Dn
),

thus
sup
f∈F

[
‖f‖2,nVn(f)

]
≤ Dnr(

σ

Dn
)σ. (A.21)

Inserting (A.21) into (A.20) yields the first assertion (4.2) of the lemma.

We now show (4.3) with a case distinction. We abbreviate q∗ = q∗( M2H
n(D∞

n )2CΔ
).

If q∗H
n ≤ 1, we have q∗ ∈ {1, ..., n} and thus

P ≤ c
(
Dnr(

σ

Dn
)σ + (D∞

n )2CΔβ(q
∗) + q∗

M2H

n

)

≤ 2c
(
Dnr(

σ

Dn
)σ + q∗

M2H

n

)
= 2c

(
Dnr(

σ

Dn
)σ +M2 ·min

{
q∗

H

n
, 1
})

. (A.22)

If q∗H
n ≥ 1, choose q0 = � n

H � ≤ n
H . By simply bounding each summand with

M2, we have

Emax
f∈F

∣∣∣ 1
n
Sn(f)

∣∣∣ ≤ M2 ≤ c
(
Dnr(

σ

Dn
)σ +M2

)
≤ 2c

(
Dnr(

σ

Dn
)σ +M2 ·min

{
q∗

H

n
, 1
})

. (A.23)

holds. Putting the two bounds (A.22) and (A.23) together, we obtain the result
(4.3).

The following lemma is an auxiliary result to prove Corollary 4.2 and Lemma
A.5.
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Lemma A.4. Let F be some finite class of functions. Let R > 0 be arbitrary
and assume that supf∈F ‖f‖∞ ≤ M . Then there exists a universal constant
c > 0 such that

Emax
f∈F

∣∣G(1)
n (f)

∣∣1{Rn(f)2≤R2} ≤ c
{
R
√
H +

MH√
n

}
, (A.24)

where H is defined by (1.5).

Proof of Lemma A.4. By Theorem 3.3 in [15], it holds for x, a > 0 and a mea-
surable function f that

P

(∣∣G(1)
n (f)

∣∣ ≥ x,Rn(f)
2 ≤ R2

)
≤ 2 exp

(
− 1

2

x2

R2 + 2‖f‖∞x
3
√
n

)

)
.

Using standard arguments (cf. the proof of Lemma 19.33 in [17]), we obtain
(A.24).

Proof of Corollary 4.2. Let us define the following functions first.
For m > 0, define ϕ∧

m : R → R and the corresponding “peaky” residual
function ϕ∨

m : R → R via

ϕ∧
m(x) := (x ∨ (−m)) ∧m, ϕ∨

m(x) := x− ϕ∧
m(x).

Now, let Q ≥ 1, and σ := supn∈N supf∈F Vn(f) < ∞. Put

Mn =

√
n√
H

r
(σQ1/2

D∞
n

)
D

∞
n .

Let F (z, u) := D∞
n (u) · F̄ (z, u), (recall F̄ = supf∈F f̄). Then

P

(
max
f∈F

|Gn(f)| > Q
√
H
)

≤ P

(
max
f∈F

|Gn(f)| > Q
√
H, sup

i=1,...,n
F (Zi,

i

n
) ≤ Mn

)

+P

(
sup

i=1,...,n
F (Zi,

i

n
) > Mn

)

≤ P

(
max
f∈F

|Gn(ϕ
∧
Mn

(f))| > Q
√
H

2

)

+P

( 1√
n
max
f∈F

∣∣ n∑
i=1

E[f(Zi,
i

n
)1{|f(Zi,

i
n )|>Mn}]

∣∣ > Q
√
H

2

)

+P

(
sup

i=1,...,n
F (Zi,

i

n
) > Mn

)
. (A.25)

For the first summand in (A.25), we use the decomposition

P

(
max
f∈F

|Gn(ϕ
∧
Mn

(f))| > Q
√
H

2

)
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≤ P

(
max
f∈F

|G(1)
n (ϕ∧

Mn
(f))| > Q

√
H

4

)
+ P

(
max
f∈F

|G(2)
n (ϕ∧

Mn
(f))| > Q

√
H

4

)

≤ P

(
max
f∈F

|G(1)
n (ϕ∧

Mn
(f))| > Q

√
H

4
, max

f∈F
Rn(ϕ

∧
Mn

(f))2 ≤ σ2
)

+P

(
max
f∈F

Rn(ϕ
∧
Mn

(f)) > σ2
)

+P

(
max
f∈F

|G(2)
n (ϕ∧

Mn
(f))| > Q

√
H

4

)
. (A.26)

We now discuss the three terms separately. By Lemma A.4, we have

P

(
max
f∈F

|G(1)
n (ϕ∧

Mn
(f))| > Q

√
H

4
, max

f∈F
Rn(ϕ

∧
Mn

(f))2 ≤ Q3/2σ2
)

≤ 4c

Q
√
H

[
σQ3/4

√
H +

MnH√
n

]
≤ 4c

Q
√
H

[
σQ3/4

√
H + σ

√
HQ1/2

]
≤ 8c

Q1/4
.

By Theorem 4.1 and (A.31),

P

(
max
f∈F

Rn(ϕ
∧
Mn

(f))2 > Q3/2σ2
)

≤ 2c

σ2Q3/2

[
Dnr(

σ

Dn
)σ + q∗

( M2H

n(D∞
n )2CΔ

)M2H

n

]

≤ 2c

σ2Q3/2

[
σ2 + q∗

(r(σQ1/2

D∞
n

)2

CΔ

)
r(
σQ1/2

D∞
n

)2(D∞
n )2

]

≤ 2c

σ2Q3/2

[
σ2 + q∗

(
C−1

Δ C−2
β

)
·
[
q∗
(
r(
σQ1/2

D∞
n

)
)
r(
σQ1/2

D∞
n

)
]2
(D∞

n )2
]

≤ 2c

σ2Q3/2

[
σ2 + q∗

(
C−1

Δ C−2
β

)
σ2Q

]
|

≤ 2c

Q1/2

[
1 + q∗

(
C−1

Δ C−2
β

)]
for CΔ defined in Lemma A.1.

By [14, Theorem 4.1] applied to Wi(f) = E[f(Zi,
i
n )|Zi−1],

P

(
max
f∈F

|G(2)
n (ϕ∧

Mn
(f))| > Q

√
H

4

)

≤ 8c

Q
√
H

·
[
σ
√
H + q∗

(
r(
σQ1/2

D∞
n

)
)
r(
σQ1/2

D∞
n

)D∞
n

]

≤ 8c

Q
√
H

[
σ
√
H + σQ1/2

√
H
]
≤ 16cσ

Q1/2
.

Inserting the upper bounds into (A.26), we obtain

P

(
max
f∈F

|Gn(ϕ
∧
Mn

(f))| > Q
√
H

2

)
≤ 8c

Q1/4
+

2c

Q1/2

[
1+q∗

(
C−1

Δ C−2
β

)]
+

16cσ

Q1/2
→ 0



3416 N. Phandoidaen and S. Richter

for Q → ∞. The second and third summand in (A.25) were already discussed
in the proof of [14, Corollary 4.3] (equation (7.34) and (7.35) therein; note
especially that we only need there that ‖F̄ (Zi,

i
n )‖ν2 ≤ CF̄ ,n instead of CΔ

which is part of the assumptions), and converge to 0 for Q → ∞ under the
given assumptions.

The following Lemma A.5 is used to prove Theorem 4.3.

Lemma A.5 (Compatibility lemma 2). Let ψ : (0,∞) → [1,∞) be some func-
tion and k ∈ N, δ > 0. If F fulfills |F| ≤ k and Assumptions 2.2, 2.7, then
there exists some universal constant c > 0 such that the following holds: If
supf∈F Vn(f) ≤ δ and supf∈F ‖f‖∞ ≤ m(n, δ, k), then

Emax
f∈F

∣∣G(1)
n (f)

∣∣1{Rn(f)≤2δψ(δ)} ≤ 2c(1 +
D

∞
n

Dn
) · ψ(δ)δ

√
H(k), (A.27)

P

(
sup
f∈F

Rn(f) > 2δψ(δ)
)

≤
2c(1 + q∗

(
C−1

Δ C−2
β

)
(
D

∞
n

Dn
)2)

ψ(δ)2
. (A.28)

Proof of Lemma A.5. By Lemma A.4 and since r(a) ≤ a (cf. [14, Lemma 7.5]),

Emax
f∈F

∣∣G(1)
n (f)

∣∣1{Rn(f)≤2δψ(δ)} ≤ c
{
2ψ(δ)δ

√
H(k) +

m(n, δ, k)H(k)√
n

}

≤ 2c ·
[
ψ(δ) · δ + D

∞
n r(

δ

Dn
)
]√

H(k)

≤ 2c · (1 + D∞
n

Dn
) · ψ(δ)δ

√
H(k),

which shows (A.27).
For â = argminj∈N

{
‖f‖2,n · j + Dnβ(j)

}
and since ‖f‖2,n ≤ Vn(f) ≤ δ we

have with r( δ
Dn

) ≥ δ
Dnâ

,

‖f‖22,n
D∞

n r( δ
Dn

)
≤

Dnâ‖f‖22,n
D∞

n δ
≤ DnVn(f)‖f‖2,n

D∞
n δ

≤ Dn

D∞
n

‖f‖2,n. (A.29)

Therefore, ‖f‖22,n ≤ Dnr(
δ
Dn

)‖f‖2,n and thus ‖f‖2,n ≤ Dnr(
δ
Dn

). Note that due
to r(a) ≤ a,

ERn(f)
2 =

1

n

n∑
i=1

E[f(Zi,
i

n
)2] ≤ ‖f‖22,n ≤ (Dnr(

δ

Dn
))2 ≤ δ2. (A.30)

Recall that βnorm(q) = β(q)
q . By Assumption 2.7, we have that for any x1, x2 > 0,

q̃ = q∗(x1)q
∗(x2) satisfies

βnorm(q̃) ≤ Cββnorm(q∗(x1))βnorm(q∗(x2)) ≤ Cβx1x2.

Thus, by definition of q∗,

q∗(Cβx1x2) ≤ q∗(x1)q
∗(x2). (A.31)
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We obtain that

q∗
(
r(

δ

Dn
)2

1

CΔ

)
≤ q∗

(
r(

δ

Dn
)
)2

q∗
(
C−1

Δ C−2
β

)
. (A.32)

By (A.30), Markov’s inequality, Theorem 4.1 and (A.32),

P

(
sup
f∈F

Rn(f)
2 > 2ψ(δ)2δ2

)
≤ P

(
sup
f∈F

|Rn(f)
2 − ERn(f)

2| > ψ(δ)2δ2
)

≤ 2c

ψ(δ)2δ2
·
[
Dnr(

δ

Dn
)δ + q∗

(
r(

δ

Dn
)2

1

CΔ

)
r(

δ

Dn
)2(D∞

n )2
]

≤ 2c

ψ(δ)2δ2
·
[
δ2 +

[
q∗
(
r(

δ

Dn
)
)
r(

δ

Dn
)
]2
q∗
(
C−1

Δ C−2
β

)
(D∞

n )2
]

≤ 2c

ψ(δ)2δ2
·
[
δ2 + δ2q∗

(
C−1

Δ C−2
β

)
(
D

∞
n

Dn
)2
]

≤
2c(1 + q∗

(
C−1

Δ C−2
β

)
(
D

∞
n

Dn
)2)

ψ(δ)2
,

which shows (A.28).

Proof of Theorem 4.3. In the following, we abbreviate H(δ) = H(δ,F , V ) and
N(δ) = N(δ,F , V ). The proof follows the lines of [14, Theorem 4.4]. We present
it here for completeness. Recall again that for m > 0, ϕ∧

m : R → R and the
corresponding “peaky” residual function ϕ∨

m : R → R via

ϕ∧
m(x) := (x ∨ (−m)) ∧m, ϕ∨

m(x) := x− ϕ∧
m(x).

We choose δ0 = σ and δj = 2−jδ0, and

mj =
1

2
m(n, δj , Nj+1),

as well as Mn = 1
2m0. We then use

E sup
f∈F

∣∣∣G(1)
n (f)

∣∣∣ ≤ E sup
f∈F(Mn)

∣∣∣G(1)
n (f)

∣∣∣+ 1√
n

n∑
i=1

E
[
F (Zi)1{F (Zi)>Mn}

]
, (A.33)

where F(Mn) := {ϕ∧
Mn

(f) : f ∈ F}.
We construct a nested sequence of partitions (Fjk)k=1,...,Nj , j ∈ N of F(Mn)

(where Nj := N(δ0) · ... · N(δj)), and a sequence Δjk of measurable functions
such that

sup
f,g∈Fjk

|f − g| ≤ Δjk, V (Δjk) ≤ δj .

In each Fjk, we fix some fjk ∈ F , and define πjf := fj,ψjf where ψjf :=
min{i ∈ {1, ..., Nj} : f ∈ Fji}, and put Δjf := Δj,ψjf , and

I(σ) :=

∫ σ

0

ψ(ε)
√

1 ∨H(ε,F , V )dε,
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as well as

τ := min
{
j ≥ 0 : δj ≤

I(σ)√
n

}
∨ 1. (A.34)

For functions f, g with |f | ≤ g, it holds that

|G(1)
n (f)| ≤ |G(1)

n (g)|+ 2
√
n · 1

n

n∑
i=1

E[g(Zi,
i

n
)|Zi−1]

≤ |G(1)
n (g)|+ 2|G(2)

n (g)|+ 2
√
n · 1

n

n∑
i=1

E[g(Zi,
i

n
)]

≤ |G(1)
n (g)|+ 2|G(2)

n (g)|+ 2
√
n‖g‖1,n.

Using a similar approach as in [14, Section 7.2, equations (7.8) and (7.9)]
applied to Wi(f) = f(Zi,

i
n )−E[f(Zi,

i
n )|Zi−1], and the fact that ‖f−π0f‖∞ ≤

2Mn ≤ m0, we have the decomposition

sup
f∈F

|G(1)
n (f)|

≤ sup
f∈F

|G(1)
n (π0f)|

+ sup
f∈F

|G(1)
n (ϕ∧

mτ
(f − πτf))|+

τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (ϕ∧

mj−mj+1
(πj+1f − πjf))

∣∣∣
+

τ−1∑
j=0

sup
f∈F

|G(1)
n (R(j))|

≤ sup
f∈F

|G(1)
n (π0f)|

+
{
sup
f∈F

|G(1)
n (ϕ∧

mτ
(Δτf))|+ 2 sup

f∈F
|G(2)

n (ϕ∧
mτ

(Δτf))|

+2
√
n sup

f∈F
‖Δτf‖1,n

}

+

τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (ϕ∧

mj−mj+1
(πj+1f − πjf))

∣∣∣
+

τ−1∑
j=0

{
sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨
mj+1

(Δj+1f)
∣∣, 2mj

}
)
∣∣∣

+2 sup
f∈F

∣∣∣G(2)
n (min

{∣∣ϕ∨
mj+1

(Δj+1f)
∣∣, 2mj

}
)
∣∣∣

+2
√
n sup

f∈F
‖Δj+1f1{Δj+1f>mj+1}‖1,n

}

+

τ−1∑
j=0

{
sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨
mj−mj+1

(Δjf)
∣∣, 2mj

}
)
∣∣∣
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+2 sup
f∈F

∣∣∣G(2)
n (min

{∣∣ϕ∨
mj−mj+1

(Δjf)
∣∣, 2mj

}
)
∣∣∣

+2
√
n sup

f∈F
‖Δjf1{Δjf>mj−mj+1}‖1,n

}
(A.35)

We have for f ∈ F(Mn),

π0f = ϕ∧
2Mn

(π0f),

ϕ∧
mτ

(Δτf) ≤ min{Δτf, 2mτ},
ϕ∧
mj−mj−1

(πj+1f − πjf) ≤ min{Δjf, 2mj},
min{ϕ∨

mj+1
(Δj+1f), 2mj} ≤ min{Δjf, 2mj},

min{ϕ∨
mj−mj+1

(Δjf), 2mj} ≤ min{Δjf, 2mj}. (A.36)

We therefore define the event

Ωn := { sup
f∈F(Mn)

Rn(ϕ
∧
2Mn

(π0f)) ≤ 2σψ(σ)}

∩
τ⋂

j=1

{
sup

f∈F(Mn)

Rn(min{Δjf, 2mj}) ≤ 2δjψ(δj)
}
.

From (A.35) and (A.36), we obtain

sup
f∈F(Mn)

|G(1)
n (f)|1Ωn

≤ sup
f∈F(Mn)

|G(1)
n (π0f)|1{supf∈F(Mn) Rn(π0f)≤2σψ(σ)}

+
{
sup
f∈F

|G(1)
n (ϕ∧

mτ
(Δτf))|

×1{supf∈F(Mn) Rn(min{Δτf,2mτ})≤2δτψ(δτ )} + 2R2

}

+

τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (ϕ∧

mj−mj+1
(πj+1f − πjf))

∣∣∣
×1{supf∈F(Mn) Rn(min{Δjf,2mj})≤2δjψ(δj)}

+

τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨
mj+1

(Δj+1f)
∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn) Rn(min{Δjf,2mj})≤2δjψ(δj)} + 2R4

+

τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨
mj−mj+1

(Δjf)
∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn) Rn(min{Δjf,2mj})≤2δjψ(δj)} + 2R5

=: R̃1 + {R̃2 + 2R2}+ R̃3 + {R̃4 + 2R4}+ {R̃5 + 2R5}. (A.37)
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We now discuss the terms R̃i, i = 1, ..., 5 separately. The terms Ri, i ∈
{2, 4, 5} can be discussed similarly to the proof found in [14, Theorem 4.4]. Put

C̃n := 2c(1 +
D

∞
n

Dn
),

where c is a resulting constant from the bound in [14, Theorem 4.1 or Lemma
7.2].

• Since |{π0f : f ∈ F(Mn)}| ≤ N(δ0), ‖π0f‖∞ ≤ Mn ≤ m(n, δ0,N(δ1)), we
have by Lemma A.5:

ER̃1 = E sup
f∈F(Mn)

|G(1)
n (π0f)|1{supf∈F(Mn) Rn(π0f)≤2δ0ψ(δ0)}

≤ C̃nψ(δ0)δ0
√

1 ∨ logN(δ1).

• It holds that |{ϕ∧
mτ

(Δτf) : f ∈ F(Mn)}| ≤ Nτ . If g := ϕ∧
mτ

(Δτf), then
‖g‖∞ ≤ mτ ≤ m(n, δτ , Nτ+1). We conclude by Lemma A.5:

ER̃2 ≤ E sup
f∈F

|G(1)
n (ϕ∧

mτ
(Δτf))|

×1{supf∈F(Mn) Rn(min{Δτf,2mτ})≤2δτψ(δτ )}

≤ C̃nψ(δτ )δτ ·
√
1 ∨ logNτ+1.

• Since the partitions are nested, it holds that |{ϕ∧
mj−mj+1

(πj+1f − πjf) :
f ∈ F(Mn)}| ≤ Nj+1. If g := ϕ∧

mj−mj+1
(πj+1f − πjf), we have ‖g‖∞ ≤

mj −mj+1 ≤ mj ≤ m(n, δj , Nj+1). We conclude by Lemma A.5:

ER̃3 ≤
τ−1∑
j=0

E sup
f∈F

∣∣∣G(1)
n (ϕ∧

mj−mj+1
(πj+1f − πjf))

∣∣∣
×1{supf∈F(Mn) Rn(min{Δjf,2mj})≤2δjψ(δj)}

≤ C̃n

τ−1∑
j=0

ψ(δj)δj
√
1 ∨ logNj+1.

• It holds that |{min{ϕ∨
mj+1

(Δj+1f), 2mj} : f ∈ F(Mn)}| ≤ Nj+1. If g :=
min{ϕ∨

mj+1
(Δj+1f), 2mj}, we have ‖g‖∞ ≤ 2mj = m(n, δj , Nj+1). We

conclude by Lemma A.5:

ER̃4 ≤
τ−1∑
j=0

E sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨
mj+1

(Δj+1f)
∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn) Rn(min{Δjf,2mj})≤2δjψ(δj)}

≤ C̃n

τ−1∑
j=0

ψ(δj)δj
√
1 ∨ logNj+1.
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• It holds that |{min{ϕ∨
mj−mj+1

(Δjf), 2mj} : f ∈ F(Mn)}| ≤ Nj+1. If
g := min{ϕ∨

mj−mj+1
(Δjf), 2mj}, we have ‖g‖∞ ≤ 2mj = m(n, δj , Nj+1).

We conclude by Lemma A.5 that:

ER̃5 ≤
τ−1∑
j=0

E sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨
mj−mj+1

(Δjf)
∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn) Rn(min{Δjf,2mj})≤2δjψ(δj)}

≤ C̃n

τ−1∑
j=0

ψ(δj)δj ·
√
1 ∨ logNj+1.

Inserting the bounds for ER̃i, i = 1, ..., 5 and the bounds for Ri, i ∈ {2, 4, 5}
from the proof of [14, Theorem 4.4] into (A.37), we obtain that with some
universal constant c̃ > 0,

E sup
f∈F(Mn)

∣∣∣G(1)
n (f)

∣∣∣1Ωn ≤ c̃(1+
D

∞
n

Dn
+

Dn

D∞
n

)
[ τ+1∑
j=0

ψ(δj)δj
√
1 ∨ logNj+1 + I(σ)

]
.

(A.38)
Note that

∞∑
j=k

δjψ(δj) ≤ 2

∞∑
j=k

∫ δj

δj+1

ψ(δj)dx ≤ 2

∫ δk

0

ψ(x)dx.

By partial integration, it is easy to see that there exists some universal constant
cψ > 0 such that ∣∣ ∫ δk

0

ψ(x)dx
∣∣ ≤ cψδkψ(δk), (A.39)

thus ∞∑
j=k

δjψ(δj) ≤ 2cψδkψ(δk). (A.40)

Using (A.40), we can argue as in the proof [14, Theorem 4.4] (see (7.44), (7.45)
and (7.46) therein) that there exists some universal constant c̃2 > 0 such that

∞∑
j=0

ψ(δj)δj
√

1 ∨ logNj+1 ≤ c̃2I(σ).

Insertion of the results into (A.38) yields

E sup
f∈F(Mn)

∣∣G(1)
n (f)

∣∣1Ωn ≤ c̃ · (3c̃2 + 1)(1 +
D

∞
n

Dn
+

Dn

D∞
n

)I(σ). (A.41)

Discussion of the event Ωn: We have

P(Ωc
n) ≤ P

(
sup

f∈F(Mn)

Rn(ϕ
∧
2Mn

(π0f)) > 2ψ(σ)σ
)
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+
τ+1∑
j=1

P

(
sup

f∈F(Mn)

Rn(min{Δjf, 2mj}) > 2ψ(δj)δj

)
=: R◦

1 +R◦
2. (A.42)

We now discuss R◦
i , i = 1, 2. Put

C◦
n := 2c

{
1 + q∗

(
C−1

Δ C−2
β

)(D∞
n

Dn

)2}
,

where c is from Lemma A.5.

• Since |{ϕ∧
2Mn

(π0f) : f ∈ F(Mn)}| ≤ N(δ0) = N(σ), ‖ϕ∧
2Mn

(π0f)‖∞ ≤
2Mn ≤ m(n, σ,N(σ)) and V (ϕ∧

2Mn
(π0f)) ≤ V (π0f) ≤ σ, we have by

Lemma A.5:

R◦
1 ≤ C◦

n

ψ(σ)2
.

• It holds that |{min{Δjf, 2mj} : f ∈ F(Mn)}| ≤ Nj+1. We have ‖min{Δjf,
2mj}‖∞ ≤ 2mj = m(n, δj , Nj+1) and V (min{Δjf, 2mj}) ≤ V (Δjf) ≤ δj .
We conclude by Lemma A.5 that:

R◦
3 ≤ C◦

n

τ+1∑
j=0

1

ψ(δj)2
.

Inserting the bounds for R◦
i , i = 1, 2, into (A.42) yields

P(Ωc
n) ≤ 2C◦

n

∞∑
j=0

1

ψ(δj)2
. (A.43)

We now have

∞∑
j=0

1

ψ(δj)2
≤ 2

∫ σ

0

1

εψ(ε)2
dε =

2

log(log(σ))
.

We conclude that for each η > 0,

P

(
sup
f∈F

|G(1)
n (f)| > η

)
≤ P

(
sup
f∈F

|G(1)
n (f)| > η,Ωn

)
+ P(Ωc

n)

≤ 1

η
E sup

f∈F
|G(1)

n (f)|1Ωn + P(Ωc
n).

Insertion of (A.33), (A.41) and (A.43) gives the result.

Proof of Corollary 4.5. We will follow the proof of [14, Corollary 4.5]. Define
F̃: = {f − g : f, g ∈ F}. We obtain

P

(
sup

V (f−g)≤σ, f,g∈F
|Gn(f)−Gn(g)| ≥ η

)
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≤ P

(
sup

V (f̃)≤σ, f̃∈F̃
|G(1)

n (f̃)| ≥ η

2

)
+ P

(
sup

V (f̃)≤σ, f̃∈F̃
|G(2)

n (f̃)| ≥ η

2

)
.(A.44)

Now let F (z, u) := 2D∞
n (u) · F̄ (z, u), where F̄ is from Assumption 2.3. Then

obviously, F is an envelope function of F̃ .
We now discuss the second summand on the right hand side in (A.44). By

Markov’s inequality and [14, Theorem 4.4] applied to Wi(f) = E[f(Zi,
i
n )|Zi−1],

we obtain as in the proof of [14, Corollary 4.5] that

P

(
sup

V (f̃)≤σ, f̃∈F̃
|G(2)

n (f̃)| ≥ η

2

)

≤ c̃

(η/2)

[
2
√
2(1 +

D
∞
n

Dn
+

Dn

D∞
n

)

∫ σ/2

0

√
1 ∨H(u,F , V )du

+
4
√

1 ∨H(σ2 )

r( σ
Dn

)

∥∥F 21{F> 1
4n

1/2 r(σ)√
1∨H(σ

2
)
}
∥∥
1,n

]
. (A.45)

The first summand in (A.45) converges to 0 for σ → 0 (uniformly in n) since

sup
n∈N

∫ σ/2

0

√
1 ∨H(u,F , V )du ≤ sup

n∈N

∫ σ

0

ψ(ε)
√
1 ∨H(ε,F , V )dε < ∞.

We now discuss the second summand in (A.45). The continuity conditions
from Assumption 2.3 on F̄ yield as in the proof of Lemma A.6(ii) that for
all u, u1, u2, v1, v2 ∈ [0, 1],

‖F̄ (Zi, u)− F̄ (Z̃i(
i

n
), u)‖2 ≤ Ccont · n−αs/2,(A.46)

‖F̄ (Zi(v1), u1)− F̄ (Z̃i(v2), v2)‖2 ≤ Ccont ·
(
|v1 − v2|αs/2 + |u1 − u2|αs

)
.(A.47)

In the same manner of [14, Corollary 4.5], we now obtain with (A.46) and (A.47)
that ∥∥F 21{F> 1

4n
1/2 r(σ)√

1∨H(σ
2

)
}
∥∥
1,n

→ 0 (A.48)

for n → ∞ (this is obvious if Zi is stationary, i.e. the first part of Assumption 2.3
is fulfilled), which shows that (A.45) converges to 0 for σ → 0, n → ∞.

We now consider the first term in (A.44). By Theorem 4.3, we have with
some universal constant c > 0 that

P

(
sup

V (f̃)≤σ, f̃∈F̃
|G(1)

n (f̃)| ≥ η

2

)

≤ 2

η

[
c
(
1 +

D
∞
n

Dn
+

Dn

D∞
n

)
·
∫ σ

0

ψ(ε)
√
1 ∨H

(
ε, F̃ , V

)
dε

+
4
√

1 ∨H(σ2 )

r( σ
Dn

)

∥∥F 21{F> 1
4m(n,σ,N(σ

2 ))}
∥∥
1

]

+c
(
1 + q∗

(
C−1

Δ C−2
β

)(D∞
n

Dn

)2)∫ σ

0

1

εψ(ε)2
dε. (A.49)
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For the first summand in (A.49),∫ σ

0

ψ(ε)

√
1 ∨H(ε, F̃ , V )dε

≤ 2
√
2

∫ σ/2

0

ψ(2ε)
√
1 ∨H(ε,F , V )dε ≤ 2

√
2

∫ σ/2

0

ψ(ε)
√
1 ∨H(ε,F , V )dε.

Note that it is easily seen that N(ε, F̃ , V ) ≤ N( ε2 ,F , V )2 (cf. [17], Theorem
19.5), thus

H(ε, F̃ , V ) ≤ 2H(
ε

2
,F , V ). (A.50)

Together with (4.7) and the uniform boundedness of Dn,D
∞
n , we obtain that

the first summand in (A.49) converges to 0 for σ → 0 (uniformly in n).
The third summand in (A.49) converges to 0 for σ → 0 (uniformly in n) since∫∞

0
εψ(ε)2dε < ∞ and by the uniform boundedness of Dn,D

∞
n .

The second summand in (A.49) converges to 0 for n → ∞ by (A.48).

A.3. Proofs of Section 3

Lemma A.6. Let F satisfy Assumptions 2.5, 2.4. Suppose that Assumptions
2.2, 2.3 hold. Then there exist constants Ccont > 0, Cf̄ > 0 such that for any
f ∈ F ,

(i) for any j ≥ 1,

‖Pi−jf(Zi, u)‖2 ≤ Df,n(u)Δ(j),

sup
i=1,...,n

‖f(Zi, u)‖2 ≤ CΔ ·Df,n(u),

sup
i,u

‖f̄(Zi, u)‖2 ≤ Cf̄ , sup
v,u

‖f̄(Z̃0(v), u)‖2 ≤ Cf̄ .

(ii) with x = 1
2 ,

‖f̄(Zi, u)− f̄(Z̃i(
i

n
), u)‖2 ≤ Ccont · n−ςsx, (A.51)

‖f̄(Z̃i(v1), u1)− f̄(Z̃i(v2), u2)‖2
≤ Ccont ·

(
|v1 − v2|ςsx + |u1 − u2|ςs

)
. (A.52)

Proof of Lemma A.6. (i) If Assumption 2.2 is satisfied, we have by Lemma A.1
that

‖Pi−jf(Zi, u)‖2 = ‖Pi−jE[f(Zi, u)|Ai−1]‖2
≤ ‖E[f(Zi, u)|Ai−1]− E[f(Zi, u)|Ai−1]

∗(i−j)‖2
≤ Df,n(u)Δ(j).

The second assertion follows from Lemma A.1.
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(ii) Let C̄R := supv,u ‖R̄(Z̃0(v), u)‖2 and CR := max{supi,u ‖R(Zi, u)‖2,
supu,v ‖R(Z̃0(v), u)‖2}. We first use Assumption 2.4 and Hölder’s inequal-
ity to obtain

‖f̄(Z̃i(v), u1)− f̄(Z̃i(v), u2)‖2 (A.53)

≤ |u1 − u2|ς ·
(
‖R̄(Z̃i(v), u1)‖2 + ‖R(Z̃i(v), u2)‖2

)
≤ 2C̄R|u1 − u2|ς . (A.54)

Assume w.l.o.g. that

sup
u,v

1

cs
E

[
sup

|a|LF ,s≤c

∣∣f̄(Z̃0(v), u)− f̄(Z̃0(v) + a, u)
∣∣2] ≤ CR.

(which is obvious if Zi is stationary, i.e. the first part of Assumption 2.3
is fulfilled; in this case Zi = Z̃i(v) for all v). Let cn > 0 be some sequence.
Let Cf̄ := max{supi,u ‖f(Zi, u)‖2p̄, supu,v ‖f(Z̃0(v), u)‖2p̄}. Then we have
by Jensen’s inequality,∥∥f̄(Zi, u)− f̄(Z̃i(v), u)

∥∥
2

≤ E

[∣∣f̄(Zi, u)− f̄(Z̃i(v), u)
∣∣21{|Zi−Z̃i(v)|LF ,s≤cn}

]1/2
+E

[
(f̄(Zi, u)− f̄(Z̃i(v), u)

21{|Zi−Z̃i(v)|LF ,s>cn}

]1/2
≤ E

[
sup

|a|LF ,s≤cn

∣∣f̄(Z̃i(v), u)− f̄(Z̃i(v) + a, u)
∣∣2]1/2

+
{∥∥f̄(Zi, u)

∥∥
2p̄

+ f̄(Z̃i(v), u)
∥∥
2p̄

}
P(|Zi − Z̃i(v)|LF ,s > cn)

p̄−1
2p̄

≤ CRc
s
n + 2Cf̄

(‖|Zi − Z̃i(v)|LF ,s‖ 2p̄s
p̄−1

cn

)s

≤ CRc
s
n + 2Cf̄CX(|LF |1 +

∞∑
j=0

LF,jj
ςs) ·

{|v − i
n |ςs + n−ςs}
csn

.

We obtain with ccont := CR + 2Cf̄CX(|LF |1 +
∑∞

j=0 LF,jj
ςs) that

‖f̄(Zi, u)− f̄(Z̃i(v), u)‖2 ≤ ccont ·
[
csn +

|v − i
n |ςs + n−ςs

csn

]
. (A.55)

Furthermore, as above, for any c > 0,

‖f(Z̃i(v1), u)− f(Z̃i(v2), u)‖2

≤ CRc
s + 2Cf̄

(‖|Z̃0(v1)− Z̃0(v2)|sLF ,s‖ 2p̄
p̄−1

c

)s

≤ CRc
s + 2Cf̄CX |LF |1 ·

|v1 − v2|ςs
cs

. (A.56)

From (A.55), we obtain the first assertion with v = i
n . The second assertion

follows from (A.56) and (A.54).
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A.4. Details of Section 2.6

We first show that the supremum over x ∈ R, v ∈ [0, 1] can be approximated
by a supremum over grids x ∈ Xn, v ∈ Vn.

For some Q > 0, put cn = Qn
1
2s . Define the event An = {supi=1,...,n |Xi| ≤

cn}. Then by Markov’s inequality,

P(Ac
n) ≤ n · ‖Xi‖2s2s

Q2sc2sn
≤ C2s

X n

c2sn
(A.57)

is arbitrarily small for Q large enough.
Put ĝ◦n,hn

(x, v) := 1
n

∑n
i=1 Kh1,n(i/n− v)Kh2,n(Xi − x)1{|Xi|≤cn}. Then

on An, ĝ◦n,hn
(·) = ĝn,hn(·). (A.58)

Furthermore, √
nh1,nh2,n

∣∣Eĝn,hn(x, v)− Eĝ◦n,hn
(x, v)

∣∣
≤

√
nh1,nh2,n|K|∞

nh1,n

n∑
i=1

E[Kh2,n(Xi − x)1{|Xi|>cn}]

≤
√
nh1,nh2,n(h1,nh2,n)

−1|K|∞c−2s
n sup

i
E[K(

Xi − x

h2,n
)|Xi|2s]

≤ Q−2s(nh1,nh2,n)
−1/2|K|2∞C2s

X = o(1). (A.59)

For |x| > 2cn, we have Kh2,n(Xi − x)1{|Xi|≤cn} ≤ h−1
n ( cn

hn
)−pK = hpK−1

n c−pK
n

and thus√
nhn|ĝ◦n,hn

(x, v)− Eĝ◦n,hn
(x, v)| ≤ 2|K|∞CK

h
1/2
1,n

(nh2,n)
1/2hpK−1

2,n c−pK
n

≤
hpK

2,n

QpK (nh1,nh2,n)1/2
= o(1). (A.60)

By (A.58), (A.59) and (A.60), we have on An,√
nh1,nh2,n sup

x∈R,v∈[0,1]

|ĝn,hn(x, v)− Eĝn,hn(x, v)|

=
√

nh1,nh2,n sup
x∈R,v∈[0,1]

|ĝ◦n,hn
(x, v)− Eĝ◦n,hn

(x, v)|+ op(1)

=
√

nh1,nh2,n sup
|x|≤2cn,v∈[0,1]

|ĝ◦n,hn
(x, v)− Eĝ◦n,hn

(x, v)|+ op(1)

=
√

nh1,nh2,n sup
|x|≤2cn,v∈[0,1]

|ĝn,hn(x, v)− Eĝn,hn(x, v)|+ op(1).(A.61)

Let Xn = {in−3 : i ∈ {−2�cn�n3, ..., 2�cn�n3}} be a grid that approximates
each x ∈ [−2cn, 2cn] with precision n−3, and Vn = {in−3 : i = 1, ..., n3}. Since
K are Lipschitz continuous with constant LK ,√

nh1,nh2,n sup
|x−x′|≤n−3,|v−v′|≤n−3

∣∣(ĝn,hn(x, v)− Eĝn,hn(x, v)
)



Empirical process theory under functional dependence 3427

−
(
ĝn,hn(x

′, v)− Eĝn,hn(x
′, v)

)∣∣
≤ 2

√
n√

h1,nh2,n

sup
|x−x′|≤n−3,|v−v′|≤n−3

[LK |K|∞|x− x′|
h2,n

+
LK |K|∞|v − v′|

h1,n

]
= O(n−1). (A.62)

We conclude from (A.57), (A.61) and (A.62) that√
nh1,nh2,n sup

x∈R,v∈[0,1]

|ĝn,hn(x, v)− Eĝn,hn(x, v)|

=
√
nh1,nh2,n sup

x∈Xn,v∈Vn

|ĝn,hn(x, v)− Eĝn,hn(x, v)|+Op(1) (A.63)

It was already shown that Assumption 2.2 is satisfied. Furthermore, we can

choose Dn = |K|∞, D∞
ν2,n = |K|∞√

h1,n

with ν2 = ∞, and F̄ (z, u) = supf∈F f̄(z, u) ≤
|K|∞√
h2,n

=: CF̄ ,n. Note that

E[(
√
h2,nKh2,n(Xi − x))2]

= E
[
E[(

√
h2,nKh2,n(Xi − x))2|Xi−1]

]
=

∫ (∫
K(w)κfXi|Xi−1=z(x+ wh2,n)dw

)1/κ

dPXi−1(z)

≤ C∞ · (
∫

K(w)2dw)1/2.

therefore

‖fx,v‖2,n ≤ DnC∞

∫
K(w)2dw,

which implies σ := supn∈N supf∈F Vn(f) < ∞. Due to Δ(k) = O(k−αs), the
last condition in (4.4) is fulfilled if

sup
n∈N

log(n)

nh2,nh
αs

αs−1

1,n

< ∞.

By Corollary 4.2, we have√
nh1,nh2,n sup

x∈Xn,v∈Vn

∣∣ĝn,hn(x)− Eĝn,hn(x, v)
∣∣

= sup
f∈F

|Gn(f)| = Op(
√

log |F|) = O(
√

log(n)).

With (A.63), it follows that

√
nh1,nh2,n sup

x∈R,v∈[0,1]

|ĝn,hn(x, v)− Eĝn,hn(x, v)| = Op

(√
log(n)

)
.
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