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Abstract: In this paper, we study the distribution of the so-called “Yule’s
nonsense correlation statistic” on a time interval [0, T ] for a time horizon
T > 0, when T is large, for a pair (X1, X2) of independent Ornstein-
Uhlenbeck processes. This statistic is by definition equal to:

ρ(T ) :=
Y12(T )√

Y11(T )
√

Y22(T )
,

where the random variables Yij(T ), i, j = 1, 2 are defined as

Yij(T ) :=

∫ T

0
Xi(u)Xj(u)du− TX̄iX̄j , X̄i :=

1

T

∫ T

0
Xi(u)du.

We assume X1 and X2 have the same drift parameter θ > 0. We also study
the asymptotic law of a discrete-type version of ρ(T ), where Yij(T ) above
are replaced by their Riemann-sum discretizations. In this case, conditions
are provided for how the discretization (in-fill) step relates to the long
horizon T . We establish identical normal asymptotics for standardized ρ(T )
and its discrete-data version. The asymptotic variance of ρ(T )T 1/2 is θ−1.
We also establish speeds of convergence in the Kolmogorov distance, which
are of Berry-Esséen-type (constant*T−1/2) except for a lnT factor. Our
method is to use the properties of Wiener-chaos variables, since ρ(T ) and
its discrete version are comprised of ratios involving three such variables in
the 2nd Wiener chaos. This methodology accesses the Kolmogorov distance
thanks to a relation which stems from the connection between the Malliavin
calculus and Stein’s method on Wiener space.
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1. Introduction

In this paper, we study the normal asymptotics in law of the so-called “Yule’s
nonsense correlation statistic” on a time interval [0, T ] when the time horizon
T > 0 tends to infinity, for two independent paths of the Ornstein-Uhlenbeck
(OU) stochastic processes. This statistic is defined as:

ρ(T ) :=
Y12(T )√

Y11(T )
√

Y22(T )
, (1.1)

where the random variables Yij(T ), i, j = 1, 2 are given by

Yij(T ) :=

∫ T

0

Xi(u)Xj(u)du− TX̄i (T ) X̄j (T ) , X̄i (T ) :=
1

T

∫ T

0

Xi(u)du,

(1.2)
and (X1, X2) is a pair of two independent OU processes with the same known
drift parameter θ > 0, namely Xi solves the linear SDE, for i = 1, 2

dXi(t) = −θXi(t)dt+ dW i(t), t ≥ 0 (1.3)

with Xi(0) = 0, i = 1, 2, where the driving noises (W 1(t))t≥0, (W 2(t))t≥0

are two independent standard Brownian motions (Wiener processes). We also
study the asymptotic law of a discrete-data version of ρ(T ), denote by ρ̃(n) for n
observations, where the Riemann integrals in (1.2) are replaced by Riemann-sum
approximations.

It has been known since 1926 that a discrete version of the statistic ρ, which
is the Pearson correlation coefficient, does not behave the same way when the
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data from X1 and X2 are i.i.d. and as when they are the discrete-time observa-
tions of a random walk. As is universally known for i.i.d. data, and also holds
for shorter-memory models, ρ̃(n) converges in probability to 0 under all but the
most extreme circumstances (data coming from a distribution with no second
moment), but G. Udny Yule showed in [12] that when the data come from a
random walk, ρ̃(n) does not concentrate, and has a law which seems to converge
instead to a diffuse distribution on (−1, 1). The exact variance and other sta-
tistical properties of this law remained unknown with mathematical precision,
though a 1986 paper [5] by P.C.B. Phillips showed that the limiting law of ρ̃(n)
with simple symmetric random-walk data rescaled to the time interval [0, 1] is
the same as the law of ρ(1) for two independent Wiener processes, which is in-
deed necessarily diffuse and fully supported on (−1, 1). This advance prompted
several talented prominent probabilists to look for ways of computing statistics
of ρ(1), if even only its variance, but this remained elusive until 2017, when Ph.
Ernst and two collaborators (one posthumous) provided a closed-form expres-
sion for V ar[ρ(1)] in [1]. Since then, other advances on the moments of ρ(1)
have been made, particularly [2], and recent progress was recorded in [3] on
how to compute the momens of ρ̃(n) when the paths (X1, X2) are independent
Gaussian simple-symmetric random walks. In all cases mentioned in this para-
graph, the asymptotic behavior of ρ̃(n) in law (scaled appropriately in time) is
necessarily that of ρ(1) for two independent Wiener processes.

This leaves open the question of what happens to ρ̃(n) when the paths
(X1, X2) deviate substantially from Wiener paths or random walks. Wiener
(resp. random walk) paths have the property of exact (resp. approximate) self-
similarily. We take up the question of using different kinds of paths, with the
simplest possible example of a clear alternative to self-similar processes, namely
the ubiquitous mean-reverting OU processes. The property of mean reversion
is so distinct from self-similarily, that the behavior of ρ(T ) changes drastically
from one to the other. Note that these two classes of processes are simply those
satisfying (1.3) with θ = 0 (Wiener process) or θ �= 0 (OU process). To illus-
trate the point of how distinct these processes are, let us extend the scope of
this paper momentarily, to include all processes defined by (1.3) (with or with-
out θ = 0), by replacing W with a fractional Brownian motion (fBm) denoted
by BH , for some H ∈ (0, 1). Like the Wiener process, which corresponds to
H = 1/2, the self-similar property of BH simply states that for any fixed real
constant a, BH(a·) = aHBH (·) in law. By using this property with a = T via
the change of variable u′ = u/T in the Riemann integrals defining ρ(T ), we
obtain immediately the equality in law

Yij (T ) =

∫ 1

0

THXi(u
′)THXj(u

′)Tdu′ − T−1TH+1X̄i (1)T
H+1X̄j (1)

= T 2H+1Yij (1)

and therefore
L (ρ (T )) = L (ρ (1)) .

In fact, we only used the property of self-similarity to get the above. In other
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words, for any pair of self-similar processes, the law of the nonsense correlation
ρ (T ) is constant as the time horizon T increases. In stark contrast, in this paper,
we show that, for a pair of OU processes, the law of ρ (T ) converges to the Dirac
mass at 0. As mentioned, we show more: a central limit theorem for ρ (T )

√
T

(the mean of ρ (T ) is always 0), with asymptotic variance equal to θ−1, and a
speed of convergence of L

(
ρ (T )T 1/2

)
to N

(
0, θ−1

)
in Kolmogorov metric at

the rate T−1/2 lnT .
The discrete-observation part of this paper simply replaces the Riemann in-

tegrals by the Riemann sums, for instance replacing the first integral in Yij (T )

by Δn

∑n−1
k=0 Xi(tk)Xj(tk) where Δn = T/n and tk = kT/n. We denote the re-

sulting empirical correlation by ρ̃(n) rather than ρ(T ). It is convenient to note
that T = nΔn can be thought of as depending on n, and we will systematically
emphasize this by denoting T = Tn. It is assumed that the discretization step
Δn converges to 0 while Tn = T tends to ∞, which means that n � Tn in our
asymptotics. We provide a full range of speeds of convergence in central limit
theorem depending on how fast Δn converges to 0. We find in fact that we must
have TnΔn = nΔ2

n → 0 as n → ∞, and we also note that nΔn = Tn = T → ∞,
as well it should. Our convergence result, which immediately implies the central

limit theorem limn→∞ L
(
ρ̃(n)T

1/2
n

)
= N

(
0, θ−1

)
, is

dKol

(√
θ
√

Tnρ̃(n),N (0, 1)
)

� c(θ)× ln(nΔn)max
(
(nΔn)

−1/2, (nΔ2
n)

1
3

)
= c(θ)× ln(Tn)max

(
T−1/2
n , (TnΔn)

1
3

)
.

From this, we can immediately read off that a rather optimal rate of sampling
of our discrete data is one for which the two terms in the max are of the same
order, i.e. T

−1/2
n 
 (TnΔn)

1
3 , which is equivalent to requiring that Δn be of

order T
−5/2
n , which in turn, since Tn = nΔn, is equivalent to Δn of order n−5/7.

This is explained in more detail in the conclusion of the section on discrete data.
In any case, in Kolmogorov distance, we see that the best rate of convergence

of
√
Tnρ̃(n) to N

(
0, θ−1

)
is of order T

−1/2
n lnTn, which is exactly the same rate

as in the case of continuous data, and which occurs for a relatively frequency

of observations of order Δ−1
n = T

5/2
n over unit intervals. Lower frequency of

observations lead to slower convergence rate in Kolmogorov distance in the scale
of the time horizon Tn compared to continuous observation. Higher frequency of

observation leads to the same rate T
−1/2
n lnTn as with continuous observations,

but this can be considered wasteful since the same rate was achieved at the
optimal frequency of Δ−1

n = T
5/2
n per unit time. It is worth stating again that

these results in discrete time, pertaining to the convergence rate in the CLT for√
Tnρ̃(n), are a second-order result compared to the CLT itself, i.e.

lim
n→∞

√
Tnρ̃(n) = lim

T→∞

√
Tρ(T ) = N (0, θ−1)

which holds in law identically in both the discrete and continuous data cases.
As mentioned, we use techniques from analysis on Wiener chaos to prove the

above results. Some of these results are technical and novel, and we provide here
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a few points in the hopes of enlightening the methods. A key element comes from
the connection discovered by I. Nourdin and G. Peccati (see [8]) between the
Malliavin calculus and Stein’s method. In that connection, the distance in law
between a random variable X and the standard normal law can be measured to
some extent by comparing the Hilbert-space norm of the Malliavin derivative
DX to the value 1, which is the value one would find for the norm of the
Malliavin derivative of a standard normal variable N under any reasonable
coupling of X and N , i.e. under any reasonable representation of X on Wiener
space. The question of how to represent X on Wiener space is typically trivial
when dealing with functionals of stochastic processes based on Wiener processes,
and this is certainly the case in our paper. The question of whether DX is an
adeqate functional of X to make the comparison with N (0, 1) is less trivial.
The original work in [4] noted that it is sufficient for variables on Wiener chaos,
and used an auxiliary random variable GX which is slightly more involved than
‖DX‖2 to establish broader convergence in law beyond fixed chaos. That same
random variable GX was used in [9] to characterize laws on Wiener chaos at
the level of densities, and was used specifically in [6, Theorem 2.4] to measure
distances between laws in the Kolmogorov metric. We use that theorem herein,
by applying it separately to all three Wiener chaos components Y11,Y22, Y12

which are used to calculate ρ (T ), noting as in [4] that GX = 2 ‖DX‖2.

The above elements are explained in the preliminary section on analysis on
Wiener space below. They are used herein via standard computations of vari-
ances and differentiation and product rules for variables on Wiener chaos which
are represented as double Wiener integrals with respect to the Wi’s, leading
to computing the asymptotic variance of the rescaled numerator T−1/2Y12(T ),
namely 1/4θ3, and the speed of convergence of the variances to this limit, includ-
ing precise estimations of the constants in this rate of convergence as functions
of θ. It turns out that the rescaled denominator T−1(Y11 (T )Y22 (T ))

1/2 does
not have normal fluctuations, but rather converges to the constant 1/2θ. We es-
tablish this too. Adding to this that the numerator, as a second-chaos variable,
has mean zero, this indicates that the entire rescaled fraction ρ should converge
in law to N

(
0, θ−1

)
. Finding a presumably sharp rate of this convergence in

Kolmogorov metric is the main technical issue we tackle in this paper. Estab-
lishing this for the numerator alone is a key quantitative estimate. We use [6,
Theorem 2.4] and our ability to compute the norm of the Malliavin derivative of

the first double Wiener integral
∫ T

0
Xi(u)Xj(u)du in the expression for Y12 (T ),

and we find a rate of normal convergence of order T−1/2. However, we must also
handle the second term in Y12 (T ), which is the (rescaled) product X̄1(T )X̄2(T )
of two independent normal variables, which are both non-independent from the
first part of Y12 (T ). For this, we appeal to a 1971 theorem of Michel and Pfan-
zagl [11] which allows us to decouple the dependence of a sum (resp. a ratio) of
two variables when comparing them to a normal law in Kolmogorov distance.
We specialize this theorem to the case when the second summand (resp. the
denominator) is a product normal variable (resp. the root of a product nor-
mal), establishing an optimal use of it in this special case. See Proposition 3.4,
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Corollary 3.6, Proposition 3.7 and estimate (3.17), and estimate (3.25).

This optimal use of this decoupling technique comes at the very small cost
of adding a factor of lnT to our rate of convergence. We believe this factor
is optimal given our use of [11], and is determined by the weight of the tail
of a product normal law, which is asymptotically the same as the tail of a
chi-square variable with one degree of freedom, which in logarithmic scale, is
the same as an exponential tail. The interested reader can check that any use
of Holder’s inequality or similar methods based on moments, cannot achieve
this more efficient method, leading instead to a rate of convergence of T−α for
α < 1/2. The reader will also observe our use of the fine structure of the second
Wiener chaos as a separable Hilbert space, to deal with the tail distribution of
ρ’s denominator terms. This structure is documented for instance in [8, Section
2.7.4] where it is shown that every second-chaos variable can be represented as a
series

∑
k λkχ

2
k where

(
χ2
k

)
k
is a sequence of i.i.d. mean-zero chi-square variables

with one degree of freedom, and (λk)k is in �2. In our case, the reader will observe
that the terms in the denominator of ρ also contain non-zero expectations, that
their λk’s are positive and in �1, and that the expectations equal

∑
k λk. This

fact is essential to us being able to control the denominator.

The techniques used to establish results in the case of discrete observations
are similar to those in the continuous case. Additional ingredients include the
rate of convergence of the Riemann-sum version of the first integral in Y12 (Tn)
to its limit. This rate turns out to be nΔ2

n where, as mentioned, n is the number
of observations in (0, Tn], and the regular mesh is Δn. The use of the aforemen-
tioned Michel-Pfanzagl theorem from [11] to deal with the product-normal term
in the numerator has to be optimized against this dicretization error; this is

where the term
(
nΔ2

n

)1/3
comes from, whereas the term (nΔn)

−1/2
is none

other than the same convergence rate T−1/2 for the numerator in Kolmogorov
distance as in the continuous case. See Lemma 4.1 and Proposition 4.3. The
use of the sum version of the Michel-Pfanzagl theorem from our Corollary 3.6
leads again to a leading log correction factor lnTn = ln (nΔn). The denomina-
tor terms also require a careful analysis, though no additional ideas are needed
beyond what was already established in the continuous case.

With this roadmap summary complete, the structure of this paper should
appear as straightforward. We begin with a section of preliminaries presenting
the tools needed from analysis on Wiener space, followed by a section covering
the convergence in the continuous case, and then a section dealing with the
case of discrete data. The final section provides some numerics to illustrate
the convergence rates in practice, wherein we find that in discrete time, the
time-scaled ρ̃ (n) does indeed behave in distribution largely like a normal with
variance θ−1, even without using the optimal observation frequency.
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2. Preliminaries

2.1. Elements of analysis on Wiener space

With (Ω,F ,P) denoting the Wiener space of a standard Wiener processW , for a
deterministic function h ∈ L2 (R+) =: H, the Wiener integral

∫
R+

h (s) dW (s)

is also denoted by W (h). The inner product
∫
R+

f (s) g (s) ds will be denoted

by 〈f, g〉H.

• The Wiener chaos expansion. For every q ≥ 1, Hq denotes the qth
Wiener chaos of W , defined as the closed linear subspace of L2(Ω) gener-
ated by the random variables {Hq(W (h)), h ∈ H, ‖h‖H = 1} where Hq is
the qth Hermite polynomial. Wiener chaos of different orders are orthog-
onal in L2 (Ω). The so-called Wiener chaos expansion is the fact that any
X ∈ L2 (Ω) can be written as

X = E[X] +

∞∑
q=1

Xq (2.1)

for some Xq ∈ Hq for every q ≥ 1. This is summarized in the direct-
orthogonal-sum notation L2 (Ω) = ⊕∞

q=0Hq. Here H0 denotes the con-
stants.

• Relation with Hermite polynomials. Multiple Wiener integrals.
The mapping Iq(h

⊗q) : = q!Hq(W (h)) is a linear isometry between the
symmetric tensor productH�q (equipped with the modified norm ‖.‖H�q =√
q!‖.‖H⊗q) and Hq. Hence, for X and its Wiener chaos expansion (2.1)

above, each term Xq can be interpreted as a multiple Wiener integral
Iq (fq) for some fq ∈ H�q.

• Isometry Property-Product formula. For any integers 1 � q � p and
f ∈ H�p and g ∈ H�q, we have

E[Ip(f)Iq(g)] =

⎧⎨
⎩

p!〈f, g〉H⊗p if p = q

0 otherwise.
(2.2)

For any integers p, q ≥ 1 and symmetric integrands f ∈ H�p and g ∈ H�q,

Ip(f)Iq(g) =

p∧q∑
r=0

r!Cr
pC

r
q Ip+q−2r(f⊗̃rg); (2.3)

where f ⊗r g is the contraction of order r of f and g which is an element
of H⊗(p+q−2r) defined by

(f ⊗r g)(s1, . . . , sp−r, t1, . . . , tq−r)

=

∫
Rp+q−2r

+

f(s1, . . . , sp−r, u1, . . . , ur)g(t1, . . . , tq−r, u1, . . . , ur) du1 · · · dur.
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while (f⊗̃rg) denotes its symmetrization. More generally the symmetriza-
tion f̃ of a function f is defined by f̃(x1, ..., xp) =

1
p!

∑
σ f(xσ(1), ..., xσ(p))

where the sum runs over all permutations σ of {1, ..., p}. The special case
for p = q = 1 in (2.3) is particularly handy, and can be written in its
symmetrized form:

I1(f)I1(g) = 2−1I2 (f ⊗ g + g ⊗ f) + 〈f, g〉H. (2.4)

where f ⊗ g means the tensor product of f and g.
• Hypercontractivity in Wiener chaos. For h ∈ H⊗q, the multiple

Wiener integrals Iq(h), which exhaust the set Hq, satisfy a hypercontrac-
tivity property (equivalence in Hq of all Lp norms for all p ≥ 2), which
implies that for any F ∈ ⊕q

l=1Hl (i.e. in a fixed sum of Wiener chaoses),
we have (

E
[
|F |p

])1/p � cp,q
(
E
[
|F |2

])1/2
for any p ≥ 2. (2.5)

The constants cp,q above are known with some precision when F ∈ Hq:

by Corollary 2.8.14 in [8], cp,q = (p− 1)
q/2

.
• Malliavin derivative. For any function Φ ∈ C1 (R) with bounded deriva-

tive, and any h ∈ H, the Malliavin derivative D of the random variable
X := Φ (W (h)) is defined to be consistent with the following chain rule:

DX : X �→ DrX := Φ′ (W (h))h (r) ∈ L2 (Ω×R+) .

A similar chain rule holds for multivariate Φ. One then extends D to the
so-called Gross-Sobolev subset D1,2 � L2 (Ω) by closing D inside L2 (Ω)

under the norm defined by ‖X‖21,2 := E
[
X2

]
+
∫
R+

E|DrX|2dr. All Wiener

chaos random variable are in the domain D1,2 of D. In fact this domain
can be expressed explicitly for any X as in (2.1): X ∈ D1,2 if and only if∑

q qq!‖fq‖2H⊗q < ∞.
• Generator L of the Ornstein-Uhlenbeck semigroup. The linear op-

erator L is defined as being diagonal under the Wiener chaos expansion of
L2 (Ω): Hq is the eigenspace of L with eigenvalue −q, i.e. for any X ∈ Hq,
LX = −qX. We have Ker(L) = H0, the constants. The operator −L−1 is
the negative pseudo-inverse of L, so that for anyX ∈ Hq,−L−1X = q−1X.

• Kolmogorov distance. Recall that, if X,Y are two real-valued random
variables, then the Kolmogorov distance between the law of X and the
law of Y is given by

dKol (X,Y ) = sup
z∈R

|P [X � z]−P [Y � z]|

If X ∈ D1,2, with E[X] = 0 and Y = N (0, 1), then (Theorem 2.4 in [6]),
then

dKol (X,Y ) �
√

E[(1− 〈DX,−DL−1X〉H)2]

If moreover,X = Iq(f) for some q ≥ 2, f ∈ H�q, then 〈DX,−DL−1X〉H =
q−1‖DX‖2H, and thus in this case
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dKol (X,Y ) �
√

E[(1− q−1‖DX‖2H)2] (2.6)

Lemma 2.1. Let γ > 0. Let (Zn)n∈N be a sequence of random variables. If for
every p ≥ 1 there exists a constant cp > 0 such that for all n ∈ N,

‖Zn‖Lp(Ω) � cp · n−γ ,

then for all ε > 0 there exists a random variable ηε which is almost surely finite
such that

|Zn| � ηε · n−γ+ε almost surely

for all n ∈ N. Moreover, E|ηε|p < ∞ for all p ≥ 1.

3. Continuous observations

In this section, we compute the asymptotic variance of ρ(T ) and its normal
fluctuations for large T , by working with each of the three terms which appear
in its definition. For the sake of convienence and compactness of notation, we
construct a two-sided Brownian motion (W (t))t∈R from the two independent
Brownian motions (W 1(t))t≥0 and (W 2(t))t≥0 as follows:

W (t) := W 1(t)1{t≥0} +W 2(−t)1{t<0}, t ∈ R.

The following lemma will be convenient in the sequel.

Lemma 3.1. Let f , g ∈ L2(R+), then

IW
1

1 (f)IW
2

1 (g) = IW2 (f̄ ⊗ ¯̄g)

where f̄ , ¯̄g in L2(R) are defined by

f̄(x) = f(x)1{x≥0}, ¯̄g(x) = −g(−x)1{x<0}.

Proof. Using the product formula of multiple integrals, we have

IW2 (f̄ ⊗ ¯̄g) = IW1 (f̄)IW1 (¯̄g)− E
[
IW1 (f̄)IW1 (¯̄g)

]
=

(∫
R

f̄(x)dWx

)(∫
R

¯̄g(x)dWx

)
− E

〈
f̄ , ¯̄g

〉
L2(R)

=

(∫ ∞

0

f(x)dW 1
x

)(∫ ∞

0

g(x)dW 2
x

)

= IW
1

1 (f)IW
2

1 (g),

which completes the proof.
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3.1. Asymptotic distribution of Y12(T )√
T

:

The numerator of ρ(T ) can be written as follows

Y12(T )√
T

= FT −
√
TX̄1(T )X̄2(T ) (3.1)

where FT := 1√
T

∫ T

0
X1(t)X2(t)dt. Using the notation IW1 for the Wiener inte-

gral with respect to W , since Xi(t) =
∫ t

0
e−θ(t−u)dW i(u) = IW

i

1 (ft), i = 1, 2

where ft(.) := e−θ(t−.)1[0,t](.) we can write using Lemma 3.1

FT =
1√
T

∫ T

0

IW
1

1 (ft)I
W 2

1 (ft)dt (3.2)

= IW2 (hT ),

with hT ∈ L2([−T, T ]2) is given

hT : [−T, T ]2 → R

(x, y) �→ 1√
T

∫ T

0

f̄t(x)
¯̄ft(y)dt (3.3)

On the other hand, we have

hT (x, y) =
1√
T

∫ T

0

−e−2θteθxe−θy1[0,t](x)1[−t,0](y)dt

=
1√
T

∫ T

0

−e−2θteθxe−θy1[x∨−y,T ](t)1[0,T ](x)1[−T,0](y)dt

=
1

2θ

1√
T
eθxe−θy

[
e−2θT − e−2θ(x∨−y)

]
1[0,T ](x)1[−T,0](y).

Note that the kernel hT is not symmetric, in the sequel we will denote h̃T its
systematization defined by h̃T (x, y) :=

1
2 (hT (x, y)+hT (y, x)). We are now ready

to compute the asymptotic variance of the main term in the numerator of ρ.

Lemma 3.2. With FT defined in (3.2), then∣∣∣∣E[F 2
T ]−

1

4θ3

∣∣∣∣ � C(θ)

T
,

where C(θ) := 9
16θ4 . In particular, limT→∞ E[F 2

T ] =
1

4θ3 .

Proof. We have

E[F 2
T ] = E[IW2 (hT )

2]

= 2× ‖h̃T ‖2L2([−T,T ]2)
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=
1

T

1

4θ2

∫ 0

−T

∫ T

0

e2θxe−2θy
[
e−2θT − e−2θ(x∨−y)

]2
dxdy

=
1

T

1

4θ2

∫ T

0

∫ T

0

e2θxe2θz
[
e−2θT − e−2θ(x∨z)

]2
dxdz

=
1

T

1

2θ2

∫ T

0

∫ z

0

e2θxe2θz
[
e−2θT − e−2θz

]2
dxdz

=
1

T

1

4θ3

[∫ T

0

(e−2θ(T−y) − 1)2dy −
∫ T

0

e−2θy(e−2θ(T−y) − 1)2dy

]

=: A1(T ) +A2 (T )

where

|A1(T )−
1

4θ3
| :=

∣∣∣∣∣ 1T 1

4θ3

∫ T

0

(e−2θ(T−y) − 1)2dy − 1

4θ3

∣∣∣∣∣
=

∣∣∣∣ 1T 1

4θ3
[
1

4θ
(1− e−4θT ) +

1

θ
(e−2θT − 1) + T ]− 1

4θ3

∣∣∣∣
� 5

16θ4
× 1

T
,

and

|A2(T )| :=
∣∣∣∣∣ 1T 1

4θ3

∫ T

0

e−2θy(e−2θ(T−y) − 1)2dy

∣∣∣∣∣
� 1

T

1

8θ4
(1− e−4θT ) +

1

2θ3
e−2θT

� 1

4θ4
1

T
.

Proposition 3.3. Let F θ
T := 2θ3/2FT and N ∼ N (0, 1), then we have

dKol(F
θ
T , N) � c(θ)√

T
.

where c(θ) :=
√
( 9
4θ )

2 + 33

4θ . Consequently FT
L−→ N

(
0, 1

4θ3

)
as T → +∞.

Proof. We will use the estimate (2.6) recalled in the preliminaries in order to
prove this proposition. We have DtF

θ
T = 4θ3/2IW1 (h̃T (., t)), t ∈ [−T, T ], hence

1

2
‖DF θ

T ‖2L2([−T,T ])=
1

2

∫ T

−T

(DtF
θ
T )

2dt

=8θ3
∫ T

−T

IW1 (h̃T (., t))
2dt

= 8θ3

[∫ T

−T

IW2 (h̃T (., t)⊗ h̃T (., t))dt+

∫ T

−T

‖h̃T (., t)‖2L2([−T,T ])

]
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=8θ3
[
IW2 (h̃T ⊗1 h̃T ) + ‖h̃T ‖2L2([−T,T ]2)

]
,

where we used the product formula (2.4) and the fact that the kernel h̃T ⊗1 h̃T

is symmetric. Thus

E

[
(1− 1

2
‖DF θ

T ‖2L2([−T,T ]))
2

]
= (E[(F θ

T )
2]− 1)2 +27θ6 ×‖h̃T ⊗1 h̃T ‖2L2([−T,T ]2)

(3.4)
We have,

(h̃T ⊗1 h̃T )(x, y)

=

∫
[−T,T ]

h̃T (x, z)h̃T (y, z)dz

=
1

4

∫
[−T,0]

hT (x, z)hT (y, z)1[0,T ](x)1[0,T ](y)dz

+
1

4

∫
[0,T ]

hT (z, x)hT (z, y)1[−T,0](x)1[−T,0](y)dz

Hence

‖h̃T ⊗1 h̃T ‖2L2([−T,T ]2) (3.5)

� 1

8

∫
[0,T ]2

(∫
[−T,0]

hT (x, z)hT (y, z)

)2

dxdydz

+
1

8

∫
[−T,0]2

(∫
[0,T ]

hT (z, x)hT (z, y)

)2

dxdydz

On the other hand by Fubini’s theorem

∫
[0,T ]2

(∫
[−T,0]

hT (x, z)hT (y, z)dz

)2

dxdy

=
1

T 2

∫
[0,T ]2

[∫
[−T,0]

∫
[0,T ]2

f̄r(x)
¯̄fr(z)f̄s(y)

¯̄fs(z)drdsdz

]2
dxdy

=
1

T 2

∫
[0,T ]2

(∫
[0,T ]2

f̄r(x)f̄s(y)〈 ¯̄fr, ¯̄fs〉L2([−T,0])drds

)2

dxdy

=
1

T 2

∫
[0,T ]2

∫
[0,T ]4

f̄r(x)f̄s(y)f̄v(x)f̄u(y)〈 ¯̄fr, ¯̄fs〉L2([−T,0])〈 ¯̄fv, ¯̄fu〉L2([−T,0])drdsdudvdxdy

Using the fact that the other term of (3.5) can be treated similarly and that

〈 ¯̄fr, ¯̄fs〉L2([−T,0]) = 〈f̄r, f̄s〉L2([0,T ]) = E[Xi(r)Xi(s)], i = 1, 2, we get

‖h̃T ⊗1 h̃T ‖2L2([−T,T ]2)
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� 1

4

1

T 2

∫
[0,T ]4

E[Xi(r)Xi(v)]E[Xi(s)Xi(u)]E[Xi(r)Xi(s)]E[Xi(v)Xi(u)]drdsdudv

On the other hand, since for i = 1, 2, E[Xi(r)Xi(s)] = e−θ(r+s)

2θ [e2θ(r∧s) − 1] �
1
2θ e

−θ|r−s| = E[Zi(r)Zi(s)] := Q(r − s), where Zi(r) :=
∫ r

−∞ e−θ(r−t)dW i(t),
i = 1, 2 we get

‖h̃T ⊗1 h̃T ‖2L2([−T,T ]2) (3.6)

� 1

4

1

T 2

∫
[0,T ]4

Q(u− v)Q(v − r)Q(r − s)Q(s− u)dudvdrds (3.7)

=
1

4

1

T 2

∫
[0,T ]2

dudr

∫
R2

dvdsQT (u− v)QT (s− r)QT (u− s)QT (v − r) (3.8)

=
1

4

1

T 2

∫
[0,T ]2

dudr

∫
R2

dvdsQT (y)QT (u− r − x)QT (x)QT (u− r − y), (3.9)

where QT (x) := |Q(x)|1{|x|�T} and we used the change of variables y = u− v,
x = u− s. Therefore, applying Young’s inequality, we can conclude

‖h̃T ⊗1 h̃T ‖2L2([−T,T ]2) � 1

4

1

T 2

∫
[0,T ]2

dudr(QT ∗QT )(u− r)2

� 1

4

1

T

∫
R

(QT ∗QT )(z)
2dz

=
1

4

1

T
‖QT ∗QT ‖2L2(R)

� 1

4

1

T
‖QT ‖4L4/3(R) =

1

4

1

T

(∫
[−T,T ]

|Q(t)|4/3dt
)3/4

=
1

4

1

T

(
33

27θ7
(1− e−4θT/3)3

)
. (3.10)

The desired result follows using (2.6) and the estimates (3.4), (3.10) and Lemma
3.2.

We will need the following Proposition due to Michel and Pfanzagl (1971)
[11] in the sequel which gives upper bounds for Kolmogorov’s distance between
respectively the sum and the ratio of two random variables and a standard
Gaussian random variable.

Proposition 3.4. Let X, Y and Z be three random variables defined on a
probability space (Ω,F ,P) such that P(Z > 0) = 1. Then, for all ε > 0, we
have

1. dKol(X + Y,N) � dKol(X,N) +P(|Y | > ε) + ε.
2. dKol(

X
Z , N) � dKol(X,N) +P(|Z − 1| > ε) + ε.

where N ∼ N (0, 1).



Asymptotics of Yule’s nonsense correlation for Ornstein-Uhlenbeck paths 3189

Proposition 3.5. Let Y be a r.v. such that Y = N ×N ′ where N ∼ N (0, σ2
1)

and N ′ ∼ N (0, σ2
2) two independent Gaussian r.v defined on a probability space

(Ω,F ,P). Then, there exists a constant β > 2
√
3

3 σ1σ2 such that

E
[
e

Y
β

]
< 2.

Moreover, there exists a constant C >
√
3
3 π such that β < C ×E[|Y |].

Proof. By the independence of N and N ′, it’s easy to check that for any β >
σ1σ2, we have

E
[
e

Y
β

]
=

1

2πσ1σ2

∫
R2

e
xy
β e

− x2

2σ2
1 e

− y2

2σ2
2 dxdy

=
1√

(1− σ2
1σ

2
2

β2 )
.

Thus the constraint E
[
e

Y
β

]
< 2 implies that β should be such that β >

2
√
3

3 σ1σ2. On the other hand since E[|Y |] = E[|N |] × E[|N ′|] = 2σ1σ2

π , thus

there exists a constant C >
√
3
3 π such that β < C ×E[|Y |].

Corollary 3.6. Let X, Y be two r.v. defined on a probability space (Ω,F ,P)
such that Y = N × N ′ where N ∼ N (0, σ2

1) and N ′ ∼ N (0, σ2
2). Then, there

exists a constant 2
√
3

3 σ1σ2 < β � ((C ×E[|Y |]) ∧ 4) such that

dKol(X + Y,N (0, 1)) � dKol(X,N (0, 1)) + β

(
1 + ln

(
4

β

))
.

Proof. Let X, Y be two random variables, then from Michel and Pfanzagl
(1971), for all ε > 0,

dKol(X + Y,N (0, 1)) � dKol(X,N (0, 1)) +P(|Y | > ε) + ε.

Since Y = N×N ′ where N ∼ N (0, σ2
1) and N ′ ∼ N (0, σ2

2) then, by Proposition
3.5 and Markov’s inequality, we have

P(|Y | > ε) = 2×P(Y > ε) � 2×E
[
e

Y
β

]
e−

ε
β < 4e−

ε
β .

Thus we can write

dKol(X + Y,N (0, 1)) � dKol(X,N (0, 1)) + inf
ε>0

gβ(ε).

where gβ(ε) := 4e−
ε
β + ε. Since gβ is convex on R+, arg infε>0 gβ(ε) = ε∗(β) =

β ln( 4β ), β < ((C ×E[|Y |]) ∧ 4), with C the constant from Proposition 3.5. The
desired result follows.
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To prove the convergence in law of Y12(T )√
T

, recall that T−1/2Y12(T ) = FT −√
TX̄1(T )X̄2(T ). We can write X̄i(T ) := IWi

1 (gT ), i = 1, 2 where gT :=

T−1
∫ T

0
ftdt and we have for i = 1, 2

E[X̄i
2
(T )] = ‖gT ‖2L2([0,T ])

=
1

T 2

∫ T

0

(

∫ T

0

ft(u)dt)
2du

=
1

T 2

∫ T

0

e2θu(

∫ T

u

e−θtdt)2du

=
1

T 2

1

θ2

∫ T

0

(1− e−θ(T−u))2du � 1

θ2
1

T
. (3.11)

Hence by the independence ofX1 andX2 and denoting Y (T ) :=
√
TX̄1(T )X̄2(T ),

we get

E[Y (T )2] � 1

T

1

θ4
. (3.12)

Then in virtue of Proposition 3.5 and Corollary 3.6, there exists a constant β

with 4
√
3

3

√
Tθ3/2‖gT ‖2L2([0,T ]) < β < 4C

π
√
Tθ

∧ 4 such that

dKol

(
Y12(T )√

T
,N (0,

1

4θ3
)

)
� dKol

(
FT ,N (0,

1

4θ3
)

)
+ β

(
1 + ln

(
4

β

))
.

On the other hand, since the function x �→ x(1 + ln( 4x )) is increasing on (0, 4),
we have for T large enough

dKol

(
Y12(T )√

T
,N (0,

1

4θ3
)

)
� dKol

(
FT ,N (0,

1

4θ3
)

)
+

c(θ)

2

ln(T )√
T

.

The following proposition follows.

Proposition 3.7. There exists a constant C(θ) depending only on θ, such that

dKol

(
Y12(T )√

T
,N

(
0,

1

4θ3

))
� C(θ)× ln(T )√

T
.

In particular, Y12(T )√
T

L−→ N (0, 1
4θ3 ) as T → +∞.

Having just completed the study of the convergence in law of the numera-
tor in ρ(T ), in order to study the convergence in law of

√
Tρ(T ), we will use

Proposition 3.4 assertion 2 and the fact that

√
θ
√
Tρ(T ) =

2θ3/2 Y12(T )√
T

2θ
√

Y11(T )
T × Y22(T )

T

(3.13)

to show in the next subsection that the denominator concentrates to the value 1,
and that the behavior of

√
Tρ(T ) is thus given by that of the numerator above.
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3.2. The denominator term

Let us denote the denominator term

D(T ) := D := 2θ

√
Y11(T )× Y22(T )

T × T
, (3.14)

According to Proposition 3.4 assertion 2. we need to estimate P(|D−1| > ε) for
instance for 0 < ε < 1. Using the fact that D ≥ 0 a.s. then |D − 1| � |D2 − 1|
a.s. Now using the shorthand notation Ȳii(T ) :=

Yii(T )
T/2θ , i = 1, 2, thus, we have

a.s.

|D − 1| � |D2 − 1| � |Ȳ11(T )Ȳ22(T )− 1|
� |Ȳ11(T )− 1| × |Ȳ22(T )− 1|+ |Ȳ11(T )− 1|+ |Ȳ22(T )− 1|

(3.15)

Thus, using the fact that Ȳ11(T ) and Ȳ22(T ) are equal in law, we get for any
ε < 1,

P (|D − 1| > ε) � P
(
|Ȳ11(T )− 1| > ε

3

)
+P

(
|Ȳ22(T )− 1| > ε

3

)
+ 2P

(
|Ȳ11(T )− 1|2 >

ε

3

)
� 4×P

(
|Ȳ11(T )− 1| > ε

3

)
. (3.16)

We lighten the notation by writing ε instead of ε/3, therefore by Proposition
3.4 assertion 2. applied to ρ(T ) in (3.13), we get

dKol

(√
θ
√
Tρ(T ), N

)
� dKol

(
2θ3/2

Y12(T )√
T

,N

)
+4×P

(
|Ȳ11(T )− 1| > ε

)
+3ε.

(3.17)
where N ∼ N (0, 1).

The next step is to control the term P
(
|Ȳ11(T )− 1| > ε

)
. We have:

Ȳ11(T ) =
2θ

T

∫ T

0

(
X2

1 (u)−E[X2
1 (u)]

)
du+

2θ

T

∫ T

0

E[X2
1 (u)]du− 2θX̄2

1 (T )

=
2θ

T

∫ T

0

(
(IW1

1 (fu))
2 − ‖fu‖2L2([0,T ])

)
du+

1

T

∫ T

0

E[X2
1 (u)]du− X̄2

1 (T )

= 2θIW1
2 (kT ) +

2θ

T

∫ T

0

E[X2
1 (u)]du− 2θX̄2

1 (T )

:= Aθ(T ) + μθ(T )− 2θX̄2
1 (T ).

where

kT (x, y) :=
1

T

∫ T

0

f⊗2
u (x, y)du

=
1

T

∫ T

0

e−θ(u−x)e−θ(u−y)1[0,u](x)1[0,u](y)du
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=
1

T

1

2θ
eθxeθy

(
e−2θ(x∨y) − e−2θT

)
1[0,T ](x)1[0,T ](y)

and

μθ(T ) =
2θ

T

∫ T

0

E[X2
1 (u)]du =

2θ

T

∫ T

0

‖fu‖2L2([0,T ]du

=
2θ

T

∫ T

0

∫ T

0

f2
u(t)dtdu

=
2θ

T

∫ T

0

∫ u

0

e−2θ(u−t)dtdu

=
1

T

∫ T

0

(1− e−2θu)du

= 1− 1

2θT

(
1− e−2θT

)
Then we immediately get the mean concentration around 1:

|μθ(T )− 1| � 1

2θT
= O(

1

T
). (3.18)

For the term Aθ(T ), in a similar way to the calculus in the proof of Proposition
3.2 and since kT is symmetric, we get

E
[
IW1
2 (kT )

2
]
= 2‖kT ‖2L2([0,T ]2)

=
1

T 2

1

2θ2

∫
[0,T ]2

e2θxe2θy
(
e2θ(x∨y) − e−2θT

)2
dxdy

=
1

T 2

1

2θ3

(
1

4θ
(1− e−4θT ) +

1

θ
(e−2θT − 1) + T (1 + 2e−2θT )

− 1

2θ
(1− e−4θT )

)
� 1

2θ3

(
3 +

7

4θ

)
1

T
.

Therefore, we have Var(Aθ(T )) = O( 1
T ), since

Var(Aθ(T )) = Var(2θIW1
2 (kT )

2)

= 4θ2E
[
IW1
2 (kT )

2
]

� 2

θ

(
3 +

7

4θ

)
1

T
.

Finally, by equation (3.11), 2θE[X̄2
1 (T )] = O( 1

T ). On the other hand, we can
write

Ȳ11(T ) = Ỹ11(T ) + y11(T )

where ⎧⎨
⎩

Ỹ11(T ) := Aθ(T )− 2θ
(
X̄2

1 (T )−E
[
X̄2

1 (T )
])

,

y11(T ) := μθ(T )− 2θE
[
X̄2

1 (T )
]
.
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By the product formula (2.3), the r.v. Ỹ11(T ) belongs to the second Wiener
chaos while y11(T ) is deterministic. Moreover, we have

Var(Ỹ11(T )) = Var
(
Aθ(T )− 2θX̄2

1 (T )
)

� 2Var (Aθ(T )) + 8θ2Var
(
X̄2

1 (T )
)

� 4

Tθ

(
3 +

7

4θ

)
+

82

θ2T 2
� cst(θ)

T
:=

[
4

θ

(
3 +

7

4θ

)
+

82

θ2

]
1

T
,

(3.19)

where we used the hypercontractivity property (2.5) on Wiener chaos for X̄2
1 (T ),

since Var(X̄2
1 (T )) = E[IW1

1 (gT )
4] −

(
E[IW1

1 (gT )
2]
)2

and E[IW1
1 (gT )

2] =

E[X̄2
1 (T )] � 1

Tθ2 . The last estimate plus the estimate (3.18) on μθ(T ) estab-
lished earlier imply that

|1− y11(T )| � 5

2

1

θT
. (3.20)

With all those estimates in place, we return to our main target to control
P
(
|Ȳ11(T )− 1| > ε

)
for some 0 < ε < 1, Or

P
(
|Ȳ11(T )− 1| > ε

)
= P

(
|Ỹ11(T ) + y11(T )− 1| > ε

)
= P

({
Ỹ11(T ) > ε+ 1− y11(T )

}
∪
{
−Ỹ11(T ) > ε+ y11(T )− 1

})
Of course second chaos r.v. are not symmetric, but since we do not know the
sign of 1 − y11(T ) and second Wiener chaos can be skewed in either direction,
there is no loss of efficiency to treat Ỹ11(T ) and −Ỹ11(T ) in the same fashion.
Recall the from Proposition 2.7.13 of [8] that any second chaos r.v. F has the
following representation

F =

+∞∑
n=1

λn

(
Z2
n − 1

)
where {λn, n ≥ 1} is a sequence of reals for which |λn| is decreasing and (Zn)n≥1

are independent standard Gaussian random variables and

Var(F ) = 2

+∞∑
n=1

|λn|2 < +∞.

Moreover, by the product formula (2.3), if F is a quadratic functional of a
Gaussian process, then

∑+∞
n=1 λn is the expectation of that functional. Therefore

with F = Ỹ11(T ), there exists {λn(T ), n ≥ 1} and (Zn)n≥1 iid N (0, 1), such that

Ỹ11(T ) =

+∞∑
n=1

λn(T )
(
Z2
n − 1

)
.
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One immediately checks that the expression to be added to Ỹ11(T ) to make it
a quadratic functional is μθ(T ) − 2θE[X̄2

1 (T )] which is equal to
∑+∞

n=1 λn(T ).
Therefore, the sequence {λn(T ), n ≥ 1} satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
2

+∞∑
n=1

λ2
n(T ) = Var(Ỹ11(T )) � c(θ)

T ,

|
+∞∑
n=1

λn(T )| = 1 +O( 1
T ).

From the representation we just established, we will set a general global tail for
any r.v. in the second Wiener chaos, which is convenient for our purposes. Let

Y =
∑+∞

n=1 λn(Z
2
n − 1) let σ :=

√
Var(Y ) =

√
2
∑+∞

n=1 |λn|2 and v =
∑+∞

n=1 λn.

Assume that |v| < +∞. Let β > 0 which is a constant to be chosen later. Then
by Markov’s inequality, we have for all y

P (Y > y) � e−
y
β ×E

[
e

Y
β

]
= e−

y
β ×E

⎡
⎣e 1

β

+∞∑
n=1

λn(Z
2
n−1)

⎤
⎦

= e−
y
β

+∞∏
n=1

E

[
eλn

Z2
n
β

]
× e−

v
β

= e−
y+v
β ×

⎛
⎝+∞∏

n=1

1√
1− 2λn

β

⎞
⎠ , (3.21)

This formula requires that 2λn/β < 1 for all n ≥ 1, but since the sign of λn

is unknown and |λn| decreases, it is sufficient to require that β > 2|λ1|. Since
2
∑+∞

n=1 |λn|2 = Var(Y ), we can say that
√
2|λn| <

√
Var(Y ) = σ for any n.

Therefore, to be completely safe we choose to require that β ≥ 2
√
2σ. This

implies that for every n, 2λn/β �
√
2σ/β � 1/2. We must also check that the

product in (3.21) converges. In fact, notice that since ∀u ∈ [0, 1/2],− ln(1−u) �
u+ u2

2 + u3. Thus, since we just checked that 2λn/β � 1/2, for all n, we have

ln

⎛
⎝+∞∏

n=1

1√
1− 2λn

β

⎞
⎠ � 1

2

+∞∑
n=1

(
2λn

β
+

2λ2
n

β2
+

8λ3
n

β3

)
.

Thus, we get

P (Y > y) � e−
y
β × e

Var(Y )

2β2 × e
k3(Y )

2β3 . (3.22)

where we used the fact that (see Proposition 2.7.13 of [8])

+∞∑
n=1

λ3
n =

1

8
k3(Y ),
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where k3(Y ) denotes the third cumulant of Y . Since Y is centered then this
cumulant is equal to the third moment: k3(Y ) = E[Y 3]. Applying inequality
(3.22) to Y = Ỹ11(T ) where

σ �
√

cst(θ)

T
and |v| = 1 +O(

1

T
),

we can pick any β ≥ 2
√
2σ, thus we can chose β = 2

√
2cst(θ)

T . This implies that

Var(Ỹ11(T ))
2β2 = σ2

2β2 � 1
16 . On the other hand, since Ỹ11(T ) is in the second Wiener

chaos, then by the hypercontractivity property in Section 2, k3(Ỹ11(T )) �
9Var(Ỹ11(T ))

3/2, and consequently 1
2
k3(Ỹ11(T ))

β3 � 9
2 ×

(
2
∑+∞

n=1 λ
2
n/β

2
)3/2

. Fi-

nally, since β2 > 8
∑+∞

n=1 λ
2
n, thus we get the following:

P(Ỹ11(T ) > y) � K × exp

(
− y

√
T

2
√

2cst(θ)

)
(3.23)

where

K := exp

(
1

16
+

9

2
× 1

83/2

)
= exp

(
9
√
2 + 4

64

)
.

We now replace y by ε+1−y11(T ). Note that we must also evaluateP(−Ỹ11(T ) >
ε+1− y11(T )) but since the signs of λn and 1− y11(T ) are not known, this will
yield exactly to the same estimate as P(Ỹ11(T ) > ε + 1 − y11(T )). Thus from
the estimate (3.23), we get

P
(
|Ȳ11(T )− 1| > ε

)
� 2K exp

(
− y

√
T

2
√

2cst(θ)

)

Let us denote c := 2
√
2cst(θ), we must choose ε. Let

ε = d× ln(T )√
T

, (3.24)

where d is some constant to be chosen as well. Thus since we proved in (3.20)
that |1− y11| � 5

2
1
θT , we get

y := ε+ 1− y11(T ) ≥ ε− |1− y11(T )| ≥ d× ln(T )√
T

− 5

2θT
.

For T large enough, for instance for T > T ∗ = e ∨
(

5
dθ

)2
, we have

d× ln(T )√
T

>
5

θT

so that

y > d× ln(T )

2
√
T
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and hence

exp

(
− y

√
T

2
√

2cst(θ)

)
� exp

(
−d lnT

2c

)
= T−d/(2c).

Thus it’s sufficient to choose d = c, obtaining

P
(
|Ȳ11(T )− 1| > ε

)
+ 3ε � K√

T
+ 3c

ln(T )√
T

∼ 3c
ln(T )√

T
for T large (3.25)

Summarizing, with K := e(9
√
2+4)/64 and

c := 2
√
2cst(θ) = 2

√
8(3 + 7/(4θ))/θ + 128/θ2,

for T > T ∗ (θ) := e ∨ ( 5

2θ
√

2cst(θ)
)2, then according to inequality (3.15), with

the choice for ε in (3.24) with d = c, we have the following estimate for the
denominator term D(T ) defined in (3.14), as follows

P(|D−1| > ε)+ε � 4K√
T
+
12c ln(T )√

T
, for T > T ∗ (θ) := max

(
e,

25

8θ2cst (θ)

)
.

Thus, from inequalities (3.17) and (3.25), we get the following theorem for the
convergence in law of Yule’s statistic ρ(T ) as T → +∞.

Theorem 3.8. There exists a constant c(θ) depending only on θ such that for
T large enough, we have

dKol

(√
θ
√
Tρ(T ),N (0, 1)

)
� c(θ)

ln(T )√
T

.

In particular, √
θ
√
Tρ(T )

L−→ N (0, 1), as T → +∞.

Remark 3.9. From expression cst(θ) = 4(3 + 7/(4θ))/θ + 64/θ2 at the end of
the calculation preceding Theorem 3.8, and similar estimates elsewhere above,
a detailed analysis of how these constants depend on θ show that for θ > 1,

0 < c(θ) <
cu√
θ
,

where cu is a universal constant. This analysis is omitted for conciseness. In
particular, c(θ) → 0 as θ → +∞.

4. Discrete observations

We assume now that the pair (X1, X2) of Ornstein-Uhlenbeck processes is ob-
served at n equally spaced discrete time instants tk := k×Δn, where Δn is the
observation mesh and Tn := nΔn is the length of the “observation window”.
We assume Δn → 0 and Tn → +∞, as n → +∞. The aim of this section is
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to prove a CLT for the following statistic ρ̃(n) which can be considered as a
discrete version of Yule’s nonsense correlation statistic ρ(T ), defined by

ρ̃(n) :=
Ỹ12(n)√

Ỹ11(n)× Ỹ22(n)
(4.1)

where Ỹij(n), i, j = 1, 2 are the Riemann-type discretization of Yij(T ) defined
as follows

Ỹij(n) := Δn

n−1∑
k=0

Xi(tk)Xj(tk)− TnX̃i(n)X̃j(n), i, j = 1, 2, (4.2)

with X̃i(n) denoting the empirical mean-process of Xi, i = 1, 2, namely

X̃i(n) :=
1

n

n−1∑
k=0

Xi(tk), i = 1, 2

As in the continuous case, we make use of the following expression of ρ̃(n) along
with Proposition 3.4 in order to prove its convergence in law to a Gaussian
distribution:

√
θ
√

Tnρ̃(n) =
2θ3/2 Ỹ12(n)√

Tn

2θ
√

Ỹ11(n)
Tn

× Ỹ22(n)
Tn

. (4.3)

4.1. Convergence in law of Ỹ12(n)√
Tn

From the expression of Ỹ12(n) given in (4.2), we can write

Ỹ12(n)√
Tn

= A(n)−B(n), (4.4)

where

A(n) :=

√
Tn

n

n−1∑
k=0

X1(tk)X2(tk) and B(n) :=
√

TnX̃1(n)X̃2(n).

We also defined the following random sequence

δ(n) := A(n)− FTn ,

where FTn is defined in (3.2). The following lemma holds.

Lemma 4.1. Assume that Δn → 0 as n → +∞ and that Tn = nΔn → +∞,

then, there exists a constant Cθ := 4×max
(

8
9θ ,

√
2
3

1
θ1/2 ,

1
4

)
, such that

E[δ2(n)] � Cθ × nΔ2
n,

In particular if nΔ2
n → 0 as n → +∞, E[δ2(n)] → 0, as n → +∞.
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Proof. We have

δ(n) = A(n)− FTn

=
√
Tn

(
1

n

n−1∑
k=0

X1(tk)X2(tk)−
1

Tn

∫ Tn

0

X1(u)X2(u)du

)

=
1√
Tn

n−1∑
k=0

∫ tk+1

tk

(X1(tk)X2(tk)−X1(u)X2(u))du

By Cauchy Schwartz inequality and the fact that supt≥0 E[X2
i (t)] =

1
2θ , i = 1, 2,

we get

E[δ2(n)]

=
1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

E [(X1(tk1)X2(tk1)

−X1(u)X2(u))(X1(tk2)X2(tk2)−X1(v)X2(v))] dudv

� 1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

‖X1(tk1)X2(tk1)

−X1(u)X2(u)‖L2‖X1(tk2)X2(tk2)−X1(v)X2(v)‖L2dudv

� 2

θ

1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

‖Xi(tk1)

−Xi(u)‖L2‖Xi(tk2)−Xi(v)‖L2dudv, i = 1, 2,

where we used the fact that X1 and X2 are two Gaussian processes equal in law.
On the other hand since (Xi(tk)−Xi(u)) = (Zi(tk)−Zi(u))−Z0(e

−θtk −e−θu),
i = 1, 2. Recall that Zi(r) :=

∫ r

−∞ e−θ(r−t)dW i(t), i = 1, 2. We get

2

θ

1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

‖X1(tk1)−X1(u)‖L2‖X1(tk2)−X1(v)‖L2dudv

� A1(n) +A2(n) +A3(n) +A4(n)

where

A1(n) :=
2

θ

1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

‖Z1(tk1)−Z1(u)‖L2‖Z1(tk2)−Z1(v)‖L2dudv,

A2(n) :=
1

Tn

√
2

θ3/2

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

|e−θtk2 −e−θv| × ‖Z1(tk1)−Z1(u)‖L2dudv,

A3(n) :=
1

Tn

√
2

θ3/2

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

|e−θtk1 −e−θu| × ‖Z1(tk2)−Z1(v)‖L2dudv,
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A4(n) :=
1

Tn

1

θ2

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

|e−θtk1 − e−θu| × |e−θtk2 − e−θv|dudv.

We will use in the sequel the fact that the increments of the process Z1 satisfies
E[(Z1(t)− Z1(s))

2] � |t− s|, t, s ≥ 0. For the first sequence A1(n) we have

A1(n) � 2

θ

1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

|tk1 − u|1/2|tk2 − v|1/2dudv,

=
2

θ

Δ3
n

Tn

n−1∑
k1,k2=0

∫ 1

0

∫ 1

0

t1/2s1/2dtds,

=
8

9θ
× nΔ2

n.

where we used the change of variables t =
u−tk1

Δn
, s =

v−tk2

Δn
. For A2(n), we have

A2(n) �
√
2

θ1/2
1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

|tk1 − u|1/2|tk2 − v|dudv,

=

√
2

θ1/2
1

Tn
Δ7/2

n

n−1∑
k1,k2=0

∫ 1

0

∫ 1

0

t1/2sdtds

�
√
2

3

1

θ1/2
× nΔ5/2

n .

Similarly, we have

A3(n) �
√
2

3

1

θ1/2
× nΔ5/2

n .

For the last sequence A4(n), we get

A4(n) � 1

Tn

n−1∑
k1,k2=0

∫ tk1+1

tk1

∫ tk2+1

tk2

|tk1 − u||tk2 − v|dudv

� Δ4
n

Tn

n−1∑
k1,k2=0

∫ 1

0

∫ 1

0

tsdtds

� nΔ3
n

4
.

The desired result following using the previous inequalities and the fact that
Δn → 0 as n → +∞.

Remark 4.2. One possible mesh that satisfies the assumptions of Lemma 4.1 is
Δn = n−λ with 1/2 < λ < 1.
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Proposition 4.3. There exists a constant C(θ) such that

dKol

(
A(n),N

(
0,

1

4θ3

))
� C(θ)×max

(
(nΔn)

−1/2, (nΔ2
n)

1
3

)

In particular, if nΔ2
n → 0 as n → +∞, we get

A(n)
L−→ N

(
0,

1

4θ3

)
,

as n → +∞.

Proof. Since A(n) = δ(n) + FTn , we have by Proposition 3.4 assertion 1. the
following estimate

dKol

(
A(n),N (0,

1

4θ3
)

)
� dKol

(
FTn ,N (0,

1

4θ3
)

)
+P

(
|2θ3/2δ(n)| > ε

)
+ ε

� dKol

(
FTn ,N (0,

1

4θ3
)

)
+ 4θ3 × E[δ2(n)]

ε2
+ ε

� c(θ)√
Tn

+ inf
ε>0

gn(ε)

where gn(ε) = 4θ3 ×Cθ × nΔ2
n

ε2 + ε, since gn is convex on R+, arg infε>0 gn(ε) =

ε∗(n) =
(
4θ3 × CθnΔ

2
n

)1/3
, where Cθ is the constant from Lemma 4.1. Thus,

we get the following estimate for the convergence in law of the random sequence
A(n):

dKol

(
A(n),N (0,

1

4θ3
)

)
� C(θ)×max

(
(nΔn)

−1/2, (nΔ2
n)

1
3

)
,

which ends the proof.

On the other hand, from the decomposition (4.4), Corollary 3.6, Proposi-

tion 3.4, there exists a constant β such that 4θ3/2
√
3
3

√
TnE[X̃2

1 (n)] < β <
(C ×E[|B(n)|] ∧ 4), and such that

dKol

(
Ỹ12(n)√

Tn

,N (0,
1

4θ3
)

)
� dKol

(
A(n),N (0,

1

4θ3
)

)
+ β

(
1 + ln(

4

β
)

)
, (4.5)

Let us now compute ‖X̃1(n)‖2L2 ,

X̃1(n) =
1

n

n−1∑
k=0

IW1
1 (ftk)

= IW1
1 (gn),

with gn := 1
n

∑n−1
k=0 ftk . Thus similarly to a previous calculation, we have

E[X̃2
1 (n)] = ‖gn‖2L2([0,Tn])
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=
1

n2

n−1∑
k1,k2=0

〈ftk1
, ftk2

〉L2([0,Tn])

=
1

n2

n−1∑
k1,k2=0

E[X1(tk1)X1(tk2)]

=
2

n2

n−1∑
k1=0

E[X1(tk1)
2] +

2

n2

n−1∑
k1,k2=0
k1 
=k2

E[X1(tk1)X1(tk2)]

=
2

n2

n−1∑
k1=0

(
1− e−2θtk1

2θ

)
+

4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

E[X1(tk1)X1(tk2)]

� 1

θ

1

n
+

3

θ2
1

nΔn
� 1

θ

(
1 +

3

θ

)
(nΔn)

−1, (4.6)

where for the last equality we used the fact that

4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

E[X1(tk1)X1(tk2)] � 4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

ρ(tk2 − tk1)

Recall that ρ(r − s) := E[Zi
rZ

i
s], where Zi

r :=
∫ r

−∞ e−θ(r−t)dW i(t), i = 1, 2.
Moreover,

4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

ρ(tk2 − tk1) =
4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

ρ(Δn(k2 − k1))

=
4

n2

n−1∑
r=1

(n− r)ρ(Δnr)

=
2

θ

1

n2

n−1∑
r=1

(n− r)e−θΔnr

� 2

θ

1

n

1

(1− e−Δnθ)

� 3

θ2
(nΔn)

−1,

for large n. We deduce that there exists a constant c(θ), such that for large n

E[|B(n)|] =
√
TnE[|X̃1(n)|]E[|X̃2(n)|]

� c(θ)(nΔn)
−1/2.

Therefore, from equation (4.5) and the fact that the function x �→ x
(
1 + ln( 4x )

)
is increasing on (0, 4), we have for n large enough

dKol

(
Ỹ12(n)√

Tn

,N (0,
1

4θ3
)

)
� dKol

(
A(n),N (0,

1

4θ3
)

)
+

c(θ)

2

ln(nΔn)√
nΔn

.
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The following proposition follows.

Theorem 4.4. There exists a constant c(θ) depending only on θ such that for
large n

dKol

(
Ỹ12(n)√

Tn

,N (0,
1

4θ3
)

)
� c(θ)× ln(nΔn)max

(
(nΔn)

−1/2, (nΔ2
n)

1
3

)

In particular, if nΔ2
n → 0 as n → +∞,

Ỹ12(n)√
Tn

L−→ N
(
0,

1

4θ3

)
,

as n → +∞.

Example 1. If Δn = n−λ with 1
2 < λ < 1, then we have

dKol

(
Ỹ12(n)√

Tn

,N (0,
1

4θ3
)

)
� C(θ)×(1−λ)×

⎧⎨
⎩

ln(n)× n
1−2λ

3 if 1
2 < λ � 5

7

ln(n)× n
λ−1
2 if 5

7 � λ < 1.

Consequently,

Ỹ12(n)√
Tn

L−→ N
(
0,

1

4θ3

)
as n → +∞.

4.2. The denominator term

We denote the denominator term in ρ̃(n) by D̃(n), i.e.

D̃(n) := 2θ

√
Ỹ11(n)

Tn
× Ỹ22(n)

Tn

According to Proposition 3.4 assertion 2, we need to estimate P(|D̃(n)−1| > ε)

for instance for 0 < ε < 1. Thus, denoting Ȳ11(n) := Ỹ11(n)
Tn/2θ

, then similarly to

the calculations performed in the continuous case, i.e. (3.15), we get

P
(
|D̃(n)− 1| > ε

)
� 4P

(
|Ȳ11(n)− 1| > ε

3

)
Writing ε instead of ε/3, by Proposition 3.4 assertion 2 applied to ρ̃(n), we get

dKol

(√
θ
√
Tnρ̃(n), N

)
� dKol

(
2θ3/2

Ỹ12(n)√
Tn

, N

)
+4×P

(
|Ȳ11(n)− 1| > ε

)
+3ε.

(4.7)
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where N ∼ N (0, 1). It remains to control the term P
(
|Ȳ11(n)− 1| > ε

)
. we have

Ȳ11(n) = D1,n +D2,n − 2θX̃2
1 (n), (4.8)

where

D1,n :=
2θ

n

n−1∑
k=0

(
X2

1 (tk)−E[X2
1 (tk)]

)
and D2,n :=

2θ

n

n−1∑
k=0

E[X2
1 (tk)] (4.9)

Lemma 4.5. Consider D1,n defined in (4.9), then for every large n, we have

E
[
D2

1,n

]
� 2

(
1 +

3

2θ

)
× (nΔn)

−1.

Proof. The sequence D1,n can be written as follows:

D1,n =
2θ

n

n−1∑
k=0

(
IW1
1 (ftk)− ‖ftk‖L2([0,Tn])

)

=
2θ

n

n−1∑
k=0

IW1
2 (f⊗2

tk
)

= IW1
2 (kn),

where kn := 2θ
n

∑n−1
k=0 f

⊗2
tk

. Thus

E[D2
1,n] = 2‖kn‖2L2([0,Tn]2)

=
2× (2θ)2

n2

n−1∑
k1,k2=0

〈f⊗2
tk1

, f⊗2
tk2

〉L2([0,Tn]2)

=
2× (2θ)2

n2

n−1∑
k1,k2=0

(
〈ftk1

, ftk2
〉L2([0,Tn])

)2

=
2× (2θ)2

n2

n−1∑
k1,k2=0

(E[X1(tk1)X1(tk2)])
2

=
2× (2θ)2

n2

n−1∑
k1=0

E[X1(tk1)
2]2+

2× (2θ)2

n2

∑ n−1∑
k1,k2=0
k1 
=k2

(E[X1(tk1)X1(tk2)])
2

=
2× (2θ)2

n2

n−1∑
k1=0

(
1− e−2θtk1

2θ

)2

+
4× (2θ)2

n2

n−2∑
k1=0

n−1∑
k2=k1+1

(E[X1(tk1)X1(tk2)])
2

� 2

n
+

4× (2θ)2

n2

n−2∑
k1=0

n−1∑
k2=k1+1

(E[X1(tk1)X1(tk2)])
2
.



3204 S. Douissi et al.

For the right hand partial sum, we can write

4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

(E[X1(tk1)X1(tk2)])
2 � 4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

ρ2(tk2 − tk1)

Moreover,

4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

ρ2(tk2 − tk1) =
4

n2

n−2∑
k1=0

n−1∑
k2=k1+1

ρ2(Δn(k2 − k1))

=
4

n2

n−1∑
r=1

(n− r)ρ2(Δnr)

=
1

θ2
1

n2

n−1∑
r=1

(n− r)e−2θΔnr

� 1

θ2
1

n

1

(1− e−2Δnθ)

� 3

4θ3
1

nΔn
,

for every large n. The desired result follows since max
(
n−1, (nΔn)

−1
)
= (nΔn)

−1.

For the sequence D2,n, we have

|D2,n − 1| � 2θ

n

n−1∑
k=0

∣∣∣∣E[X2
1 (tk)]−

1

2θ

∣∣∣∣
� 2θ

n

n−1∑
k=0

e−2θkΔn � 2θ

n

1

(1− e−2θΔn)
� 3

2

1

nΔn
, (4.10)

for every large n. It follows that D2,n = 1 + O
(
(nΔn)

−1
)
for n large. There-

fore, following exactly the same analysis done for the denominator term in the

continuous case and choosing ε = ε(n) = c× ln(nΔn)√
nΔn

, we get the existence of a

constant c(θ), such that for n large enough

P
(
|D̃(n)− 1| > ε(n)

)
� c(θ)

ln(nΔn)√
nΔn

, (4.11)

The previous estimates will allow to prove first a Strong law result by showing
that ρ̃(n) converges to 0 almost surely as n → +∞, then the convergence in law
of the statistic ρ̃(n) given with its rate of convergence as n → +∞.

Proposition 4.6. Assume that Δn = n−λ, for 1
2 < λ < 1, then we have almost

surely
ρ̃(n) −→ 0 as n → +∞.
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Proof. We can write ρ̃(n) as follows

ρ̃(n) =

Ỹ12(n)
Tn√

Ỹ11(n)
Tn

× Ỹ22(n)
Tn

For the numerator term, we have by the decomposition (4.4),

Ỹ12(n)

Tn
=

A(n)√
Tn

− B(n)√
Tn

For the sequence A(n), we have

A(n)√
Tn

=
δ(n)√
Tn

+
FTn√
Tn

,

Then by Lemma 4.1, we get E

[(
δ(n)√
Tn

)2]
� Cθn

−λ, and by the hypercontractiv-

ity property and Lemma 2.1, we obtain δ(n)√
Tn

→ 0, a.s. as n → +∞. By the same

argument, and using Lemma 3.2, we obtain E

[(
FTn√
Tn

)2]
� Cθn

−(1−λ), and we

then get
FTn√
Tn

→ 0, a.s. as n → +∞. Consequently, we have a.s. as n → +∞,

A(n)√
Tn

→ 0. For the sequence B(n), E

[(
B(n)√

Tn

)2]
= 1

Tn
E[X̃2

1 (n)]E[X̃2
2 (n)] �

C × n−(1−λ), thus B(n)√
Tn

a.s. as n → +∞. Finally,

Ỹ12(n)

Tn
−→ 0,

a.s. as n → +∞. For the denominator term, we will need the following propo-
sition

Proposition 4.7. For every p ≥ 1, there exists a constant c(p, θ) depending on
p and θ, such that

E

⎡
⎣
∣∣∣∣∣∣2θ
√

Ỹ11(n)

Tn
× Ỹ22(n)

Tn
− 1

∣∣∣∣∣∣
p⎤
⎦

1
p

� c(p, θ)× T
− 1

2
n

Proof. Using the fact that if X ≥ 0 p.s. then we have E[|
√
X−1|p] � E[|X−1|p]

for every p > 0, then by the notation Ȳii(n) =
Ỹii(n)
Tn/2θ

, i = 1, 2, we get

E

⎡
⎣
∣∣∣∣∣∣2θ
√

Ỹ11(n)

Tn
× Ỹ22(n)

Tn
− 1

∣∣∣∣∣∣
p⎤
⎦
1/p

� ×E
[∣∣Ȳ11(n)× Ȳ22(n)− 1

∣∣p]1/p
� E

[
|Ȳ11(n)|p

]1/p ×E
[
|Ȳ22(n)− 1|p

]1/p
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+E
[
|Ȳ11(n)− 1|p

]1/p
Moreover, since by the decomposition (4.8), Ȳ11(n) = D1,n +D2,n − 2θX̄2

1 (n),
where D1,n and D2,n are defined in (4.9), we get

E
[
|Ȳ11(n)− 1|p

]1/p � E [|D1,n|p]1/p + |D2,n − 1|+ 2θE
[
X̃2

1 (n)
p
]1/p

� c(p, θ)× T−1/2
n ,

where we used the hypercontractivity property (2.5), Lemma 4.5 and the esti-
mate (4.10), with

c(p, θ)

= 3×max

({
(p− 1)1{p≥2} + 1{p=1}

}√
2

(
1 +

3

2θ

)
,
3

2
, (2p− 1)

1

θ

(
1 +

3

θ

))
.

The result of Proposition 4.7 is therefore established.

By Proposition 4.7, we have for all η > 0,

+∞∑
n=1

P

⎛
⎝
∣∣∣∣∣∣2θ
√

Ỹ11(n)

Tn
× Ỹ22(n)

Tn
− 1

∣∣∣∣∣∣ > η

⎞
⎠

� 1

ηp

+∞∑
n=1

E

⎡
⎣
∣∣∣∣∣∣2θ
√

Ỹ11(n)

Tn
× Ỹ22(n)

Tn
− 1

∣∣∣∣∣∣
p⎤
⎦

� 1

ηp

+∞∑
n=1

1

n(1−λ)p/2
< +∞,

for any p > 2
1−λ , it follows from Borel-Cantelli’s Lemma that

√
Ỹ11(n)

Tn
× Ỹ22(n)

Tn
→ 1

2θ
,

almost surely as n → +∞, which finishes the proof.

Remark 4.8. Proposition 4.6 was proved in the scale Δn = n−λ, for 1
2 < λ < 1,

for ease of presentation, but one can also show that it holds for any mesh Δn

satisfying:

•
∑+∞

n=1 Δ
p
n < ∞ for some p.

•
∑+∞

n=1
1

npΔp
n
< +∞ for some p.

Theorem 4.9. There exists a constant c(θ) such that for n large enough, we
have

dKol

(√
θ
√
Tnρ̃(n),N (0, 1)

)
� c(θ)× ln(nΔn)max

(
(nΔn)

−1/2, (nΔ2
n)

1
3

)
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In particular, if nΔ2
n → 0 as n → +∞,

√
Tnρ̃(n)

L−→ N
(
0,

1

θ

)
,

as n → +∞.

Remark 4.10. The results obtained in Theorem 4.9 can be as efficient as those
of Theorem 3.8, as long as one picks a step size very precisely. In fact, Theorem
4.9 allows us to identify an optimal step size Δn immediately, by requiring that(
nΔ2

n

)1/3
is of the same order as (nΔn)

−1/2
. By equating these two terms, we

immediately find that it is optimal to choose Δn on the order of n−5/7. When
choosing Δn = n−5/7, one then immediately finds that Tn = nΔn = n2/7, which
means that the speed in the Kolmogorov metric in Theorem 4.9 is bounded
above by ln(n)n−1/7 up to a constant. Therefore, in terms of Tn, the rate of

convergence is of the order of ln(Tn) × T
−1/2
n . We obtain therefore the same

speed as in the continuous case in Theorem 3.8. It is in this sense that the
convergence rate in Theorem 4.9 is as efficient in Theorem 3.8.

5. Numerical results

This section contains a numerical study of some of the properties of the discrete
version of Yule’s nonsense correlation statistic, which we denoted by ρ̃(n) in
(4.1). We first simulate the OU processes X1 and X2 according to the following
steps:

1. Set the values of θ, the sample size n and the mesh Δn = n−λ, 1
2 < λ < 1.

2. Generate two independent Brownian motions W 1 and W 2.
3. Set Xi

0 = 0, for i = 1, 2 and simulate the observations Xi
Δn

, Xi
2Δn

, ...,

Xi
Tn

, i = 1, 2 where Tn = n×Δn following the Euler scheme:

Xi
tj = (1− θΔn)X

i
tj−1

+
(
W i

tj −W i
tj−1

)
j = 1, .., n, i = 1, 2.

4. We obtain a simulation of the sample paths of X1 and X2 based on Xi
tj ,

j = 1, .., n, i = 1, 2 by approximating X1 and X2 using the linear process
linking the points (tj , X

i
tj ){1�j�n} for i = 1, 2 as follows

Xi
t =

(
1− θ(t− tj−1)X

i
tj−1

)
+
(
W i

t −W i
tj−1

)
, for all

t ∈ [tj , tj−1], j = 1, ..., n.

The figures below are an example of four sample paths of X1 and X2 for
different values of the drift parameter θ.

The simulation of the Ornstein-Uhlenbeck sample paths X1 and X2 is done for
different values of the parameter θ = {0.5, 1, 5, 10}, for a sample size n = 10000
and a mesh Δn = 10000−0.6 (λ = 0.6) which corresponds to a time horizon
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Fig 1. Sample paths of X1 and X2 for different values of θ.

Tn ∼ 40. One can see from the figures above how the drift parameter value
impacts the variability and raggedness of OU sample paths. The next step is
to illustrate numerically Proposition 4.6. The table below shows the mean, the
median and standard deviation values for ρ̃(n) for different values of n, using
500 Monte-Carlo replications for three different values of the drift parameter
θ = {1, 5, 10}. Table 1 above shows that ρ̃(n) approaches zero for large values of

Table 1

Estimation results for n = {10000, 50000, 100000} and λ = 0.6.

n = 10000 n = 50000 n = 100000
Tn ∼ 40 Tn ∼ 76 Tn ∼ 100

θ = 1
Mean −0.01022 0.00667 0.00377
Median −0.00725 0.00873 0.00168
S.Dev 0.14990 0.10162 0.10898

θ = 5
Mean 0.00296 0.00130 0.00088
Median 0.00136 0.00214 −0.0011
S.Dev 0.05237 0.06892 0.04602

θ = 10
Mean −0.00258 −0.00038 0.00015
Median −0.00147 0.00036 0.00035
S.Dev 0.04935 0.03641 0.03156

the sample size n which confirms Proposition 4.6, even for moderate θ, and even
though T = 40 is not an inordinately large value. To investigate the asymptotic
normal distribution of ρ̃(n) empirically, we need to compare the distribution of
the statistic

ψ(n, θ) :=
√
Tn

√
θρ̃(n)
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with the standard Gaussian distribution N (0, 1). For this aim, we chose θ = 2,
n = 100000, Tn = 100 and based on 3000 replications, we obtained the following
histogram:

Fig 2. Histogram of ψ(n, θ) for n = 100000, Tn = 100, θ = 2

The histogram (2) shows visually that the normal approximation of the dis-
tribution of the statistic ψ(n, θ) is reasonable for the sampling size n = 100000
and time horizon Tn = 100. Moreover, the results of the next table below show a
comparison of statistical properties between ψ(n, θ) and N (0,1) with the same
parameters as in Figure 2, we can see that the empirical mean, median and
standard deviation of ψ(n, θ) and N (0,1) are quite close, which illustrates well
our theoretical results.

Statistics Mean Median Standard Deviation
N (0,1) 0 0 1
ψ(n, θ) 0.00832 0.01206 0.99691

We can also illustrate numerically the rate of convergence in law of the statis-
tic ψ(n, θ) to the standard Gaussian distribution, by approximately computing
the Kolmogorov distance between ψ(n, θ) and N (0, 1). For this aim, we ap-
proximate the cumulative distribution function using an empirical cumulative
distribution function based on 500 replications of the computation of ψ(n, θ)
for n = 100000. The figure below shows the empirical and standard normal
cumulative distribution functions.

Based on Remark 4.10, when the mesh Δn = n−λ for 1
2 < λ < 5

7 , we expect
that

dKol

(√
Tn

√
θρ̃(n),N (0, 1)

)
� c(θ)(1− λ) ln(n)× n

1−2λ
3 .

In fact, with our choice of λ = 0.6 and a sample size n = 100000, the time horizon
Tn = 100. The mesh size n−0.6 is larger than the optimal size n−5/7, yielding
a larger time horizon Tn than under the optimal observation frequency. The
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Kolmogorov distance between the two laws, which equals the sup norm of the
difference of these cumulative distribution functions, computes to approximately
0.01974, which implies that c(θ) is greater than 9.310−3. We could have chosen
the optimal mesh

Δn = n−5/7,

yielding a rate of order ln(n)×n−1/7, but in this case in order to have the same
time horizon Tn = 100, we would have needed n = 107 data points, which is
a large number. In practical applications, the cost of higher-frequency obser-
vations, if known, is to be balanced with desired precision on the Kolmogorov
distance, which may well point to a lower frequency for a fixed time horizon.
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