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1. Introduction

Ripley’s K-function [21] is a classical way of summarizing the second order
structure of a stationary point process in spatial statistics. For a given r > 0,
K(r) is defined to be the expected number of points in a ball of radius r around
a typical point of the point process. Apart from being geometrically intuitive,
an important reason for studying the K-function is that for isotropic point
processes it contains all information about the pair correlation function, see
e.g. [5]. Consequently, the Ripley’s K-function is commonly used for statistical
inference in spatial statistics for point processes arising in various fields such
as medicine [17], wireless communication [25], forestry [10] and neuroinformat-
ics [15]. A review of the statistical aspects of the Ripley’s K-function may be
found [1].

A common problem in this field is to assess how well an observed point pat-
tern x fits an assumed model P0 based on a chosen summary statistics, e.g.
the Ripley’s K-function and the pair correlation function. A standard way to
perform goodness-of-fit tests is to use confidence bands derived from central
limit theorems of the chosen summary statistic under P0. However, in the case
of the Ripley’s K-function, such theorems have only been established when P0

is a Poisson point process with known or unknown intensity, see [12]. When no
confidence bands are available, pointwise envelope tests, see e.g. [1], and their
extension to global envelope tests have been a popular alternative [20]. However,
pointwise envelope tests are restricted to comparison of the summary statistics
evaluated at a given argument while global envelope tests require several thou-
sands of simulations of point patterns following P0 with on average the same
number of points as in the observed pattern x. This allows for goodness-of-fit
test of more models than the Poisson point process but may be infeasible when
the number of observed points is large.

Thus, establishing central limit theorems for the K-function of P0 when it
is not necessarily a Poisson point process would allow for goodness-of-fit tests
which are not based on envelope methods as in [12]. In Theorem 4.2 of the
present paper, we provide a first necessary step in that direction by establishing
central limit theorems for Ripley’s K-function when P0 does not depend of un-
known parameters. However, a problem arises when P0 belongs to a parametric
family of models that contains several unknown parameters, e.g. the intensity
as described in [1]. As observed in [12] for Poisson processes, replacing the in-
tensity by an estimate changes the limiting distribution. For more general point
process models, generalising Theorem 4.2 in the presence of unknown parame-
ters appears to be challenging and require a further development on our main
result in Theorem 4.2. We thus leave this open for future works. To the best of
the authors’ knowledge, the only previous contribution to a functional central
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limit theorem for the K-function is [12, 13] where the framework is limited to
stationary Poisson processes. Other recent results on functional central limit
theorems for geometric summary statistics are given in [19, 24].

The key to our results is to rewrite the estimator for Ripley’s K-function in
the form ∑

x∈P
ξ(x,P ∩Wn),

where P is the point process, Wn is an observation window, and ξ is a so-
called score function. There has been a lot of recent activity to establish the
asymptotic behaviour of summary statistics of this form [4, 26] when either P
has fast decay of correlations or it belongs to a suitable class of Gibbs processes.
This immediately leads to point-wise laws of large numbers for the mean and
variance and, when a certain variance lower bound is satisfied, these papers also
provide point-wise central limit theorems. This variance bound can be shown for
the K-function by applying techniques of [2, 26]. To obtain a functional central
limit theorem, tightness is shown by applying a machinery developed in [2] for
persistence diagrams and adapting it to Gibbs point processes.

The paper is structured as follows. In Section 2 we introduce the K-function
and its most common edge corrected estimators. In Section 3 we introduce the
classes of point processes to which our results apply. The main results for the K-
function are stated in Section 4 and corollaries for related functionals are given
in Section 4.1. We investigate the statistical performance of a test based on the
central limit theorem in Section 5 before proving the main results in Sections 6-7.
Appendix A contains two required results on the conditional variance of random
variables and Appendix B presents some background on Gibbs point processes.

2. The K-function

Let P ⊆ R
d be a simple stationary point process of intensity ρ > 0 and A ⊆ R

d

a set of positive and finite volume |A|. For all r ≥ 0, the K-function is defined
by

K(r) =
1

|A|ρ2E
∑

x∈P∩A

∑
y∈P

1{0<|x−y|≤r} =
1

ρ
Eo

∑
y∈P

1{0<|y|≤r},

where Eo denotes the Palm expectation given o ∈ P . This definition is indepen-
dent of the set A.

Typically, the point process is only observed inside a bounded observation
window. Throughout this paper, we will consider a square observation window
Wn = [−1

2n
1/d, 1

2n
1/d]d of volume n and write Pn = P ∩Wn. The most naive

estimator for the K-function based on Pn is

K̂n(r) =
1

nρ2

∑
x∈Pn

∑
y∈Pn

1{0<|x−y|≤r}. (1)

However, this estimator is downward biased due to points y close to the edges of
Wn not being counted. This bias tends to zero when the volume of the window
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goes to infinity, see Theorem 3.5 below, but for finite window sizes, an edge
corrected estimator is typically used to avoid the bias [22]. This is a weighted
estimator of the form

K̂e,n(r) =
1

nρ2

∑
x∈Pn

∑
y∈Pn

1{0<|x−y|≤r}en(x, y), (2)

where en is an edge correction factor depending on the window. Several edge
correction factors have been proposed in the literature, see e.g. [22]. In the case
of stationary point processes, the most commonly used edge corrections are:

• No correction: e1,n(x, y) = 1. This corresponds to the uncorrected estima-

tor K̂n.
• Translation correction: e2,n(x, y) = |Wn|

|Wn∩(Wn+x−y)| , where | · | denotes

volume.
• Rigid motion correction:

e3,n(x, y) =
|Wn|∫

SO(d)
|Wn ∩ (Wn + η(x− y))|ν(dη) ,

where SO(d) is the space of rotations equipped with the normalized Haar
measure ν. This is the inverse of the proportion of all rigid motions keeping
x in Wn that also keep y in Wn.

• Border correction (minus sampling): e4,n(x, y) = 1Wn�Br(0)(x)
n

|Wn�Br(0)| ,

where Br(x) is the ball around x of radius r and � denotes Minkowski set
difference. This edge correction is equivalent to sampling x from a smaller
window such that all points within distance r from x can be observed in
Wn.

• Isotropic correction: e5,n(x, y) =
Hd−1(B|x−y|(x))

Hd−1(B|x−y|(x)∩Wn)
, where Hd−1 denotes

(d− 1)-dimensional Hausdorff measure (surface area).

The edge corrections e2,n and e4,n lead to unbiased estimators for all stationary
point processes, while e3,n and e5,n also require that the point process is isotropic
to yield unbiasedness.

In the proofs below, we write the estimators as

K̂n(r) =
1

n

∑
x∈Pn

ξr(x,Pn)

K̂e,n(r) =
1

n

∑
x∈Pn

ξe,n,r(x,Pn),

where ξr and ξe,n,r are the so-called score functions defined for a locally finite
point pattern X and a point x ∈ X as

ξr(x,X ) =
1

ρ2

∑
y∈X

1{0<|x−y|≤r} (3)
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ξe,n,r(x,X ) =
1

ρ2

∑
y∈X

1{0<|x−y|≤r}en(x, y).

Note that, for all the non-trivial edge corrections listed above, the associated
score functions depend on n. Moreover, some of them are not invariant with
respect to translations (x,X ) �→ (x+ y,X + y).

3. Classes of point processes

In this section, we introduce the two main types of point processes that we are
going to consider. One is the class of conditionally m-dependent point processes
having fast decay of correlations as considered in [2]. The second is a class of
Gibbs point processes considered in [23]. In Section 3.3, we state a formula from
[4, 26] for the limiting mean and covariance of K̂n(r) for fixed value(s) of r when
the volume of the observation window goes to infinity.

A point process P is formally defined as a random variable taking values in
the space of locally finite subsets N of Rd endowed with the smallest σ-algebra
N such that the number of points in any given Borel set is measurable. We
assume that P is simple with intensity ρ and stationary.

We will assume that all factorial moment measures exist and are absolutely
continuous, that is, the pth factorial moment density ρ(p) is determined via the
identity

E

[∏
i≤p

P(Ai)
]
=

∫
A1×···×Ap

ρ(p)(x1, . . . , xp)dx1 · · · dxp

for all pairwise disjoint bounded Borel sets A1, . . . , Ap ⊆ R
d. Here P(Ai) denotes

the number of points of P in Ai.

3.1. Conditionally m-dependent point processes

The first class of point processes we will consider satisfy a set of conditions
that we introduce in this section, namely fast decay of correlations, conditional
m-dependence, and Conditions (M) and (R) below. We say that a function
φ : [0,∞) → [0, 1] is fast decreasing if limt→∞ tmφ(t) = 0 for all m ≥ 1.

Definition 3.1. Let P be a simple stationary point process in R
d, such that

the pth factorial moment density ρ(p) exist for all p ≥ 1. Then, P exhibits fast
decay of correlations if there exists a fast decreasing function φ and constants
cn, Cn > 0 for all n ∈ N such that for any p, q ∈ N and x = {x1, . . . , xp},x′ =
{xp+1, . . . , xp+q} ⊂ R

d,

|ρ(p+q)(x,x′)− ρ(p)(x)ρ(q)(x′)| ≤ Cp+qφ(cp+q dist(x,x
′)).

Here dist denotes the distance between two point sets, i.e.

dist(x,x′) = min
xi∈x,xj∈x′

|xi − xj |.
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For p ∈ N, let P 	=
p denotes p-tuples of pairwise distinct points in P and recall

that the p-point Palm distribution Px1,...,xp is determined by

E

[ ∑
(x1,...,xp)∈P �=

p

f(x1, . . . , xp;P)
]

=

∫
Rpd

Ex1,...,xp [f(x1, . . . , xp;P)]ρ(p)(x1, . . . , xp)dx1, . . . , xp,

for any bounded measurable f : Rpd×N → R. With this notation, we make the
following condition on the Palm moments:

(M) For every p ≥ 1,

sup
l≤p

x1,...,xl∈R
d

Ex1,...,xl
[P(W1)

p] < ∞.

We summarize for later reference the conditions of [4] that are satisfied by
the point processes and score functions we consider.

Lemma 3.2. Suppose that P has fast decay of correlations and let ξ be a linear
combination of score functions ξr1 , . . . , ξrp of the form (3). Then (P , ξ) is ad-
missible of class (A1) in the sense of [4] and ξ(x,X ) depends only on X ∩Br(x)
where r = maxi=1,...,p ri. If, moreover, P satisfies the moment condition (M),
then the p-moment condition [4, (1.19)] is satisfied, i.e. for all p > 0, there is
an Mp > 0 such that

sup
1≤n≤∞

sup
1≤l≤p

sup
x1,...,xl∈Rd

Ex1,...,xl
(|ξr(x1,Pn)| ∨ 1)p ≤ Mp.

Proof. It suffices to show the lemma for ξ = ξr, the extension to general linear
combinations being trivial.

Since P has fast decay of correlations by assumption and since ξr(x,P) has
the form of a U -statistics, i.e.

ξr(x,X ) = 1
2

∑
y∈X

h(x, y)

where h(x, y) = 2
ρ21{0<|x−y|≤r} is bounded and translation invariant and van-

ishes for |x− y| > r, the pair (P , ξ) is of class (A1).
Since

Ex1,...,xl
(|ξr(x1,Pn)| ∨ 1)p ≤ Ex1,...,xl

P(Br(x1))
p,

the p-moment condition [4, (1.19)] follows from the moment condition (M).

The central limit theorems in Section 4 require a variance lower bound. To
obtain this, we make two further assumptions. For this, we assume that we study
the K-function on an interval [r0, R].



3066 C. A. N. Biscio and A. M. Svane

Definition 3.3. A point process P is said to be conditionally m-dependent if
there exists a random measure Λ such that P ∩ C and P ∩ C ′ are conditionally
independent given σ(Λ,P ∩ A) for any bounded Borel sets C,C ′, A ⊆ R

d such
that the distance between C and C ′ is larger than some m. Here, σ(Λ,P ∩ A)
denotes the σ-algebra generated by Λ and P ∩ A. For such a process, we let
R̃ = max(m,R).

The condition says that conditionally on a suitable measure Λ the point
process P is m-dependent. This should also hold if we further condition on P
inside any set A. The latter is a technical assumption needed in the proof of
Proposition 6.1 below. In fact, we only need it to hold for sets A of a specific
form, however, it seems no big restriction to require it for all Borel sets. The
condition is e.g. satisfied if P is Poisson.

A natural example of conditionally m-dependent processes is Cox processes.
A Cox process P is given in terms of a stationary random measure Λ on R

d.
Conditionally on Λ, P is a Poisson process with intensity measure Λ. This clearly
satisfies Definition 3.3.

Another example are cluster processes with bounded clusters. Such processes
are built from a stationary parent process P ′ and a sequence of a.s. finite i.i.d.
point clusters in the ball Br(o). Each point x ∈ P ′ is then replaced by one
of the clusters translated by x forming a new point process P . It follows that
Definition 3.3 is satisfied if we take P ′ as the random measure Λ and m = 2r.

For a conditionally m-dependent process in the sense of Definition 3.3, we in-
troduce the following condition, which essentially guarantees that certain point
configurations occur with a probability which is bounded from below by a pos-
itive constant. This will be used to derive a lower bound on the variance in the
proof of Proposition 6.1.

(R) Let P be a conditionally m-dependent point process. For any r0 ≤ r1 <
r2 ≤ R, define events F1, F2 ∈ N by

F1 =
{
∀(x, y) ∈ (P(5R̃)d)

	=
2 : |x− y| > R

}
F2 =

{
∀(x, y) ∈ (P(5R̃)d)

	=
2 : |x− y| > r1

}
∩
{
∃(x, y) ∈ (P(3R̃)d)

	=
2 : |x− y| ≤ r2

}
.

Then it must hold that

E
[

min
i∈{1,2}

P
(
P(5R̃)d ∈ Fi |σ(Λ,P \WR̃d)

)]
> 0,

where Λ is the measure from the definition of conditional m-dependence.

An example of a point process satisfying all assumptions in this section is a
log-Gaussian Cox process. This is a Cox process with Λ(A) =

∫
A
exp(Y (x))dx,

where {Y (x)}x∈Rd is a stationary Gaussian process. It was shown in [2] that
if Y has compactly supported covariance function, then P is a conditionally
m-dependent process with fast decay of correlations satisfying Condition (M)
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and (R). In fact, it is proved that a stronger version of (R), called (AC) in [2],
holds. Note that the proof in [2] easily generalizes to fast decaying covariance
functions such as the exponential covariance function, which will be used for
simulations in Section 5.

Another example are Matérn cluster processes. These are cluster processes
where P ′ is Poisson and clusters are i.i.d. homogeneous Poisson in Br(o). Fast
decay of correlations and Conditions (M) and (R) are again satisfied, as shown
in [2]. The proof easily generalizes to Neyman-Scott processes, which are de-
fined similarly to the Matérn processes, except that clusters are inhomogeneous
Poisson with an intensity function of bounded support.

3.2. Gibbs point processes

The second class of point processes we shall consider is a class of Gibbs point
processes which we call Ψ∗. This will be almost the same as the class Ψ∗ in
[23, 26] but with a few restrictions. We consider an energy functional Ψ defined
on finite point sets X that satisfies the following conditions:

• Translation invariance: Ψ(X ) = Ψ(X + x) for all x ∈ R
d.

• Rotation invariance: Ψ(X ) = Ψ(X ′) whenever X ′ is a rotation of X .
• Monotonicity: Ψ(X ) ≤ Ψ(X ′) whenever X ⊆ X ′.
• Positivity: Ψ(X ) ∈ [0,∞].
• Non-degeneracy: Ψ({x}) < ∞ for all x ∈ R

d.

Let
ΔΨ(x,X ) = Ψ(X ∪ {x})−Ψ(X )

with the convention ∞ − ∞ = 0. We say that Ψ has finite range if there is a
radius rΨ such that

ΔΨ(x,X ) = ΔΨ(x,X ∩BrΨ(x)).

for all (x,X ).
For a finite range energy functional Ψ, we may consider the infinite volume

Gibbs point process with inverse temperature β and activity τ satisfying

τκd(r
Ψ)d < 1, (4)

where κd = πd/2/Γ(1 + d/2) is the volume of the d-dimensional unit ball. Con-
dition (4), together with the finite range, ensures existence and uniqueness of
the infinite volume Gibbs process [6, Thm. 4]. This is the point process P sat-
isfying that for any bounded domain D, conditionally on P ∩Dc = X0, P ∩D
is absolutely continuous with respect to a Poisson process Q on D of intensity
τ with density

X �→ exp(−β(ΔΨ
D(X ,X0))

E[exp(−βΔΨ
D(Q,X0))]

, (5)

where expectation is taken with respect to Q, and for X ⊆ D,

ΔΨ
D(X ,X0) = Ψ(X ∪ (X0 ∩ (D ⊕BrΨ(0))))−Ψ(X0 ∩ (D ⊕BrΨ(0))).
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The class Ψ∗ consists of all infinite volume Gibbs point processes satisfying
(4), where the energy functional has one of the following forms:

(i) Pair potential: There is a pair potential function φ : [0,∞) → [0,∞]
such that φ has compact support, φ−1(∞) ⊆ [0, r0] and φ is bounded on
compact subintervals of (r0,∞). Then

Ψ({x1, . . . , xn}) =
∑
i<j

φ(|xi − xj |).

(ii) Area interaction process: Let K ⊆ R
d be a deterministic compact convex

set. Then

Ψ({x1, . . . , xn}) =
∣∣∣ n⋃
i=1

(xi +K)
∣∣∣

(iii) For a fixed R > 0 and k > 2,

Ψ({x1, . . . , xn}) = ∞

if there is a ball of radius R containing at least k of the points. Otherwise,
Ψ({x1, . . . , xn}) = 0.

Note that all these energy functionals have finite range. It was shown in [23]
that the point processes in P can be constructed by a backwards oriented perfect
simulation technique, which is recalled in Appendix B for reference in the proofs.
It follows from this construction that all Gibbs point processes of class Ψ∗ have
fast decay of correlations as noted in [4].

Remark 3.4. The energy functionals here are essentially the same as in [26, 23],
except that 1) we modified the pair potentials in (i) to have finite range and 2)
some of the energy functionals in [23] allowed an extra term αn, where n is the
number of points in X . However, removing the term αn yields the same point
process if τ is replaced by τ̃ = τ exp(−βα), see [6, Def. 8]. The requirement

τ exp(−βα)κd(r
Ψ)d < 1

of [26, 23] then becomes equivalent to our condition τ̃κd(r
Ψ)d < 1.

3.3. Laws of large numbers

For both types of point processes we consider, the literature provides formulas
for the limiting mean and variance when n → ∞.

Theorem 3.5 (LLN for K̂n(r)). Let P be either a simple stationary point
process in R

d that exhibits fast decay of correlations as in Definition 3.1 and
satisfies Condition (M) or a Gibbs process of class Ψ∗. Further, let K̂n be
defined as in (1). Then, for any r > 0, there is a constant Cr such that∣∣∣EK̂n(r)−K(r)

∣∣∣ ≤ Crn
− 1

d . (6)
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Moreover, for r1, r2 > 0,

lim
n→∞

nCov(K̂n(r1), K̂n(r2)) =
1

ρ3
Eo

∑
x,y∈P\{0}

1{|x|≤r1,|y|≤r2} +

∫
Rd

ar1,r2(x)dx

(7)
where

ar1,r2(x) =
ρ(2)(0, x)

2ρ4
E0,x

( ∑
u∈P\{0}

∑
v∈P\{x}

(
1{|u|≤r1}1{|x−v|≤r2}

+ 1{|u|≤r2}1{|x−v|≤r1}

))
−K(r1)K(r2).

The limit (7) is finite. In particular, K̂n(r) converges in probability towards
K(r).

Proof. In the case of fast decay of correlations, the inequality (6) and the limit
(7) for r1 = r2 follow directly from [4, Thm. 1.12] and Lemma 3.2. The case
r1 �= r2 in (7) follows from the identity

Cov(X,Y ) = 1
2 (Var(X + Y )− Var(X)− Var(Y ))

together with [4, Thm. 1.12] and Lemma 3.2 applied to ξr1 + ξr2 .
For Gibbs point processes, the first statement follows from a direct computa-

tion valid for any stationary point process, while the limiting covariance follows
from [26, Thm. 1.1].

4. Main results

In this section, we state the main results of this paper, which is a central limit
theorem for K̂e,n(r) when restricted to a bounded interval [r0, R]. Throughout
the paper, r0 and R will denote the constants in condition (R) in the case of
conditionally m-dependent processes, and the constants from the definition of
the energy functional for Gibbs point processes.

We first state a central limit theorem for the finite dimensional distributions
of K̂e,n(r) as described in (2). The proof is given in Section 6.

Theorem 4.1. Let P be a conditionally m-dependent point process having fast
decay of correlations and satisfying condition (M) and (R) or a Gibbs point
process having energy functional of class Ψ∗. Let r0 ≤ r1 < · · · < rp ≤ R and
let e = ei,n, i ∈ {1, . . . , 5} be one of the edge corrections from Section 2. Then

√
n
(
K̂e,n(r1)− EK̂e,n(r1), . . . , K̂e,n(rp)− EK̂e,n(rp)

)
converges in distribution to a multivariate Gaussian variable with mean zero
and covariance structure given by Theorem 3.5.

The next theorem is a functional central limit theorem for K̂e,n(r). The proof
is given in Section 7.
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Theorem 4.2. Let P be a conditionally m-dependent point process with fast
decay of correlations satisfying conditions (M) and (R) or a Gibbs point process
of class Ψ∗. Let e = ei,n, i ∈ {1, . . . , 5}, be one of the edge corrections in Section
2. The process {√

n(K̂e,n(r)− EK̂e,n(r))
}
r∈[r0,R]

converges weakly in Skorokhod topology to a centered Gaussian process with co-
variance structure given by Theorem 3.5. The limiting process has a modification
that is Hölder continuous for any exponent γ < 1/2.

4.1. Generalization to other summary statistics

The arguments used to prove Theorem 4.1 and 4.2 apply to other geometric
functionals given in terms of score functions. The key ingredients in the proofs
is that the score function satisfies the inequalities in Lemmas 6.2, 7.2, and
7.3. However, the proofs of these lemmas, especially Lemma 7.2, rely on the
geometric properties of the specific score function. Thus, a direct generalization
of the proofs seems only possible for score functions similar in flavour to the K-
function. The most obvious such functional is the pair correlation function given
for isotropic point patterns by g(r) = ρ(2)(r)/ρ2, where ρ(2)(x, y) = ρ(2)(|x−y|).
The pair correlation function relates to the K-function by dκdr

d−1g(r) = K ′(r).
A kernel estimator for g(r) is given in [5] by

ĝn(r) =
1

ndκdrd−1

∑
x∈Pn

∑
y∈Pn

k(r − |x− y|)e2,n(x, y), (8)

where k is a compactly supported kernel function which is C1 on its support.
Another related functional is the nearest neighbor function given by D(r) =
Po((P\{o}) ∩Br(o) �= ∅), which can be estimated [5] by

D̂n(r) =
1

ρn

∑
x∈Pn

1{(Pn\{x})∩Br(x) 	=∅}e4,n(x, y). (9)

Corollary 4.3. Let P be a conditionally m-dependent point process with fast
decay of correlations satisfying conditions (M) and (R) or a Gibbs point process
of class Ψ∗. Let ĝn be as in (8) with k = f1[−δ,δ) where f is C1 on [−δ, δ], and

let D̂n be as in (9). The processes{√
n(ĝn(r)− Eĝn(r))

}
r∈[r0+δ,R−δ]{√

n(D̂n(r)− ED̂n(r))
}
r∈[r0+δ,R−δ]

converge weakly in Skorokhod topology to a centered Gaussian process, which has
a modification that is Hölder continuous for any exponent γ < 1/2.

In the case of Dn, the score function ξ = 1(P\{x})∩Br(x) 	=∅ can be bounded
by the score function (3) of the K-function, which can be used to generalize
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Lemmas 7.2-7.3. Only Lemma 6.2 needs a new proof, which can be given in a
way similar to Lemma 7.1.

The case of gn can also be shown by a straightforward generalization of
Lemmas 6.2, 7.2, and 7.3. Alternatively, the result could be derived directly
from Theorem 4.2 by writing

ĝn(r) = f(−δ)K̂e,n(r + δ)− f(δ)K̂e,n(r − δ) +

∫ r+δ

r−δ

K̂e,n(s)f
′(r − s)ds

and applying the continuous mapping theorem, noting that the functional

β �→
(
f(−δ)β(r + δ)− f(δ)β(r − δ) +

∫ r+δ

r−δ

β(s)f ′(s− r)ds
)
r∈[r0+δ,R−δ]

,

where β is a cadlag function on [r0, R], is continuous in the Skorokhod topology,
see arguments of [2, Cor. 3.4].

In [13], a functional limit theorem was shown in the Poisson case for the more
general multi-parameter K-function

K(r1, . . . , rd) =
1

nρ2
E

∑
x∈Pn

∑
y∈P\{x}

1{x−y∈
∏d

i=1[0,ri]}

=
1

ρ
Eo

∑
y∈P\{o}

1{y∈
∏d

i=1[0,ri]}.

The results of this paper easily generalize to the multiparameter K-function,
using a multiparameter version of the tightness criterion [14, Lem. 3].

A functional central limit theorem for persistence diagrams was shown in [2]
for conditionally m-dependent processes. The proofs easily generalize to Gibbs
point processes using Lemma 7.3 of the present paper. The only case where one
has to be careful is when a hardcore radius is present since this may rule out the
possibility of a variance lower bound in certain parts of the persistence diagram.

5. Statistics

5.1. Goodness-of-fit tests

Consider the problem of how well an observed point pattern x fits an assumed
model P0. We present how the results of Theorem 4.2 can be used for construc-
tion of goodness-of-fit tests by considering a Kolmogorov-Smirnov type test
based on Ripley’s K-function. We assume that all parameters are known. Let
H0 be the hypothesis that x is a realisation of P0. If H0 is true, then for a given
R > 0,

sup
r∈[0,R]

|
√
n(K̂e,n(r)− EK̂e,n(r))| ≈n →∞ sup

r∈[0,R]

|Y (r)|
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Fig 1. From left to right, each column shows an example of realisations of Poi(1), Str0.4(0.2),
and LGCP2(0.2) simulated on the window [0, 100]2 (first row) with a zoom of the same
realisations on [0, 50]2 (second row) and [0, 20]2 (third row).

where Y (r) is a centered Gaussian process with covariance CP0 given by the
limiting covariance function in (7). Let qα denote the quantile of supr∈[0,R] |Y (r)|
defined by P (supr∈[0,R] |Y (r)| ≤ qα) = 1− α. It follows that under H0,

P( sup
r∈[0,R]

|
√
n(K̂e,n(r)− EK̂e,n(r))| ≤ qα) ≈n→∞ 1− α. (10)

Note that in place of the supremum in (10), we could have used the integral
over [0, R]. Altenatively, one might use either the Cramer-von Mieses type test
or the χ2-test presented in [12].
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Table 1

Rejection rate (in percent) of the null hypothesis that x is a realisation of a Poisson point
process with intensity 1 on Wn, when x in fact comes from either the null model or an

LGCP2(0.2) model, respectively, using the test statistics in (10) on various intervals [0, R].

P0 ∼ Poi(1) x ∼ Poi(1) x ∼ LGCP2(0.2)

Wn — [0, R] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

[0, 20]2 8.0 6.8 7.0 7.7 7.8 48.5 45.0 43.7 43.5 44.4
[0, 50]2 7.1 5.2 5.6 5.6 6.0 74.3 63.1 55.8 51.1 48.4
[0, 100]2 7.2 6.0 5.8 5.7 5.8 97.3 89.8 78.4 67.7 59.4
[0, 200]2 6.8 5.2 4.8 4.8 4.8 100 100 99.4 96.0 88.8

Table 2

Rejection rate (in percent) of the null hypothesis that x is a realisation of an LGCP2(0.2)
on Wn, when x in fact comes from either the null model or a Poi(1) model, respectively,

using the test statistics in (10) on various intervals [0, R].

P0 ∼ LGCP2(0.2) x ∼ LGCP2(0.2) x ∼ Poi(1)

Wn — [0, R] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

[0, 20]2 3.1 3.3 3.9 4.2 4.4 0 0 0 0 0
[0, 50]2 3.8 4.0 4.4 4.6 4.7 1.0 0 0 0 0
[0, 100]2 4.1 4.4 4.8 4.9 4.8 90.1 38.3 6.9 0 0
[0, 200]2 4.3 4.2 4.6 4.5 4.5 100 100 99.6 77.9 28.2

5.2. Simulation study

We illustrate the goodness-of-fit test presented above in a simulation study
where we estimate the rejection rate of H0 when x is indeed a realisation of P0

and when it is a realisation of an alternative model having the same intensity
as P0. All point processes considered have intensity 1. Each rejection rate has
been estimated, with α = 5%, by simulating 10000 point patterns x on Wn

for n = 202, 502, 1002, 2002. Moreover, the statistic in (10) has been computed
for R = 1, 2, 3, 4, 5. All the simulations have been done in R with the package
spatstat and the border edge correction was used.

To shorten, we denote a Poisson point process by Poi, a log-Gaussian Cox
process (LGCP) with exponential covariance function, variance σ2, and scale
parameter a by LGCPa(σ

2), and a Strauss point process with interaction pa-
rameter γ and interaction radius 0.4 by Str0.4(γ). The dependence on the activ-
ity parameter β of the Strauss process is omitted in the notation as we always
determine it by simulation so that the intensity of the process is 1. The first
row in Figure 1 shows examples of realisations of the point processes consid-
ered for our simulation study: Poi(1), Str0.4(0.2), and LGCP2(0.2), simulated
on Wn = [0, 100]2. The second and third row in Figure 1 shows a zoom of the
first row of point configurations on [0, 50]2 and [0, 20]2, respectively. Note that
depending on the scale, it is not visually easy to distinguish the different pro-
cesses. For example on [0, 100]2, there is no clear distinction between Poi(1) and
Str0.4(0.2). This distinction is however clearer at small scale as seen in the third
row where Str0.4(0.2) appears to be more regular.

We first let P0 be a Poisson point process with known intensity ρ = 1. In that
case we have K(r) = πr2 and CP0(r1, r2) = 2πmin(r1, r2)

2/ρ2 + 4π2r21r
2
2/ρ.
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Table 3

Rejection rate (in percent) of the null hypothesis that x is a realisation of a Str0.4(0.2) on
Wn, when x in fact comes from either the null model or a Poi(1) model, respectively, using

the test statistics in (10) on various intervals [0, R].

P0 ∼ Str0.4(0.2) x ∼ Str0.4(0.2) x ∼ Poi(1)

Wn — [0, R] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

[0, 20]2 5.5 6.0 6.4 7.0 7.5 34.6 14.6 14.3 14.4 14.7
[0, 50]2 5.4 5.3 5.6 5.6 5.9 100 18.6 13.1 11.8 11.7
[0, 100]2 4.9 4.9 5.0 5.0 5.0 100 57.0 45.0 43.7 46.6

Table 4

T indicates rejection and F indicates non-rejection of the null hypothesis that x is a
realisation of a Poi(1) on Wn, when x in fact comes from either a Str0.4(0.2), LGCP2(0.2),
or Poi(1) model, respectively, using the test statistics in (10) on various intervals [0, R].

P0 ∼ Poi(1) x ∼ Str0.4(0.2) x ∼ LGCP2(0.2) x ∼ Poi(1)

Wn — [0, R] [0, 1] [0, 3] [0, 5] [0, 1] [0, 3] [0, 5] [0, 1] [0, 3] [0, 5]

[0, 20]2 F F F T T T F F F
[0, 50]2 T F F T T T T T T
[0, 100]2 T F F T F F F F F

We have discretized the segment [0, R] by steps of 0.1 and estimate empiri-
cally the quantile qα in (10) with 100000 realisations of a multivariate centered
Gaussian random variable with covariance matrix (CP0(r1, r2))r1,r2∈DR

, where
DR = {0.1x, x = 0, 1, 2, . . . , 10R}. We estimate the rejection rate of H0 over
10000 realisations of P0 and 10000 realisations of an LGCP2(0.2) model. The
results are reported in Table 1.

Second, we repeat the same procedure but with P0 ∼ LGCP2(σ
2) for σ =

0.2, 1, and P0 ∼ Str0.4(γ), for γ = 0.2, 0.5, 0.8. Using 100000 realisations, the
intensity of the point process is estimated to be 1 when β = 1.556, 1.298, 1.107
for γ = 0.2, 0.5, 0.8, respectively. Note that Inequality (4) holds for these val-
ues. Then, CP0 and EK̂e,n(r) have been estimated using 10000 realisations of
LGCP2(σ

2) and Str0.4(γ). The rejection rates have been estimated over 10000
realisations of P0 and 10000 realisations of a Poisson process with intensity 1.
Due to computational power limitation, we have only run perfect simulations of
the Strauss process up to n = 1002. We report the results for LGCP2(0.2) and
Str0.4(0.2) in Tables 2 and 3, respectively, and comment on the remaining cases
below.

Finally, to better illustrate our results, we report in Table 4 the output of the
test of the null hypothesis P0 ∼ Poi(1) for the three point process realisations
in Figure 1 for different windows Wn and intervals [0, R].

5.3. Discussion

The results reported on Tables 1-3 are in agreement with Theorem 4.2. When
P0 is a Poisson point process or LGCP with variance σ2 = 0.2, we recover the
correct type I error rate as soon as n ≥ 1002 and R ≥ 2. When P0 is a LGCP
with larger variance σ2 = 1, the type I error was always estimated around 2%
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and we actually need n ≥ 3002 to recover the correct type I error meaning that
results in this setting would hold only when a very large number of points are
observed. In the case of the Strauss process, the correct type I error is always
found when n ≥ 502.

When tested against an alternative hypothesis, the test is good at detecting
deviations from the Poisson point process, see Table 1. When P0 ∼ LGCP2(0.2)
or LGCP2(1), results are bad. This is due to the large variance of K̂e,n(r) in
these cases leading to a large value of the quantile qα. Consequently, better
results are obtained for small values of R and large windows. In the case of
Strauss processes with γ = 0.2, the assumption that Ripley’s K-function is the
one of the Strauss process is correctly rejected only for small values of R and
n ≥ 502. As we increase γ, the power decreases, as the null model comes closer to
the Poisson process. Hence, depending on the alternative hypothesis considered,
we suggest to use another functional than the supremum in (10).

In the case where the number of points is very large, i.e. more than some
millions, it may not be feasible to estimate CP0 and EK̂e,n(r) through simulation
of realisations of P0 as done in our simulation study for the LGCP and Strauss
process. In this case, both CP0 and EK̂e,n(r) need to be known which, although
relying on numerical integrations, holds for LGCPs. Therefore, when the null
model is assumed to be a Poisson point process or LGCP, our goodness-of-fit
test only requires the estimation of the quantile qα which can easily be obtained
through simulation of Gaussian paths. Therefore, assuming a known intensity,
the goodness-of-fit test proposed in Section 5.1 only take some minutes to return
an output.

Looking at Table 4, we observe that the realisation of LGCP2(0.2) is correctly
rejected except when Wn = [0, 100]2 and R = 3 or R = 5. This may look counter
intuitive as visually the realisation appears to be more clustered than a Poi(1).
However, this may be due to the supremum in (10) and the cumulative nature
of the K-function which hides the clustered behaviour visible on Figure 1 (top
right panel) when R is too large. Indeed, the test is correctly rejected for the
small value R = 1, for all sizes of the window Wn.

Similarly the difference between Poi(1) and Str0.4(0.2) is best shown at small
scale, i.e. on the last row in Figure 1. Therefore, R in the test statistics (10)
should be chosen small to distinguish the two processes. This is confirmed in
Table 4 where the null hypothesis is rejected only when R = 1 and Wn larger
than [0, 50]2. Note that the test fails to detect the bottom middle panel on
Figure 1 as not Poisson although the pattern visually appears to be too regular
for a Poisson process.

As an example of an incorrectly rejected null hypothesis, we can see in Table 4
that the Poisson point process realisation from Figure 1 is wrongly rejected when
tested on [0, 50]2. It may be due to the point configurations being too clustered
on this region of the space.
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6. Proof of Theorem 4.1

6.1. The case of conditionally m-dependent processes

In this section, we prove Theorem 4.1 for conditionally m-dependent processes.
When no edge corrections are present, the proof follows directly from [4, Thm.
1.13] once we can show the following variance lower bound.

Proposition 6.1. Let P be a conditionally m-dependent point process having
fast decay of correlations and satisfying condition (R). Then, for all p ∈ N,
s1, . . . , sp ∈ R, and r1, . . . , rp ∈ [r0, R], we have

lim inf
n→∞

nVar
( p∑

i=1

siK̂n(ri)
)
> 0.

To obtain the proof in the edge corrected case, we need to consider the
deviation

Ee,n(r) = (K̂n(r)− EK̂n(r))− (K̂e,n(r)− EK̂e,n(r)) (11)

between the edge corrected and uncorrected centered K-functions. We show an
upper bound on the variance of Ee,n(r) in the following lemma together with a
variance bound that we are going to need later in the proof of Theorem 4.2. To
state these results, we define for an interval I = (r1, r2] ⊆ [r0, R],

K̂e,n(I) = K̂e,n(r2)− K̂e,n(r1).

Lemma 6.2. Let P be a point process having fast decay of correlations and
r0, R be two constants such that R > r0 > 0. Let e = ei,n, i ∈ {1, . . . , 5}, be one
of the edge correction factors in Section 2. There is a constant C > 0 such that
for all r ∈ [r0, R] and I = (r1, r2] ⊆ [r0, R],

nVar(K̂e,n(I)) ≤ C|I| (12)

nVar(Ee,n(r)) ≤ Cn−1/d. (13)

We first show how Theorem 4.1 follows from these two results and then give
their proofs.

Proof of Theorem 4.1(m-dependent case). We first consider the uncorrected case
and show the joint convergence of (K̂n(r1), . . . , K̂n(rp)). By the Cramér-Wold
device, it suffices to show a pointwise central limit theorem for all linear combi-
nations of K̂n(r1), . . . , K̂n(rp). This follows directly from [4, Thm. 1.13], where
the assumptions are satisfied by Lemma 3.2 and the asymptotic variance lower
bound in Proposition 6.1.

Second, by Lemma 6.2, we have that

lim
n→∞

nVar(Ee,n(r)) = 0.
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Therefore, for each j = 1, . . . , p we have that

√
n(K̂n(rj)− EK̂n(rj))−

√
n(K̂e,n(rj)− EK̂e,n(rj))

converges to 0 in probability, so the statement of Theorem 4.1 in the edge
corrected case follows from the uncorrected case.

It remains to prove Proposition 6.1 and Lemma 6.2.

Proof of Proposition 6.1. Let p ∈ N, s1, . . . , sp ∈ R and r0 ≤ r1 < · · · < rp ≤ R
be given. For any Borel set A ⊂ R

d, we introduce the notation

Tn(A) =

p∑
i=1

si
∑

x∈A∩Pn

∑
y∈Pn\{x}

1{|x−y|≤ri}.

As a special case,

Tn(Wn) =

p∑
i=1

si
∑
x∈Pn

∑
y∈Pn\{x}

1{|x−y|≤ri} = nρ2
p∑

i=1

siK̂n(ri),

so what we need to show is

lim inf
n→∞

1

n
Var(Tn(Wn)) > 0. (14)

For any Borel set A ⊂ R
d, we let ΛP

A = σ(Λ,P ∩A) to shorten notation and
recall that R̃ = max(m,R). For t > 0, let

Ct =
⋃

z∈Zd

(6R̃z +Wtd) ∩Wn

be the union of cubes of side length t centered at the vertices of the lattice
6R̃Z

d. Finally, let
At = Wn \ Ct.

From the law of total variance, it follows that

Var Tn(Wn) ≥ EVar(Tn(Wn)|ΛP
AR̃

). (15)

We have that Tn(Wn) = Tn(A3R̃) + Tn(C3R̃) and Tn(A3R̃) depends only on
P inside A3R̃ ⊕ BR(o) ⊂ AR̃, where ⊕ denotes Minkowski set addition. Thus
Tn(A3R̃) is measurable with respect to AR̃ and hence ΛP

AR̃
. Thus, by Lemma

A.2 we have
Var(Tn(Wn)|ΛP

AR̃
) = Var(Tn(C3R̃)|ΛP

AR̃
). (16)

The squares in C3R̃ are separated by at least distance 3R̃, and Tn(C3R̃) only de-

pends on the points of P within distance R ≤ R̃ from C3R̃. Thus, the conditional
m-dependence and (15)–(16) yield

Var Tn(Wn) ≥
∑
z∈Zd

EVar(Tn(6R̃z +W(3R̃)d)|ΛP
AR̃

).
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Since for all z ∈ Z
d, P ∩AR̃ ⊂ P ∩ (6R̃z +WR̃d)c, Lemma A.2 yields,

Var Tn(Wn) ≥
∑
z∈Zd

EVar
(
Tn(6R̃z +W(3R̃)d)|ΛP

(6R̃z+W
R̃d )c

)

≥
∑
z∈Z

d

6R̃z+W
(5R̃)d

⊂Wn

EVar
(
Tn(W(3R̃)d)|ΛP

(W
R̃d )c

)
. (17)

The last inequality used stationarity and the fact that Tn(6R̃z +W(3R̃)d) only

depends on P ∩ (6R̃z +W(5R̃)d).
We may assume sp �= 0. Let

F1 =
{
∀(x, y) ∈ (P ∩W(5R̃)d)

	=
2 : |x− y| > R

}
F2 =

{
∀(x, y) ∈ (P ∩W(5R̃)d)

	=
2 : |x− y| > rp−1

}
∩
{
∃(x, y) ∈ (P ∩W(3R̃)d)

	=
2 : |x− y| ≤ rp

}
.

(18)

Then,

F1 ⊂ {Tn(W(3R̃)d) ∈ I1}
F2 ⊂ {|Tn(W(3R̃)d)| ∈ I2},

where I1 = {0} and I2 = [|sp|,∞). Therefore, by applying Lemma A.1 with
Y = Tn(W(3R̃)d), we have

Var
(
Tn(W(3R̃)d)|ΛP

(W
R̃d )c

)
≥

s2p
4

min
i∈{1,2}

P

(
|Tn(W(3R̃)d)| ∈ Ii|ΛP

(W
R̃d )c

)

≥
s2p
4

min
i∈{1,2}

P

(
Fi|ΛP

(W
R̃d )c

)
.

Thus, by Condition (R),

E

(
Var

(
Tn(W(3R̃)d)|ΛP

(W
R̃d )c

))
> 0.

This, together with (17), shows (14) since the number of terms in (17) is of
order n.

Proof of Lemma 6.2. For x ∈ R
d, let AI(x) = {y ∈ R

d | r1 < |x − y| ≤ r2}
denote the annulus centered at x and having inner and outer radius r1 and r2,
respectively. Note that |AI(x)| = κd(r

d
2 − rd1) and that y ∈ AI(x) is equivalent

to x ∈ AI(y).
Both nK̂e,n(I) and nEe,n(r) take the form

1

ρ2

∑
x,y∈(Pn)

�=
2

1{x∈AI(y)}e(x, y), (19)
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where nK̂e,n(I) corresponds to e = ei,n, and nEe,n(r) corresponds to e = 1−ei,n
and I = (0, r].

Since

E

( ∑
x,y∈(Pn)

�=
2

1{r1<|x−y|≤r2}e(x, y)

)2

= E

( ∑
x,y,u,v∈(Pn)

�=
4

e(x, y)e(u, v)1{x∈AI(y)}1{u∈AI(v)}

)

+ E

( ∑
x,y,u∈(Pn)

�=
3

(e(x, y) + e(y, x))(e(y, u) + e(u, y))1{x∈AI(y)}1{u∈AI(y)}

)

+ E

( ∑
x,y∈(Pn)

�=
2

(e(x, y)2 + e(x, y)e(y, x))1{x∈AI(y)}

)
,

we may write the variance of (19) as I1 + I2 + I3 where

I1 =

∫
W 4

n

e(x, y)e(u, v)1{x∈AI(y)}1{u∈AI(v)}

× (ρ(4)(x, y, u, v)− ρ(2)(x, y)ρ(2)(u, v))dxdydudv

I2 =

∫
W 3

n

(e(x, y) + e(y, x))(e(y, u)

+ e(u, y))1{x∈AI(y)}1{u∈AI(y)}ρ
(3)(x, y, u)dxdydu

I3 =

∫
W 2

n

(e(x, y)2 + e(x, y)e(y, x))1{x∈AI(y)}ρ
(2)(x, y)dxdy.

First consider nK̂e,n(I). Definition 3.1 implies that ρ(p) is bounded on R
pd, see

also [4, (1.11)]. Moreover, the edge correction factors ei,n are bounded whenever
n > (2R)d. Thus, there exists a constant C1 > 0 such that

I2 ≤ C1

∫
Wn

∫
Rd

∫
Rd

1{x∈AI(y)}1{u∈AI(y)}dudxdy = C1|Wn||AI(o)|2.

Since r1, r2 ∈ [0, R], there exists a constant C2, depending only on R and d,
such that |AI(o)| = κd(r

d
2 − rd1) ≤ C2|I|. Hence, I2 ≤ C3|Wn||I|2. Similarly,

there exist constants C4, C5 > 0 such that

I3 ≤ C4

∫
Wn

∫
Rd

1{x∈AI(y)}dxdy ≤ C5|Wn||I|.

By Definition 3.1, there exist constants C6, C7, C8 > 0 and a function φ(t) ≤
C6(t

−(d+1) ∧ 1) such that

I1 ≤ C7

∫
W 4

n

1{x∈AI(y)}1{u∈AI(v)}φ(dist({x, y}, {u, v}))dxdydudv
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≤ C8

∫
W 4

n

1{x∈AI(y)}1{u∈AI(v)}

( 1

dist({x, y}, {u, v})d+1
∧ 1

)
dxdydudv.

Renaming variables appropriately, we may assume that dist({x, y}, {u, v}) =
|y − u|. Then,

I1 ≤ C9

∫
Wn

∫
Rd

∫
Rd

∫
Rd

1{x∈AI(y)}1{u∈AI(v)}

( 1

|y − u|d+1
∧ 1

)
dxdvdydu

≤ C10|Wn||I|2.

Together, the bounds on I1, I2, and I3 show (12).
Next consider Var(nEe,n(r)). For e = 1− ei,n(x, y), i = 4, 5, we note that e is

again bounded. Moreover, e(x, y) vanishes outside (Wn,2r)
2, where we use the

notation

Wn,s = Wn \ (Wn �Bs(o)) = Wn\
[
− n1/d

2 + s, n1/d

2 − s
]

for the set of points that are within distance s from the boundary of Wn. This
implies that the factor n = |Wn| in the variance bound can be replaced by
|Wn,2r|. Note that

|Wn,2r| = n− (n1/d − 4r)d ≤ C11n
1−1/d.

Thus,
nVar(Ee,n(r)) ≤ C12n

−1/d. (20)

For e = 1− e2,n, we note that whenever |x− y| ≤ r, we have Wn � Br(o) ⊆
Wn ∩ (Wn + x− y), so for n large enough

|Wn ∩ (Wn + x− y)| ≥ (n1/d − 2r)d ≥ n− C13n
1−1/d. (21)

Thus, for some C14 > 0,

|e2,n(x, y)| =
|Wn| − |Wn ∩ (Wn + x− y)|

|Wn ∩ (Wn + x− y)| ≤ C13n
1−1/d

n− C13n1−1/d
≤ C14n

−1/d.

Using this and proceeding as in the case of K̂e,n(I) yields (13).
The case e = 1− e3,n is very similar. For any rotation η ∈ SO(d), apply the

inequality (21) to |Wn + η(x− y)|. Averaging over all rotations, the inequality
is preserved. Proceeding as before, we obtain (13).

6.2. Proof of Theorem 4.1 in the Gibbs case

Proof of Theorem 4.1(Gibbs case). We first consider the case without edge cor-
rections. The modification for edge corrections follows from Lemma 6.2 as in
the case of conditionally m-dependent point processes.

We again use the Cramér-Wold device, that is, we need to show a central
limit theorem for all linear combinations of K̂n(r1), . . . , K̂n(rp), p ≥ 1, 0 ≤ r1 ≤
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· · · ≤ rp ≤ R. Such a linear combination corresponds to a score function of the
type

ξ =

p∑
i=1

aiξri .

By [26, Thm 1.2], it is enough to show the following four points:

1. ξ is exponentially stabilizing in the sense of [26, (1.8)].
2. ξ is translation invariant.
3. ξ verifies

sup
n

sup
x∈Wn

E[ξ(x,P ∪ x)4] < ∞.

4. There exists s > 0 such that

inf
t≥s

EVar(
∑

x∈P∩Wt

ξ(x,P)|P ∩W c
s ) ≥ b0.

Point 1. is trivially satisfied, since ξ has finite radius of stabilization at most
R, i.e., ξ(x,X ) depends only on X ∩BR(x), and 2. holds by definition. Point 3.
holds because

E(ξ(x,P ∪ x)4) ≤
p∑

i=1

|ai|E[P(BR(x))
4] =

p∑
i=1

|ai|E[P(BR(o))
4] < ∞.

The last inequality holds because P can be given as a thinning of a Poisson
process of intensity τ , which has finite moments.

To show 4., we take s = Rd and note that by Lemma A.2, and since ξ has
stabilization radius R,

inf
t≥Rd

EVar
( ∑

x∈P∩Wt

ξ(x,P)|P ∩W c
Rd

)

= inf
t∈[Rd,(2R)d]

EVar
( ∑

x∈P∩Wt

ξ(x,P)|P ∩W c
Rd

)
.

Place two small open balls, A1 and A2, inside WRd at least distance rp−1 apart
and both contained inside a ball of diameter rp > rp−1. Define the events

E′ = {P(W(3R)d \WRd) = 0}
E1 = {P(WRd) = 0}
E2 = {P(A1) = P(A2) = 1,P(WRd \ (A1 ∪A2)) = 0}.

Then for every t ∈ [Rd, (2R)d], the event E′ ∩ Ei is contained in the event

{∣∣ ∑
x∈P∩Wt

ξ(x,P)
∣∣ ∈ Ii

}
,
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where I1 = {0} and I2 = [|ap|,∞), and hence by Lemma A.1,

Var

( ∑
x∈P∩Wt

ξ(x,P)|P ∩W c
Rd

)
≥

a2p
4

min
i=1,2

P(E′ ∩ Ei|P ∩W c
Rd).

Since E′ is measurable with respect to P ∩W c
Rd , we find

P(E′ ∩ E2|P ∩W c
Rd)

= 1E′P(P(A1) = P(A2) = 1,P(WRd \ (A1 ∪A2)) = 0|P ∩W c
Rd).

We now apply [26, Lem. 2.2] to show that

P(E′ ∩ E1|P ∩W c
Rd)

= 1E′P(P(A1) = P(A2) = 0,P(WRd \ (A1 ∪A2)) = 0|P ∩W c
Rd)

≥ e−τRd

1E′P(P(A1) = P(A2) = 1,P(WRd \ (A1 ∪A2)) = 0|P ∩W c
Rd).

Hence

E

(
Var

( ∑
x∈P∩Wt

ξ(x,P)|P ∩W c
Rd

))
(22)

≥
a2p
4
E(min

i=1,2
P(E′ ∩ Ei|P ∩W c

Rd))

≥
a2p
4
e−τRd

E(1E′P(P(A1) = P(A2) = 1,P(WRd \ (A1 ∪A2)) = 0|P ∩W c
Rd)).

We need to check that the latter expectation is strictly positive. Recall that the
Gibbs point process has the density (5) with respect to the Poisson process Q
on WRd when conditioning on P ∩ W c

Rd = X0. This density is bounded from
below on E2 by some c > 0 uniformly in all values of X0 ∈ E′. This is because
the denominator in the density is bounded from above by 1, and the numerator
is bounded from below on E2 ∩ E′. Indeed, the maximal number of points in
W(3R)d is two, and these points are at distance of at least r0 from each other

and at least R from any other points. Hence ΔΨ(X ,X0) is bounded from above,
resulting in a lower bound on the numerator. With this bound on the density,
we have on E′

P(P(A1) = P(A2) = 1,P(WRd \ (A1 ∪A2)) = 0|P ∩W c
Rd)

≥ cP(Q(A1) = Q(A2) = 1,Q(WRd \ (A1 ∪A2)) = 0) > 0.

Positivity of (22) now follows because P(P ∈ E′) ≥ P(Q ∈ E′) since P can be
given as a thinning of a Poisson process Q, see Appendix B.

7. Proof of Theorem 4.2

The proof of Theorem 4.2 is based on Lemma 7.1 below, which provides a
bound on the fourth cumulant c4. To state Lemma 7.1, let r ∈ [r0, R] and
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I = (r1, r2] ⊆ [r0, R] and introduce the notations

K̄e,n(r) = K̂e,n(r)− EK̂e,n(r)

K̄e,n(I) = K̄e,n(r2)− K̄e,n(r1).

Two intervals are called neighboring if they share exactly one end point. We
recall the definition of the fourth multivariate cumulant of centered stochastic
variables X,Y, Z,W :

c4(X,Y, Z,W ) = E(XY ZW )− Cov(X,Y ) Cov(Z,W )− Cov(X,Z) Cov(Y,W )

− Cov(X,W ) Cov(Y, Z). (23)

Lemma 7.1. Let P be a point process having fast decay of correlations and
satisfying Condition (M) or a Gibbs point process of class Ψ∗. Let e = ei,n,
i ∈ {1, . . . , 5}, be one of the edge corrections listed in Section 2. Then there is a
constant C > 0 such that for all neighboring intervals I1, I2 ⊆ [r0, R],

c4(nK̄e,n(I1), nK̄e,n(I1), nK̄e,n(I2), nK̄e,n(I2)) ≤ Cn|I1|3/4|I2|3/4.

The proof is given in Section 7.4. We first show how Lemma 7.1 implies
Theorem 4.2.

Proof of Theorem 4.2. Let kr denote the limit of
√
nK̄n,e(r) and let I = (r1, r2].

Since by Theorem 4.1,
√
nK̄e,n(I) converges in distribution to (kr2 − kr1) as n

tends to infinity, the Portmanteau theorem and Lemma 6.2 yield

Var(kr2 − kr1) = E[(kr2 − kr1)
2] ≤ nVar K̄e,n(I) ≤ C|I|. (24)

According to [14, Lem. 3], convergence in Skorokhod topology is ensured
if we can show three properties. The first is convergence of finite-dimensional
distributions, which follows from Theorem 4.1. The second property we need to
check is that

lim
r→R

P (|kR − kr| ≥ δ) = 0

for any δ > 0. This follows from (24) and the Chebyshev inequality. Finally, we
need to show that there is an ε > 0 and a constant C > 0 such that for all
neighboring intervals I1 and I2,

E(n2K̄e,n(I1)
2K̄e,n(I2)

2) ≤ C|I1|1/2+ε|I2|1/2+ε. (25)

To see this, note that Definition (23) of c4 yields

E(X2Y 2) = c4(X,X, Y, Y ) + Var(X)Var(Y ) + 2Cov(X,Y )2

≤ c4(X,X, Y, Y ) + 3Var(X)Var(Y ).

Applying Lemmas 6.2 and 7.1 with X =
√
nK̄e,n(I1) and Y =

√
nK̄e,n(I2), we

obtain (25) with ε = 1/4.
Hölder continuity of (kr)r∈[r0,R] follows from the Kolmogorov continuity the-

orem [16]. Indeed, we know from Theorem 4.1 that for any r0 ≤ r1 < r2 ≤ R,
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(kr2 −kr1) is gaussian with mean 0. It follows from (24) and Jensen’s inequality
that for any integer m ≥ 1,

E[(kr2 − kr1)
2m] ≤ Cm|r2 − r1|m.

Hence (kr)r∈[r0,R] has a Hölder continuous modification for any exponent γ <
1
2 − 1

2m .

It remains to show Lemma 7.1. The proof is based on decompositions of
cumulant measures into mixed-moments and semi-clusters. The necessary back-
ground is given in Section 7.1. Two preliminary lemmas are shown in Section
7.2 and 7.3, respectively, before the proof is presented in Section 7.4.

7.1. Background on decomposition of cumulant measures

In this section, we recall the necessary background on decomposition of cumulant
measures into mixed-moments and semi-clusters. We refer the reader to [7] for
a detailed presentation.

Moment and cumulant measures

Let P be a simple point process on R
d. We define a marked version P̆ = P×{1, 2}

on R̆
d = R

d × {1, 2} and let P̆n = Pn × {1, 2}. For any extended score function

ξ̆ : R̆d ×N → R
d, we define the random measure on R̆

d

μn =
∑
x̆∈P̆n

ξ̆(x̆,Pn)δx̆. (26)

Then, following [7, Section 3.1], the k-th moment measure Mk(μn) = Mk
n is

defined as∫
(R̆d)k

f(x̆)Mk
n(dx̆) = E

[( ∫
R̆d

f1dμn

)
· · ·

(∫
R̆d

fkdμn

)]
= E

[( ∑
x̆∈P̆n

ξ̆(x̆,Pn)f1(x̆)
)
· · ·

( ∑
x̆∈P̆n

ξ̆(x̆,Pn)fk(x̆)
)]

,

for any non-negative measurable function f = f1 ⊗ . . . ⊗ fk, where each fi is
defined on R̆

d. Similarly, the k-th cumulant measure ck(μn) = ckn is given by∫
(R̆d)k

f(x̆)ckn(dx̆) = ck
(∫

R̆d

f1dμn, . . . ,

∫
R̆d

fkdμn

)
(27)

= ck
( ∑

x̆∈P̆n

ξ̆(x̆,Pn)f1(x̆), . . . ,
∑
x̆∈P̆n

ξ̆(x̆,Pn)fk(x̆)
)
.

We have the following expression for ckn in terms of moment measures

ckn =
∑

{T1,...,Tp}�{1,...,k}
(−1)p−1(p− 1)!MT1

n · · ·MTp
n , (28)
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where {T1, . . . , Tp} � {1, . . . , k} denotes the set of all partitions of {1, . . . , k}
into p non-empty sets T1, . . . , Tp, p = 1, . . . , k, and MT

n is defined as M
|T |
n on

the coordinates in T .

Decomposition of moment measures

Let T ⊆ {1, . . . , k}. For x̆ ∈ (R̆d)k, we let x̆T be the projection of x̆ onto the
coordinates in T , and we denote by x and xT the unmarked points corresponding
to x̆ and x̆T , respectively. We define the diagonal of (R̆d)k to be Δ = {x̆ ∈
(R̆d)k : x = (x, . . . , x)}, and ΔT ⊆ (R̆d)T is defined similarly. More generally,
for a partition T1, . . . , Tp � {1, . . . , k}, we define ΔT1,...,Tp = ΔT1 × · · · ×ΔTp .
Finally, we let π : ΔT1,...,Tp → R

p be the map that ignores marks and repeated
points.

For a given partition T1, . . . , Tp � {1, . . . , k}, the mixed ξ-moments of μn are
defined for x̆ ∈ ΔT1,...,Tp by

mT1,...,Tp
n (x̆) = Eπ(x̆)

[
ξ̆(x̆1,Pn) · · · ξ̆(x̆k,Pn)

]
ρ(p)(π(x̆)). (29)

Then we obtain the following expression for Mk
n ,

dMk
n =

∑
T1,...,Tp�{1,...,k}

mT1,...,Tp
n d̄x̆T1 · · · d̄x̆Tp , (30)

where the singular differentials d̄x̆T are given for any non-negative measurable
function f : (R̆d)|T | → R by∫

(R̆d)|T |
f(x̆T )d̄x̆T =

∑
τ1,...,τ|T |∈{1,2}

∫
Rd

f((x, τ1), . . . , (x, τ|T |))dx.

Semi-cluster decomposition

The cumulant measures further decompose into the so-called semi-cluster mea-
sures. These are defined for any disjoint non-empty sets S, T ⊂ {1, . . . k}, and
A ⊂ (R̆d)S , B ⊂ (R̆d)T by

US,T
n (A×B) = MS∪T

n (A×B)−MS
n (A)M

T
n (B).

Let S, T be a fixed non-trivial partition of {1, . . . , k}. Then, as in [7, Lemma
3.2], we have the decomposition

ckn =
∑

S′∪T ′,T1,...,Tp�{1,...k}
aS′,T ′,T1,...,TpU

S′,T ′

n MT1
n · · ·MTp

n , (31)

where aS′,T ′,T1,...,Tp ∈ R and the sum runs over all partitions of {1, . . . , k}, such
that S′ and T ′ are non-empty subsets of S and T , respectively.
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Decomposition with respect to the diagonal

The maximal separation distance of x̆ ∈ (R̆d)k into two disjoint subsets is
defined as

D(x̆) = max
{T1,T2}�{1,...,k}

dist(xT2 ,xT2).

For S, T a non-trivial partition of {1, . . . , k}, we let

σ(S, T ) =
{
x̆ = (x̆S , x̆T ) ∈ W̆ k

n : D(x̆) = dist(x̆S , x̆T )
}
\Δ.

Let S′ ⊆ S and T ′ ⊆ T . On the set σ(S, T ) we can use (30) to decompose
dUS′,T ′

as

dUS′,T ′
=

∑
{S′

1,...,S
′
q}�S′

∑
{T ′

1,...,T
′
r}�T ′

(
m

(S′
1,...,S

′
q,T

′
1,...,T

′
r)

n (x̆S′∪T ′)

−m
(S′

1,...,S
′
q)

n (x̆S′)m
(T ′

1,...,T
′
r)

n (x̆T ′)
)
d̄x̆S′∪T ′ , (32)

where we have written d̄x̆S′∪T ′ = d̄x̆S′
1
· · · d̄x̆S′

q
d̄x̆T ′

1
· · · d̄x̆T ′

r
. Note here, that

there are terms in the definition (30) of dMS′∪T ′

n corresponding to partitions
that do not split into a partition of S′ and a partition of T ′, but these vanish
on σ(S′, T ′).

As in [7, (3.28)], we have the following decomposition for any non-negative

measurable function f : (R̆d)k → R∫
(R̆d)k

f(x̆)dckn(x̆) =

∫
Δ

f(x̆)dckn(x̆) +
∑

S,T�{1,...,k}

∫
σ(S,T )

f(x̆)dckn(x̆). (33)

7.2. Bounds on mixed ξ-moments

Let I1, I2 ⊆ [r0, R] be intervals and define score functions

ξe,n,Ii(x,X ) =
1

ρ2

∑
y∈X

1{|x−y|∈Ii}en(x, y).

Define the extended score function ξ̆e,n : R̆d ×N → R
d by

ξ̆e,n((x, τ),X ) =

{
ξe,n,I1(x,X ) if τ = 1,

ξe,n,I2(x,X ) if τ = 2
(34)

and let the associated random measure μn be as in (26). In this section, we
establish a bound on the mixed ξ-moments (29) that is used in the proof of
Theorem 7.1. Recall the map π : ΔT1,...,Tp → R

p that ignores repeated points
and let

W (1,2)
n = (Wn × {1})2 × (Wn × {2})2 ⊆ (R̆d)4.

Similarly, for T ⊆ {1, 2, 3, 4}, (W (1,2)
n )T denotes the coordinates in T of points

in W
(1,2)
n .
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Lemma 7.2. Let P be a stationary point process having bounded correlation
functions. Let T1, . . . , Tp be a partition of T ⊆ {1, . . . , 4} and let K0 > 0. Then
there is a constant C > 0 such that for all K ≥ K0, all disjoint intervals
I1, I2 ⊆ [r0, R], and all x0 ∈ R

d, we have∫
ΔT1,...,Tp∩π−1(Wn×BK(x1)p−1)∩(W

(1,2)
n )T

mT1,...,Tp
n (x̆)d̄x̆T1 . . . d̄x̆Tp (35)

≤ CnKd(p−1)|I1|A|I2|B∫
ΔT1,...,Tp∩π−1(BK(x0)p)∩(W

(1,2)
n )T

mT1,...,Tp
n (x̆)d̄x̆T1 . . . d̄x̆Tp (36)

≤ CKdp|I1|A|I2|B ,

where the mixed ξ-moments are defined via the score function ξ̆e,n in (34), and
A = 1T∩{1,2}	=∅, B = 1T∩{3,4}	=∅.

Proof. It is enough to show the theorem in the case without edge corrections
since the edge correction factors are bounded and hence there is a C > 0 such

that ξe,n,Ii ≤ Cξe1,n,n,Ii , i = 1, 2. On (W
(1,2)
n )T ∩ΔT1,...,Tp , m

T1,...,Tp
n takes the

form

mT1,...,Tp
n (x̆) = Ex

[
ξl1I1(x1,Pn)ξ

k1

I2
(x1,Pn) · · · ξlpI1(xp,Pn)ξ

kp

I2
(xp,Pn)

]
ρ(p)(x),

where li = |Ti∩{1, 2}| and ki = |Ti∩{3, 4}|. Let V = Wn. Then, by stationarity,
the integral in (35) is bounded by∫

V×BK(x1)p−1

Ex

[
ξl1I1(x1,P)ξk1

I2
(x1,P) · · · ξlpI1(xp,P)ξ

kp

I2
(xp,P)

]
ρ(p)(x)dx

≤ |V |
∫
BK(o)p−1

Eo,z

[
ξl1I1(o,P)ξk1

I2
(o,P) · · · ξlpI1(zp−1,P)ξ

kp

I2
(zp−1,P)

]
ρ(p)(o, z)dz

≤ |V |
|BK(o)|

∫
B2K(o)p

Ex

[
ξl1I1(x1,P)ξk1

I2
(x1,P) · · · ξlpI1(xp,P)ξ

kp

I2
(xp,P)

]
ρ(p)(x)dx.

The same bound obviously holds for (36) when V = BK(x0). Using the Camp-
bell formula and the definition of ξIi , we rewrite the integral in the bound as

E

[ ∑
x∈(P∩B2K(o)) �=p

( ∑
y1
1∈P

1|x1−y1
1 |∈I1

)l1( ∑
y2
1∈P

1|x1−y2
1 |∈I2

)k1

· · ·
( ∑

y1
p∈P

1|xp−y1
p|∈I1

)lp( ∑
y2
p∈P

1|xp−y2
p|∈I2

)kp
]
.

Multiplying out the sums over yji , we obtain a sum over y ∈ P |T |, where
the points in y are not necessarily all different and could equal some of the
points in x. We now apply the Campbell formula backwards. To do so, we
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must write the above sum as a linear combination of sums over different points
x1, . . . , xp, y

j
1, . . . , y

j
q .

To illustrate how each such term is bounded, we consider the case p = 3,
l1 = l2 = l3 = k1 = 1 and y11 = x2, y

1
2 = x3 og y21 = x3 while y13 is different from

the points in x. This yields

1

|BK(o)|E
[ ∑
x∈(P∩B2K(o)) �=3

∑
y∈P

1|x1−x2|∈I11|x2−x3|∈I11|x3−y|∈I11|x1−x3|∈I2

]

=
1

|BK(o)|

∫
B2K(o)3×R

ρ(4)(x, y)1|x1−x2|∈I11|x2−x3|∈I11|x3−y|∈I11|x2−x3|∈I2dydx

≤ C1|I1|
|BK(o)|

∫
B2K(o)3

1|x1−x2|∈I11|x2−x3|∈I11|x2−x3|∈I2dx1dx2 dx3

≤ C1|I1|
|BK(o)|

∫
B2K(o)3

1|x2−x3|∈I2dx

≤ C2|B2K(o)|2|BK(o)|−1|I1||I2|,

where we used that ρ(4) is bounded in the first inequality.
It is a straightforward check that all other integrals can be bounded similarly.

Indeed, the yji ’s that are free can always be integrated out. If the obtained bound
involves the necessary factors of |I1| or |I2| we bound the remaining integral by
|B2K(o)p|. Otherwise, it is convenient to bound one or more of the indicator
functions in the integral by 1, leaving at most one involving I1 and one involving
I2. As I1 and I2 are disjoint, a product of indicator functions for these two sets
must involve at least three different points to be non-zero. Thus, these can be
integrated out one after the other to obtain the necessary bound.

7.3. Fast decay of mixed ξ-moments

In this section, we show an analogue of the fast decay of correlations for a slightly
more general version of the ξ-weighted measures. Throughout the section, we
use the notation x = (x1, . . . , xk) = (x1,x2), where x1 = (x1, . . . , xp) and
x2 = (xp+1, . . . , xk).

Let ξij , i = 1, . . . , k, j = 1, . . . Li, be score functions with a common deter-
ministic radius of stabilization R and that there is a constant ĉ > 0 such that
for all i, j,

ξij(x,X ∩Br(x))1{|X∩Br(x)|=N} ≤ Nĉ. (37)

Define the associated ξ-weighted moments

mL1,...,Lk
n (x) = Ex

[ L1∏
l1=1

ξ1l1(x1,Pn) · · ·
Lk∏

lk=1

ξklk(xk,Pn)

]
ρ(k)(x).

Lemma 7.3. Let P be a point process having fast decay of correlations and
satisfying Condition (M) or a Gibbs point process of class Ψ∗. Let ξij be score
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functions for i = 1, . . . , k, j = 1, . . . Li with a common deterministic radius of
stabilization R and all satisfying the common bound (37). Then there exists a
constant C > 0 and a fast decreasing function ω depending only on the score
functions via the constant ĉ in (37), the common radius of stablization R, and
the numbers k, L1, . . . , Lk such that for all n and almost all x = (x1,x2),
x1 = (x1, . . . , xp), x2 = (xp+1, . . . , xk),

(i) |mL1,...,Lk
n (x)| ≤ C

(ii)
∣∣mL1,...,Lk

n (x)−m
L1,...,Lp
n (x1)m

Lp+1,...,Lk
n (x2)

∣∣ ≤ ω(dist(x1,x2)).

Proof. First we consider a point process having fast decay of correlations and
satisfying Condition (M). By the Hölder inequality,

mL1,...,Lk
n (x) = Ex

[ L1∏
l1=1

ξ1l1(x1,Pn) · · ·
Lk∏

lk=1

ξklk(xk,Pn)

]
ρ(k)(x)

≤ ĉLρ(k)(x)Ex

[ k∏
j=1

P(BR(xj))
Lj

]

≤ ĉLρ(k)(x)

k∏
j=1

Ex

[
P(BR(xj))

kLj

]1/k
,

where L = L1 + · · · + Lk. By Condition (M) and boundedness of ρ(k)(x), this
is bounded, which shows (i).

In [4, Thm. 1.11], (ii) was shown for the case

mL1,...,Lk
n (x) = Ex

[
ξ(x1,Pn)

L1 · · · ξ(xk,Pn)
Lk

]
ρ(k)(x),

where ξ is a score function that does not depend on n, satisfies (37), and is
invariant under translation, i.e. ξ(x,X ) = ξ(x+ y,X + y).

Our case is different in several ways. First of all, not all score functions are
identical. However, this is not a problem for the proof of [4, Thm. 1.11], since
the only properties needed in the proof was a factorization [4, (3.21)] of the form

k∏
j=1

Lj∏
lj=1

ξjlj (xj ,X ) =

( p∏
j=1

Lj∏
lj=1

ξjlj (xj ,X )

)( k∏
j=p+1

Lj∏
lj=1

ξjlj (xj ,X )

)

and a common bound of the form (37) for all the involved score functions.
The proof yields a bound of the form (ii) where the fast decreasing function ω
depends only on the score functions involved via the constant ĉ.

Moreover, the involved score function was assumed translation invariant in
[4], which is not assumed here. However, the proof of [4, Thm. 1.11] does not use
translation invariance, since the factorial moment expansion [3], on which the
proof was built, does not require translation invariance. As long as the bound
(37) holds for all (x,X ), the proof still goes through.
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Next, we consider the Gibbs case. Assume that P is constructed by thinning
a free birth-death process γ(t) of intensity τ as described in Appendix B. Let Q
be the Poisson process γ(0) and P = γΨ(0) ⊆ γ(0) = Q. For any A ⊆ R

dk,

∫
A

mL1,...,Lk
n (x)dx = E

[ ∑
x∈P �=

n

1A(x)

Lj∏
lj=1

ξjlj (xj ,Pn)

]

≤ ĉLE

[ ∑
x∈P �=

n

1A(x)P(BR(xj))
Lj

]

≤ ĉLE

[ ∑
x∈Q �=

n

1A(x)Q(BR(xj))
Lj

]

≤ |A|C ′,

where the last inequality follows from (i) that has been proved for point processes
satisfying Condition (M) and thus for Poisson point processes. It follows that
mL1,...,Lk

n (x,Pn) must be bounded by C ′ for almost all x.

To show (ii) we fix x, let A =
∏k

j=1 A
j where xj ∈ Aj ⊆ B1(xj), and let

s = 1
2dist(x1,x2)−R− 1. Let A1 =

∏p
j=1 A

j and A2 =
∏k

j=p+1 A
j . For s > 0,

∫
A

mL1,...,Lk
n (y)dy = E

[ ∑
y∈(Pn)

�=
k

1A(y)

k∏
j=1

Lj∏
lj=1

ξjlj (yj ,Pn)

]

= E(f(Pn)g(Pn)), (38)

where

f(X ) =
∑

y1∈X �=
p

1A1(y1)

p∏
j=1

Lj∏
lj=1

ξjlj (yj ,X )

g(X ) =
∑

y2∈X �=
k−p

1A2(y2)
k∏

j=p+1

Lj∏
lj=1

ξjlj (yj ,X ).

Let E1 and E2 be the events that all ancestors of points in A′
1 = (

⋃p
j=1 A

j)⊕
BR(o) and A′

2 = (
⋃k

j=p+1 A
j)⊕BR(o) are within distance s− rΨ from A′

1 and
A′

2, respectively. The events Ei depend only on γ(t) restricted to (A′
i⊕Bs(o))×

R, which are disjoint sets. On Ei, P ∩ A′
i depends only on γ(t) restricted to

(A′
i ⊕Bs(o))× R.
Then, since 1Ei = 1− 1Ec

i
, we may write

E[f(Pn)g(Pn)] = E[f(Pn)1E1 ]E[g(Pn)1E2 ] + E[f(Pn)g(Pn)1(E1∩E2)c ]

= E[f(Pn)]E[g(Pn)]− E[f(Pn)1Ec
1
]E[g(Pn)]− E[f(Pn)]E[g(Pn)1Ec

2
]

+ E[f(Pn)1Ec
1
]E[g(Pn)1Ec

2
] + E[f(Pn)g(Pn)1(E1∩E2)c ].
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The first equality follows from independence between disjoint parts of γ(t). We
need to bound the last four terms. Since the argument is the same in all four
cases, we just consider E[f(Pn)1Ec

1
]E[g(Pn)]. By (i), E[g(Pn)] ≤ C|A2|. By the

Cauchy-Schwarz inequality,

E[f(Pn)1Ec
1
] ≤ E[f(Pn)

2]1/2P(Ec
1)

1/2 ≤ C1|A1| exp(−s/C2).

The latter bound follows from (41) in Appendix B and because

E[f(Pn)
2] ≤ ĉ2LE

[( ∑
y1∈(Qn)

�=
p

1A1(y1)Qn(BR(yj))
Lj

)2]

≤ ĉ2LE

[ ∑
{j1,...,jl}⊆{1,...,p}

cl
∑

ỹ∈(Qn)
�=
p+l

1A1(y1)

l∏
i=1

1Aji (yj+i)

p+l∏
j=1

Qn(BR(yj))
2L

]

≤ ĉ2L
∑

{j1,...,jl}⊆{1,...,p}
clτ

p+l

∫
A1×

∏ l
i=1 Aji

E

⎡
⎣p+l∏
j=1

(Q ∪ ỹ)(BR(yj))
2L

⎤
⎦ dỹ

≤ C|A1|,

where ỹ = (y1, yp+1, . . . , yp+l). The last inequality follows from the Hölder
inequality and boundedness of moments for the Poisson process.

The above shows that∣∣∣∣
∫
A

(mL1,...,Lk
n (y,Pn)−mL1,...,Lp

n (y1,Pn)m
Lp+1,...,Lk
n (y2,Pn))dy

∣∣∣∣
≤ |A|C exp(−dist(x1,x2)/c).

Finally, (ii) is shown by the Lebegue differentiation theorem when A tends to
x.

7.4. Proof of Lemma 7.1

Proof of Lemma 7.1. We decompose the fourth cumulant into integrals with
respect to the fourth cumulant measure. According to (27) and (33) with k = 4
and f = 1

W
(1,2)
n

, we have

c4(nK̄e,n(I1),nK̄e,n(I1), nK̄e,n(I2), nK̄e,n(I2))

= c4(μn(Wn × {1}), μn(Wn × {1}), μn(Wn × {2}), μn(Wn × {2}))

=

∫
(R̆d)4

1
W

(1,2)
n

dc4n

=

∫
Δ

1
W

(1,2)
n

(x̆)dc4n(x̆) +
∑

S,T�{1,...,4}

∫
σ(S,T )

1
W

(1,2)
n

(x̆)dc4n(x̆).

We bound each term separately. The strategy is to apply either the moment
decomposition (28) and (30) or the semi-cluster decomposition (31)-(32) of the
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cumulant measure c4n to write each integral as a sum of integrals of ξ-weighted
moments with respect to the singular differentials. Lemma 7.2 and 7.3 provide
bounds on the ξ-weighted moments, which lead to the bound claimed in Lemma
7.1. The details are given below.

We first consider the diagonal term. In (28), only the term p = 1 contributes
on Δ, i.e. (c4n)|Δ = (M4

n)|Δ. Also in (30), only the term p = 1 contributes on

Δ such that (c4n)|Δ = m
{1,2,3,4}
n dx̆{1,2,3,4}. Inserting the definition of the score

function (34), we get∫
Δ

1
W

(1,2)
n

(x̆)dc4n(x̆) =

∫
Wn

Ex

[
ξe,n,I1(x,Pn)

2ξe,n,I2(x,Pn)
2
]
ρdx

≤ nC ′|I1||I2|,

where the inequality is the special case of Equation (35) in Lemma 7.2 where
T = {1, 2, 3, 4} and p = 1.

It remains to bound the terms∫
σ(S,T )

1
W

(1,2)
n

(x̆)dc4n(x̆) = c4n(σ(S, T ) ∩W (1,2)
n ).

Fix a non-trivial partition {S, T} of {1, 2, 3, 4}. Set K = (|I1||I2|)−1/(12d) and

let DK = {x̆ ∈ W
(1,2)
n ∩ σ(S, T ) : D(x̆) > K}. We bound the integral over DK

and σ(S, T )\DK separately using the semi-cluster decomposition and moment
decomposition, respectively.

We first consider the integral over DK . Here we apply the semi-cluster de-

composition of c4n given in (31)-(32). This yields a bound on c4n(DK ∩ W
(1,2)
n )

by a sum of integrals of the form∫
DK

(
m

S′
1,...,S

′
q,T

′
1,...,T

′
r

n (x̆S′∪T ′)−m
S′
1,...,S

′
q

n (x̆S′)m
T ′
1,...,T

′
r

n (x̆T ′)
)

d̄x̆S′∪T ′dMT1 . . . dMTp ,

where S′ ⊆ S, T ′ ⊆ T , S′
1, . . . , S

′
q is a partition of S′, T ′

1, . . . , T
′
r is a partition

of T ′, and S′ ∪ T ′, T1, . . . Tp is a partition of {1, 2, 3, 4}.
To bound this, we apply the bound on the mixed ξ-moments in Lemma 7.3

(ii) to obtain a fast decreasing function ω not depending on n, I1, and I2 such
that∣∣mS′

1,...,S
′
q,T

′
1,...,T

′
r

n (x̆S′∪T ′)−m
S′
1,...,S

′
q

n (x̆S′)m
T ′
1,...,T

′
r

n (x̆T ′)
∣∣ ≤ ω (D(x̆S′∪T ′)) .

Let m = 12d. By Definition 3.1, there exists a constant c′ > 0 such that ω(t) ≤
c′t−m so that∫
DK

ω (D(x̆S′∪T ′)) d̄x̆S′∪T ′dMT1 . . . dMTp ≤ c′
∫
DK

d̄x̆S′∪T ′

D(x̆S′∪T ′)m
dMT1 . . . dMTp.

Since we are on σ(S, T ), D(x̆S′∪T ′) ≥ dist(x̆S′ , x̆T ′) ≥ dist(x̆S , x̆T ). Moreover,
noting that 1 ≤ |S|, |T | ≤ 3, all points in x̆S and x̆T , respectively, must be
within distance 2dist(x̆S , x̆T ) of each other.
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Letting δ(x̆) denote the maximal pairwise distance between points in x̆, we
get ∫

DK

d̄x̆S′∪T ′

D(x̆S′∪T ′)m
dMT1 · · · dMTp (39)

=

∫
DK

1{δ(x̆S),δ(x̆T )≤2dist(x̆S ,x̆T )}
dist(x̆S , x̆T )m

d̄x̆S′∪T ′dMT1 · · · dMTp .

We now recall the decomposition (30)

dMTi =
∑

T ′′
1 ,...,T ′′

p′�Ti

m
T ′′
1 ,...,T ′′

p′
n (x̆)d̄x̆T ′′

1
· · · d̄x̆T ′′

p′
. (40)

We note that on σ(S, T ) only terms with all T ′′
j ⊆ S or T ′′

j ⊆ T contribute

since the measure d̄x̆T ′′
j
is concentrated on the diagonal of R̆|T ′′

j |. Moreover, we

know from Lemma 7.3 that all m
T ′′
1 ,...,T ′′

s
n with

∑
i |T ′′

i | ≤ 3 are bounded by a
constant.

Letting x = xS′ = (x1, . . . , xq), y = xT ′ = (y1, . . . , yr), z = (z1, . . . , zs), and
w = (w1, . . . , wt), 2 ≤ q + r + s + t ≤ 4, the integral (39) is thus bounded by
terms of the form

C

∫
W t+s

n

∫
W r+q

n

1{dist((x,z),(y,w))>K}1{δ(x,z),δ(y,w)≤2dist((x,z),(y,w))}
dist((x, z), (y,w))m

dxdydzdw.

On the set where dist((x, z), (y,w)) is attained as |x1 − y1|, the integral is
bounded by

C

∫
W t+s+r+q

n

1{|x1−y1|>K}1{max{|x1−xi|,|x1−zj |,|y1−yk|,|y1−wl|}≤2|x1−y1|}
|x1− y1|m

dxdydzdw

≤ C ′
∫
W 2

n

1{|x1−y1|>K}
|x1 − y1|m−d(s+t+q+r−2)

dx1dy1

≤ C ′′|Wn|Kd(3−s−t−q−r)−m

≤ C ′′n(|I1||I2||)3/4,

where the maximum is taken over i = 1, . . . , q, j = 1, . . . , s, k = 1, . . . , r, l =
1, . . . , t. The remaining integrals are bounded similarly.

Next, we consider the integral over σ(S, T )\DK . On this set, each of the four

points in x̆ ∈ (R̆d)4 must be within distance 3K from each other. Thus,

c4n(W
(1,2)
n ∩Dc

K) ≤
∫
W

(1,2)
n

1B3K(x1)3(x2, x3, x4)c
4
n(dx̆).

Using the moment decomposition (28) and (30) and stationarity of P , we obtain
a factorization of this integral into factors of the same form as the ones in Lemma
7.2. This yields the bound

c4n(W
1,2
n ∩Dc

K) ≤ CnK3d|I1||I2| = Cn(|I1||I2|)3/4.
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Remark 7.4. The machinery of decompositions of the cumulant measures into
moment and semi-cluster measures used in the proof of Lemma 7.1 is general
and applies to any functional of the form

∑
x∈Pn

ξn(x,Pn). The only properties
used in the proof, which are specific to the K-function, is that it satisfies Lemma
7.2 and Lemma 7.3. Lemma 7.3 is quite general, requiring only a common bound
of the form (37) for all ξn, while the proof of Lemma 7.2 relies on the specific
form of the score function and would need a new proof for a different score
function.

Appendix A: Results on conditional variances

This appendix contains two lemmas referred to in the proof of Proposition 6.1.

Lemma A.1. Let Y be a square integrable random variable and let σ be a
σ-algebra. Let I1, I2 be Borel subsets of R. Then,

Var(Y |σ) ≥ 1

4
min

i∈{1,2}
P(Y ∈ Ii|σ) inf

x1∈I1,x2∈I2
|x1 − x2|2.

This is a conditional version of [26, Lemma 2.3]. The second lemma contains
some results on conditional variances. The proofs are included for completeness.

Lemma A.2. For any square integrable random variables X and Y and σ-
algebras σ1, σ2 such that σ1 ⊂ σ2, the following holds:

1.

E(Var(X|σ2)) ≤ E(Var(X|σ1)).

2. If Y is measurable with respect to σ1, then

Var(X + Y |σ1) = Var(X|σ1).

Proof. First we prove 1. For i = 1, 2, we let Xi = E(X|σi). Then, the law of
total variance applied to X2 yields

Var(X2) = EVar(X2|σ1) + Var(E(X2|σ1)) = EVar(X2|σ1) + Var(X1).

It follows, that Var(X1) ≤ Var(X2). The result now follows from the law of total
variance applied to X:

Var(X) = EVar(X|σ1) + Var(X1) = EVar(X|σ2) + Var(X2).

To prove 2, we compute

Var(X + Y |σ1) = E((X + Y − E(X + Y |σ1))
2|σ1)

= E((X − E(X|σ1))
2|σ1)

= Var(X|σ1).
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Appendix B: Appendix on Gibbs point processes

The infinite volume Gibbs point process P of class Ψ∗ with energy functional Ψ,
activity τ satisfying (4), and inverse temperature β was introduced in Section
3.2 as the point process satisfying (5). Here we first relate the infinite volume
Gibbs point process to the finite volume case and then we recall the perfect
simulation construction from [23].

Consider a finite window D. The finite volume Gibbs process PD on D is
absolutely continuous with respect to an intensity τ Poisson point process Q on
D with density

X �→ exp(−βΨ(X ))

E[exp(−βΨ(Q ∩D))]
.

Define the stationarization P̄Wn of PWn to be the point process satisfying∫
f(X )P̄Wn(dX ) =

1

|Wn|

∫
Wn

∫
f(X + u)PWn(dX )du.

Since the infinite volume Gibbs process is unique when (4) holds, the sequence
(P̄Wn)n≥1 converges in the local convergence topology to an infinite volume
Gibbs process, see [6]. The construction below yields a construction of (PWn)n≥1

that converges to the infinite Gibbs process.

B.1. Perfect simulation of Gibbs point processes

We now recall a construction of the infinite Gibbs process P by thinning a free
birth-death process γ(t) on R

d × R of birth intensity τ and death intensity 1.
This construction was introduced in [9] for the area interaction process and
generalized to a larger class of Gibbs point processes in [23]. Since we only
consider energy functionals of finite range, we only need a simplified version of
the construction presented in [23] which we review below.

We start by constructing a birth-death process γΨ
D(t) on D × R where D is

a bounded domain. Let γD(t) be the restriction of the free birth-death process
γ(t) to D × R. Every time a point in γD(t) is born, we accept it with a certain
probability. We define γΨ

D(t) as the birth-death process formed only by the
points that are accepted when they are born. The probability of accepting a
point x ∈ D born at time t is exp(−βΔΨ(x, γΨ

D(t−) ∩ BrΨ(x))) where γΨ
D(t−)

are the accepted points still alive just before time t. This construction is well-
defined, since there is almost surely a t′ < t such that γD(t′) = ∅. For a fixed t,
γΨ
D(t) yields a point process with the same distribution as PD, see e.g. [18].
To extend this to an infinite volume process, we define the ancestors of a

point x in γ born at time t by A(x) = γ(t−) ∩ BrΨ(x). These are all points
that (if accepted) could influence the acceptance probability of x. The clan of
ancestors A(x) consists of x, its ancestors, all ancestors of ancestors etc. This
is the set of all points in the free birth-death γ process whose acceptance status
could possibly affect the acceptance of x.
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We first note that all ancestor clans A(x) are almost surely finite. Here, the
idea of [8] was to dominate the clan of ancestors by a Galton-Watson branching
process, where each split has a Poisson distributed number of branches with
mean λ = τκd(r

Ψ)d. By standard branching process theory [11, Chapter 1.6],
the branches die out almost surely if λ < 1, which is ensured by (4). This
ensures that the thinning procedure above can also be applied to the full free
birth-death process γ(t) resulting in the process γΨ(t).

Next, we consider the spatial diameter of B(x) = proj(A(x))⊕BrΨ(o), where
proj(A(x)) is the projection of the ancestor clan to R

d, such that B(x) is the
projection to R

d of all the balls we need to search in order to determine the
acceptance probability of x. Let Zn be the number of branches in the nth gen-
eration of the dominating branching process. Then

P (diam(B(x)) > 2krΨ) ≤ P (Zk > 0) ≤ E(Zk) = λk,

the latter equality coming from [11, Chap. 1, Thm. 5.1].
Similarly, define BD(0) =

⋃
x∈γD(0) B(x) to the projection to R

d of all balls

around ancestors of points in γD(t). Then,

P (BD(0)∩(D⊕B2krΨ(o))
c �= ∅) ≤ E

∑
x∈γD(0)

1{diam(B(x))>2krΨ} ≤ |D|τλk. (41)

This means that for any bounded D, PWn ∩ D = γΨ
Wn

(0) ∩ D coincides with

γΨ(0)∩D with a probability that tends to 1 exponentially fast for n → ∞. This
implies the convergence in the local bounded topology of PWn (and P̄Wn) to
γΨ(0), which must thus be the infinite volume Gibbs process.
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