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Abstract: Functional data analysis (FDA) methods have computational
and theoretical appeals for some high dimensional data, but lack the scala-
bility to modern large sample datasets. To tackle the challenge, we develop
randomized algorithms for two important FDA methods: functional prin-
cipal component analysis (FPCA) and functional linear regression (FLR)
with scalar response. The two methods are connected as they both rely on
the accurate estimation of functional principal subspace. The proposed al-
gorithms draw subsamples from the large dataset at hand and apply FPCA
or FLR over the subsamples to reduce the computational cost. To effectively
preserve subspace information in the subsamples, we propose a functional
principal subspace sampling probability, which removes the eigenvalue scale
effect inside the functional principal subspace and properly weights the
residual. Based on the operator perturbation analysis, we show the pro-
posed probability has precise control over the first order error of the sub-
space projection operator and can be interpreted as an importance sampling
for functional subspace estimation. Moreover, concentration bounds for the
proposed algorithms are established to reflect the low intrinsic dimension
nature of functional data in an infinite dimensional space. The effective-
ness of the proposed algorithms is demonstrated upon synthetic and real
datasets.
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1. Introduction

The modern era brings us the opportunities and challenges of big data, where
both sample size and dimension increase out of the capacity of classical statis-
tical methods. Examples of the large scale datasets include: millions of spectra
collected by astronomical surveys (e.g. LAMOST of Zhao et al. (2012) and SDSS
of Eisenstein et al. (2011)); petabyte amounts of hyperspectral images recorded
by airborne or satellite remote sensing (Liu et al., 2018); brain medical images
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through the functional magnetic resonance imaging (fMRI Tian, 2010; Turk-
browne, 2013). A common characteristic of these datasets is that their observa-
tions can be viewed as functions over some continuous domain (e.g. temporal or
spatial domain), and functional data analysis (FDA, Kokoszka and Reimherr,
2017) can serve as a designated toolbox. FDA treats functional observations
as realizations of some stochastic process with low intrinsic dimension in an
infinite dimensional Hilbert space. This means observations can be effectively
approximated by splines, wavelets or linear combinations of a few functional
principal components. In contrast to classical multivariate methods, FDA takes
these features into consideration to achieve optimal convergence rates. Despite
their demonstrated value in theory and application, the current FDA methods
lack the scalability for modern large scale datasets (Hadjipantelis and Müller,
2018).

Among the current approaches to making statistical methods scalable to large
datasets, randomized algorithms have recently gained popularity. The random-
ized algorithms approach the problem by constructing a substantially smaller
sketch of the large scale data at hand. Then, existing methods are applied to the
sketch to reduce computation cost. When the sketch keeps the most relevant in-
formation, the result computed from the sketch should remain close to the result
from the original dataset. There are a few ways to construct a sketch of a large
data set. One approach is to draw subsamples with respect to some carefully
designed probability, which will select informative samples with larger proba-
bility. These sampling probabilities include the importance sampling in matrix
multiplication (Drineas, Kannan and Mahoney, 2006a), the leverage sampling
for least squares regression (Drineas et al., 2012; Ma, Mahoney and Yu, 2015),
the subspace sampling for low rank matrix construction (Drineas, Mahoney
and Muthukrishnan, 2006), etc. Effective sampling probabilities have also been
proposed for logistic regression (Wang, Zhu and Ma, 2018; Wang, 2019) and
generalized linear models (Zhang, Ning and Ruppert, 2021) to minimize the
asymptotic variance of the estimator. An alternative way towards sketching is
to mix the original data with a random projection and draw samples from the
projected data (Drineas et al., 2011; Wang, Gittens and Mahoney, 2017).

Since the seminal works of Drineas, Kannan and Mahoney (2006a,b,c) for
matrix multiplication and approximation, the idea of randomized algorithm has
been successfully applied to optimization (Pilanci and Wainwright, 2015, 2017),
low rank matrix estimation (Halko, Martinsson and Tropp, 2011; Drineas, Ma-
honey and Muthukrishnan, 2006), least squares regression (Drineas et al., 2012),
nonparametric kernel regression (Yang et al., 2017), etc. These algorithms are
able to yield comparatively accurate results at reduced computational and stor-
age costs. See the references Drineas and Mahoney (2018); Woodruff (2014)
for an overview. Most theoretical analysis of these randomized algorithms is
conducted from the algorithmic perspective, where the analysis is carried out
conditionally on an arbitrarily fixed dataset. Some recent works (Ma, Mahoney
and Yu, 2015; Raskutti and Mahoney, 2016; Wang, Gittens and Mahoney, 2017)
also draw analysis from the statistical perspective, where statistical properties
such as bias and average prediction error are considered.
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The current literature of randomized algorithms focuses on multivariate sta-
tistical methods which are not directly applicable to the functional data setting.
Their theoretical results also does not naturally extend to functional data in an
infinite dimensional space. He and Yan (2020) recently studied randomized es-
timation of functional covariance operator. Still, most functional data methods
remain to be explored via the randomized algorithm approach for scalability.
Among these methods, functional principal component analysis (FPCA) (e.g.
James, Hastie and Sugar, 2000; Yao, Müller and Wang, 2005; Peng and Paul,
2009) is one of the most important. Like the classical principal component anal-
ysis, FPCA identifies a few orthonormal functional principal components (FPC)
explaining most of the variability of a dataset. The computation and theoretical
analysis of functional data in an infinite-dimensional space are usually facilitated
by FPCA. Indeed, a large amount of FDA methods have been proposed based
on FPC. For example, when fitting functional linear regression, (Hall et al.,
2007; Kato, 2012) first identify a few FPCs of the predictor, and then the model
is fitted via the leading FPCs. For functional two-sample test, the test statis-
tic can be constructed based on FPCs (Horváth, Kokoszka and Reeder, 2013).
The work of Delaigle et al. (2010) relies on FPCs to define probability density
for random functions. More examples can be found in Horváth and Kokoszka
(2012).

Due to the fundamental role of FPCA, we study a randomized FPCA algo-
rithm and extend it to functional linear regression (FLR) with scalar response
in this work. Our work focuses on the fully observed functional data case, where
the function value is known at any point of its domain. In practical applications,
for example, these could be functions recorded with a fixed high frequency over
a time interval or recorded over a dense spatial grid. This type of data has
been widely collected by astronomical spectral surveys, remote sensing, etc, as
discussed at the beginning of this section. Specifically, we will view functional
observations as indivisible elements in a Hilbert space, and the sketched data
is constructed based on subsampling. Our basic algorithm is motivated by the
work of He and Yan (2020) for which we now provide a review.

1.1. Review of the importance sampling

Let HX be a Hilbert space equipped with an inner product 〈·, ·〉 and an induced
norm ‖ · ‖. For example, when the space HX = L2(T ) is the set of all square
integrable functions over a compact interval T , the inner product is 〈x, x′〉 =∫
T
x(t)x′(t) dt and the norm is ‖x‖ =

( ∫
T
x2(t) dt

)1/2
for x, x′ ∈ HX . Given

a random element x ∈ HX with zero mean and finite second moment E‖x‖2,
its covariance operator CXX : HX �→ HX is a mapping such that u ∈ HX is
mapped to E〈u, x〉x. Equivalently, we can write CXX = E (x⊗ x), where ⊗ is
tensor product such that (x⊗ x)u = 〈x, u〉 × x for any u ∈ HX . Covariance
operator generalizes the concept of covariance matrix in multivariate statistics.
For any u, v ∈ HX , it holds that 〈CXXu, v〉 = E(〈x, u〉〈x, v〉). We can see that
〈CXXu, v〉 quantifies the correlation between the random scalars 〈x, u〉 and 〈x, v〉.
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Algorithm 1: Randomized Covariance Operator Estimation

Input: Dataset {xn}Nn=1; sampling probability {pn}Nn=1; subsample size C.

Output: C̃XX .

1: for c = 1, · · · , C do
2: Sample x̃c from {xn}Nn=1 and get p̃c with probability P

(
(x̃c, p̃c) = (xn, pn)

)
= pn.

3: end for
4: Compute C̃XX = 1

C

∑C
c=1

1
Np̃c

x̃c ⊗ x̃c.

A comprehensive introduction to these FDA concepts can be found in Hsing and
Eubank (2015).

Suppose we have N (not necessarily independent) realizations {xn}Nn=1 of the
random element x. The covariance operator CXX can be estimated by the empir-
ical covariance operator ĈXX = (1/N)

∑N
n=1 xn ⊗ xn. The empirical covariance

operator involves the calculation of N tensor products and their summation.
This computational cost is overwhelming for large sample size. For example,
when each xn ∈ L2(T ) is digitally stored as a high dimensional vector of length

L over a dense grid of T , the cost of computing ĈXX scales as O(NL2). In a
typical astronomical survey, L is in the order of thousands, and N has the mag-
nitude of millions. Under this scenario, computing a covariance operator using
all available data for scientific research is unrealistic.

Based on the randomized matrix multiplication of Drineas, Kannan and Ma-
honey (2006a), the algorithm of He and Yan (2020) estimates the covariance
operator from a sketch of much smaller size. The procedure is summarized in
Algorithm 1. Given a full dataset {xn}Nn=1 and a sampling probability {pn}Nn=1,
it draws with replacement a subsample {x̃c}Cc=1 of size C from {xn}Nn=1. Then,
the subsampled empirical covariance operator is computed as

C̃XX =
1

C

C∑
c=1

1

Np̃c
x̃c ⊗ x̃c. (1.1)

Suppose c-th subsample is indexed by ic in the original dataset, we have set
x̃c = xic and p̃c = pic correspondingly in the above expression. It is obvious that,

conditional on the full dataset {xn}Nn=1, the subsampled C̃XX is an unbiased

estimator of the full sample covariance operator ĈXX with any strictly positive
probability {pn}Nn=1. It is shown in He and Yan (2020) that the optimal sampling
probability, which minimizes the expected squared Hilbert-Schmidt norm of
the subsampling error C̃XX − ĈXX , is of the form pn ∝ ‖xn‖2. This sampling
probability will be referred as the importance sampling (IMPO) throughout this
work.

1.2. Limitation of the importance sampling

Recall the purpose of this work is to develop randomized functional principal
component analysis (FPCA) and its extension to functional linear regression
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Fig 1. An toy example for principal component analysis in R4. The N = 1000 points xn =
(xn1, xn2, xn3, xn4)T ∈ R2 are plotted by their first two coordinates (xn1, xn2).. The red lines
mark the first and second principal components θ1 and θ2. The left panel colors the data
points by pn ∝ ‖xn‖2, while the right panel by pn ∝ (ξ2n1 + ξ2n2). Points with larger sampling
probability has darker blue color.

(FLR). At first glance, the importance sampling (IMPO) of He and Yan (2020)
is already a plausible sampling strategy. By direct application of perturbation
theory, the eigenfunctions (functional principal components) of C̃XX and ĈXX

should not be far away from each other, provided the related eigengap is positive
and the difference C̃XX − ĈXX is small. However, for FPCA and FLR, this
importance sampling probability is far from being optimal.

To see the reasons, consider a toy principal component analysis example in R4.
We generateN = 1000 observations by xn = σ1ξn1θ1+σ2ξn2θ2+σ3ξn3θ3, where
the principal component directions θ1 = (1, 1, 0, 0)T /

√
2, θ2 = (1,−1, 0, 0)T /

√
2

and θ3 = (0, 0, 1, 1)T /
√
2 are scaled by σ1 = 10, σ2 = 2, σ3 = 0.1, respectively.

The scores ξn1, ξn2, ξn3 ∈ R are drawn from the standard normal distribution.
Figure 1 plots the generated points by their first two coordinates. Suppose we
want to estimate the first two principal components θ1,θ2 from subsamples,
and the sampling is taken with respect to the IMPO sampling probability (He
and Yan, 2020). To illustrate the effect of IMPO, we color points with larger
pn ∝ ‖xn‖2 = σ2

1ξ
2
n1+σ2

2ξ
2
n2+σ2

3ξ
2
n3 by darker blue in the left penal of Figure 1.

It is evident this probability over-emphasizes the observations along the first
direction θ1 while neglects the observations along θ2. When C subsamples are
drawn according to IMPO, the resulting subsamples will likely contain abundant
information for estimating θ1, but fail to determine θ2 accurately.

In the above example, the first two scaling factors only have a moderately
large ratio σ2

1/σ
2
2 = 25, but their effect in determining pn is not negligible.

To resolve the issue, we may consider to remove the scaling factor to get a
new sampling probability pn ∝ ξ2n1 + ξ2n2. The points in the right penal of
Figure 1 are colored accordingly. Notice this probability puts equal sampling
weights for observations along θ1 and θ2. The subsamples, which are drawn by
this probability, are more likely to contain balanced information for estimating
the first two principal components. Moreover, this idea can be generalized to
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infinite dimensional space to estimate the leading R(> 0) functional principal
components.

1.3. Contributions of this work

This work develops randomized algorithms for functional principal component
analysis (FPCA) and functional linear regression (FLR) with scalar response.
Our methodological and theoretical contributions are summarized in the follow-
ing paragraphs.

In Section 2, a randomized algorithm is developed for FPCA. Motivated
by the example from Section 1.2, we propose the functional principal subspace
sampling probability (FunPrinSS) to effectively preserve subspace information in
subsamples. The FunPinSS probability removes the eigenvalue scale effect inside
the functional principal subspace; and at the same time, it properly weights the
complementary subspace residual. The latter part is necessary because we need
to control the interaction between the leading and the remaining eigenfunctions
in the infinite dimensional space. As the exact value of the FunPrinSS probability
is unknown unless we execute full sample computation, a fast and theoretically
justifiable algorithm is proposed for practical implementation.

For the theoretical analysis of the randomized FPCA algorithm, the task of
precisely estimating the leading R eigenfunctions is translated into estimating
the projection operator of their spanned subspace. The analysis is conducted
from an algorithmic perspective, which is conditional on the full dataset and
imposes minimal assumption (on eigengap). With operator perturbation theory,
we are able to decompose the subsample estimation error into a first order term
and a higher order term. The proposed FunPrinSS probability is then justified
from two aspects:

(i) From a heuristic aspect, we show the proposed probability enjoys the prop-
erty of precisely controlling the first order error. In fact, the FunPrinSS
probability can be interpreted as an importance sampling for the first or-
der error. This means FunPrinSS for FPCA plays a role similar to that
of the IMPO sampling (He and Yan, 2020) in minimizing the difference

C̃XX − ĈXX for covariance operator.
(ii) From a rigorous aspect, we develop concentration bounds for the proposed

algorithm. The constants of the derived bounds reflect the low intrinsic
dimension nature of functional data. That is, the subsample uncertainty
is characterized by the dimension of the functional principal subspace
and the intrinsic dimension of the residual covariance operator. These
dimension parameters are usually small for functional data, and as a result,
our theory indicates the subsample size need not be very large to control
the subsample error within a desired accuracy level.

The randomized FPCA algorithm and its analysis naturally extend to the
functional linear regression setting in Section 4. For FLR as an inverse problem
in the Hilbert space, the involved operator inverse is not well defined due to
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its infinitely many eigenvalues decreasing to zero. We study an estimator whose
operator inverse is truncated after its leading R functional principal components.
It follows that the accuracy of the FLR estimator relies on the precision of
the subsampled estimates of functional principal components. Based on the
FunPrinSS probability, a randomized algorithm for FLR is proposed.

For the theoretical justification the randomized FLR algorithm, we conduct
a careful analysis of the subsample prediction error and decompose it into three
components: the functional principal subspace estimation error, the truncated
inverse operator estimation error, and an orthogonal residual error. The error
decomposition reveals distinct sources of uncertainty during subsampling. Like
FPCA, our FLR theoretical bound is further established via the operator per-
turbation expansion of the related error components.

The proposed randomized algorithms are closely related to the survey based
functional data analysis methods (see e.g. Cardot and Josserand, 2011; Cardot,
Degras and Josserand, 2013; Degras, 2014; Lardin-Puech, Cardot and Goga,
2014). These works study the estimation of the mean (or total) function, covari-
ance function, or eigenfunctions for a population (with possibly unknown size).
Classical survey sampling strategies (e.g. simple sampling without replacement
and stratified sampling) are employed to draw functional samples. Most of the
existing works focus on estimating the mean or total function. When auxiliary
variables are available, Cardot, Goga and Lardin (2013) construct a model-
assisted estimator of the mean function. For eigenfunction estimation, Cardot
et al. (2010) establish the asymptotic design unbiasedness and asymptotic vari-
ance of the estimator for general survey sampling probabilities. However, no
specific strategy is proposed to reduce the asymptotic variance of the eigen-
function estimator. To our best knowledge, functional linear regression has not
been considered and analyzed yet in the survey based functional data analysis
framework.

We conclude this section by introducing notations used throughout this work.
Let J : HX �→ HX be a bounded linear operator defined on HX . The operator
norm is defined by ‖J ‖ := supu∈HX : ‖u‖≤1 ‖J u‖. Assume that {ej}∞j=1 is a
complete orthonormal system forHX , the Hilbert–Schmidt norm for J is defined
by ‖J ‖2HS :=

∑∞
j=1〈J ej , ej〉2. Besides, its intrinsic dimension is computed

via intdim(J ) := tr(J )/‖J ‖, where the trace of J is defined as tr(J ) :=∑∞
j=1〈J ej , ej〉. In this work, the N -dimensional Euclidean space RN is equipped

with a normalized inner product 〈a,b〉N = (1/N)
∑N

i=1 aibi for any vectors

a,b ∈ RN and its induced norm is defined as ‖a‖N =
(∑N

i=1 a
2
i /N

)1/2
.

The rest of the article is organized as follows. In Section 2, we develop our
randomized algorithm for FPCA. We propose the functional principal subspace
probability and a fast two-step algorithm to estimate it. The theoretical analy-
sis of the randomized FPCA algorithms is conducted in Section 3. In Section 4,
the algorithm and theoretical results are extended to functional linear regres-
sion with scalar response. Simulation experiments are conducted in Section 5
to compare distinct sampling proposals. The algorithm performance is further
examined over an astronomical real dataset in Section 6.
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Algorithm 2: Randomized FPCA

Input: Dataset {xn}Nn=1; sampling probability {pn}Nn=1; subsample size C.

Output: σ̃r and θ̃r for r = 1, · · · , R
1: for c = 1, · · · , C do
2: Sample x̃c from {xn}Nn=1 and get p̃c with probability P

(
(x̃c, p̃c) = (xn, pn)

)
= pn.

3: end for
4: Compute C̃XX = 1

C

∑C
c=1

1
Np̃c

x̃c ⊗ x̃c.

5: Compute the eigenvalue-eigenvector decomposition C̃XX =
∑∞

r=1 σ̃
2
r θ̃r ⊗ θ̃r.

2. Functional principal subspace sampling for FPCA

Functional principal component analysis (FPCA, Horváth and Kokoszka, 2012;
Ramsay, 2004) is the cornerstone for many functional data analysis methods.
To reduce the computation cost of FPCA over a large dataset, we develop a
randomized algorithm for FPCA in Section 2.1. To retain the most relevant
principal subspace information after subsampling, we propose the functional
principal subspace sampling (FunPrinSS) probability in Section 2.2. A practical
implementation of our algorithm is discussed in Section 2.3.

2.1. Randomized FPCA

FPCA generalizes the classical multivariate principal component analysis to
identify the modes of variations among a dataset. Classical multivariate prin-
cipal components can be computed from the eigen-decomposition of a covari-
ance matrix. Similarly, functional principal components can be estimated via
the eigenvalue-eigenfunction decomposition of the empirical covariance opera-
tor ĈXX =

∑∞
r=1 σ̂

2
r θ̂r ⊗ θ̂r, where σ̂2

1 ≥ σ̂2
2 ≥ · · · are non-negative eigenvalues,

and θ̂r’s are the corresponding eigenfunctions (or called functional principal
components). According to the Karhunen-Loève (KL) expansion, each sample
xn can be represented by

xn =

∞∑
r=1

σ̂r ξ̂nr θ̂r, (2.1)

where ξ̂nr is the r-th principal component score of the n-th sample. It is com-
puted by ξ̂nr = 〈xn, θ̂r〉/σ̂r when σ̂2

r > 0, and we set ξ̂nr = 1 when σ̂2
r = 0.

Let ξr = (ξ̂1r, · · · , ξ̂Nr)
T denote the vector of the r-th score for all samples. It

satisfies the normalizing property ‖ξr‖N = 1. From the KL expansion and the

orthonormality of the eigenfunctions, we can also find that ‖xn‖2 =
∑∞

r=1 σ
2
r ξ̂

2
nr.

When the eigenvalues σ̂2
r ’s have a fast decay toward zero, the covariance oper-

ator can be well approximated by the leading eigenpairs, ĈXX ≈
∑R

r=1 σ̂
2
r θ̂r⊗ θ̂r

for some R. Besides, each sample can be approximated by xn ≈
∑R

r=1 σ̂r ξ̂nr θ̂r.

In practice, obtaining the leading R functional principal components θ̂1, · · · , θ̂R
relies on the computation and decomposition of the empirical ĈXX . As noted
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in Section 1, computing ĈXX is an expensive procedure for a large dataset. We
propose to estimate the full sample θ̂1, · · · , θ̂R based on a subsampled dataset.
In particular, we can apply Algorithm 1 to get a subsampled covariance opera-
tor C̃XX , and perform eigenvalue-eigenfunction decomposition of C̃XX instead of
ĈXX . This is summarized in Algorithm 2 for some sampling probability {pn}Nn=1,

where the probability satisfies pn ≥ 0 and
∑N

n=1 pn = 1. The algorithm will

output subsampled eigenfunction estimates θ̃1, · · · , θ̃R. The effectiveness of Al-
gorithm 2 relies on suitably choosing the sampling probability, which will be
discussed in details in Section 2.2.

2.2. Functional principal subspace sampling probability

Algorithm 2 leaves the sampling probability {pn}Nn=1 unspecified. As noted in

Section 1.2, though pn ∝ ‖xn‖2 is optimal in controlling the error C̃XX − ĈXX

in terms of Hilbert-Schmidt norm, it is far from being optimal for the princi-
pal subspace estimation. The problem arises because the eigenvalues σ̂2

r ’s place
unequal weights on distinct principal component directions for pn ∝ ‖xn‖2 =∑∞

r=1 σ
2
r ξ̂

2
nr. To remove the influence of eigenvalues in determing the sampling

probability, we propose the functional principal subspace sampling (FunPrinSS)
probability, which is

pExact
n =

∑R
r=1 ξ̂

2
nr + ‖(I − P̂R)xn‖2/σ̂2

R∑N
m=1

[∑R
r=1 ξ̂

2
mr + ‖(I − P̂R)xm‖2/σ̂2

R

] , (2.2)

where I is the identity operator (i.e., Ix = x for any x ∈ HX), and P̂R =∑R
r=1 θ̂r ⊗ θ̂r is the projection operator of the subspace spanned by θ̂1, · · · , θ̂R.

For the n-th sample, the numerator of (2.2) includes two parts: (i) the sum of

squared scores in the principal subspace
∑R

r=1 ξ̂
2
nr; and (ii) the squared norm of

(I − P̂R)xn, which is the observation projected out of the principal subspace.
The second part of the numerator is necessary because, in addition to the first R
scores, all the remaining scores will affect the operator perturbation P̃R−P̂R (see
Lemma 6 of Section 3.2 and the followed discussion). However, it is not practical
to compute all the remaining scores in the infinite dimensional function space
for a large dataset. For this reason, we adopt the squared norm of the projected
residual ‖(I − P̂R)xn‖2/σ̂2

R in (2.2) to account for the effect of the remaining
scores.

The proposed sampling probability (2.2) is denoted as “Exact” because its

value is determined by the full sample eigenfunctions θ̂1, · · · , θ̂R and the related
scores ξ̂nr. In practice, its exact value is unknown unless we carry out full sample
FPCA computation. Fortunately, practitioners only need an approximate value
of (2.2) as input for Algorithm 2. A probability {pn}Nn=1 is regarded as an
approximation to (2.2) if

pn ≥ pExact
n /β (2.3)

for some fixed β ≥ 1. We call a sampling probability {pn}Nn=1 satisfying (2.3)
nearly exact FunPrinSS probability. Section 2.3 will develop a fast algorithm to
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Algorithm 3: Estimating the Functional Principal Subspace Probability

Input: The dataset {xn}Nn=1; the subsample size C; the number R.
Output: The estimated {pn}Nn=1.

1: Compute p′n = α · (1/N) + (1− α) · ‖xn‖2/
(∑N

m=1 ‖xn‖2
)
for each n.

2: Apply Algorithm 2 with {p′n}Nn=1 and C to get the pilot estimates (σ̃′
r)

2 and θ̃′r for
r ≤ R.

3: for n = 1, · · · , N do
4: Compute ξ̂′nr = 〈θ̃′r, xn〉/σ̃′

r for r = 1, · · · , R.

5: Compute p̂n =
∑R

r=1(ξ̂
′
nr)

2 + ‖(I − P̃ ′
R)xn‖2/(σ̃′

R)2.
6: end for
7: Normalize {p̂n}Nn=1 to become a proper probability.

obtain an estimate {p̂n}Nn=1 fulfilling the lower bound requirement (2.3) with
high probability. Our theoretical analysis of the randomized FPCA will also be
based on any sampling probability satisfying (2.3).

The normalizing constant for the sampling probability (2.2) has an inter-

esting interpretation. Define R :=
∑∞

r=R+1 σ̂
2
r

(
θ̂r ⊗ θ̂r

)
as the residual oper-

ator obtained by removing the first R eigenpairs from ĈXX , i.e. R = ĈXX −∑R
r=1 σ̂

2
r

(
θ̂r ⊗ θ̂r

)
. Let ΔR be the intrinsic dimension of R such that

ΔR := intdim(R) = tr(R)/‖R‖ =

∞∑
s=R+1

σ̂2
s/σ̂

2
R+1, (2.4)

if σ̂2
R+1 > 0; and ΔR = 0 if σ̂2

R+1 = 0. Then, for the normalizing constant in
the denominator of (2.2), we have

N∑
m=1

[ R∑
r=1

ξ̂2mr + ‖(I − P̂R)xm‖2/σ̂2
R

]
=

N∑
m=1

[ R∑
r=1

ξ̂2mr +

N∑
s=R+1

σ̂2
s ξ̂

2
ms/σ̂

2
R

]
= N

(
R+

N∑
s=R+1

σ̂2
s/σ̂

2
R

)
≤ N

(
R+ΔR

)
, (2.5)

where the second equality uses the score normalizing property ‖ξr‖N = 1 for

ξr = (ξ̂1r, · · · , ξ̂Nr)
T . The last inequality uses that σ̂2

R ≥ σ̂2
R+1. The above

states that the normalizing constant in (2.2) is upper bounded by N(R+ΔR).
In particular, the quantity R + ΔR is a summation of the principal subspace
dimension R and the residual intrinsic dimension ΔR.

2.3. Implementation of FunPrinSS

Recall the exact value of (2.2) is not available unless we obtain θ̂1, · · · , θ̂R
with full sample computation. This would contradict the goal of reducing com-
putational cost via subsampling. In practice, a two-step procedure can be carried
out:
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Step 1. Obtain an estimate {p̂n}Nn=1 of the exact sampling probability (2.2) via
the randomized procedure in Algorithm 3.

Step 2. Plug the estimated probability {p̂n}Nn=1 into Algorithm 2, which will gives
the final estimator of the functional principal components.

Specifically, in the first step, Algorithm 3 estimates the sampling probabil-
ity (2.2) as follows. At first (Line 1–2), it executes Algorithm 2 with the sampling
probability

p′n = α(1/N) + (1− α)‖xn‖2/
( N∑

m=1

‖xn‖2
)
,

for some α ∈ [0, 1]. The probability {p′n}Nn=1 is a mixture of the uniform sampling
probability and the importance sampling probability (He and Yan, 2020). This
provides a pilot estimate of the first R eigenvalues (σ̃′

r)
2 and eigenfunctions θ̃′r

in Line 2 of Algorithm 3. At the same time, a pilot estimation of the projection
operator P̂ ′

R =
∑R

r=1 θ̂
′
r⊗θ̂′r is obtained. With these pilot estimates, we compute

the score estimates ξ̂′nr = 〈θ̃′r, xn〉/σ̃′
r for each sample in Line 4 of Algorithm 3.

Then, the probability estimator p̂n ∝
(∑R

r=1(ξ̂
′
nr)

2 + ‖(I − P̂ ′
R)xn‖2/(σ̂′

R)
2
)
is

computed for each sample in Line 5. Algorithm 3 will output the normalized
{p̂n}Nn=1. In Section 3.3, it will be shown that the probability {p̂n}Nn=1 computed
by Algorithm 3 satisfies the lower bound requirement (2.3) with high probability.

Remark 1. Two-step procedures can often be found in the literature of random-
ized algorithms. In Drineas et al. (2012), the leverage scores are approximately
computed by sketching the design matrix. In the work of Wang, Zhu and Ma
(2018); Zhang, Ning and Ruppert (2021) for generalized linear regression, the
sampling probabilities are also computed from pilot regression estimators.

Remark 2. The computational complexity of the above two-step procedure can
be analyzed when each functional observation is digitally recorded as a high di-
mensional vector of length L. In this case, the eigenfunction can be obtained by
directly applying SVD to the data matrix. The full sample computational com-
plexity is O(NLmin{N,L}). On the other hand, the proposed Algorithm 2 costs
a complexity of order O(NRL+CLmin{C,L}), where computing the sampling
probabilities via Algorithm 3 costs O(NRL).

Compared with the full sample computation, the proposed algorithm has much
smaller complexity when C � N and R � L. Specifically, the relation R � L is
a characteristic of functional data, whose intrinsic dimension is much smaller
than the ambient dimension. Recall from Section 1, in practical applications such
as astronomical spectral processing, L is in the order of thousands, and N has
the magnitude of millions. Some work (Connolly et al., 1994) has found R = 3
principal components are enough to capture most variability of the dataset. The-
orem 8 suggests the subsample size C need not to be very large for accurate sub-
sample estimation, due to the small dimension parameter R+ΔR for functional
data.
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3. Theoretical analysis of randomized FPCA with FunPrinSS

This section develops a theoretical justification of Algorithm 2 when the em-
ployed sampling probability satisfies (2.3). The derivation is based on the oper-
ator perturbation theory reviewed in Section 3.1, and the main results follow in
Section 3.2. After that, the theoretical justification of Algorithm 3 is presented
in Section 3.3. We will show its estimated probability satisfies the lower bound
requirement (2.3) with high probability. Finally, we discuss practical choice of
the parameter R in Section 3.4.

Our analysis formulates estimating the leading R eigenfunctions as estimating
the projection operator P̂R =

∑R
r=1 θ̂r ⊗ θ̂r. Algorithm 2 delivers a randomized

estimate P̃R =
∑R

r=1 θ̃r⊗ θ̃r, which is computed from the sketched data. We will

focus on bounding their difference P̃R − P̂R. The theoretical analysis is carried
out from an algorithmic perspective. In other words, the concentration bounds
are established conditional on the full dataset, and the derivation exploits the
independence of the subsampling draws within our algorithms. The full dataset
can be almost arbitrary and the theoretical bounds provide worst-case guaran-
tee. Neither specific distribution nor independence assumption is imposed on
the full dataset. Only a single condition on the eigenvalues is required.

Condition 3. The empirical eigenvalues of ĈXX satisfy the following relation:

σ̂2
1 > σ̂2

2 > · · · > σ̂2
R > σ̂2

R+1 ≥ σ̂2
R+2 ≥ · · · .

Remark 4. A strictly positive eigengap gR = σ̂2
R − σ̂2

R+1 > 0 is the minimal

assumption for the identifiability of P̂R. To simplify presentation, we further
assume the leading R eigenvalues σ̂2

1 , · · · , σ̂2
R are distinct with multiplicity one.

If there exists repeated eigenvalues, the same theoretical results can be obtained
using a similar argument but with complications in notation. Lastly, note we
always have σ̂2

r = 0 for r > N , because the empirical ĈXX is computed from N

samples, i.e. rank
(
ĈXX

)
≤ N .

3.1. Operator perturbation theory

We set up the tools from the operator perturbation theory (Hsing and Eubank,

2015) for further analysis of the randomized FPCA. For the operator ĈXX ,

its resolvent is defined as RĈXX
(η) := (ĈXX − ηI)−1, where I is the identity

mapping. Let ΓR := {η ∈ C : dist(η, [σ̂2
R, σ̂

2
1 ]) = gR/2} represent the boundary

of a disk in a complex plane. Every point on ΓR has equal distance gR/2 =
(σ̂R − σ̂R+1)/2 to the interval [σ̂2

R, σ̂
2
1 ] ⊂ R on the positive real axis. Then, the

subspace projection operator can be expressed as a contour integration P̂R =
− 1

2πi

∮
ΓR

RĈXX
(η) dη.

Denote E = C̃XX − ĈXX as the covariance operator approximation error.
Then, using the result of Koltchinskii et al. (2016), the difference of the projec-
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tion operators can be decomposed as P̃R − P̂R = LR(E) + SR(E), where

LR(E) : =
1

2πi

∮
ΓR

RĈXX
(η)ERĈXX

(η)dη, (3.1)

SR(E) : = P̃R − P̂R − LR(E). (3.2)

Notice the first term LR(E) is linear in E , while SR(E) is the residual error. Be-
cause E(E) = 0 where the expectation is taken with respect to the subsampling
procedure, the error LR(E) in (3.1) also has zero expectation ELR(E) = 0.

Recall gR = σ̂2
R−σ̂2

R+1(> 0) is the eigengap. In the case ‖C̃XX−ĈXX‖ < gR/3,
it holds that

max
r

|σ̃2
r − σ̂2

r | ≤ ‖C̃XX − ĈXX‖ < gR/3.

This implies that the first R eigenvalues of C̃XX are strictly in the interior of
the disk ΓR. Therefore, the relation P̃R = − 1

2πi

∮
ΓR

RC̃XX
(η) dη holds for the

subsampled estimator with RC̃XX
(η) = (C̃XX − ηI)−1. In this case, the residual

approximation error SR(E) has the integral expression

SR(E) = − 1

2πi

∮
ΓR

∑
k≥2

[−RĈXX
(η)E ]kRĈXX

(η)dη.

From the above, we can see that LR(E) can be regarded as the first order

approximation error for P̃R−P̂R, while SR(E) as the higher order error. In fact,
according to Lemma 2 of Koltchinskii et al. (2016), the two terms LR(E) and
SR(E) can be bounded as in the following lemma.

Lemma 5. For the full sample covariance operator ĈXX and its subsampled
counterpart C̃XX , denote E = C̃XX − ĈXX as their difference. Consider the
decomposition P̃R−P̂R = LR(E)+SR(E) with LR(E) and SR(E) defined in (3.1)
and (3.2), respectively. It holds that

(i) ‖LR(E)‖ ≤
[
1+(σ̂2

1−σ̂2
R)/(πgR)

]
×‖E‖; (ii) ‖SR(E)‖ ≤ KR (‖E‖/gR)2 .

where KR := 15[1 + 2(σ̂2
1 − σ̂2

R)/(πgR)].

3.2. Main results

We are now ready to derive our main theorem for the randomized FPCA in Algo-
rithm 2 with the nearly exact sampling probability (2.3). Before presenting the
formal result, we provide a heuristic justification of the proposed functional prin-
cipal subspace sampling probability (2.2) and (2.3). The decomposition in (3.1)

and (3.2) suggests that, to minimize the loss ‖P̃R − P̂R‖, we need to have pre-
cise control over the first order error LR(E); at the same time, the magnitude of
SR(E) should also be contained with high probability. Our proposed FunPrinSS
probability backs up this intuition. In fact, the probability (2.2) or (2.3) can
be interpreted as an importance sampling probability to control the first order
error LR(E). The argument is based on the following fact.
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Lemma 6. The first order error term LR(E) can be expressed as LR(E) =

(1/C)
∑C

c=1 Zc/(Np̃c). Each Zc is related to one subsampled x̃c and that

Zc =

R∑
r=1

∞∑
s=R+1

σ̂rσ̂s

σ̂2
r − σ̂2

s

× (ξ̃cr ξ̃cs)×
[
θ̂r ⊗ θ̂s + θ̂s ⊗ θ̂r

]
.

In the above, ξ̃cs = 〈x̃c, θ̂s〉/σ̂s when σ̂s > 0 and ξ̃cs = 1 when σ̂s = 0.

Remark 7. Note the quantity ξ̃cs associated with x̃c is computed with the full
sample eigenvalue σ̂s and the full sample eigenfunction θ̂s. Suppose the c-th
subsample is the ic-th observation in the original dataset (i.e., x̃c = xic), and

the original xic has full sample scores ξ̂ic,1, ξ̂ic,2, · · · . Recall we have set p̃c = pic
as the sampling probability of the original ic-th observation. Similarly, we denote
for the c-th subsample ξ̃cs = ξ̂ic,s (s = 1, 2, · · · ) as the corresponding full sample
score.

Lemma 6 reveals that LR(E) can be expressed as a summation of C terms, and
each summand Zc is related to one subsampled x̃c. For the importance sampling,
the sampling probability is proportional to the size of each summand. We can
show the proposed probability (2.2) or (2.3) serve this purpose by computing
the squared norm of each summand Zc in Lemma 6 as

‖Zc‖2HS = 2

R∑
r=1

∞∑
s=R+1

σ̂2
r σ̂

2
s

[σ̂2
r − σ̂2

s ]
2
· ξ̃2cr ξ̃2cs

= 2

R∑
r=1

∞∑
s=R+1

σ̂4
r

[σ̂2
r − σ̂2

s ]
2︸ ︷︷ ︸

f2
rs

·ξ̃2cr(σ̂2
s ξ̃

2
cs/σ̂

2
r). (3.3)

Define frs := (1−qr,s)
−1 with qr,s = σ̂2

s/σ̂
2
r for the above equation. For r < s, it

is obvious that qr,s ≤ 1 and frs ≥ 1. Consider the special case where the leading
R principal components dominate the overall signal, i.e., σ̂2

R � σ̂2
R+1. In this

case, we have the approximation frs ≈ 1 for r(≤ R) and s(> R). It follows
approximately that

‖Zc‖2HS ≈ 2

R∑
r=1

∞∑
s=R+1

ξ̃2cr
(
σ̂2
s ξ̃

2
cs/σ̂

2
r

) (i)

≤ 2
( R∑

r=1

ξ̃2cr

)( ∞∑
s=R+1

σ̂2
s ξ̃

2
cs/σ̂

2
R

)
(ii)

≤ 1

2

( R∑
r=1

ξ̃2cr +

∞∑
s=R+1

σ̂2
s ξ̃

2
cs/σ̂

2
R

)2
=

1

2

( R∑
r=1

ξ̃2cr + ‖(I − P̂R)x̃c‖2/σ̂2
R

)2
. (3.4)

In the above, (i) uses that σ̂2
r ≥ σ̂2

R for r ≤ R, and (ii) uses the inequality 4ab ≤
(a+b)2 for a, b ∈ R. As expected, the last line of (3.4) indicates the approximate
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proportional relation p̃Exact
c ∝ ‖Zc‖HS for the FunPrinSS probability (2.2). This

resembles the importance sampling p̃c ∝ ‖x̃c⊗x̃c‖HS = ‖x̃c‖2 for the covariance
operator estimation (1.1) in He and Yan (2020). From here, we find the proposed
FunPrinSS probability can be viewed as an importance sampling probability to
control LR(E) when σ̂2

R � σ̂2
R+1.

The above heuristic justification is developed in the case σ̂2
R � σ̂2

R+1. Under
the general eigenvalue setting of Condition 3, to control the first order term
LR(E), we define

GR := (1− qR,R+1)
−1 = σ̂2

R/(σ̂
2
R − σ̂2

R+1),

and find it as an upper bound for the ratio factor frs in (3.3). That is, for
r ≤ R < s, we have

frs = (1− qr,s)
−1 ≤ (1− qR,R+1)

−1 = GR.

This relation holds because f(q) = 1/(1 − q) is an increasing function for
q ∈ (0, 1). Theorem 8 below formalizes this idea and provides theoretical guar-
antees for the subsampled FPCA in Algorithm 2 with the nearly exact sampling
probability (2.3). Note all the probability bounds in this work are derived con-
ditional on the full dataset and with respect to the subsampling.

Theorem 8. Under Condition 3, define GR = σ̂2
R/(σ̂

2
R − σ̂2

R+1) and define

V = max{G2
RZ

2/(2β), Z} and L = max{GRZ/
√
2, Z + 1},

with Z = β(R + ΔR). Then, for sampling probability {pn}Nn=1 satisfying pn ≥
pExact
n /β with β ≥ 1, and for ε satisfying ε · C ≥

√
CV + L/3, it holds that

‖P̃R − P̂R‖ ≤ ε+KR · σ̂4
1ε

2/g2R, (3.5)

with probability at least 1− 12(R+ΔR) exp
(
− Cε2/2

V+Lε/3

)
.

In the above theorem, GR can be viewed as a measurement of the eigengap
σ̂2
R − σ̂2

R+1. The dimension R +ΔR discussed in (2.5) also appears in multiple
places above. On the right hand side of the error bound (3.5), the first term ε
bounds the first order error LR(E) in (3.1), while the second term KR · σ̂4

1ε
2/g2R

bounds the high order SR(E) in (3.2).

According to (3.5) of Theorem 8, the subsample error ‖P̃R − P̂R‖ can be
controlled within a precision level ε with high probability. For a large enough C
and with probability at least 0.9, the bound (3.5) holds for the precision level

ε of magnitude order O
(
(R + ΔR) log

1/2[120(R + ΔR)]/C
1/2
)
. The precision

level ε is inversely proportional to C1/2, and is proportional to the dimension
parameter R+ΔR with an additional logarithm factor. The nature of functional
data usually indicates the dimension parameter R + ΔR is small, though the
ambient space dimension is infinite. This means the subsample size C need not
be very large to control the subsample error toward a small accuracy level ε.
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3.3. Theoretical justification of Algorithm 3

Algorithm 3 can be justified for providing the pilot probability estimate. We
show that its estimated probability {p̂n}Nn=1 remains close to the target (2.2) in
the sense of (2.3). Its proof is derived in Section E in the Appendix.

Proposition 9. Set Δ0 = intdim(ĈXX), γ0 =
√

(Δ0 + 1) log(120Δ0) and
GR = (1 − qR,R+1)

−1. For large enough subsample size C, with probability at
least 0.9, the pilot sampling probability {p̂n}Nn=1 computed by Algorithm 3 with
α = 0.5 satisfy

min
{pExact

p̂n
,

p̂n
pExact

}
≥ 1− γ1C

−1/2 − γ2C
−1

1 + γ1C−1/2 + γ2C−1
,

where γ1 = 35(1 +GR)(R+ΔR) + 8σ̂2
1γ0/σ̂

2
R and γ2 = 32KRσ̂

6
1G

2
R/(g

2
Rσ̂

2
R).

One implication of Proposition 9 is that, when the subsample size C is large

enough, it holds with high probability that p̂n ≥ pExact/β for β = 1+γ1C
−1/2+γ2C

−1

1−γ1C−1/2−γ2C−1 .

This corresponds to our definition of the nearly exact FunPrinSS probabil-
ity (2.3). Besides, the value of β(≥ 1) will converge to one as C increases to
infinity.

3.4. Choice of R

For functional principal component analysis, the subspace dimension R is usu-
ally chosen based on the fraction of the variance explained (FVE) by the leading
R eigenfuctions. That is, R is chosen such that the FVE is greater than a pre-
specified threshold value (e.g. 90%). Given the full sample estimate P̂R, its
fraction of variance explained can be computed by

F̂VE =

∑R
r=1 σ̂

2
r∑∞

r=1 σ̂
2
r

=

∑N
n=1 ‖P̂Rxn‖2∑N
n=1 ‖xn‖2

;

and correspondingly, the fraction of variance explained by the subsampled es-

timate P̃R is F̃VE =
∑N

n=1 ‖P̃Rxn‖2/
∑N

n=1 ‖xn‖2. As a direct consequence of

Theorem 8, we can bound the difference between the F̂VE of the full sample

estimator and the F̃VE of the subsampled estimator.

Corollary 10. Under the conditions of Theorem 8, it holds that∣∣F̂VE− F̃VE
∣∣ ≤ ε+KR · σ̂4

1ε
2/g2R, (3.6)

with probability at least 1− 12(R+ΔR) exp
(
− Cε2/2

V+Lε/3

)
.

Proof. With Theorem 8, the result (3.6) is straightforward by observing∣∣∣∑N
n=1 ‖P̂Rxn‖2∑N
n=1 ‖xn‖2

−
∑N

n=1 ‖P̃Rxn‖2∑N
n=1 ‖xn‖2

∣∣∣
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=
∣∣∣∑N

n=1〈xn, (P̂R − P̃R)xn〉∑N
n=1 ‖xn‖2

∣∣∣ ≤ ε+KR · σ̂4
1ε

2/g2R.

The last inequality employs |〈xn, (P̂R − P̃R)xn〉| ≤ ‖P̂R − P̃R‖ · ‖xn‖2.

Corollary 10 indicates F̃VE is a reliable estimate of F̂VE. When applying

the randomized algorithm, we can use the criterion F̃VE to select R. After

obtaining the subsampled estimate P̃R, computing F̃VE requires one additional
scan over the whole dataset and have a computational complexity O(NRL).
This complexity is no more than that of Algorithm 3, see Remark 2.

4. Extenstion: randomized functional linear regression

A considerable number of functional data models rely on functional principal
components for dimension reduction. One of these models is functional linear
regression (FLR) with scalar response. In this section, we extend the results
from Section 2 and Section 3 to FLR and develop its theoretical guarantees.

4.1. Randomized FLR

FLR is a generalization of the classical linear regression to the functional setting.
For a functional predictor xn ∈ HX and a scalar response Yn ∈ R, FLR assumes
the relation Yn = α + 〈xn,Ψ〉 + εn for n = 1, · · · , N . In this model, α ∈ R is
the intercept term, Ψ ∈ HX is the regression function and εn is some random
error with zero mean. When both xn and Ψ belong to L2(T ) for some compact
interval T , the regression model is written as Yn = α+

∫
T
xn(t)Ψ(t) dt+εn. Given

any estimator Ψ̂, the intercept is directly available via α̂ = (1/N)
∑N

n=1(Yn −
〈xn, Ψ̂〉). In the following, we focus on the estimation of the regression function
Ψ by assuming that Yn and xn have been centered with zero mean, such that
α̂ = 0.

Considerable amount of works has been proposed for estimating Ψ (e.g.
Yao et al., 2005; Yuan and Cai, 2010). One of the commonly used estimators
for Ψ is based on the truncated inverse of the empirical covariance operator
ĈXX = 1

N

∑N
i=1 xi ⊗ xi; see Hall et al. (2007); Cardot, Mas and Sarda (2007).

Suppose the covariance operator admits the eigenvalue-eigenfunction decom-
position ĈXX =

∑∞
r=1 σ̂

2
r · θ̂r ⊗ θ̂r. Its rank-R truncated inverse is defined as

Ĉ+
XX =

∑R
r=1(1/σ̂

2
r) · θ̂r ⊗ θ̂r. Based on this, the regression function is estimated

by Ψ̂ = Ĉ+
XX ẑ with ẑ = (1/N)

∑N
n=1 Ynxn.

To reduce the cost of computing Ψ̂ from the full sample, we adapt the ran-
domized algorithm to estimate it based on a subset of the data. The algorithm
will sample a subset {(x̃c, Ỹc)}Cc=1 of observation pairs from the full sample
{(xn, Yn)}Nn=1. The sampling is taken with replacement and according to some
probability distribution {pn}Nn=1. Given the subsampled pairs, we can compute

two quantities, C̃XX = 1
C

∑C
c=1

1
Np̃c

x̃c⊗ x̃c and z̃ = 1
C

∑C
c=1

1
Np̃c

Ỹcx̃c, which are
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Algorithm 4: Base Randomized FLR

Input: Dataset {(xn, Yn)}Nn=1; sampling probability {pn}Nn=1; subsample size C.

Output: the regression function Ψ̃

1: for c = 1, · · · , C do
2: Sample (x̃c, Ỹc) from {(xn, Yn)}Nn=1 and get p̃c with

P
(
(x̃c, Ỹc, p̃c) = (xn, Yn, pn)

)
= pn.

3: end for
4: Compute C̃XX = 1

C

∑C
c=1

1
Np̃c

x̃c ⊗ x̃c and z̃ = 1
C

∑C
c=1

1
Np̃c

Ỹcx̃c.

5: Compute Ψ̃ = C̃+
XX z̃

unbiased estimators of Ĉ and ẑ, respectively. Finally, the full sample regression
function is estimated by its subsampled counterpart Ψ̃ = C̃+

XX z̃. This procedure
is listed in Algorithm 4.

In Algorithm 4, notice the truncated inverse C̃+
XX is computed from the

eigenvalue-eigenfunction decomposition of the subsampled C̃XX . It is evident
that the accuracy of the randomized estimator Ψ̃ relies on the precision of the
principal subspace estimated by C̃XX . Our proposed FunPrinSS probability (2.2)
is a proper choice for the randomized FLR to capture the principal subspace
information.

In practice, the FunPrinSS probability (2.2) is unknown without full sam-
ple computation. We can carry out a two-step procedure similarly to that of
Section 2.3. Firstly, the FunPrinSS probability is estimated via Algorithm 3.
Secondly, the estimated probability is supplied to Algorithm 4 to obtain Ψ̃. As
noted in Proposition 9, the probability obtained in the first step is close to the
target FunPrinSS probability with high probability when the subsample size C
is large enough.

Application of the randomized FLR algorithm also requires the specification
of the principal subspace dimension R. Practitioners can choose R such that
the fraction of variance explained (FVE) by the principal subspace is close to
100%. In this way, most of the variability of the predictor x is captured and the
remaining variability can be regarded as being negligible.

Remark 11. When the functional observation is recorded as a high dimensional
vector of length L, the computational complexity of such two-step procedure can
be similarly analyzed as in Remark 2. In this case, the computational complexity
of FLR with full sample is O(NLmin{L,N} + L(R + N)). The proposed two-
step procedure for randomized FLR requires O(CLmin{C,L} + (C + NR)L).
Compared with the full sample computation, the proposed algorithm has much
smaller complexity when C � N and R � L.

4.2. Analysis of randomized FLR with FunPrinSS

We continue to theoretically analyze the subsampled regression estimator Ψ̃
obtained from Algorithm 4 with the nearly exact sampling probability (2.3).
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Toward this target, we express the full sample estimator Ψ̂ and the subsampled
estimator Ψ̃ in compact expressions. These expressions resemble the commonly
used ones for the classical linear regression. First of all, define an operator
T : HX → RN such that an element u ∈ HX is mapped to

T u = (〈x1, u〉, · · · , 〈xN , u〉)T . (4.1)

Let Y = (y1, · · · , yN )T and ε = (ε1, · · · , εN )T be N -dimensional vectors of the
responses and the residuals, respectively. Then, the regression model for all N
observations can be expressed as Y = T Ψ+ ε. The operator T plays a similar
role as the design matrix for classical linear regression.

Recall from the end of Section 1, the Euclidean space RN is equipped with
the normalized inner product 〈·, ·〉N . We denote T ∗ : RN → HX as the adjoint
operator of T . For any a ∈ RN and u ∈ HX , it holds that

〈T ∗a, u〉 (i)
= 〈a, T u〉N

(ii)
=

1

N

N∑
n=1

an〈xn, u〉 =
〈 N∑
n=1

anxn/N, u
〉
.

In the above, (i) uses the definition of adjoint operator, and (ii) employs (4.1).
From the above equation, we find that the adjoint operator T ∗ maps any a ∈ RN

to (1/N)
∑N

n=1 anxn. Moreover, for any u ∈ HX , we can find that

T ∗T u = T ∗

⎛⎜⎝ 〈x1, u〉
...

〈xN , u〉

⎞⎟⎠ =
1

N

N∑
n=1

〈xn, u〉xn = ĈXXu.

The above equation implies that ĈXX = T ∗T . Similarly, we can verify ẑ = T ∗Y.
Combining these results, the full sample estimator of the regression function can
be equivalently expressed as Ψ̂ = Ĉ+

XX ẑ = (T ∗T )+(T ∗Y).

To find a closed form expression for the subsampled Ψ̃, we represent the
subsampling process by an operator D : RN → RC . As a mapping between
Euclidean spaces, D can be represented by a matrix D ∈ RC×N . The (c, n)-th
entry of the matrix D is Dcn = 1/

√
Npn if xn is selected as the c-th subsample;

all the other entries are zero. The adjoint operator of D is denoted as D∗ : RC →
RN . Note the Euclidean space RC is also equipped with the normalized inner
product 〈·, ·〉C , such that for a′,b′ ∈ RC we have 〈a′,b′〉C = (1/C)

∑C
c=1 a

′
cb

′
c.

Now for any a′ ∈ RC and b ∈ RN , we have

〈a′,Db〉C =
1

C
〈a′,Db〉2 =

1

C
〈DTa′,b〉2 = 〈(N/C)DTa′,b〉N ,

where 〈·, ·〉2 is the classical (unnormalized) inner product for Euclidean space,
which is the summation of element-wise products. From the above equation, we
can see that the matrix representation of D∗ is (N/C)DT , which is the transpose
of D and multiplied by a ratio factor N/C. With some computation, we can
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verify that for any u ∈ HX

T ∗D∗DT u = (N/C)T ∗DTD

⎛⎜⎝ 〈x1, u〉
...

〈xN , u〉

⎞⎟⎠ =
1

C

C∑
c=1

1

Np̃c
〈x̃c, u〉x̃c = C̃XXu.

It follows that C̃XX = T ∗D∗DT , and z̃ = T ∗D∗DY can be verified due to
a similar reasoning. This leads to a compact expression for the randomized
regression estimator Ψ̃ = C̃+

XX z̃ = (T ∗D∗DT )+(T ∗D∗DY). The above results
are summarized in Lemma 12 below, which gives an alternative expression of the
full sample estimator and the subsampled estimator obtained via Algorithm 4.

Lemma 12. The full sample regression estimator can be expressed as

Ψ̂ = (T ∗T )+(T ∗Y),

and the subsampled estimator can be expressed as

Ψ̃ = (T ∗D∗DT )+(T ∗D∗DY).

Now we show that the subsampled estimator provides a good approximation
of the full sample estimator under suitable criterion. Our aim is to characterize
the closeness between the full sample estimator Ψ̂ and the subsampled estimator
Ψ̃. In the literature of functional linear regression, strong consistency of the
estimated regression function is not generally possible. The estimators are only
guaranteed to converge in some weak norm such as the prediction error on
a new sample (see Cardot, Mas and Sarda, 2007; Yuan and Cai, 2010). We

choose to measure the difference Ψ̃ − Ψ̂ based on the full sample prediction
error ‖T Ψ̃−T Ψ̂‖2N = 1

N

∑N
n=1〈xn, Ψ̃− Ψ̂〉2. When only a fraction of the whole

dataset is employed to estimate Ψ̃, this metric partially gauges the quality of
Ψ̃ by the samples out of the subsampled (training) dataset. Our theoretical

target boils down to the analysis of the error T Ψ̃ − T Ψ̂. Lemma 13 below
provides a decomposition of the subsampling error, the proof of which can be
found in Section D in the Appendix. Recall that xn can be represented as
xn =

∑∞
r=1 σ̂r ξ̂nr θ̂r due to the Karhunen-Loève expansion (2.1). The following

decomposition involves an operator T + : RN → HX , which maps a ∈ RN to
T +a = 1

N

∑N
n=1 anx

+
n ∈ HX , with x+

n =
∑R

r=1 ξ̂nr θ̂r/σ̂r corresponding to each
xn.

Lemma 13. The subsampling error in full sample prediction has the following
decomposition

T Ψ̃− T Ψ̂ = T (P̃R − P̂R)T +Y︸ ︷︷ ︸
I

+ T (C̃+
XX − Ĉ+

XX)T ∗(D∗D)Y⊥︸ ︷︷ ︸
II

+ T Ĉ+
XXT ∗(D∗D)Y⊥︸ ︷︷ ︸

III

. (4.2)
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In the above, Y⊥ = Y − T Ψ̂ is the residual of the full sample estimator. In
addition, we have that

T Ĉ+
XXT ∗Y⊥ = 0. (4.3)

Lemma 13 shows that the subsampling error T Ψ̃ − T Ψ̂ can be decomposed
into three interpretable terms. The first term (I) accounts for the subsampling

estimation error of the principal subspace P̃R−P̂R. The second term (II) arises

due to the difference between the truncated inverses C̃+
XX − Ĉ+

XX . The third

term (III) can be interpreted as follows. Notice we have T Ĉ+
XXT ∗Y⊥ = 0 by

the last conclusion of Lemma 13. This relation holds due to the similar reason
that the residual is orthogonal to the column space of the design matrix for
classical linear regression. In fact, (4.3) holds because our Y⊥ is orthogonal
to the space spanned by the first R score vectors, i.e., span(ξ1, · · · , ξR) with

ξr = (ξ̂1r, · · · , ξ̂Nr)
T . This orthogonality is violated due to subsampling, which

explains the appearance of the last term (III) in (4.2). With Lemma 13 and the
operator perturbation expansion techniques in Section 3.1, we can establish the
following result for the randomized FLR.

Theorem 14. Under Condition 3, set Z1 = σ̂6
1KR/(g

2
Rσ̂

2
R) and Z2 = β(R +

ΔR). In addition, let V = 2+(2+G2
R)Z

2
2/β and L =

√
2R+(

√
2+GR/

√
2)Z2.

Suppose C subsamples are obtained according to the probability {pn} satisfying
pn ≥ pExact

n /β with some β ≥ 1. Then with probability at least

1− 16(R+ΔR) exp
(
− Cε2

V + Lε/3

)
− 3Z2

ε2C
, (4.4)

it holds that

‖T Ψ̃− T Ψ̂‖N ≤
(
ε+ σ̂RZ1/σ̂1ε

2
)
‖Y‖N︸ ︷︷ ︸

a

+4
(
ε+ Z1ε

2
)
‖Y⊥‖N︸ ︷︷ ︸

b

. (4.5)

In the above, ε satisfy ε ≥
√
V/C + L/(3C) and ε ≤ min{1, gR/3}.

Theorem 14 directly implies that, given a subsample size C, we can control
‖T Ψ̃ − T Ψ̂‖N within a precision level ε in (4.5) with high probability. For a
large enough C and with probability at least 0.9, the bound (4.5) holds for the

precision level ε of magnitude order O
(
(R+ΔR) log

1/2[320(R+ΔR)]/C
1/2
)
.

The right hand side of (4.5) contains two parts. The first term (a) bounds
the subspace difference (I) in (4.2), and it is an error term relative to ‖Y‖N .
The second term (b) bounds (II) and (III) in (4.2) together, and its magnitude
is relative to ‖Y⊥‖N .

To help get a better understanding of the two terms on the right hand side of
(4.5), we can relate them to similar quantities in finite dimensional problems.
For the randomized classical linear regression (Drineas et al., 2011), the error
bound can be simplified to one term containing ‖Y⊥‖N . This is because their
corresponding predictors xn span a finite dimensional space. Their work agrees
with our result when dim(HX) is finite and relatively small, and we directly
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take R to be dim(HX) without truncation. Indeed, with large enough subsample

size C, the finite dimensional space can be easily recovered, and P̂R = P̃R is
guaranteed with high probability. This implies that the term (I) will vanish
in (4.2) for linear regression, and consequently the first term (a) will disappear
in (4.5). The result (4.5) would become an error bound whose magnitude is only
related to the size of the residual, ‖Y⊥‖N .

When dim(HX) is finite and R < dim(HX), our randomized FLR corre-
sponds to randomized multivariate principal component regression (PCR). In
the literature, additive error bound relative to ‖Y‖2 has been established for
the randomized PCR (see. Theorem 5 of Mor-Yosef and Avron, 2019). Our the-
oretical bound (4.5) reveals different sources of uncertainties whose sizes are
proportional to ‖Y⊥‖N or ‖Y‖N . This is a consequence of the subsample error
decomposition in Lemma 13.

Notice the precision parameter ε has an upper bound gR/3 in the theorem.
This is because we need to control the difference between the truncated inverses
C̃+
XX − Ĉ+

XX . The difference is generally unbounded unless we require ‖C̃XX −
ĈXX‖ to be smaller than the eigengap gR. Thereby, the theorem is derived

conditional on the event ‖C̃XX −ĈXX‖ ≤ (1/3)gR, which holds at least with the
stated probability (4.4).

5. Simulation study

This section conducts a simulation study for assessing the randomized functional
principal component analysis in Algorithm 2 and the randomized functional lin-
ear regression in Algorithm 4. Specifically, for these randomized algorithms, we
will consider three sampling probabilities: 1) the uniform sampling probabil-
ity (UNIF), pn = 1/N ; 2) the importance sampling probability (IMPO, He and

Yan, 2020), pn = ‖xn‖2/
∑N

m=1 ‖xm‖2; 3) the proposed functional principal sub-
space sampling probability (FunPrinSS) estimated by Algorithm 3 with α = 0.5.
These sampling probabilities will be supplied to the randomized algorithms, and
the accuracy of the subsampled estimation will be compared.

5.1. Data generation

In each replication of the simulation study, we will generate one synthetic dataset
{xn}Nn=1 as follows. Each observation xn is a continuous function defined over the
compact interval T = [0, 1]. In particular, it is generated according to xn(t) =∑50

r=1 σrξnrθr(t), where the θr is set as the Fourier function which is θr(t) =√
2 sin(2πrt) when r is odd, and θr(t) =

√
2 cos(2πrt) when r is even. The

scores ξnr’s are independent random variables with zero mean and unit variance.
For the random function xn, its covariance operator CXX is determined by the

integral (CXXu)(t′) =
∫ 1

0
k(t, t′)u(t) dt for any u ∈ L2([0, 1]), with integral kernel

k(t, t′) =
∑p

j=1 σ
2
rθr(t)θr(t

′). We can see the r-th eigenvalue and eigenfunction

of CXX are σ2
r and θr, respectively.
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Table 1

Simulation Parameter Specification.

Parameter Type Description

Eigenvalue {σ2
r}50r=1

Exponential Decay (ED) σ2
r = c · κr with c = 251 and κ = 0.5

Polynomial Decay (PD) σ2
r = c · r−κ with c = 100 and κ = 1.5

Score ξnr’s
Nearly Uniform (NU) standard normal distribution N(0, 1)

Moderately Nonuniform (MN) t-distribution with three degree of freedom and scaled to unit variance
Very Nonuniform (VN) t-distribution with one degree of freedom and scaled to unit variance

The settings to specify the eigenvalues {σ2
r}50r=1 and the distribution of ξnr

is described in Table 1. The eigenvalues {σ2
r}50r=1 are specified as two cases:

Exponential Decay (ED) and Polynomial Decay (PD). The decline rate of
the PD eigenvalues is slower than the ED eigenvalues. Hence, the eigengap for
the PD setting is smaller, and the estimation of the subspace spanned by the
first R eigenfunctions is more difficult.

Similar to the simulation setting of Ma, Mahoney and Yu (2015), the ran-
dom scores, ξnr’s, are independently drawn from one of the three distributions:
Nearly Uniform (NU) distribution, for which ξnr’s are drawn independently
from standard normal distribution N(0, 1); Moderately Nonuniform (MN) dis-
tribution, where the scores ξnr’s are independently generated by t-distribution
with three degree of freedom and scaled to unit variance; and Very Nonuniform

(VN) distribution, where ξnr follows t-distribution with one degree of freedom
and scaled to unit variance. Notice among these three distributions, the score
distribution for NU has the lightest tail, while has the heaviest tail for VN. As
a result, the functions in a synthetic dataset from NU will behave more homo-
geneously. On the other hand, the synthetic datasets from MN or VN are likely
to contain some observations with extreme magnitude. Ma, Mahoney and Yu
(2015) note observations in the VN setting could have drastically different lever-
ages, adversely affecting the naive uniform sampling.

By combining two different choices of eigenvalues (ED or PD) and three differ-
ent choices of score distributions (NU, MN, or VN), we have totally six distinct
ways to generate a full sample dataset {xn}Nn=1 of size N = 10, 000. In each repli-
cate of the simulation, one dataset will be generated in a specified way. The pro-
cedure is repeated 1000 times to report the average loss and associated standard
errors based on the subsample size C ∈ {100, 300, 500, 700, 1000, 3000, 5000, 7000}.
We will apply the randomized algorithms to estimate the leading functional
principal components in Section 5.2 and solve the functional linear regression
in Section 5.3. We present here the results with the ED eigenvalue setting. See
Section F in the Appendix for the results with the PD eigenvalue setting.

5.2. Randomized FPCA

To assess the randomized FPCA algorithm, we supply Algorithm 2 with the
three sampling probabilities discussed at the beginning of this section. In partic-
ular, we will estimate the firstR = 5 functional principal components (θ1, · · · , θ5)
and their spanned subspace. A variety of criteria are used to assess the algo-
rithm performance. The functional principal subspace estimation error is as-
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Fig 2. Randomized covariance operator and FPCA estimation for the ED and NU setting.
The vertical axes represent comparison metrics in log10 scale. The blue dotted, red dashed
and black solid lines correspond to the results of the UNIF, IMPO and FunPrinSS sampling,
respectively.

sessed via the Hilbert-Schmidt norm and the operator norm ‖P̃R − P̂R‖HS

and ‖P̃R − P̂R‖ for the functional principal subspace projection operator. The
estimation error for each principal component function will be computed by
‖θ̃r − sign(〈θ̃r, θ̂r〉)θ̂r‖. As a byproduct, the subsampled covariance operator

errors ‖C̃XX −ĈXX‖HS and ‖C̃XX −ĈXX‖ are also reported. Notice these crite-
ria are assessing the differences between the subsampled estimates and the full
sample estimates, as developed in our theoretical results.

The simulation results with exponentially decaying (ED) eigenvalues are pre-
sented in Figures 2–4. The three figures correspond to the cases with NU, MN
and VN distributions, respectively. In each figure, the first two panels in the first
row demonstrate the estimation error of ‖C̃XX − ĈXX‖HS and ‖C̃XX − ĈXX‖.
The third and fourth panels in the first row report the error of functional sub-
space projection operator ‖P̃R − P̂R‖HS and ‖P̃R − P̂R‖. The estimation error
for the first four eigenfunctions are reported in the second row. In addition, for
each panel, the horizontal axes represent the subsample size C, while the ver-
tical axes are the comparison metrics in the logarithm scale with base 10. The
blue dotted, red dashed and black solid lines correspond to the results of UNIF,
IMPO and FunPrinSS probability, respectively.

From the figures, we can see that as the subsample size increases, all er-
rors tend to decrease monotonically. There are more points worth emphasizing.
Firstly, UNIF has the worst performance in most of the cases. It almost fails
completely for the VN datasets in Figure 4, where the some principal compo-
nent scores have extreme magnitude. Secondly, the sampling strategy IMPO
performs best in estimating ĈXX and θ̂1, which agrees with the result of He and
Yan (2020). It also confirms our observations from Figure 1 in Section 1 that

this sampling strategy over-emphasizes the eigenfunction θ̂1 with the most dom-
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Fig 3. Randomized covariance operator and FPCA estimation for the ED and MN setting.

Fig 4. Randomized covariance operator and FPCA estimation for the ED and VN setting.

inant eigenvalues. As for the estimation of θ̂3 and θ̂4, the performance of IMPO
is no longer the best. Especially for θ̂4 with a small eigenvalue, its accuracy can
even be worse than UNIF, as shown in the last penal of Figure 2. Thirdly, our
proposed FunPrinSS has the smallest error for estimating P̂R, which provides
empirical support for our theoretical results of Theorem 8. It also leads in the
accuracy of estimating θ̂2, · · · , θ̂4, and the accuracy remains appealing on the
VN dataset with extreme observations in Figure 4. The above shows the re-
sult for the ED eigenvalue setting. The randomized FPCA results have similar
interpretation for the PD eigenvalue setting. See Section F in the Appendix.
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Fig 5. Randomized FLR for predictors xn generated with the exponentially decaying eigenval-
ues. The blue dotted, red dashed and black solid lines correspond to the results of the UNIF,
IMPO and FunPrinSS sampling, respectively.

5.3. Randomized FLR

To examine the performance of the proposed randomized FLR algorithm, we
generate data pairs {(xn, Yn)}Nn=1 with N = 10, 000 as follows. The functional
predictor xn is simulated by the procedure in Section 5.1. The additional scalar
response Yn is set by Yn = 〈xn,Ψ〉 + εn with noise εn ∼ N(0, 1). Besides,

the regression function is specified as Ψ(t) =
∑50

r=1 θr(t), where θr’s are the
Fourier bases specified in Section 5.1. Recall by combining different choices of
eigenvalues (ED or PD), and different choices of score distributions (NU, MN,
or VN), six types of simulation settings are considered.

As in Section 5.2, we consider the same sampling probabilities for Algorithm 4
to obtain the estimator Ψ̃. We consider two metrics to compare these sampling
schemes. The first is the prediction error ‖T Ψ̂−T Ψ̃‖2N = (1/N)

∑N
n=1〈xn, Ψ̂−

Ψ̃〉2 discussed in Section 4.2. The second is direct estimation error ‖Ψ̂− Ψ̃‖2 =∫ 1

0
[Ψ̂(t)− Ψ̃(t)]2 dt in L2 norm. The latter is a stronger norm on the difference

between the full sample empirical estimate Ψ̂ and subsampled estimator Ψ̃.
The simulation is carried out with 1000 replicates and the operator inverse is

truncated at R = 5. Figure 5 presents the prediction error and the estimation
error for the ED eigenvalue setting and different score distributions (NU, MN,
VN). The first row depicts the prediction error, while the second row shows the
estimation error. The three columns correspond to the NU, MN and VN score
distribution, respectively. For each panel, the horizontal axis is the subsample
size C, and the vertical axis plots the error in the logarithm scale with base 10.
In addition, the blue dotted, red dashed and black solid lines correspond to the
results of UNIF, IMPO and FunPrinSS sampling probabilities, respectively. It is
remarkable that the proposed FunPrinSS has the smallest errors in all cases and
its performance is stable in the VN datasets with extreme observations. Between
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different versions of sampling probabilities, their performance difference enlarges
as the tails of the score distributions grow heavier. In some cases (e.g. when the
scores has NU distribution), the non-informative uniform sampling (UNIF) is
slightly better than the the IMPO sampling. However, UNIF has the worst
performance for the VN score distribution. Figure 14 in Appendix F presents
the simulation results for the PD eigenvalue setting. It also conveys a similar
message.

6. Real data analysis

We now illustrate the effectiveness of our randomized algorithm on a stellar
spectrum dataset. The dataset contains observations from the Large sky Area
Multi-Object fiber Spectroscopic Telescope (LAMOST, Zhao et al., 2012). The
LAMOST project began carrying out its spectroscopic survey of millions of stars
and galaxies in 2012. The current LAMOST data release includes more than nine
million spectra. Aided by this rapid progress in the availability of spectra data,
we can conduct scientific research on many advanced astrophysical topics, such
as exploring galaxy star generation, tracing the structure and evolution history
of our Milky way galaxy and searching for signatures of dark matter distribution
and sub-structures in the Milky Way halo.

From the the current LAMOST data release, we randomly select a dataset
containing N = 110, 000 stellar spectra with r-band signal-to-noise ratio larger
than 35. Each spectrum is normalized to have unit norm and get denoised by a
spline wavelet method. In addition, the average spectrum is subtracted from each
observation such that the dataset has zero mean. We treat this as our full dataset
and apply the subsampling algorithms over this dataset. Figure 6 presents five
example spectra from the pre-processed dataset. In the figure, the horizontal
axis is wavelength, and the vertical axis is flux which measures the brightness of
an object. Each spectrum observation can be viewed as functional data, where
the flux value xn(λ) varies as a function of the wavelength λ. In Figure 6, several

Fig 6. Five stella spectra from LAMOST with 0.002 offsets in the vertical direction. The
horizontal axis is wavelength (Å) and the vertical axis is normalized flux.
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important spectral features are marked as vertical dashed lines. These spectral
features are adopted by Liu et al. (2015) for spectral classification.

Characterizing the diversity of stars and extracting stellar atmospheric pa-
rameters are of key astrophysical importance for astronomical observational
studies. We will apply the randomized FPCA in Algorithm 2 and the random-
ized FLR in Algorithm 4 to this dataset.

6.1. Results for Randomized FPCA

Dimensional reduction has been an effective tools for astronomical spectrum
data analysis (Bermejo, Ramos and Prieto, 2013; McGurk, Kimball and Ivezic,
2010). We apply the randomized FPCA in Algorithm 2 with the three sampling
strategies (UNIF, IMPO and FunPrinSS) in Section 5. We will estimate the
leading R = 5 functional principal components, together with the covariance
operator. The parameter R = 5 is chosen such that FVE is approximately 98%.
The improvement of FVE with R = 6 is marginal (see Figure 7).

Based on the whole selected 110,000 spectra, the full sample estimators are
computed with brute force. Besides, we apply the randomized algorithm with
the subsample size C varying among 1, 000, 5, 000 and 10, 000. The randomized
estimates are compared against the full sample results by the metrics introduced
in Section 5.2. For each subsample size, the procedure is repeated 1, 000 times

Fig 7. The boxplot of the FVE of the subsampled functional principal component estimates
under 1000 replicates. The three panels correspond to the subsample size C = 1000, 5000 and
10000, respectively. In each panel, different sampling probabilities (UNIF, IMPO, FunPrinSS)
are compared over various R. The FVEs of the full sample estimator are shown as dashed
horizontal lines.
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Table 2

Randomized covariance operator and FPCA estimation with R = 5 for the stellar spectra
dataset. The first column is the comparison metric and the scale of the reported numbers. In

Column 2–10 are the Monte Carlo averages and the standard errors in the parentheses.

C = 1, 000 C = 5, 000 C = 10, 000

UINF IMPO FunPrinSS UINF IMPO FunPrinSS UINF IMPO FunPrinSS

‖C̃XX − ĈXX‖HS (×10−9) 20.75 4.62 12.55 9.58 2.05 5.64 7.09 1.44 3.91
(0.45) (0.04) (0.24) (0.17) (0.02) (0.11) (0.12) (0.01) (0.08)

‖C̃XX − ĈXX‖ (×10−9) 19.72 3.52 12.30 9.05 1.56 5.54 6.72 1.10 3.84
(0.46) (0.03) (0.25) (0.18) (0.01) (0.11) (0.12) (0.01) (0.08)

‖P̃R − P̂R‖HS (×10−1) 11.65 6.45 2.31 7.11 2.87 1.03 5.35 2.05 0.73
(0.11) (0.10) (0.04) (0.13) (0.05) (0.01) (0.12) (0.03) (0.01)

‖P̃R − P̂R‖ (×10−1) 7.72 4.34 1.52 4.76 1.93 0.68 3.59 1.37 0.48
(0.08) (0.07) (0.03) (0.10) (0.04) (0.01) (0.08) (0.03) (0.01)

‖θ̃1 − sign(〈θ̃1, θ̂1〉)θ̂1‖ (×10−2) 1.79 0.77 0.91 0.89 0.34 0.40 0.64 0.24 0.28
(0.04) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

‖θ̃2 − sign(〈θ̃2, θ̂2〉)θ̂2‖ (×10−2) 21.70 7.94 5.15 7.70 3.54 2.31 5.35 2.49 1.62
(0.81) (0.09) (0.07) (0.10) (0.04) (0.03) (0.06) (0.03) (0.02)

‖θ̃3 − sign(〈θ̃3, θ̂3〉)θ̂3‖ (×10−2) 39.39 12.37 6.46 16.69 4.53 2.88 9.55 3.20 1.99
(1.40) (0.36) (0.07) (0.86) (0.05) (0.03) (0.52) (0.03) (0.02)

‖θ̃4 − sign(〈θ̃4, θ̂4〉)θ̂4‖ (×10−2) 99.42 34.68 9.91 53.67 14.53 4.29 37.89 9.93 3.03
(0.92) (0.83) (0.20) (1.10) (0.35) (0.07) (0.91) (0.23) (0.05)

‖θ̃5 − sign(〈θ̃5, θ̂5〉)θ̂5‖ (×10−2) 90.89 55.06 18.11 61.87 24.30 7.93 47.71 17.08 5.62
(1.10) (0.99) (0.29) (1.28) (0.46) (0.11) (1.15) (0.29) (0.08)

to compute the average estimation loss. Table 2 presents the resulting average
accuracy and related standard errors. The method performance in Table 2 can
be interpreted similarly as that from Section 5.2. The IMPO sampling strategy
delivers the smallest error in estimating θ̂1 and ĈXX . However, FunPrinSS has
the best performance in estimating the projection operator P̂R and the other
functional principal components.

In Table 2, for the randomized FPCA with the FunPrinSS probability, we can
see the Monte Carlo average error ‖P̃R−P̂R‖ ≈ 0.152, 0.068, 0.048 for C = 1000,
5000 and 10000, respectively. Neglecting the second order term (ε2) in (3.5) of

Theorem 8, we can find the expected subsample error E‖P̃R − P̂R‖ is upper

bounded by a first-order term with magnitude order O
(
(R + ΔR) log

1/2(R +

ΔR)/C
1/2
)
. For C = 1000, 5000 and 10000, the values of this theoretical order

areO
(
0.469),O

(
0.210) andO

(
0.148), respectively. The ratio between the Monte

Carlo average error and the theoretical first-order approximate magnitude is
stable at a constant around 0.32.

In Figure 8, we plot the leading five full sample eigenfunctions in the first
row of panels, and the averaged absolute difference between the full sample and
subsampled eigenfunctions in the second row of panels. The absolute difference
|θ̂r(λ) − θ̃r(λ)| at each wavelength λ is averaged over the 1000 replicates when
the subsample size is C = 1, 000. From the figure, we can compare the ability
of capturing the spectral features (Hβ , Na, Mg and Hα marked by the vertical
dashed lines) by various sampling probabilities. As expected, the UNIF sampling
(colored by blue) has the largest error for characterizing the eigenfunctions
and spectral features. The IMPO probability (red) is competitive in recovering
spectral lines for the first eigenfunctions but not so for the rest of eigenfunctions.
For the other eigenfunctions, the error of estimating the spectral features by the
FunPrinSS probability (black) is the smallest.

We examine the accuracy of the FVE of the subsampled estimator (see F̃VE
in Section 3.4). Figure 7 draws the boxplots for the FVE of the subsampled
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Fig 8. The green solid lines (in the first row) represent the leading five eigenfunctions of full
sample covariance operator. The blue, red and black solid lines (in the second row) represent
the averaged absolute difference between the full sample eigenfunctions and the subsampled
eigenfunctions obtained by UNIF, IMPO and FunPrinSS sampling, respectively.

functional principal component estimates under 1000 replicates. The three pan-
els correspond to the subsample size C = 1000, 5000 and 10000, respectively. In
each panel, the sampling probabilities (UNIF, IMPO, FunPrinSS) are compared
over various R. The FVEs of the full sample estimator are shown as dashed hor-
izontal lines. From the figure, we can see the FVE of the subsampled estimator
serves as an estimate of the FVE of the full sample estimator. In particular,
the FVE of the subsampled estimator with the FunPrinSS probability is very
accurate with small variance.

6.2. Results for Randomized FLR

The fundamental stellar atmospheric parameters such as effective temperature
(Teff), surface gravity (log g), and metallicity ([Fe/H]) are useful probes for re-
vealing the kinematic and chemical properties of stars. We conduct three func-
tional linear regression tasks to compare the different sampling schemes (UNIF,
IMPO and FunPrinSS). For each task, the response Yn is selected as one of
the stellar atmospheric parameters: the effective temperature (Teff), the surface
gravity (log g), and the metallicity ([Fe/H]). In particular, the regression model
is Yn =

∫
Λ
xn(λ)Ψ(λ) dλ + εn. Each spectrum xn is integrated with the regres-

sion function Ψ over the observed wavelength range. Both the response and the
spectrum predictor are centered with zero mean, so we do not need to estimate
the intercept term.

The accuracy metrics in Section 5.3 are also employed here for compari-
son between the full sample and subsampled estimator. The full sample esti-
mator Ψ̂ is obtained via brute force computation on the full dataset. In Fig-
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Fig 9. Subsampling error in estimation and in prediction for the randomized FLR for the
LAMOST spectra dataset. The blue dotted, red dashed and black solid lines correspond to the
results of the UNIF, IMPO and FunPrinSS sampling, respectively. The gray solid curves in
the first row show the magnitude O

(
(R + ΔR)(‖Y‖N + ‖Y⊥‖N ) log1/2(R + ΔR)/C1/2

)
of

the first-order upper bound for the expected subsample error.

ure 9, the subsampling prediction error and estimation error are shown in
the first and second row, respectively. The three columns of Figure 9 corre-
sponds to the results with the response Teff, log g, and [Fe/H], respectively. In
each penal, the vertical axis is the error in the scale of log10; and the hor-
izontal axis is the subsample size C. These plots suggest that the proposed
FunPrinSS method outperforms the other two sampling schemes under all cir-
cumstances. Theorem 14 indicates the expected subsample error E‖T Ψ̃−T Ψ̂‖N
can be approximately upper bounded by a first-order term with magnitude or-
der O

(
(R + ΔR)(‖Y‖N + ‖Y⊥‖N ) log1/2(R + ΔR)/C

1/2
)
. The values of the

theoretical order are plotted as the gray solid curves in the first row of Figure 9.
The vertical axis is in the scale of log10, and the theoretical order predicts the
Monte Carlo performance up to an offset. Note the theoretical order underpre-
dicts the actual Monte Carlo average error for small C, as the higher order error
terms in Theorem 14 have been discarded.

Figure 10 plots the full sample regression function estimates Ψ̂ in the first
row. The second row shows the averaged absolute difference between the full
sample estimates Ψ̂ and the subsampled estimates Ψ̃ over 1000 replicates with
C = 1, 000. The work of Li et al. (2014) has identified a few spectral features
in determining the stellar atmosphere parameters. Some of these key spectral
features are also marked by the vertical dashed lines. The proposed FunPrinSS
has generally smaller error in identifying these spectral features (e.g. Hα λ6563)
and provides a better estimation of the feature strength.



Randonmized FDA with FunPrinSS 2653

Fig 10. The comparison of Ψ̃ obtained by the randomized FLR with different sampling prob-
abilities. The first row (green lines) presents the full sample regression functions Ψ̂ and the
second row shows the average absolute difference between the full sample and the subsampled
estimates. The blue, red and black solid lines (in the second row) correspond to the subsam-

pled estimator Ψ̃’s obtained by UNIF, IMPO and FunPrinSS, respectively. The left, middle
and right column have the results for the log g, Teff and [Fe/H] response, respectively.

Appendix A: Comparison with sampling probabilities in the
multivariate context

There are some underlying connections between the FunPrinSS probability (2.2)
for functional data and some sampling probabilities for multivariate statistics in
the literature. In this section, we discuss some of the similarities and differences.

The FunPrinSS probability (2.2) is closely related to the leverage sampling

probability (Drineas et al., 2012) for classical linear regression. LetX = (x1, . . . ,xN )
T

be aN×p fixed design matrix withN observations and p variables (withN > p).
Suppose the singular value decomposition (SVD) of X is X = UDVT , where D
is a diagonal matrix with singular values, and the columns of U and V contain
the left and right singular vectors, respectively. Denote Unj as the (n, j)-th ele-
ment ofU. The leverage sampling probability pn is proportional to the statistical

leverage hnn of n-th observation, i.e. pn ∝ hnn = xT
n

(
XTX

)−
xn =

∑p
j=1 U

2
nj .

When the samples xn’s have zero mean, Unj can be interpreted as multivariate
principal component scores, and the statistical leverage hnn is the summation of
all squared scores in the p-dimensional space. In contrast, our FunPrinSS prob-
ability (2.2) makes a rank-R truncation to the Karhunen-Loève expansion (2.1)
of the infinite dimensional functional data, and takes into account the effect of
the remaining scores via the projected residual (I − P̂R)xn.

The FunPrinSS probability is also connected to the subspace sampling of
Drineas, Mahoney and Muthukrishnan (2006). To perform the CUR decompo-
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sition for a matrix X ∈ RN×p, they compute the row sampling probabilities as
follows. A matrix C ∈ RN×q is formed by sampling columns from X, and its
SVD C = UCDCV

T
C is computed. Then, the sampling probability for n-th row

of X is computed from the n-th row of UC , the n-th row of X⊥
C = (I−UCU

T
C)X

and their product

pn =
(1/3)‖(UC)(n)‖22∑N
m=1 ‖(UC)(m)‖22

+
(1/3)‖(UC)(n)‖2‖(X⊥

C)(n)‖2∑N
m=1 ‖(UC)(m)‖2‖(X⊥

C)(m)‖2
+

(1/3)‖(X⊥
C)(n)‖22∑N

m=1 ‖(X⊥
C)(m)‖22

.

In the above, (A)(n) represents the n-th row of a matrix A and ‖ · ‖2 is the
classical unnormalized Euclidean norm. When we view the rows of X as samples
(observations) of a zero mean random vector and the columns of X as variables,
the matrix UC serves as an estimate of the principal component scores, and
(I−UCU

T
C)X is the residual matrix.

Appendix B: Concentration inequality for compact operators

Theorem 7.3.1 of Tropp et al. (2015) developed intrinsic matrix Bernstein con-
centration inequality. Together with the techniques in Section 3.2 of Minsker
(2017), it can be easily extended to compact operators. Similar results can also
be found in Lemma 5 of Dicker et al. (2017). In the below, H1 and H2 are two
Hilbert spaces.

Lemma 15. For a finite sequence of random operators Zi mapping from H1 to
H2, they satisfies EZi = 0 and ‖Zi‖ ≤ L. Suppose their summation is S =

∑
i Zi

and S∗ is its adjoint. Let V1 and V2 be semidefinite upper bounds for Var1(S)
and Var2(S), respectively. That is, V1 � Var1(S) = E(SS∗) =

∑
i E(ZiZ∗

i ),
and V2 � Var2(S) = E(S∗S) =

∑
i E(Z∗

i Zi). Define an intrinsic bound d =
intdim(V1) + intdim(V2) and a variance bound v = max{‖V1‖, ‖V2‖}, then for
t ≥ √

v + L/3,

P(‖S‖ ≥ t) ≤ 4d exp

(
− t2/2

v + Lt/3

)
.

The next lemma provides upper bound for self-adjoint operator.

Lemma 16. For a finite sequence of random self-adjoint operators Zi mapping
from H1 to H1, they satisfies EZi = 0 and ‖Zi‖ ≤ L. Suppose their summation
is S =

∑
i Zi, and V is the semidefinite upper bound for

∑
i E(Z2

i ). Define
an intrinsic bound d = intdim(V) and a variance bound v = ‖V‖, then for
t ≥ √

v + L/3,

P(‖S‖ ≥ t) ≤ 4d exp

(
− t2/2

v + Lt/3

)
.
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Appendix C: Proof for Section 3

C.1. Proof of Lemma 6

Define P̂r = θ̂r ⊗ θ̂r. With the definition of the resolvent RĈXX
(η) = (ĈXX −

ηI)−1 = −
∑∞

r=1
1

η−σ̂2
r
P̂r, the linear error term can be expanded as

LR(E) =
1

2πi

∮
ΓR

RĈXX
(η)ERĈXX

(η)dη =

R∑
r=1

∞∑
s=R+1

1

σ̂2
r − σ̂2

s

(
P̂rEP̂s + P̂sEP̂r

)
.

by Cauchy integration formula. The above results can also be deduced from
Theorem 5.1.4 of Hsing and Eubank (2015). Notice that

P̂r(xn ⊗ xn)P̂s = (θ̂r ⊗ θ̂r)(xn ⊗ xn)(θ̂s ⊗ θ̂s)

= 〈θ̂r, xn〉 · 〈θ̂s, xn〉 · (θ̂s ⊗ θ̂r) = σ̂rσ̂sξ̂nsξ̂nr(θ̂s ⊗ θ̂r),

and P̂rĈXX P̂s = 0 for any r �= s. From these, we know for r �= s that

P̂rEP̂s = P̂r(C̃XX − ĈXX)P̂s =
σ̂rσ̂s

CN

C∑
c=1

ξ̃cr ξ̃cs
p̃c

(θ̂s ⊗ θ̂r).

In the above, ξ̃cs is the s-th score of the subsampled x̃c. It holds ξ̃cs = 〈x̃c, θ̂s〉/σ̂s

when σ̂s > 0; and ξ̃cs = 1 when σ̂s = 0. Notice it is computed from the full
sample eigenfunction θ̂s and the subsampled x̃c. As a result, the linear error
term can be expressed as LR(E) = 1

C

∑C
c=1

Zc

Np̃c
, with

Zc =

R∑
r=1

∞∑
s=R+1

σ̂rσ̂s

σ̂2
r − σ̂2

s

× ξ̃cr ξ̃cs ×
[
θ̂r ⊗ θ̂s + θ̂s ⊗ θ̂r

]
.

C.2. Proof of Theorem 8

By Lemma 5, we have ‖P̃R−P̂R‖ ≤ ‖LR(E)‖+‖SR(E)‖ ≤ ‖LR(E)‖+KR‖E‖2/g2R.
It follows that

P
(
‖P̃R − P̂R‖ ≥ ε+ σ̂4

1KRε
2/g2R

)
≤ P

(
‖LR(E)‖ ≥ ε

)
+ P

(
‖E‖ ≥ σ̂2

1ε
)
.

The two probabilities on the right hand side are controlled by the next two
lemmas. The conclusion of Theorem 8 follows by combing the next two lemmas
and noting that Δ0 ≤ R+ΔR.

Lemma 17. Under the conditions of Theorem 8, it holds that

P
(
‖LR(E)‖ ≥ ε

)
≤ 8R× exp

(
− Cε2/2

βG2
R

2

(
R+ΔR

)2
+ [GRβ

(
R+ΔR

)
/
√
2]× ε/3

)
for ε · C ≥

√
βC/2GR(R+ΔR) + [GRβ

(
R+ΔR

)
/
√
2]/3.
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Lemma 18. Denote Δ0 = intdim(ĈXX) as the intrinsic dimension of ĈXX .
Under the conditions of Theorem 8, we have

P

(∥∥∥C̃XX − ĈXX

∥∥∥ ≥ εσ̂2
1

)
≤ 4Δ0 exp

(
− Cε2/2

β(R+ΔR) + [β(R+ΔR) + 1]ε/3

)
,

for ε satisfying ε · C >
√

Cβ(R+ΔR) + [β(R+ΔR) + 1]/3

C.3. Proof of Lemma 17

Recall from Lemma 6, we have the relation LR(E) = 1
C

∑C
c=1

Zc

Np̃c
with

Zc

Np̃c
=

R∑
r=1

∞∑
s=R+1

σ̂rσ̂s

σ̂2
r − σ̂2

s

× ξ̃cr ξ̃cs
p̃cN

×
[
θ̂r ⊗ θ̂s + θ̂s ⊗ θ̂r

]
.

We will apply Lemma 16 to the summation S =
∑C

c=1
Zc

Np̃c
. We first bound the

operator norm of each summand by

‖ Zc

Np̃c
‖2 ≤ ‖ Zc

Np̃c
‖2HS = 2

R∑
r=1

∞∑
s=R+1

σ̂2
r σ̂

2
s

[σ̂2
r − σ̂2

s ]
2
× ξ̃2cr ξ̃

2
cs

p̃2cN
2

= 2

R∑
r=1

∞∑
s=R+1

σ̂2
r σ̂

2
R

[σ̂2
r − σ̂2

s ]
2
× ξ̃2cr(σ̂

2
s ξ̃

2
cs/σ̂

2
R)

p̃2cN
2

(i)

≤ 2G2
R

p̃2cN
2

( R∑
r=1

ξ̃2cr

)( ∞∑
s=R+1

σ̂2
s ξ̃

2
cs/σ̂

2
R

)
(ii)

≤ G2
R

2p̃2cN
2

( R∑
r=1

ξ̃2cr +

∞∑
s=R+1

σ̂2
s ξ̃

2
cs/σ̂

2
R

)2
.

In the above, (i) used that
σ̂2
r

σ̂2
r−σ̂2

s
≤ GR and σ̂2

r − σ̂2
s ≥ σ̂2

R− σ̂2
R+1 for any r ≤ R

and s > R. Inequality (ii) used that ab ≤ (a+b
2 )2 for real numbers a and b. For

the sampling probability {pn}Nn=1 satisfying pn ≥ pExact
n /β, we have

pn ≥ 1

β

( R∑
r=1

ξ̂2nr +

∞∑
s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)
/

N∑
m=1

( R∑
r=1

ξ̂2mr +

∞∑
s=R+1

σ̂2
s ξ̂

2
ms/σ̂

2
R

)
,

as
∑N

n=1 ξ̂
2
nr/N = 1, we have

pn ≥ 1

β ·N
( R∑

r=1

ξ̂2nr +

∞∑
s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)
/
(
R+

∞∑
s=R+1

σ̂2
s/σ̂

2
R

)
≥ 1

β ·N
(
R+ΔR

)( R∑
r=1

ξ̂2nr +

∞∑
s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)
. (C.1)
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As a result, ‖ Zc

Np̃c
‖2 ≤ G2

Rβ2

2

(
R+ΔR

)2
, which is

‖ Zc

Np̃c
‖ ≤ L = GRβ

(
R+ΔR

)
/
√
2. (C.2)

Next, we bound the variance of the summation S =
∑C

c=1
Zc

Np̃c
. Note that

ZcZ∗
c

N2p̃2c
=

Z∗
cZc

N2p̃2c
=

R∑
r,r′=1

θ̂r ⊗ θ̂r′
[ ∞∑
s=R+1

σ̂rσ̂r′ σ̂
2
s

(σ̂2
r − σ̂2

s)(σ̂
2
r′ − σ̂2

s)
× ξ̃cr ξ̃cr′ ξ̃

2
cs

p̃2cN
2

]

+

∞∑
s,s′=R+1

θ̂s ⊗ θ̂s′
[ R∑
r=1

σ̂sσ̂s′ σ̂
2
r

(σ̂2
r − σ̂2

s)(σ̂
2
r − σ̂2

s′)
× ξ̃2cr ξ̃csξ̃cs′

p̃2cN
2

]
.

Because all the Zc’s are independent with zero mean, and S∗S is positive semi-
definite and self-adjoint, its largest eigenvalue is upper bounded by its trace

‖ES2‖ ≤ C · tr(EZcZ∗
c

N2p̃2c
)

=C

R∑
r=1

[ ∞∑
s=R+1

σ̂2
r σ̂

2
s

(σ̂2
r − σ̂2

s)
2
×

N∑
n=1

ξ̂2nr ξ̂
2
ns

pnN2

]

+ C

∞∑
s=R+1

[ R∑
r=1

σ̂2
r σ̂

2
s

(σ̂2
r − σ̂2

s)
2
×

N∑
n=1

ξ̂2nr ξ̂
2
ns

pnN2

]

=2C
R∑

r=1

∞∑
s=R+1

σ̂2
r σ̂

2
s

(σ̂2
r − σ̂2

s)
2
×

N∑
n=1

ξ̂2nr ξ̂
2
ns

pnN2
. (C.3)

It follows that

‖ES2‖ ≤ 2CG2
R

N∑
n=1

R∑
r=1

∞∑
s=R+1

ξ̂2nr(σ̂
2
s ξ̂

2
ns/σ̂

2
R)

pnN2

≤ 2CG2
R

N∑
n=1

1

pnN2

( R∑
r=1

ξ̂2nr

)( ∞∑
s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)

≤ CG2
R

N∑
n=1

1

2pnN2

( R∑
r=1

ξ̂2nr +

∞∑
s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)2

≤ βCG2
R

2N2

[
N∑

n=1

( R∑
r=1

ξ̂2nr +
∞∑

s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)2]2

≤ βCG2
R

2

(
R+ΔR

)2
. (C.4)

The eigenvalue of ES2 is lower bounded by any of the coefficient of θ̂r ⊗ θ̂r for
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r = 1, · · · , R. It can also be lower bounded by their average

‖ES2‖ ≥ C

R

R∑
r=1

〈θ̂r ⊗ θ̂r,EZcZ∗
c 〉 =

C

R

R∑
r=1

[ ∞∑
s=R+1

σ̂2
r σ̂

2
s

(σ̂2
r − σ̂2

s)
2
×

N∑
n=1

ξ̂2nr ξ̂
2
ns

pnN2

]
Combining this with the trace evaluation in (C.3), the intrinsic dimension has
upper bound intdim(ES2) ≤ 2R. Therefore, applying Lemma 16 with (C.2)
and (C.4), we get

P
(
‖LR(E)‖ ≥ ε

)
= P

(
‖S‖ ≥ Cε

)
≤8R× exp

(
− Cε2/2

βG2
R

2

(
R+ΔR

)2
+ [GRβ

(
R+ΔR

)
/
√
2]× ε/3

)
.

C.4. Proof of Lemma 18

Notice that

1

σ̂2
1

[
C̃XX − ĈXX

]
=

1

σ̂2
1

× 1

C

C∑
c=1

[ 1

p̃cN
x̃c ⊗ x̃c − ĈXX

]
=

1

C

C∑
c=1

Zc =
1

C
S .

In the above, we have set Zc := 1
σ̂2
1

[
1

p̃cN
x̃c ⊗ x̃c − ĈXX

]
. Our goal is to apply

Lemma 16 to the summation S =
∑C

c=1 Zc. Each summand has the operator
norm upper bound

‖Zc‖ ≤ 1

Np̃c
· ‖x̃c‖2

σ̂2
1

+ 1. (C.5)

According to the operator norm bound (C.5) and the probability bound (C.1),
we can derive that

‖Zc‖ ≤ β(R+ΔR)
‖x̃c‖2/σ̂2

1∑R
r=1 ξ̃

2
cr +

∑∞
s=R+1 σ̂

2
s ξ̃

2
cs/σ̂

2
R

+ 1

= β(R+ΔR)

∑∞
r=1 σ̂

2
r ξ̃

2
cr/σ̂

2
1∑R

r=1 ξ̃
2
cr +

∑∞
s=R+1 σ̂

2
s ξ̃

2
cs/σ̂

2
R

+ 1

≤ β(R+ΔR) + 1.

with the sampling probability {pn}Nn=1 satisfying pn ≥ pExact
n /β.

For the variance of S, it holds that

E[Z∗
cZc] =

1

σ̂4
1

[ N∑
n=1

1

pnN2
〈xn, xn〉xn ⊗ xn − Ĉ∗

XX ĈXX

]
� 1

σ̂4
1

N∑
n=1

1

pnN2
〈xn, xn〉xn ⊗ xn. (C.6)
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Based on (C.6) and (C.1), we can get that

E[Z∗
cZc] �

1

N

N∑
n=1

β(R+ΔR)×
xn ⊗ xn

σ̂2
1

= [β(R+ΔR) /σ̂
2
1 ]ĈXX .

Set V = C[β(R+ΔR) /σ̂
2
1 ]ĈXX , we have ‖V‖ = βC(R+ΔR), and intdim(V) =

Δ0. Therefore, by Lemma 16, for ε satisfying ε · C >
√
Cβ(R+ΔR) + [β(R +

ΔR) + 1]/3,

P

(∥∥∥C̃XX − ĈXX

∥∥∥ ≥ εσ̂2
1

)
=P

(
‖S‖ ≥ Cε

)
≤4Δ0 exp

(
− ε2C/2

β(R+ΔR) + [β(R+ΔR) + 1]ε/3

)
.

Appendix D: Proof for Section 4

D.1. Proof of Lemma 13

In classical linear regression, the residual is perpendicular to the columns of
the design matrix. For functional regression with scalar response, this residual
Y⊥ is perpendicular to the span of the leadning R scores. In particular, define
ξr = (ξ̂1r, · · · , ξ̂Nr)

T to be a vector of the r-th scores for all samples, then Y⊥ is
perpendicular to the span of the first R score vectors, which is span{ξ1, · · · , ξR}.
This implies Y can be decomposed into the two parts Y = Y//+Y⊥, with Y//

inside the span span{ξ1, · · · , ξR}.
Now we verify that the Y⊥ is perpendicular to the span of the first R score

vectors. Note Y⊥ = Y − T Ψ̂ = (I − T (T ∗T )+T ∗)Y. Also, for any a ∈ RN , it
holds that

T (T ∗T )+T ∗a = T (T ∗T )+
( N∑

n=1

anxn/N
)

= T
( R∑

r=1

N∑
n=1

an〈θ̂r, xn〉θ̂r/σ̂2
r/N

)
= T

( R∑
r=1

N∑
n=1

anξ̂nr θ̂r/(σ̂rN)
)

= T
( R∑

r=1

〈a, ξr〉N θ̂r/σ̂r

)
=

R∑
r=1

〈a, ξr〉Nξr.

As a result, T (T ∗T )+T ∗ =
∑R

r=1 ξr⊗ξr is the projection onto span{ξ1, · · · , ξR}.
It is also idempotent (T (T ∗T )+T ∗)2 = T (T ∗T )+T ∗. It follows that

T Ĉ+
XXT ∗Y⊥ = T (T ∗T )+T ∗Y⊥ = T (T ∗T )+T ∗(I − T (T ∗T )+T ∗)Y = 0.
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This is the last conclusion stated in Lemma 13.
For each predictor xn, we define a related element x+

n =
∑R

r=1 ξ̂nr θ̂r/σ̂r.
Define a new mapping T + : RN → HX such that for any a ∈ RN , T + maps a to
T +a := 1

N

∑N
n=1 anx

+
n . Similarly, we can also deduce that T T + =

∑R
r=1 ξr⊗ξr.

In fact, for any a ∈ RN , we have T T +a ∈ RN . The m-th element of T T +a is

〈xm, T +a〉 = 〈xm,
1

N

N∑
n=1

anx
+
n 〉 =

1

N

N∑
n=1

an〈xm, x+
n 〉 =

1

N

N∑
n=1

an

( R∑
r=1

ξ̂nr ξ̂mr

)
=

R∑
r=1

( 1

N

N∑
n=1

anξ̂nr

)
ξ̂mr =

R∑
r=1

〈a, ξr〉N ξ̂mr.

The above equation verifies that T T + =
∑R

r=1 ξr ⊗ ξr is exactly the projection
operator onto span{ξ1, · · · , ξR}. Therefore, we can get Y// = T T +Y, Y⊥ =
(I − T T +)Y. and T T +Y⊥ = 0.

Our target is to analyze the prediction error F = T Ψ̃− T Ψ̂, which is

F = T C̃+
XX z̃ − T Ĉ+

XX ẑ = T (T ∗D∗DT )+T ∗D∗DY − T (T ∗T )+T ∗Y.

Plug in the decomposition Y = Y//+Y⊥, we have

F =T (T ∗D∗DT )+T ∗D∗DY//+ T (T ∗D∗DT )+T ∗D∗DY⊥

− T (T ∗T )+T ∗Y//− T (T ∗T )+T ∗Y⊥

(i)
=T (T ∗D∗DT )+T ∗D∗DT T +Y + T (T ∗D∗DT )+T ∗D∗DY⊥

− T (T ∗T )+T ∗T T +Y

(ii)
= T P̃RT +Y + T C̃+

XXT ∗D∗DY⊥ − T P̂RT +Y

=T (P̃R − P̂R)T +Y

+ T (C̃+
XX − Ĉ+

XX)T ∗(D∗D)Y⊥ + T Ĉ+
XXT ∗(D∗D)Y⊥.

In the above, equality (i) uses the relations T (T ∗T )+T ∗Y⊥ = 0 and Y// =
T T +Y. The equation (ii) is based on the following equations

P̃R = C̃+
XX C̃XX = (T ∗D∗DT )+T ∗D∗DT ,

P̂R = Ĉ+
XX ĈXX = (T ∗T )+T ∗T .

D.2. Proof of Theorem 14

We prove a stronger result of Theorem 19 below. Theorem 14 directly follows
from Theorem 19 by simplifying notations.

Theorem 19. Under Condition 3, set Z1 = σ̂6
1KR/(g

2
Rσ̂

2
R) and Z2 = β(R +

ΔR). In addition,

V1 = G2
RZ

2
2/β, L1 = GRZ2/2,
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V2 = 2 + (2 +G2
R/2)Z

2
2/β, L2 =

√
2R+ (

√
2 +GR/

√
2)Z2,

V3 = Z2, L3 = Z2 + 1.

Suppose C subsamples are obtained according to the probability satisfying

pn ≥ 1

β

∑R
r=1 ξ̂

2
nr + ‖(I − P̂R)xn‖2/σ̂2

R∑N
m=1

[∑R
r=1 ξ̂

2
mr + ‖(I − P̂R)xm‖2/σ̂2

R

] (D.1)

with β ≥ 1. Then for large enough C, with probability at least

1− 4(R+ΔR) exp
(
− Cε21

V1 + L1ε1/3

)
− 8R exp

(
− Cε21/2

V2 + L2ε1/3

)
− 4Δ0 exp

(
− Cε22/2

V3 + (V3 + 1)ε2/3

)
− 3ε23/C

it holds that

‖T Ψ̂− T Ψ̃‖N ≤
(
ε1 + (σ̂R/σ̂1)Z1 · ε22

)
‖Y‖N

+
(
ε1 + 2Z1 · ε22

)
(1 +

√
Z2/ε3)‖Y⊥‖N + (

√
Z2/ε3)‖Y⊥‖N .

(D.2)

In the above, ε1 satisfies ε1 ≥ maxj=1,2{
√
Vj/C + Lj/(3C)}. Additionally, ε2

satisfies ε2 ≥
√
V3/C+L3/(3C) and ε2 ≤ gR/3. Lastly, ε3 is any strictly positive

number.

Theorem 19 provides characterization of the first order and higher order
error by expanding P̃R − P̂R and C̃+

XX − Ĉ+
XX . Theorem 14 follows by setting

ε = ε1 = ε2 =
√
Z2/ε3 with ε ≤ 1. We can also find that bound (D.2) simplifies

to

‖T Ψ̃− T Ψ̂‖N ≤
(
ε+ (σ̂R/σ̂1)Z1ε

2
)
‖Y‖N + 2

(
ε+ 2Z1ε

2
)
‖Y⊥‖N + ε‖Y⊥‖N

≤
(
ε+ σ̂RZ1/σ̂1ε

2
)
‖Y‖N +

(
3ε+ 4Z1ε

2
)
‖Y⊥‖N .

Also, by noticing that

max{V1, V2, V3} ≤ V :=2 + (2 +G2
R)Z

2
2/β,

max{L1, L2, L3} ≤ L :=
√
2R+ (

√
2 +GR/

√
2)Z2,

we will be able to reach the conclusion of Theorem 14.
Theorem 19 is proved by a detailed analysis of the prediction error terms (4.2)

in Lemma 13. The first two terms are bounded by the next two lemmas.

Lemma 20. Define quantities

V1 = βG2
R

(
R+ΔR

)2
, L1 = GRβ

(
R+ΔR

)
/2,

V3 = β(R+ΔR), L3 = β(R+ΔR) + 1.
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For ε1, ε2 satisfying ε1 ≥
√
V1/C +L1/(3C), and ε2 ≥

√
V3/C +L3/(3C), with

probability at least

1− 4(R+ΔR) exp
(
− Cε21

V1 + L1ε1/3

)
− 4Δ0 exp

(
− ε22C/2

V3 + L3ε2/3

)
.

it holds that

‖T (P̃R − P̂R)T +Y‖N ≤
[
ε1 +KRσ̂

5
1/(σ̂Rg

2
R) · ε22

]
‖Y‖N

Lemma 21. Define quantities

V2 = 2 + β(2 +G2
R/2)(R+ΔR)

2,

L2 =
√
2R+ (

√
2 +GR/

√
2)β(R+ΔR)

V3 = β(R+ΔR), L3 = β(R+ΔR) + 1.

For large enough C and ε1, ε2 satisfying ε1 ≥
√

V2/C+L2/(3C), ε2 ≥
√
V3/C+

L3/(3C) and ε2 ≤ gR/3, with probability at least

1− 8R exp
(
− Cε2/2

V2 + L2ε/3

)
− 4Δ0 exp

(
− ε22C/2

V3 + L3ε2/3

)
.

it holds that

‖T (C̃+
XX − Ĉ+

XX)T ∗D∗DY⊥‖N ≤
(
ε1 + 2Z1 · ε22

)(
1 +

√
Z2/ε3

)
‖Y⊥‖N .

To control the last term of the prediction error term in Lemma 13, we
need further decomposition of the two operators T and T ∗. Specifically, we
make the decomposition T = U1V1 with U1 and V1 defined as follows. For
any u ∈ HX , V1u = (σ̂1〈θ̂1, u〉, · · · , σ̂N 〈θ̂N , u〉)T . Meanwhile, the operator

U1 maps a ∈ RN to U1a =
∑N

n=1 anξn ∈ RN . They have operator norm

‖U1‖ = sup‖a‖N≤1 ‖U1a‖N =
√
N and ‖V1‖ = sup‖u‖≤1 ‖V1u‖N = σ̂1/

√
N ,

respectively.
In addition, the decomposition that T ∗ = V2U2 is constructed. For any a ∈

RN , U2 maps a to another vector U2a = b ∈ RN , whose vector elements are

Br =

{
N〈ξr,a〉N , if r ≤ R;

N(σ̂r/σ̂R)〈ξr,a〉N , if r > R.

In the above, its element for r > R is reweighted by the eigenvalue such that
‖U2D∗DY⊥‖N can be controlled as in (D.4). In addition, V2 maps a ∈ RN to
an element in HX , such that

V2a = (1/N)

R∑
r=1

σ̂rarθ̂r + (σ̂R/N)

N∑
r=R+1

ar θ̂r.

It is easy to verify their operator norm as ‖U2‖ =
√
N and ‖V2‖ = σ̂1/

√
N .
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Lemma 22. With the sampling probability {pn}Nn=1 satisfying pn ≥ pExact
n /β,

each of the following inequality holds with probability at least 1− ε23/C,

‖T ∗D∗DY⊥‖ ≤ σ̂1

(
1 +

√
Z2/ε3

)
‖Y⊥‖N , (D.3)

‖U2D∗DY⊥‖N/
√
N ≤

(
1 +

√
Z2/ε3

)
‖Y⊥‖N , (D.4)

‖T Ĉ+
XXT ∗D∗DY⊥‖N ≤

√
Z2‖Y⊥‖N/ε3, (D.5)

where Z2 = β(R+ΔR).

Theorem 19 is established by combining the above three lemmas. Their proof
is presented in the following subsections. The proof of Lemma 22 is presented
firstly.

D.3. Proof of Lemma 22

We only present the proof of (D.3). The other two results (D.4) and (D.5) can
be derived similarly. Notice that

T ∗D∗DY⊥ − T ∗Y⊥ =
1

NC

C∑
c=1

x̃cỸ
⊥
c

p̃c
− 1

N

N∑
n=1

xnY
⊥
n .

It has zero expectation with respect to the subsampling process. We can also
compute its expected squared norm as

E‖T ∗D∗DY⊥ − T ∗Y⊥‖2 =
1

C
· E
∥∥∥ 1

N

x̃1Ỹ
⊥
1

p̃1
− 1

N

N∑
n=1

xnY
⊥
n

∥∥∥2
≤ 1

CN2

N∑
n=1

‖xn‖2(Y ⊥
n )2

pn

≤ σ̂2
1β(R+ΔR)

CN

N∑
n=1

(‖xn‖2/σ̂2
1)(Y

⊥
n )2∑R

r=1 ξ̂
2
r + ‖(I − P̂R)xn‖2/σ̂2

R

= σ̂2
1β(R+ΔR)‖Y⊥‖2N/C.

As a direct consequence of Markov inequality, for ε3 > 0, with probability at
least 1− ε23/C it holds that

‖T ∗D∗DY⊥ − T ∗Y⊥‖2 ≤ (1/ε23)× σ̂2
1β(R+ΔR)‖Y⊥‖2N .

Together with ‖T ∗Y⊥‖ ≤ ‖T ∗‖ · ‖Y⊥‖N = σ̂1‖Y⊥‖N , with probability at least
1− ε23/C it holds that

‖T ∗D∗DY⊥‖ ≤ ‖T ∗Y⊥‖+ ‖T ∗D∗DY⊥ − T ∗Y⊥‖
≤ σ̂1‖Y⊥‖N + (σ̂1/ε3)‖Y⊥‖N

√
β(R+ΔR)

≤ σ̂1‖Y⊥‖N (1 +
√
Z2/ε3)

Thereby, we have proven (D.3).
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D.4. Proof of Lemma 20

Recall the difference P̃R − P̂R = LR(E) + SR(E) is expressed as the sum of a

linear part and higher order part. By Lemma 5, ‖SR(E)‖ ≤ KR (‖E‖/gR)2, it
follows that

‖T (P̃R − P̂R)T +Y‖N ≤‖T LR(E)T +Y‖N + ‖T SR(E)T +Y‖N
≤‖T LR(E)T +‖‖Y‖N + ‖T ‖‖SR(E)‖‖T +‖‖Y‖N
≤‖T LR(E)T +‖‖Y‖N +

[
σ̂1KR/(σ̂Rg

2
R)
]
‖E‖2‖Y‖N .

From here we know that

P

(
‖T (P̃R − P̂R)T +Y‖N ≥

[
ε1 +KRσ̂

5
1/(σ̂Rg

2
R) · ε22

]
‖Y‖N

)
≤P

(
‖T LR(E)T +‖ ≥ ε1

)
+ P

(
‖E‖ ≥ ε2σ̂

2
1

)
. (D.6)

The second probability in (D.6) is controled by Lemma 18. We now proceed to
control the first probability.

Based on the result of Lemma 6,

T LR(E)T + =
1

C

C∑
c=1

T ZcT + =
1

C

C∑
c=1

Z ′
c,

with Z ′
c = T ZcT + and Zc =

∑R
r=1

∑∞
s=R+1

σ̂rσ̂s

σ̂2
r−σ̂2

s
× ξ̃cr ξ̃cs

p̃cN
×
[
θ̂r ⊗ θ̂s+ θ̂s⊗ θ̂r

]
.

We will apply Lemma 15 to the summation S ′ =
∑C

c=1 Z ′
c to conclude the proof

of this lemma.
Note that for r ≤ R, s > R and any a = (a1, · · · , aN ) ∈ RN , it holds that

T (θ̂r ⊗ θ̂s)T +a = T (θ̂r ⊗ θ̂s)
( 1

N

N∑
n=1

anx
+
n

)
= (T θs)

( 1

N

N∑
n=1

an〈θ̂r, x+
n 〉
)

=

⎛⎜⎝ 〈x1, θ̂s〉
...

〈xN , θ̂s〉

⎞⎟⎠( 1

N

N∑
n=1

anξ̂nr/σ̂r

)
=

⎛⎜⎝ σ̂sξ̂1s
...

σ̂sξ̂Ns

⎞⎟⎠( 1

N

N∑
n=1

anξ̂nr/σ̂r

)

=
σ̂s

σ̂r
〈ξr,a〉N × ξs =

σ̂s

σ̂r
(ξr ⊗ ξs)a, (D.7)

where ξr = (ξ̂1r, · · · , ξ̂Nr)
T is the vector of the r-th score for all samples. Note

ξr is a unit vector in RN with respect to the norm ‖ · ‖N . For r ≤ R and s > R,

the above implies that T (θ̂r ⊗ θ̂s)T + = σ̂s

σ̂r
(ξr ⊗ ξs) and by similar derivation

we can find that T (θ̂s ⊗ θ̂r)T + = 0. As a result,

Z ′
c = T ZcT + =

R∑
r=1

∞∑
s=R+1

σ̂2
s

σ̂2
r − σ̂2

s

( ξ̃cr ξ̃cs
p̃cN

)
ξr ⊗ ξs (D.8)
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Apply almost identical argument that leading to (C.2), we have

‖Z ′
c‖ ≤ L = GRβ

(
R+ΔR

)
/2.

This upper bound is smaller than that in (C.2) by a factor of
√
2, as we only

have one tensor product term in (D.8). For the variance terms, we need to derive
bounds for ES ′(S ′)∗ and E(S ′)∗S ′. For the latter, we have

E(Z ′
c)

∗Z ′
c =

R∑
r,r′=1

[ ∞∑
s=R+1

σ̂4
s

(σ̂2
r − σ̂2

s)(σ̂
2
r′ − σ̂2

s)

( N∑
n=1

ξ̂2nsξ̂nr ξ̂nr′

pnN2

)]
ξr ⊗ ξr′

(D.9)

Similar to the derivation of (C.4), we get the upper bound,

‖E(S ′)∗S ′‖ ≤ C · tr((Z ′
c)

∗Z ′
c)

= C
R∑

r=1

∞∑
s=R+1

σ̂4
s

(σ̂2
r − σ̂2

s)
2

( N∑
n=1

ξ̂2nr ξ̂
2
ns

pnN2

)

≤ CG2
R

R∑
r=1

∞∑
s=R+1

( N∑
n=1

ξ̂2nr(σ̂
2
s ξ̂

2
ns/σ̂

2
R)

pnN2

)
≤ βCG2

R(R+ΔR)
2/4.

We can also verify that intdim
(
E(S ′)∗S ′) ≤ R. As for ES ′(S ′)∗, we will show

that there exists a positive semidefinite operator V such that

ES ′(S ′)∗ � V , intdim
(
V
)
≤ ΔR, and ‖V‖ ≤ CβRG2

R(R+ΔR). (D.10)

The proof of this result is deferred to latter part of this subsection.
Note

max{‖ES ′(S ′)∗‖, ‖E(S ′)∗S ′‖} ≤max{βCG2
R(R+ΔR)

2/4, βCRG2
R(R+ΔR)}

≤βCG2
R(R+ΔR)

2.

Now, collecting all of the above results, according to Lemma 15, we arrive at
the conclusion of this lemma

P
(
‖T LR(E)T +‖ ≥ ε1

)
=P
(
‖S ′‖ ≥ Cε1

)
≤4(R+ΔR) · exp

(
− Cε21

βG2
R

(
R+ΔR

)2
+GRβ

(
R+ΔR

)
ε1/6

)
.

It remains to prove the claim of (D.10), notice that

EZ ′
c(Z ′

c)
∗ =

∞∑
s,s′=R+1

[
R∑

r=1

σ̂2
s σ̂

2
s′

(σ̂2
r − σ̂2

s)(σ̂
2
r − σ̂2

s′)

( N∑
n=1

ξ̂2nr ξ̂nsξ̂ns′

pnN2

)]
ξs ⊗ ξs′

(D.11)
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Define frs = σ̂2
s/(σ̂

2
r − σ̂2

s). For any a ∈ RN , we have

〈a,EZ ′
c(Z ′

c)
∗a〉 =

∞∑
s,s′=R+1

[ R∑
r=1

frsfrs′
( N∑

n=1

ξ̂2nr ξ̂nsξ̂ns′

pnN2

)]
〈a, ξs〉〈a, ξs′〉

=

R∑
r=1

N∑
n=1

ξ̂2nr
pnN2

( ∞∑
s=R+1

frsξ̂ns〈a, ξs〉
)2

(i)

≤ β(R+ΔR)

N

R∑
r=1

N∑
n=1

( ∞∑
s=R+1

frsξ̂ns〈a, ξs〉
)2

=
β(R+ΔR)

N

R∑
r=1

N∑
n=1

∞∑
s,s′=R+1

frsfrs′ ξ̂nsξ̂ns′〈a, ξs〉〈a, ξ′s〉

(ii)
= β(R+ΔR)

R∑
r=1

∞∑
s=R+1

f2
rs〈a, ξs〉2

(iii)

≤ βRGR(R+ΔR)/gR

∞∑
s=R+1

σ̂2
s〈a, ξs〉2.

In the above, the inequality (i) uses the property of the sampling probability
{pn}Nn=1 satisfying pn ≥ pExact

n /β. Equation (ii) uses the orthonormality between
the score vectors, i.e., 〈ξs, ξs′〉N = I(s = s′) where I(·) is the indicator function.
Inequality (iii) uses the fact that frs ≤ GR.

From the above, we can conclude that

CEZ ′
c(Z ′

c)
∗ � V := CβRGR(R+ΔR)/gR

∞∑
s=R+1

σ̂2
sξs ⊗ ξs.

For V , the intrinsic dimension intdim(V) = ΔR, and its bound for the operator
norm is

‖V‖ = CβRGR(R+ΔR)(σ̂
2
R+1/gR) ≤ CβRG2

R(R+ΔR).

D.5. Proof of Lemma 21

For the truncated inverse operator

C̃+
XX − Ĉ+

XX = − 1

2πi

∮
ΓR

1

η
(C̃XX − ηI)−1dη +

1

2πi

∮
ΓR

1

η
(ĈXX − ηI)−1dη

= − 1

2πi

∮
ΓR

1

η
(ĈXX − ηI)−1

[
I + E(ĈXX − ηI)−1

]−1
dη

+
1

2πi

∮
ΓR

1

η
(ĈXX − ηI)−1dη.
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Recall E = C̃XX − ĈXX and RĈXX
(η) = (Ĉ − ηI)−1 = −

∑∞
r=1

1
η−σ̂2

r
P̂r, then

C̃+
XX − Ĉ+

XX = − 1

2πi

∮
ΓR

1

η
RĈXX

(η)
[
I + ERĈXX

(η)
]−1

dη +
1

2πi

∮
ΓR

1

η
RĈXX

(η)dη

=
1

2πi

∮
ΓR

1

η
RĈXX

(η)ERĈXX
(η)dη

− 1

2πi

∑
k≥2

∮
ΓR

1

η
RĈXX

(η)
[
− ERĈXX

(η)
]k
dη.

The above states the difference is a summation of the linear term PR(E) and
the remainder term QR(E) with

PR(E) =
1

2πi

∮
ΓR

1

η
RĈXX

(η)ERĈXX
(η)dη, (D.12)

QR(E) = − 1

2πi

∑
k≥2

∮
ΓR

(−1)k

η
RĈXX

(η)
[
− ERĈXX

(η)
]k
dη. (D.13)

Given ‖E‖ < gR/3 the latter can be controled by ‖QR(E)‖ ≤ 2KR‖E‖2/(g2Rσ̂2
R).

It follows from here that

‖T (C̃+
XX − Ĉ+

XX)T ∗D∗DY⊥‖N
≤‖T PR(E)T ∗D∗DY⊥‖N + ‖T ‖‖QR(E)‖‖T ∗D∗DY⊥‖N
≤(‖U1‖/

√
N)(N‖V1PR(E)V2‖)(‖U2D∗DY⊥‖N/

√
N)

+ 2σ̂1KR/(g
2
Rσ̂

2
R)‖E‖2 · ‖T ∗D∗DY⊥‖N .

Recall we have defined Z1 = σ̂6
1KR/(g

2
Rσ̂

2
R) and Z2 = β(R + ΔR). In order to

prove the lemma, we need to control

P

(
‖T (C̃+

XX − Ĉ+
XX)T ∗D∗DY⊥‖N ≥

(
ε1 + 2Z1 · ε22

)(
1 +

√
Z2/ε3

)
‖Y⊥‖N

)
≤P

(
N · ‖VPR(E)V∗‖ ≥ ε1

)
+ P

(
‖E‖ ≥ σ̂2

1ε2

)
(D.14)

+ P

(
‖U2D∗DY⊥‖N/

√
N ≥

(
1 +

√
Z2/ε3

)
‖Y⊥‖N

)
(D.15)

+ P

(
‖T ∗D∗DY⊥‖N ≥ σ̂1

(
1 +

√
Z2/ε3

)
‖Y⊥‖N

)
. (D.16)

The second probability in (D.14) is controled by Lemma 18, and the probability
in (D.15) and (D.16) is controled by Lemma 22. Note we need the additional
requirement that ε2 ≤ gR/3.

In the rest of the proof, we only need to control the first probability in (D.14).

Recall P̂s = θ̂r ⊗ θ̂r, it holds that

PR(E) =
1

2πi

∮
ΓR

1

η
RĈXX

(η)ERĈXX
(η)dη
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=
1

2πi

∮
ΓR

∞∑
r,s=1

1

η(η − σ̂2
r)(η − σ̂2

s)
P̂rEP̂sdη

=
1

2πi

∮
ΓR

∞∑
r=1

1

η(η − σ̂2
r)

2
P̂rEP̂rdη

+
1

2πi

∮
ΓR

∑
r 
=s

1

η(η − σ̂2
r)(η − σ̂2

s)
P̂rEP̂sdη

= −
R∑

r=1

1

σ̂4
r

P̂rEP̂r

+

R−1∑
r=1

R∑
s=r+1

( 1

σ̂2
r(σ̂

2
r − σ̂2

s)
+

1

σ̂2
s(σ̂

2
s − σ̂2

r)

)
(P̂rEP̂s + P̂sEP̂r)

+
R∑

r=1

∞∑
s=R+1

1

σ̂2
r(σ̂

2
r − σ̂2

s)
(P̂rEP̂s + P̂sEP̂r)

= −
R∑

r=1

1

σ̂4
r

P̂rEP̂r −
R−1∑
r=1

R∑
s=r+1

1

σ̂2
r σ̂

2
s

(P̂rEP̂s + P̂sEP̂r)

+

R∑
r=1

∞∑
s=R+1

1

σ̂2
r(σ̂

2
r − σ̂2

s)
(P̂rEP̂s + P̂sEP̂r).

In the above, the third equation employs Cauchy integral formula. Recall the
relation

E = C̃XX − ĈXX =
1

C ·N

C∑
c=1

1

p̃c
x̃c ⊗ x̃c − ĈXX ,

we find that

PR(E) = −
R∑

r=1

1

CNσ̂2
r

[ C∑
c=1

( ξ̃2cr
p̃c

−N
)]

θ̂r ⊗ θ̂r

−
R−1∑
r=1

R∑
s=r+1

1

CNσ̂rσ̂s

[ C∑
c=1

ξ̃cr ξ̃cs
p̃c

]
(θ̂r ⊗ θ̂s + θ̂s ⊗ θ̂r)

+
R∑

r=1

∞∑
s=R+1

σ̂s

CNσ̂r(σ̂2
r − σ̂2

s)

[ C∑
c=1

ξ̃cr ξ̃cs
p̃c

]
(θ̂r ⊗ θ̂s + θ̂s ⊗ θ̂r).

(D.17)

In the above, ξ̃cr = 〈x̃c, θ̂r〉/σ̂r is the r-th score of the subsampled observation
x̃c.

Define es = (0, · · · ,
√
N, · · · , 0)T as a unit vector (w.r.t ‖ · ‖N ) in RN , whose

s-th element is
√
N and all the other elements are zero. Due to the similar
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reasoning as (D.7), we can verify that

V1(θ̂r ⊗ θ̂s)V2 =

{
(σ̂rσ̂s/N)er ⊗ es if r ≤ R,

(σ̂Rσ̂s/N)er ⊗ es if r > R.

It follows that

N(V1PR(E)V2) = −
R∑

r=1

1

CN

[ C∑
c=1

( ξ̃2cr
p̃c

−N
)]

er ⊗ er

−
R−1∑
r=1

R∑
s=r+1

1

CN

[ C∑
c=1

ξ̃cr ξ̃cs
p̃c

]
(er ⊗ es + es ⊗ er)

+

R∑
r=1

∞∑
s=R+1

σ̂sσ̂R

CN(σ̂2
r − σ̂2

s)

[ C∑
c=1

ξ̃cr ξ̃cs
p̃c

]
(er ⊗ es + es ⊗ er).

In order to apply Lemma 15, let S := CN(V1PR(E)V2) =
∑C

c=1 Zc with

Zc := −
R∑

r=1

1

N

( ξ̃2cr
p̃c

−N
)
er ⊗ er −

R−1∑
r=1

R∑
s=r+1

1

N

ξ̃cr ξ̃cs
p̃c

(er ⊗ es + es ⊗ er)

+

R∑
r=1

∞∑
s=R+1

σ̂sσ̂R

N(σ̂2
r − σ̂2

s)

ξ̃cr ξ̃cs
p̃c

(er ⊗ es + es ⊗ er). (D.18)

The operator norm of Zc is bounded by its Hilbert-Schmidt norm as

N2‖Zc‖2 ≤N2‖Zc‖2HS

=

R∑
r=1

( ξ̃2cr
p̃c

−N
)2

+ 2

R−1∑
r=1

R∑
s=r+1

( ξ̃cr ξ̃cs
p̃c

)2
+ 2

R∑
r=1

∞∑
s=R+1

σ̂2
s σ̂

2
R

(σ̂2
r − σ̂2

s)
2

( ξ̃cr ξ̃cs
p̃c

)2
≤

R∑
r=1

(2ξ̃4cr
p̃2c

+ 2N2
)

+ 4

R−1∑
r=1

R∑
s=r+1

ξ̃2cr ξ̃
2
cs

p̃2c
+

2σ̂4
R

g2R

R∑
r=1

∞∑
s=R+1

ξ̃2cr(σ̂
2
s ξ̃

2
cs/σ̂

2
R)

p̃2c

≤2RN2 +
2

p̃2c

( R∑
r=1

ξ̃2cr

)2
+

2σ̂4
R

g2Rp̃
2
c

( R∑
r=1

ξ̃2cr

)( ∞∑
s=R+1

σ̂2
s ξ̃

2
cs/σ̂

2
R

)
≤2RN2 + 2β2N2(R+ΔR)

2 +G2
Rβ

2N2(R+ΔR)
2/2,

where gR = σ̂2
R− σ̂2

R+1 is the eigengap. From here, we get the upper bound that
‖Zc‖2 ≤ 2R+ 2β2(R+ΔR)

2 +G2
Rβ

2(R+ΔR)
2/2. That is

‖Zc‖ ≤
√
2R+

√
2β(R+ΔR) +GRβ(R+ΔR)/

√
2
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≤
√
2R+ (

√
2 +GR/

√
2)β(R+ΔR). (D.19)

Next, we manage to bound the variance of S =
∑C

c=1 Zc with Zc defined
in (D.18). Note that ‖ES2‖ ≤ C · tr(EZ2

c ). Evaluating the trace requires com-
puting 〈EZ2

c , er ⊗ er〉 for r = 1, 2, · · · . Firstly, for r = 1, . . . , R, it holds that

N2〈Z2
c , er ⊗ er〉 =

( ξ̃2cr
p̃c

−N
)2

+
∑
s≤R
s 
=r

ξ̃2cr ξ̃
2
cs

p̃2c
+

∞∑
s=R+1

σ̂2
s σ̂

2
R

(σ̂2
r − σ̂2

s)
2

ξ̃2cr ξ̃
2
cs

p̃2c

≤ 2N2 +
2ξ̃2cr
p̃2c

+ 4
∑
s≤R
s 
=r

ξ̃2cr ξ̃
2
cs

p̃2c
+G2

R

∞∑
s=R+1

ξ̃2cr(σ̂
2
s ξ̃

2
cs/σ̂

2
R)

p̃2c
.

Take expectation with respect to the subsampling process

N2〈EZ2
c , er ⊗ er〉 ≤ 2N2 +

N∑
n=1

2ξ̂4nr
pn

+ 4
N∑

n=1

∑
s≤R
s 
=r

ξ̂2nr ξ̂
2
ns

pn

+G2
R

N∑
n=1

∞∑
s=R+1

ξ̂2nr(σ̂
2
s ξ̂

2
ns/σ̂

2
R)

pn
.

Similarly, for s = R+ 1, · · · we have

N2〈EZ2
c , es ⊗ es〉 ≤ G2

R

N∑
n=1

R∑
r=1

ξ̂2nr(σ̂
2
s ξ̂

2
ns/σ̂

2
R)

pn
.

Combining the above, we get

N2‖ES2‖ ≤ CN2 · tr(EZ2
c ) ≤ CN2

∞∑
r=1

〈EZ2
c , er ⊗ er〉

≤ 2CN2 +

N∑
n=1

2C

pn

( R∑
r=1

ξ̂2nr

)2
+ 2C ·G2

R

N∑
n=1

R∑
r=1

∞∑
s=R+1

ξ̂2nr(σ̂
2
s ξ̂

2
ns/σ̂

2
R)

pn
.

Plug in pn ≥
(∑R

r=1 ξ̂
2
nr +

∑∞
s=R+1 σ̂

2
s ξ̂

2
ns/σ̂

2
R

)
/[βN(R+ΔR)] to get that

N2‖ES2‖ ≤ 2CN2 + 2CβN(R+ΔR)

N∑
n=1

(∑R
r=1 ξ̂

2
nr

)2
∑R

r=1 ξ̂
2
nr +

∑∞
s=R+1 σ̂

2
s ξ̂

2
ns/σ̂

2
R

+ 2CβN(R+ΔR) ·G2
R

N∑
n=1

(∑R
r=1 ξ̂

2
nr

)(∑∞
s=R+1 σ̂

2
s ξ̂

2
ns/σ̂

2
R

)
∑R

r=1 ξ̂
2
nr +

∑∞
s=R+1 σ̂

2
s ξ̂

2
ns/σ̂

2
R

≤ 2CN2 + 2CβN(R+ΔR)

N∑
n=1

R∑
r=1

ξ̂2nr
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+ 2CβN(R+ΔR) · (G2
R/4)

N∑
n=1

( R∑
r=1

ξ̂2nr +

∞∑
s=R+1

σ̂2
s ξ̂

2
ns/σ̂

2
R

)
≤ 2CN2 + 2CβN2(R+ΔR)R+ (1/2)CβN2G2

R(R+ΔR)
2.

From here we get the upper bound

‖ES2‖ ≤2C + 2Cβ(R+ΔR)R+ CβG2
R(R+ΔR)

2/2

≤2C + Cβ(2 +G2
R/2)(R+ΔR)

2. (D.20)

Similarly as in the proof of Lemma 17, we can establish that intdim(ES2) ≤ 2R.
Finally, it follows that for ε1 ≥

√
V2/C + L2/(3C),

P

(
N · ‖T PR(E)T ∗‖ ≥ ε1

)
≤ 8R exp

(
− Cε2/2

V2 + L2ε/3

)
.

with V2 = 2+β(2+G2
R/2)(R+ΔR)

2 and L2 =
√
2R+(

√
2+GR/

√
2)β(R+ΔR).

Appendix E: Proof of Proposition 9

For the n-th sample xn, we evaluate the difference between the full sample
probability and pilot probability estimated by Algorithm 3. Our target is to
control the difference

[ R∑
r=1

ξ̂2nr + ‖(I − P̂R)xn‖2/σ̂2
R

]
−
[ R∑
r=1

(ξ̂′nr)
2 + ‖(I − P̃ ′

R)xn‖2/(σ̃′
R)

2
]

=〈Ĉ+
XX − (C̃′

XX)+, xn ⊗ xn〉+
1

(σ̃′
R)

2
〈P̃ ′

R − P̂R, xn ⊗ xn〉

+ ‖(I − P̂R)xn‖2 ×
( 1

σ̂2
R

− 1

(σ̃′
R)

2

)
=− 〈PR(E ′), xn ⊗ xn〉+ 〈LR(E ′)/(σ̃′

R)
2, xn ⊗ xn〉

+ 〈−QR(E ′) + SR(E
′)/(σ̃′

R)
2, xn ⊗ xn〉

+ ‖(I − P̂ ′
R)xn‖2 ×

( 1

σ̂2
R

− 1

(σ̃′
R)

2

)
(E.1)

The last equality relies on the decomposition (3.2), the decomposition (D.12)

and (D.13), and the error E ′ = C̃′
XX − ĈXX .

With a little abuse of notation, in the rest of this proof, we will use some
simplified notations. In particular, we will denote the pilot estimates P̃ ′

R, σ̃
′
nr,

C̃′
XX and E ′ from Line 2 of Algorithm 3 by P̃R, σ̃r, C̃XX and E , respectively.

This should not cause confusion as we are only comparing the pilot estimates
against the full sample estimates in this proof. With almost identical argument
as Lemma 18, we can establish the next result.
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Lemma 23. Let Δ0 = intdim(ĈXX) and σ̂2
1 = ‖ĈXX‖. Suppose the sampling

probability satisfies

pn =
1

2

‖xn‖2∑N
m=1 ‖xm‖2

+
1

2N
. (E.2)

Then, we have that

P

(
‖C̃XX − ĈXX‖ ≥ ε · σ̂2

1

)
≤ 4Δ0 exp

(
− Cε2/2

2Δ0 + (2Δ0 + 1)ε/3

)
,

for ε satisfying C · ε >
√
2C ·Δ0 + (2Δ0 + 1)/3.

From the above lemma, for ε = (8Δ0 + 2) log(120Δ0)/(σ̂
2
1C

1/2) ≤ gR/(3σ̂
2
1),

we know that

P

(
‖C̃XX − ĈXX‖ ≥ σ̂2

1

√
(8Δ0 + 2) log(120Δ0)

C1/2

)
≤ 1

30
.

This means the event

E =
{
‖C̃XX − ĈXX‖ ≤ σ̂2

1

√
(8Δ0 + 2) log(120Δ0)

C1/2

}
(E.3)

holds with probability at least 1− 1/30.
For large enough C ≥ 144σ̂4

1γ
2
0/g

2
R for γ0 =

√
(Δ0 + 1) log(120Δ0). Then,

under the event E (E.3), it holds that

‖C̃XX − ĈXX‖ ≤ gR/3 ≤ σ̂2
R/2,

and it further holds that

|σ̂2
R − σ̃2

R| ≤ σ̂2
R/2 =⇒ −σ̂2

R/2 ≤ σ̂2
R − σ̃2

R ≤ σ̂2
R/2 =⇒ σ̂2

R/2 ≤ σ̃2
R ≤ 3σ̂2

R/2.
(E.4)

Under the event E (E.3), it also holds that

∣∣∣ 1

σ̃2
R

− 1

σ̂2
R

∣∣∣ ≤ ‖C̃XX − ĈXX‖
σ̃2
Rσ̂

2
R

≤ 2σ̂2
1

√
(8Δ0 + 2) log(120Δ0)

C1/2σ̂4
R

, (E.5)

where the last inequality uses the relation (E.4). It follows for the last term
in (E.1) that

‖(I − P̂R)xn‖2 ×
∣∣∣ 1

σ̃2
R

− 1

σ̂2
R

∣∣∣
≤(‖(I − P̂R)xn‖2/σ̂2

R)
2σ̂2

1

√
(8Δ0 + 2) log(120Δ0)

C1/2σ̂2
R

≤(

R∑
r=1

ξ̂2nr + ‖(I − P̂R)xn‖2/σ̂2
R)

2σ̂2
1

√
(8Δ0 + 2) log(120Δ0)

C1/2σ̂2
R

. (E.6)
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Under the event E, it directly follows for the second order error term in (E.1)
that ∣∣∣〈SR(E)/σ̃2
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(E.7)

(E.8)

In the above, the first inequality (i) uses Lemma 5 and the bound for (D.13).
Step (ii) uses the relation (E.4). The inequality (iii) uses the relation ‖xn‖2/σ̂2

1 ≤[∑R
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.

It remains to analyze the first order terms in (E.1). By the result of Lemma 6,

the first order error term LR(E) can be expressed as LR(E) = 1
C

∑C
c=1 Zc/(Np̃c).

Note in this expression, we use the sampling probability (E.2). It can be evalu-
ated that
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(E.9)

As the C subsamples are independent with zero mean, it holds that

E
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For the sampling probability (E.2), we use the lower bound that

pn =
1

2
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Then,

E
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The last inequality uses the relation that Δ0 ≤ (R+ΔR). By Markov inequality
and the upper bound (E.9), with probability at least 1− 1

30 , it holds that

∣∣〈LR(E)/σ̃2
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(E.11)

The last inequality uses again the relation (E.4).

From the first order expression (D.17) for the truncated inverse operator, it
holds that
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The first two terms on the right hand side of the above equation can be bounded∣∣∣∣∣
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(E.14)

Combining the above (E.12), (E.13) and (E.14) we get
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Compute the expectation for the last line
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Again, by Markov inequality and (E.15), with probability at least 1 − 1
30 , it

holds that
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(E.16)

Combining (E.1), (E.6), (E.7), (E.11) and (E.16), we arrive at∣∣∣∣∣[
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Fig 11. Randomized covariance operator estimation and FPCA for the PD and NU setting.

with probability at least 1− 1/10 and

γ =
35(1 +GR)

C1/2

[
R+ΔR

]
+

8σ̂2
1γ0

C1/2σ̂2
R

+
32KRσ̂

6
1γ

2
0

Cg2Rσ̂
2
R

.

In the above γ0 =
√

(Δ0 + 1) log(120Δ0). From the above, we can conclude the
results of Proposition 9.

Appendix F: Additional results for simulation study

Section 5 conducts the randomized FPCA in Algorithm 2 and the randomized
FLR in Algorithm 4 with three sampling probabilities. These include: 1) the
naive uniform sampling probability (UNIF), pn = 1/N ; 2) the importance sam-

pling probability (IMPO, He and Yan, 2020), pn = ‖xn‖2/
∑N

m=1 ‖xm‖2; 3) the
proposed functional principal subspace sampling probability (FunPrinSS) esti-
mated by Algorithm 3 with α = 0.5. This section contains additional simulation
results of Section 5 with the Polynomial Decay (PD) eigenvalue setting. See
Table 1 for details.

Figure 11–13 show the results for the estimation of covariance operator esti-
mation and functional principal components. They correspond to the NU, MN
and VN distribution settings for the scores, respectively. The interpretation of
these figures is similar to that of Figure 2–4. The IMPO sampling has the high-
est accuracy in estimating ĈXX and θ̂1, while our proposed FunPrinSS sampling
leads in performance of estimating the other eigenfunctions and the projection
operator P̂R.

Figure 14 shows the functional linear regression (FLR) result of the PD eigen-
value setting. The figure conveys similar messages as Figure 5. Still, our proposed
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Fig 12. Randomized covariance operator estimation and FPCA for the PD and MN setting.

Fig 13. Randomized covariance operator estimation and FPCA for the PD and VN setting.

FunPrinSS sampling leads in performance. The UNIF sampling has higher ac-
curacy than IMPO in the NU distribution setting, but fails completely in the
VN distribution setting.
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et al. (2011). SDSS-III: Massive spectroscopic surveys of the distant universe,
the Milky Way, and extra-solar planetary systems. The Astronomical Journal
142 72.

Hadjipantelis, P. Z. and Müller, H.-G. (2018). Functional data analysis
for big data: A case study on california temperature trends. In Handbook of
Big Data Analytics 457–483. Springer. MR3932014

Halko, N.,Martinsson, P. and Tropp, J. A. (2011). Finding Structure with
Randomness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions. Siam Review 53 217–288. MR2806637

Hall, P., Horowitz, J. L. et al. (2007). Methodology and convergence
rates for functional linear regression. The Annals of Statistics 35 70–91.
MR2332269

He, S. and Yan, X. (2020). Randomized estimation of functional covariance
operator via subsampling. Stat 9 e311. MR4193416
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