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Abstract: We discuss Bayesian nonparametric procedures for the regres-
sion analysis of compositional responses, that is, data supported on a mul-
tivariate simplex. The procedures are based on a modified class of multi-
variate Bernstein polynomials and on the use of dependent stick-breaking
processes. A general model and two simplified versions of the general model
are discussed. Appealing theoretical properties such as continuity, associ-
ation structure, support, and consistency of the posterior distribution are
established. Additionally, we exploit the use of spike-and-slab priors for
choosing the version of the model that best adapts to the complexity of
the underlying true data-generating distribution. The performance of the
proposed model is illustrated in a simulation study and in an application
to solid waste data from Colombia.
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1. Introduction

The statistical modeling of compositional data plays a key role in many scien-
tific areas, economics, political sciences, and engineering, among others, with
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applications ranging from human microbiome analyses to topic modeling in
large text corpora, where the focus is on the modeling of vectors containing
information on the relative frequencies in which the different components occur.
The need for appropriate methodologies for the analysis of these type of data
can be originated by the nature of the scientific questions or limitations associ-
ated with the measurement methods. For instance, recent advances in biological
high-throughput sequencing technologies can only provide relative abundance
information because they can only capture a limited total number of transcripts
or sequences in a sample or do not control for the total number of microbes
entering the measurement process. Thus, the resulting sequencing count data
carry only relative abundance information about the different transcripts or taxa
in a given sample. On the other hand, in our motivating problem, we are inter-
ested in describing and understanding the solid waste composition generated in
a residential area of a city in Colombia.

From a mathematical point of view, compositional data can be defined as
multivariate data supported on the m–dimensional simplex, Δm, given by

Δm = {(y1, . . . , ym) ∈ [0, 1]m :
∑m

i=1 yi ≤ 1} .

Since Aitchison (1982), several parametric regression models for compositional
responses have been proposed. Common approaches transform the composi-
tional responses from Δm to R

m, and use the well known and familiar battery of
statistical models for normally distributed responses (see, e.g., Aitchison, 1982;
Atchison & Shen, 1980; Shimizu et al., 2021; Wang et al., 2010). Other propos-
als use the Dirichlet distribution to model the compositional responses and link
the Dirichlet parameters to covariates (see, e.g., Gueorguieva et al., 2008; Hi-
jazi, 2003; Hijazi & Jernigan, 2009; Van der Merwe, 2019). These models can be
easily extended to allow for non-parametric functional forms in the relationship
between the model parameters and the predictors (see, e.g., Di Marzio et al.,
2015; Tsagris et al., 2020). However, they rely on particular parametric distribu-
tional forms which limits the type of inferences that can be obtained. Modeling
approaches where the complete distribution of the compositional responses can
flexibly vary as a function of the predictors are scarce in the literature. We aim
to fill this gap by proposing a class of Bayesian nonparametric (BNP) predictor-
dependent mixture models that enjoys appealing theoretical properties and is
easy to use.

Most BNP approaches for collections of predictor-dependent probability dis-
tributions employ mixtures of densities from parametric families (see, e.g., Müller
et al., 2015, and references therein). Mixture models are convenient for den-
sity estimation because they induce a prior distribution on densities by plac-
ing a prior distribution on the mixing measure. Dependent Dirichlet processes
(MacEachern, 1999, 2000; Quintana et al., 2022) are often used as priors for
the mixing distributions. Other extensions and alternative constructions for
dealing with predictor-dependent probability distributions include the ordered-
category probit regression model (Karabatsos & Walker, 2012), the dependent
beta process (Trippa et al., 2011), the dependent tail-free processes (Jara &
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Hanson, 2011), the dependent neutral to the right processes and correlated two-
parameter Poisson-Dirichlet processes (Epifani & Lijoi, 2010; Leisen & Lijoi,
2011), and the general class of dependent normalized completely random mea-
sures (Lijoi et al., 2014). Due to their flexibility and ease in computation, these
models are routinely implemented in a wide variety of applications (see, e.g.,
Müller et al., 2015, and references therein).

BNP approaches for collections of predictor-dependent probability distribu-
tions have mainly focused on responses defined on the real line. Although those
approaches can be applied to compositional responses, by transforming the re-
sponses from Δm to R

m, i) the resulting density in the simplex could not be well
defined at the edges or ii) the resulting density in the simplex could be equal to
zero at the edges. This can cause important problems if zeros are observed in the
data because either the likelihood could not be defined, if i) holds true, or the
likelihood would always be equal to zero, if ii) holds true. Also, other problem
associated with the use of transformations is that it is not very clear that the
resulting density is flexible at the edges of the simplex (please see Appendix A
for more details on this).

We propose modeling compositional responses using a particular class of mix-
tures of Dirichlet probability density functions that naturally emerges from the
theoretical properties and extensions of Bernstein polynomials (BP). Motivated
by their uniform approximation properties, frequentist and Bayesian methods
based on univariate BP have been proposed for the estimation of probability
distributions supported on bounded intervals, unit hyper-cubes, and simplex
spaces (see, e.g. Petrone, 1999a,b; Petrone & Wasserman, 2002; Tenbusch, 1994;
Ouimet, 2021; Babu & Chaubey, 2006; Zheng et al., 2010). For example, Babu
& Chaubey (2006) studied a general multivariate version of the bivariate es-
timator proposed by Tenbusch (1994), while Zheng et al. (2010) constructed
a multivariate Bernstein polynomial (MBP) prior for the spectral density of a
random field. Key for our approach, Tenbusch (1994) considered multivariate ex-
tensions of Bernstein polynomials defined on Δ2 to propose and study a density
estimator. Tenbusch’s approach is easy to extend to the m-dimensional case.
The approach is based on the class of MBP associated with G, a cumulative
distribution function (CDF) on Δm, given by

B̃k,G(y) =
∑

j∈Jk,m

G

(
j1
k
, . . . ,

jm
k

)
Mult (j | k,y) , y ∈ Δm, (1)

where k ∈ N is the degree of the MBP, j = (j1, . . . , jm),

Jk,m =

{
(j1, . . . , jm) ∈ {0, . . . , k}m :

m∑
l=1

jl ≤ k

}
,

and Mult (· | k,y) stands for the probability mass function of a multinomial
distribution with parameters (k,y).

Tenbusch’s estimator arises by replacing G in (1) by the empirical CDF of
observed data and it is not difficult to show that, if G is a CDF on Δm, then



Fully nonparametric regression of compositional data 2349

B̃k,G(·) is not a CDF on Δm for a finite k. In this case, B̃k,G(·) can be expressed
as a linear combination of CDFs of probability measures defined on Δm, where
the coefficients are nonnegative but do not add up to 1. Tenbusch’s estimator is
defined as the derivative of B̃k,G(·) and, although it is consistent and optimal at
the interior points of the simplex, it is not a valid density function for finite k
and finite sample size. To avoid this problem, Barrientos et al. (2015) proposed
a modified class of MBP by changing the set Jk,m. The class retains the well
known approximation properties of the original version. Furthermore, when G
is a CDF on Δm, the modified MBP is a genuine CDF with density function
defined by a mixture of Dirichlet densities.

We propose a class of fully nonparametric regression models for compositional
responses, by extending the class of MBP priors of Barrientos et al. (2015). The
extension relies on predictor-dependent stick-breaking processes (see, Barrien-
tos et al., 2017, for a similar extension for responses defined on the unit-interval).
An important property of the considered model class is that the densities are
well-defined in scenarios with compositional data containing zero values. When
the response vector contains zero values, either models based on the Dirichlet
distribution without restrictions on the parameter space or approaches based
on the log-ratio transformation are not properly defined and cannot be em-
ployed unless a zero value imputation is applied first (please see Appendix A).
We study theoretical properties of the proposed model class, such as continu-
ity, association structure, support, and consistency of the posterior distribution.
These properties are non-trivial extensions of the results obtained by Barrientos
et al. (2017) for the unit-interval and their proofs are provided in the Appendix.
The use of the dependent stick-breaking process raises the question of where to
introduce the predictor dependency: on weights, atoms, or both. Each selection
leading to a different version of the model. Rather than fitting all versions of
the model, as done by Barrientos et al. (2017), we use spike-and-slab mixtures
(George & McCulloch, 1993) to define a prior that automatically chooses the
version of the model that best accommodates to the complexity of the underly-
ing data-generating mechanism. We evaluate the performance of the proposed
approach using simulated data. The proposed approach is also applied for the
analysis of solid waste data from Colombia.

The rest of the paper is organized as follows. The modified class of MBP
and its main properties are summarized in Section 2. The proposed model class
and its theoretical properties are discussed in Sections 3 and 4, respectively.
Section 5 describes the main computational aspects. Section 6 illustrates the
performance of the model using simulated data and in an application to solid
waste in Colombia. A final discussion concludes the article.

2. Random multivariate Bernstein polynomials

Based on Tenbusch’s MBP, Barrientos et al. (2015) defined a modified class
of MBP on the m−dimensional simplex and proposed a BNP density estima-
tion model for compositional data. The modified class increases the domain
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of function G and the size of the set Jk,m from the original class of MBP
on the m−dimensional simplex provided in Equation (1). For a given function
G : Rm −→ R, the associated modified class of MBP of degree k ∈ N on Δm is
given by

B(y | k,G) =
∑

j∈Hk,m

G

(
j1
k
, . . . ,

jm
k

)
Mult (j | k +m− 1,y) , y ∈ Δm,

where Hk,m = {(j1, . . . , jm) ∈ {0, . . . , k}m :
∑m

l=1 jl ≤ k +m− 1}.
As shown by Barrientos et al. (2015), this class of MBP retains the appealing

approximation properties of univariate BP and the standard class of MBP given
in Equation (1). Specifically, if G is a real-valued function defined on R

m and
G|Δm is its restriction on Δm, then B(· | k,G) converges pointwise to G|Δm , as k
goes to infinity, and the relation holds uniformly on Δm if G|Δm is a continuous
function.

It is also possible to show that if G is the CDF of a probability measure
defined on Δm, then B(· | k,G) is also the restriction of the CDF of a proba-
bility measure defined on Δm. Furthermore, if G is the CDF of a probability
measure defined on Δ0

m = {y ∈ Δm : yj > 0, j = 1, . . . ,m}, then B(· | k,G) is
the restriction of the CDF of a probability measure with density function given
by the following mixture of Dirichlet distributions,

b(y | k,G) =
∑

j∈H 0
k,m

G

((
j1 − 1

k
,
j1
k

]
× . . .×

(
jm − 1

k
,
jm
k

])
dir(y | α (k, j)), (2)

where H 0
k,m = {(j1, . . . , jm) ∈ {1, . . . , k}m :

∑m
l=1 jl ≤ k +m− 1}, α (k, j) =

(j, k +m− ‖j‖1), ‖·‖1 denotes the l1-norm, and dir(· | (α1, . . . , αm+1)) denotes
the density function of an m–dimensional Dirichlet distribution with parameters
(α1, . . . , αm+1).

By considering the density function given by Equation (2), a random function
G, and a random degree k, Barrientos et al. (2015) defined a BNP prior for
densities defined on Δm. The model corresponds to a DP mixture model of
specific Dirichlet densities given by

b(y | k,G) =

∫
Δm

dir (y | α(k, �kθ�))G(dθ),

G | M,G0 ∼ DP (M,G0), (3)

k | λ ∼ p(· | λ),

whereDP (α,G0) denotes a Dirichlet process with concentration parameterM >
0 and base distribution G0 on Δ0

m, p(· | λ) is the probability mass function of a
distribution on N parameterized by λ, and �·� denotes the ceiling function.

3. The model

Suppose that we observe regression data {(yi,xi) : i = 1, . . . , n}, where yi is
a continuous Δm-valued outcome vector and xi ∈ X ⊆ R

p is a p-dimensional
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vector of exogenous predictors. We define the regression model for compositional
responses by introducing predictor-dependency in the mixture model given in
(3), which allows the complete shape of the conditional densities to flexibly vary
with values of x. To this end, we replace the mixing measure G by a predictor-
dependent mixing measure Gx. Under this approach, the random conditional
densities are given by

fx(y | k,Gx) =

∫
Δm

dir (y | α(k, �kθ�))Gx(dθ), (4)

where the set of mixing distributions {Gx : x ∈ X } follows a dependent stick-
breaking process, with elements of the form Gx(·) =

∑∞
j=1 wj(x)δθj(x)(·), where

wj(x) = Vj(x)
∏

l<j [1−Vl(x)], and where Vj(x) and θj(x) are transformations
of underlying stochastic processes.

3.1. The formal definition

Let V = {vx : x ∈ X } and H = {hx : x ∈ X } be two sets of known
bijective continuous functions, such that for every x ∈ X , vx : R −→ [0, 1] and
hx : Rm −→ Δ0

m, are such that for every a ∈ R and b ∈ R
m, vx(a) and hx(b)

are continuous functions of x. Let P (Δm) be the set of all probability measures
defined on Δm.

Definition 1. Let V and H be two sets of functions as before. Let F =
{Fx : x ∈ X } be a P (Δm)-valued stochastic process such that:

(i) ηj = {ηj(x) : x ∈ X }, j ≥ 1, are independent and identically distributed
real-valued stochastic processes with law indexed by a finite-dimensional
parameter Ψη.

(ii) zj = {zj(x) : x ∈ X }, j ≥ 1, are independent and identically distributed
real-valued stochastic processes with law indexed by a finite-dimensional
parameter Ψz.

(iii) k ∈ N is a discrete random variable with distribution indexed by a finite-
dimensional parameter λ.

(iv) For every x ∈ X , the density function of Fx, w.r.t. Lebesgue measure, is
given by the following dependent mixture of Dirichlet densities,

fx(·) =
∞∑
j=1

wj(x)dir (· | α(k, �kθj(x)�)) , (5)

where θj(x) = hx(zj(x)), �kθj(x)� = (�kθj1(x)�, . . . , �kθjm(x)�), and
wj(x) = Vj(x)

∏
l<j [1− Vl(x)], with Vj(x) = vx(ηj(x)).

The process F = {Fx : x ∈ X } will be referred to as dependent MBP process
with parameters (λ,Ψη,Ψz,V ,H ), and denoted by DMBPP(λ,Ψη, Ψz,V ,H )
and DMBPP for short.
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In the search of parsimonious models, it is of interest to study two special
cases of the general construction given by Definition 1. The case involving de-
pendent stick-breaking processes with common weights and predictor-dependent
support points is referred to as ‘single–weights’ DMBPP, while the case in-
volving dependent stick-breaking processes with common support points and
predictor-dependent weights is referred to as ‘single–atoms’ DMBPP. In what
follows, we briefly discuss the definition of these special cases. Their formal def-
initions, needed to provide the proofs of the theoretical properties discussed in
the following sections, are provided in Appendix B.

In the definition of the ‘single–weights’ DMBPP, the real-valued stochastic
processes of condition (i) in Definition 1, ηj = {ηj(x) : x ∈ X }, are replaced
by [0, 1]-valued independent and identically distributed random variables, vj ,
with common distribution indexed by a finite-dimensional parameter Ψv. In
this special case, the density function of Fx is given by

fx(·) =
∞∑
j=1

wjdir (· | α(k, �kθj(x)�)) , (6)

where θj(x) and �kθj(x)� are defined as in Definition 1 and wj = vj
∏

l<j [1− vl].
The process F = {Fx : x ∈ X } will be referred to as single–weight dependent
MBP process with parameters (λ,Ψv,Ψz,H ), and denoted by wDMBPP(λ,Ψv,
Ψz,H ) and wDMBPP for short.

In the definition of the ‘single–atoms’ DMBPP, the real-valued stochastic
processes of condition (ii) in Definition 1, zj = {zj(x) : x ∈ X }, are replaced
by independent and identically distributed Δ0

m-valued random vectors, θj , with
common distribution indexed by a finite-dimensional parameterΨθ. In this case,
the density function of Fx is given by

fx(·) =
∞∑
j=1

wj(x)dir (· | α(k, �kθj�)) , (7)

where wj(x) are defined as in Definition 1 and �kθj� = (�kθj1�, . . . , �kθjm�).
The process F = {Fx : x ∈ X } will be referred to as single–atoms dependent
MBP process with parameters (λ,Ψη,V ,Ψθ), and denoted by θDMBPP(λ,Ψη,
V ,Ψθ) and θDMBPP for short.

Notice that the DMBPP, including its special cases, is well defined if the
mapping induced by (iv) in Definition 1 is measurable, which is discussed in
detail in Section 3.2. Notice also that expressions (5), (6), and (7) are indeed a
density w.r.t. Lebesgue measure since, for every x ∈ X ,

∞∑
j=1

log [1− E (vx {ηj(x)})] = −∞, and

∞∑
j=1

log [1− E(vj)] = −∞,

which are sufficient and necessary conditions for the corresponding weights to
add up to one with probability one. It is important to emphasize that DMBPP
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generates dependent mixture of Dirichlet densities with constant support points
and covariate-dependent weights,

fx(·) =
∑

j∈H0
k,m

Wk,j,x × dir (· | α(k, j)) , (8)

where

Wk,j,x =

⎧⎨⎩
∑∞

l=1 wl(x)δθl(x)

((
j1−1
k , j1

k

]
× . . .×

(
jm−1

k , jm
k

])
,∑∞

l=1 wlδθl(x)

((
j1−1
k , j1

k

]
× . . .×

(
jm−1

k , jm
k

])
,∑∞

l=1 wl(x)δθl

((
j1−1
k , j1

k

]
× . . .×

(
jm−1

k , jm
k

])
,

for the DMBPP, wDMBPP, and θDMBPP, respectively.

3.2. The measurability of the processes

In this section we show that the corresponding mappings defining the trajec-
tories of DMBPP, wDMBPP, and θDMBPP are measurable under the Borel
σ-field generated by the weak product topology, L∞ product topology, and L∞
topology, which correspond to generalizations of standard topologies for spaces
of single probability measures. The topologies considered here are formally de-
fined in Appendix C.

Let D (Δm) ⊂ P (Δm) be the space of all probability measures defined on
Δm that are absolutely continuous w.r.t. Lebesgue measure and with continu-
ous density function and consider the spaces P (Δm)

X
=
∏

x∈X P (Δm) and

D (Δm)
X

=
∏

x∈X D (Δm). Theorem 1, which proof is provided in Appendix
D.1, summarizes the measurability results for the different versions of the pro-
posed model.

Theorem 1. Let B1, B2, and B3 be the Borel σ-field generated by the weak
product topology, L∞ product topology, and L∞ topology, respectively. If F is a
DMBPP, wDMBPP or θDMBPP, defined on the appropriate measurable space
(Ω,A ), then the following mappings are measurable:

• F : (Ω,A) −→ (P (Δm)
X

,B1).

• F : (Ω,A) −→ (D (Δm)
X

,B2).

• F : (Ω,A) −→ (D (Δm)
X

,B3).

4. The main properties

We establish basic properties of the proposed class of models in this section.
They include the characterization of the topological support, the continuity and
association structure of the models, and the asymptotic behavior of the posterior
distribution. Detailed proofs of Theorems 2 – 12 are provided in Appendix D.2
– D.12, respectively.
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4.1. The support of the processes

Full support is a “necessary” property for a Bayesian model to be considered
“nonparametric”. In a fully nonparametric regression model setting, full support
implies that the prior probability model assigns positive mass to any neighbor-
hood of every collection of probability measures {Qx : x ∈ X }. Therefore, the
definition of support strongly depends on the choice of a “distance” defining
the basic neighborhoods. We provide sufficient conditions for P (Δm)

X
and

D (Δm)
X

to be the support of DMBPPs under the weak product topology and
the L∞ product topology, respectively.

Theorem 2. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ),
or a wDMBPP (λ,Ψv,Ψz,H ). If F is defined such that:

(i) for every (x1, . . . ,xL) ∈ X L, L ≥ 1, the joint distribution of (ηj(x1), . . . ,
ηj(xL)), j ≥ 1, has full support on R

L,
(ii) for every (x1, . . . ,xL) ∈ X L, L ≥ 1, the joint distribution of (zj(x1), . . . ,

zj(xL)), j ≥ 1, has full support on R
m×L,

(iii) k has full support on N,
(iv) vj, j ≥ 1, has full support on [0, 1],
(v) θj , j ≥ 1, has full support on Δ0

m,

then P (Δm)
X

and D (Δm)
X

is the support of F under the weak product topol-
ogy and the L∞ product topology, respectively.

If stronger assumptions on the parameter space are imposed, a stronger sup-
port property can be obtained. Specifically, consider the sub-space D̃ (Δm)

X ⊂
D (Δm)

X
, where

D̃ (Δm)
X

=
{
{Qx : x ∈ X } ∈ D (Δm)

X
: (y,x) �−→ qx(y) is continuous

}
,

and qx denotes the density function of Qx w.r.t. Lebesgue measure. The follow-

ing theorem provides sufficient conditions for D̃ (Δm)
X

to be in the support of
DMBPPs under the L∞ topology.

Theorem 3. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ)
or a wDMBPP (λ,Ψv,Ψz,H ). Assume that x ∈ X contains only continuous
components and that X is compact. If F is defined such that:

(i) for every B ∈ B(Δm), every Δ0
m-valued continuous mapping x �→ f(x),

and every j ≥ 1,

Pr

{
sup
x∈X

|hx (zj(x))− fx| ∈ B

}
> 0,

(ii) for every ε > 0, every [0, 1]-valued continuous mapping x �→ f(x), and
every j ≥ 1,

Pr

{
sup
x∈X

|vx (ηj(x))− fx| < ε

}
> 0,
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(iii) k has full support on N,
(iv) vj, j ≥ 1, has full support on [0, 1],
(v) θj, j ≥ 1, has full support on Δ0

m,

then D̃ (Δm)
X

is contained in the support of F under the L∞ topology.

An important consequence of the previous theorem is that the proposed pro-
cesses can assign positive mass to arbitrarily small neighborhoods of any collec-
tion of probability measures {Qx : x ∈ X } ∈ D̃ (Δm)

X
, based on the supre-

mum over the predictor space of Kullback-Leibler (KL) divergences between the
predictor-dependent probability measures.

Theorem 4. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ)
or a wDMBPP (λ,Ψv,Ψz,H ). Under the same assumptions of Theorem 3, it
follows that

Pr

{
sup
x∈X

∫
Δm

qx(y) log

(
qx(y)

fx(y)

)
dy < ε

}
> 0,

for every ε > 0, and every {Qx : x ∈ X } ∈ D̃ (Δm)
X

with density functions
{qx : x ∈ X }.

4.2. The continuity and association structure of the processes

The characteristics of the stochastic processes used in the definitions of aDMBPP
determine important properties of the resulting model. Regardless of the specific
choice of the stochastic processes used in its definition, the use of almost surely
(a.s.) continuous stochastic processes ensures that DMBPP and wDMBPP have
a.s. a limit.

Theorem 5. Let F be DMBPP(λ,Ψη,Ψz,V ,H ) or wDMBPP(λ,Ψv,Ψz,H ),
defined such that V and H are sets of equicontinuous functions of x, and for
every i ≥ 1, the stochastic processes ηi and zi have a.s. continuous trajectories.
Then, for every {xl}∞l=0, with xl ∈ X , such that liml→∞ xl = x0, Fx has a.s.
a limit with the total variation norm.

An interesting property of the θDMBPP compared to the other version, and
the general model, is that the use of a.s. continuous stochastic processes in the
weights guarantees a.s. continuity of the ‘single–atoms’ DMBPP.

Theorem 6. Let F be a θDMBPP(λ,Ψη,V ,Ψθ), defined such that V is a
set of equicontinuous functions, and such that for every j ≥ 1, the stochastic
process ηj is a.s. continuous. Then, for every {xl}∞l=0, with xl ∈ X , such that
liml→∞ xl = x0,

lim
l→∞

sup
B∈B(Δm)

|Fxl
(B)− Fx0(B)| = 0, a.s..

That is, Fxl
converges a.s. in total variation norm to Fx0 , when xl −→ x0.
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The dependence structure of DMBPPs is completely determined by the as-
sociation structure of the stochastic processes used in their definition. For in-
stance, under mild conditions on the stochastic processes defining the DMBPPs,
the correlation between the corresponding random measures approaches to one
as the predictor values get closer.

Theorem 7. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ)
or a wDMBPP (λ,Ψv,Ψz,H ), defined such that V and H are sets of equicon-
tinuous functions, and such that for every {xl}∞l=0, with xl ∈ X , such that

liml→∞ xl = x0, we have ηj(xl)
L−→ ηj(x0) and zj(xl)

L−→ zj(x0), as l → ∞,

j ≥ 1. Then, for every y ∈ Δ̃m,

lim
l→∞

ρ [Fxl
(By), Fx0

(By)] = 1,

where ρ(A,B) denotes the Pearson correlation between A and B, By = [0, y1]×
. . .× [0, ym].

If the stochastic processes defining the DMBPP and wDMBPP are such that
the pairwise finite-dimensional distributions converge to the product of the cor-
responding marginal distributions as the Euclidean distance between the predic-
tors grows larger, then under mild conditions the correlation between the cor-
responding random measures can approach zero. The following theorem shows
that under the assumptions previously discussed, the marginal covariance be-
tween the random measures is equal to the covariance between the conditional
expectations of the random measures, given the degree of the MBP.

Theorem 8. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ) or a wDMBPP (λ,Ψv,
Ψz,H ), defined such that V and H are sets of equicontinuous functions and
there exists a constant γ > 0 such that if (x1,x2) ∈ X 2 and ‖x1 − x2‖ >
γ, then Cov

[
I{ηj(x1)∈A1}, I{ηj(x2)∈A2}

]
= 0, for every A1, A2 ∈ B(R), and

Cov
[
I{zj(x1)∈A3}, I{zj(x2)∈A4}

]
= 0, for every A3, A4 ∈ B(Rm), j ≥ 1. As-

sume also that for every (x1,x2) ∈ X 2 and for every sequence {(x1l,x2l)}∞l=1,
with (x1l,x2l) ∈ X 2 and such that liml→∞(x1l,x2l) = (x1,x2), we have that

(ηj(x1l), ηj(x2l))
L−→ (ηj(x1), ηj(x2)),

and
(zj(x1l), zj(x2l))

L−→ (zj(x1), zj(x2)),

j ≥ 1, as l → ∞. Then, for every y ∈ Δm,

lim
l→∞

Cov [Fx1l
(By), Fx2l

(By)] = Cov [E {Fx1(By) | k} , E {Fx2(By) | k}] ,

with

E {Fx(By)|k} =
∑

j∈Hk,m

G0,x (Aj,k)Mult(j | k +m− 1,y),

where By = [0, y1] × . . . × [0, ym], Aj,k = [0, j1/k] × . . . × [0, jm/k] and G0,xis
the marginal probability measure of θj(x) defined on Δ0

m.



Fully nonparametric regression of compositional data 2357

Notice that the assumption Cov
[
I{ηj(x1)∈A1}, I{ηj(x2)∈A2}

]
= 0, for everyA1,

A2 ∈ B(R) is equivalent to assuming that ηj(x1) and ηj(x2) are independent.
This also applies for the process zj . Notice also that an example of a process
meeting the conditions of Theorem 8 is the Gaussian process with spherical
covariance function (see Banerjee et al., 2003, Chapter 2). From Theorem 8 it
is easy to see that if DMBPP or wDMBPP are specified such that the marginal
distribution of k is degenerate, then the correlation between the corresponding
random measures goes to zero, since liml→∞ Cov [Fx1l

(By), Fx2l
(By)] = 0. For

θDMBPP the correlation between the associated random measures when the
predictor values are far apart reaches a different limit. In such case, it is difficult
to establish conditions on the prior specification ensuring that the limit is zero.

Theorem 9. Let F be a θDMBPP(λ,Ψη,V ,Ψθ). Assume that V is a set of
equicontinuous functions and that there exists a constant γ > 0, such that if
x1,x2 ∈ X and ‖x1−x2‖ > γ, then Cov

[
I{ηj(x1)∈A1}, I{ηj(x2)∈A2}

]
= 0, for ev-

ery A1, A2 ∈ B(R), j ≥ 1. Assume also that for every (x1,x2) ∈ X 2 and for ev-
ery sequence {(x1l,x2l)}∞l=1, with (x1l,x2l) ∈ X 2, such that liml→∞(x1l,x2l) =

(x1,x2), we have (ηj(x1l), ηj(x2l))
L−→ (ηj(x1), ηj(x2)), j ≥ 1, as l → ∞.

Then, for every y ∈ Δm,

lim
l→∞

Cov [Fx1l(By), Fx2l(By)] =
∞∑

k1=1

Pr{k = k1}
∑

j1, j2∈Hk1,m

M̄(j1, j2 | k1 +m− 1,y)

×
∞∑
j=1

E [wj(x1)]E[wj(x2)]Cov
[
I{θj∈Aj1,k1}, I{θj∈Aj2,k1}

]
+ Cov [E {Fx1(By) | k} , E {Fx2(By) | k}] ,

with E {Fx(By)|k}, By, Aj,k, and G0,x as defined in Theorem 8 and M̄(j, j1 |
k +m− 1,y) = Mult(j | k +m− 1,y)×Mult(j1 | k +m− 1,y).

Finally, although the trajectories of the DMBPP and wDMBPP have a.s. a
limit only, the autocorrelation function of all versions of the model are contin-
uous under mild conditions on the elements defining the processes.

Theorem 10. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,
Ψθ) or a wDMBPP (λ,Ψv,Ψz,H ), defined such that V and H are sets of
equicontinuous functions. Assume that for every (x1,x2) ∈ X 2 and for every
sequence {(x1l,x2l)}∞l=1, with (x1l,x2l) ∈ X 2, such that liml→∞(x1l,x2l) =
(x1,x2), we have that

(ηj(x1l), ηj(x2l))
L−→ (ηj(x1), ηj(x2)),

and
(zj(x1l), zj(x2l))

L−→ (zj(x1), zj(x2)),

as l → ∞, j ≥ 1. Then, for every y ∈ Δ0
m,

lim
l→∞

ρ [Fx1l
(By), Fx2l

(By)] = ρ [Fx1(By), Fx2(By)] ,

where By = [0, y1]× . . .× [0, ym].
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4.3. The asymptotic behavior of the posterior distribution

We study the asymptotic behavior of the posterior distribution of the proposed
model class in this section. Here we assume that we observe a random sample
(yi,xi), i = 1, . . . , n. Recall that, as is common in regression settings, we assume
that the predictor vector xi contains only exogenous predictors. Notice that the
exogeneity assumption allows us to focus on the conditional density estimation
problem, regardless of the data generating mechanism of the predictors, that is, if
they are randomly generated or fixed by design (see, e.g. Barndorff-Nielsen, 1973,
1978; Florens et al., 1990). Let Q be the true probability measure generating
the predictors, with density w.r.t. a corresponding σ-additive measure denoted
by q . By the exogeneity assumption, the true probability model for the response
variable and predictors takes the form h0(y,x) = q(x)q0(y | x), where both
q and {q0(· | x) : x ∈ X } are in free variation, with q0(y | x) denoting a
conditional density defined on Δm, and x ∈ X .

Theorem 11. Let F be a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,
Ψθ) or a wDMBPP (λ,Ψv,Ψz,H ). If the assumptions of Theorem 3 are sat-
isfied, then the posterior distribution associated with the random joint distribu-
tion induced by the corresponding DMBPP model, h(y,x) = q(x)fx(y), where
q is the density generating the predictors, is weakly consistent at any joint dis-
tribution of the form h0(y,x) = q(x)q0(y | x), where {q0(· | x) : x ∈ X } ∈
D̃ (Δm)

X
.

Although Theorem 11 assumes that x contains only continuous predictors,
a similar result can be obtained when x contains only predictors with finite
support (e.g., categorical, ordinal and discrete predictors) or a combination of
continuous predictors and predictors with finite support.

The following theorem states a stronger posterior consistency result when a
specific probit stick-breaking process is assumed in the definition of the θDMBPP.

Theorem 12. Let F be a θDMBPP(λ,Ψη,V ,Ψθ). If X = [0, 1]p and the
θDMBPP is defined such that

(i) for every j ∈ N, ηj is a Gaussian process with zero mean function and co-
variance kernel given by cj(x,x

′) = τ2 exp{−Aj‖x−x′‖2}, where (x,x′) ∈
X 2 and Aj is a random variable, such that for some positive constants κ
and κ0, and some sequence rn ↑ ∞, such that rpnn

κ(logn)p+1 = o(n),

Pr{Aj > δn} ≤ exp{−n−κ0j(κ0+2)/κ log j},

and
Pr{An > rn} ≤ exp{−n},

where δn = O((log n)2/n5/2),
(ii) for every vx ∈ V , vx ≡ Φ, where Φ denotes the CDF of a standardnormal

distribution.
(iii) G0 has full support on Δ0

m, where G0 is the distribution of θj, j ≥ 1.
(iv) k has full support on N,
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(v) there exists a sequence kn ∈ N such that log
(

kn(kn+m)!
kn!(m+1)!

)
� O(n) and

Pr{k > kn} � O(exp{−n}), where � stands for inequality up to a con-
stant.

Then, the posterior distribution associated with the random joint distribution
induced by the θDMBPP model, h(y,x) = q(x)fx(y), where q is the density
generating the predictors, is L1–consistent at any joint distribution of the form
h0(y,x) = q(x)q0(y | x), where {q0(· | x) : x ∈ X } ∈ D̃ (Δm)

X
.

For an example of how to construct the sequence of random variables Aj , see
Remark 5.12 in Pati et al. (2013).

5. Computational aspects

As can be noted from the definitions of the proposed models, predictors can be
included in different manners. In what follows, we consider special definitions
by exploiting the relation between Gaussian processes and Bayesian linear re-
gression models. We also make use of spike-and-slab prior distributions on the
regression coefficients that allow us for an automatic selection of the version of
the model that best accommodates to the complexity of the underlying data-
generating mechanism. Note that such a prior avoids the need to fit each version
of the model, as done by Barrientos et al. (2017).

We specify the predictor dependent weights and atoms of the dependent
stick-breaking process in the DMBPP by means of transformations of a linear
predictor. To define the weights of the DMBPP we consider vx(a) = ea/(1 +
ea), a ∈ R, and the stochastic process ηj(x) = βη

0j + xtβη
j , where βη

0j ∈ R

and βη
j ∈ R

p are independent and identically distributed for j ≥ 1, and x =
(x1, . . . , xp) ∈ X p denotes the vector of covariates. Similarly, to define the
atoms of the dependent stick-breaking process in the DMBPP we consider the
transformation

hx(b) =
(
eb1 , . . . , ebm

)
/

(
1 +

m∑
l=1

ebl

)
, b ∈ R

m,

and the stochastic process zj(x) = (zj1(x), . . . , zjm(x)), where zjl(x) = βz
0jl+

xtβz
jl and βz

0jl ∈ R and βz
jl ∈ R

p are independent and identically distributed
for j ≥ 1, l = 1, . . . ,m.

In order to choose the version of the DMBPP model that best adapts to the
data and following George & McCulloch (1993), we consider a two-components
mixture of normal distributions with different variances as a prior distribution on
the coefficients of the linear predictor associated with the covariates, that is, on

βη
j and βz

jl. For the intercepts of the linear predictors we assume βη
0j

iid∼ N(0, σ2
η)

and βz
0jl

iid∼ N(0, σ2
z). For βη

j and βz
jl we introduce latent binary variables γη

and γz and assume

βη
j | γη iid∼ Np(0,Σ

η
1)

1−γη ×Np(0,Σ
η
2)

γη

, j ≥ 1, (9)
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βz
jl | γz iid∼ Np(0,Σ

z
1 )

1−γz ×Np(0,Σ
z
2 )

γz

, j ≥ 1, l = 1, . . . ,m, (10)

where Np(μ,Σ) denotes the p−dimensional multivariate normal distribution
with mean vector μ ∈ R

p and p × p positive definite covariance matrix Σ.
The covariance matrices Ση

1 and Σz
1 define the “spike” component of the prior

and are set such that define normal distributions that are highly concentrated
around zero, while Ση

2 and Σz
2 define the “slab” component of the prior and are

set such that the resulting normal distributions are less concentrated around
zero. Therefore, binary parameters γη and γz, which are common for every βη

j

and βz
j , control the predictor dependency structure of the model.

When the vector of binary variables (γη, γz) is equal to (1, 1), (0, 1), (1, 0),
or (0, 0), then the chosen model is fully dependent, single-weight, single-atom,
or predictor independent, respectively. To complete the prior for βη

j and βz
jl, we

consider

(γη, γz) ∼ π1δ(1,1) + π2δ(0,1) + π3δ(1,0) + π4δ(0,0), (11)

where πi ≥ 0 and π1+π2+π3+π4 = 1. Finally, to complete the prior specification
for the DMBPP model we assume k | λ ∼ Poisson(λ)I{k≥1}.

Posterior sampling of the DMBPP model can be based on any conditional
algorithm designed for BNP mixture models. The specific implementation em-
ployed in the simulation study and in the application was based on a finite
representation of the dependent stick-breaking process to a level N (Ishwaran
& James, 2001). We use Gibbs sampling algorithms to generate samples from
the posterior distribution. To sample the non conjugate full conditional dis-
tributions of the coefficients in the linear predictors we use the slice sampler
algorithm (Neal, 2003). We use a Metropolis-Hastings step (Tierney, 1994) to
update the degree of the polynomial. The binary parameters are sampled from
their conjugate categorical posterior distribution. More details are provided in
Appendix E. The code employed here to fit the proposed model is available in
GitHub.

6. Illustrations

In this section we illustrate the performance of the model in a simulation study
and in an application to solid waste recycling in the city of Santiago de Cali,
Colombia. In the simulation study, we show the ability of the model to estimate
the true conditional densities as well as its capacity to choose the version of
the DMBPP model (fully–dependent, single–atoms, single–weights, or indepen-
dent) that best accommodates to the complexity of the true data-generating
mechanism. In the application, we compare the performance of our proposed
model with the performance of a parametric Dirichlet regression model on a
transformed version of the data.

https://github.com/claudiawehrhahn/CompositionalRegression
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6.1. Simulation study

We consider four simulation scenarios representing varying degrees of complexity
and shapes as the predictor varies, based on mixtures of predictor-dependent
Dirichlet densities that are not particular cases of the implemented model. In
all cases, the predictor is univariate and uniformly distributed on the (0, 1)
interval. For Scenario I, both the weights and the parameters of the Dirichlet
distributions depend on the predictor. Under this scenario, for small values of
x the conditional density has one mode which splits into two and later merges
into one again as the value of the predictor increases. For Scenario II, only
the parameters of the Dirichlet densities depend on the predictor. Under this
scenario, for small values of x the conditional density has three well separated
modes, one at each corner of the simplex, which merge into two and later into
only one irregularly shaped as the value of x increases. For Scenario III only
weights depend on the predictor. Under this scenario, for small values of x the
conditional density has only one mode which splits into two and later merges
into one mode centered roughly in the middle of the simplex as the value of
x increases. Finally, Scenario IV is given by a predictor-independent Dirichlet
density. The specification of true conditional densities for Scenarios I – IV is
given in Table 1.

Table 1

Simulation Study: true conditional density functions considered in the simulation study.
Here w1(x) =

x
4−3x

, θ1(x) = (25− 20x, 5 + 25x, 3), θ2(x) = (5, 5 + 15x, 30− 17x),

θ3(x) = (5 + 9x, 30 + 9x, 3 + 9x), and x ∈ (0, 1).

Scenario f0(y | x)
I w1(x)dir(y | θ1(x)) + (1− w1(x))dir(y | θ2(x))
II 0.6 dir(y | θ1(x)) + 0.2 dir(y | θ2(x)) + 0.2 dir(y | θ3(x))
III w1(x)dir(y | (10, 12, 12)) + (1− w1(x))dir(y | (24, 6, 6))
IV dir(y | (35, 25, 40))

We consider three sample sizes, n = 250, n = 500, and n = 1, 000 for each
scenario. A Monte Carlo sample size of 100 was considered for each scenario and
sample size. Following Zellner (1983), we consider Ση

l = τηl (X
t
X)−1 and Σz

l =
τzl (X

t
X)−1, for l = 1, 2, where X denotes the design matrix without including

the intercept, τη1 and τz1 are small positive values, while τη2 and τz2 are large
positive values. In Appendix F we provide the justification for the particular
choices. Finally, we set σ2

η = σ2
z = 100. For the prior of the binary latent

variables, (γη, γz), we set π1 = 1/t2, π2 = π3 = (t− 1)/2t2, and π4 = (t− 1)/t,
with t > 1. A priori, larger values of t favor more parsimonious models. Two
prior specifications were employed by setting t = 2 (Prior I) and t = 10 (Prior
II). Under Prior I, the prior probability of the covariate independent model is
π4 = 0.50, followed by the prior probability of the fully covariate dependent
model, which is π1 = 0.25. Prior II strongly favors parsimonious models. Under
this specification, the prior probability of the covariate independent model is
π4 = 0.90, while the prior probability of its fully covariate dependent counterpart
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is only π1 = 0.01. Finally, to complete the prior specification we consider λ = 25.
A single Markov chain was generated for each simulated data set. For n = 250

and n = 500 a chain of length 110, 000 was generated and the posterior inference
was based on a reduced chain of 10, 000 samples obtained after a burn-in period
of 10, 000 and keeping 1 every 10 samples. A similar specification was considered
for n = 1, 000, but considered a burn-in period of 50, 000 samples in such cases.
To assess the performance of the proposed model in estimating the true data
generating mechanism, we compute an estimate of the integrated–L1 and L∞
distances, denoted by ÎL1 and L̂∞, respectively. Specifically, we compute

ÎL1 =
1

L

1

M

L∑
j=1

M∑
i=1

|f̂(yi | xj)− f0(yi | xj)|,

L̂∞ = max
i

max
j

|f̂(yi | xj)− f0(yi | xj)|,

where f̂(· | x) denotes the posterior mean of the conditional density, f0(· | x)
denotes the true conditional density, and {yi}Mi=1 and {xj}Lj=1 define an equally
spaced grid of Δm and X , respectively.

To assess the model’s ability to choose the version that best accommodates
to the complexity of the underlying true data-generating distribution, we select
the combination of (γη, γz) that concentrates the highest posterior probability
and compare it to the true predictor dependency structure of the simulation
scenario. Recall that (γη, γz) control which part of the model depends on the
predictor and that each of the simulation scenarios depend on the predictor in
different ways. Scenario I involves predictors in weights and in Dirichlet den-
sities, Scenario II only in Dirichlet densities, Scenario III only in weights, and
Scenario IV does not depend on predictors at all.

Table 2 shows the mean, across replicates, of the integrated–L1 distance be-
tween the true and the posterior mean for each simulation scenario, sample size,
and spike-and-slab prior. As expected, the integrated–L1 distance decreases as
the sample size increases for each simulation scenario under both spike-and-
slab priors. For small samples sizes (n = 250, 500), the smallest integrated–L1

distances are observed for Scenario III, the single–atoms true model, while for
n = 1000, the smallest integrated–L1 distance is observed for Scenario IV, the
predictor independent true model. The largest integrated–L1 distances for small
sample sizes are observed for Scenario IV, while for n = 1000 the largest dis-
tance is observed for Scenario II, the single–weights true model. The model
seems to be robust regarding the choice of the spike-and-slab prior. Similar
results are obtained when the L∞ distance is considered, which are shown in
Appendix G.

Table 3 shows the proportion of times, across Monte Carlo replicates, that
the selected predictor dependency structure of the fit model agrees with the
one of the true model. The proportion increases as the sample size increases for
each simulation scenario and spike-and-slab prior specification. Remarkably, for
Scenarios I and IV, the DMBPP model is able to choose the version of the model
that is in agreement with the predictor dependency structure of the true model
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Table 2

Mean, across Monte Carlo replicates, of the integrated L1 distance between the truth and
the posterior mean of the conditional densities for each simulation scenario, spike-and-slab

prior (Prior I and Prior II), and sample size (n).

Prior I Prior II
Scenario n = 250 n = 500 n = 1, 000 n = 250 n = 500 n = 1, 000

I 0.413 0.345 0.326 0.414 0.349 0.322
II 0.479 0.426 0.411 0.482 0.434 0.413
III 0.411 0.301 0.271 0.410 0.301 0.267
IV 0.599 0.380 0.234 0.599 0.380 0.230

Table 3

Proportion of times, across Monte Carlo replicates, in which the true predictor dependency
structure is selected for each simulation scenario, spike-and-slab prior (Prior I and Prior

II), and sample size (n).

Prior I Prior II
Scenario n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

I 1.000 1.000 1.000 1.000 1.000 1.000
II 0.440 0.670 0.870 0.990 1.000 0.980
III 0.960 0.960 0.980 0.960 0.970 0.980
IV 1.000 1.000 1.000 1.000 1.000 1.000

for every replicated data set and sample size. For Scenario III, the proportion of
times that the chosen version of the model agrees with the true model increases
from 0.96 to 0.98 as the sample size increases from 250 to 1000. The true model
for which it is most difficult to choose the version of the model that agrees with
the predictor dependency structure of the true model, is Scenario II (single–
weights model) and under Prior I. Interestingly, it seems that the ability of
the model to choose the version of the model that best fits the data is not
completely related to the capacity of the model to estimate the conditional
densities. For example, for sample sizes 250 and 500, the smallest integrated L1

mean distances are observed for Scenario III, while the binary latent variable
estimates agree with the predictor dependency structure of the true model the
most for Scenarios I and IV. Again, the results are robust regarding the model
selection prior distribution.

Figures 1 to 4 display the contour plot of the mean, across simulation, of the
posterior mean of the conditional density for selected values of the predictor,
each sample size and simulation scenario, under Prior I for (γη, γz). The results
are consistent with the previous discussion. For the different values of the pre-
dictor, the figures show how close the estimates are to the true model and how
they improve as the sample size increases.

6.2. Application to solid waste in Colombia

In this section, we analyze data about solid waste generated in a residential
area in the city of Santiago de Cali, Colombia. The data set was collected to
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Fig 1. Simulation study - Scenario I: contour plots of the true density (first row) and mean
across replicates of the posterior mean of the conditional density for n = 250 (second row),
n = 500 (third row), and n = 1000 (fourth row). The results are shown under Prior I for
(γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second column), and
x = 0.75 (third column).
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Fig 2. Simulation study - Scenario II: contour plots of the true density (first row) and mean
across replicates of the posterior mean of the conditional density for n = 250 (second row),
n = 500 (third row), and n = 1000 (fourth row). The results are shown under Prior I for
(γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second column), and
x = 0.75 (third column).
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Fig 3. Simulation study - Scenario III: contour plots of the true density (first row) and mean
across replicates of the posterior mean of the conditional density for n = 250 (second row),
n = 500 (third row), and n = 1000 (fourth row). The results are shown under Prior I for
(γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second column), and
x = 0.75 (third column).
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Fig 4. Simulation study - Scenario IV: contour plots of the true density (first row) and mean
across replicates of the posterior mean of the conditional density for n = 250 (second row),
n = 500 (third row), and n = 1000 (fourth row). The results are shown under Prior I for
(γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second column), and
x = 0.75 (third column).
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estimate the per capita daily production and characterization of solid waste in
the city. The data set contains information about 261 block sides, for which solid
waste was separated in different kinds of materials, including food, hygienic,
and others. Finally, the proportion of these materials were registered for each
block side. Additionally, the socioeconomic level of the residents in the area was
recorded including the categories “low–low”, “low”, “medium–low”, “medium”,
“medium–high”, and “high”. See Klinger et al. (2009) for more details regarding
this data set.

In this analysis, the proportion of food, hygienic solid, and other type of
waste were considered as the response vector on the 2–dimensional simplex.
The socioeconomic level was considered as a categorical covariate with a dummy
variable representation leading to p = 6 predictors. Here, we consider a model
specification similar to the one detailed in Section 5. Here we set σ2

η = σ2
z = 100

and λ = 25. We refer the reader to Appendix H for a description regarding the
selection of τηl and τzl .

A single Markov chain with 300, 000 samples was generated. Posterior infer-
ence was based on a reduced chain with 10, 000 samples obtained after a 100, 000
burn-in period and keeping 1 every 20 samples. To assess the performance of
the proposed model, we also fit a parametric Dirichlet regression (PDR) model
to the data. Due to presence of zero-coordinate vectors in the data, we trans-
form the response vectors, y, using the transformation proposed by Smithson &
Verkuilen (2006), given by y∗ = [y(n− 1)+1/(m+1)]/n, where n is the size of
the sample and m is the dimension of the simplex. Thus the parametric model
was applied to the transformed responses y∗, such that

y∗
i | xi,γ ∼ dir(γ(xi)),

where γ(xi) = (γ1(xi), . . . , γm(xi)), with log(γl(x)) = xtβl, l = 1, . . . ,m. We
complete the model specification by assuming βl ∼ Np+1(m,Σ), with m = 0,
Σ = σ2Ip+1, σ

2 = 100, and Ip being a p × p identity matrix. The models
were compared by means of their posterior predictive abilities, quantified by the
log pseudo marginal likelihood (LPML) and the widely applicable information
criterion (WAIC) (Watanabe & Opper, 2010). The LPML, developed by Geisser
& Eddy (1979), is given by

∑n
i=1 log pM (yi | Y −i), where pM (yi | Y −i) is

the posterior predictive distribution for observation yi, based on the data Y −i,
under modelM , with Y −i denoting the observed data matrix after removing the
ith observation. The pM (yi | Y −i) is also known as the conditional predictive
ordinate of observation i under model M and the method of Gelfand & Dey
(1994) was used in its computation. The WAIC is given by

WAIC = − 1

n

n∑
i=1

logEpost [pM (yi | θ)] +
1

n

n∑
i=1

V arpost [log pM (yi | θ)] , (12)

where pM (yi | θ) is the density function for observation yi, given parameter θ,
under model M , and Epost and V arpost denote the posterior mean and posterior
variance, respectively. The second term on the right hand side of expression (12)
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Fig 5. Solid waste data: Posterior mean of the conditional density. The results for the for the
DMBPP model under spike-and-slab Prior I are presented in the first and third columns. The
results for the PDR model are presented in the second and fourth columns. Panels (a) and
(b), (c) and (d), (e) and (f), (i) and (j), and (k) and (l) present the results for socioeconomic
level low-low, low, medium-low, medium, medium-high, and high, respectively. The x–axis
and y–axis denote the proportion of food and hygienic waste, respectively.

is a penalty for overfitting. In what follows, we compute WAIC as described by
Gelman et al. (2013), page 173, and report −nWAIC. Models with greater
values of LPML and −nWAIC are to be preferred. For the parametric model,
we consider the transformed data yi = y∗

i in the computation of the LPML and
WAIC criteria.

Figure 5 displays the conditional density estimates for the DMBPP model
and the PDR model, for each socioeconomic level. The results for the DMBPP
model re shown under spike-and-slab Prior I. They suggest that different so-
cioeconomic levels show different recycling behaviors and the advantages of the
nonparametric model are evident. The DMBPP model shows to be more flexible
in estimating the conditional densities than the parametric model for varying
values of the predictor, specially when the socioeconomic levels are “medium”
and “high”. We highlight that the parametric fit was only possible due to a
pre-transformation of the data.
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The LPML for the DMBPP and PDR model was 778 and 649, respectively.
The −nWAIC the DMBPP and PDR model was 778 and 649 was 778 and
650, respectively. These goodness-of-fit criteria support and agree in that the
DMBPP model provides a better fit for this data set than the PDR model. For
DMBPP model, the posterior probability of (γη, γz) = (0, 0) was approximately
equal to zero, which is a formal test for the hypothesis that the densities for
solid waste are the same across the socioeconomic levels. A probability close
to zero is interpreted as little evidence in favor of this hypothesis. Additional
results for the DMBPP model under spike-and-slap Prior II can be found in
Appendix I, which are robust regarding the prior specification.

7. Discussion

We have proposed a novel and general class of probability models for sets of
predictor-dependent probability distributions supported on simplex spaces. The
proposal corresponds to an extension of dependent univariate Bernstein polyno-
mial processes proposed by Barrientos et al. (2017) and is based on the modified
class of MBP proposed by Barrientos et al. (2015).

The proposed model class has appealing theoretical properties such as full
support, well behaved correlation function, and consistent posterior distribu-
tion. The incorporation of a spike-and-slab prior for the predictor dependent
stochastic processes involved in the model adapts well to the complexity of the
underlying data-generating distribution. The approach also allows the user to
formally test whether all predictors are simultaneously related to the composi-
tional response. The study of the theoretical properties of the model selection
component of our approach is the subject of ongoing research.

Appendix A: Dealing with compositional data and zero-valued
entries

In this appendix, we explain how the proposed approach is able to handle com-
positional observations with zero-valued entries. To simplify the discussion, we
limit ourselves to the scenario where no predictors are present, but the argu-
ments extend naturally to the predictor-dependent case. In some circumstances,
such as in the Colombian solid waste application, some compositional obser-
vations may have entries equal to zero. As a result, analysts must determine
whether such zeros are systematic and, if so, whether they should be handled
using a zero-inflated modeling approach. Analysts might use standard modeling
techniques if there is no indication that the statistical model must be degener-
ated to account for zero-valued entries (as we assume throughout this paper).
Analysts should be aware that using standard modeling techniques can cause
potential problems. In what follows, we illustrate some of those potential prob-
lems in a specific, yet common, scenario.

Suppose we will model compositional data with zero-valued entries using
either a single Dirichlet distribution or a standard mixture of Dirichlet densities.
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Assume that, out of a sample of n observations y1, . . . ,yn, only the first entry
of y1 is exactly equal to zero, i.e., y1,1 = 0. For the remaining entries of y1

and all entries of y2, . . . ,yn, assume they take values on (0, 1). If we use the
Dirichlet distribution to model y1, . . . ,yn directly, we need first to notice that
the likelihood is equal to

yγ1−1
1,1 × L−y1,1 ((γ1, . . . , γm+1); (y1, . . . ,yn)) ,

where

L−y1,1 ((γ1, . . . , γm+1); (y1, . . . ,yn))

=

⎧⎪⎨⎪⎩ Γ(γ1 + . . .+ γm+1)

Γ(γ1)× . . .× Γ(γm+1)
yγ2−1
1,2 × . . .× yγm−1

1,m

⎛⎝1−
m∑
j=1

yi,j

⎞⎠γm+1−1
⎫⎪⎬⎪⎭

×
n∏

i=2

dir (yi | (γ1, . . . , γm+1)) ,

and

dir (yi | (γ1, . . . , γm+1)) =

Γ(γ1 + . . .+ γm+1)

Γ(γ1)× . . .× Γ(γm+1)
yγ1−1
i,1 × . . .× yγm−1

i,m (1−
m∑
j=1

yi,j)
γm+1−1.

Since we are assuming that y1,1 = 0, we have to consider the following three
cases:

- If γ1 < 1, then (γ1, . . . , γm+1) �→ yγ1−1
1,1 L−y1,1 ((γ1, . . . , γm+1); (y1, . . . ,yn)) ≡

∞.

- If γ1 > 1, then (γ1, . . . , γm+1) �→ yγ1−1
1,1 L−y1,1 ((γ1, . . . , γm+1); (y1, . . . ,yn)) ≡ 0.

- If γ1 = 1, then (γ1, . . . , γm+1) �→ yγ1−1
1,1 L−y1,1 ((γ1, . . . , γm+1); (y1, . . . ,yn)) is

not constant and will take values on (0,∞). For this case, we adopt the conven-
tion that 00 = 1.

Notice that, only in the case γ1 = 1, we will be able to make inferences about

(γ2, . . . , γm+1).

Since the constraint γ1 = 1 is entirely driven by the fact that the first entry of
y1 is equal to zero, adopting this modeling approach is inadequate.

We might also consider using a mixture model for it is a more general and
flexible approach. For example, consider a standard DP mixture of Dirichlet
densities of the form

∞∑
j=1

wjdir
(
· | γj = (γ1,j , . . . , γm+1,j)

)
.

Using this mixture model will lead to issues similar to those described above if
the prior distribution for the atoms, γj , is absolutely continuous with respect
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to Lebesgue. We could overcome this issue if the prior distribution for γj is
such that P{γ1,j = 1} > 0, which will allow making inferences while remaining
flexible. For a more general scenario where we assume that zeros might occur
in multiple entries and observations, we will be able to make inferences as long
as the assumption P{γl,j = 1 : j ∈ J } > 0 is met for each J ⊆ {1, . . . ,m}.
This particular assumption is naturally met (under mild conditions) when using
the class of mixture of Dirichlet densities derived from the MBP described in
Section 2, that is

∑∞
j=1 wjdir (· | α(k, �kθj�)). The assumption is met when the

prior for θj has full support on Δ0
m or, equivalently, the prior for θj has positive

density (with respect to Lebesgue) on Δ0
m.

Appendix B: Formal definition of special cases of the general model

Definition 2. Let V and H be two sets of functions as defined before. Let
F = {Fx : x ∈ X } be a P (Δm)-valued stochastic process such that:

(i) v1, v2, . . ., are independent [0, 1]-valued random variables with common dis-
tribution indexed by a finite-dimensional parameter Ψv.

(ii) zj = {zj(x) : x ∈ X }, j ≥ 1, are independent and identically distributed
real-valued stochastic processes with law indexed by a finite-dimensional
parameter Ψz.

(iii) k ∈ N is a discrete random variable with distribution indexed by a finite-
dimensional parameter λ.

(iv) For every x ∈ X , the density function of Fx, w.r.t. Lebesgue measure, is
given by the following dependent mixture of Dirichlet densities,

fx(·) =
∞∑
j=1

wjdir (· | α(k, �kθj(x)�)) , (13)

where α (k, j) = (j, k +m− ‖j‖1), θj(x) and �kθj(x)� are defined as in
Definition 1, and wj = vj

∏
l<j [1− vl].

The process F = {Fx : x ∈ X } will be referred to as single–weight dependent
MBP process with parameters (λ,Ψv, Ψz,H ), and denoted by wDMBPP(λ,Ψv,
Ψz,H ) and wDMBPP for short.

Definition 3. Let V and H be two sets of functions as defined before. Let
F = {F (x, · ) : x ∈ X } be a P (Δm)-valued stochastic process such that:

(i) ηj = {ηj(x) : x ∈ X }, j ≥ 1, are independent and identically distributed
real-valued stochastic processes with law indexed by a finite-dimensional
parameter Ψη.

(ii) θ1,θ2, . . ., are independent Δ0
m-valued random vectors with common dis-

tribution indexed by a finite-dimensional parameter Ψθ.
(iii) k ∈ N is a discrete random variable with distribution indexed by a finite-

dimensional parameter λ.
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(iv) For every x ∈ X , the density function of Fx, w.r.t. Lebesgue measure, is
given by the following dependent mixture of Dirichlet densities,

fx(·) =
∞∑
j=1

wj(x)dir (· | α(k, �kθj�)) , (14)

where wj(x) are defined as in Definition 1 and

�kθj� = (�kθj1�, . . . , �kθjm�) .
The process F = {Fx : x ∈ X } will be referred to as single–atoms dependent
MBP process with parameters (λ,Ψη,V ,Ψθ), and denoted by θDMBPP(λ,Ψη,
V ,Ψθ) and θDMBPP for short.

Appendix C: Topological bases and sub-bases

A sub-base for the weak product topology for the space

P (Δm)
X

=
∏

x∈X

P (Δm) ,

is given by sets of the form BW
f,ε,x0

({Qx : x ∈ X }) =
∏

x∈X ΔW
f,ε,x0

(Qx), where

ΔW
f,ε,x0

(Qx) =

{
P (Δm) , if x �= x0,{
M x ∈ P (Δm) :

∣∣∣∫Δm
f dM x −

∫
Δm

f dQx

∣∣∣ < ε
}
, if x = x0,

for every f : Δm −→ R bounded continuous function, ε > 0, x0 ∈ X and
Qx ∈ P (Δm).

Let D (Δm) ⊂ P (Δm) be the space of all probability measures defined on
Δm that are absolutely continuous w.r.t. Lebesgue measure and with continuous
density function. A sub-base for the L∞ product topology for the space

D (Δm)
X

=
∏

x∈X

D (Δm)

is given by sets of the form BL∞
ε,x0

({Qx : x ∈ X }) =
∏

x∈X ΔL∞
ε,x0

(Qx), where

ΔL∞
ε,x0

(Qx) =

{
D (Δm) , if x �= x0,{
M x ∈ D (Δm) : supy∈Δm

| mx(y)− qx(y) | < ε
}
, if x = x0,

for every ε > 0, x0 ∈ X and Qx ∈ D (Δm), where mx and qx denote the
density function of M x and Qx, respectively.

Now, assume that the predictor vector x contains only continuous predictors
and that the predictor space X is compact. A base for the L∞ topology for the
space D (Δm)

X
=
∏

x∈X D (Δm), is given by sets of the form

BL∞
ε ({Qx : x ∈ X }) =

=

{
{M x : x ∈ X } ∈ D (Δm)

X
: sup
x∈X

sup
y∈Δm

| mx(y)− qx(y) | < ε

}
,

for every ε > 0 and Qx ∈ D (Δm).
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Appendix D: Proof of theoretical results

D.1. Proof of Theorem 1

The proof of this theorem follows the same reasoning as the proof of Theorem
1 in Barrientos et al. (2015). First, we re-define the three versions of the model
by means of a mapping S and the measurability of the process is then proved
by showing that the mapping S is continuous. This is stated in Lemma 1 be-
low, which is an extension of Lemma B.1.1 in the supplementary material of
Barrientos et al. (2015).

The proofs of parts (i), (ii), and (iii) in Lemma 1 follow the same reasoning
as the corresponding proofs for Lemma B.1.1. The main difference in the follow-
ing proofs comes from the number of weights that the multivariate Bernstein
polynomial on the m−dimensional symplex has. For completeness, the proof of
Theorem 1 is provided below.

Let T, Tθ and Tw be dependent stick-breaking processes of the form:

• T = {Tx : x ∈ X }, where Tx(ω, ·) =
∑∞

j=1 wj(x, ω)δθj(x,ω) (·), where
wj(x, ω) and θj(x, ω) are defined as in Definition 1.

• Tθ = {T θ
x : x ∈ X }, where T θ

x(ω, ·) =
∑∞

j=1 wj(x, ω)δθj(ω) (·), where
wj(x, ω) and θj(ω) are defined as in Definition 2.

• Tw = {Tw
x : x ∈ X }, where Tw

x (ω, ·) =
∑∞

j=1 wj(ω)δθj(x,ω) (·), where
wj(ω) and θj(x, ω) are defined as in Definition 3.

Let S be a mapping defined on N× P(Δ̃m)X of the form

S(k0,Q) := {H(k0,Qx) : x ∈ X }, (15)

where k0 ∈ N,Q = {Qx : x ∈ X } ∈ P(Δ̃m)X andH(k0,Qx) is the probability
measure associated to the Bernstein polynomial of degree k0 of the measure Qx.
F can be expressed as S(k,T), S(k,Tθ) or S(k,Tw), when F corresponds to
DMBPP(λ,Ψη,Ψz,V ,H ), θDMBPP(λ,Ψη,V ,Ψθ) and wDMBPP(λ,Ψv,Ψz,
H ), respectively. Since T, Tθ and Tw are well-defined stochastic processes, to
prove the measurability of F , it suffices to prove the measurability of S which
is proven by showing that mapping S is continuous. For this, it is necessary to
consider some topologies in the space where the mapping is valued and defined.
This topologies and spaces are described below.

Let T1 be the weak product topology for the space P (Δm)
X

and let T2

and T3 be the L∞ product topology and L∞ topology for the space D (Δm)
X
,

respectively. A sub-base for the weak product topology, T4, for the space
P(Δ̃m)X =

∏
x∈X P(Δ̃m) is given by sets of the form B̃W

f,ε,x0
(Q) =∏

x∈X Δ̃W
f,ε,x0

(Qx), where Δ̃W
f,ε,x0

(Qx) = ΔW
f,ε,x0

(Qx)
⋂

P(Δ̃m), with Q ∈
P (Δm)

X
, f : Δm −→ R a bounded continuous function, ε > 0 and x0 ∈ X . A

sub-base for the product topology, L1, for the space N×P(Δ̃m)X is given by

sets of the form BD×W
f,ε,x0

(Q) =
∏

x∈X

[
{k0} × Δ̃W

f,ε,x0
(Qx)

]
. Finally, a sub-base
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for the product topology, L2, for the space N × P(Δ̃m)X is given by sets of
the form BD×L∞

ε,N (k0,Q) = {k0} × Δ̃L∞
ε,N (Q), where Δ̃L∞

ε,N (Q) is given by{
{Mx : x ∈ X } ∈ P(Δ̃m)X : max

j∈H0
N,m

sup
x∈X

|Mx(Aj,N )−Qx(Aj,N )| < ε

}
, (16)

where k0 ∈ N, N ∈ N, ε > 0, Aj,N =
(
j1−1
N , j1

N

]
× . . . ,×

(
jm−1
N , jm

N

]
and Q ∈

P(Δ̃m)X .
The following lemma states that mapping S defined by expression (15), is

continuous under T1, T2 and T3 in the space where S is valued, thus ensuring
that F is measurable under B1, B2 and B3, respectively.

Lemma 1. Let S be a mapping defined as in Equation (15), then

(i) S :
(
N× P(Δ̃m)X ,L1

)
−→

(
P(Δm)X ,B1

)
,

(ii) S :
(
N× P(Δ̃m)X ,L1

)
−→

(
D(Δm)X ,B2

)
,

(iii) S :
(
N× P(Δ̃m)X ,L2

)
−→

(
D(Δm)X ,B3

)
,

are continuous.

The proof of each part of Lemma 1 is given below:

(i) Let Q ∈ P(Δ̃m)X , k0 ∈ N and

V (S(k0,Q); ε) =
L⋂

i=1

Ki⋂
j=1

BW
fij ,ε,xi

(S(k0,Q)) ,

where L, Ki, i ∈ {1, . . . , L}, are positive integers, fij , j = 1, . . . ,Ki, i =
1, . . . , L, are bounded continuous functions, ε > 0 and (x1, . . . ,xL) ∈ X L.
The proof is based on finding and open set U ∈ L1 such that (k0,Q) ∈ U
and S (U) ⊆ V (S(k0,Q); ε).
Notice that for every M = {Mx : x ∈ X } ∈ P(Δ̃m)X ,∣∣∣∣∫

Δm

fij dH(k0,Mxi)−
∫
Δm

fij dH(k0,Qxi
)

∣∣∣∣
≤
∫
Δm

|fij(y)|
∑

j∈H0
k0,m

∣∣Mxi
(Aj,k0)−Qxi

(Aj,k0)
∣∣dir ( y | α(k0, j)) ,

≤ M0(k0 +m− 1)!

m!(k0 − 1)!
Nk0(M,Q),

where α (k, j) = (j, k +m− ‖j‖1) and

Nk0(M,Q) = max
i∈{1,...,L}

max
j∈H0

k0,m

∣∣Mxi
(Aj,k0)−Qxi

(Aj,k0)
∣∣ ,

M0 = maxi∈{1,...,L} maxj∈{1,...,Ki} supy∈Δm
|fij(y)|, || · ||1 denotes the

l1–norm, and Aj,k0 =
(

j1−1
k0

, j1
k0

]
× . . . ×

(
jm−1
k0

, jm
k0

]
. From Lemma 1 in
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Barrientos et al. (2012), there exists Q′ = {Q ′
x : x ∈ X } ∈ P(Δ̃m)X

such that for every x ∈ X , Q ′
x is absolutely continuous w.r.t Lebesgue

measure and such that,

Nk0(Q′,Q) ≤ m!(k0 − 1)!

2M0(k0 +m− 1)!
ε.

Since Q ′
xi
, i = 1, . . . , L, is an absolutely continuous measure, w.r.t.

Lebesgue measure, then Aj,k0 , j ∈ H0
k0,m

, are sets of Q ′
xi

continuity, i.e.,

the boundaries of Aj,k0 have null Q ′
xi

measure, for every j ∈ H0
k0,m

and
every i = 1, . . . , L. Thus, the set

U ′(Q′; ε̃) =

L⋂
i=1

{
Mxi ∈ P(Δ̃m) : max

j∈H0
k0,m

∣∣Mxi (Aj,k0)−Q ′
xi

(Aj,k0)
∣∣ ≤ ε̃

}
,

=
{
M ∈ P(Δ̃m)X : Nk0(M,Q′) ≤ ε̃

}
, (17)

belongs to T4. Notice that if ε̃ = m!(k0−1)!
2M0(k0+m−1)!ε, then∣∣∣∣∫

Δm

fij dH(k0,Mxi)−
∫
Δm

fij dH(k0,Qxi
)

∣∣∣∣ < ε,

where H(k0,Qx) is the probability measure associated to the multivariate
Bernstein polynomial of measure Qx of degree k0. Therefore, if U = {k0}×
U ′(Q′; ε̃), then U ∈ L1, (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q), ε), which
completes the proof of (i) in Lemma 1.

(ii) Let Q ∈ P(Δ̃m)X , k0 ∈ N and V (S(k0,Q); ε) =
⋂L

i=1 B
L∞
ε,xi

(S(k0,Q)),

where L is a positive integer, ε > 0 and (x1, . . . ,xL) ∈ X L. The proof
is based on finding and open set U ∈ L1 such that (k0,Q) ∈ U and
S (U) ⊆ V (S(k0,Q); ε).
Notice that for every M = {Mx : x ∈ X } ∈ P(Δ̃m)X ,

sup
y∈Δm

∣∣b(y | k0,Mxi)− b(y | k0,Qxi
)
∣∣

≤ sup
y∈Δm

∑
j∈H0

k0,m

∣∣Mxi
(Aj,k0)−Qxi

(Aj,k0)
∣∣ dir ( y | α(k0, j)) ,

≤ M0(k0 +m− 1)!

m!(k0 − 1)!
Nk0(M,Q),

whereM0 = maxj∈H0
k0,m

supy∈Δm
dir ( y | j, k0 +m− ‖j‖1), b(y | k0,Mxi)

stands for the density function of the multivariate Bernstein polynomial
of function Mxi of degree k0, and Nk0(M,Q) and Aj,k0 are defined as
in part (i) of the proof. By the same arguments from part (i), it follows
that if U = {k0} × U ′(Q′; ε̃), where U ′(Q′; ε̃) is defined as in (17), with

ε̃ = m!(k0−1)!
2M0(k0+m−1)!ε, then U ∈ L1, (k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q), ε),

which completes the proof of (ii) in Lemma 1.
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(iii) Let Q ∈ P(Δ̃m)X , k0 ∈ N and V (S(k0,Q); ε) = BL∞
ε (S(k0,Q)). The

proof is based on finding and open set U ∈ L2 such that (k0,Q) ∈ U and
S (U) ⊆ V (S(k0,Q); ε).
Notice that for every M = {Mx : x ∈ X } ∈ P(Δ̃m)X ,

sup
x∈X

sup
y∈Δm

|b(y | k0,Mx)− b(y | k0,Qx)|

≤ M0(k0 +m− 1)!

m!(k0 − 1)!
sup
x∈X

max
j∈H0

k0,m

|Mx (Aj,k0)−Qx (Aj,k0) |,

where M0 = maxj∈H0
k0,m

supy∈Δm
, dir ( y | j, k0 +m− ‖j‖1), and Aj,k0

are defined as in the proof of (i). Then, if U = {k0} × Δ̃L∞
ε̃,k0

(Q), where

Δ̃L∞
ε̃,k0

(Q) is defined as in (16), with ε̃ = m!(k0−1)!
M0(k0+m−1)!ε, then U ∈ L2,

(k0,Q) ∈ U and S (U) ⊆ V (S(k0,Q), ε), which completes the proof of
(iii) in Lemma 1.

D.2. Proof of Theorem 2

Proving that P (Δm)
X

and D (Δm)
X

are the support of F under the weak
product and L∞ product topology, are direct extensions of the proofs of Theo-
rems 2 and 3 in Barrientos et al. (2017), respectively. For completeness, the proof

of this theorem is provided in what follows. First, we prove that P (Δm)
X

is the

support of F under the weak product topology. Then we prove that D (Δm)
X

is
the support of F under the L∞ product topology. In each case all three versions
of F are considered.

To prove that P (Δm)
X

is the support of F under the weak product topol-
ogy, it suffices to prove that any open set of the weak product topology has posi-
tive P ◦ F−1–measure. LetQ ∈ P(Δm)X and V (Q; ε) =

⋂L
i=1

⋂Ki

j=1 B
W
fij ,ε,xi

(Q),
where L, Ki, i = 1, . . . , L, are positive integers, fij , j = 1, . . . ,Ki, i = 1, . . . , L,
are bounded continuous functions, ε > 0 and (x1, . . . ,xL) ∈ X L. From Lemma
1 in Barrientos et al. (2012), there exists Q′ = {Q ′

x : x ∈ X } ∈ P(Δm)X ,
such that for every x ∈ X , Q ′

x is absolutely continuous w.r.t Lebesgue measure
and such that Q ′

x = Qx if x �= xi and∣∣∣∣∫
Δm

fijQxi
−
∫
Δm

fijdQ
′
xi

∣∣∣∣ < ε

2
,

if x = xi, i = 1, . . . , L. Then, V (Q′; ε/2) ⊂ V (Q; ε). Since for every x ∈ X ,
H(k,Q ′

x) converges weakly to Q ′
x as k → ∞, for every ε > 0, there exists large

enough k0 ∈ N such that∣∣∣∣∫
Δm

fijdH(k0,Q
′
xi
)−
∫
Δm

fijdQ
′
xi

∣∣∣∣ < ε

4
,

then V (S(k0,Q′); ε/4) ⊂ V (Q′; ε/2). By Lemma 1 part (i), there exists U =

{k0} × U ′(Q′; ε̃) ∈ L1, with ε̃ = m!(k0−1)!
4M0(k0+m−1)!ε, k0 ∈ N and U ′(Q′; ε̃) ∈ T4,
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such that S(U) ⊂ V (S(k0,Q′); ε/4). Thus, to prove this theorem, it suffices
to prove that P ◦ F−1(V (Q; ε)) ≥ P{ω ∈ Ω : (k(ω),T) ∈ U} > 0, where
U = {k0}×U ′(Q′; ε̃), with U ′(Q′; ε̃) defined as in (17) and T is either T, Tθ or

Tw. Before considering each case, note that there are N = (k0+m−1)!
m!(k0−1)! disjoint

sets in H0
k0,m

. Each of these sets is denoted by A[l],N , l = 1, . . . , N .

When T is T, the assumption that the stochastic processes ηj and zj are
well defined and have full support implies that

P{ω ∈ Ω : (k(ω),T) ∈ U} ≥ P{ω ∈ Ω : k(ω) = k0}

× P

{
ω ∈ Ω : max

i∈{1,...,L}
max

j∈H0
k0,m

∣∣Mxi
(Aj,k0)−Q ′

xi
(Aj,k0)

∣∣ ≤ ε̃

}
,

≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P
{
ω ∈ Ω : (θl(x1, ω), . . . ,θl(xL, ω)) ∈ AL

[l],N

}
× P

{
ω ∈ Ω : (Vl(x1, ω), . . . , Vl(xL, ω)) ∈ BL

l , l ∈ {1, . . . , N}
}

×
∞∏

l=N+1

P
{
ω ∈ Ω : (θl(x1, ω), . . . ,θl(xL, ω)) ∈ Δ̃L

m

}
×

∞∏
l=N+1

P
{
ω ∈ Ω : (Vl(x1, ω), . . . , Vl(xL, ω)) ∈ [0, 1]L

}
,

> 0,

where

BL
1 =

L⊗
i=1

{
Q ′

xi
(A[1],N )− ε̃

4(N − 1)
; Q ′

xi
(A[1],N ) +

ε̃

4(N − 1)

}
,

BL
l =

L⊗
i=1

{
Q ′

xi
(A[l],N )− ε̃

4(N−1)∏
l1<l[1− Vl1(xi, ω)]

;
Q ′

xi
(A[l],N ) + ε̃

4(N−1)∏
l1<l[1− Vl1(xi, ω)]

}
, l = 2, . . . , N − 1,

BL
N =

L⊗
i=1

{
Q ′

xi
(A[N ],N )− ε̃

3∏
l1<N [1− Vl1(xi, ω)]

;
Q ′

xi
(A[N ],N )− ε̃

4∏
l1<N [1− Vl1(xi, ω)]

}
,

AL
[l],N =

⊗L
i=1 A[l],N , l = 1, . . . , N , Δ̃L

m =
⊗L

i=1 Δ̃d and [0, 1]L =
⊗L

i=1[0, 1].

This completes the proof that F considered as DMBPP(λ,Ψη,Ψz,V ,H ) has
weak product support.

When T is Tθ, the assumption that the stochastic processes ηj and the
random vectors θj are well defined and have full support imply that

P{ω ∈ Ω : (k(ω),Tθ) ∈ U} ≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P
{
ω ∈ Ω : (θl(ω), . . . ,θl(ω)) ∈ AL

[l],N

}
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× P
{
ω ∈ Ω : (Vl(x1, ω), . . . , Vl(xL, ω)) ∈ BL

l , l ∈ {1, . . . , N}
}
,

> 0,

where BL
1 , B

L
l , l = 2, . . . , N − 1, BL

N and AL
[l],N , l = 1, . . . , N , are defined as

above. This completes the proof that F considered as θDMBPP(λ,Ψz,V ,Ψθ)
has weak product support.

Finally, when T is Tw. Since Δm is a separable space and Δ̃m is dense in
Δm, then the space of measures whose support points are finite subsets of Δ̃m

is dense in P (Δm) (Parthasarathy, 1967). Then, for each x ∈ X , there exists

a probability measure Q̃x(·) =
∑R

j=1 w̃jδθ̃j(x)
(·), defined on Δ̃m, where R is an

integer, w̃j ∈ [0, 1], j = 1, . . . , R,
∑R

j=1 w̃j = 1, and θ̃j(x) ∈ Δ̃m are continuous

functions of x, j = 1, . . . , R, such that, for every x ∈ X , j ∈ H0
k0,m

,∣∣∣Q̃x(Aj,k0)−Q ′
x(Aj,k0)

∣∣∣ < ε̃

2
.

Then U ′(Q̃ ; ε̃/2) ⊂ U ′ (Q ′; ε̃
)
, where U ′(Q; ε) is defined as in (17). Thus, it

suffices to prove that

P
{
ω ∈ Ω : (k(ω),Tw) ∈ {k0} × U ′(Q̃ ; ε̃/2)

}
> 0.

Consider
{
Ã[l̃],M

}M

l̃=1
, a finer partition of H0

k0,m
than

{
A[l],N

}N
l=1

, such that

A[1],N =
⋃n1

l̃=1
Ã[l̃],M andA[l],N =

⋃nl

l̃=nl−1+1
Ãl̃,M , l = 1, . . . , N , where

∑N
l=1 nl =

M . Then, the assumption that the stochastic processes zj and the random vari-
ables vj are well defined and have full support imply that

P{ω ∈ Ω : (k(ω),Tw) ∈ U} ≥ P{ω ∈ Ω : k(ω) = k0}

× P
{
ω ∈ Ω :

(

k0θ1(xi, ω)� − 
k0θ̃j(xi)�

)
= 0,m = 1, . . . , L, j = 1, . . . , n1

}
×

N∏
l=2

P
{
ω ∈ Ω :

(

k0θl(xi, ω)� − 
k0θ̃j(xi)�

)
= 0, i = 1, . . . , L, j = nl−1 + 1, . . . , nl

}
× P

{
ω ∈ Ω : vl(ω) ∈ BL

l , l = 1, . . . , N
}
,

> 0,

where

BL
1 =

{
n1∑
j=1

w̃j −
ε̃

8(N − 1)
;

n1∑
j=1

w̃j +
ε̃

8(N − 1)

}
,

BL
l =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

nl∑
j=nl−1+1

w̃j −
ε̃

8(N − 1)∏
l1<l

[1− Vl1(ω)]
;

nl∑
j=nl−1+1

w̃j +
ε̃

8(N − 1)∏
l1<l

[1− Vl1(ω)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, l = 2, . . . , N − 1,
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BL
N =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1−

nN−1∑
j=1

w̃j −
ε̃

6∏
l1<N

[1− Vl1(ω)]
;

1−
nN−1∑
j=1

w̃j −
ε̃

8∏
l1<N

[1− Vl1(ω)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

which completes the proof that F considered as wDMBPP(λ,Ψv,Ψz,H ) has

weak product support. Thus the proof that P (Δm)
X

is the support of F under
the weak product topology is completed.

Now we will prove that D (Δm)
X

is the support of F under the L∞ product
toplogy. Note that it suffices to prove that any open set of the L∞ product
topology has positive P ◦ F−1–measure. Let Q ∈ D(Δm)X and V (Q; ε) =⋂L

i=1 Δ
L∞
ε,xi

(Q), where L is a positive integer, ε > 0, and (x1, . . . ,xL) ∈ X L.
Recall that for every x ∈ X , Qx ∈ D(Δm) is an absolutely continuous mea-
sures, w.r.t. Lebesgue measure, with continuous density, qx. By Theorem 1 in
Barrientos et al. (2015), for every ε > 0, there exists large enough k0 ∈ N, such
that for every x ∈ X ,

sup
y∈Δm

|b(y | k0,Qx)− qx(y)| <
ε

2
,

where b(y | k,Qx) stands for the density function of the multivariate Bern-
stein polynomial of degree k of function Qx. Then V (S(k0,Q); ε/2) ⊂ V (Q; ε).
By Lemma 1 part (ii), there exists U = {k0} × U ′(Q′; ε̃) ∈ L1, with ε̃ =

m!(k0−1)!
2M0(k0+m−1)!ε, k0 ∈ N and U ′(Q′; ε̃) ∈ T4, such that S(U) ⊂ V (S(k0,Q); ε/2).

In analogy with the weak product support proof, it suffices to prove that P ◦
F−1(V (Q; ε)) ≥ P{ω ∈ Ω : (k(ω),T) ∈ {k0} × U ′(Q; ε̃)} > 0, where T is either
T, Tθ or Tw. By the same arguments used to prove the weak product support
of F , it follows that P ◦ F−1(V (Q; ε)) > 0, when F is considered as DMBPP,

θDMBPP, or wDMBPP. This completes the proof that D (Δm)
X

is the sup-
port of F under the L∞ product topology, and thus completes the proof of the
theorem.

D.3. Proof of Theorem 3

The proof of Theorem 3 follows the same reasoning of the proof of Theorem
4 in Barrientos et al. (2017). First, we state and prove Lemma 2 below, which
is used in the proof of this theorem and is an extension of Lemma B.4.1 in
the supplementary material of Barrientos et al. (2017), and then we prove that
D̃(Δm)X is contained in the support of F under the L∞ topology.

Lemma 2. Let {Qx : x ∈ X } ∈ D̃(Δm)X be an absolutely continuous measure,
w.r.t. Lebesgue measure, such that the mapping (x,y) �→ qx(y) is continuous,
and consider X a compact space on R

p. Denote bk,Qx
(y), the density function,

w.r.t. Lebesgue measure, of the multivariate Bernstein polynomial of degree k
of function Qx. Then for every ε > 0, there exists k0 ∈ N such that for every
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k ≥ k0,

sup
x∈X

sup
y∈Δm

| b(y | k,Qx)− qx(y) | < ε.

Proof of Lemma 2

Without loss of generality, consider X = [0, 1]p, and a uniform marginal distri-
bution for X on X . Then, qx(y) denotes a joint density function on Δm ×X .
Note that b(y | k,Qx) can be written as

b(y | k,Qx) =
∑

j∈H0
k,m

[∫
Aj,k

qx(y)dy

]
× dir(y | α(k, j)).

Now, consider r ∈ N, l = (l1, . . . , lr), where ls ∈ N, s = 1, . . . , r, are positive
integers, and define

pk,l,Qx
(y) =

∑
j∈H0

k,m

l1∑
i1=1

. . .

lr∑
ir=1

[∫
Bi1

. . .

∫
Bir

∫
Aj,k

qx(y)dydxr . . . dx1

]

×
r∏

s=1

β(xs | as, bs)dir(y | α(k, j)),

where Bis =
(

is−1
ls

, is
ls

]
, as = is, bs = ls−is+1, s = 1, . . . , r, and β(· | a, b) stands

for a beta density with parameters a and b. Since (x,y) �→ qx(y) is a continuous
mapping, it is easy to show that pk,l,Qx

(y) can uniformly approximate any
continuous density function defined on Δm × X . Thus, every k > k0, ls > ls,0,
s = 1, . . . , r, it follows that

sup
x∈X

sup
y∈Δm

|pk,l,Qx
(y)− qx(y)| < ε/2.

Now, noting that

l1∑
i1=1

. . .

lr∑
ir=1

[∫
Bi1

. . .

∫
Bir

∫
Aj,k

qx(y)dy dxr . . . dx1

]
×

r∏
s=1

β(xs | as, bs), (18)

is the density function of the multivariate Bernstein polynomial of degree l1, . . .,
lr, of the mapping

x �→
∫
Aj,k

qx(y)d y,

defined on X , it follows that (18) converges uniformly to
∫
Aj,k

qx(y)dy, as

(l1, . . . , lr) → ∞, component-wise. Therefore, for every ls > ls,1, s = 1, . . . , r,

sup
x∈X

sup
y∈Δm

|b(y | k,Qx)− pk,l,Qx
(y)| <

∑
j∈H0

k,m

ε̃

2
dir(y | α(k, j)) < ε

2
,
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where ε̃ = m!(k−1)!
M0(k+m−1)!ε, withM0 = maxj∈H0

k,m
supy∈Δm

dir(y | α(k, j)). Finally,
for k > k0, ls > max{ls,0, ls,1}, s = 1, . . . , r, and an application of the triangle
inequality, it follows that

sup
x∈X

sup
y∈Δm

|b(y | k,Qx)− qx(y)| < ε,

which completes to proof of the lemma. �
Now, note that to prove that D̃(Δm)X is contained in the support of F un-

der the L∞ topology, it suffices to prove that any open set of the L∞ topology
has positive P ◦ F−1–measure. Let Q ∈ D̃(Δm)X and V (Q; ε) = BL∞

ε (Q),
ε > 0. Recall that X is compact, and Qx ∈ D̃(Δm) is an absolutely continu-
ous measures, w.r.t. Lebesgue measure, with continuous density, qx, sucth that
(x,y) �→ qx(y) is continuous. From Lemma 2, there exists large enough k0, such
that,

sup
x∈X

sup
y∈Δm

|b(y | k,Qx)− qx(y)| <
ε

2
,

where bp(y | k,Qx) stands for the density function of the multivariate Bern-
stein polynomial of function Qx of degree k. Then, V (S(k0,Q); ε/2) ⊂ V (Q; ε).
By Lemma 1 part (iii), there exists U = {k0} × Δ̃L∞

ε̃,k0
(Q) ∈ L2, with ε̃ =

m!(k0−1)!
2M0(k0+m−1)!ε, k0 ∈ N, such that S(U) ⊂ V (S(k0,Q); ε/2). Thus, to prove this

theorem, it suffices to prove that P ◦ F−1(V (Q; ε)) ≥ P{ω ∈ Ω : (k(ω),T) ∈
{k0} × U�(Q; ε̃)} > 0, where

U�(Q; ε̃) =

{
M ∈ P(Δ̃m)X : sup

x∈X
max

j∈H0
k0,m

|Mx (Aj,k0)−Qx (Aj,k0)| ≤ ε̃

}
,

(19)

and T is either T, Tθ or Tw.
First we assume that T is T and following a similar reasoning as in the proof

of Theorem 2. Since the stochastic processes ηj and zj are well defined and have
full support, A[l],N ∈ B(Δm) and the mappings

x �→ Qx(A[l],N ),

x �→
Qx(A[l],N )/2∏

l1<l [1− Vl1(x, ω)]
,

are continuous, it follows that,

P ◦ F−1(V (Q; ε))

≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P

{
ω ∈ Ω : sup

x∈X
|θl(x, ω)| ∈ A[l],N

}
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× P

{
ω ∈ Ω : sup

x∈X

∣∣V1(x, ω)−Qx(A[l],N )/2
∣∣ < ε̃

2N

}
× P

{
ω ∈ Ω : sup

x∈X

∣∣∣∣∣Vl(x, ω)−
Qx(A[l],N )/2∏

l1<l [1− Vl1(x, ω)]

∣∣∣∣∣ < ε̃

2N
, l = 2, . . . , N

}
,

> 0,

which completes the proof that when F is a DMBPP(λ,Ψη,Ψz,V ,H ) it has
full L∞ support.

Now assume that T is Tθ. Given the above proof, it is straightforward to
prove that F considered as θDMBPP(λ,Ψη,V ,Ψθ) has L∞ support.

Finally, assume that T is Tw. Consider the partition
{
A[l],N

}N
l=1

of Δm and

for each l = 1, . . . , N , consider {Xl,j}Nl

j=1, a partition of space X , Nl ∈ N,

Nl > N . Since Qx ∈ D̃(Δm) are such that (y,x) �→ qx(y) are continuous, then
(y,x) �→ Qx(y) are continuous and can be approximated by functions of the
form,

Qx(y) =

N∑
l=1

Nl∑
j=1

al,j I(x,y){Xl,j×A[l],N},

where {al,j}Nl
j=1, l = 1, . . . , N are positive constants, IA denotes the indica-

tor function of set A, x ∈ X and y ∈ Δm. Now, for each l = 1, . . . , N ,
consider the mapping (al,1, . . . , al,Nl

) �→ w̃l,j = al,j/
∑Nl

j=1 al,j and the con-

tinuous mappings x �→ θ̃l,j(x), where w̃l,j ∈ [0, 1],
∑Nl

j=1 w̃l,j = 1, θ̃l,j(x) ∈

Δ̃m and θ̃(Xl,1, . . . ,Xl,Nl
) =

{
Ã[l,j],Nl

}Nl

j=1
is a finer partition of H0

k0,m
than{

A[l],N

}N
l=1

, such that A[l],N =
⋃nl

j=1 Ã[l,j],Nl
, nl < Nl. Thus, for each l =

1, . . . , N , Qx(A[l],N ) can be written as a measure of the form

Q̃x(A[l],N ) =

Nl∑
j=1

w̃l,j I

{
θ̃l,j(x)

}
{Ã[l,j],Nl}

,

such that, for every l = 1, . . . , N ,

sup
x∈X

∣∣∣Q̃x(A[l],N )−Qx(A[l],N )
∣∣∣ < ε̃

2
.

Then U�(Q̃; ε̃/2) ⊂ U�(Q; ε̃), where U�(Q; ε) is defined as (19). Thus, in analogy
with the previous proofs, it suffices to prove that

P
{
ω ∈ Ω : (k(ω),Tw) ∈ {k0} × U�(Q̃; ε̃/2)

}
> 0.

Following a similar reasoning as in the proof of Theorem 2 when T was consid-
ered as Tw and by the assumption that the stochastic processes ηj and zj are
well defined and have full support, A[l],N ∈ B(Δm), and the mappings

x �→ k0θ̃l,j(x), j = 1, . . . , nl, l = 1, . . . , N,
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are continuous, it follows that,

P ◦ F−1(V (Q; ε))

≥ P{ω ∈ Ω : k(ω) = k0}

×
N∏
l=1

P

{
ω ∈ Ω : sup

x∈X

(

k0θl(x, ω)� − 
k0θ̃l,j(x, ω)�

)
= 0, j = 1, . . . , nl

}

× P

{
ω ∈ Ω :

∣∣∣∣∣v1(ω)−
n1∑
j=1

w̃1,j(ω)/2

∣∣∣∣∣ < ε̃

2N

}

× P

{
ω ∈ Ω :

∣∣∣∣∣vl(ω)−
∑nl

j=1 w̃l,j(ω)/2∏
l2<l [1− vl2(ω)]

∣∣∣∣∣ < ε̃

2N
, l = 2, . . . , N

}
,

> 0,

which completes the proof that when F is a wDMBPP(λ,Ψv,Ψz,H ) it has
full L∞ support. �

D.4. Proof of Theorem 4

The proof of this Theorem is an extension of the proof of Corollary 1 in Barri-
entos et al. (2017). For completeness, the proof is given below.

Let {Qx : x ∈ X } ∈ D̃ (Δm)
X

with continuous density function {qx : x ∈
X }. Here we will prove that, for every δ > 0, any Kullback-Leibler neighborhood
of {Qx : x ∈ X } has positive P ◦ F−1–measure. This is,

P

{
ω ∈ Ω : sup

x∈X
KL(qx, f(x, ω)) < δ

}
> 0,

where KL(q, p) =
∫
Δm

q(y) log
(

q(y)
p(y)

)
dy. Since X and Δm are compact sets

and (x,y) �→ qx(y) is a continuous mapping, it follows that infx∈X infy∈Δm qx(y)
exists and is bounded.

First, suppose that infx∈X infy∈Δm qx(y) > 0. If for every ε > 0,
supx∈X supy∈Δm

|f(x, ω)(y)− qx(y)| < ε, then infx∈X infy∈Δm f(x, ω)(y) > 0
and for every ε′ > 0, there exists ε > 0 such that for every x ∈ X and every
y ∈ Δm,

log

(
qx(y)

f(x, ω)(y)

)
< ε′.

This in turn implies that supx∈X KL(qx, f(x, ω)) < ε′. From Theorem 3, it
follows that

P

{
ω ∈ Ω : sup

x∈X
KL(qx, f(x, ω)) < ε′

}
> P

{
ω ∈ Ω : sup

x∈X
sup

y∈Δm

|f(x, ω)− qx| < ε

}
> 0.
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Now, suppose that infx∈X infy∈Δd
qx(y) ≈ 0. Here we use a similar reasoning

as in the proof of Theorem 2 of Petrone & Wasserman (2002). Consider a > 0
and

q1x(y) =
qx(y) ∨ a∫

Δm
qx(y) ∨ a dy

,

where a∨ b stands for the maximum between a and b. Clearly q1x(y) is a density
function such that qx(y) ≤ Cq1x(y), with C =

∫
Δm

qx(y) ∨ a dy, and is greater

than zero. Hence supx∈X KL(q1x, f(x, ω)) < ε′. Considering a and ε′ sufficiently
small, it follows that there exists ε̃ > 0, sucht that

KL(qx, f(x, ω)) ≤ (C + 1) log(C) + C

{
KL(q1x, f(x, ω)) +

√
KL(q1x, f(x, ω))

}
< ε̃.

Thus, from the first part of this proof, it follows that

P

{
ω ∈ Ω : sup

x∈X
KL(qx, f(x, ω)) < ε̃

}
≥ P

{
ω ∈ Ω : sup

x∈X
KL(q1x, f(x, ω)) < ε′

}
> 0,

which completes the proof of the theorem. �

D.5. Proof of Theorem 5

The following Lemma is used in the proofs of continuity and association struc-
ture of the processes. This Lemma states that equicontinuous families of func-
tions preserve a.s. continuity and convergence in distribution of stochastic pro-
cesses.

Lemma 3. Let F = {fx : x ∈ X } be a set of known bijective continuous
functions such that for every x ∈ X , fx : Rm −→ R

n is such that for every
a ∈ R

m, fx(a) is a continuous functions of x. In addition asume that F is an
equicontinuous family of functions of a or {x �→ fx(a) : a ∈ R

m, fx ∈ F} is
an equicontinuous family of functions of x. Let gi : X × Ω −→ R

m, i ≥ 1, be
stochastic processes defined on an appropiate probability space (Ω,A , P ).

(i) If for every i ∈ N, the stochastic process gi is P -a.s. continuous, then
x �→ fx{gi(x, ·)}, i ∈ N is P -a.s. continuous.

(ii) Consider {xj}∞j=1 ⊂ X , such that limj→∞xj = x0 ∈ X . If gi(xj , ·) L−→
gi(x0, ·), as j −→ ∞, then fxj{gi(xj , ·)} L−→ fx0{gi(x0, ·)}, as j −→ ∞.

Proof of Lemma 3

(i) First consider, for every x ∈ X , fx an equicontinuous of function of
a. Consider x0 ∈ X . Since fx(gi(x0, ω)) is a continuous function of
x, there exists δ1 > 0 such that for all x ∈ B(x0, δ1), |fx(gi(x0, ω)) −



2386 C. Wehrhahn et al.

fx0(gi(x0, ω))| < ε/2. By assumption, gi, being a P -a.s. continuous stochas-
tic process, implies that, for almost every ω ∈ Ω, and for every ε2 > 0, there
exists δ2 > 0 such that for all x ∈ B(x0, δ2), |gi(x, ω) − gi(x0, ω)| < ε2.
Hence, by the equicontinuity of fx, for almost every ω ∈ Ω, and every
gi(x, ω) ∈ B(gi(x0, ω), ε2), |fx(gi(x, ω)) − fx(gi(x0, ω))| < ε/2. Finally,
considering δ = min{δ1, δ2} which does not depend on fx, by the tri-
angle inequality, it follows that for every ω ∈ Ω and every x ∈ B(x0, δ),
|fx{gi(x, ω)}−fx0

{gi(x0, ω)}| < ε, which completes this part of the proof.
Now consider {x �→ fx(a) : a ∈ R

m, fx ∈ F} an equicontinuous family
of functions of x. The proof is similar to the previous. By the equiconti-
nuity consideration, there exists δ1 > 0 such that for every x ∈ B(x0, δ1),
|fx(gi(x, ω))−fx0(gi(x, ω))| < ε/2. Since gi is a P -a.s. continuous stochas-
tic process, for almost every ω ∈ Ω, and for every ε2 > 0, there exists δ2 > 0
such that for every x ∈ B(x0, δ2), |gi(x, ω)−gi(x0, ω)| < ε2. Due to conti-
nuity of fx as a function for a, it follows that for almost every ω ∈ Ω, and
every gi(x, ω) ∈ B(gi(x0, ω), ε2), |fx0(gi(x, ω)) − fx0(gi(x0, ω))| < ε/2.
Finally, considering δ = min{δ1, δ2} which does not depend on fx, by the
triangle inequality, it follows that for every ω ∈ Ω and every x ∈ B(x0, δ),
|fx{gi(x, ω)}− fx0

{gi(x0, ω)}| < ε, which completes the proof of the first
part of the lemma.

(ii) Consider F an equicontinuous family of functions of a or {x �→ fx(a) :
a ∈ R

m, fx ∈ F} an equicontinuous family of functions of x. If gi(xj , ·)
L−→ gi(x0, ·), as j −→ ∞, then by baby Skorohod’s theorem (Resnick,
2019), there exist random variables {g̃i(xj , ·)}j≥0 defined on the Lebesgue
probability space ([0, 1],B([0, 1]), λ), where λ is the Lebesgue measure,

such that for each fixed j ≥ 0, gi(xj , ·) d
= g̃i(xj , ·), and g̃i(xj , ·) −→

g̃i(x0, ·) λ-a.s. as j −→ ∞. Since fx(a) is a continuous function of a,

it follows that for x ∈ X , fx{gi(xj , ·)} d
= fx{g̃i(xj , ·)}. In particular,

fxj{gi(xj , ·)} d
= fxj{g̃i(xj , ·)} and fx0{gi(xj , ·)} d

= fx0{g̃i(xj , ·)}. Since
g̃i(xj , ·) −→ g̃i(x0, ·) λ-a.s. as j −→ ∞ then g̃i is λ-a.s continuous.
Therefore, by Lemma 3 part (i), fxj

{g̃i(xj , ·)} −→ fx0
{g̃i(x0, ·)} λ-a.s.

as j −→ ∞ which implies that fxj{g̃i(xj , ·)} L−→ fx0{g̃i(x0, ·)}. Thus

fxj{gi(xj , ·)} d
= fxj{g̃i(xj , ·)} L−→ fx0{g̃i(x0, ·)} d

= fx0{gi(x0, ·)},

as j −→ ∞, which completes proof of the lemma. �

Now we provide the proof of the theorem. Firstly, assume that F is a DMBPP
(λ,Ψη,Ψz,V ,H ). Since the elements of V and H are equicontinuous functions
of x, and for every i ≥ 1, the stochastic processes ηi and zi are P–a.s. continuous,
by Lemma 3 and continuous mapping theorem, it follows that x �→ vx(ηi(x, ·)),
x �→ wi(x, ·), and x �→ θi(x, · ) are P–a.s. continuous mappings. Now, the ceiling
function being continuous from the left and having a limit from the right implies
that, for i ≥ 1, and almost every ω ∈ Ω, �k(ω)θi(xl, ω)� has a limit, as l −→ ∞.
Note that there exists M > 0 such that, for every y ∈ Δm, i ≥ 1, x ∈ X and
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ω ∈ Ω, d(y | α (k(ω), �k(ω)θi(x, ω)�)) ≤ M , where α(k, j) = (j, k+m−
∑m

l=1 jl),
and that for every x ∈ X and ω ∈ Ω,

∑∞
i=1 wi(x, ω) = 1. Then by dominated

convergence theorem for series, the density, w.r.t. Lebesgue measure, of F (x, ·),
f(xl, ω), has a.s. a limit, say f̃(x0, ·). This is, for every y ∈ Δm,

Pr

{
ω ∈ Ω : lim

l→∞
f(xl, ω)(y) = f̃(x0, ω)(y),

}
= 1,

Let F̃ (x, ω) be a probability measure with density function f̃(x, ω). A direct
application of Scheffe’s theorem implies that F (xl, ·) converges in total variation
norm to F̃ (x0, ·) as l −→ ∞, a.s., this is,

P

{
ω ∈ Ω : lim

l→∞
sup

B∈B(Δm)

|F (xl, ω)(B)− F̃ (x0, ω)(B)| = 0,

}
= 1,

which completes the proof of the theorem when F is a DMBPP.
Now, assume that F is wDMBPP(λ,Ψv,Ψz,H ). This proof follows the same

arguments as in the previous part, but the arguments related to the weights of
the process are not needed. Thus, there exists a probability measure F̃ (x, ω),
such that

P

{
ω ∈ Ω : lim

l→∞
sup

B∈B(Δm)

|F (xl, ω)(B)− F̃ (x0, ω)(B)| = 0,

}
= 1,

which completes the proof of the theorem. �

D.6. Proof of Theorem 6

The proof of this theorem follows the reasoning of the proof of Theorem 6 in
Barrientos et al. (2017). For completeness the proof is stated below. Here, we
prove that for every {xl}∞l=0, with xl ∈ X , such that liml→∞ xl = x0,

P

{
ω ∈ Ω : lim

l→∞
sup

B∈B(Δm)

|F (xl, ω)(B)− F (x0, ω)(B)| = 0,

}
= 1.

By assumption, for every i ≥ 1, the stochastic processes ηi are a.s. continuous,
i.e., for every i ≥ 1, x �−→ ηi(x, ·) is an a.s. continuous function. By Lemma 3,
the equicontinuity assumption of V as a function of x, and continuous mapping
theorem, it follows that for every i ≥ 1, x �−→ wi(x, ·) is an a.s. continuous
function. Therefore for every i ≥ 1 and every {xl}∞l=0, such that liml→∞ xl = x0,
we have that liml→∞ wi(xl, ·) = wi(x0, ·), a.s.. Noting that there exists M > 0
such that, for every y ∈ Δm, i ≥ 1, and ω ∈ Ω, d(y | α (k(ω), �k(ω)θi(ω)�)) ≤
M , and that for every x ∈ X and ω ∈ Ω,

∑∞
i=1 wi(x, ω) = 1, dominated

convergence theorem for series implies that the density, w.r.t. Lebesgue measure,
of F (x, ·) is a.s. continuos, i.e., for every y ∈ Δm,

Pr

{
ω ∈ Ω : lim

l→∞
f(xl, ω)(y) = f(x0, ω)(y),

}
= 1.
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Finally, a direct application of Scheffe’s theorem implies that F (xj , ·) converges
in total variation norm to F (x0, ·) as j −→ ∞, a.s., which completes the proof
of the theorem. �

D.7. Proof of Theorem 7

Here we prove that for every y ∈ Δ̃m, every {xl}∞l=0, with xl ∈ X , such that
liml→∞ xl = x0,

E {F (xl, ·)(By)F (x0, ·)(By)} − E {F (xl, ·)(By)}E {F (x0, ·)(By)}√
V ar {F (xl, ·)(By)}V ar {F (x0, ·)(By)}

−→ 1,

as l −→ ∞, where By = [0, y1] × . . . × [0, ym], and expectations are obtained
by the law of total expectation conditioning on the degree of the polynomial.
We state the complete proof for the general definition of F . The proof for the
simplified versions of F are straightforward. In order to reduce the notation,
k(ω) is denoted by k when necessary.

First, assume that F is a DMBPP(λ,Ψη,Ψz,V ,H ). Notice that for every
y ∈ Δm and every x ∈ X ,

E {F (x, ·)(By)|k = k0} =
∑

j∈Hk0,m

E

{
F ∗(x, ·)

(
j

k

)
|k = k0

}
Mult(j | β(k0,y)),

where Hk,m = {(j1, . . . , jm) ∈ {0, . . . , k}m :
∑m

l=1 jl ≤ k +m− 1}, β(k0,y) =
(k0 +m− 1,y), (j/k) = (j1/k, . . . , jm/k), Mult(· | k,y) denotes the probability
mass function of a multinomial distribution with parameters (k,y), and

F ∗(x, ·)
(
j

k

)
=

∞∑
i=1

wi(x, ·)I {θi(x, ·)}{Aj,k} ,

where Aj,k = [0, j1/k] × . . . × [0, jm/k]. Since the stochastic processes {ηi}i≥1

and {zi}i≥1 are independent and identically distributed, it follows that,

E

{
F ∗(x, ·)

(
j

k

)∣∣∣∣ k = k0

}
=

∞∑
i=1

E {wi(x, ·)}E
{
I {θ1(x, ·)}{Aj,k0}

}
,

= G0,x (Aj,k0) ,

where G0,x(A) = G0(x, ·)(A) denotes the distribution function of θ1(x, ·) de-

fined on Δ̃m. Thus

E {F (x, ·)(By) | k = k0} =
∑

j∈Hk0,m

G0,x (Aj,k0)Mult(j | β(k0,y)).

Noting that for every x,x0 ∈ X and every y ∈ Δm,

E {F (x, ·)(By)F (x0, ·)(By)| k = k0}

=
∑

j1∈Hk,m,
j2∈Hk,m

E

{
F ∗(x,x0, ·)

(
j1
k
,
j2
k

)∣∣∣∣ k = k0

}
× M̄(j1, j2 | β(k0,y)),
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where M̄(j1, j2 | β(k,y)) = Mult(j1 | β(k,y))×Mult(j2 | β(k,y)), and

F ∗(x,x0, ·)
(
j1
k
,
j2
k

)
=

∞∑
i=1

wi(x, ·)wi(x0, ·)I {θi(x, ·)}{Aj1,k} I {θi(x0, ·)}{Aj2,k} ,

+

∞∑
i,i1=1,
i �=i1

wi(x, ·)wi1(x0, ·)I {θi(x, ·)}{Aj1,k} I {θi1(x0, ·)}{Aj2,k} .

Applying a similar reasoning as before, it follows that, for every x,x0 ∈ X
and every y ∈ Δm,

E {F (x, ·)(By)F (x0, ·)(By) | k = k0}

=
∑

j1∈Hk0,m

,j2∈Hk0,m

{ ∞∑
i=1

E {wi(x, ·)wi(x0, ·)}G0,x,x0 (Aj1,k0 ×Aj2,k0) ,

+

∞∑
i,i1=1,
i �=i1

E {wi(x, ·)wi1(x0, ·)}G0,x (Aj1,k0)G0,x0 (Aj2,k0)

⎫⎪⎪⎬⎪⎪⎭ ,

× M̄(j1, j2 | β(k0,y)),

where G0,x,x0(A) = G0((x,x0), ·)(A) denotes the joint distribution function of

(θi(x, ·),θi(x0, ·)) defined on Δ̃2
m. In particular, for x = x0,

E
{
F (x, ·)(By)

2
∣∣ k = k0

}
=

∑
j1∈Hk0,m

,j2∈Hk0,m

{ ∞∑
i=1

E
{
wi(x, ·)2

}
G0,x

(
Amin{j1,j2},k0

)
,

+

∞∑
i,i1=1,
i �=i1

E {wi(x, ·)wi1(x, ·)}G0,x (Aj1,k0)G0,x (Aj2,k0)

⎫⎪⎪⎬⎪⎪⎭ ,

× M̄(j1, j2 | β(k0,y),

where Amin{j1,j2},k = [0,min{j11, j21}/k] × . . . × [0,min{j1m, j2m}/k]. By as-
sumption, for every i ≥ 1, and every {xl}∞l=0, with xl ∈ X , such that liml→∞ xl

= x0, the processes ηi(xl, ·) and zi(xl, ·) converge in distribution to ηi(x0, ·)
and zi(x0, ·), respectively, as l → ∞. Since V and H are sets of equicontinu-
ous functions of x, by Lemma 3, and continuous mapping theorem, it follows
that wi(xl, ·) converges in distribution to wi(x0, ·) and θi(xl, ·) converges in

distribution to θi(x0, ·), as l → ∞. Thus, for every a ∈ Δ̃m, liml→∞ G0,xl
(a) =

G0,x0(a). Noting that wi(x, ·) are bounded variables, Portmanteau‘s theorem
implies that the mappings x �→ E{wi(x, ·)}, x �→ E{wi(x, ·)2} and x �→
E{wi(x, ·)wi(x0, ·)}, are continuous. Now, considering y ∈ Δ̃m, the above ex-
pressions and few applications of dominated convergence theorem for series, it
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follows that,

lim
j→∞

E {F (xj , ·)(By)} =
∞∑

k0=1

lim
l→∞

E {F (xl, ·)(By) | k0}P{ω ∈ Ω : k(ω) = k0},

= E {F (x0, ·)(By)} ,

lim
l→∞

E
{
F (xl, ·)(By)

2} =
∞∑

k0=1

lim
l→∞

E
{
F (xl, ·)(By)

2
∣∣ k0}P{ω ∈ Ω : k(ω) = k0},

= E
{
F (x0, ·)(By)

2} ,
and

lim
j→∞

E {F (xj , ·)(By)F (x0, ·)(By)} =

∞∑
k0=1

lim
j→∞

E {F (xj , ·)(By)F (x0, ·)(By) | k0} ,

× P{ω ∈ Ω : k(ω) = k0},
= E

{
F (x0, ·)(By)

2} .
Thus the proof is completed when F is a DMBPP(λ,Ψη,Ψz,V ,H ). �

D.8. Proof of Theorem 8

The proof of this theorem is a straightforward extension of the proof of Theo-
rem 8 in Barrientos et al. (2017). For completeness we state the proof in what
follows. Here we use the law of total covariance conditioning on the degree of
the polynomial.

Assume that F is a DMBPP(λ,Ψη,Ψz,V ,H ). By assumption, for every i ≥
1, and every {(x1l,x2l)}∞l=1 with (x1l,x2l) ∈ X 2 and (x1,x2) ∈ X 2, such that
(x1l,x2l) −→ (x1,x2), as l → ∞, the joint processes (ηi(x1l, ·), ηi(x2l, ·)) and
(zi(x1l, ·), zi(x2l, ·)) converge in distribution to the processes (ηi(x1, ·), ηi(x2, ·)),
and (zi(x1, ·), zi(x2, ·)), as l → ∞, respectively. Since V and H are sets of
equicontinuous functions of x, by Lemma 3 and continuous mapping theorem, it
follows that for every i ≥ 1, (wi(x1l, ·), wi(x2l, ·)) and (θi(x1l, ·),θi(x2l, ·)) con-
verge in distribution to (wi(x1, ·), wi(x2, ·)) and (θi(x1, ·),θi(x2, ·)), as l → ∞,
respectively. Thus, for every a1 ∈ Δ̃m and a2 ∈ Δ̃m, liml→∞ G0,x1l,x2l

(a1,a2) =
G0,x1,x2(a1,a2), whereG0,x1,x2 denotes the joint distribution function of(θi(x1, ·),
θi(x2, ·)). Noting that for every x, wi(x, ·) are bounded variables, Portmanteau’s
theorem implies that mappings x �→ E {wi(x, ·)} and (x1,x2) �→
E {wi(x1, ·)wi1(x2, ·)}, i, i1 ∈ N, are continuous. In addition, for (x1,x2) ∈ X 2

such that ‖x1 − x2‖ > γ, the assumption

Cov
[
I{A1} {zi(x1, ·)} , I{A2} {zi(x2, ·)}

]
= 0,

and

Cov
[
I {ηi(x1, ·)}{A1} , I {ηi(x2, ·)}{A2}

]
= 0,
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imply that

E
{
I {zi(x1, ·)}{A1} I {zi(x2, ·)}{A2}

}
= E

{
I {zi(x1, ·)}{A1}

}
E
{
I {zi(x2, ·)}{A2}

}
,

E
{
I {ηi(x1, ·)}{A1} I {ηi(x2, ·)}{A2}

}
= E

{
I {ηi(x1, ·)}{A1}

}
E
{
I {ηi(x2, ·)}{A2}

}
.

Therefore, for every (x1,x2) ∈ X 2 such that ‖x1 − x2‖ > γ, it follows that
G0,x1,x2(a1,a2) = G0,x1(a1)G0,x2(a2), and that for i, i1 ∈ N,

E {wi(x1, ·)wi1(x2, ·)} = E {wi(x1, ·)}E {wi1(x2, ·)} .

Now, considering the expressions from the proof of Theorem 7, for every y ∈ Δm,
(x1,x2) ∈ X 2 such that ‖x1 − x2‖ > γ, and an application of dominated
convergence theorem, it follows that

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By) | k = k0

}
=

∑
j1∈Hk0,m

j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(x1, ·)}E {wi1(x2, ·)}G0,x1 (Aj1,k0)G0,x2 (Aj2,k0) ,

× M̄(j1, j2 | β(k0,y)),
= lim

l→∞
E {F (x1l, ·)(By) | k = k0} E {F (x2l, ·)(By) | k = k0} .

Thus,

lim
l→∞

Cov {F (x1l, ·)(By), F (x2l, ·)(By) | k = k0

}
= 0.

Finally, by dominated convergence theorem for series, it follows that

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By)]

= E

{
lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]
}
,

+ Cov

[
lim
l→∞

E {F (x1l, ·)(By) | k0} , lim
l→∞

E {F (x2l, ·)(By) | k(·)}
]
,

= Cov [E {F (x1, ·)(By) | k0} , E {F (x2, ·)(By) | k(·)}] ,

where for every x ∈ X ,

E {F (x, ·)(By) | k = k0} =
∑

j∈Hk0,m

G0,x (Aj,k0)Mult(j | k0 +m− 1,y).

which completes this part of the proof.
Assume now that F is a wDMBPP(λ,Ψv,Ψz,H ). By the same arguments

as when F is the general model, for every y ∈ Δm and (x1,x2) ∈ X 2 and an
application of dominated convergence theorem, it follows that

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By) | k = k0
}
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=
∑

j1∈Hk0,m

j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(·)wi1(·)}G0,x1 (Aj1,k0)G0,x2 (Aj2,k0) M̄(j1, j2 | β(k0,y)),

and

lim
l→∞

E {F (x1l, ·)(By) | k = k0} E {F (x2l, ·)(By) | k = k0}

=
∑

j1∈Hk0,m

j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(·)}E {wi1(·)}G0,x1 (Aj1,k0)G0,x2 (Aj2,k0)

× M̄(j1, j2 | β(k0,y))

Since Cov
[∑∞

i=1 wi(ω),
∑∞

i1=1 wi1(ω)
]
= 0, it follows that

lim
l→∞

Cov {F (x1l, ·), (By)F (x2l, ·)(By) | k = k0

}
= 0.

Finally, the proof is completed using the same arguments as in the first part.

D.9. Proof of Theorem 9

The proof of this theorem is a straightforward extension of the proof of Theorem
9 in Barrientos et al. (2017). For completeness we state the proof in what follows.
We use the law of total covariance conditioning on the degree of the polynomial.
Assume that F is a θDMBPP(λ,Ψη,V ,Ψθ). By the same arguments as in the
proof of the first part of Theorem 8, for every y ∈ Δm and (x1,x2) ∈ X 2 such
that ‖x1 −x2‖ > γ, and few applications of dominated convergence theorem, it
follows that

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By) | k = k0
}

=
∑

j1∈Hk0,m

j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(x1, ·)}E {wi1(x2, ·)}

× E
{
I {θi(·)}{Aj1,k0

} I {θi1(·)}{Aj2,k0}
}
× M̄(j1, j2 | β(k0,y)),

and

lim
l→∞

E {F (x1l, ·)(By) | k = k0} E {F (x2l, ·)(By) | k = k0}

=
∑

j1∈Hk0,m

j2∈Hk0,m

∞∑
i=1,
i1=1

E {wi(x1, ·)}E {wi1(x2, ·)} ,

× E
{
I {θi(·)}{Aj1,k0}

}
E
{
I {θi1(·)}{Aj2,k0}

}
M̄(j1, j2 | β(k0,y)).

Since {θi}i≥1 are independent, then

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]
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=
∑

j1∈Hk0,m

j2∈Hk0,m

∞∑
i=1

E {wi(x1, ·)}E {wi(x2, ·)}Cov
{
I {θi(·)}{Aj1,k0} , I {θi(·)}{Aj2,k0}

}
,

× M̄(j1, j2 | k0 +m− 1,y).

Finally, by dominated convergence theorem, it follows that, for every y ∈ Δ̃m,

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By)]

= E
{
lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]
}
,

+ Cov
[
lim
l→∞

E {F (x1l, ·)(By) | k0} , lim
l→∞

E {F (x2l, ·)(By) | k(·)}
]
,

=
∞∑

k0=1

lim
l→∞

Cov [F (x1l, ·)(By), F (x2l, ·)(By) | k0]P ({ω ∈ Ω : k(ω) = k0}),

+ Cov [E {F (x1, ·)(By) | k0} , E {F (x2, ·)(By) | k(·)}] ,

which completes the proof of the theorem.

D.10. Proof of Theorem 10

The proof of this theorem is an extension of the proof of Theorem 10 in Bar-
rientos et al. (2017). For completeness we state the proof in what follows. We
prove this theorem using the definition of correlation. Expectations are obtained
by the law of total expectation, conditioning on the degree of the polynomial.
Assume that F is a DMBPP(λ,Ψη,Ψz,V ,H ), a θDMBPP(λ,Ψη,V ,Ψθ) or
a wDMBPP(λ,Ψv,Ψz,H ). By assumption, for every i ≥ 1, and every{(x1l,
x2l)}∞l=1, with (x1l,x2l) ∈ X 2, (x1,x2) ∈ X 2, such that

lim
l→∞

(x1l,x2l) = (x1,x2),

the joint processes (ηi(x1l, ·), ηi(x2l, ·)) and (zi(x1l, ·), zi(x2l, ·)) converge in
distribution to (ηi(x1, ·), ηi(x2, ·)), and (zi(x1, ·), zi(x2, ·)), as l → ∞, respec-
tively. By the same arguments used in the proof of the first part of Theorem
8, it follows that for every a1 ∈ Δ̃m and a2 ∈ Δ̃m, liml→∞ G0,x1l,x2l

(a1,a2) =
G0,x1,x2(a1,a2), whereG0,x1,x2 denotes the joint distribution function of(θi(x1, ·),
θi(x2, ·)), and mappings x �→ E {wi(x, ·)} and

(x1,x2) �→ E {wi(x1, ·)wi1(x2, ·)} ,

i, i1 ∈ N, are continuous. By few applications of dominated convergence theorem,
it follows that for m = 1, 2,

lim
l→∞

E {F (xml, ·)(By)} = E {F (xm, ·)(By)} ,

lim
l→∞

E
{
F (xml, ·)(By)

2
}
= E

{
F (xm, ·)(By)

2
}
,
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and

lim
l→∞

E {F (x1l, ·)(By)F (x2l, ·)(By)} = E {F (x1, ·)(By)F (x2, ·)(By)} .

Finally, for y ∈ Δ̃m and by the definition of correlation, the proof of the theorem
is completed.

D.11. Proof of Theorem 11

The proof of this theorem is an extension of the proof of Theorem 11 in Bar-
rientos et al. (2017). For completeness we state the proof in what follows. Let
m(y,x) = q(x)gx(y) be the random joint distribution for the response and pre-
dictors arising when {gx(y) : x ∈ X } is a DMBPP, wDMBPP or θDMBPP.
Since the KL divergence between m0 and the implied joint distribution m can be
bounded by the supremum over the predictor space of KL divergences between
the predictor-dependent probability measures,

KL(m0,m) =

∫
X

∫
Δm

m0(y,x) log

(
m0(y,x)

m(y,x)

)
dydx,

=

∫
X

q(x)

∫
Δm

q0(y | x) log
(
q0(y | x)
gx(y)

)
dydx,

≤ sup
x∈X

∫
Δm

q0(y | x) log
(
q0(y | x)
gx(y)

)
dy,

when x contains only continuous predictors, it follows that, for every δ > 0,

Pr {KL(m0,m) < δ} ≥ Pr

{
sup
x∈X

∫
Δm

q0(y | x) log
(
q0(y | x)
gx(y)

)
dy < δ

}
> 0,

under the assumptions of Theorem 4. Thus, by Schwartz’s theorem (Schwartz,
1965), it follows that the posterior distribution associated with the random joint
distribution induced by any of the proposed models is weakly consistent, that
is, the posterior measure of any weak neighborhood, of any joint distribution of
the form m0(y,x) = q(x)q0(y | x), converges to one as the sample size goes to
infinity.

D.12. Proof of Theorem 12

The proof of this theorem is a direct extension and follows the same arguments
of the proof of Theorems 12, in Barrientos et al. (2017). Here the sequence of
sieves is given by

Fn =

⎧⎨⎩m̃ : m̃(y,x) = q(x)

∞∑
j=1

wj(x)d̃j(y), {d̃j}mn
j=1 ∈ B̃mn

kn
,
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ηj ∈ Bj,n, j = 1, . . . ,mn, sup
x∈X

∞∑
j=mn+1

wj(x) < ε

⎫⎬⎭ ,

where

B̃kn =
{
dir(· | j, k +m− ‖j‖1) : j ∈ H0

k,m
, k = 1, . . . , kn

}
.

Finally, we only need to note that the cardinality of B̃kn is
∑kn

k=1
(k+m−1)!
m!(k−1)! =

kn(kn+m)!
kn!(m+1)! .

Appendix E: The MCMC sampling scheme

In this section we provide further details on the Markov chain Monte Carlo
(MCMC) sampling scheme of the posterior distributions involved in the model.
We used the multivariate slice sampler, proposed by Neal (2003), to scan the
posterior distribution of the parameters βη

j and βz
j,l. Convergence of the poste-

rior samples (not shown here) were evaluated by standard test as implemented
in the CODA R library (Plummer et al., 2006) and by looking at the trace plots.

As described in the main document, the model considers a truncated version
of the stick breaking representation of the predictor dependent mixing measures
to a level N . As usual, for every x ∈ X , we set vN (x) = 1 to ensure the weights
to add up to one. In what follows we provide expressions for the joint posterior

distribution of
{
βη
j

}N−1

j=1
,
{
βz
jl

}N,m

j=1,l=1
, βη

0j , and βz
0jl, and describe the steps of

the MCMC updating scheme.
Given data set Y = (y1, . . . ,yn)

t, the likelihood can be written as L(Y | ...),
with

L(Y | ...) =
n∏

i=1

⎧⎨⎩
N∑
j=1

wj(xi)dir
(
yi

∣∣�kθj(xi)�, k +m− ‖�kθj(xi)�‖1
)⎫⎬⎭ .

The full conditional distributions of βη
j and βz

jl are given by

π
(
βη
j | ...

)
∝ L(Y | ...)×

[
Np(β

η
j | 0,Ση

1)
1−γη ×Np(β

η
j | 0,Ση

2)
γη
]
,

π
(
βz
j,l | ...

)
∝ L(Y | ...)×

[
Np(β

z
j,l | 0,Σz

1)
1−γz ×Np(β

z
j,l | 0,Σz

2)
γz
]
,

The full conditional distributions of the degree of the polynomial, k, is given
by

π (k | ...) ∝ L(Y | ...)× Poisson(k | λ)I{k≥1}.

Parameters γη and γz can be sampled from its conjugate posterior distribu-
tion. Note that (γη, γz) | ... ∼ Discrete(w1, w2, w3, w4), where

wl = w̃l/

4∑
j=1

w̃j ,
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l = 1, . . . , 4, with

w̃1 ∝
N−1∏
j=1

Np(β
η
j | 0,Ση

1)×
N∏
j=1

d∏
l=1

Np(β
z
j,l | 0,Σz

1)× π1,

w̃2 ∝
N−1∏
j=1

Np(β
η
j | 0,Ση

2)×
N∏
j=1

d∏
l=1

Np(β
z
j,l | 0,Σz

1)× π2,

w̃3 ∝
N−1∏
j=1

Np(β
η
j | 0,Ση

1)×
N∏
j=1

d∏
l=1

Np(β
z
j,l | 0,Σz

2)× π3,

w̃4 ∝
N−1∏
j=1

Np(β
η
j | 0,Ση

2)×
N∏
j=1

d∏
l=1

Np(β
z
j,l | 0,Σz

2)× π4,

where π1, π2, π3, and π4 denote the a priori probability of the binary pairs (1, 1),
(0, 1), (1, 0), and (0, 0).

Appendix F: Model specification for the simulation study

As mentioned in the main document, the selection of the parameters τηl and τzl ,
for l = 1, 2, play a key role when selecting the version of the model that best
fits the data. Recall that

βη
j | γη iid∼ Np(0, τ

η
1 (X

t
X)−1)1−γη ×Np(0, τ

η
2 (X

t
X)−1)γ

η

,

βz
jl | γz iid∼ Np(0, τ

z
1 (X

t
X)−1)1−γz × γzNp(0, τ

z
2 (X

t
X)−1)γ

z

,

for j ≥ 1 and l = 1, . . . ,m. The prior distributions on βη
j and βz

jl induce prior
distributions for the bounded stochastic processes defining the predictor depen-

dent weights, eβ
η
0j+xtβη

j /(1 + eβ
η
0j+xtβη

j ), and the predictor dependent atoms,(
eβ

z
0j1+xtβz

j1 , . . . , eβ
z
0jm+xtβz

jm

)
/
(
1 +
∑m

l=1 e
βz

0jl+xtβz
jl

)
. We aim to choose the

parameters τη1 and τz1 such that with high probability xtβη
j and xtβz

jl are close

to zero and τη2 and τz2 such that with high probability xtβη
j and xtβz

jl are away
from zero.

Let x1, . . . ,xG be a grid of values for the [0, 1]–valued predictor that was con-
sidered in the simulation study. For each xg, g = 1, . . . , G, we define a sequence
of values τ̃1, . . . , τ̃L such that with high probability xt

gβ
η
j lies between −4 and 4.

We choose τη1g as the largest τ̃l such that with high probability xt
gβ

η
j is between

−0.2 and 0.2 and we choose τη2g as the smallest τ̃l > τη1g such that with high
probability xt

gβ
η
j is between−2.2 and 2.2. Finally, we set τη1 = min{τη11, . . . , τ

η
1G}

and τη2 = min{τη21, . . . , τ
η
2G}. We follow a very similar procedure to choose τz1

and τz2 .
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Appendix G: Additional results for the simulation study

In this section we provide additional results for the simulation study. More
specifically, we provide the results measuring the performance of the model
based on the estimate to the L∞ distance and the contour plots of the density
estimates obtained under Prior II for the binary latent variables.

Table 4 shows the mean of the L∞ estimates across replicates for each Sce-
nario, sample size and prior distribution for the binary latent variables. As
expected, the integrated L∞ distances between the true density and estimates
decrease as the sample size increases. Regarding this criteria, the model shows
the best density estimation performance for Scenario III, the single–atom true
model, while the worst performance is observed for Scenario I, the fully predic-
tor dependent true model, for every sample size and for both prior distributions
for the binary latent variables.

Table 4

Mean (across Monte Carlo replicates) of the L∞ distances between the truth and random
measure estimates for each scenario, prior for the binary latent variables, and sample size.

Prior I Prior II
Scenario n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

I 32.638 28.078 26.892 32.709 28.153 27.047
II 19.863 21.504 24.936 19.481 22.041 23.610
III 11.912 9.876 9.203 11.900 9.919 9.148
IV 26.837 17.814 11.267 26.825 17.838 11.089

Figures 6 to 9 display the contour plot of the conditional density estimates
mean (across replicates) for each sample size, selected values of the predictor,
and Prior II for (γη, γz), for Scenarios I to IV, respectively.

Appendix H: Model specification for the application to solid waste
data

The selection of the parameters τηl and τzl , for l = 1, 2 follow the same reasoning
as for the simulation study. Here, the [0, 1]–valued grid for the predictor is re-
placed by the six possible values that the predictor, in its dummy representation,
can take.

Appendix I: Additional results for application to solid waste data

Figure 10 displays the conditional density estimates, as the posterior predic-
tive mean, for the DMBPP model for each value of the categorical predictor
“low–low”, “low”, “medium–low”, “medium”, “medium–high”, and “high”, un-
der Prior II for the binary latent variables. The LPML and −nWAIC values
for the DMBPP model were 778.043 and 778.413, respectively, under Prior II
for (γη, γz).
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Fig 6. Simulation study - Scenario I - Prior 2: contour plots of the true density (first row) and
mean across replicates of the posterior mean of the conditional density for n = 250 (second
row), n = 500 (third row), and n = 1000 (fourth row). The results are shown under Prior I
for (γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second column), and
x = 0.75 (third column).
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Fig 7. Simulation study - Scenario II - Prior II: Contour plots of the true density (first
row) and mean across replicates of the posterior mean of the conditional density for n = 250
(second row), n = 500 (third row), and n = 1000 (fourth row). The results are shown under
Prior I for (γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second
column), and x = 0.75 (third column).
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Fig 8. Simulation study - Scenario III - Prior II: Contour plots of the true density (first
row) and mean across replicates of the posterior mean of the conditional density for n = 250
(second row), n = 500 (third row), and n = 1000 (fourth row). The results are shown under
Prior I for (γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second
column), and x = 0.75 (third column).
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Fig 9. Simulation study - Scenario IV - Prior II: Contour plots of the true density (first
row) and mean across replicates of the posterior mean of the conditional density for n = 250
(second row), n = 500 (third row), and n = 1000 (fourth row). The results are shown under
Prior I for (γη , γz). Results are displayed for x = 0.25 (first column), x = 0.50 (second
column), and x = 0.75 (third column).
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Fig 10. Application to Solid Waste Data - Prior II: Contour plot of conditional density
estimates and data points for colorredDMBPP, under Prior II for (γη , γz), for each value of
the discrete socioeconomic level predictor, low-low (panel (a)), low (panel (b)), medium-low
(panel (c)), medium (panel (d)), medium-high (panel (e)), and high (panel (f)) . The x–axis
and y–axis denote the proportion of food and hygienic waste, respectively.



Fully nonparametric regression of compositional data 2403

References

Aitchison, J. (1982). The statistical analysis of compositional data. Journal
of the Royal Statistical Society, Series B 44 139–160. MR0676206

Atchison, J. & Shen, S. M. (1980). Logistic-normal distributions: Some prop-
erties and uses. Biometrika 67 261–272. MR0581723

Babu, G. J. & Chaubey, Y. P. (2006). Smooth estimation of a distribution
and density function on a hypercube using Bernstein polynomials for depen-
dent random vectors. Statistics & Probability Letters 76 959–969. MR2270097

Banerjee, S.,Carlin, B. P.&Gelfand, A. E. (2003). Hierarchical modeling
and analysis for spatial data. Chapman and Hall/CRC. MR3362184

Barndorff-Nielsen, O. (1973). On M -ancillarity. Biometrika 60 447–455.
MR0345255

Barndorff-Nielsen, O. (1978). Information and exponential families in sta-
tistical theory. John Wiley & Sons, Ltd., Chichester. Wiley Series in Proba-
bility and Mathematical Statistics. MR0489333

Barrientos, A. F., Jara, A. & Quintana, F. A. (2012). On the support of
MacEachern’s dependent Drichlet processes and extensions. Bayesian Analy-
sis 7 277– 310. MR2934952

Barrientos, A. F., Jara, A. & Quintana, F. A. (2015). Bayesian den-
sity estimation for compositional data using random Bernstein polynomials.
Journal of Statistical Planning and Inference 166 116–125. MR3390138

Barrientos, A. F., Jara, A. & Quintana, F. A. (2017). Fully nonpara-
metric regression for bounded data using dependent bernstein polynomials.
Journal of the American Statistical Association 112 806–825. MR3671772

Di Marzio, M., Panzera, A. & Venieri, C. (2015). Non-parametric regres-
sion for compositional data. Statistical Modelling 15 113–133. MR3325749

Epifani, I. & Lijoi, A. (2010). Nonparametric priors for vectors of survival
functions. Statistica Sinica 20 1455–1484. MR2777332

Florens, J.-P., Mouchart, M. & Rolin, J.-M. (1990). Elements of
Bayesian statistics, vol. 134 ofMonographs and Textbooks in Pure and Applied
Mathematics. Marcel Dekker, Inc., New York. MR1051656

Geisser, S. & Eddy, W. (1979). A predictive approach to model selection.
Journal of the American Statistical Association 74 153–160. MR0529531

Gelfand, A. E. & Dey, D. (1994). Bayesian model choice: asymptotics and
exact calculations. Journal of the Royal Statistical Society, Series B 56 501–
514. MR1278223

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. &
Rubin, D. B. (2013). Bayesian data analysis. CRC press. MR3235677

George, E. I. & McCulloch, R. E. (1993). Variable selection via gibbs
sampling. Journal of the American Statistical Association 88 881–889.

Gueorguieva, R., Rosenheck, R. & Zelterman, D. (2008). Dirichlet com-
ponent regression and its applications to psychiatric data. Computational
Statistics & Data Analysis 52 5344–5355. MR2526600

Hijazi, R. H. (2003). Analysis of compositional data using Dirichlet covariate
models. Ph.D. thesis, American University. MR2704518

https://www.ams.org/mathscinet-getitem?mr=0676206
https://www.ams.org/mathscinet-getitem?mr=0581723
https://www.ams.org/mathscinet-getitem?mr=2270097
https://www.ams.org/mathscinet-getitem?mr=3362184
https://www.ams.org/mathscinet-getitem?mr=0345255
https://www.ams.org/mathscinet-getitem?mr=0489333
https://www.ams.org/mathscinet-getitem?mr=2934952
https://www.ams.org/mathscinet-getitem?mr=3390138
https://www.ams.org/mathscinet-getitem?mr=3671772
https://www.ams.org/mathscinet-getitem?mr=3325749
https://www.ams.org/mathscinet-getitem?mr=2777332
https://www.ams.org/mathscinet-getitem?mr=1051656
https://www.ams.org/mathscinet-getitem?mr=0529531
https://www.ams.org/mathscinet-getitem?mr=1278223
https://www.ams.org/mathscinet-getitem?mr=3235677
https://www.ams.org/mathscinet-getitem?mr=2526600
https://www.ams.org/mathscinet-getitem?mr=2704518


2404 C. Wehrhahn et al.

Hijazi, R. H. & Jernigan, R. W. (2009). Modelling compositional data using
Dirichlet regression models. Journal of Applied Probability & Statistics 4 77–
91. MR2668780

Ishwaran, H. & James, L. F. (2001). Gibbs sampling methods for stick-
breaking priors. Journal of the American Statistical Association 96 161–173.
MR1952729

Jara, A. & Hanson, T. (2011). A class of mixtures of dependent tail-free
processes. Biometrika 98 553–566. MR2836406

Karabatsos, G.&Walker, S. G. (2012). Adaptive-modal Bayesian nonpara-
metric regression. Electronic Journal of Statistics 6 2038–2068. MR3020256

Klinger, R., Olaya, J., Marmolejo, L. & Madera, C. (2009). A sampling
plan for residentially generated solid waste quantification at urban zones of
middle sized cities. Revista Facultad de Ingenieŕıa Universidad de Antioquia
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