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Abstract: Combining information both within and across trajectories, we
propose a simple estimator for the local regularity of the trajectories of
a stochastic process. Independent trajectories are measured with errors at
randomly sampled time points. The proposed approach is model-free and
applies to a large class of stochastic processes. Non-asymptotic bounds for
the concentration of the estimator are derived. Given the estimate of the
local regularity, we build a nearly optimal local polynomial smoother from
the curves from a new, possibly very large sample of noisy trajectories.
We derive non-asymptotic pointwise risk bounds uniformly over the new
set of curves. Our estimates perform well in simulations, in both cases of
differentiable or non-differentiable trajectories. Real data sets illustrate the
effectiveness of the new approaches.
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1. Introduction

More and more phenomena in modern society produce observation entities in the
form of a sequence of measurements recorded intermittently at several discrete
points in time. Very often the measurements are noisy and the observation
points in time are neither regularly distributed nor the same across the entities.
Functional data analysis (FDA) considers such data as being values on the
trajectories of a stochastic process, recorded with some error, at discrete random
times. One of the main purposes of the FDA is to recover the trajectories, also
called curves or functions, at any point in time. See, e.g., [29, 21, 38, 41] for
some recent references. Whatever the approach for recovering the curve is, in the
existing literature it is usually assumed that, for each curve, a certain number
of derivatives exist. However, many applications, some of them presented in
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the following, indicate that assuming that the curves admit second, third,...
order derivatives is not realistic. Assuming that the curves to be reconstructed
are smoother than they really are could lead to missing important information
carried by the data. In this contribution, we propose a definition of the local
regularity of the curves which could be easily estimated from the data and used
to estimate the curves.

To formalize the framework, let I ⊂ R be a compact interval of time. We
consider N functions X(1), . . . , X(n), . . . , X(N) generated as a random sample of
a stochastic process X = (Xt : t ∈ I) with continuous trajectories. For each 1 ≤
n ≤ N , and given a positive integer Mn, let T

(n)
m , 1 ≤ m ≤ Mn, be the random

observation times for the curve X(n). These times are obtained as independent
copies of a variable T taking values in I. The integers M1, . . . ,MN represent an
independent sample of an integer-valued random variable M with expectation
μ. Thus M1, . . . ,MN is the Nth line in a triangular array of integer numbers.
We assume that the realizations of X, M and T are mutually independent. The
observations associated with a curve, or trajectory, X(n) consist of the pairs

(Y
(n)
m , T

(n)
m ) ∈ R× I where Y

(n)
m is defined as

Y (n)
m = X(n)(T (n)

m ) + ε(n)m , 1 ≤ n ≤ N, 1 ≤ m ≤ Mn, (1)

and ε
(n)
m are independent copies of a centered error variable ε. For the sake of

readability, here and in the following, we use the notation Xt for the value at t
of the generic process X and X(n)(t) for the value at t of the realization X(n)

of X. The N−sample of X is composed of two sub-populations: a learning set
of N0 curves and a set of N1 curves to be recovered that we call the online set.
Thus, 1 ≤ N0, N1 < N and N0+N1 = N . Let X(1), . . . , X(N0) denote the curves
corresponding to the learning set.

Our first aim is to define a meaningful, model-free concept of local regularity
for the process X and to build an estimator for it. The estimator could be

computed easily and rapidly from the observations (Y
(n)
m , T

(n)
m ) corresponding

to the curves in the learning set, and does not require a very large number
N0 of curves. Moreover, it could be easily updated if more curves are added to
the learning set. The problem of estimating the regularity of X is related to
the estimation of the Hausdorff, or fractal, dimension of time series. See, for
instance, [9, 8, 16] and the references therein. However, herein, we adopt the
FDA point of view and use the so-called replication and regularization features
of functional data (see [29], ch.22). More precisely, we combine information both
across and within curves. Thus, taking strength from the information contained
in the whole set of N0 available time series, we are able to investigate more
general situations: X need not to be a Gaussian, or a transformed Gaussian
process, it is not necessarily stationary or with stationary increments, it could
have a fractal dimension which changes over time, it is observed with possibly
heteroscedastic noise, at random moments in time.

The local regularity we study determines the regularity of the sample paths of
X. Sample paths regularity determines, for instance, the minimax optimal rate
for the nonparametric estimators of the mean and covariance functions. In par-
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ticular, knowing the local regularity serves to distinguish the so-called sparsely
and dense sampled curve cases. See [6, 41]. For some widely used examples, the
local regularity is also related to the rate of decrease of the eigenvalues of the
covariance operator, a property which is commonly used in FDA literature. In
almost all existing contributions, the sample paths regularity and the rate of the
eigenvalues are supposed given. We here propose a simple method to estimate
them.

Based on the regularity estimates, our second objective is to build an adap-
tive, nearly optimal smoothing for a possibly very large set of N1 new curves.
While several smoothers could be used, we focus on local polynomials. Optimal
curve reconstruction is an important step in FDA, for instance for computing
the median curve or the depth of a curve, to detect outliers. See, e.g., [25]. It
can also serve to compute optimal mean and covariance functions estimator in
the dense case. See, e.g., [6, 41]. Let

X [1] = X(N0+1), . . . , X [N1] = X(N),

denote the curves from the online set to be recovered from the correspond-

ing observations (Y
(n)
m , T

(n)
m ). This issue is a nonparametric estimation problem

and, if each curve regularity is given, nonparametric estimators of the curves
X [1], . . . , X [N1] could be easily built, for instance using the local linear smoother
or the series estimator. Nevertheless in applications, there is no reason to sup-
pose that the sample paths of the random process X have a known regularity.
When it is not reasonable to assume a given regularity for the trajectories,
one could use one of the existing data-driven procedures for determining the
optimal smoothing parameter. However, the existing procedures, such as the
cross-validation or the Goldenshluger-Lepski method [17], were designed for the
case where one observes only one curve. Thus one has to apply them for each
curve separately, which could require large amounts of resources.

In Section 2, we define the local regularity and provide concentration bounds
for the estimator of the local regularity of the trajectories of X. Our results
are new and of non-asymptotic type, in the sense that they hold for any values
of the sample sizes N0 and the mean value of observation times μ, provided
these values are sufficiently large. In Section 3, we explain the relationship be-
tween the probabilistic concept of local regularity for the trajectory of X and
the analytic regularity of the curves which usually determines the optimal risk
rate in nonparametric estimation. We also provide insight into the relationship
between the local regularity and the rate of decrease for the eigenvalues of the
covariance operator. Given the estimate of the local regularity of the trajec-
tories of X, in Section 3 we build adaptive local polynomial estimators and
provide a non-asymptotic bound for the pointwise risk of the local polynomial
smoother, uniformly over the online set. This uniform bound is obtained using
an exponential-type moment bound for the pointwise risk for the local poly-
nomial smoother, a new result of interest in itself. The pointwise risk bound
is optimal, in the nonparametric regression estimation sense, up to some log-
arithmic factors induced by our stochastic curves model, the concentration of
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the local regularity estimator, and the uniformity over the online set. Assuming
that X has a constant regularity over the interval I, we also derive a non-
asymptotic bound for the risk of the local polynomial smoother uniformly over
I, and uniformly over the online set. In Section 4, we provide some additional
guidance for the implementation of the local polynomial smoother and report
results from simulation showing that our estimator of the local regularity and
the adaptive local polynomial estimator perform well in both cases, whether or
not the trajectories are differentiable. As a further application of our local reg-
ularity estimation approach, we consider the median curve estimation problem
for samples of noisy curves. Our median curve is obtained from the smoothed
curves with the optimal bandwidth given by the local regularity estimate. We
compare the accuracy of our median curve with that obtained with the curves
smoothed by cross-validation. While the accuracy is comparable, the computa-
tion time is far shorter when using our approach, and this makes it suitable for
embedded systems or for applications with online data. A real data application
on vehicle traffic flow analysis illustrates the effectiveness of our approaches.
The proofs of our results are postponed to the Appendix. Additional technical
aspects, simulation results, and details on traffic flow application are also rel-
egated to the Appendix. To further illustrate the irregularity of the curves in
applications, we also report in the Appendix the local regularity estimates for
another three functional data sets often analyzed in the literature.

2. Local regularity estimation

The new local regularity estimator is introduced and studied in this section.
After providing some insight into the ideas behind the construction, we provide
a concentration result for our estimator under general mild assumptions which
do not impose a specific distribution for X. In particular, X could, but need not,
be a Gaussian process. The case where the variance of the noise is not constant
is also discussed.

2.1. The methodology

Let us present the main ideas behind the construction of the regularity estimate.
For this, let us introduce some more notation used throughout the paper. Let
K0 be an integer value which will be defined below, and consider the order
statistics of a M -sample T1, . . . , TM distributed as T which admits the density
f . Let t0 ∈ I such that f(t0) > 0. We extract the subvector of the K0 closest
values to t0 and denote these values T(1) ≤ . . . ≤ T(K0). If t0 = inf(I) then
t0 ≤ T(1), while if t0 = sup(I), then T(K0) ≤ t0. When t0 is an interior point of
I, t0 likely lies between T(1) and T(K0). Next, we define the interval

Jμ(t0) =
(
t0 − |I|/ log(μ), t0 + |I|/ log(μ)

)
∩ I,

where |I| denotes the length of the interval I and, recall, μ is the expectation
of M . In the following, we introduce our conditions using the interval Jμ(t0),
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which depends on μ. The theoretical results we derive are non-asymptotic, in
particular they hold for any fixed μ, provided it is sufficiently large. If one is
interested by asymptotic results corresponding to the case where μ increases to
infinity, then our Jμ(t0) is eventually contained in any fixed neighborhood of t0.
In this case, one can state all the assumptions on X in a more standard way,
using a fixed interval instead of our Jμ(t0).

We assume that the processX generating the continuous curvesX(1), . . . , X(N)

satisfies
E
[
(Xu −Xv)

2
]
≈ L2

t0 |v − u|2Ht0 , u, v ∈ Jμ(t0), (2)

for some Ht0 ∈ (0, 1] and Lt0 > 0 which could both change with t0. Here and in
the following, ≈ means the left-hand side is equal to the right-hand side times
a quantity which tends towards 1 when |v−u| → 0. When the trajectories of X
are not differentiable, Ht0 is what we call the local regularity of the process X
at t0. For now, we focus on this case. When, with probability 1, the trajectories
of X admits derivatives of order d ≥ 1 in a neighborhood of t0, the property
(2) will be used for the derivative of order d of the smooth trajectories. In this
smooth case, the local regularity of the process X at t0 will be d+Ht0 . See the
comment following Theorem 1.

Some commonly used processes have the eigenvalues of the covariance oper-
ator such that, for some ν > 1, λj ∼ j−ν , j ≥ 1. Such processes have a constant
local regularity. Moreover, d+Ht0 = (ν − 1)/2. As an example, the stationary
fractional Ornstein-Uhlenbeck process with index ρ ∈ (0, 2) has the covariance
function

Γ(s, t) = exp(−a|s− t|ρ), for some a > 0,

which yields ν = 1 + ρ, Ht0 ≡ ρ/2 and d = 0. Among the nonstationary
processes satisfying our condition (2), we can mention the fractional Brownian
motion with Hurst exponent H ∈ (0, 1), for which Ht0 ≡ H and λj ∼ j−(1+2H).
Examples with d > 0 could be obtained by d−times integration of the processes
with d = 0, such as for instance the so-called d−integrated Brownian motion.
See, e.g., [24] for more details on these examples.

To construct our estimator of Ht0 , we consider the event

B = {M ≥ K0, T(1) ∈ Jμ(t0), . . . , T(K0) ∈ Jμ(t0)},

which is expected to be of high probability. Let 1B denote the indicator of B
and let us define the expectation operator

EB(·) = E(·1B).

Using (2) and the independence between X and T , for any 1 ≤ k < l ≤ K0,

EB
[
(XT(l)

−XT(k)
)2
]
≈ L2

t0EB
(
|T(l) − T(k)|2Ht0

)
.

From this and the moments of the spacing T(l) − T(k) as given in the Lemma 2,
we obtain

EB
[
(XT(l)

−XT(k)
)2
]
≈ L2

t0

(
l − k

f(t0)(μ+ 1)

)2Ht0

.
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Now, for any 1 ≤ k ≤ K0, let ε(k) be a generic error term corresponding to the
generic realization XT(k)

, and denote

Y(k) = XT(k)
+ ε(k).

Moreover, for k such that 2k − 1 ≤ K0, let

θk = EB
[
(Y(2k−1) − Y(k))

2
]
.

Let σ2 denote the variance of the error term, assumed to be finite. We then
obtain

θk − 2σ2

L2
t0

≈
(

k − 1

f(t0)(μ+ 1)

)2Ht0

. (3)

We distinguish two situations : the case where σ2 is known and the case where
it is unknown. In the former case, we suppose that 4k − 3 is also less than K0

and use twice the relationship (3) with k and 2k − 1, respectively. We deduce

θ2k−1 − 2σ2

θk − 2σ2
≈ 4Ht0 .

Taking the logarithm on both sides, we obtain the proxy value

Ht0(k, σ
2) =

log(θ2k−1 − 2σ2)− log(θk − 2σ2)

2 log 2
,

of the local regularity parameter Ht0 , when σ2 is given. In the case where σ2 is
unknown, assuming that 8k − 7 ≤ K0, we use the relationship (3) three times
with k, 2k − 1 and 4k − 3, respectively, to obtain

θ4k−3 − θ2k−1

θ2k−1 − θk
≈ 4Ht0 .

A natural proxy of Ht0 is then given by

Ht0(k) =
log(θ4k−3 − θ2k−1)− log(θ2k−1 − θk)

2 log 2
. (4)

Our estimator of the local regularity parameter Ht0 is the empirical version
of the proxy value Ht0(k), or Ht0(k, σ

2), built from a random sample of N0

trajectories of X, the learning set of curves. Formally, we consider the sequence
of events, for 1 ≤ n ≤ N0,

Bn = Bn(μ,N0) =
{
Mn ≥ K0, T

(n)
(1) ∈ Jμ(t0), . . . , T

(n)
(K0)

∈ Jμ(t0)
}
, (5)

and we define

θ̂k =
1

N0

N0∑
n=1

[
Y

(n)
(2k−1) − Y

(n)
(k)

]2
1Bn , (6)



1492 S. Golovkine et al.

where, for any n and k, Y
(n)
(k) denotes the noisy measurement of X(n)(T

(n)
(k) ). If

Ht0(k, σ
2) is indeed a good approximation of Ht0 , a simple estimator of Ht0

when σ2 is known is then

Ĥt0(k, σ
2) =

⎧⎨⎩
log(θ̂2k−1− 2σ2)− log(θ̂k− 2σ2)

2 log 2
if min(θ̂2k−1, θ̂k) > 2σ2

1 otherwise.

(7)

The default value 1 is arbitrary and could be replaced by any number between
0 and 1. When σ2 is unknown the corresponding estimator is

Ĥt0(k) =

⎧⎨⎩
log(θ̂4k−3 − θ̂2k−1)− log(θ̂2k−1 − θ̂k)

2 log 2
if θ̂4k−3 > θ̂2k−1 > θ̂k

1 otherwise,

(8)

where θ̂4k−3 is obtained from the formula of θ̂2k−1 after replacing k by 2k − 1.
It is worth noting that our estimator could be easily updated every time new

curves are included in the learning sample, without revisiting the learning set
already used. Indeed, one should only add new terms in the sums defining θ̂k,
θ̂2k−1 and θ̂4k−3.

The Associate Editor drew our attention on a large literature related to the
estimation of the regularity of nonparametric functions. [15] consider that data
are noisy measurements of one sample path from a scaled fractional Brownian
motion (fBm) with unknown Hurst parameter and unknown scale. The mea-
surements are sampled on an equidistant grid, and the noise is allowed to be
heteroscedastic. The authors derive the optimal rate for estimating the Hurst
parameter. Moreover, they provide an estimator achieving the optimal rate. The
estimator of [15] is based on the self-similarity property of the fBm process. Our
estimator relies on a related property imposed to the second order moment of
the increments; see (2) above. Our condition defines a significantly larger class
of processes. By construction, our results are not easily comparable to that of
Gloter and Hoffmann, which are more refined but derived in a different, more
restrictive context. Our estimator is designed to take advantage of the replica-
tion feature of functional data, where sample averages provide simple estimates
for the moments of the increments. Another related topic extensively studied
in the literature, is the construction of confidence or credible sets for a curve
of unknown regularity. See, for instance, [14, 3, 4], or [31] for the Bayesian ap-
proach. Such quite elaborate methods, which often require the calibration of
some tuning parameters, are not specifically designed for the functional data
context. Finally, another related problem is testing the regularity of a signal.
See, for instance, [7]. However, such methods, designed to be applied to one
signal, do not provide a direct estimator of the regularity.

2.2. Concentration bounds for the local regularity estimator

Below, we focus on the more complicated and realistic case with unknown vari-
ance. The case with given variance could be treated after obvious adjustments.
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The results in this section depend on μ, the mean number of observation times
T , and the cardinality N0 of the learning set of curves. However, they are non-
asymptotic in the sense that they hold true for any sufficiently large μ and N0

satisfying our conditions. For deriving our results, we impose the following mild
assumptions.

(H1) The data consist of the pairs (Y
(n)
m , T

(n)
m ) ∈ R × I defined as in (1), with

I ⊂ R a compact interval, and the realizations ofX,M and T are mutually
independent.

(H2) The random variable T admits a density f : I → R such that f(t0) > 0.
Moreover, there exist Lf > 0 and 0 < βf ≤ 1 such that

|f(u)− f(v)| ≤ Lf |u− v|βf , ∀u, v ∈ Jμ(t0).

(H3) There exist a function φt0(·, ·) > 0, the constants Lt0 , Lφ > 0 and 0 <
βφ ≤ 1 such that, for any u, v ∈ Jμ(t0), we have

E
[
(Xu −Xv)

2
]
= L2

t0 |u− v|2Ht0 {1 + φt0(u, v)} and

|φt0(u, v)| ≤ Lφ|u− v|βφ .

(H4) Two constants a,A > 0 exist such that

E
[
|Xu −Xv|2p

]
≤ p!

2
aAp−2|u− v|2pHt0 , ∀p ≥ 2, ∀u, v ∈ Jμ(t0).

(H5) The variables ε
(n)
m , n,m ≥ 1, are independent copies of a centered variable

ε, with finite variance σ2, for which constants b ≥ σ2 > 0 and B > 0 exist
such that

E(|ε|2p) ≤ p!

2
bBp−2, ∀p ≥ 1.

(H6) The random variable M is such that M ≥ 9 and γ0 > 0 exists such that,
for any s > 0, P (|M − μ| > s) ≤ exp(−γ0s).

Assumption (H2) imposes a mild condition on the distribution of the random
observation points which provides convenient moment bounds for their spacings.
In particular, it implies that, for a sufficiently large μ, f(t0)/2 ≤ f(t) ≤ 2f(t0),
∀t ∈ Jμ(t0). Assumption (H3) is a version of the so-called local stationarity
condition. More precisely, (H3) implies that the trajectories of the process X =
(Xu : u ∈ I) are Hölder continuous in quadratic mean in the neighborhood of
t0, with exact exponent Ht0 and local Hölder constant Lt0 . Let us call Ht0 the
local regularity of the process X at t0. Examples include, but are not limited to,
stationary or stationary increment processes X. See, e.g., [2] for some examples
and references on processes satisfying the mild condition in (H3). Assumptions
(H4) and (H5) are needed for deriving exponential bounds for the concentration
of our local regularity estimator, and are satisfied by the sub-Gaussian random
variables. In particular, (H4) is satisfied by the Gaussian processes. (H6) is a
mild condition for controlling the variability of number of observation points on
the curves. The lower bound on M guarantees that each curve in the learning
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set has a sufficient number of observation times for building our estimator. For
a real number a, let a� denote the largest integer not exceeding a.

Theorem 1. Let Assumptions (H1)–(H6) hold true. Let K0 be a positive integer
such that

(μ+ 1)
βfα

4+βfα ≤ K0 ≤ μ

2 log(μ)
, (9)

with α = 2Ht0 + βφ ∈ (0, 3]. Let

c

(
K0 − 1

f(t0)(μ+ 1)

)min(βφ,βfHt0/2)

< ε <
2

log 2
, (10)

with c a constant depending only on Lf , βf , βφ, f(t0) and Ht0 . Define k =

(K0 +7)/8� and let Ĥt0 = Ĥt0(k) be defined as in (8). Then, for a sufficiently
large μ :

P

(∣∣Ĥt0 −Ht0

∣∣ > ε
)
≤ 12 exp

[
−fN0ε

2

(
k − 1

f(t0)(μ+ 1)

)4Ht0

]
,

where f is a positive constant depending on a,A, b,B and the length of the in-
terval I.

To obtain a non-trivial estimator of Ht0 , we need k ≥ 2, thus the upper
bound in (9) should be larger than 9, and this happens as soon as μ ≥ 80.
For the estimator in (7), which requires an estimate of σ2, we would only need
μ > 35. The exact expressions of the constants c and f could be traced in the
proof of Theorem 1. The condition imposed on K0 provides a panel of choices
depending on N0 and μ. As a result, up to some constants, and depending on
Lf , βf , βφ, f(t0) and Ht0 , the concentration rate ε, one could expect, could be in

a range such that εμ � 1 and ε log1/2(μ) � 1. The best possible concentration

of Ĥt0 is guaranteed as soon as N0 is larger than some power of μ, while for a
concentration as fast as some negative power of log(μ), one only needs a small
number N0 of curves in the learning set, that is larger than some power of log(μ).

For the purpose of building an adaptive optimal kernel estimator for the
trajectories of X, we will impose ε = log−2(μ) and an exponential bound equal
to exp(−μ). The following corollary proposes a data-driven choice of K0 which
guarantees these requirements. This choice is guided by the fact that, for any
constants a, b > 0, we have the relationship loga(μ) ≤ exp((log log(μ))2) ≤ μb,
provided μ is sufficiently large.

Corollary 1. Assume the conditions of Theorem 1 hold true. Let

μ̂ = N0
−1

N0∑
n=1

Mn, K̂0 = μ̂ exp(−(log log(μ̂))2)�,

and Ĥt0 = Ĥt0((K̂0 + 7)/8�), with Ĥt0 defined in (8). Then, for any constant
C > 0,

P

(∣∣Ĥt0 −Ht0

∣∣ > C log−2(μ)
)
≤ exp(−μ),
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provided N0 ≥ μ1+b for some b > 0 and μ is sufficiently large.

The conditions in Corollary 1 impose μ to be large, but still allow for many
cases in the three regimes non-dense, dense and ultra-dense, as defined by [41].

One could also build Ĥt0 with only one trajectory of a process X with sta-
tionary increments. If the density of T is uniform and sufficiently many mea-
surements are available, it suffices to split the interval [0, 1] into N0 intervals of
the same length and apply our methodology considering the measuring times
and the noisy measured values in each block as belonging to a different curve in
the learning set. Theorem 1 and Corollary 1 remain valid.

2.3. The case of conditionally heteroscedastic noise

In some applications, the assumption of constant variance for the error term
ε could be unrealistic. Therefore, we consider the following conditional het-
eroscedastic error extension of model (1):

Y (n)
m = X(n)(T (n)

m )+σ
(
X(n)(T (n)

m ), T (n)
m

)
u(n)
m , 1 ≤ n ≤ N, 1 ≤ m ≤ Mn, (11)

where σ(·, ·) is some unknown function and u
(n)
m are independent copies of a

centered variable u with unit variance.
Our approach also applies to the model (11) under some additional mild

conditions. Indeed, assuming the expectations exist, we have

θk = EB
[
(Y(2k−1) − Y(k))

2
]
= EB

[
(XT(2k−1)

−XT(k)
)2
]

+ EB
[
σ2

(
XT(2k−1)

, T(2k−1)

)]
+ EB

[
σ2

(
XT(k)

, T(k)

)]
.

From this identity it is clear that the arguments presented in Section 2.1 remain
valid as long as the value of the last two expectations on the right-hand side of
the last display does not depend on k. Thus, in this case, even if the conditional

variance of ε
(n)
m is not given, we could consider the same estimator Ĥt0 . This

remark leads us to the following additional assumption.

(E1) The variables u
(n)
m from model (11) satisfy the Assumption (H5) with

unit variance. Moreover, the function σ(·, ·) is bounded and the map u �→
E
[
σ2(Xu, u)

]
, u ∈ I, is constant in a fixed neighborhood of t0.

Assumption (E1) allows the error term to be conditionally heteroscedastic,
but imposes marginal (unconditional) homoscedasticity in a neighborhood of t0.

Under Assumption (E1), for any k we have

EB
[
σ2(XT(k)

, T(k))
]
= E

[
E
(
σ2(XT(k)

, T(k)) | M,T1, T2, . . . , TM

)
1B

]
= E

[
σ2(Xu, u)

]
P(B),

and thus the terms like EB[σ
2(XT(k)

, T(k))] cancel when considering the differ-
ences θ4k−3 − θ2k−1 and θ2k−1 − θk.



1496 S. Golovkine et al.

Corollary 2. Assume the observations consist of the pairs (Y
(n)
m , T

(n)
m ) ∈ R× I

where Y
(n)
m defined as in (11) and the realizations of X, M and T are mutu-

ally independent. Assume that Assumptions (H2)–(H4), (H6), (E1) hold. Then

Corollary 1 remains valid with the same local regularity estimator Ĥt0 .

The proof of Corollary 2 follows from the proof of Theorem 1 after obvious
modifications, and hence will be omitted. It is worthwhile noting that, even if
the regularity Ht0 is the same at any point t0, one may not be able to estimate
the regularity Ht0 using only one observed noisy trajectory with conditionally
heteroscedastic noise. This because, intuitively, it might be impossible to iden-
tify the oscillations of the signal of interest, that is to separate the increments
of the trajectory of X from the differences of the error terms with variable
variance. With our approach based on local observed increments averaged over
several curves, the effect of the noise vanishes, provided the expectation of the
conditional variance is constant. Hence, eventually the identification of the os-
cillations of X is recovered and there is no difference with respect to the case of
homoscedastic errors.

2.4. The case of differentiable sample paths

The definition of the local regularity extends to the case of differentiable curves.
When the curve admits derivatives up the order d > 0, condition (2) has to
be stated for the d-th order derivative of the curve. To build an estimate of
the local regularity of the d-th derivative of the curve, we propose to use a
smoothing-based approximation of the d-th derivative. In the Appendix, we de-
rive concentration bounds for the estimator of d+Ht0 when d > 0. In particular,
we propose an estimator of d. The implementation of the estimator of d+Ht0

is described in Section 4.1, and the simulation results we report shows that it
performs well. However, many real data we analyzed, revealed that in many
applications, the sample paths do not seem differentiable. For this reason, and
to save space, we leave to the supplement, the details of learning the smoothness
in the general case d ≥ 0.

3. Adaptive optimal smoothing

With at hand an estimate of the local regularity ςt0 = d + Ht0 obtained from
a learning set of N0 curves, we aim at recovering N1 new noisy trajectories of
X from what we call the online dataset. One of the most popular smoother is
the local polynomial estimator, see [11]. This estimator depends on a tuning
parameter, the bandwidth, which should ideally be chosen according to the
regularity of the target function. Using the local regularity estimate, one can
build optimal smoothing using alternative approaches, such as the splines. Here
we focus on local polynomials.

One has to connect a definition of local regularity that is meaningful from the
theory of stochastic processes to the usual definition of function regularity used
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in nonparametric curve estimation. Fortunately, in our framework, the parame-
ter ςt0 , which is understood as the local regularity of the process (Xt : t ∈ Jμ(t0))
in quadratic mean, see (2), is intrinsically linked with the regularity of the sample
paths of the process. Indeed, in many important situations, which are covered
by our assumptions, the regularity of the sample paths of a process does not
depend on the realization of this process. For example, the regularity of any
Brownian path is 1/2, in the sense that for any ε > 0, almost surely the sample
path belongs to the Hölder space C1/2−ε(I) and does not belong to C1/2+ε(J)
whatever J ⊂ I. Here, for any a > 0, Ca(I) denotes the space of uniformly
a−Hölder continuous functions defined on I, see Theorem 2.2 and Corollary 2.6
of [33] for precise definition. More generally the regularity of the sample paths
of a process is linked to integrated regularities through the Kolmogorov’s Conti-
nuity Theorem [33, Theorem 2.1]. In particular, Assumption (H3) ensures that,

with probability 1, the trajectories of the process (X
(d)
t : t ∈ Jμ(t0)) are Hölder

continuous with any exponent parameter 0 < a < Ht0 .

Below, we define the local polynomial estimator and derive its theoretical
properties. Since our focus of interest is the simultaneous denoising of the addi-
tional N1 curves, we consider the following pointwise risk: for a generic estimator

X̂
[n1]
t0 of X

[n1]
t0 , let

R(X̂; t0) = E

[
max

1≤n1≤N1

∣∣∣X̂ [n1]
t0 −X

[n1]
t0

∣∣∣2] . (12)

First, we provide a sharp bound for this risk with N1 = 1, in the case where a
suitable estimator of ςt0 = d+Ht0 , computed from another independent sample,
is given. Such a result, of interest in itself in nonparametric curve estimation,
seems to be new. In this case, the expectation defining the risk R(X̂; t0) should
be understood as the conditional expectation given the estimator of ςt0 . Next, we

provide a sharp bound for R(X̂; t0) in the case where N1 ≥ 1 and the estimator
of ςt0 is obtained using the approach introduced in Section 2.

3.1. Local polynomial estimation

We assume that d ≥ 0 is an integer and Ht0 ∈ (0, 1). Let d̂ and Ĥt0 be some

generic estimators of d and Ht0 , respectively, and let ς̂t0 = d̂+Ĥt0 be the corre-

sponding estimator of ςt0 = d+Ht0 . We assume that d̂ and Ĥt0 are independent
of the N1 from the online dataset, generated according to (1).

The estimator of ςt0 could be used to smooth any curve Y [n1] (n1 = 1, . . . , N1)
from the online dataset. For the sake of readability, we omit the superscript [n1]
and we consider a generic curve from the online dataset:

Ym = X(Tm) + εm, 1 ≤ m ≤ M.

For any u ∈ R, we consider the vector U(u) = (1, u, . . . , ud̂/d̂!). Let K : R → R
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be a positive kernel and define:

ϑM,h = argmin
ϑ∈Rd+1

M∑
m=1

{
Ym − ϑ�U

(
Tm − t0

h

)}2

K

(
Tm − t0

h

)
,

where h is the bandwidth. The vector ϑM,h satisfies the normal equations
AϑM,h = a with

A = AM,h =
1

Mh

M∑
m=1

U

(
Tm − t0

h

)
U�

(
Tm − t0

h

)
K

(
Tm − t0

h

)
(13)

a = aM,h =
1

Mh

M∑
m=1

YmU

(
Tm − t0

h

)
K

(
Tm − t0

h

)
. (14)

Let λ be the smallest eigenvalue of the matrix A and remark that, whenever
λ > 0, we have ϑM,h = A−1a.

Taking into account the expression of the bandwidth minimizing the point-
wise mean squared risk for a regression function defined on I, with derivative of
order d which is Hölder continuous in a neighborhood of t0, with exact exponent
Ht0 , we consider a bandwidth

ĥ ∼ M−1/(2ς̂t0+1).

Our focus of interest is on determining a nearly optimal rate of the bandwidth to
be used to recover the trajectories of X. For the applications, one could also be
interested in a nearly optimal constant, which in general needs to be estimated.
In Section 4.1 we propose a simple way to estimate a suitable constant for the
applications.

With at hand the bandwidth ĥ, we propose the following definition of the
local polynomial estimator of Xt0 of order d:

X̂t0 =

⎧⎪⎨⎪⎩
U�(0)ϑ̂ if λ > log−1(M) and |U�(0)ϑ̂| ≤ τ̂5/12(M)

τ̂5/12(M) if λ > log−1(M) and |U�(0)ϑ̂| > τ̂5/12(M)

0 otherwise,

,

where ϑ̂ = ϑM,ĥ and, for any y > 1,

τ̂(y) =
1

log2(y)

(
y

log(y)

)2ς̂t0/(2ς̂t0+1)

.

The upper trimming with τ̂5/12(M) is a technical device used to control the tails
of X̂t0 . It has practically no influence in applications. For deriving our results
on X̂t0 , we impose the following mild assumptions.

(LP1) There exist two positive constants, a and A, such that for any p ≥ 1 :

E
[
|Xt|2p

]
≤ p!

2
aAp−2, ∀t ∈ [0, 1].



Local smoothness and online curve estimation 1499

Moreover, for d ≥ 0 in Assumption (H3), if ∇dX denotes the d–th
derivative of the process X,

E
[
|∇dXu−∇dXv|2p

]
≤
(
p!

2
aAp−2

)
|u−v|2pHt0 , ∀p ≥ 2, ∀u, v ∈ Jμ(t0).

(LP2) We assume that, almost surely, μ/ log(μ) ≤ M ≤ μ log(μ).

(LP3) The estimator Ĥt0 satisfies the property

P

(∣∣Ĥt0 −Ht0

∣∣ > log−2(μ)
)
≤ K1 exp(−μ), ∀μ > 0,

where K1 is some positive constant.
(LP4) The estimator d̂ satisfies the property P(d̂ �= d) ≤ K1 exp(−μ), ∀μ > 0.

The first part of Assumption (LP1) provides a suitably tight control on the
moments of Xt, but still allows for unbounded trajectories. The second part
of Assumption (LP1), is a technical condition which reinforces Assumption
(H4). It allows to control the analytic regularity of the sample paths. More
precisely, it is implicitly used in the definition of the variable Λβ in (33). As-
sumption (LP2) is a convenient, but mild, technical condition. It could be re-
laxed at the price of controlling the probability of the complement of the event
{μ/ log(μ) ≤ M ≤ μ log(μ)}, for instance using (H6). Assumptions (LP3) and
(LP4) are very mild conditions that the generic estimators of the regularity

should satisfy. Since μ1/ log2(μ) = e1/ log(μ) for any μ > 1, the concentration of
Ĥt0 at a suitable negative power of log(μ) will suffice for the smoothing purposes.
For simplicity, and without loss of generality we consider the same constant K1

in Assumptions (LP3) and (LP4).

Theorem 2. Assume that Assumptions (H1), (H2), (H5) and (H6) and As-
sumptions (LP1)–(LP4) hold true and let K(·) be a kernel such that, for any
t ∈ R :

κ−11[−δ,δ](t) ≤ K(t) ≤ κ1[−1,1](t), for some 0 < δ < 1 and κ ≥ 1. (15)

There then exists a constant Γ0 such that for any μ ≥ 1,

E

[
exp

{(
τ(μ)

∣∣∣X̂t0 −Xt0

∣∣∣2)1/4
}]

≤ Γ0

where

τ(μ) =
1

log2(μ)

(
μ

log(μ)

) 2ςt0
2ςt0

+1

.

The bound on the exp(
√
x)−moment of the |X̂t0 −Xt0 | seems a new result

for local polynomial estimators. For our purposes, it will entail a sharp bound
for R(X̂; t0). More precisely, the price for considering a risk measure uniformly
over the whole online dataset is very low, that is a multiplying factor as large as
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a power of log(N1) in the risk bound we derive below. [13] derived sharp bounds
for all the moments of |X̂t0 −Xt0 |. However, his bounds on the moments would
induce a power of N1 as multiplying factor for our risk bound, instead of the
power of log(N1).

Theorem 3. Assume that assumptions of Theorem 2 hold true, and let K be a
kernel which satisfies (15). There then exists a positive constant Γ1 such that

R(X̂; t0) = E

[
max

1≤n1≤N1

∣∣∣X̂ [n1]
t0 −X

[n1]
t0

∣∣∣2]
≤ Γ1 log

2(μ) log4(1 +N1){log(μ)}
2ςt0

2ςt0
+1μ

−
2ςt0

2ςt0
+1 .

If all the trajectories X were in Cςt0 (Jμ(t0)), ςt0 were known and N1 = 1, the

risk bound forR(X̂; t0) would be of the usual nonparametric rate μ−2ςt0/(2ςt0+1).
Let us note that the fact that Ht0 is not known does not have any consequence

on the risk bound in Theorem 3. Indeed, since μ1/ log2 μ = e1/ log μ for any μ,
the order of the risk bound does not change as soon as the probability of the
event {d̂ = d} ∩ {|Ĥt0 − Ht0 | ≤ 1/ log2 μ} tends to 1. The log(1 + N1) factor
is given by the maximum over the N1 curves in the online dataset. The factor
{log(μ)}2ςt0/(2ςt0+1) is due to the concentration properties ofM around its mean
μ. This factor would not appear if M/μ is almost surely bounded and bounded
away from zero. The factor log2(μ) comes from probability theory. The trajec-
tories of a stochastic process X with local regularity Ht0 does not necessarily
belong to Cςt0 (Jμ(t0)) but they are almost surely in any Cςt0−ε(Jμ(t0)) for any
0 < ε < ςt0 .

Finally, let us notice that Corollary 1 states that the estimator defined by (8)
satisfies (LP3) for d = 0 and any 0 < Ht0 < 1. This leads us to the following
result.

Corollary 3. Assume d = 0 and let Ĥt0 be the estimator of 0 < Ht0 < 1 defined
in Corollary 1. Moreover, Assumptions (H1)–(H6) and Assumptions (LP1)–
(LP2) hold true. If N0 ≥ μ1+b and N1 ≤ μB for some b, B > 0, then

R(X̂; t0) ≤ Γ1B
4 log7(μ)μ

−
2Ht0

2Ht0
+1 .

Finally, we establish the uniform convergence of the recovered trajectories.
Below, the uniformity is with respect to t0 ∈ I and over all the curves in the
online sample.

Theorem 4. Assume that assumptions of Theorem 2 hold true, uniformly, for
any t0 ∈ I. Let ς = ςt0 be the global regularity of the process. Let also K be a
kernel which satisfies (15). There then exists a positive constant Γ1 such that

E

[
max

1≤n1≤N1

sup
t0∈I

∣∣∣X̂ [n1]
t0 −X

[n1]
t0

∣∣∣2]≤ Γ1Ψ(μ,N1)

where

Ψ(μ,N1) =
log4(N1) + log8(μ)

log2(μ)

(
log(μ)

μ

) 2ς
2ς+1

. (16)
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4. Empirical analysis

In the usual local polynomial (LP) smoothing framework, for a regression func-
tion defined on I, given a sample of size M , a bound of the pointwise, mean
squared error risk is first derived and this bound is then minimized with respect
to the bandwidth h. See for instance [37]. When the regression function admits
a derivative of order d which is Hölder continuous in a neighborhood of t0, with
exact exponent Ht0 and local Hölder constant Lt0 , the optimal bandwidth is

hopt =

(
C

M

)1/(2ςt0+1)

with C = Ct0 =
q2

2ςt0q
2
1

, (17)

with q1 and q2 defined on pages 39-40 of [37]. With the Nadaraya-Watson estima-
tor, we take q1 = Lt0{ςt0�!}−1

∫
K(v)|v|ςt0dv and q2 = σ2

t0f(t0)
−1

∫
K2(v)dv,

where σ2
t0 is the variance of the noise that could depend on t0. This yields a

refined constant C in this case. Details are given in the Appendix. The value

f(t0) can be estimated using all the T
(n)
m .

Thus our target bandwidth hopt depends on two more unknown quantities,
Lt0 and σ2

t0 , for which we now propose estimation procedures. The estimation
of Lt0 could be based on similar ideas as used for Ht0 . For simplicity, we assume
d = 0. The extension to the case d ≥ 1 could follow the same pattern as for
the estimation of the local regularity, using the trajectories of the derivatives.
Using twice the relationship (3) with k and 2k − 1, respectively, we deduce

L2
t0 ≈ θ2k−1 − θk

4Ht0 − 1

(
f(t0)(μ+ 1)

k − 1

)2Ht0

.

On the other hand, using the approximation of the moments of the spacings, as
given in Lemma 2, we have

η2k−1 − ηk := EB
[
|T(4k−3) − T(2k−1)|2Ht0

]
− EB

[
|T(2k−1) − T(k)|2Ht0

]
≈ (4Ht0 − 1)

(
k − 1

f(t0)(μ+ 1)

)2Ht0

.

Given an estimator of Ht0 , the empirical counterparts of ηk obtained from the
learning set of N0 independent trajectories of X is

η̂k =
1

N0

N0∑
n=1

∣∣∣T (n)
(2k−1) − T

(n)
(k)

∣∣∣2Ĥt0

1Bn ,

where Bn is the sequence of events defined in (5). An estimate of η2k−1 could
be obtained similarly. These facts lead us to the following estimator of the local
Hölder constant Lt0 :

L̂2
t0 = L̂2

t0(Ĥt0) =

⎧⎪⎨⎪⎩
θ̂2k−1 − θ̂k
η̂2k−1 − η̂k

if η̂2k−1 > η̂k and θ̂2k−1 > θ̂k,

1 otherwise.

(18)
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For the implementation, we propose k = (K̂0 + 7)/8� with

K̂0 = μ̂ exp
(
−(log log μ̂)2

)
� and μ̂ = N0

−1
N0∑
n=1

Mn.

To estimate the variance, we propose

σ̂2 = σ̂2
t0 =

1

N0

N0∑
n=1

1

2|Sn|
∑

m∈Sn

[
Y

(n)
(m) − Y

(n)
(m−1)

]2
, (19)

where Sn ⊂ {2, 3, . . . ,Mn} is a set of indices for the n−th trajectory and |Sn|
is the cardinal of Sn. When the variance of the error ε is considered constant,
one could take Sn = {2, 3, . . . ,Mn}. When it depends on t0, one could take

Sn =
{
m : T

(n)
(1) ≤ T

(n)
(m) ≤ T

(n)

(K̂0)

}
,

with K̂0 defined above. This is the choice we used in our empirical investiga-
tion. When the variance of the errors also depends on the realizations Xu, as
described in Section 2.3, in general it is no longer possible to consistently es-
timate σ2(Xt0 , t0). Our simulation experiments indicate that the estimate (19)
remains a reasonable choice.

Finally, the constant involved in the definition of the bandwidth could be
estimated by Ĉ obtained by plugging the estimates of the unknown quanti-
ties into the definition of C in (17). Concerning the kernel, we use K(t) =
(3/4)

(
1− t2

)
1[−1,1](t), that is the Epanechnikov kernel for which ‖K‖2 = 3/5

and
∫
|K(v)||v|ςt0dv = 3{(ςt0 + 1)(ςt0 + 3)}−1.

4.1. Simulation experiments

We now illustrate the behavior of our local regularity estimator ς̂t0 = d̂ + Ĥt0

computed using the learning set of noisy curves, and the performance of kernel
smoother it induces for estimating the noisy curves from the online set. The
procedure for calculating ς̂t0 is summarized in the following algorithm where
LP (d) means local polynomial smoother with degree d ≥ 0. The Nadaraya-
Watson smoother corresponds to LP (0).

For the curve estimation, we use (Y
[n1]
1 , T

[n1]
1 ), . . . , (Y

[n1]
Mn1

, T
[n1]
Mn1

), 1 ≤ n1 ≤
N1, and LP (d̂) with d̂ delivered by Algorithm 1. The bandwidth is calculated

as ĥn1 = (Ĉ/Mn1)
1/(2ς̂t0+1), 1 ≤ n1 ≤ N1, with ς̂t0 obtained from Algorithm

1. The constant estimate Ĉ is the same for all curves in the online set, that is
that obtained with ς̂t0 , L̂t0(Ĥt0) and σ̂2

t0 . We compare our approach with the
classical cross-validation (CV) (least-squares leave-one-out) method applied for
each curveX [n1] separately. For CV, we use the R package np [19], after rescaling
the CV bandwidth to account for their different definition of the Epanechnikov
kernel. At this stage, we want to point out that our smoothing method is much
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Algorithm 1: Estimation of the local regularity ςt0 = d+Ht0

Result: Estimation of ςt0 from the learning set of N0 noisy curves

Calculate μ̂ = N0
−1∑N0

n=1 Mn and K̂0 = �μ̂ exp(−(log log(μ̂))2)�;
Calculate Ĥt0 and set d̂ = 0;

while Ĥt0 > 1− log−2(μ̂) do

Calculate L̂t0 (1), as in (18), and σ̂2
t0
;

Calculate Ĉ with ς̂t0 = d̂+ Ĥt0 , L̂t0 (1) and σ̂2
t0
;

Calculate the bandwidth ĥn = (Ĉ/Mn)
1/(2ς̂t0+1), 1 ≤ n ≤ N0;

Estimate the (d̂+ 1)−th derivative of the trajectories of X with LP (d̂+ 1);

Calculate Ĥt0 using the estimated trajectories of the (d̂+ 1)−th derivative;

Set d̂ = d̂+ 1;

end

faster than any standard, trajectory-by-trajectory approach, such as CV. We
report a time comparison in the Appendix, and as expected, the ratio between
the times needed for CV and for our approach is at least of the same order as
N1. It is worth noting that one cannot follow an ad-hoc approach and transfer
one CV bandwidth from a curve X [n1] to another because Ht0 is not known,
and could even vary with t0.

The data are generated from the model (1) using different settings for X, the
distribution of T and the variance of the noise, as well as for N0 and N1. For
X, we consider three types of Gaussian processes: fractional Brownian motion
(fBm) with constant Hurst parameter H ∈ (0, 1), fBm with piecewise constant

Hurst parameter, and integrated fBm. In the later case,Xt =
∫ t

0
WH(s)ds, where

WH denotes a fBm with constant Hurst parameter H. The local regularity is
constant for the first and the third type, and variable for the second. The third
type is an example of X with smooth trajectories. We identify the setting for X
by s ∈ {1, 2, 3}. A more detailed description of these processes, as well as plots
of their trajectories, are provided in the Appendix. The number M of measur-
ing times of a curve is a Poisson random variable with expectation μ, while for
the measuring times T , we considered either a uniform distribution (identified
by unif), or a deterministic equispaced grid (equi) on the range [0, 1]. For the
noise, we considered the Gaussian distribution with both constant and variable
variance. The cases are identified by σ2 which could be a number or a list, respec-
tively. The values of σ2 are chosen in such a way that the variance ratio signal-to-
noise remains almost unchanged. Thus, one simulation setting is defined by the
7-tuple (s,N0, N1, μ, f,H, σ2), with f ∈ {unif, equi} and H, the Hurst param-
eter, is a list in the case of fBm with piecewise constant local regularity. Below,
we present the results for a few settings, complementary results are reported in
the Appendix. For each type of experiment, the reported results are obtained
from 500 replications of the experiment. Our methodology is implemented in the
R package denoisr available at https://github.com/StevenGolovkine/denoisr.

Figure 1 presents the results for the local regularity estimation for piecewise
fbM with homoscedastic noise. The local estimations of Ht0 are performed at

https://github.com/StevenGolovkine/denoisr
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Fig 1. Estimation of the local regularity for piecewise fBm, with constant noise variance
σ2 = 0.05, at t0 = 1/6, 1/2 and 5/6. True values: ςt0 = Ht0 equal to 0.4, 0.5 and 0.7,
respectively.

Fig 2. Estimation of the local regularity for integrated fBm, with constant noise variance
σ2 = 0.005, at t0 = 0.5. True value: ςt0 = 1.7.

t0 = 1/6, 1/2 and 5/6 which correspond to the middle of the interval for each
regularity. The true values of Ht0 are 0.4, 0.5 and 0.7, respectively. The results

show a quite accurate estimator Ĥt0 and confirm the theoretical result on its
concentration. Increasing either μ or N0 improves the concentration. The re-
sults for unif and equi are quite similar. Figure 2 presents the estimation of
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Fig 3. Estimation of the risks R(X̂; 1/6), R(X̂; 0.5) and R(X̂; 5/6) for piecewise fBm,
with constant noise variance σ2 = 0.05.

ςt0 for different settings (3, N0, 500, μ, equi, 1.7, 0.005). As expected, our local
regularity estimation approach also performs well for smooth trajectories.

Next, we present the results on the risk R(X̂; t0). Figure 3 presents the box-

plots of the risk R(X̂; t0) defined in (12) in the case of piecewise constant local
regularity, with three values of t0, each one in the middle of the interval of the
changes of regularity are defined. The results are quite good. Part of the curves
with lower regularity are harder to estimate and thus results in higher risks than
the more regular parts. It appears that N0 and μ do not have the same influence
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Fig 4. Estimation of the risk R(X̂; 0.5) for smoothing the noisy trajectories of an integrated
fBm, with constant noise variance σ2 = 0.005.

Fig 5. CV versus our method: comparing the pointwise risk R(X̂; 0.5) for smoothing
the noisy trajectories of a fBm; simulation (1, 1000, 500, 300, equi, 0.5, 0.05).

on the risk as the estimation of the local regularity, and this is in line with the
risk bound in Theorem 3. Thus, going from 300 to 1000 sampling points leads
to large improvement in terms of risk whereas going from 250 to 1000 curves in
the learning dataset only results in little or no improvement. Finally, it seems
that the method achieves better results for equispaced sampling points.

The same conclusions could be drawn from the results presented in Figure 4,
obtained for the simulation experiment defined by the 7-tuple (3, 1000, 500, 1000,
equi, 1.7, 0.005).

Finally, we present a comparison with the CV. Because of the large amount
of computing resources required by CV, we only considered a few cases. Figure
5 presents the results in terms of the risk calculated at t0 = 0.5 for the setting
(1, 1000, 500, 300, equi, 0.5, 0.05). We make the remark that our method and CV
perform similarly despite the fact that CV uses a specifically tailored bandwidth
for each curve in the online set. The homoscedastic setting is favorable to CV
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Fig 6. CV versus our method: comparing R(X̂; 1/6), R(X̂; 0.5) and

R(X̂; 5/6) for smoothing the noisy trajectories of a piecewise fBm; simulation
(2, 1000, 500, 1000, equi, (0.4, 0.5, 0.7), 0.05).

Fig 7. CV versus our method: comparing the pointwise risk R(X̂; 0.5) for smoothing the
noisy trajectories of an integrated fBm; simulation (3, 1000, 500, 1000, equi, 1.7, 0.005).

which, for a given curve, uses a global bandwidth at any t0. Figure 6 presents
the the heteroscedastic setting (2, 1000, 500, 1000, equi, (0.4, 0.5, 0.7), 0.05). CV
preserves good performances when the local regularity varies moderately. Our
method shows close performance in this case, slightly better when Ht0 = 0.7.
Figure 7 presents the results in the setting (3, 1000, 500, 1000, equi, 1.7, 0.005).
Again, CV and our method perform quite similarly.

Let us end our simulation experiments presentation with the results on the
median curve estimation from noisy curves. We consider a Gaussian simula-
tion design given by Model 4 in [25], page 726. The mean function is g(t) =
3 sin(3π(t+ 0.5)) + 2t3 and the covariance function is γ(s, t) = exp(−|t− s|0.8).
The curves are measured on a common equidistant grid with M ∈ {300, 1000}
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Fig 8. Median curve estimation from samples of N ∈ {100, 200} noisy curves generated
from Model 4 of [25], observed at M ∈ {300, 1000} points. The noise variance is σ2 = 1.
Plotted ratios: computation times with CV and our method (left); IMSE for the median
curve without smoothing and with smoothing using method (middle); IMSE with our
method and CV (right).

points and the samples of size N ∈ {100, 200} have a proportion of 25% contam-
inated observations. We used the contamination by peaks with the parameter
values used by [25] in their Figure 6. To the simulation design used in [25], we
add a Gaussian measurement error with constant variance σ2. We compute the
median curve using the mode depth with the noiseless sample (the benchmark
median) and with the noisy samples, without smoothing. Next we estimate the
median curve using the smoothed curves. For smoothing, we use, on the one
hand, LP (d̂) with d̂ and the bandwidth delivered by Algorithm 1, and, on the
other hand, the R package np with the bandwidth selected by CV for each
curve separately. We compare the mean integrated squared error (IMSE) of the
smoothing-based median curves with respect to the benchmark. We also com-
pare the IMSE obtained by our approach with that obtained with the median
curves computed from the noisy samples directly. Finally, we compare the com-
puting times for our method and that using CV. The results obtained from 500
replications, with σ2 = 1, are reported in Figure 8. The accuracy of the esti-
mates, obtained in a small fraction of a second using our smoothing method, is
slightly lower than that obtained by CV, which requires far more computation
time. Ignoring the noise in the sample leads to very large errors for the median
curve estimation.

4.2. Real data analysis: the NGSIM Study

In this section, our method is applied to data from the Next Generation Simu-
lation (NGSIM) study, which aims to “describe the interactions of multimodal
travelers, vehicles and highway systems”, see [18]. This study is known to be one
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of the largest publicly available source of naturalistic driving data. This dataset
is widely used in traffic flow studies from the interpretation of traffic phenomena
such as congestion to the validation of models for trajectories prediction (see
e.g. [10, 22, 40, 26, 20] for some recent references). However, such data have
been proved to be subject to measurement errors revealed by physical inconsis-
tency between the space traveled, velocity and acceleration of the vehicles, cf.
[28]. Montanino and Punzo [27] developed a trajectory-by-trajectory four-steps
method to recover the signals from the noisy curves, and their methodology is
now considered as a benchmark in the traffic flow engineering community for
analyzing NGSIM data. The steps, finely tuned for the NGSIM data, are : 1.
removing the outliers; 2. cutting off the high- and medium-frequency responses
in the speed profile; 3. removing the residual nonphysical acceleration values,
preserving the consistency requirements; 4. cutting off the high- and medium-
frequency responses generated from step 3. The detailed description of these
steps is provided in the Appendix.

To compare our smoothed curves to those of [27], we consider the following
ratio:

r(X̂, X̃) =

∑Mn

m=1

[
Y

(n)
m − X̂(T

(n)
m )

]2
∑Mn

m=1

[
Y

(n)
m − X̃(T

(n)
m )

]2 , 1 ≤ n ≤ 1714,

where X̂ denotes our curve estimation while X̃ is that obtained by [27]. A

value of the ratio r(X̂, X̃) less than 1 indicates smoothed values closer to the
observations.

For our illustration, we consider a subset of the NGSIM dataset, known as
the I-80 dataset. It contains 45 minutes of trajectories for vehicles on the In-
terstate 80 Freeway in Emeryville, California, segmented into three 15-minute
periods (from 4:00 p.m. to 4:15 p.m.; from 5:00 p.m. to 5:15 p.m. and from
5:15 p.m. to 5:30 p.m.) on April 13, 2005 and corresponds to different traffic
conditions (congested, transition between uncongested and congested and fully
congested). In total, the dataset contains trajectories, velocities and accelera-
tions for N0 = 1714 individual vehicles that passed through this highway during
this period, recorded every 0.1s. The numberMn of measurements for each curve
varies from 165 to 946. We focus on the velocity variable and rescale the mea-
surement times for each of the 1714 velocity curves such that the first velocity
measurement corresponds to t = 0 and the last one to t = 1. Figure 9 presents a
sample of five curves from this data. It can easily be noticed that the velocities
are quite erratic and their variation is not physically realistic, indicating the
presence of a noise. Moreover, the data have been recorded at a moment of the
day when traffic is evolving, it goes from fluid to dense traffic. Therefore, we
consider that there are three groups in the data: a first group corresponding to
a fluid (high-speed) traffic, a second one for in-between fluid and dense traffic,
and a third groups corresponding to the dense (low-speed) traffic. To determine
the three clusters, we fit a finite Gaussian mixture model to the vector of num-
ber of sampling points. The model is estimated by an EM algorithm initialized
by hierarchical model-based agglomerative clustering as proposed by Fraley and
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Fig 9. I-80 dataset illustration: a sample of five velocity curves.

Fig 10. I-80 dataset clusters: density of sampling points for fluid (darkest gray), in-between
fluid and dense, and dense traffic (lightest gray).

Raftery [12] and implemented in the R package mclust [34]. The optimal model
is then selected according to BIC. The three resulting classes have 239, 869 and
606 velocity trajectories, respectively. Plots of randomly selected subsamples of
trajectories from each groups are provided in the Appendix. The respective num-
bers of measures Mn are plotted in Figure 10. The mean estimates μ̂ obtained
in the three groups are 218, 474 and 684, respectively, and the corresponding
values K̂0, as defined as in Corollary 1, are 13, 17 and 20.

Figure 11 presents the results of the estimation of ςt0 for values of t0 from 0.2
to 0.8, for each group. The evolution of ςt0 is quite smooth, except for Group
1 (Figure 11b). A possible explanation could be the small number of curves
and the average of Mn in this group, which correspond to low values of N0 and
μ̂. We also provide the estimation of the regularity using the whole sample of
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Fig 11. Estimation of the local regularity of the velocity curves for different t0.

size 1714. The differences we notice between the estimates of ςt0 from different
groups support our preliminary clustering step.

To compute the curve estimate we adopt a leave-one-curve-out procedure:
each curve is smoothed using the local regularity estimates computed from the
other curves in the group (or the other 1713 curves when the data is not split into

groups). The densities of the resulting ratios r(X̂, X̃) are plotted in Figure 12.
When the traffic is fluid and the speed is high (group 1), our method perform
much better than that of Montanino and Punzo. When the traffic is dense
with low speed (group 3), the smoothed values obtained with the two methods
are more similar, though our method still exhibits better performance for the
majority of the curves.

Appendix A: Proof of Theorem 1

The proof of Theorem 1 is based on several lemmas that we present in the follow-
ing. For these lemmas, we implicitly assume that the conditions of Theorem 1
are satisfied.

Lemma 1. Let r be an integer such that

(μ+ 1)
βf (2Ht0

+βφ)

4+βf (2Ht0
+βφ) ≤ 8r ≤ K0.

Let s ∈ {1, 2, 4, 8} and let 1 ≤ k, l ≤ K0 be such that l − k = sr. Then, for
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Fig 12. Densities of the ratio r(X̂, X̃) within different groups.

sufficiently large μ, we have∣∣∣∣∣EB
[∣∣XT(l)

−XT(k)

∣∣2]− L2
t0

(
l − k

f(t0)(μ+ 1)

)2Ht0

∣∣∣∣∣
≤ c

(
l − k

f(t0)(μ+ 1)

)2Ht0+min(βφ,βfHt0/2)

,

where c = max(2Lφ, c1) and c1 is a constant depending on Ht0 , βφ, Lf , βf and
f(t0).

Proof of Lemma 1. Note that, by the definition of EB, elementary properties of
the conditional expectation, and Assumption (H3),

EB
[∣∣XT(l)

−XT(k)

∣∣2] = E

[∣∣XT(l)
−XT(k)

∣∣21B
]

= E

{
E

[∣∣XT(l)
−XT(k)

∣∣21B

∣∣∣M,T1, . . . , TM

]}
= E

{
E

[∣∣XT(l)
−XT(k)

∣∣2∣∣∣M,T1, . . . , TM

]
1B

}
= EB

{
L2
t0 |T(l) − T(k)|2Ht0

[
1 + φt0(T(k), T(l))

]}
=: (I) + (II),

where (I) = L2
t0EB

{
|T(l) − T(k)|2Ht0

}
.
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By Lemma 2 applied with α = 2Ht0 ≤ 2,

(I) = L2
t0

(
l − k

f(t0)(μ+ 1)

)2Ht0

(1 +R1) (20)

with

|R1| ≤ c1(2Ht0)

(
l − k

f(t0)(μ+ 1)

)βfHt0/2

.

On the other hand, Assumption (H3) implies that

|(II)| ≤ L2
t0LφEB

(
|T(l) − T(k)|2Ht0+βφ

)
,

and using again Lemma 2 with α = 2Ht0 + βφ ≤ 3 we obtain

|(II)| ≤ 2L2
t0Lφ

(
l − k

f(t0)(μ+ 1)

)2Ht0+βφ

, (21)

for μ large enough such that c1(2Ht0 + βφ) ≤ 1. Then, from (20) and (21) we
obtain

EB
[∣∣XT(l)

−XT(k)

∣∣2] = L2
t0

(
l − k

f(t0)(μ+ 1)

)2Ht0

(1 +R),

where R is a remainder term such that, for sufficiently large μ,

|R| ≤ max

{
2Lφ

(
l − k

f(t0)(μ+ 1)

)βφ

, c1(2Ht0)

(
l − k

f(t0)(μ+ 1)

)βfHt0/2
}

≤ c

(
l − k

f(t0)(μ+ 1)

)min(βφ,βfHt0/2)

,

with c = max(2Lφ, c1(2Ht0)) with c1(·) defined in Lemma 2.

For the sake of readability, we state below a technical lemma on the moments
of the spacings T(l) − T(k), for which the proof is given in the Appendix E. In

Lemma 2, we consider that μ is sufficiently large to ensure (μ+1)βfα/(4+βfα) +
1 ≤ μ/{2 log(μ)}.
Lemma 2. Let 0 < α ≤ 3 be a fixed parameter and let r be an integer such that

(μ+ 1)
βfα

4+βfα ≤ 8r ≤ K0 with K0 ≤ μ

2 log(μ)
.

Let s ∈ {1, 2, 4, 8} and let 1 ≤ k, l ≤ K0 be such that l − k = sr. Then, for
sufficiently large μ,∣∣∣∣EB

[∣∣T(l) − T(k)

∣∣α]− (
l − k

f(t0)(μ+ 1)

)α∣∣∣∣ ≤ c1

(
l − k

f(t0)(μ+ 1)

)α(1+βf/4)

,

with c1 = c1(α) = 8c0{2f(t0)}βfα/4 and c0 a constant depending on α, Lf , βf

and f(t0).
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Lemma 2 is a generic result that will be applied with two values α ∈ (0, 3],
that are α = 2Ht0 and α = 2Ht0 + βφ.

Lemma 3. Let k be a positive integer such that 2k − 1 ≤ K0. Then for any
η > 0,

qk(η) := max
{
P(θ̂k − θk ≥ η), P(θ̂k − θk ≤ −η)

}
≤ exp

(
−eN0η

2
)
,

where, using the notations introduced in Assumptions (H4) and (H5),

e = 1/(2d+ 2D) with d = 27
(
a+ 2b

)
and D = 9max(A,B).

Proof of Lemma 3 . By the definition in (5) and (6),

θ̂k =
1

N0

N0∑
n=1

Zn where Zn =
[
Y

(n)
(2k−1) − Y

(n)
(k)

]2
1Bn ,

and Bn =
{
Mn ≥ K0, T

(n)
(1) ∈ Jμ(t0), . . . , T

(n)
(K0)

∈ Jμ(t0)
}
. Note that E(θ̂k) = θk.

Moreover, for any p ≥ 2, using Assumptions (H4) and (H5), we have

E
(
|Zn|p

)
= EB

(
|Y(2k−1) − Y(k)|2p

)
≤ 32p−1EB

(
|XT(2k−1)

−XT(k)
|2p + |ε(2k−1)|2p + |ε(k)|2p

)
≤ 32p−1 p!

2

(
aAp−2 + 2bBp−2

)
≤ p!

2
dDp−2,

where d and D are defined in the statement of this lemma. Bernstein’s inequality
implies

P(θ̂k − θk ≥ η) ≤ exp

(
− N0η

2

2d+ 2Dη

)
≤ exp

(
−eN0η

2
)
,

and the same bound is valid for P(θ̂k−θk ≤ −η). The bound for qk(η) follows.

Lemma 4. Let 2 ≤ k < l ≤ (K0 +1)/2 be two positive integers. For any η > 0,
define

p+k,l(η) = P(θ̂l−θ̂k ≥ (1+η)(θl−θk)) and p−k,l(η) = P(θ̂l−θ̂k ≤ (1−η)(θl−θk)).

Then, for sufficiently large μ,

max
{
p+k,l(η), p

−
k,l(η)

}
≤ 2 exp

[
− e

16
N0η

2

(
l − k

μ+ 1

)4Ht0

]
,

with e defined in Lemma 3.



Local smoothness and online curve estimation 1515

Proof of Lemma 4. Assume that k and l satisfy the assumptions stated in the
Lemma and assume moreover that μ is large enough so that η(θl − θk)/2 < 1.
Then

p+k,l(η) = P
[
(θ̂l − θl)− (θ̂k − θk) ≥ η(θl − θk)

]
≤ P

[
θ̂l − θl ≥ η(θl − θk)/2

]
+ P

[
θ̂k − θk ≤ −η(θl − θk)/2

]
≤ ql (η(θl − θk)/2) + qk (η(θl − θk)/2) ,

and the same bound is valid for p−k,l(η). By (22), we have

θl − θk ≥ {(l − k)/(μ+ 1)}2Ht0 /2,

provided μ is sufficiently large. We obtain the bound for max(p+k,l(η), p
−
k,l(η))

after applying Lemma 3.

Proof of Theorem 1. Let ε > 0. With the notation from (4) and (8), we can
write

P

(∣∣Ĥt0(k)−Ht0

∣∣ > ε
)
≤ 1{|Ht0 (k)−Ht0 |>ε/2} + P

(∣∣Ĥ(k)−Ht0(k)
∣∣ > ε/2

)
=: B + V,

and thus it suffices to bound the terms B and V .
The term B. The study of the set in the indicator function boils down to the

study of the convergence of Ht0(k) to Ht0 . Using Lemma 1 with l−k = k−1 = r
we have

θk − 2σ2 = EB
[(
XT(2k−1)

−XT(k)

)2]
= L2

t0

(
k − 1

f(t0)(μ+ 1)

)2Ht0

(1 + ρk),

and

|ρk| ≤ c

(
k − 1

f(t0)(μ+ 1)

)min(βφ,βfHt0/2)

=: ρ∗k,

with c a constant defined in Lemma 1. Using again Lemma 1 with k = 2k − 1,
l = 4k − 3 and a = 2 and taking the difference, we deduce that there exists Rk

such that

θ2k−1 − θk = L2
t0

(
2(k − 1)

f(t0)(μ+ 1)

)2Ht0

(1 + ρ2k−1)

− L2
t0

(
k − 1

f(t0)(μ+ 1)

)2Ht0

(1 + ρk)

= (4Ht0 − 1)L2
t0

(
k − 1

f(t0)(μ+ 1)

)2Ht0

(1 +Rk) , (22)

where

|Rk| =
∣∣∣∣4Ht0ρ2k−1 − ρk

4Ht0 − 1

∣∣∣∣ =≤ 4Ht0 + 1

4Ht0 − 1
ρ∗2k−1 ≤ 4Ht0 + 1

4Ht0 − 1
ρ∗K0

.
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Similarly, we obtain :

θ4k−3 − θ2k−1 = (4Ht0 − 1)L2
t0

(
2(k − 1)

f(t0)(μ+ 1)

)2Ht0

(1 +R2k−1) . (23)

Combining (22) and (23), we obtain

log(θ4k−3 − θ2k−1)− log(θ2k−1 − θk) = Ht0 log 4+ log(1+R2k−1)− log(1+Rk),

which leads, using the definition of Ht0(k) given by (4), to:

Ht0(k) = Ht0 + ηk where ηk =
log(1 +R2k−1)− log(1 +Rk)

2 log 2
.

Note that, for sufficiently large μ, both Rk and R2k−1 are greater that −1/2.
This implies

|ηk| ≤
|R2k−1 −Rk|

log 2
≤
(

2

log 2

4Ht0 + 1

4Ht0 − 1

)
ρ∗4k−3.

Thus, since ρ∗4k−3 ≤ ρ∗K0
, the condition

∣∣Ht0(k)−Ht0

∣∣ > ε/2 fails and B = 0 as
soon as

ε >

(
4

log 2

4Ht0 + 1

4Ht0 − 1

)
ρ∗K0

,

that is as soon as condition (10) is satisfied, provided μ is sufficiently large.

The term V . Defining the event D = {θ̂4k−3 > θ̂2k−1 > θ̂k}, we can write

P

(∣∣Ĥ(k)−Ht0(k)
∣∣ > ε/2

)
≤ P

(∣∣Ĥ(k)−Ht0(k)
∣∣ > ε/2,D

)
+ P(D). (24)

First note that using Lemma 4 we have, for sufficiently large μ :

P(D) ≤ P(θ̂k ≥ θ̂2k−1) + P(θ̂2k−1 ≥ θ̂4k−3)

≤ p−2k−1,k(1) + p−4k−3,2k−1(1) ≤ 4 exp

[
− e

16
N0

(
k − 1

μ+ 1

)4Ht0

]
. (25)

Now, it remains to bound the quantity

℘ = P

(∣∣Ĥ(k)−Ht0(k)
∣∣ > ε/2,D

)
= P

[∣∣∣∣∣log
(
θ̂4k−3 − θ̂2k−1

θ4k−3 − θ2k−1
× θ2k−1 − θk

θ̂2k−1 − θ̂k

)∣∣∣∣∣ > ε log 2,D
]
.

Since both θ̂4k−3 − θ̂2k−1 and θ̂2k−1 − θ̂k are positive under D, we have

℘ ≤ P

[
θ̂4k−3 − θ̂2k−1

θ4k−3 − θ2k−1
× θ2k−1 − θk

θ̂2k−1 − θ̂k
> 2ε,D

]

+ P

[
θ̂4k−3 − θ̂2k−1

θ4k−3 − θ2k−1
× θ2k−1 − θk

θ̂2k−1 − θ̂k
< 2−ε,D

]
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≤ P

[
θ̂4k−3 − θ̂2k−1

θ4k−3 − θ2k−1
> 2

ε
2

]
+ P

[
θ̂2k−1 − θ̂k
θ2k−1 − θk

< 2−
ε
2

]

+ P

[
θ̂4k−3 − θ̂2k−1

θ4k−3 − θ2k−1
< 2−

ε
2

]
+ P

[
θ̂2k−1 − θ̂k
θ2k−1 − θk

> 2
ε
2

]
.

Applying Lemma 4, we obtain :

℘ ≤ p+4k−3,2k−1(2
ε
2 − 1) + p−4k−3,2k−1(1− 2−

ε
2 ) + p+2k−1,k(2

ε
2 − 1)

+ p−2k−1,k(1− 2−
ε
2 ).

Now remark that

p+2k−1,k(2
ε
2 − 1) ≤ 2 exp

[
− e

16
N0

(
2

ε
2 − 1

)2(k − 1

μ+ 1

)4Ht0

]

≤ 2 exp

[
−e log2(2)

64
N0ε

2

(
k − 1

μ+ 1

)4Ht0

]
,

and, as soon as ε < 2/ log 2, we have 1− 2−ε/2 ≤ ε/4, which implies:

p−2k−1,k(1− 2−
ε
2 ) ≤ 2 exp

[
− e

16
N0

(
1− 2−

ε
2

)2(k − 1

μ+ 1

)4Ht0

]

≤ 2 exp

[
−e log2(2)

256
N0ε

2

(
k − 1

μ+ 1

)4Ht0

]
.

Using similar derivations for the others terms, we obtain:

℘ ≤ 8 exp

[
−e log2(2)

256
N0ε

2

(
k − 1

μ+ 1

)4Ht0

]
. (26)

Combining (24) with (25) and (26), we obtain, for sufficiently large μ and ε <
2/ log 2:

P

(∣∣Ĥ(k)−Ht0(k)
∣∣ > ε/2

)
≤ 12 exp

[
−fN0ε

2

(
k − 1

μ+ 1

)4Ht0

]
,

where f = e log2(2)/256.

Appendix B: Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 are based on the following lemmas for which
the proofs are provided in the Appendix E. For the first lemma we consider the
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matrix A defined in (13) with the bandwidth ĥ = M−1/(2ς̂t0+1). Let λ be the
smallest eigenvalue of this matrix. Let

A = f(t0)

∫
R

U(u)U�(u)K(u)du,

and let λ0 denote its smallest eigenvalue. In the following, we assume that K(·)
satisfies (15). Then A is positive definite [see 37, for details] and thus λ0 > 0.

Lemma 5. Let K(·) be a kernel such that, for any t ∈ R:

κ−11[−δ,δ](t) ≤ K(t) ≤ κ1[−1,1](t), for some 0 < δ < 1 and κ ≥ 1.

Under Assumptions (LP2), (LP3) and (LP4), the matrix A defined as in (13),

with h = ĥ, is positive semidefinite. Moreover, there exists a positive constant g
that depends only on K, d, f(t0) and λ0 such that, for M sufficiently large,

P(λ ≤ β|M) ≤ 2 exp(−gMĥ), ∀0 < β ≤ λ0/2, (27)

and, for sufficiently large μ,

sup
0<β≤λ0/2

P(λ ≤ β) ≤ K2 exp
[
−g

2
τ(μ) log2(μ)

]
(28)

where

τ(μ) =
1

log2(μ)

(
μ

log(μ)

) 2ςt0
2ςt0

+1

,

with ςt0 = d+Ht0 . Here, K2 is a universal constant.

Since the dimension of A andA are given by d̂, the probability P(·) in Lemma

5 should be understood as the conditional probability given the estimator d̂.

Lemma 6. Let ξ be a positive random variable such that c1 := E
[
exp

(
η0ξ

4
)]

<
∞, for some positive constant η0. Then, for any τ ≥ 1:

E [exp (τξ)] ≤ c1 exp
(
c2τ

4/3
)

where c2 = (5/16η0)
1/3

.

Proof of Theorem 2. Without loss of generality, we could suppose that f(t0)/2 ≤
f(t) ≤ 2f(t0), ∀t ∈ Jμ(t0). We define the events

E = {λ > λ0/2}, F =
{
|Ĥt0 −Ht0 | ≤ log−2(μ)

}
∩
{
d̂ = d

}
,

and G = {|Xt0 | ≤ τ α̃(μ)}, with 1/3 < α̃ < α = 5/12. Next, let Z =
∣∣∣X̂t0 −Xt0

∣∣∣.
Assume that μ is such that log−1(μ/ log(μ)) < λ0/2, then using Assump-
tion (H2), we have:

E[ϕ(τ(μ)Z2)] = (A) + (B) + (C) + (D),
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where ϕ(x) = exp(x1/4) and

(A) = E
[
ϕ
(
τ(μ)Z2

)
1E1F1G

]
(B) = E

[
ϕ
(
τ(μ)Z2

)
1E
]
≤ E1/2

[
ϕ2
(
τ(μ)Z2

)]
P1/2(E)

(C) = E
[
ϕ
(
τ(μ)Z2

)
1F

]
≤ E1/2

[
ϕ2
(
τ(μ)Z2

)]
P1/2(F)

(D) = E
[
ϕ
(
τ(μ)Z2

)
1G
]
≤ E1/2

[
ϕ2
(
τ(μ)Z2

)]
P1/2(G).

We show that (A) is the main term, and it is bounded by a constant.

By construction,
∣∣∣X̂t0

∣∣∣ ≤ τα(M) and, by (LP2),

τα(M) ≥ τα(μ/ log(μ)) ≥ τ α̃(μ),

provided that μ is sufficiently large. Thus, for sufficiently large μ,∣∣∣X̂t0 −Xt0

∣∣∣1G ≤
∣∣∣U�(0)ϑ̂−Xt0

∣∣∣1G ≤
∣∣∣U�(0)ϑ̂−Xt0

∣∣∣ ,
with ϑ̂ = A−1a and A and a defined in (13) and (14), respectively. Therefore,

√
τ(μ)Z1G ≤

√
τ(μ)

∣∣∣∣∣
M∑

m=1

(XTm −Xt0)Wm

∣∣∣∣∣+√
τ(μ)

∣∣∣∣∣
M∑

m=1

εmWm

∣∣∣∣∣ ,
where

Wm =
1

Mh
U�(0)A−1U

(
Tm − t0

h

)
K

(
Tm − t0

h

)
.

This leads to

(√
τ(μ)Z

)1/2

1G ≤
(√

τ(μ)

∣∣∣∣∣
M∑

m=1

(XTm −Xt0)Wm

∣∣∣∣∣
)1/2

+

(√
τ(μ)

∣∣∣∣∣
M∑

m=1

εmWm

∣∣∣∣∣
)1/2

.

Then, to show that (A) is finite, it suffices to show that

A1 = E

⎡⎣exp
⎧⎨⎩
(
4
√

τ(μ)

∣∣∣∣∣
M∑

m=1

(XTm −Xt0)Wm

∣∣∣∣∣
)1/2

⎫⎬⎭1E1F

⎤⎦ ,

and

A2 = E

⎡⎣exp
⎧⎨⎩
(
4
√
τ(μ)

∣∣∣∣∣
M∑

m=1

εmWm

∣∣∣∣∣
)1/2

⎫⎬⎭1E1F

⎤⎦ ,

are finite and to apply Cauchy-Schwarz inequality. To control the stochastic
term A2, remark that:

A2 = 1 +
∑
p≥1

2p[τ(μ)]p/4

p!
Bp, (29)
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where

Bp = E

⎡⎣∣∣∣∣∣
M∑

m=1

εmWm

∣∣∣∣∣
p/2

1E1F

⎤⎦ .

By Jensen’s inequality, B1 ≤ B
1/2
2 ≤ B

1/3
3 ≤ B

1/4
4 . Thus, it remains to con-

trol Bp for any p ≥ 4. For such values of p, we use Marcinkiewicz-Zygmund’s
inequality and obtain:

Bp ≤
(p
2
− 1

)p/2

E

⎡⎣( M∑
m=1

ε2mW 2
m

)p/4

1E1F

⎤⎦ .

By a version of Lemma 1.3 of [37], for κ defined in (15),

sup
1≤m≤M

|Wm|1Eλ0/2
≤ 4κ

λ0Mh
,

and
M∑

m=1

|Wm|1Eλ0/2
≤ 4κ

λ0

1

Mh

M∑
j=1

1{t0−h≤Tm≤t0+h}. (30)

Let χm = h−11{t0−h≤Tm≤t0+h}. By the Rosenthal inequality, there exists a
universal constant C, such that, for any q ≥ 1,

Ẽ

[(
M∑

m=1

χm

)q]
≤ Cqqq

logq q
max

{
M∑

m=1

Ẽχq
m,

(
M∑

m=1

Ẽχm

)q}
(31)

≤
(
4qCf(t0)M

log q

)q

.

See [23]. Since W 2
m ≤ |Wm| sup1≤j≤M |Wj |, we deduce

Ẽ

[(
M∑

m=1

W 2
m

)q

1E

]
≤
(

4κ

λ0Mh

)q (
16qκCf(T )

λ0 log q

)q

=:

(
1

Mh

)q (
c0q

log q

)q

.

Using Assumption (LP2), we deduce:

E

[(
M∑

m=1

W 2
m

)q

1E1F

]
≤
(

c0q

log q

)q

E

⎡⎣( log μ

μ

)q
2Ĥt0

2Ĥt0
+1

1F

⎤⎦
= 2

(
c0q

log q

)q
1{

τ(μ) log2 μ
}q .

The last line can be deduced using similar arguments to those used to obtain (45)

in the proof of Lemma 5. Next, let W̃m = W 2
m/

∑M
j=1 W

2
j . Since the error terms
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are independent on the Tm’s, and using (H5), by Jensen’s inequality

Bp

(p
2
− 1

)−p/2

≤ E

⎡⎢⎣( M∑
m=1

|εm|p/2W̃m

)⎛⎝ M∑
j=1

W 2
j

⎞⎠p/4

1E1F

⎤⎥⎦
= E

⎧⎪⎨⎪⎩E

[(
M∑

m=1

|εm|p/2W̃m

)
| M,W1, . . . ,WM

]⎛⎝ M∑
j=1

W 2
j

⎞⎠p/4

1E1F

⎫⎪⎬⎪⎭
≤
(
E|ε|2p

)1/4
E

⎡⎣( M∑
m=1

W 2
m

)p/4

1E1F

⎤⎦
≤
(
p!

2
bBp−2

)1/4(
c0p

4 log(p/4)

)p/4(
1

τ(μ) log2 μ

)p/4

.

Thus we have

Bp ≤
(p
2
− 1

)p/2
(
p!

2
bBp−2

)1/4(
c0p

4 log(p/4)

)p/4(
1

τ(μ) log2 μ

)p/4

=

(
b

2B2

)1/4(
1

τ(μ) log2 μ

)p/4

Dp,

where

Dp =
(p
2
− 1

)p/2

(p!)1/4
(

c0pB

4 log(p/4)

)p/4

≤ p!

(
c1

log p

)p/4

,

for some constant c1. For the last inequality, we use Stirling’s formula. This
implies that there exists a universal constant c2 such that

Bp

p!
≤
(

c2
log p

)p/4(
1

τ(μ) log2 μ

)p/4

. (32)

Combining (29) with (32) we obtain:

A2 = 1 +

{
2B1τ

1/4(μ) + 2B2τ
1/2(μ) +

4B3

3
τ3/4(μ)

}
+
∑
p≥4

2pτ(μ)p/4

p!
Bp

≤ 1 +

{
2
(
B4τ(μ)

)1/4
+ 2

(
B4τ(μ)

)1/2
+

4
(
B4τ(μ)

)3/4
3

}

+
∑
p≥4

(
16c2
log p

)p/4(
1

log2 μ

)p/4

< ∞.
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The inequality on the last line comes from the fact that B4τ(μ) log
2(μ) is

bounded.
To control the bias term A1, let us define, for any 0 < β < Ht0 :

Λβ = sup
u,v∈Jμ(t0)

u �=v

|X(d)
u −X

(d)
v |

|u− v|β , (33)

where here X
(d)
u denotes the d-th derivative of the trajectory Xu. Applying

Taylor’s formula and using the basic properties satisfied by the weights Wm, we
obtain:∣∣∣∣∣

M∑
m=1

X(Tm)Wm −Xt0

∣∣∣∣∣ ≤
∣∣∣∣∣

M∑
m=1

d∑
k=1

X(k)(t0)

k!
(Tm − t0)

kWm

∣∣∣∣∣
+

M∑
m=1

∣∣X(d)(t0)−X(d)(ζm)
∣∣

d!
|Tm − t0|d|Wm|

≤ Λβ

d!

M∑
m=1

|Tm − t0|d+β |Wm|,

where |ζm − t0| ≤ |Tm − t0|. Note that this result is obtained using :

M∑
m=1

(Tm − t0)
kWm = 0.

Since, under E we have, Wm = 0 as soon as |Tm − t0| > h,:∣∣∣∣∣
M∑

m=1

X(Tm)Wm −Xt0

∣∣∣∣∣1E ≤ Λβh
d+β

d!

M∑
m=1

|Wm|1E

≤ Λβ

d!

4κ

λ0

hd+β

Mh

M∑
m=1

1{t0−h≤Tm≤t0+h}.

The last line follows from (30). Moreover, combining the result obtained by [33,
p. 27], with (H4), for any 0 < Ht0 − β < β0 where β0 is some sufficiently small
fixed value, we have:

EΛ
p/2
β ≤ 2

1
4+

p
2 (Ht0+1)

(
1

1− 2β−Ht0

)p/2(
p!

2
aAp−2

)1/4

≤ a1/4

A1/2
(p!)1/4

(
8 log 2

√
A

Ht0 − β

)p/2

.

Since, by definition, the random variable Λβ is independent of Ĥt0 , M and the
Tm’s, by the last inequality above and inequality (31), we have:
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E

⎛⎝∣∣∣∣∣
M∑

m=1

X(Tm)Wm −Xt0

∣∣∣∣∣
p/2

1E1F

⎞⎠
≤
(
2pCf(t0)

log(p/2)

)p/2

E

[(
hd+β

)p/2]
E

[
(Λβ)

p/2
]
.

We thus obtain:

A1 ≤
∑
p≥0

(
16τ(μ)

)p/4
p!

E

⎛⎝∣∣∣∣∣
M∑

m=1

X(Tm)Wm −Xt0

∣∣∣∣∣
p/2

1E1F

⎞⎠
≤
∑
p≥0

(
16τ(μ)

)p/4
p!

(
2pCf(t0)

log(p/2)

)p/2

E

[(
hd+β

)p/2
1F

]
E

[
(Λβ)

p/2
]
.

Note that, on the event F ,

(
hd+β

)p/2 ≤ Cp/2

(
log μ

μ

) p
2

2(d+β)
2(d+Ht0

)+1

.

Taking β = Ht0 − log−1 μ, since (μ/ log μ)1/ log μ is bounded, we deduce that,
for some constant C > 0,

A1 ≤
∑
p≥0

Cp/2

logp/2(p)
< ∞.

It remains to control (B), (C) and (D). For this purpose, let us first note
that, by the Assumption (LP1), c1 := E[exp(η0X

2
t0)] < ∞, for η0 = 1/(2A). We

deduce that

E
[
ϕ2
(
τ(μ)Z2

)]
≤ E

[
exp

(
2τ1/4(μ)

∣∣∣X̂t0 −Xt0

∣∣∣1/2 )]
≤ E

[
exp

(
2τ1/4(μ)

{
|X̂t0 |1/2 + |Xt0 |

1/2 })]
≤ exp

[
2τ1/4(μ)τα/1(μ log(μ))

]
E

[
exp

(
2τ1/4(μ) |Xt0 |

1/2
)]

≤ c1 exp
[
2τ1/4(μ)τα/2(μ log(μ)) + 24/3c2τ

1/3(μ)
]
,

where for the last inequality, we apply Lemma 6 with and ξ = |Xt0 |1/2, and
thus c2 = (5A/8)1/3. Now notice that, using Markov’s inequality

P(G) = P(|Xt0 | > τ α̃(μ))

≤ c1 exp
(
−η0τ

2α̃(μ)
)
.

Since α̃ < 1/2, Assumptions (LP3) and (LP4) imply that for sufficiently large
μ:

P(F) ≤ 2K1 exp(−μ) ≤ exp
(
−η0τ

2α̃(μ)
)
.
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Moreover, Lemma 5 also implies that, for sufficiently large μ:

P(E) ≤ K2 exp
(
−g

2
τ(μ) log2(μ)

)
≤ exp

(
−η0τ

2α̃(μ)
)
.

Finally, if H denotes either E , F or G, we have

E
[
ϕ2
(
τ(μ)Z2

)]
P(H)

≤ C exp
[
2τ1/4(μ)τα/2(μ log(μ)) + 24/3c2τ

1/3(μ)− η0τ
2α̃(μ)

]
,

where C denotes a positive constant. The choice α = 5/12 and α̃ = 9/24 allows
us to deduce that E

[
ϕ2
(
τ(μ)Z2

)]
P(H) is bounded. This concludes the proof of

Theorem 2.

Proof of Theorem 3. By Theorem 2,

max
1≤n1≤N1

E

[
ϕ

{
τ(μ)

∣∣∣X̂ [n1]
t0 −X

[n1]
t0

∣∣∣2}] ≤ Γ0

where

τ(μ) =
1

log2(μ)

(
μ

log(μ)

) 2ςt0
2ςt0

+1

,

and ϕ(x) = exp(x1/4). Now, let x0 = 256 and consider ϕ̃ ≤ ϕ defined by

ϕ̃(x) =

{
ϕ′(x0)(x− x0) + ϕ(x0) if x ≤ x0

ϕ(x) if x ≥ x0

,

and note that ϕ̃ is nondecreasing and convex. Then, by Lemma 1.6 in [37],

E

(
max

1≤n1≤N1

∣∣∣X̂ [n1]
t0 −X

[n1]
t0

∣∣∣2) ≤ τ−1(μ)ϕ̃←(Γ0N1),

where ϕ̃← denotes the inverse function of ϕ̃. Moreover, for N1 sufficiently large,
we have ϕ̃←(Γ0N1) = log4(Γ0N1).

Appendix C: Proof of Theorem 4

Proof of Theorem 4. Assume, without loss of generality that

K = log4(N1) exp(log
2(μ)),

is an integer and let min(I) = s0 < s1 < . . . < sK < sK+1 = max(I) be a
regular grid of the interval I. For any t ∈ I, let kt ∈ {1, . . . ,K} be such that
|t− skt | ≤ 1/(2K − 2) =: ε. We have

E

(
max

1≤n1≤N1

sup
t∈I

∣∣∣X̂ [n1]
t −X

[n1]
t

∣∣∣2) ≤ 3(A+B + C),
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where

A = E

(
max

1≤n1≤N1

max
k=1,...,K

∣∣∣X̂ [n1]
sk

−X [n1]
sk

∣∣∣2) ,

B = E

(
max

1≤n1≤N1

sup
t∈I

∣∣∣X̂ [n1]
t − X̂ [n1]

skt

∣∣∣2)
C = E

(
max

1≤n1≤N1

sup
t∈I

∣∣∣X [n1]
t −X [n1]

skt

∣∣∣2) .

Bound for A. Using arguments similar to those of the proof of Theorem 3,
we obtain:

A ≤ cτ−1(μ) log4(N1K) = cΨ(μ,N1),

where c denotes an absolute positive constant and Ψ is defined by (16).
Bound for B. Note that using [37, p. 45] we obtain that there exists a

positive constant � such that, for any 1 ≤ n1 ≤ N1, we have almost surely:

sup
|t−s|<ε

|X̂ [n1]
t − X̂ [n1]

s | ≤ ε�

λ0Mn1h
2

Mn1∑
i=1

|Y [n1]
i |.

Using (H5) and (LP1), this implies that there exists a positive constant Y such
that:

B ≤ �Y

λ0

ε

h2
≤ �Y

λ0
εμ2 � Ψ(μ,N1).

Bound for C. Set 0 < η < H/2 and, for any 1 ≤ n1 ≤ N1, define the
random variable:

Λn1 = sup
s �=t∈I

|X [n1]
t −X

[n1]
s |

|t− s|η .

We have:

C ≤ E

(
max

1≤n1≤N1

sup
|t−s|≤ε

∣∣∣X [n1]
t −X [n1]

s

∣∣∣2) ≤ ε2ηE

(
max

1≤n1≤N1

Λ2
n1

)
.

It remains to bound the last expectation. By (H4), we have, for any 1 ≤ n1 ≤ N1

and any p ≥ 2:

E
(
Λ2p
n1

)
≤
(
p!

2
aAp−2

)
|I|2p(H−η) = p!Mp,

where |I| denotes the length of I and

M = max
[
a

2
|I|4(H−η),A|I|2(H−η), 1

]
.

Thus, we have

E

[
exp

(
Λ2
n1

2M

)]
≤ 2 which implies E

(
max

1≤n1≤N1

Λ2
n1

)
≤ 2M log(2N1).
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We finally obtain that:

C ≤ 2M log(2N1)ε
2η � Ψ(μ,N1).

Gathering the bounds, we deduce that:

E

(
max

1≤n1≤N1

sup
t∈I

∣∣∣X̂ [n1]
t −X

[n1]
t

∣∣∣2) ≤ 3cΨ(μ,N1){1 + o(1)}.

Appendix D: Alternative local regularity estimator

D.1. Main assumptions

In this section we propose an alternative approach to estimate the regularity
ςt0 = d + Ht0 of the process X without any restriction on d ∈ N. The main
idea is to replace the noisy observations in (6) by smoothed versions of the
sample paths of the process. To construct this estimator of ςt0 and to derive its
theoretical properties we need a set of assumptions that slightly differ from the
one presented in the main manuscript. In what follows we fix an open subinterval
O of Jμ(t0) with length 0 < Δ ≤ 1 and, for the sake of homogeneity, we denote
Hd = Ht0 .

Definition 1. For any d ∈ N, 0 < Hd ≤ 1 and Ld > 0, the class X (d +
Hd, Ld;O) is the set of stochastic processes indexed by t ∈ O for which the
following conditions hold true.

(G1) With probability 1, for any � ∈ {0, . . . , d} the �-th order derivative ∇Xt

of Xt exists for all t ∈ O, and satisfies:

0 < a = inf
u∈O

E
[
(∇Xu)

2
]
≤ sup

u∈O
E
[
(∇Xu)

2
]
= a < ∞.

(G2) Two positive constants Sd and βd exist such that:∣∣E [(∇dXt −∇dXs)
2
]
− L2

d|t− s|2Hd
∣∣ ≤ S2

d |t− s|2HdΔ2βd , s, t ∈ O.

(G3) a > 0 and A > 0 exist such that, for any � ∈ {0, . . . , d} and any p ≥ 1:

E
[
|∇Xt −∇Xs|2p

]
≤ p!

2
aAp−2, s, t ∈ O.

The quantity d+Hd is the local regularity of the process on O, while Ld is the
Hölder constant of the d−th derivative of the trajectories.

These classes of processes satisfy embedding properties that will be useful to
construct an estimator of d.

Lemma 7. Assume that X restricted to O belongs to X (d + Hd, Ld;O) for
some 0 < Hd ≤ 1 and Ld > 0. Then, for any d ∈ {0, . . . ,d − 1}, two positive
real numbers Ld and Sd exist such that∣∣E [(∇dXt −∇dXs)

2
]
− L2

d|t− s|2
∣∣ ≤ S2

d |t− s|2ΔHd+1 , s, t ∈ O,
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with Hd+1 = 1{d�=d−1}+Hd1{d=d−1}. This implies that, for any 0 ≤ d ≤ d, the
process X restricted to O belongs to the class X (d+Hd, Ld;O).

The three parameters d ∈ N, 0 < Hd < 1 and Ld > 0 are fixed for the rest of
the Section. We also assume that X restricted to O belongs to X (d+Hd, Ld;O).

D.2. Heuristics on the definition of the alternative estimator

Using Lemma 7, we remark that

d = min{d ∈ N : Hd < 1}.

A natural idea to construct an estimator of ςt0 , is thus to find an estimator Ĥd

of Hd, for any d ∈ N, and to define:

d̂ = min{d ∈ N : Ĥd < 1− ϕ(μ)} and ς̂t0 = d̂+ Ĥd̂,

for some decreasing function ϕ(·) which will be defined later.
Thus, our problem reduces to the construction of accurate estimators of Hd

for all d ∈ N. For simplicity, let us denote, for any s, t ∈ O:

θd(s, t) = E
[
(∇dXt −∇dXs)

2
]
≈ L2

d|t− s|2Hd if Δ is small.

Now, let t1 and t3 be such that [t1, t3] ⊂ O and t3− t1 = Δ/2. Denote by t2 the
middle point of [t1, t3]. It is easily seen that

Hd ≈ H̃d =
log(θd(t1, t3))− log(θd(t1, t2))

2 log(2)
if Δ is small. (34)

This suggests to define

Ĥd =
log(θ̂d(t1, t3))− log(θ̂d(t1, t2))

2 log(2)
,

where, for any s, t ∈ O

θ̂d(s, t) =
1

N0

N0∑
n=1

(
∇̃dX

(n)

t − ∇̃dX
(n)

s

)2

.

Here, ∇̃dX
(n)

denotes a pilot estimator of the curve ∇dX(n) that can be ob-
tained by a presmoothing procedure.

D.3. Concentration properties

The quality of the estimator ς̂t0 depends on the quality of the generic nonpara-

metric estimators ∇̃dX of ∇dX. To quantify their behavior, we consider the
local Lp-risk

Rp(d) = Rp(d;O) = sup
t∈O

E (|ξd(t)|p) , where ξd(t) = ∇̃dXt −∇dXt.
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Our method applies with any type of nonparametric estimator ∇̃dX (local poly-
nomials, splines,...) as soon as, for any p ∈ N, its Lp-risk is suitably bounded.
The following mild condition is satisfied by common estimators, see for instance
Theorem 1 in [13] for the case of local polynomials.

(LP5) There exist two positive constants c and C such that

R2p(d) ≤
p!

2
cCp−2, ∀p ≥ 1, d ∈ {0, . . . , δ}.

We can now derive an exponential bound for the concentration of all the es-
timators Ĥd, d ∈ {0, . . . ,d}. To make this exponential bound useful for deriving
optimal rates for our estimators of the mean and covariance functions, we will
require the largest risk among R2(0), . . . , R2(d) to tend to zero as μ increases
to infinity.

Theorem 5. Assume that X restricted to O belongs to X (d+Hd, Ld;O), for
some integer d ≥ 0 and 0 < Hd < 1, and that (LP5) holds. Assume also that
there exists τ > 0 and B > 0 such that:

ρ(μ) = max
d∈{0,...,d}

R2(d) ≤ Bμ−τ .

Let 0 < γ < 1 and Γ > 0, and consider

Δ(μ) = 2 exp (− logγ(μ)) and ϕ(μ) = log−Γ(μ).

Then, for any μ larger than some constant μ0 depending on B, τ , γ, Γ, Hd, βd

and for some positive constant f, we have

P (|ς̂t0 − ςt0 | > ϕ(μ)) ≤ 8(1 + d) exp
(
−fN0ϕ

2(μ)
[
Δ(μ)

]4Hd
)
.

The three quantities ρ(μ), Δ(μ) and ϕ(μ) are required to decrease to zero, as
μ tends to infinity, in such a way that ρ(μ)/Δ(μ)+Δ(μ)/ϕ(μ) → 0. We propose
Γ = 2 and γ = 1/2. The choices of the rates for ρ(μ), Δ(μ) and ϕ(μ) satisfy
some additional requirements. First, it will be shown below that, in order to
achieve optimal rates of convergence for the mean and covariance estimators,
the local regularity has to be estimated with a concentration rate ϕ(μ) faster
than log−1(μ). This is a consequence of the identity μ1/ log(μ) = e for any μ > 1,
and of a mild condition on N and μ, such as

lim sup
N,μ→∞

{log(N)/ log(μ)} < ∞. (35)

The technical condition (35) matches general situations found in applications.
Second, we want to allow for reasonable rates of increase for N0, the size of
the learning set. In Theorem 5, N0 can increase as fast as an arbitrary positive
power of μ. Third, since τ > 0 could be arbitrarily small, the rate imposed on the

nonparametric estimators ∇̃dX of ∇dX is a very mild requirement which could
be achieved by the common estimators, with random or fixed design, under
mild conditions, in particular on the distribution of the Mi and the smoothing
parameter. See, for instance, [37] and [1]. In particular, the required rate for the

∇̃dX can be obtained under general forms of heteroscedasticity.
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D.4. Proofs for the alternative local regularity estimator

To prove Theorem 5, we state and prove some auxiliary lemmas where the
following notations will be used:

ρ∗ = max
d∈{0,...,d}

{
(R2(d))

1
4Hd

}
, and Δ∗ = Δ(μ).

Remark that, for μ large enough, we have Mmax(Δ∗
Hd ,Δ∗

βd) < ϕ(μ) < 2 and
A1ρ∗ ≤ Δ∗ ≤ A2, where:

A1 = max
d∈{0,...,d}

[
24Hd+3

L2
d

(√
a

A
+ 1

)] 1
2Hd

, A2 = min
d∈{0,...,d}

[
1

2

(
Ld

Sd

)2
] 1

Hd+1

∧1,

and M = 4maxd∈{0,...,d} (Sd/Ld)
2
.

Proof of Lemma 7. Using Taylor’s formula, there exists ξ ∈ (s ∧ t, s ∨ t) such
that:

E
[
|∇dXt −∇dXs|2

]
= (t− s)2E

[(
∇d+1Xξ

)2]
= (t− s)2

{
L2
d + 2E1(d) + E2(d)

}
,

where

L2
d = E

[(
∇d+1Xt1

)2]
E1(d) = E

[
∇d+1Xt1

(
∇d+1Xξ −∇d+1Xt1

)]
E2(d) = E

[(
∇d+1Xξ −∇d+1Xt1

)2]
.

Remark that (G1) implies that ad+1 < L2
d < ad+1. Using the Cauchy-Schwartz

inequality,

|E
[
(∇dXt −∇dXs)

2
]
)− L2

d(t− s)2| ≤ |2E1(d) + E2(d)|(t− s)2

≤
(
2Ld

√
E2(d) + E2(d)

)
(t− s)2.

Thus, it remains to bound E2(d). First, consider d = δ − 1. Then using (G2)
combined with the fact that |ξ − t1| ≤ Δ(μ) ≤ 1, we have:

E2(δ) = E

[(
∇δXξ −∇δXt1

)2] ≤ (L2
δ + S2

δ )
[
Δ(μ)

]2Hδ .

This implies that

|2E1(δ−1)+E2(δ−1)| ≤ Sδ−1

[
Δ(μ)

]Hδ with Sδ−1 = 2Ld

√
L2
δ + S2

δ+L2
δ+S2

δ .

Next, consider the case of d < δ − 1. Using Taylor’s formula and (G1), we have

E2(d) = E

[(
∇d+1Xξ −∇d+1Xt1

)2] ≤ ad+2(ξ − t1)
2 ≤ ad+2Δ

2(μ),

which implies |2E1(d)+E2(d)| ≤ SdΔ(μ) with Sd = 2Ld
√
ad+2+ad+2. Lemma 7

is now proved.
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Lemma 8. Assume that the condition of Theorem 5 hold true. Assume also
that Δ∗

2βd ≤ (Ld/Sd)
2/2. For d ∈ {0, . . . ,d}, define

η∗(d) = 4

(√
a

A
+ 1

)√
R2(d).

Let s, t ∈ O such that θd(s, t) > η∗(d). For any κ > 0, define

p+d (s, t;κ) = P

[
θ̂d(s, t) > (1 + κ)θd(s, t)

]
and

p−d (s, t;κ) = P

[
θ̂d(s, t) < (1− κ)θd(s, t)

]
.

There exists a constant e > 0 such that, for any κ such that η∗(d) < κθd(s, t) <
1, we have

max
[
p+d (s, t;κ), p

−
d (s, t;κ)

]
≤ exp

(
−eN0κ

2a2d+1|t− s|4Hd
)
,

where ad+1 is defined in (G1), for d < d+ 1, and ad+1 = L2
d/2.

Proof of Lemma 8. First, let us point out that, by the definition of the space
X (d +Hd, Ld;O), the quantity θd(s, t) could not be equal to zero for any s, t
in an open interval. Thus, the points s, t ∈ O in the statement of Lemma 8 are
well-defined.

Set d ∈ {0, . . . ,d} and s, t ∈ O. Let us decompose

θ̂d(s, t)− θd(s, t) =
1

N0

N0∑
n=1

Z̄n + E

(
θ̂d(s, t)

)
− θd(s, t),

where, for any n = 1, . . . , N0:

Z̄n = Zn − E(Zn) with Zn =

(
∇̃dX

(n)

t − ∇̃dX
(n)

s

)2

.

Bounding the bias term. Note that

E

(
θ̂d(s, t)

)
− θd(s, t) = 2E

[
(ξd(t)− ξd(s))

(
∇dXt −∇dXs

)]
+ E

[
(ξd(t)− ξd(s))

2
]
.

Since E(ξd(t) − ξd(s))
2 ≤ 2R2(d), using the Cauchy-Schwartz inequality and

(G3), we obtain:∣∣∣E(θ̂d(s, t))− θd(s, t)
∣∣∣ ≤ 2

√
a

A
R2(d) + 2R2(d),

Considering without loss of generality that R2(d) ≤ 1, we obtain∣∣∣E(θ̂d(s, t))− θd(s, t)
∣∣∣ ≤ η∗(d)/2.
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Moments of the stochastic term. Let us note that, for any p ≥ 1,

E
(∣∣Z̄n

∣∣p) = E (|Zn − E(Zn)|p) ≤ 2pE (|Zn|p)

Moreover,

|Zn|p =
∣∣∣(∇dX

(n)

t −∇dX
(n)

s

)
−
(
ξ
(n)
d (t)− ξ

(n)
d (s)

)∣∣∣2p
≤
(∣∣∣∇dX

(n)

t −∇dX
(n)

s

∣∣∣+ ∣∣∣ξ(n)d (t)
∣∣∣+ ∣∣∣ξ(n)d (s)

∣∣∣)2p

≤ 32p−1

{∣∣∣∇dX
(n)

t −∇dX
(n)

s

∣∣∣2p + ∣∣∣ξ(n)d (t)
∣∣∣2p + ∣∣∣ξ(n)d (s)

∣∣∣2p} .

This implies that

E
(∣∣Z̄n

∣∣p) ≤ 18p

3

{
E

(∣∣∣∇dX
(n)

t −∇dX
(n)

s

∣∣∣2p)+ 2R2p(d)

}
≤ 18p

3

p!

2

{
aAp−2 + 4cCp−2

}
≤ p!

2
dDp−2,

where d = 108(a+4c) and D = 18max(A,C). The second line in the last display
comes from (G3) and (LP5).

Exponential bounds. Since η∗(d) has the rate of
√
R2(d), we could consider

η∗(d) < η < 1 and, using Bernstein’s inequality, we obtain:

P

(
θ̂d(s, t)− θd(s, t) > η

)
≤ P

(
θ̂d(s, t)− E

(
θ̂d(s, t)

)
> η/2

)
≤ exp

(
− N0η

2

8d+ 4Dη

)
≤ exp

(
−eN0η

2
)
,

where e = 1/(8d+ 4D). Since κθd(s, t) > η∗(d), this quantity could replace η in
the above inequality. Hence:

P

(
θ̂d(s, t) > (1 + κ)θd(s, t)

)
≤ exp

(
−eN0κ

2θ2d(s, t)
)
.

Assume first that d < d− 1. Applying Talor’s formula, there exists ξ ∈ O such
that |ξ − s| ≤ |t− s| and

θd(s, t) = (t− s)2E
[(
∇d+1Xξ

)2] ≥ (t− s)2ad+1 = (t− s)2Hdad+1.

The last inequality is a consequence of (G3). Assume now that d = d. Us-
ing (G2), we have:

θd(s, t) ≥ L2
d|t− s|2Hd − S2

d|t− s|2HdΔ∗
2βd
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= |t− s|2Hd

(
L2
d − S2

dΔ∗
2βd

)
≥ L2

d

2
|t− s|2Hd = ad+1|t− s|2Hd .

This implies that, for any d ∈ {0, . . . ,d}:

p+d (s, t;κ) ≤ exp
(
−eN0κ

2a2d+1|t− s|4Hd
)
.

The same reasoning can be applied to bound the term p−d (s, t;κ).

Lemma 9. Assume that the condition of Theorem 5 hold true. Let d be an
element of {0, . . . ,d}. There then exists a positive constant fd, depending on a,
A, c, C, ad+1 and Hd such that, for any ε which satisfies

4

(
Sd

Ld

)2

Δ∗
Hd+1 < ε log(2) < 2,

the following inequality holds:

P

(
|Ĥd −Hd| > ε

)
≤ 4 exp

(
−fdN0ε

2Δ∗
4Hd

)
.

Proof of Lemma 9. We first have to control the distance between Hd and the
proxy value H̃d defined in (34). To do so, note that, for k = 2, 3, we have

θd(t1, tk) = L2
d+1|tk − t1|2Hd(1 + ρd(k)),

where, using (G2) and Lemma 7

|ρd(k)| ≤
(
Sd

Ld

)2

Δ
Hd+1
∗ ≤ 1

2
.

This implies

|H̃d −Hd| =
∣∣∣∣ log(1 + ρd(3)− log(1 + ρd(2)))

2 log(2)

∣∣∣∣
≤ |ρd(3)− ρd(2)|

log(2)

≤ 2

log(2)

(
Sd

Ld

)2

Δ
Hd+1
∗

≤ ε

2
.

We deduce that

P(|Ĥd −Hd| > ε) ≤ P(|Ĥd − H̃d| > ε− |H̃d −Hd|)
≤ P(|Ĥd − H̃d| > ε/2)
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≤ P

(
θ̂d(t2, t3)

θd(t2, t3)

θd(t1, t2)

θ̂d(t1, t2)
> 2ε

)

+ P

(
θ̂d(t2, t3)

θd(t2, t3)

θd(t1, t2)

θ̂d(t1, t2)
< 2−ε

)
.

By simple algebra and using the definition of the functions p+d and p−d introduced
in Lemma 8, we obtain

P(|Ĥd −Hd| > ε) ≤ p+d (t1, t3; 2
ε/2 − 1) + p−d (t1, t3; 1− 2−ε/2)

+ p+d (t1, t2; 2
ε/2 − 1) + p−d (t1, t2; 1− 2−ε/2).

Note that, using Lemma 7 and (G2), we have for k = 2, 3:

θd(t1, tk) ≥ |t3 − t1|2Hd
(
L2
d − S2

dΔ∗
Hd+1

)
=

(
Δ∗
2k−1

)2Hd (
L2
d − S2

dΔ∗
Hd+1

)
≥ L2

d

2

(
Δ∗
2k−1

)2Hd

≥ 4

(√
a

A
+ 1

)√
R2(d).

Thus, Lemma 8 can be used to write

p+d (t1, tk; 2
ε/2 − 1) ≤ exp

(
−eN0(2

ε/2 − 1)2a2d+1|tk − t1|4Hd

)
≤ exp

(
−e log2(2)

4
N0ε

2a2d+1

(
Δ∗
2k−1

)4Hd
)

≤ exp

(
−
a2d+1e log

2(2)

22+8Hd
N0ε

2Δ∗
4Hd

)
.

The same reasoning can be applied to bound p−d (t1, tk; 1−2−ε/2). However, note
that in this case 1− 2−ε/2 ≤ ε/4. This implies that:

p−d (t1, tk; 1− 2−ε/2) ≤ exp

(
−
a2d+1e log

2(2)

24+8Hd
N0ε

2Δ∗
4Hd

)
.

To complete the proof of Lemma 9, if suffices to take fd = a2d+1e log
2(2)/24+8Hd .

Proof of Theorem 5. Note that:

P(|ς̂t0 − ςt0 | > ϕ(μ)) ≤ P(|ς̂t0 − ςt0 | > ϕ(μ), d̂ = d) + P(d̂ �= d)

≤ P(|Ĥd −Hd| > ϕ(μ)) + P(d̂ < d) + P(d̂ > d)
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≤ P(|Ĥd −Hd| > ϕ(μ)) +

d−1∑
d=0

P(Ĥd < 1− ϕ(μ))

+ P(Ĥd > 1− ϕ(μ)).

Now, recall that, for d < d we have Hd = 1. Note also that Hd < 1. This implies
that:

P(|ς̂t0 − ςt0 | > ϕ(μ)) ≤ P(|Ĥd −Hd| > ϕ(μ))

+

d−1∑
d=0

P(|Ĥd −Hd| > ϕ(μ)) + P(|Ĥd −Hd| > 1−Hd).

Since 1 −Hd > ϕ(μ) for μ sufficiently large, such that ϕ(μ) could replace ε in
Lemma 9, we have:

P(|ς̂t0 − ςt0 | > ϕ(μ)) ≤ 8(1 + d) exp
(
−fN0ϕ

2(μ)Δ4Hd
∗

)
.

The Theorem 5 is proved.

Appendix E: Technical lemmas

Proof of Lemma 2. Let C = {M ≥ K0} \ B. We have

EB
[∣∣T(l) − T(k)

∣∣α] = E
[∣∣T(l) − T(k)

∣∣α1B
]
= (I)− (II),

where

(I) = E
[∣∣T(l) − T(k)

∣∣α1M≥K0

]
and (II) = E

[∣∣T(l) − T(k)

∣∣α1C
]
.

We study separately the two terms of the right hand side of the above equation.
Study of (II). Note that

E
[∣∣T(l) − T(k)

∣∣α1C
]
≤ |I|αP(C).

The event C happens if, less than K0 random times among T1, . . . , TM fall into
the interval Jμ(t0). This implies that

P(C) ≤ E
[
P(BM < K0 | M)1{M≥K0}

]
where, for any integerm ≥ 1, Bm denotes a Binomial random variable defined as
B(m, |Jμ(t0)|/|I|), independent of M . Using the Bernstein inequality, we obtain

P(BM < K0 | M) ≤ exp

(
−2|Jμ(t0)|

|I| M + 2K0

)
.

Since |Jμ(t0)|/|I| ≤ (log(μ))−1 and K0 ≤ (2 log(μ))−1μ, we obtain

P(C) ≤ exp

(
−2|Jμ(t0)|

|I| μ+ 2K0

)
E

[
exp

(
−2|Jμ(t0)|

|I| (M − μ)

)
1{M≥K0}

]
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≤ exp

(
− μ

log(μ)

)
E

[
exp

(
−2|Jμ(t0)|

|I| (M − μ)

)
1{M≥K0}

]
.

To bound the last expectation, let 0 < ε < 1 be some real number. Then

exp

(
− μ

log(μ)

)
E

[
exp

(
−2|Jμ(t0)|

|I| (M − μ)

)
1{M≥K0}

]
≤ exp

(
− μ

log(μ)

){
exp

(
2|Jμ(t0)|

|I| με

)
+E

[
exp

(
−2|Jμ(t0)|

|I| (M − μ)

)
1{K0≤M≤μ−με}

]}
≤ exp

(
− μ

log(μ)

){
exp

(
4με

log(μ)

)
+ exp

(
4μ

log(μ)

)
P [|M − μ| > με]

}
≤ exp

(
− μ

log(μ)

){
exp

(
4με

log(μ)

)
+ exp

(
2μ

log(μ)

)
exp(−γ0με)

}
.

This implies that:

P(C) ≤ exp

[
− μ

log(μ)
(1− 4ε)

]
+ exp

[
−με

(
γ0 −

1

ε log(μ)

)]
.

Taking ε = 1/8, we obtain, for sufficiently large μ :

P(C) ≤ 2 exp

[
− μ

2 log(μ)

]
.

We finally obtain, for sufficiently large μ,

(II) = E
[∣∣T(l) − T(k)

∣∣α1C
]
≤ 2|I|α exp

[
− μ

2 log(μ)

]
. (36)

Study of (I). We define the random variable ρ by the equation:

E
[∣∣T(l) − T(k)

∣∣α | M
]
=

(
l − k

f(t0)(M + 1)

)α (
1 + ρ

)
Using Lemma 12, we have, almost surely:

|ρ| ≤ c0

{
1

M
+

1

sr
+

1

Msr
+

(
sr

M + 1

)βfα/4
}
.

Whenever 8r ≥ (μ + 1)βfα/(4+βfα), by bounding smaller terms by the domi-
nant ones and balancing the dominant terms on the right hand side of the last
inequality, we have for μ large enough:

|ρ| ≤ 3c0

(
sr

M + 1

)βfα/4

+ c0

(
sr

μ+ 1

)βfα/4

. (37)
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On the other hand we have

E
[∣∣T(l) − T(k)

∣∣α1M≥K0

]
= E

(
E
[∣∣T(l) − T(k)

∣∣α | M
]
1M≥K0

)
= E

[(
l − k

f(t0)(M + 1)

)α (
1 + ρ

)
1M≥K0

]
=

(
l − k

f(t0)(μ+ 1)

)α

E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K0

]
.

(38)

Now, define:

t =
(log(μ+ 1))

2

2
≤ (μ+ 1)/2,

and consider the following decomposition:

E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K0

]
= E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|≤t

]
+ E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|>t

]
.

Using Assumption (H6), combined with the fact that r ≤ μ, the term of the
right hand side can be roughly bounded as follows:

E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|>t

]
≤ 4c0(μ+ 1)α(1+αβf/4)P (|M − μ| > t)

≤ 4c0(μ+ 1)α(1+αβf/4) exp
(
−γ0

2
(log(μ+ 1))

2
)
.

Thus, for sufficiently large μ, we have:

E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|>t

]
≤ 1

μ+ 1
. (39)

It remains to study the term

E

[(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|≤t

]
.

To do so, let us define

ρ̃α =

(
μ+ 1

M + 1

)α

− 1.

Since K0 < (μ+ 1)/2, we have(
μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|≤t =

(
1 + ρ̃α

)(
1 + ρ

)
1|M−μ|≤t

= 1 +
(
ρ̃α + ρ+ ρ̃αρ

)
1|M−μ|≤t − 1|M−μ|>t. (40)
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Under the event {|M − μ ≤ t|}, since t < (μ+ 1)/2, we have:

1− αt

μ+ 1
≤
(

μ+ 1

M + 1

)α

≤ 1 +
2(2α − 1)t

μ+ 1
,

which leads to

|ρ̃α|1{|M−μ≤t|} ≤ 2(2α − 1)t

μ+ 1
= (2α − 1)

log2(μ+ 1)

μ+ 1
. (41)

Note also that by (37):

|ρ|1|M−μ|≤t ≤ 4c0

(
2sr

μ+ 1

)βfα/4

. (42)

Gathering (40), (41) and (42) we obtain, for sufficiently large μ :∣∣∣∣E [( μ+ 1

M + 1

)α (
1 + ρ

)
1M≥K01|M−μ|≤t

]
− 1

∣∣∣∣
≤ 5c0

(
2sr

μ+ 1

)βfα/4

+ P(|M − μ| > t)

≤ 6c0

(
2sr

μ+ 1

)βfα/4

. (43)

Combining (38) with (39) and (43), we obtain, for sufficiently large μ :

E
[∣∣T(l) − T(k)

∣∣α1M≥K0

]
=

(
l − k

f(t0)(μ+ 1)

)α (
1 + R̃

)
, (44)

where

|R̃| ≤ 7c0

(
2sr

μ+ 1

)βfα/4

.

From (36) and (44), we obtain, for μ large enough:

EB
[∣∣T(l) − T(k)

∣∣α] = (
l − k

f(t0)(μ+ 1)

)α

(1 +R) ,

where

|R| ≤ 8c0

(
2sr

μ+ 1

)βfα/4

= 8c0(2f(t0))
βfα/4

(
l − k

f(t0)(μ+ 1)

)βfα/4

.

This ends the proof.

Let us recall the definitions

A = AM,h =
1

Mh

M∑
m=1

U

(
Tm − t0

h

)
U�

(
Tm − t0

h

)
K

(
Tm − t0

h

)
,
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and

A = f(t0)

∫
R

U(u)U�(u)K(u)du,

with U(u) = (1, u, . . . , ud̂/d̂!). Moreover, λ and λ0 are the smallest eigenvalues
of A and A, respectively. The matrix A is positive definite and thus λ0 > 0. See
[37]. The following result shows that, with high probability, λ stays away from

zero. Let us recall that in our context, d̂ is a generic estimator of d, independent
of the online set of curves. Since dimension of the matrices A and A are given
by this estimator, the probability P(·) in Lemma 5 should be understood as the

conditional probability given the estimator d̂. Finally, recall that

ĥ =

(
1

M

)1/(2ς̂t0+1)

.

Proof of Lemma 5. Without loss of generality, we could work on the set {d̂ =

d}. Moreover, for simplicity, we write h instead of ĥ below in this proof.
Note that, using Assumption (LP2), for any 1 ≤ i ≤ j ≤ d, the element Ai,j

tends almost surely to the element Ai,j as μ goes to infinity. This implies that
the matrix A tends to the matrix A. This also implies that, for sufficiently large
μ, we have λ > 0. More precisely, we have:

|λ− λ0| ≤ ‖A−A‖2 ≤ (d+ 1)‖A−A‖∞,

where ‖ · ‖2 denotes the norm induced by the Euclidean norm whereas ‖ · ‖∞
denotes the entrywise sup-norm. Let P̃(·) and Ẽ(·) denote the conditional prob-
ability P(·|M) and conditional expectation E(·|M), respectively. Then:

P̃(λ ≤ β) ≤ P̃(|λ− λ0| ≥ λ0/2) ≤
∑

0≤i,j≤d

P̃ (|(An)i,j −Ai,j | ≥ λ0/{2(d+ 1)}) .

Next, we decompose

Ai,j −Ai,j = Ai,j − Ẽ(Ai,j) + Ẽ(Ai,j)−Ai,j .

Using Assumption (H2) and the fact that K(·) has the support [−1, 1], we have:∣∣∣Ẽ(Ai,j)−Ai,j

∣∣∣ ≤ ∣∣∣∣∫
R

[
U(u)U�(u)

]
i,j

K(u)
{
f(t0 + hu)− f(t0)

}
du

∣∣∣∣
= Lfh

βf

∫
R

∣∣∣[U(u)U�(u)
]
i,j

uK(u)
∣∣∣ du

≤ Lfh
βf

∫
R

|u|K(u)du

=: Lf‖K‖1hβf .

This implies that, for h sufficiently small, that is for M sufficiently large,

P̃(λ ≤ β) ≤
∑

0≤i,j≤d

P̃(|Ai,j − Ẽ(Ai,j)| ≥ λ0/{2(d+ 1)} − Lf‖K‖1hβf )
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≤
∑

0≤i,j≤d

P̃(|Ai,j − Ẽ(Ai,j)| > λ0/{4(d+ 1)}).

Let us define

ξm,i,j =

[
U

(
Tm − t0

h

)
U�

(
Tm − t0

h

)]
i,j

K

(
Tm − t0

h

)
=

1

i!j!

(
Tm − t0

h

)i+j

K

(
Tm − t0

h

)
.

By property (15), we have ∣∣∣ξm,i,j − Ẽ(ξm,i,j)
∣∣∣ ≤ 2κ.

Moreover, for h sufficiently small, that is for M sufficiently large, f(t) ≤ 2f(t0),
∀|t− t0| ≤ h, and thus

M∑
m=1

Ṽar(ξ
(m)
i,j ) ≤

M∑
m=1

Ẽ

[
{ξ(m)

i,j }2
]

≤ 2f(t0)Mh

∫
R

∣∣∣[U(u)U�(u)
]
i,j

∣∣∣K2(u)du

≤ 2f(t0)‖K‖22 Mh.

Applying the Bernstein inequality [see 35, p. 95], we obtain, for any x > 0:

P̃

(
1

Mh

M∑
m=1

∣∣∣ξm,i,j − Ẽ(ξm,i,j)
∣∣∣ > x

)
≤ 2 exp

(
− M2x2

2‖f‖∞‖K‖2
2M

h + 4κxM
3h

)
.

Then equation (27) follows if we define:

g = ψ

(
λ0

4(d+ 1)

)
with ψ(x) =

x2

2‖f‖∞‖K‖22 + 4κx
3

.

It remains to prove (28). Let us define the events

Eβ = {λ > β} and F =
{
|Ĥt0 −Ht0 | ≤ log−2(μ)

}
∩
{
d̂ = d

}
.

Using (27), we have

P(Eβ) = 2E[exp(−gMh)1F ] + P(F)

≤ 2E[exp(−gMh)1F ] + 2K1 exp(−μ).

The last line comes from Assumption (LP3). Note that under F

Mh = M

2{d̂+Ĥt0
}

2{d̂+Ĥt0
}+1 = M

2{d+Ĥt0
}

2{d+Ĥt0
}+1 = M

2{d+Ht0
}

2{d+Ht0
}+1

+η
,
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with

|η| =
∣∣∣∣∣ 2(Ĥt0 −Ht0)

(2{d̂+ Ĥt0}+ 1)(2{d+Ht0}+ 1)

∣∣∣∣∣ ≤ 2|Ĥt0 −Ht0 |.

Assumption (LP2) implies that, under F and, for sufficiently large μ,

Mh ≥
(

μ

log(μ)

) 2{d+Ht0
}

2{d+Ht0
}+1

− 2
log2(μ)

≥ 1

2

(
μ

log(μ)

) 2{d+Ht0
}

2{d+Ht0
}+1

. (45)

Thus, we have

P(Eβ) ≤ 2 exp
(
−g

2
τ(μ) log2(μ)

)
+ 2K1 exp(−μ)

≤ K2 exp
[
−g

2
τ(μ) log2(μ)

]
,

for some positive constant K2, that does not depend on 0 < β ≤ λ0/2.

Lemma 10. Let ξ be a positive random variable such that

c1 := E
[
exp

(
η0ξ

4
)]

< ∞,

for some positive constant η0. Then, for any τ ≥ 1:

E [exp (τξ)] ≤ c1 exp
(
c2τ

4/3
)

where c2 =

(
5

16η0

)1/3

.

Proof of Lemma 10. Defining ζ = (16η0/5)
1/4ξ, we can assume, without loss of

generality that η0 = 5/16. Let γ ≥ τ . Remark that, since

1− τξ

γ
=

(
1− τξ

4γ

)4

− 6

(
τξ

4γ

)2

+ 4

(
τξ

4γ

)3

−
(
τξ

4γ

)4

,

we obtain:

E [exp (τξ)] = exp(γ)E

[
exp

(
−γ

(
1− τξ

γ

))]
≤ exp(γ)E

[
exp

(
3γ

8

(
τξ

γ

)2
)
exp

(
γ

256

(
τξ

γ

)4
)]

≤ exp(γ + η)E

[
exp

(
−η

(
1− 3γ

8η

(
τξ

γ

)2
))

exp

(
γ

256

(
τξ

γ

)4
)]

.

Using the fact that

1− 3γ

8η

(
τξ

γ

)2

=

[
1− 3γ

16η

(
τξ

γ

)2
]2

−
[
3γ

16η

(
τξ

γ

)2
]2

,
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we obtain:

E [exp (τξ)] ≤ exp(γ + η)E

[
exp

(
9

256

τ4ξ4

ηγ2
+

1

256

τ4ξ4

γ3

)]
.

Taking γ = η = τ4/3/2, we obtain:

E [exp (τξ)] ≤ exp(τ4/3)E

[
exp

(
5

16
ξ4
)]

.

This completes the proof.

Appendix F: Moment bounds for spacings

We need to find an accurate approximation for moments like

E[(T(k) − T(l))
α | M = m],

where 1 ≤ l < k ≤ K0 ≤ m, α > 0. Here, T(1) ≤ . . . ≤ T(K0) are defined as in
Section 2, that is the subvector of the K0 closest values to t0. We assume that
T admits a density f . Such moments will be considered with k and l such that,
for some fixed value t0 ∈ [0, 1] such that f(t0) > 0,

max(|t0m� − k| , |t0m� − l|)
m+ 1

≤ 8
k − l

m+ 1
(46)

and
k − l

m+ 1
is small, (47)

and converges to zero when m → ∞. Herein, for any real number a, a� denotes
the largest integer smaller than or equal to a. These conditions on k and l allows
for (k − l) increasing slower than m.

Let us point out that T(1) ≤ . . . ≤ T(K0) defined in section 2 is not the
order statistics from a random sample of T . In fact, T(k), with 1 ≤ k ≤ K0, is
the (G + k)−th order statistics of the sample T1, . . . , Tm. Here G is a random
variable and its value is determined by the way the subvector ofK0 closest values
to t0 is built. It is important to notice that G depends of the smallest and the
largest values in this subvector, but is independent of the other components of
the subvector. In particular, this means that in the case where T has a uniform
distribution, the law of the spacings between T(1) ≤ . . . ≤ T(K0) coincides with
the law of the same type of spacings between the order statistics of a uniform
sample of size m on [0, 1]. In particular, in the uniform case, the law of T(k)−T(l)

depends only on m and k−l. For this reason, first we consider the case of T with
uniform law. In the general case, we use the transformation by the distribution
function in order to get back to the uniform case.
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F.1. The uniform case

Consider U a uniform random variable on [0, 1]. Let U1, . . . , Um be an indepen-
dent sample of U and let U(1), . . . , U(m) be the order statistics. In the case of
a uniform sample, U(k) − U(l) and U(k−l) have the same distribution, that is a
beta distribution Beta(k− l,m− (k− l)+1). Hence in this case, it is equivalent
to study the moments of U(r) with 1 ≤ r = k− l ≤ m− 1. The variable U(r) has
a Beta(r,m − r + 1) distribution. It also worthwhile to notice that U(k) − U(l)

and U(l) are independent, and the same is true for U(k) − U(l) and U(k).
By elementary calculations, we have

E

[
Uα
(r)

]
=

B(α+ r,m− r + 1)

B(r,m− r + 1)
=

Γ(α+ r)

Γ(r)

Γ(m+ 1)

Γ(m+ α+ 1)
,

where B(·, ·) denotes the beta function and Γ(·) the gamma function. To derive
the bounds for the moments of interest, we use some existing results on the
approximation of the gamma functions and the ratios of the gamma functions.
The results are recalled in Section F.3 below.

Let M be a random variable taking positive integer values. In the following
proposition we assume that, given the realization of M ≥ K0, T1, . . . , TM be an
independent sample with uniform distribution on [0, 1].

Lemma 11. Consider 0 < α ≤ 3 and 1 ≤ l < k ≤ m, and let r = k − l. Then,
for any m ≥ K0 in the support of M ,∣∣∣∣E [(T(k) − T(l))

α | M = m
]
− Γ(α+ r)

Γ(r)

1

(m+ 1)α

∣∣∣∣ ≤ 3

m

Γ(α+ r)

Γ(r)

1

(m+ 1)α
,

and∣∣∣∣E [(T(k) − T(l))
α | M = m

]
−
(

r

m+ 1

)α∣∣∣∣ ≤ (
r

m+ 1

)α [
3

m
+

4

r
+

12

mr

]
.

Proof of Lemma 11. Given that M = m, T(k) − T(l) is distributed as U(r), the
r−th order statistic, with 1 ≤ r = k − l ≤ m − 1, of an independent sample of
size m from the uniform law on [0, 1]. Using inequality (52) with x = m+1 and
s = α, we can write∣∣∣∣E [Uα

(r) | M = m
]
− Γ(α+ r)

Γ(r)

1

(m+ 1)α

∣∣∣∣
=

Γ(α+ r)

Γ(r)

1

(m+ 1)α

∣∣∣∣ (m+ 1)αΓ(m+ 1)

Γ(m+ α+ 1)
− 1

∣∣∣∣
≤ 3

m

Γ(α+ r)

Γ(r)

1

(m+ 1)α
.

Next, using inequality (51) twice, with x = r and s = α, and triangle inequality
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(r) | M = m

]
−
(

r

m+ 1

)α∣∣∣∣
≤
∣∣∣∣E [Uα

(r) | M = m
]
− Γ(α+ r)

Γ(r)

1

(m+ 1)α

∣∣∣∣+ (
r

m+ 1

)α ∣∣∣∣Γ(α+ r)

rαΓ(r)
− 1

∣∣∣∣
≤
(

r

m+ 1

)α [
3

m

Γ(α+ r)

rαΓ(r)
+

4

r

]
≤
(

r

m+ 1

)α [
3

m

(
1 +

4

r

)
+

4

r

]
.

F.2. The general case

Given the realization of M , let T1, T2, . . . be an independent sample from T , a
random variable independent of M , with an absolute continuous distribution on
[0, 1]. Let f (resp. F ) (resp. Q) denote the density (resp. distribution function)
(resp. quantile function) of T . We assume that F is strictly increasing on [0, 1]
and thus Q is the inverse function for F , and Q is differentiable with Q′ = 1/f .
Then, given M = m, for any 1 ≤ l < k ≤ m, the joint distribution of the order
statistics (T(k), T(l)) is the same as the joint distribution of (Q(U(k)), Q(U(l))),
where U(1), . . . , U(m) is the order statistics of an independent uniform sample
on [0, 1].

Assume inft∈[0,1] f(t) > 0 and f is Hölder continuous around t0, i.e. there
exists Lf > 0, 0 < βf ≤ 1, and a neighborhood of t0 in [0, 1] such that for any
u, v in this neighborhood, |f(u)− f(v)| ≤ Lf |u− v|βf .

Lemma 12. Let m be an integer value in the support of M . Let t0 ∈ [0, 1],
assume that k and l are satisfying the conditions (46)-(47), and let r = k − l.
The for any 0 < α ≤ 3,∣∣∣∣E [(T(k) − T(l))

α | M = m
]
− Γ(α+ r)

Γ(r)

(
1

f(t0)(m+ 1)

)α∣∣∣∣
≤ Γ(α+ r)

Γ(r)

(
1

f(t0)(m+ 1)

)α
[
3

m
+ C

(
r

m+ 1

)αβf/4
]
,

and∣∣∣∣E [(T(k) − T(l))
α | M = m

]
−
(

r

f(t0)(m+ 1)

)α∣∣∣∣
≤
(

r

f(t0)(m+ 1)

)α
[
3

m
+

4

r
+

12

mr
+ C

(
r

m+ 1

)αβf/4
]

≤ c0

(
r

f(t0)(m+ 1)

)α
[
1

m
+

1

r
+

1

mr
+

(
r

m+ 1

)αβf/4
]
,

with C and c0 are two constants depending only on α and Lf , βf and f(t0).
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Proof of Lemma 12. In the following, we use several times the following prop-
erty: for any a, b, α ≥ 0,

(a+ b)α ≤ max(1, 2α−1) (aα + bα) .

Next, given M = m,

E
[
(T(k) − T(l))

α | M = m
]
= E

[
{Q(U(k))−Q(U(l))}α | M = m

]
.

By a first order Taylor expansion of Q(U(k)) around the point U(l), we get

Q(U(k))−Q(U(l)) =
1

f(t0)

[
U(k) − U(l)

]
[1 + r(m, k, l)] , (48)

with

r(m, k, l) =

∫ 1

0

f(t0)− f(U(l) + t[U(k) − U(l)])

f(U(l) + t[U(k) − U(l)])
dt.

Note that due to the fact the Q is increasing and almost surelyU(k) > U(l), the
identity (48) implies that 1 + r(m, k, l) > 0 almost surely. Using the triangle
inequality and the properties of f ,

|r(m, k, l)| ≤ Lf

f(t0)/2

(
|U(l) − t0|βf + |U(k) − U(l)|βf

)
.

Let

tm =
t0(m− 1)�+ 1

m+ 1
.

Note that 1/(m+ 1) ≤ tm ≤ m/(m+ 1) and

tm = E[U(tm(m+1))].

Next, we can bound

|U(l) − t0| ≤ |U(l) − tm|+ |tm − t0| ≤ |U(l) − E[U(tm(m+1))]|+
2

m+ 1

≤ |U(l) − U(tm(m+1))|+ |U(tm(m+1)) − E[U(tm(m+1))]|+
2

m+ 1
.

Thus, with the convention U(0) = 0,

E
[
|U(l) − t0|βf | M = m

]
≤ E

[
U

βf

(|l−tm(m+1)|) | M = m
]

+ E

[∣∣U(tm(m+1)) − E[U(tm(m+1))]
∣∣βf | M = m

]
+

(
2

m+ 1

)βf

.

By the facts presented in the uniform case, when l �= tm(m+ 1),

E

[
U

βf

(|l−tm(m+1)|) | M = m
]
=

Γ(βf + |l − tm(m+ 1)|)
Γ(|l − tm(m+ 1)|)

Γ(m+ 1)

Γ(m+ βf + 1)
,
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and using Wendel’s double inequality (50) with s = βf , and (46), the product
of the ratios of the gamma functions is bounded from above by(

|l − tm(m+ 1)|
m+ 1 + βf

)βf
(
1 +

βf

m+ 1

)
≤ 9

(
r

m+ 1

)βf

.

On the other hand, using Jensen’s inequality and the variance of a beta distri-
bution with parameters tm(m+ 1) and (1− tm)(m+ 1),

E

[∣∣U(tm(m+1)) − E[U(tm(m+1))]
∣∣βf | M = m

]
≤ Eβf/2

[∣∣U(tm(m+1)) − E[U(tm(m+1))]
∣∣2 | M = m

]
=

(
tm(1− tm)

m+ 2

)βf/2

.

Gathering facts and using Lemma 11, there exists a constant c such that

E
[
|U(l) − t0|βf | M = m

]
≤ c

(
r

m+ 1

)βf/2

.

On the other hand, since U(k) − U(l) is independent of U(l), from above and
Lemma 11 we deduce that for any 0 < α′ ≤ α ≤ 3,

E

[
{U(k) − U(l)}α|r(m, k, l)|α′ | M = m

]
≤ C

(
r

m+ 1

)α+α′βf/2

(49)

for some constant C depending on Lf , βf and f(t0).
Coming back to relationship (48), taking power α on both sides of the identity,

we can write

E
[
{Q(U(k))−Q(U(l))}α | M = m

]
=

1

fα(t0)
E

[
Uα
(r) | M = m

]
+R(m, k, l)

with

R(m, k, l) = E
[
{U(k) − U(l)}α{[1 + r(m, k, l)]

α − 1} | M = m
]
.

Since for any a > −1 and 0 < α ≤ 3,

|(1 + a)α − 1| = |(1 + a)α/2 − 1||(1 + a)α/2 + 1| ≤ 2|a|α/2(|a|α/2 + 2),

using the bound (49) with α′ = α and α′ = α/2,

|R(m, k, l)| ≤ cR

(
r

m+ 1

)α(1+βf/4)

,

for some constant cR depending on Lf , βf and f(t0). It remains to apply Lemma
11 to complete the proof.
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F.3. Wendel’s type inequalities for gamma function ratios

Since in our case, we only need to consider α ∈ (0, 3], we could use the sharp
bounds for the ratio of two gamma functions, as deduced by [39]. For any x > 0
and s ≥ 0, let

R(x, s) =
Γ(x+ s)

Γ(x)
.

[39] proved that when 0 ≤ s ≤ 1,(
1

1 + s/x

)1−s

≤ R(x, s)

xs
≤ 1. (50)

Since

1− s

x
≤
(

1

1 + s/x

)1−s

, ∀x ≥ 1, 0 ≤ s ≤ 1,

we can deduce that, when 0 ≤ s ≤ 1,

1− 1

x
≤ 1− s

x
≤ R(x, s)

xs
≤ 1, ∀x ≥ 1.

Next, using the recurrence formula for the gamma function, when 1 ≤ s ≤ 2 we
can write

R(x, s)

xs
=

(
1 +

s− 1

x

)
R(x, s− 1)

xs−1

and deduce

1− 1

x
≤
(
1 +

s− 1

x

)(
1− s− 1

x

)
≤ R(x, s)

xs
≤ 1 +

s− 1

x
≤ 1 +

1

x
, ∀x ≥ 1.

For our purpose, we could deduce the following bounds: for any 0 ≤ s ≤ 2,

1− 1

x
≤ R(x, s)

xs
≤ 1 +

1

x
, ∀x ≥ 1,

and

1− 1

x− 1
≤ xs

R(x, s)
≤ 1 +

1

x− 1
, ∀x ≥ 2.

Finally, using again the recurrence formula for the gamma function, when 2 ≤
s ≤ 3, we can write

R(x, s)

xs
=

(
1 +

s− 1

x

)(
1 +

s− 2

x

)
R(x, s− 2)

xs−2

and deduce, for 2 ≤ s ≤ 3, and x ≥ 2,

R(x, s)

xs
≤
(
1 +

s− 1

x

)(
1 +

s− 2

x

)
= 1 +

3

x
+

2

x2
≤ 1 +

4

x
, ∀x ≥ 2,
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and
xs

R(x, s)
≥ 1− 3x+ 2

(x+ 2)(x+ 1)
≥ 1− 3

x+ 2
≥ 1− 3

x
, ∀x ≥ 1.

On the other hand,

R(x, s)

xs
≥
(
1 +

1

x

)
R(x, s− 2)

xs−2
≥
(
1 +

1

x

)(
1− s− 2

x

)
≥ 1− 1

x

and

xs

R(x, s)
≤ x

x+ 1

xs−2

R(x, s− 2)
≤ x

x+ 1

x

x− (s− 2)
≤ x2

x2 − 1
≤ 1 +

1

x− 1
.

Gathering facts, for 0 ≤ s ≤ 3∣∣∣∣R(x, s)

xs
− 1

∣∣∣∣ ≤ 4

x
, ∀x ≥ 2, (51)

and ∣∣∣∣ xs

R(x, s)
− 1

∣∣∣∣ ≤ 3

x− 1
, ∀x ≥ 2. (52)

Appendix G: Additional simulation results

G.1. The settings

In our simulations, we use three types of stochastic processes to generate the
trajectories of X that we recall in the following.

• Setting 1: Fractional Brownian motion. The curves are generated using a
classical fractional Brownian motion with constant Hurst parameter H ∈
(0, 1). In this case, the local regularity of the process is the same at every
point. Figure 13a illustrates one realization of this setting.

• Setting 2: Piecewise fractional Brownian motion. The curves are gen-
erated as a concatenation of multiple fractional Brownian motions with
different regularities, that is with different Hurst parameters for different
time periods. In this case, the local regularity is no longer constant. Figure
13b illustrates one realization of this setting.

• Setting 3: Integrated fractional Brownian motion. The curves Xt are ob-
tained as integrals

∫ t

0
WH(s)ds, t ∈ [0, 1], of the paths of a fractional

Brownian motion process WH with constant Hurst parameter H. Here,
the local regularity of the process is the same at each point but will be
greater than 1, thus this setting corresponds to the case of smooth trajec-
tories. Figure 13c illustrates one realization of this setting.
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Fig 13. Illustrations of simulated data generated according to the different settings. The curves
correspond to the generated trajectories without noise that we aim to recover, and the grey
points correspond to the noisy measurements.
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G.2. On the computation time

Figure 14a presents the violin plots of the needed time to smooth N1 = 1000
curves. The results are obtained with the parameters of the simulation (1, 1000,
1000, 300, equi, 0.5, 0.05). They correspond to the total CPU time (system time
and user time) to estimate the bandwidth hn and then estimate the curves at
their sampling points. We perform these computations on a personal computer
equipped with a processor Intel Core i7-6600U, CPU: 2.60GHz, RAM: 24Go
and rerun the estimation 10 times. We observe that our smoothing device out-
performs cross-validation and plug-in in terms of computation time: about 1000
times faster than the cross-validation. Let Hn be a set of bandwiths. For the
cross-validation, we may explain these differences because of the computation
of the estimator for each bandwidth in Hn and each curve X(n) of the sample
(N1 × Card(Hn) calls to the estimation function) while our estimator requires
only one estimation of the regularity of the functions and one evaluation of the
estimator per curve (N1 calls to the estimation function). In a similar way, figure
14b presents the violin plots of the time necessary to smooth N1 = 1000 curves
with the parameters of the simulation (3, 1000, 1000, 1000, equi, 1.7, 0.005). The
same personal computer is used and the simulation is also run 10 times. For
setting 3, our procedure is slower than for setting 1, which can be easily ex-
plained by the computation of the derivatives of each curve X(n). However, the
computation time for the cross-validation is still not comparable with ours.

Fig 14. Computational times (log scale)

G.3. On the estimation of the local regularity

Figure 15 presents the results for the local regularity estimation for fBm with
homoscedastic noise. The local esitmation of Ht0 is performed at t0 = 1/2
which correspond to the middle of the interval. The true value of Ht0 is 0.5.

The results show an accurate estimator Ĥt0 , except, maybe, for the simulation
(1, 250, 500, 1000, equi, 0.5, 0.05) where there is not enough curves compared to
the number of sampling points.

Figure 16 presents the results for the local regularity estimation for piecewise
fBm with heteroscedastic noise. The local estimations of Ht0 are performed at



1550 S. Golovkine et al.

Fig 15. Estimation of the local regularity for fBm, with constant noise variance σ2 = 0.05,
at t0 = 1/2. True value: ςt0 = 0.5.

Fig 16. Estimation of the local regularity for piecewise fBm, with non-constant noise variance
σ2 = 0.04, 0.05 and 0.07, at t0 = 1/6, 1/2 and 5/6, respectively. True values: ςt0 = Ht0 equal
to 0.4, 0.5 and 0.7, respectively.

t0 = 1/6, 1/2 and 5/6 which correspond to the middle of the interval for each
regularity. The true values of Ht0 are 0.4, 0.5 and 0.7, respectively. The true
values of σ2 are 0.04, 0.05 and 0.07, respectively. The results show an accurate
estimator Ĥt0 .
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G.4. On the pointwise risk

For technical convenience, in our theoretical study, we only considered the case
where the regularity estimator ςt0 is applied with an independent sample. If
one wants to smooth the curves in the learning set, one can use a leave-one-out
method. That is, for each curve, one can estimate the local regularity with-
out that curve, and smooth the curve with the estimate obtained. Our method
for calculating Ĥt0 is very fast, and such a leave-one-curve-out procedure is
feasible. This idea was used to analyze the NGSIM data. However, one could
also simply smooth the learning set curves using the same local regularity esti-
mates obtained from this dataset. Figure 17 presents the estimation of the risks
R(X̂; 1/6), R(X̂; 0.5) and R(X̂; 5/6) for piecewise fBm, with constant noise

Fig 17. Estimation of the risks R(X̂; 1/6), R(X̂; 0.5) and R(X̂; 5/6) for piecewise fBm, with
constant noise variance σ2 = 0.05, when the training and the test set are the same.
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Fig 18. Estimation of the risk R(X̂; 0.5) for smoothing the noisy trajectories of a fBm, with
constant noise variance σ2 = 0.05.

Fig 19. Estimation of the risks R(X̂; 1/6), R(X̂; 0.5) and R(X̂; 5/6) for piecewise fBm, with
non-constant noise variance σ2 = 0.04, 0.05 and 0.07.

variance σ2 = 0.05, when the training and the test set are the same. The sim-
ulation results indicate that our theoretical results could be extended to the
case where the online set is taken equal to the learning set, though the concen-
tration deteriorates. The theoretical investigation of this issue is left for future
work. Figure 18 presents the estimation of the risks R(X̂; 0.5) for fBm, with
constant noise variance σ2 = 0.05. Figure 19 presents the estimation of the risks
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R(X̂; 1/6), R(X̂; 0.5) and R(X̂; 5/6) for piecewise fBm, with heteroscedastic
noise. The conclusion are the same than the homoscedastic case.

G.5. Details on the constant of the bandwidth hopt

When the regression function admits a derivative of order d which is Hölder
continuous in a neighborhood of t0, with exact exponent Ht0 and local Hölder
constant Lt0 , the optimal bandwidth for local polynomial smoothing proposed
by [37] is

hopt =

(
C

M

)1/(2ςt0+1)

with C = Ct0 =
q2

2ςt0q
2
1

with
q1 = C∗Lt0/ςt0�! and q2 = σ2

t0C
2
∗ .

Here, C∗ is the constant defined on page 39 of [37]. Let us recall the notation
used by [37] for the local polynomial estimator of a regression function r(·), at
the point t, using a sample (Y1, T1), . . . , (YM , TM ):

r̂(t0) =

M∑
m=1

YmWMm(t0).

In the case of the Nadaraya-Watson (NW) estimator,

WMm(t0) =
1

Mh

K((Tm − t0)/h)

f̂(t)
,

where

f̂(t0) =
1

Mh

M∑
j=1

K((Tj − t0)/h) ≈ f(t0).

A closer look at the proof of Proposition 1.13 of [37] reveals that the absolute
value of the bias is bounded by

hςt0
Lt0

ςt0�!
1

f̂(t0)

M∑
m=1

|(Tm − t0)/h|ςt0K((Tm − t0)/h) ≈
hςt0Lt0

ςt0�!

∫
K(v)|v|ςt0dv.

Meanwhile, the conditional variance of the NW estimator given the Tm can be
bounded by

σ2
t0

1

Mhf̂2(t0)

1

Mh

M∑
m=1

K2((Tm − t0)/h) ≈ σ2
t0

1

Mhf(t0)

∫
K2(v)dv.

Given that f(t0) can be estimated using the data points from all the curves,

the density of the T
(n)
m can be estimated with high accuracy. We therefore use

the true value f(t0) in our simulations, which in the case of a uniform design is
equal to 1.
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Appendix H: Traffic flow: Montanino and Punzo [27] methodology

Montanino and Punzo [27] presents a four steps methodology to make the
NGSIM data usable. For a complete description of the steps, we let the reader
refer to their article [27]. We briefly summarize their method here. The four
steps below are applied for each trajectory separately.

Step 1. Removing the outliers

They remove the measurements that lead to unreliable values of the acceler-
ation by cutting all the records above a deterministic threshold of 30 m/s2. The
missing points are interpolated using a natural cubic spline with 10 reference
points before and after the outliers.

Step 2. Cutting off the high- and medium-frequency responses in the speed profile

They remove the noise from the signal by linear smoothing of the signal with
low-pass filter. The considered one is a first-order Butterworth filter [5] with
cutoff frequency of 1.25 Hz.

Step 3. Removing the residual unphysical acceleration values, keeping the con-
sistency requirements

They remove residual peaks that exceed defined thresholds (varying with
speed levels). For that, they move the position of the vehicle when the peak in
acceleration appears in order to fulfill the thresholds. In order to prevent in-
consistency, a 5th-degree polynomial interpolation with constraint on the space
traveled plus minor conditions was applied on a 1s window around the peak
points.

Step 4. Cutting off the high- and medium-frequency reponses generated from
step 3

This step is the same as the step 2 but using the results of the step 3.

The methodology of [27] seems very specific to the NGSIM dataset, or at least
some trajectory dataset, and by extension can not be easily applied to others.
For using the algorithm on other trajectory datasets, their method requires some
fine-tuning of the parameters.

As explained in the main text, the 1714 observation units from the I-80
dataset, available in the NGSIM study, have been recorded at moments of the
day when traffic is evolving, it goes from fluid to dense traffic. Therefore, we
consider that there are three groups in the data: a first group corresponding to
a fluid (high-speed) traffic, a second one for in-between fluid and dense traffic,
and a third groups corresponding to the dense (low-speed) traffic. Our local reg-
ularity approach, and the kernel smoothing induced, are applied for each group
separately. The three group clustering was performed using a Gaussian mixture
model estimated by an EM algorithm initialized by hierarchical model-based ag-
glomerative clustering as proposed by Fraley and Raftery [12] and implemented
in the R package mclust [34]. The optimal model is then selected according
to BIC. The three resulting classes have 239, 869 and 606 velocity trajectories,
respectively. Plots of randomly selected subsamples of trajectories from each
groups are provided in Figure 20.
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Fig 20. I-80 dataset illustration of the clusters: a sample of five velocity curves from each of
the three groups of curves
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Fig 21. Canadian weather dataset illustration.

Appendix I: Complements on the real-data applications

In this section, we point out the fact that our situation is not specific only to
the traffic flow data, but can be applied to other real datasets.

I.1. Canadian weather

The Canadian Weather dataset [30, 29] records the daily temperature and pre-
cipitations in Canada averaged over the period from 1960 to 1994. Here, we are
interested in the average daily temperature for each day of the year. It contains
the measurements of 35 canadian stations. Here, we have N0 = 35 and μ = 365.
A sample of five temperature curves has been plotted in the Figure 21a. Figure
21b presents the estimation of Ht0 for different t0. We see that the estimation

varies around 1 with K̂0 = 25.

I.2. Household Active Power Consumption

The Household Active Power Consumption dataset is part of the Monash Uni-
versity, UEA, UCR time series regression archive [36] and was sourced from
the UCI repository1. The data measures diverse energy related features of a
house located in Sceaux, near Paris every minute between December 2006 and
November 2010. In total, its represents around 2 million data points. These data
are used to predict the daily power consumption of a house. Here, we are only
interested in the daily voltage. The dataset contains N0 = 746 time series of
μ = 1440 measurements. Figure 22a presents a sample of five curves from this
dataset. The estimation of the local regularity Ht0 , plotted in Figure 22b, is

around 0.5 with K̂0 = 73.

1https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power
+consumption

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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Fig 22. Household active power consumption dataset illustration.

Fig 23. PPG-Dalia dataset illustration.

I.3. PPG-Dalia

The PPG-Dalia dataset is also part of the Monash University, UEA, UCR time
series regression archive [36] and was also sourced from the UCI repository2.
PPG sensors are widely used in smart wearable devices to measure heart rate
[32]. They contain a single channel PPG and 3D accelerometer motion data
recorded from 15 subjects performing various real-life activities. Measurements
from each subject are segmented into 8 second windows with 6 second overlaps,
resulting in N0 = 65000 time series of μ = 512 features. Here, we are interested
in the PPG channel. A sample of five curves is plotted in Figure 23a. The
estimation of the local regularity Ht0 is also around 0.5 (see Figure 23b) with

K̂0 = 25.
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