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Abstract: The presence of measurement errors is a ubiquitously faced
problem and plenty of work has been done to overcome this when a sin-
gle covariate is mismeasured under a variety of conditions. However, in
practice, it is possible that more than one covariate is measured with er-
ror. When measurements are taken by the same device, the errors of these
measurements are likely correlated.

In this paper, we present a novel approach to estimate the covariance
matrix of classical additive errors in the absence of validation data or aux-
iliary variables when two covariates are subject to measurement error. Our
method assumes these errors to be following a bivariate normal distribution.
We show that the variance matrix is identifiable under certain conditions on
the support of the error-free variables and propose an estimation method
based on an expansion of Bernstein polynomials. To investigate the per-
formance of the proposed estimation method, the asymptotic properties of
the estimator are examined and a diverse set of simulation studies is con-
ducted. The estimated matrix is then used by the simulation-extrapolation
(SIMEX) algorithm to reduce the bias caused by measurement error in lo-
gistic regression models. Finally, the method is demonstrated using data
from the Framingham Heart Study.
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1. Introduction

The term measurement error is commonly used to refer to situations whereby
variables can only be measured with consequential error or be substituted by
surrogate values because of not being accessible in principle. This might be
caused by the nature of the measured quantity itself or by the measuring pro-
cess. The latter could be exemplified by inaccuracies due to a measuring device,
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a biased attitude during data collection, miscategorization, high expenses of a
measuring process or incomplete information because of missing observations.
If the presence of measurement error is not taken into account during the analy-
sis, exceedingly biased estimates might be obtained. It has been of considerable
interest to propose methods that correct measurement error in parametric, semi-
parametric or nonparametric models.

Various methods have been proposed to overcome measurement error such
as the method of moments [22], regression calibration [14], score function based
approaches [32], Bayesian methods [24], or simulation extrapolation [16]. [13],
[9], [38] and [53] provide extensive collections of correction approaches for mea-
surement errors.

In a multiple regression model, ignorance of measurement error and the ap-
plication of näıve methods can bring about bias, and the consistency property
of maximum likelihood estimators fails [33]. The direction in which the bias
attenuates the estimates is not always the same. Even the coefficient estimates
for precisely measured covariates can be biased because of the correlation with
the error-prone covariates. This correlation determines the direction of the bias
[11]. Besides, implementation of standard statistical techniques on data with
errors-in-variables could result in concealment of meaningful characteristics of
the data and loss of power in exploring the relations between covariates [13].
No matter what the nature of the constructed regression model is, neglecting
measurement error could result in biased estimates. Independent of the type of
model (longitudinal, survival, logistic, linear, etc.), measurement errors should
therefore be taken into account when making statistical inferences [8].

If measurement error is not treated appropriately, it may cause serious prob-
lems. To avoid this, a proper specification of both the measurement error model
and the distribution of the measurement error is essential. If any distributional
assumption is made regarding the unobserved covariate(s), structural methods
are implemented; otherwise, functional methods are used. Classical measure-
ment error models are the most frequently considered models in the literature.
They assume that

W = X + U, (1.1)

where W and X refer to the surrogate and error-prone variables, respectively,
while U represents the measurement error, which is presumed to be independent
of X and to have zero mean. This model applies also to situations in which there
are multiple covariates measured with error. In this case, all components of (1.1)
are multi-dimensional.

While researchers have shown considerable interest in measurement error in
a single covariate, dealing with measurement error in the case of multiple error-
contaminated predictors has been studied much less. [36] offered a method to
construct confidence intervals for the parameters of a logistic regression model
with multiple covariates. It relies on a validation study and regression calibra-
tion. [52] constructed a bivariate measurement error model and built a logistic
regression model by using replications and bio-markers. [41] noted that the re-
gression calibration method is not capable of correcting the bias induced by
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measurement errors if the individual measurement errors of the covariates of in-
terest are associated and suggested to use a modified estimator which stands for
generalized inverse-variance weighted average. In order to overcome the atten-
uation and problems preventing to obtain identifiable models, [45] introduced
augmented validation study designs and presented semiparametric estimators
based on instrumental variables. In a study by [19], measurement errors in
three covariates are handled by multi-level multivariate regression calibration
modeling. In order to estimate the measurement error variances, they combine
the results of various research studies and perform meta-analysis to model the
correlated measurement errors as well as the time effect. Besides, [1] obtain
nonparametric maximum likelihood estimators for generalized linear models by
the expectation-maximization (EM) algorithm under the assumption that the
measurement errors of two mismeasured explanatory variables are independent.
Although [31] recommend Bayesian hierarchical models via integrated nested
Laplace approximations to jointly model measurement errors in two covariates,
they assume no association among the covariates of interest as well as their cor-
responding measurement errors. [27] improve a procedure to allow for the im-
plementation of regression calibration for the joint measurement errors in two
covariates. In [6], unobserved covariates are treated as missing and analyzed
by multiple overimputation based on the assumption that the observed data
follow a multivariate normal distribution. Finally, [17] consider the presence of
contaminated covariates in small area estimation problems. They assume struc-
tural measurement error models with uncorrelated errors and propose empirical
best estimates for small area means.

In spite of the appealing properties of the above mentioned methods that con-
stitute a vast literature to cope with a multivariate measurement error struc-
ture, the requirements for validation data, replications or auxiliary variables,
the dependency on stringent assumptions or the difficulty of generalizing to
the interrelated multivariate error structure, points out the need for a flexible
method to estimate the covariance matrix of measurement errors. To the best
of our knowledge, no practical method is offered at present that allows for the
assessment of the covariance matrix that characterizes the measurement error
if only one-record-at-a-time is available.

In this paper, we fulfill such a need to develop methods for bivariate correlated
measurement errors in continuous covariates with an absence of auxiliary data,
and we propose a methodology that is easy to implement and can be applied to
error contaminated data from various fields. Our method extends the work of
[5] and assumes the bivariate classical measurement error model(

W1

W2

)
=

(
X1

X2

)
+

(
U1

U2

)
, (1.2)

where X = (X1, X2)
� and U = (U1, U2)

� are independent, the density of X is
unknown, and the vector U has a bivariate Gaussian distribution, i.e.

U =

(
U1

U2

)
∼ N2

((
0
0

)
,Σ =

(
σ2
1 σ12

σ12 σ2
2

))
, (1.3)
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with Σ unknown. Note that not only we allow the errors U1 and U2 to be corre-
lated, but we also allow the unobserved variables X1 and X2 to be correlated.
The extension to multivariate measurement error models of dimension larger
than two will be briefly discussed in Section 7. For the identifiability of mea-
surement error models, we refer to the work of [39] as a pioneering paper in
the univariate case. We will generalize their proof of the identifiability to the
bivariate case, i.e. we will show that the density of X and the matrix Σ are
identified even when both the errors and the unobserved variables of interest
are correlated. Similarly as in the univariate case, we will only assume that X
has a density on a compact (but unknown) support and that Σ is a symmetric,
positive semi-definite matrix. To approximate the density of X = (X1, X2)

�, we
benefit from Bernstein polynomials [4]. The proposed methodology allows the
use of the estimated error covariance matrix when applying any bias adjustment
method to construct any type of regression model.

This paper is organized as follows. In the next section, we show the identifia-
bility of the proposed model. In Section 3, we explain how to estimate the model,
and we develop asymptotic properties of the model estimators. The finite-sample
characteristics of the proposed estimators are reported in Section 4. In Section
5, the proposed estimators of the variance matrix are used to correct for mea-
surement error in a logistic regression model by means of the SIMEX method.
Section 6 contains an application of the proposed methodology to data from the
Framingham Heart Study. Finally, conclusions and ideas for further research are
given in Section 7. The online supplement [26] contains additional simulation
results.

2. Identifiability

Identifiability of a model is a key property in statistics to ensure that accurate
inferences can be made. In a likelihood-identifiable model, the observed data
contain the essential information needed for the estimation of the model pa-
rameters ([28]; Chp. 5, p.124). In this section, we show that model (1.2)-(1.3) is
likelihood-identifiable under certain additional specifications.

We first suppose that model (1.2)-(1.3) is satisfied, and that in addition, the
support of (X1, X2)

� is compact, but unknown. For simplicity, we assume that
it has a rectangular shape. Building on the work of [5], we write X1 and X2 as
follows:

X1 = a1S1 + b1,

X2 = a2S2 + b2,
(2.1)

where S = (S1, S2)
� is a bivariate continuous random vector defined on [0, 1]×

[0, 1] and a1, a2, b1 and b2 are unknown parameters, with a1 and a2 positive.
Therefore, the density of W = (W1,W2)

� can be written as:

fW1,W2(w1, w2) =

∫ ∫
fX1,X2(x1, x2)fU1,U2(w1 − x1, w2 − x2; Σ) dx1 dx2

=
1

a1a2

∫ ∫
fS1,S2

(x1 − b1
a1

,
x2 − b2

a2

)
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× fU1,U2(w1 − x1, w2 − x2; Σ) dx1 dx2, (2.2)

where fS1,S2(·, ·) and fX1,X2(·, ·) are the density of S and X respectively, and
fU1,U2(·, ·; Σ) is the bivariate Gaussian density with mean zero and variance Σ.
This shows that

PW1,W2 = PX1,X2 ∗N2(0,Σ),

where ∗ represents the convolution, and PW1,W2 and PX1,X2 are the laws of
(W1,W2)

� and (X1, X2)
�, respectively.

Let us now show that model (1.2)-(1.3)-(2.1) is identifiable. We will show this
identifiability in a more general model which, instead of (2.1), assumes that the
law PX1,X2 belongs to the set P2,0 defined as follows:

P2,0 =
{
P ∈ P2 | supp(P ) ⊂ [q1,∞)× [q2,∞) for some q1, q2 < ∞

}
,

where P2 is the set of all bivariate probability laws, and supp(P ) is the support
of the law P . It is worthy to note here that finite values of q1 and q2 are
needed for the identifiability of both the diagonal and off-diagonal elements
of the error covariance matrix. Many distributions fall into the class P2,0, like
distributions corresponding to positive random variables (which is the case for
many commonly studied variables in practice), variables defined on a compact
interval (like proportions, percentages,etc.). On the other hand, it excludes the
bivariate normal distribution, but this is not surprising, since it is impossible to
identify a normal distribution from the convolution of two normals. So, this is
in a sense, the price to pay for proving the identifiability of the error covariance
matrix. Also note that in Section 4 we truncate the covariates to meet this
condition. In addition, the matrix Σ needs to belong to

Θ =
{(

σ2
1 σ12

σ12 σ2
2

)
∈ R

2×2 | 0 < σ1, σ2 < ∞, σ12 ∈ R, σ2
1σ

2
2 − σ2

12 � 0
}
,

i.e., Θ constitutes the space of 2× 2 positive semi-definite covariance matrices.
Note that if (X1, X2)

� satisfies (2.1), then PX1,X2 obviously belongs to the set
P2,0, since the support of (X1, X2)

� is [b1, a1 + b1]× [b2, a2 + b2] in that case.

Theorem 2.1. Suppose that PX1,X2 ∗ N2(0,Σ) = P X̃1,X̃2 ∗ N2(0, Σ̃), with

PX1,X2 , P X̃1,X̃2 ∈ P2,0 and Σ, Σ̃ ∈ Θ. Then, PX1,X2 = P X̃1,X̃2 and Σ = Σ̃.
Hence, model (1.2)-(1.3) is identifiable in the parameter space P2,0 ×Θ.

The proof relies on the following lemma.

Lemma 2.1. Suppose that PX1,X2 ∈ P2,0. Then, P
X1 , PX2 ∈ P1,0, where

P1,0 =
{
P ∈ P1 | ∃A ∈ B(R) : |A| > 0 and P (A) = 0

}
,

where P1 is the set of all univariate laws, |A| is the Lebesgue measure of a set
A in R, and B(R) contains all Borel sets in R.
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Proof. Let D = [d1, d2] such that [d1, d2] ∩ [q1,∞) = ∅ and d1 < d2. Then,

PX1(D) =

∫ d2

d1

fX1(x1)dx1 =

∫ d2

d1

∫ ∞

q2

fX1,X2(x1, x2) dx2 dx1 = 0,

implying that PX1 ∈ P1,0. A similar approach is applicable to show that PX2 ∈
P1,0.

Proof of Theorem 2.1. Suppose that (PX1,X2 ,Σ), (P X̃1,X̃2 , Σ̃) ∈ P2,0×Θ satisfy

PX1,X2 ∗N2(0,Σ) = P X̃1,X̃2 ∗N2(0, Σ̃). Then,∫ ∫
fX1,X2(x1, x2)fU1,U2(w1 − x1, w2 − x2; Σ) dx1 dx2

=

∫ ∫
fX̃1,X̃2

(x1, x2)fŨ1,Ũ2
(w1 − x1, w2 − x2; Σ̃) dx1 dx2 (2.3)

for all w1, w2. Substituting fU1,U2(w1 − x1, w2 − x2; Σ) = fU2|U1
(w2 − x2|w1 −

x1)fU1(w1 − x1) and fX1,X2(x1, x2) = fX2|X1
(x2|x1)fX1(x1) into (2.3) results

in:∫ ∫
fX2|X1

(x2|x1)fX1(x1)fU2|U1
(w2 − x2|w1 − x1; Σ)fU1(w1 − x1;σ1) dx1 dx2

=

∫ ∫
fX̃2|X̃1

(x2|x1)fX̃1
(x1)fŨ2|Ũ1

(w2 − x2|w1 − x1; Σ̃)

×fŨ1
(w1 − x1; σ̃1) dx1 dx2. (2.4)

Note that
∫
fU2|U1

(w2−x2|w1−x1; Σ)dw2 = 1 and that
∫
fX2|X1

(x2|x1)dx2 = 1.
Hence, (2.4) reduces to:∫

fX1(x1)fU1(w1 − x1) dx1 =

∫
fX̃1

(x1)fŨ1
(w1 − x1) dx1,

which shows that PX1 ∗N1(0, σ
2
1) = P X̃1 ∗N1(0, σ̃

2
1). From Lemma 2.1 we know

that (PX1 , σ2
1), (P

X̃1 , σ̃2
1) ∈ P1,0 × (0,∞). Therefore, it follows from [39] that

PX1 = P X̃1 and σ2
1 = σ̃2

1 .

In a similar way we can show that PX2 = P X̃2 and σ2
2 = σ̃2

2 .

Next, note that the equality PX1,X2 ∗N2(0,Σ) = P X̃1,X̃2 ∗N2(0, Σ̃) implies
that

ϕX1,X2(t1, t2) exp
{
− 1

2
(2σ12t1t2)

}
= ϕX̃1,X̃2

(t1, t2) exp
{
− 1

2
(2σ̃12t1t2)

}
for all t1, t2, where ϕX1,X2(t1, t2) is the characteristic function of any vector
(X1, X2)

�. Now choose t1 = t2 = t and let a be any value such that 2σ12+a > 0
and 2σ̃12 + a > 0. Then,

ϕX1+X2(t)ϕN(0,2σ12+a)(t) = ϕX̃1+X̃2
(t)ϕN(0,2σ̃12+a)(t),
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which shows that PX1+X2 ∗ N1(0, 2σ12 + a) = P X̃1+X̃2 ∗ N1(0, 2σ̃12 + a). It

is easily verified that (PX1+X2 , 2σ12 + a), (P X̃1+X̃2 , 2σ̃12 + a) ∈ P1,0 × (0,∞).
Hence, again by [39], it follows that

PX1+X2 = P X̃1+X̃2 and σ12 = σ̃12.

Finally, since PX1,X2 ∗ N2(0,Σ) = P X̃1,X̃2 ∗ N2(0, Σ̃) and Σ = Σ̃, it follows
from the convolution theorem that ϕX1,X2(t1, t2) = ϕX̃1,X̃2

(t1, t2) for all t1, t2,

and hence by the inversion theorem, PX1,X2 = P X̃1,X̃2 . This completes the
proof.

3. Estimation

We are now ready to develop an estimation procedure for our model. This will be
done by approximating the joint density of S1 and S2 by Bernstein polynomials
with positive coefficients. A bivariate Bernstein polynomial of degree (m1,m2)
defined on the unit square, is given by

m1∑
k1=0

m2∑
k2=0

αm
k1,k2

bmk1,k2
(s1, s2),

for some real-valued coefficients αm
k1,k2

, k1 = 0, 1, . . . ,m1, k2 = 0, 1, . . . ,m2,

where m = (m1,m2)
�, m1,m2 ≥ 0,

bmk1,k2
(s1, s2) =

(
m1

k1

)(
m2

k2

)
sk1
1 (1− s1)

m1−k1sk2
2 (1− s2)

m2−k2 ,

and (s1, s2) ∈ [0, 1]× [0, 1].
Any continuous function f defined on [0, 1]× [0, 1], can be approximated by

bivariate Bernstein polynomials in the sense that

lim
m1,m2→∞

sup
0≤s1,s2≤1

∣∣∣Bm1,m2(f ; s1, s2)− f(s1, s2)
∣∣∣ = 0,

where

Bm1,m2(f ; s1, s2) =

m1∑
k1=0

m2∑
k2=0

f
( k1
m1

,
k2
m2

)
bmk1,k2

(s1, s2).

See also [46] and [2]. Hence, if we assume that S = (S1, S2)
� has a continuous

density fS1,S2(·, ·), it can be approximated by

m1∑
k1=0

m2∑
k2=0

αm
k1,k2

(
m1

k1

)(
m2

k2

)
sk1
1 (1− s1)

m1−k1sk2
2 (1− s2)

m2−k2 , (3.1)

for certain coefficients αm
0,0, α

m
0,1, ..., α

m
0,m2

, αm
1,0, ..., α

m
m1,m2

. Moreover, note that
if we define θmk1,k2

= αm
k1,k2

[(m1 + 1)(m2 + 1)]−1, then (3.1) can be written as

f̃m
S1,S2

(s1, s2; θm) =

m1∑
k1=0

m2∑
k2=0

θmk1,k2
Betak1+1,m1−k1+1(s1)Betak2+1,m2−k2+1(s2),
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where Beta�1,�2(·) is the density of a Beta variable with parameters �1 and
�2, and θm = (θm0,0, θ

m
0,1, ..., θ

m
0,m2

, θm1,0, ..., θ
m
m1,m2

)�, which is a vector of size
(m1 +1)× (m2 +1). This shows that we approximate fS1,S2 by a weighted sum
of products of two beta densities.

In order for f̃m
S1,S2

(s1, s2; θm) to be a valid probability density function, some

constraints on the coefficients are needed, namely the area under f̃m
S1,S2

(s1, s2; θm)
needs to add up to 1 and the function needs to be non-negative on its support.
These constraints are set by imposing that

∑m1

k1=0

∑m2

k2=0 θ
m
k1,k2

= 1 and that
θmk1,k2

≥ 0.

Since we approximate fS1,S2(s1, s2) by f̃m
S1,S2

(s1, s2; θm), the joint density
fX1,X2(x1, x2) of X1 and X2 can be approximated by

f̃m
X1,X2

(x1, x2; a, b, θm)

=
1

a1a2
f̃m
S1,S2

(x1 − b1
a1

,
x2 − b2

a2
; θm

)

=
1

a1a2

m1∑
k1=0

m2∑
k2=0

θmk1,k2
Betak1+1,m1−k1+1

(x1 − b1
a1

)
Betak2+1,m2−k2+1

(x2 − b2
a2

)
,

(3.2)

where a = (a1, a2)
�, b = (b1, b2)

� and x = (x1, x2)
� ∈ [b1, a1+ b1]× [b2, a2+ b2]

due to (2.1). Note that in (2.1), we need to define X1 and X2 as such since
bivariate Bernstein polynomials are defined only on the unit square.

As a result, the density of (W1,W2)
�, given in (2.2), can be approximated

by

f̃m
W1,W2

(w1, w2; a, b,Σ, θm) (3.3)

=

∫ ∫
f̃m
X1,X2

(x1, x2; a, b, θm)fU1,U2(w1 − x1, w2 − x2; Σ) dx1 dx2

=
1

a1a2

m1∑
k1=0

m2∑
k2=0

θmk1,k2

∫ ∫
βk1,m1;k2,m2(x1, x2; a, b)

× fU1,U2(w1 − x1, w2 − x2; Σ) dx1 dx2,

with

βk1,m1;k2,m2(x1, x2; a, b)

= Betak1+1,m1−k1+1(
x1 − b1

a1
)Betak2+1,m2−k2+1(

x2 − b2
a2

).

If fS1,S2(·, ·) is continuous, then,

lim
m1,m2→∞

sup
w1,w2

∣∣∣f̃m
W1,W2

(w1, w2; a, b,Σ, θm)− fW1,W2(w1, w2)
∣∣∣ = 0.

This equation shows that the density of the observed variables can be accurately
approximated by means of bivariate Bernstein polynomials, provided the degree
of these polynomials is sufficiently large.
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This motivates us to use the following estimation procedure, based on an
i.i.d. sample Wi = (Wi1,Wi2)

�, i = 1, . . . , n, having the same distribution as
W . The log-likelihood of the parameters a, b,Σ and θm is given by

Ln(a, b,Σ, θm) =

n∑
i=1

log

{
1

a1a2

m1∑
k1=0

m2∑
k2=0

θmk1,k2

∫ ∫
βk1,m1;k2,m2(x1, x2; a, b)

× fU1,U2(Wi1 − x1,Wi2 − x2; Σ) dx1 dx2

}
. (3.4)

Then, the maximum likelihood estimates of (a, b,Σ, θm), denoted by

(â, b̂, Σ̂, θ̂m) = arg maxa,b,Σ,θmLn(a, b,Σ, θm),

can be computed for fixed m1 and m2, where the maximization is done with
respect to the parameter space

P =
{
(a, b,Σ, θm) : a ∈ [0,∞)2, b ∈ R

2,Σ ∈ Θ, θm ∈ [0,∞)(m1+1)(m2+1)
}

under the constraint that
∑m1

k1=0

∑m2

k2=0 θ
m
k1,k2

= 1. Let us now consider de-
gree selection for Bernstein polynomials. Polynomials with larger degrees lead
to better approximations. However, in this case, we need to estimate a larger
number of parameters which increases the variance. Hence, we suggest choosing
the degree (m1,m2)

� by means of the Bayesian Information Criterion (BIC):

BIC(m1,m2) = log(n)[(m1 + 1)(m2 + 1) + 6] − 2Ln(â, b̂, Σ̂, θ̂m)

for m1,m2 ≥ 0, since the number of (free) parameters is 2 + 2 + 3 + (m1 +
1)(m2 + 1) − 1 = (m1 + 1)(m2 + 1) + 6. In practice, we fit models for several
values of m1 and m2 and select the one for which BIC(m1,m2) is minimal.

Asymptotic properties of the proposed estimators can now be developed for
fixed m1,m2 ≥ 0. Note that the vector (â, b̂, Σ̂, θ̂m) maximizes the likelihood
of a potentially misspecified model. Therefore, we use White (1982), who de-
veloped sufficient conditions for consistency and asymptotic normality of maxi-
mum likelihood (ML) estimators under potential misspecification. In that case,
the target vector of parameters is given by (a∗, b∗,Σ∗, θ∗m), the minimizer (over
(a, b,Σ, θm)) of the Kulback-Leibler information criterion, defined by

E
[
log fW1,W2(W1,W2)− log f̃m

W1,W2
(W1,W2; a, b,Σ, θm)

]
.

Note here that (a∗, b∗,Σ∗, θ∗m) equals to the true parameter vector (a, b,Σ, θm)
if the model is correctly specified.

We have the following result.

Theorem 3.1. Suppose that (1.2)-(1.3)-(2.1) hold true, and that assumptions
(A1)− (A3) in [51] are met. Then,

(â, b̂, Σ̂, θ̂m)
p→ (a∗, b∗,Σ∗, θ∗m).
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If in addition assumptions (A4)− (A6) in White (1982) are met, then,

√
n
(
(â, b̂, Σ̂, θ̂m)− (a∗, b∗,Σ∗, θ∗m)

)
d→ N

(
0, C(γ∗

m)
)
,

where

C(γ∗
m) = A(γ∗

m)−1B(γ∗
m)A(γ∗

m)−1,

A(γ∗
m) =

(
E

{
∂2

∂γi∂γj
log f̃m

W1,W2
(W1,W2; γm)

}∣∣∣∣
γm=γ∗

m

)M

i,j=1

,

and

B(γ∗
m)

=

(
E

{
∂

∂γi
log f̃m

W1,W2
(W1,W2; γm).

∂

∂γj
log f̃m

W1,W2
(W1,W2; γm)

}∣∣∣∣
γm=γ∗

m

)M

i,j=1

,

with M = (m1 + 1)(m2 + 1) + 6 and γ∗
m = (a∗, b∗,Σ∗, θ∗m).

4. Simulation study

In this section, in order to examine the numerical performance of the proposed
method, we conduct simulation studies for various settings. Under model (1.2)-
(1.3)-(2.1), we need to specify the bivariate distribution of (X1, X2) and the
variance matrix of (U1, U2). For the latter, we will specify the values of σ1, σ2

and ρ = Corr(U1, U2) = σ12/(σ1σ2). The values of σ1 and σ2 will depend on
the setting and can be found in Table 2, whereas for ρ we will work with 0.7, 0.1
and −0.5 in each setting. For the bivariate distribution of (X1, X2) we consider
four settings. In the first setting, S1 and S2 are simulated independently from a
Beta(1, 1) distribution, andX1 andX2 equalX1 = a1S1+b1 and X2 = a2S2+b2
with a1 = 2, a2 = 3, b1 = −1 and b2 = −2. In the second setting, X1 and X2

are independent and distributed according to a N(0, 1;−1, 1) and N(0, 1; 0, 2)
distribution respectively, where the notationN(0, 1; tL, tU ) stands for a standard
normal distribution truncated to the interval [tL, tU ]. The final two settings deal
with the case where X1 and X2 are correlated. In the third setting, the vector
(X1, X2) follows a zero-mean bivariate normal distribution with unit variance
and correlation given by δ = 0.1, which we truncate to the rectangle determined
by tL = (−1,−2)� and tU = (0, 1)�, whereas in the fourth setting δ = 0.7,
tL = (−1,−2)� and tU = (2, 0)�.

Note that not only the measurement errors but also the unobserved covariates
are correlated in the last two settings. To compute the bivariate integral in (3.4),
we use Monte Carlo (MC) integration which allows to integrate any bivariate
function defined on the unit square. Under this method, the integral is computed
by evaluating the function of interest in a sufficiently large number of pseudo
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uniform variables [25]. If the bounds of the integral are different from [0, 1]×[0, 1],
they should be transformed. This is achieved as follows:

∫ yU

yL

∫ xU

xL
f(x, y)dxdy ∼= (yU − yL)(xU − xL)

1

D

×
D∑
i=1

f(Ri1(xU − xL) + xL, Ri2(yU − yL) + yL)

where R11, . . . , RD1 and R12, . . . , RD2 are two random samples of size D, ob-
tained independently from a U [0, 1] distribution.

MC integral estimators are known to be unbiased and the accuracy increases
with increasing values of D. For our case, we generated MC samples of size
D = 10, 000. Therefore, the log-likelihood function in (3.4) can be approximated
by

Ln(a, b,Σ, θm)

∼=
n∑

i=1

log

⎧⎨
⎩

m1∑
k1=0

m2∑
k2=0

θmk1,k2

1

D

D∑
j=1

βm
k1;k2

(Rj1, Rj2)γ(Wi1, Rj1,Wi2, Rj2)

⎫⎬
⎭ ,

(4.1)

where

γ(Wi1, Rj1,Wi2, Rj2) = fU1,U2(Wi1 − (a1Rj1 + b1),Wi2 − (a2Rj2 + b2); Σ),

βm
k1,;k2

(Rj1, Rj2) = Betak1+1,m1−k1+1(Rj1)Betak2+1,m2−k2+1(Rj2).

The use of MC integration significantly reduces the computation time to cal-
culate the likelihood function. Next, we use constrained optimization algorithms
for the numerical maximization of the log-likelihood in (4.1).

For each setting, N = 200 samples of size n = {300, 500, 4000} are drawn. To
determine the necessary number of Bernstein polynomials, seventeen different
degrees (m1,m2) are fitted, namely (m1,m2) for m1,m2 = 0, 1, 2, and (m1, 0)
and (0,m2) for m1,m2 = 3, 4, 5, 6. Then, these degrees are evaluated by BIC.
Following degree selection and parameter estimation, we evaluate the perfor-
mance of the proposed method for approximating the joint density of (X1, X2)
via the mean integrated absolute error (MIAE):

MIAE =
1

N

N∑
r=1

∫ ∫ ∣∣∣fX1,X2(x1, x2)− f̃m,r
X1,X2

(x1, x2; â, b̂, θ̂m)
∣∣∣ dx1dx2, (4.2)

where f̃m,r
X1,X2

(x1, x2; â, b̂, θ̂m) represents the estimated density using the data
on replication r, while fX1,X2(x1, x2) is the unknown density of (X1, X2). The
results of the simulations are presented in Tables 1-3. Table 1 and the first two
columns of Table 2 summarize the simulation outcomes for the marginal error
distributions. Tables 1 and 2 show that the estimation of the unknown parame-
ters is in general accurate. Compared with the results for n = {300, 4000} (not
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Table 1

Simulation results for the estimation of fX1,X2(x1, x2) when n = 500. For each distribution,
the three lines correspond to three values for ρ, namely ρ = 0.7, 0.1 and −0.5 (B: Bias, SE:

Standard error).

Covariate
Distribution

Estimation of a1 Estimation of b1 Estimation of a2 Estimation of b2
a1 B(â1) SE(â1) b1 B(b̂1) SE(b̂1) a2 B(â2) SE(â2) b2 B(b̂2) SE(b̂2) MIAE

2Beta(1, 1)− 1
3Beta(1, 1)− 2

2
0.002 0.067

-1
-0.001 0.040

3
0.009 0.119

-2
-0.006 0.069 1.068

0.006 0.074 -0.003 0.042 0.003 0.112 -0.004 0.072 1.095
0.006 0.068 -0.003 0.041 0.007 0.143 -0.006 0.086 1.087

N(0, 1;−1, 1)
N(0, 1; 0, 2)

2
-0.160 0.088

-1
0.081 0.050

2
0.019 0.140

0
0.000 0.059 0.822

-0.168 0.081 0.084 0.046 0.011 0.149 0.004 0.066 0.830
-0.166 0.079 0.084 0.046 0.025 0.138 -0.001 0.067 0.826

N2, δ = 0.1 1
-0.014 0.041

-1
0.018 0.030

3
-0.390 0.368

-2
0.214 0.283 1.017

-0.015 0.039 0.020 0.030 -0.420 0.392 0.228 0.291 1.034
-0.015 0.036 0.019 0.029 -0.404 0.305 0.217 0.258 1.039

N2, δ = 0.7 3
-1.575 0.808

-1
0.295 0.277

2
-0.193 0.179

-2
0.158 0.163 0.970

-1.462 0.814 0.275 0.261 -0.194 0.229 0.161 0.190 0.889
-1.484 0.876 0.285 0.294 -0.159 0.144 0.141 0.139 0.852

Table 2

Simulation results for the estimation of the covariance matrix of the measurement errors
when n = 500.

Covariate Estimation of σ1 Estimation of σ2 Estimation of ρ
Distribution σ1 Bias SE MSE σ2 Bias SE MSE ρ Bias SE MSE

2Beta(1, 1)− 1
3Beta(1, 1)− 2

0.14
-0.001 0.024 0.001

0.28
-0.006 0.040 0.002 0.7 0.009 0.264 0.070

-0.002 0.026 0.001 -0.008 0.043 0.002 0.1 0.000 0.410 0.168
-0.002 0.024 0.001 -0.008 0.045 0.002 -0.5 -0.025 0.346 0.120

N(0, 1;−1, 1)
N(0, 1; 0, 2)

0.18
0.032 0.031 0.002

0.16
0.001 0.029 0.001 0.7 -0.095 0.280 0.088

0.033 0.032 0.002 0.002 0.032 0.001 0.1 -0.006 0.324 0.105
0.032 0.032 0.002 0.001 0.031 0.001 -0.5 0.046 0.288 0.085

N2, δ = 0.1 0.07
0.002 0.015 2e−4

0.21
0.092 0.077 0.014 0.7 -0.140 0.330 0.129

0.003 0.015 2e−4 0.097 0.086 0.017 0.1 0.036 0.409 0.169
0.003 0.013 2e−4 0.097 0.076 0.015 -0.5 0.193 0.382 0.183

N2, δ = 0.7 0.166
0.223 0.134 0.068

0.125
0.041 0.038 0.003 0.7 0.058 0.161 0.029

0.204 0.139 0.061 0.036 0.044 0.003 0.1 0.498 0.175 0.279
0.196 0.151 0.061 0.023 0.030 0.001 -0.5 0.912 0.202 0.872

shown here, but provided in the online supplement), we see that the performance
of the proposed method improves as the sample size increases.

The tables also show that our method has some difficulties in differentiating
the contributions of the measurement error and the covariates when there is a
curvature in the true covariate density. If the generated covariates have densi-
ties with a relatively flat shape, the method performs more satisfactorily. The
relatively poor performance in the bivariate normal settings could be explained
in this way. When the length of the truncation interval is shorter, the problem
vanishes.

The last column of Table 2 shows the performance of the estimator of the
error correlation. Overall, regardless of the sign and the magnitude of the error
correlation, a good estimation performance is observed in most settings. Note
however that the accuracy is less good than for the estimation of the marginal
parameters a1, a2, b1, b2, σ1 and σ2, which can be explained by the fact that the
correlation between two completely unobserved variables is a hard quantity to
identify and estimate. The table shows nevertheless that the method works.

Table 3 shows the distribution of the selected pairs (m1,m2). In the first
setting with two Beta densities the mostly chosen pair is (0, 0), which is as
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Table 3

Simulation results for the selection of (m1,m2) when n = 500. For each distribution, the
three lines correspond to three values for ρ, namely ρ = 0.7, 0.1 and −0.5.

Covariate Distribution of the selected (m1,m2) (in proportion)

Distribution (0,0) (0,1) (1,0) (1,1) (0,2) (2,0) (1,2) (2,1) (2,2) (0,3) (3,0) (0,4) (4,0) (0,5) (5,0) (0,6) (6,0)

2Beta(1, 1)− 1
3Beta(1, 1)− 2

0.82 0.06 0.065 0.005 0.02 0.03 0 0 0 0 0 0 0 0 0 0 0
0.935 0.02 0.02 0 0.01 0.01 0 0 0 0 0.005 0 0 0 0 0 0
0.91 0.02 0.015 0 0.025 0.02 0 0 0 0 0.005 0.005 0 0 0 0 0

N(0, 1;−1, 0)
N(0, 1;−2, 1)

0 0.67 0 0.03 0.185 0 0.005 0 0 0.065 0 0.025 0.005 0.01 0 0.005 0
0.005 0.72 0 0.04 0.15 0 0 0 0 0.04 0 0.04 0 0.005 0 0 0
0 0.68 0 0.055 0.14 0 0.005 0.005 0 0.09 0 0.02 0 0.005 0 0 0

N2, δ = 0.1
0.08 0.54 0.105 0.05 0.115 0.02 0.005 0.005 0 0.06 0 0.015 0 0.005 0 0 0
0.09 0.625 0.095 0.025 0.08 0.015 0.005 0.005 0 0.03 0.01 0.015 0 0.005 0 0 0
0.095 0.595 0.125 0.04 0.09 0.015 0 0 0 0.03 0 0.01 0 0 0 0 0

N2, δ = 0.7
0 0.255 0.005 0.245 0.18 0.015 0.155 0.1 0 0.035 0 0.005 0 0.005 0 0 0
0 0.235 0.01 0.275 0.185 0.01 0.095 0.165 0.015 0.005 0 0.005 0 0 0 0 0
0 0.24 0.005 0.315 0.14 0.005 0.11 0.145 0.015 0.025 0 0 0 0 0 0 0

expected. In the other settings, the distribution of the selected degrees is more
diverse. The final column of Table 1 shows the performance of the estimated
density of the unobserved covariates (X1, X2). Note that the last setting leads
to the highest values for the MIAE, defined in (4.2) above. This can be due to
the poor performance of the estimator of the error correlation in this case.

Finally, we ran a simulation experiment for the scenario where no measure-
ment error is present. The results can be found in the online supplement, and
show that our method also performs well when the data are not contaminated.

Although the proposed method offers overall a promising estimation perfor-
mance, it might sometimes suffer from practical identification problems. Making
inference about the density of the unobserved covariates and differentiating the
contributions of the measurement error and the covariates in the absence of
replication data is a complicated problem. [13] state that technical and theoret-
ical identifiability may not necessarily imply practical identifiability when data
are observed one-at-a-time and no validation data are available. If the covariates
are highly correlated as well as the measurement errors, the problem becomes
even more complex. It is a common issue in measurement error problems without
additional data.

5. Logistic regression based on SIMEX and the estimated variance
matrix

The methodology developed in Section 3 can be used not only for estimating
the error variance-covariance matrix and the bivariate density of (X1, X2), but
also for estimating a regression model with error-prone covariates, of which
the errors are correlated. We will demonstrate this for the special case of a
logistic regression model in which we use the SIMEX method to correct for
the measurement errors, but the estimated error variance matrix can also be
used in any other regression model and with any other method that corrects for
measurement errors.

In a logistic regression model, the conditional mean of a binary response Y
is given by

E(Y |X) =
exp(X�β)

1 + exp(X�β)
(5.1)



1844 E. Kekeç and I. Van Keilegom

where X is a vector of covariates and β is a vector of corresponding regres-
sion coefficients. If the covariates are exposed to measurement errors, the näıve
methods cannot adequately estimate the conditional mean in (5.1), and thus
are expected to lead to biased estimates [47]. To address this issue, a large va-
riety of measurement error correction methods for logistic regression have been
proposed in the literature. For instance, [47] proposed three correction methods
that all reduce the bias of the näıve estimator, one of them being a corrected
score approach. [48] generalized the latter approach to more general models.
[37] introduced a method for constructing confidence intervals for coefficients in
logistic regression when one of the covariates is error-prone, while [36] extended
this method to the case where multiple covariates are subject to measurement
error. In addition, [35] presented a nonparametric methodology to take the co-
variate measurement error into account while constructing a logistic regression
model. We also refer to [15] for the use of multiple imputation in the same con-
text. These methods rely on distributional assumptions on the covariate(s) or
the presence of validation, replication or cohort data to specify the error distri-
bution. In contrast to the aforementioned methods, the simulation-extrapolation
algorithm (SIMEX) is applicable to a large class of regression models (logistic,
linear, survival, etc.) as a remedy to correct for the consequences of measure-
ment errors. For these reasons, we prefer to use SIMEX to get error-corrected
coefficient estimates of a logistic model.

SIMEX, introduced by [16], attenuates the bias due to measurement errors
when an additive measurement error model is present. The principle of this
method is to mimic the influence of measurement errors on the coefficient es-
timates with Monte Carlo simulations. SIMEX is based on two steps. In the
simulation step, the data are contaminated with noise and parameter estimates
are obtained. This step is repeated for varying noise levels. Then, in the ex-
trapolation step, a (parametric) curve is fit through the parameter estimates
corresponding to these different noise levels and the curve is extrapolated to the
case without measurement error.

It is still common practice to use the näıve method that neglects the measure-
ment errors in the covariates. In order to be fully aware of the merits introduced
by SIMEX, we compare the performance of both methods. On the other hand,
applying SIMEX without taking the measurement error correlation into account
is also a common practice in such situations. Therefore, we will also compare
our method with this simplified method that ignores the correlation. Finally, we
will compare these three estimators with the SIMEX estimators based on the
true Σ and based on the true variances but by neglecting the correlation. To
obtain the SIMEX estimates, we use a quadratic extrapolation function.

In order to carry out this comparison, we will study the five estimation meth-
ods in four different settings. In each setting there will be five covariates in the
logistic model, so X = (X1, . . . , X5)

�. The covariates X1 and X2 are gener-
ated in exactly the same way as in the four settings studied in Section 4. We
will even work with the same sample size (n = {300, 500, 4000}) and the same
samples, so that the error covariance matrix does not need to be re-estimated,
since it has already been computed in Section 4. On the other hand, the vari-
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Table 4

Simulation results for the logistic regression model when n = 500 and ρ = 0.7.

Covariate Estimation β0 = 0 β1 = 4.2 β2 = −2.1 β3 = 3.9 β4 = 0.42 β5 = 0.21
Distribution Method Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

2Beta(1, 1)− 1
3Beta(1, 1)− 2

Näıve -0.718 0.614 -0.462 0.371 0.234 0.103 -1.892 3.757 -0.062 0.087 -0.020 0.024

SIMEX (Σ̂) -0.519 0.399 -0.213 0.258 0.091 0.074 -1.268 1.937 -0.041 0.096 -0.010 0.026
SIMEX (σ̂1, σ̂2, σ̂3) -0.464 0.407 0.245 0.392 -0.202 0.146 -0.723 1.124 -0.008 0.120 0.007 0.032
SIMEX (Σ) -0.514 0.390 -0.214 0.252 0.088 0.073 -1.255 1.901 -0.042 0.096 -0.010 0.026
SIMEX (σ1, σ2, σ3) -0.471 0.388 0.240 0.374 -0.204 0.140 -0.737 1.053 -0.009 0.117 0.008 0.032

N(0, 1;−1, 0)
N(0, 1;−2, 1)

Näıve -0.701 0.679 -0.573 0.504 0.063 0.165 -1.908 3.874 -0.022 0.127 -0.024 0.021

SIMEX (Σ̂) -0.551 0.573 0.002 0.330 -0.057 0.249 -1.267 2.074 0.009 0.149 -0.009 0.024
SIMEX (σ̂1, σ̂2, σ̂3) -0.244 0.446 0.575 0.953 -0.537 0.669 -0.718 1.432 0.042 0.182 0.010 0.030
SIMEX (Σ) -0.537 0.544 -0.158 0.295 -0.001 0.215 -1.276 2.057 0.001 0.143 -0.012 0.023
SIMEX (σ1, σ2, σ3) -0.228 0.385 0.309 0.525 -0.460 0.540 -0.789 1.304 0.027 0.171 0.003 0.028

N2, δ = 0.1

Näıve -0.813 0.834 -0.282 0.518 0.220 0.127 -1.945 3.973 -0.001 0.124 -0.010 0.029

SIMEX (Σ̂) -0.626 0.620 -0.036 0.598 -0.044 0.128 -1.337 2.145 0.017 0.138 0.001 0.032
SIMEX (σ̂1, σ̂2, σ̂3) -0.388 0.440 0.454 1.034 -0.268 0.262 -0.853 1.391 0.039 0.157 0.012 0.037
SIMEX (Σ) -0.588 0.560 -0.139 0.560 0.096 0.108 -1.345 2.144 0.011 0.134 -0.003 0.031
SIMEX (σ1, σ2, σ3) -0.355 0.373 0.286 0.781 -0.055 0.130 -0.922 1.347 0.027 0.148 0.006 0.035

N2, δ = 0.7

Näıve -0.833 0.800 -0.639 0.517 0.215 0.150 -1.952 3.935 -0.010 0.073 -0.035 0.020

SIMEX (Σ̂) -0.628 0.544 0.349 0.438 -0.053 0.186 -1.282 1.879 0.037 0.097 -0.014 0.024
SIMEX (σ̂1, σ̂2, σ̂3) -0.917 1.094 1.856 4.936 -1.212 1.955 -0.544 0.823 0.115 0.159 0.020 0.035
SIMEX (Σ) -0.582 0.470 -0.274 0.226 0.113 0.143 -1.329 1.990 0.012 0.084 -0.025 0.021
SIMEX (σ1, σ2, σ3) -0.607 0.533 0.103 0.224 -0.298 0.269 -0.868 1.093 0.034 0.099 -0.014 0.023

ables X3, X4 and X5 are new, and are generated in the same way in each
of the four settings. They are generated independently of each other and of
(X1, X2). The variable X3 is contaminated, so we observe W3 = X3 + U3

with U3 ∼ N(0, σ2
3). Note that U1, U2 and U3 are independent of all other

variables. The variable X3 is drawn from a Beta(1,1)-1 distribution and the
variance of U3 equals σ2

3 = 0.07. The variables X4 and X5 are not error-
prone and are generated from a Bernoulli(0.7) and N(0, 1) distribution, re-
spectively. For an i.i.d. sample of size n, the i-th data point is composed of
(Yi,Wi1,Wi2,Wi3, Xi4, Xi5), i = 1, . . . , n. Finally, the vector of regression coef-
ficients is given by β = (β0, . . . , β5)

� = (0, 4.2,−2.1, 3.9, 0.42, 0.21)�.

The comparative simulation results for these five methods when ρ = 0.7 are
presented in Table 4. For almost all cases, the näıve method leads to highly
biased estimates. When the measurement errors in the covariates are taken into
account, less biased estimates are obtained. Overall, SIMEX based on Σ̂ out-
performs the näıve estimator and the SIMEX estimator based on (σ̂1, σ̂2, σ̂3) in
terms of bias reduction. On the other hand, the SIMEX estimates have a higher
variance than the näıve ones. This phenomenon is referred to as ‘variance versus
bias tradeoff’ in the measurement error literature. The complexity of correction
procedures often leads to higher variability than when using the simple näıve
procedure that ignores the measurement error. See e.g. Stefanski and Carroll
(1985), who observed that the näıve method is not always worse than their
proposed correction methods when the sample size is small, i.e. when variance
dominates bias. Since small bias is often considered as being more important
than small variance, we believe that the proposed method should be preferred
in practice, despite its larger variance. Finally, we note that when the true Σ
and/or (σ1, σ2, σ3) are used in the SIMEX procedure, the results are better than
when their corresponding estimators are used, but the differences are not very
significant, which suggests that the estimation of the matrix Σ does not have
an important impact on the performance of the SIMEX estimator.

It is also interesting to note that the SIMEX method that ignores the corre-
lation between the measurement errors does not perform very well. This shows
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that it is essential to take the correlation between measurement errors into ac-
count in order to do correct inference. The simulation results for ρ equal to 0.1
and −0.5 are available in the online supplement. The same conclusions hold.
However, the outperformance of SIMEX(Σ̂) with respect to SIMEX(σ̂1, σ̂2, σ̂3)
is more significant when the magnitude of the error correlation is larger (i.e.
when ρ = 0.7).

6. Application

In this section, we apply the proposed method on data from the Framingham
Heart Study. Our main interest is to model the 10-year risk of coronary heart
disease (CHD) using various covariates on the demographical and medical char-
acteristics of the patients. There are 3,827 individuals with complete cases and
592 of them have the disease.

The covariates in this data set are gender (male (1) 44.24 %), age (min: 32,
max: 70, median: 49, standard deviation: 8.6), stroke (yes (1) 0.63 %), hyper-
tansive (yes (1) 0.31 %), cigarettes per day (CPD) (min: 0, max: 70, median: 0,
standard deviation: 8.6), diastolic blood pressure (DBP) (min: 48, max: 142.5,
median: 82, standard deviation: 11.97), systolic blood pressure (SBP) (min: 83.5,
max: 295, median: 128, standard deviation: 22.1) and glucose (min: 40, max:
394, median: 78, standard deviation: 24). Note that in this application, SBP,
DBP and glucose are the error-prone variables. Although self-reported variables
are known to be potentially mismeasured in epidemiological studies, CPD is
not considered as a contaminated covariate in this application. [7] conducted
an analysis for a comparison of self-reported CPD counts with the returned
cigarette butts and blood sample measurements regarding the nicotine level
and concluded that self-reported counts are reliable sources of smoking behav-
ior information. Therefore, we assume that CPD is an error-free covariate.

Neglecting the presence of measurement errors and applying a näıve logistic
regression analysis is expected to lead to incorrect inferences. Since both blood
pressures, SBP and DBP, are measured by the same device, it is likely for these
covariates to have correlated measurement errors. However, glucose level in the
blood is measured independently by using a separate device. For this reason,
we assume that the measurement error of glucose level is independent of the
measurement errors in the two blood pressures. Hence, we take these issues into
account and assess the covariate effects after remedying the measurement errors.
We use the following transformed variables:

SBP ∗ = log(SBP − 50)

DBP ∗ = log(DBP − 30)

Glucose∗ = log(Glucose− 35)

This transformation has e.g. been used for SBP by [13] (page 118) in order to
homogenize the error variance of SBP. We followed a similar approach for DBP
and Glucose, and replaced the value 50 which was used for SBP by respectively
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Table 5

Estimates for each error-prone variable separately.

Covariate â b̂ σ̂ m̂
Glucose∗ 0.378 3.588 0.322 0
SBP∗ 0.528 4.141 0.1897 -
DBP∗ 0.328 3.83 0.225 -

Table 6

Estimates for the correlated measurement errors in SBP∗ and DBP∗.

Covariate ρ̂ σ̂12 (m̂1, m̂2) θ̂m
SBP∗ & DBP∗ 0.038 0.887 (0,0) 1

Table 7

Coefficient estimates and standard errors without and with correction for the measurement
errors.

Näıve Method SIMEX
Intercept -12.30 (1.285) -14.43 (1.841)
Gender 0.513 (0.103) 0.541 (0.107)
Age 0.065 (0.006) 0.061 (0.006)
Stroke 1.010 (0.443) 1.009 (0.415)
Hypertensive 0.267 (0.135) 0.109 (0.166)
CPD 0.020 (0.004) 0.021 (0.004)
Glucose∗ 0.441 (0.127) 0.586 (0.188)
SBP∗ 1.576 (0.345) 2.247 (0.515)
DBP∗ -0.503 (0.331) -0.789 (0.505)

30 and 35, taking the different support of these variables into account. Based
on these transformations, the parameter estimates related to the measurement
errors in Glucose∗, SBP∗ and DBP∗ are obtained by the method explained in
Section 4. The selection of the degree of the Bernstein polynomials is as before
based on BIC.

Tables 5 and 6 show the results of the estimation. Table 5 indicates that the
density of Glucose∗ can be estimated using Bernstein polynomials of degree 0.
On the other hand, Table 6 suggests that the bivariate density of (SBP∗,DBP∗)
can be estimated by bivariate Bernstein polynomials of degree (0, 0)�. The es-
timated error variance-covariance matrix of (Glucose∗, SBP ∗, DBP ∗) is found
to be:

Σ̂ =

⎛
⎝0.104 0 0

0 0.036 0.038
0 0.038 0.050

⎞
⎠

The correlation between the measurement errors in SBP∗ and DBP∗ is hence
estimated to be around 0.887, which points to a strong positive linear relation-
ship.

Let us now use this estimated variance matrix to estimate the coefficients
of the logistic regression model by means of the SIMEX method. SIMEX plots
for each covariate are provided in Figure 1. A comparison between the coeffi-
cient estimates obtained from the näıve method and from the SIMEX method
is given in Table 7. Standard errors for the SIMEX estimates are also provided.
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Fig 1: SIMEX plots for the covariates Glucose∗, SBP∗ and DBP∗, respectively.
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They are obtained from the sandwich estimators of the variance given in Car-
roll et al. (2006) (pp. 367-374), see also Carroll et al. (1996) (page 245). After
adjusting for the measurement errors, the estimates for Glucose∗, SBP∗ and
DBP∗ have considerably changed, which suggests that correcting for correlated
measurement errors is essential.

7. Discussion and future research

When dealing with measurement error models, it is common to assume that the
measurement errors in multiple covariates are independent of each other. When
this assumption is violated, the correlation between the errors must be taken into
account in order to make correct inferences. On the other hand, in the literature
on correlated measurement errors many existing methods suppose that external
information sources such as validation data sets, replications or auxiliary vari-
ables are available to estimate the covariance matrix of the measurement errors.
However, these sources may not always be accessible in practice. This limits the
usability of such methods.

In this paper, we proposed a method to take the correlated measurement
error structure into account. We worked on a bivariate classical measurement
error model with Gaussian errors to estimate the error variance matrix. Our
method is flexible, since it does not rely on external information sources and
does not make distributional assumptions on the unobserved covariates, apart
from some minor assumptions on the support of these variables. Instead, these
covariate distributions are approximated by using bivariate Bernstein polyno-
mials. Thus, our method can be applied to a wide range of contexts. Once the
covariance matrix is estimated, any correction method can be used to estimate
the regression model correctly.

Simulation studies indicate the good finite sample performance of the pro-
posed method in various settings. Moreover, our method performs well in a
logistic regression model in which the SIMEX method is used to correct for the
measurement errors. Analysis of the data from the Framingham Heart Study
allowed us to assess the effects of both the contaminated and the error-free
covariates on the risk of coronary heart disease.

In our simulations, polynomials up to degree 6 are sufficient, and degree 6 is
actually rarely selected. However, if for a given data set higher degrees would
be required, the computation time can become problematic. In order to over-
come this issue, a two-step estimation scheme can be used in that case. In the
first step, one could estimate the parameters (aj , bj , σj), j = 1, 2, related to the
marginal error distributions by using the method of [5]. Note that the error Uj

(j = 1, 2) is independent of Xj and has a univariate normal distribution with
mean zero and variance σ2

j . In addition, Xj has compact support [bj , aj + bj ].
Hence, we are exactly in the setting needed for applying the method of [5].

Then, in the second step, the estimates (âj , b̂j , σ̂j), j = 1, 2 are plugged into the
log-likelihood function (4.1), and the error covariance σ12 and the parameters
θm related to the bivariate distribution fX1,X2 can be estimated. Although esti-
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mation of all parameters in one step is accurate, the two-step estimation scheme
could be a practical solution when the computation time for higher degrees be-
comes excessive. In order to reduce the computation time in optimization, such
methods are not uncommon. See for example, [20] and [30].

The method in this paper can be considered as an important step in the
literature on correlated measurement errors. A number of extensions can be
studied in the future. First of all, we assumed that the measurement errors
of two covariates are correlated. A natural extension would be to consider the
case where instead of having two covariates X1 and X2 subject to measurement
error, we have p ≥ 2 covariates of which the errors are correlated. When the
corresponding errors follow a multivariate normal distribution, the p×p variance-
covariance matrix of these errors needs to be identified and estimated. In the
bivariate case the critical parameter in the identification of the model, is the
correlation ρ between U1 and U2. In the multivariate case, there will be several
(partial) correlations. Although we expect that the identification and estimation
of this matrix will be feasible, it will be technically more challenging.

A second possible extension is regarding the identifiability of model (1.2)-
(1.3)-(2.1) when the assumed bivariate normal distribution of the errors is re-
placed by another parametric family of distributions. [39] mention in their Re-
mark 2.3 a few examples of univariate parametric families under which the
univariate measurement error model is identified. However, they do not give
necessary and sufficient conditions, i.e. they do not give a full characterization
of the class of parametric families that make the model identifiable. It would be
useful to develop such an identification result, first in the univariate case, and
if successful, also in the more challenging bivariate or multivariate case.

Software

Software in the form of R code and complete documentation are available on
request from the corresponding author.
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[26] Kekeç, E., and Van Keilegom, I. (2022) Supplement to “Estimation of
the variance matrix in bivariate classical measurement error models” DOI:
10.1214/22-EJS1996SUPP.

[27] Kipnis, V., Freedman, L.S., Carroll, R.J., and Douglas, M. (2016).
A bivariate measurement error model for semicontinuous and continuous
variables: application to nutritional epidemiology. Biometrics, 72(1), 106–
115. MR3500579

[28] Lesaffre, E., and Lawson, A.B. (2012). Bayesian Biostatistics. John
Wiley & Sons. MR3236827

[29] Michels, K.B., Bingham, S.A., Luben, R., Welch, A.A., Day, N.E.

(2004). The effect of correlated measurement error in multivariate models
of diet. American Journal of Epidemiology, 160(1), 59–67.

[30] Moreno Alamo, A. C., and Costa Alberto, L. F. (2015). A multi-step
optimization approach for power flow with transient stability constraints.
2015 IEEE Eindhoven PowerTech. 1-6. doi: 10.1109/PTC.2015.7232666.

[31] Muff, S., Ott, M., Braun, J., and Held, L. (2017). Bayesian

https://www.ams.org/mathscinet-getitem?mr=1379467
https://www.ams.org/mathscinet-getitem?mr=3830633
https://www.ams.org/mathscinet-getitem?mr=2662198
https://www.ams.org/mathscinet-getitem?mr=1284271
https://www.ams.org/mathscinet-getitem?mr=0898653
https://www.ams.org/mathscinet-getitem?mr=2654662
https://www.ams.org/mathscinet-getitem?mr=2005104
https://www.ams.org/mathscinet-getitem?mr=0223065
https://www.ams.org/mathscinet-getitem?mr=3500579
https://www.ams.org/mathscinet-getitem?mr=3236827


Variance estimation for bivariate classical errors 1853

two-component measurement error modelling for survival analysis using
INLA—A case study on cardiovascular disease mortality in Switzerland.
Computational Statistics & Data Analysis, 113, 177–193. MR3662399

[32] Nakamura, T. (1990). Corrected score functions for errors-in-variables
models: Methodology and application to generalized linear models.
Biometrika, 77, 127–137. MR1049414

[33] Patriota, A.G., and Bolfarine, H. (2010). Measurement error mod-
els with a general class of error distribution. Statistics, 44(2), 119–127.
MR2674412

[34] R Core Team (2019). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

[35] Rabe-Hesketh, S., Pickles, A., and Skrondal, A. (2003). Correct-
ing for covariate measurement error in logistic regression using nonpara-
metric maximum likelihood estimation. Statistical Modelling, 3, 215–232.
MR2005474

[36] Rosner, B., Spiegelman, D., and Willett, W.C. (1990). Correction
of logistic regression relative risk estimates and confidence intervals for
measurement error: The case of multiple covariates measured with error.
American Journal of Epidemiology, 132(4), 734–745.

[37] Rosner, B., Willett, W.C., and Spiegelman, D. (1989). Correction
of logistic regression relative risk estimates and confidence intervals for
systematic within-person measurement error. Statistics in Medicine, 8(9),
1051–1069. MR0882774

[38] Schennach, S. M. (2016). Recent advances in the measurement error
literature. Annual Review of Economics, 8, 341–377.

[39] Schwarz, M., and Van Bellegem, S. (2010). Consistent density decon-
volution under partially known error distribution. Statistics and Probability
Letters, 80 (3-4), 236–241. MR2575451

[40] Song, X., Davidian, M., and Tsiatis, A.A. (2001). An estimator for the
proportional hazards model with multiple longitudinal covariates measured
with error. Biostatistics, 1(1), 1–32. MR1844844

[41] Spiegelman, D. (2004). Commentary: Correlated errors and energy
adjustment–where are the data? International Journal of Epidemiology,
33(6), 1387–1388.

[42] Spiegelman, D., Carroll, R.J., and Kipnis, V. (2001). Efficient re-
gression calibration for logistic regression in main study/internal valida-
tion study designs with an imperfect reference instrument. Statistics in
Medicine, 20(1), 139–160.

[43] Spiegelman, D., McDermott, A., and Rosner, B. (1997a). Regression
calibration method for correcting measurement-error bias in nutritional epi-
demiology. American Journal of Clinical Nutrition, 65 (suppl. 4), 1179S–
1186S.

[44] Spiegelman, D., Schneeweiss, S., and McDermott, A. (1997b). Mea-
surement error correction for logistic regression models with an ‘alloyed gold
standard’. American Journal of Epidemiology, 145, 184–196.

[45] Spiegelman, D., Zhao, B., and Kim, J. (2005). Correlated errors in

https://www.ams.org/mathscinet-getitem?mr=3662399
https://www.ams.org/mathscinet-getitem?mr=1049414
https://www.ams.org/mathscinet-getitem?mr=2674412
https://www.ams.org/mathscinet-getitem?mr=2005474
https://www.ams.org/mathscinet-getitem?mr=0882774
https://www.ams.org/mathscinet-getitem?mr=2575451
https://www.ams.org/mathscinet-getitem?mr=1844844
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