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Abstract: Exponential tail bounds for sums play an important role in
statistics, but the example of the t-statistic shows that the exponential
tail decay may be lost when population parameters need to be estimated
from the data. However, it turns out that if Studentizing is accompanied
by estimating the location parameter in a suitable way, then the t-statistic
regains the exponential tail behavior. Motivated by this example, the paper
analyzes other ways of empirically standardizing sums and establishes tail
bounds that are sub-Gaussian or even closer to normal for the following
settings: Standardization with Studentized contrasts for normal observa-
tions, standardization with the log likelihood ratio statistic for observations
from an exponential family, and standardization via self-normalization for
observations from a symmetric distribution with unknown center of sym-
metry. The latter standardization gives rise to a novel scan statistic for
heteroscedastic data whose asymptotic power is analyzed in the case where
the observations have a log-concave distribution.
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1. Introduction

Tail bounds and concentration inequalities for sums of independent random
variables play a key role in statistics and machine learning, see e.g. van der
Vaart and Wellner (1996), Boucheron et al. (2013), Vershynin (2018), or Wain-
wright (2019). Of particular importance are exponential tails bounds, which
typically involve the expected value of the sum as well as a scale factor such as
the variance. On the other hand, few results seem to be available when these
parameters need to be estimated from the data, as may be required to make sta-
tistical methodology operational. The most prominent example is the t-statistic:
If X1, . . . , Xm are i.i.d. N(μ, σ2), then

T :=

1√
m

∑m
i=1(Xi − μ)√

1
m−1

∑m
i=1

(
Xi −X

)2 (1)

has the heavy algebraic tails of the tm−1-distribution, so estimating σ2 with
the sample variance comes at the expense of losing the exponential tail decay.
This paper explores the case where the expectation μ is also unknown and must
be estimated. This is the typical setting for scan statistics, where observations
in a scan window are assessed against an unknown baseline which is estimated
with the sample mean of all observations, see e.g. Yao (1993). Corollary 1 below
shows that, rather than exacerbating the situation, this additional estimation
step actually restores the sub-Gaussian tail bound.

This result raises the question whether exponential tail bounds hold for other
relevant ways of empirically (i.e. without using population parameters) stan-
dardizing sums. The answer turns out to be positive and this paper establishes
tail bounds that are sub-Gaussian or even closer to normal for the following set-
tings: Standardization by empirically centering and Studentizing sums of normal
observations in Section 2, standardization with the log likelihood ratio statistic
for observations from an exponential family in Section 3, and standardization
via self-normalization for observations from a symmetric distribution with un-
known center of symmetry in Section 4. The latter standardization give rise to a
novel scan statistic for heteroscedastic data that is based on self-normalization,
and its asymptotic power properties are also analyzed in Section 4. This anal-
ysis shows that the tail bounds are tight in the sense that they allow optimal
detection in a certain scan problem; it is known that this optimality hinges on
having the correct sub-Gaussian tail bound.
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2. Normal tail bounds for Studentized constrasts and empirically
centered sums

In order to derive a tail bound for empirically centered and Studentized sums it is
convenient to establish a more general result about Studentized linear contrasts:

Theorem 1. Let X1, . . . , Xn i.i.d. N(μ, σ2) and b ∈ Rn with
∑n

i=1 bi = 0,∑n
i=1 b

2
i = 1. Then

V :=

∑n
i=1 biXi√

1
n−1

∑n
i=1

(
Xi −X

)2
is a pivot and satisfies a normal tail bound:

V
d
=

∑n−1
i=1 Zi√∑n−1
i=1 Z2

i

for Zi i.i.d. N(0, 1),

V 2

n− 1
∼ Beta

(
1

2
,
n− 2

2

)
,

IP(V > t) ≤ IP(N(0, 1) > t) for

{
t ≥ 2.5 and n ≥ 10, or

t ≥ 2.75 and n ≥ 6,

and the analogous bound holds for the left tail of V .

In particular, Theorem 1 shows that the t-statistic regains the normal tail
bound if the location parameter is estimated in a suitable way. This follows by
setting b = c√∑

i c
2
i

with ci := 1 − m
n if i ≤ m and ci := −m

n otherwise, which

implies
∑

i ci = 0 and
∑

i c
2
i = m

(
1− m

n

)
:

Corollary 1. Let X1, . . . , Xn i.i.d. N(μ, σ2) and X = 1
n

∑n
i=1 Xi. Then for

1 ≤ m < n:

V :=

1√
m(1−m

n )

∑m
i=1

(
Xi −X

)
√

1
n−1

∑n
i=1

(
Xi −X

)2
satisfies

IP(V > t) ≤ IP(N(0, 1) > t) for

{
t ≥ 2.5 and n ≥ 10, or

t ≥ 2.75 and n ≥ 6.

Studentization is a special case of self-normalization, see e.g. de la Peña et
al. (2009) and Section 4. Self-normalization has certain advantages over stan-
dardizing with the population standard deviation because, roughly speaking,
erratic fluctuations of the statistic are mirrored and therefore compensated by
the random self-normalizing (Studentizing) term in the denominator, see Shao
and Zhou (2016, 2017) for formal results. Corollary 1 shows that centering em-
pirically rather than with the expected value can likewise be advantageous.
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Remark: The algebraic tails of the t-distribution can be bounded by an ex-
ponential bound if the argument is small relative to the degrees of freedom, and
this exponential tail bound may be useful for certain applications that do not
require bounds far out in the tails. A referee pointed out the following more
general example: If the Xi are symmetric about μ, then identity (1.1) in de la
Peña et al. (2009) gives for T in (1):

IP(T > x) = IP

( ∑m
i=1(Xi − μ)√∑m
i=1(Xi − μ)2

≥
√
mx√

m− 1 + x2

)
≤ exp

(
− mx2

2(m− 1 + x2)

)
where the inequality follows from (4). Hence T has a sub-Gaussian tail for
x = O(

√
m). However, even for this restricted range of arguments this sub-

Gaussian bound does not have the desired scale factor 1. For example, x =
√
m

yields the bound exp(−x2/(2c)) with c = 2− 1
m , so even for large m one obtains

c ≈ 2. The scale factor plays a key role in the theory and applications of sub-
Gaussian tail bounds.

3. Sub-Gaussian tail bounds for the log likelihood ratio statistic

Let X1, . . . , Xn be independent observations from a regular one-dimensional
natural exponential family {fθ, θ ∈ Θ}, i.e. fθ has a density with repect to some
σ-finite measure ν which is of the form fθ(x) = exp(θx − A(θ))h(x) and the
natural parameter space Θ = {θ ∈ R :

∫
exp(θx)h(x)ν(dx) < ∞} is open.

In order to derive good finite sample tail bounds in this setting, it turns out
that it is useful to standardize with the log likelihood ratio statistic rather than
by centering and scaling. In more detail, let 1 ≤ m < n and θ0 ∈ Θ. Then the
generalized log likelihood ratio statistic based on the observations X1, . . . , Xm

is

logLRm(θ0) = log
supθ∈Θ

∏m
i=1 fθ(Xi)∏m

i=1 fθ0(Xi)

= sup
θ∈Θ

(
(θ − θ0)

m∑
i=1

Xi −m
(
A(θ)−A(θ0)

))
(2)

The MLE θ̂m is defined as the argmax of (2) if the argmax exists. Note that

logLRm(θ0) is always well defined whether θ̂m exists or not.
logLRm(θ0) represents a standardization of the sum

∑m
i=1 Xi since by Wilk’s

theorem 2 logLRm(θ0) is asymptotically pivotal χ2
1 if the population parame-

ter is θ0. The idea pursued in this section is that
√
2 logLRm(θ0) is therefore

approximately standard normal, and hence it might be possible to establish a
finite sample sub-Gaussian tail bound. In the binomial case such a tail bound
was indeed established by Rivera and Walther (2013), see also Harremoës (2016)
for bounds when m = 1. This section first extends the binomial bound to the
exponential family case and then addresses the case of empirical standardization
where the typically unknown θ0 is replaced by the MLE.
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It should be pointed out that while the square root of the log likelihood
ratio does not commonly appear in the current literature, it has a history as
a statistic for inference in exponential families. Barndorff-Nielsen (1986) calls

sgn(θ̂m−θ0)
√

2 logLRm(θ0), as well as its empirically standardized counterpart
below, the signed likelihood ratio statistic. Rivera and Walther (2013), Frick
et al. (2014) and König et al. (2020) use this statistic for detection problems.
An important advantage of working with this standardization is that it allows
to make full use of the power of the Chernoff bound, as can be seen from the
proof of Theorem 2(a). The resulting tail bound is therefore tighter than those
obtained from various relaxations of the Chernoff bound such as the Hoeffding
or Bennett bounds.

Usually θ0 is not known. Then an empirical standardization is obtained with
the MLE θ̂n substituted into the log likelihood ratio statistic for all the obser-
vations X1, . . . , Xn:

logLRm,n(θ̂n) = log

(
supθ∈Θ

∏m
i=1 fθ(Xi)

) (
supθ∈Θ

∏n
i=m+1 fθ(Xi)

)
supθ∈Θ

∏n
i=1 fθ(Xi)

(3)

= sup
θ∈Θ

(
θ

m∑
i=1

Xi −mA(θ)

)
+ sup

θ∈Θ

(
θ

n∑
i=m+1

Xi − (n−m)A(θ)

)

− sup
θ∈Θ

(
θ

n∑
i=1

Xi − nA(θ)

)
.

As an aside, this statistic can be interpreted as the generalized log likelihood
ratio test statistic for testing a common θ against different θ for X1, . . . , Xm

and Xm+1, . . . , Xn. The standardization V in Corollary 1 has the same inter-
pretation. In fact, if fθ is N(θ, σ) with unknown mean θ and known σ, then one

computes that
√
2 logLRm,n(θ̂n) equals V with the sample variance replaced by

σ2 in the definition of V .

As another example, if the Xi are Bernoulli with unknown parameter p ∈
(0, 1), then the natural parameter for the exponential family is θ = log p

1−p . One

computes that logLRm,n(θ̂n) equals

m

(
Xm log

Xm

X
+ (1−Xm) log

1−Xm

1−X

)
+ (n−m)

(
Xmc log

Xmc

X
+ (1−Xmc) log

1−Xmc

1−X

)
where Xm := 1

m

∑m
i=1 Xi, Xmc := 1

n−m

∑n
i=m+1 Xi and X := 1

n

∑n
i=1 Xi.

This statistic was proposed as a scan statistic by Kulldorff (1997) and, despite
its lengthy form, has been widely adopted for scanning problems in computer
science and statistics, see e.g. Neill and Moore (2004a,b) and Walther (2010).
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Theorem 2. Let X1, . . . , Xn be i.i.d. fθ0 ∈ {fθ, θ ∈ Θ}, a regular
one-dimensional natural exponential family, and let 1 ≤ m < n. Then for x > 0:

(a)

IPθ0

(√
2 logLRm(θ0) > x

)
≤ 2 exp

(
−x2

2

)
(b)

IPθ0

(√
2 logLRm,n(θ̂n) > x

)
≤

⎧⎨⎩(4 + 2x2) exp
(
−x2

2

)
(4 + 2e) exp

(
−x2

2

)
if x ≤ (nC)

1/6

for a certain constant C.

The bounds can be divided by 2 if one considers the signed square-root for
one-sided inference. The proof of (a) proceeds by inverting the Cramér-Chernoff
tail bound as in Rivera and Walther (2013), where this technique is employed
for the binomial case. The bounds in (b) do not quite match the bound in (a)
and the author has not been able to establish the simple 2 exp(−x2/2) bound
for (b). Simulations suggest that in fact an even better bound holds which is
closer to the standard normal bound, i.e. a bound that gains the factor 1/x on
the sub-Gaussian bound as in (6). Establishing such a bound is a relevant open
problem given its importance for scan statistics, see Walther and Perry (2019)
and the references therein.

4. Tail bounds for self-normalized and empirically centered sums of
symmetric random variables

The goal of this section is to extend the results for i.i.d. normal observations in
Section 2 to a setting that allows heteroscedastic observations with not neces-
sarily equal expected values. Clearly, some additional assumption is necessary.
The methodology proposed below allows to treat the case of independent (not
necessarily identically distributed) observations having symmetric distributions
with unknown and possibly different centers of symmetry.

It is informative to recapitulate the short and well known argument for es-
tablishing a sub-Gaussian tail bound via self-normalization in the case where
the center of symmetry is known to be zero, see e.g. de la Peña et al. (2009):
If X1, . . . , Xm are independent and symmetric about 0, then introduce i.i.d.
Rademacher random variables R1, . . . , Rm, IP(R1 = 1) = IP(R1 = −1) = 1

2 ,

which are independent of the Xi. Then Xi
d
= RiXi and hence for t > 0:

IP

( ∑m
i=1 Xi√∑m
i=1 X

2
i

> t

)
= IP

(∑m
i=1 RiXi√∑m

i=1 X
2
i

> t

)

= IEIP

(∑m
i=1 RiXi√∑m

i=1 X
2
i

> t
∣∣∣X1, . . . , Xm

)
≤ exp

(
− t2

2

)
(4)
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by Hoeffding’s inequality. Hence the sub-Gaussian tail bound is inherited from
the Rademacher sum. Sub-Gaussianity for self-normalized sums has been inves-
tigated in a number of papers. In the i.i.d. case, Giné et al. (1997) show that
if the self-normalized sums are stochastically bounded (which always holds if
the law of Xi is symmetric), then they are uniformly sub-Gaussian for some
scale parameter. Also for the i.i.d. case, Shao (1999) established asymptotic
Cramér-type large deviation results under the assumption of a finite third mo-
ment. For independent but not necessarily identically distributed Xi, Jing et
al. (2003) establish a Cramér-type large deviation result under certain finite
moment assumptions when IEXi = 0. In the case where the distributions of
the Xi are symmetric about 0, Efron (1969, pp. 1285–1288) suggested that it
should be possible to lower the sub-Gaussian tail bound (4) to the normal tail
IP(N(0, 1) > t) in the usual hypothesis testing range t > 1.65, but Fig. 1 in
Pinelis (2007) shows that the normal tail is too small by a factor of at least 1.2
for certain t ∈ (2, 3). However, recent remarkable results by Pinelis (2012) and
Bentkus and Dzindzalieta (2015) show that the sub-Gaussian tail bound (4) for

the Rademacher sum can be improved upon to a bound of the order 1
t exp(−

t2

2 ),
namely to a multiple of IP(N(0, 1) > t) where the multiple is at most 3.18 and
is even close to 1 for large t. This tail bound will then translate to the sum∑m

i=1 Xi after self-normalization via the above argument. This makes the use of
the self-normalization very attractive in this setting, cf. the remarks in Section 1.

The first aim of this section is to extend these results to the case where the
center of symmetry is unknown and may vary between the Xi. At first glance,
this would appear to be a hopeless undertaking since the above Rademacher
argument depends crucially on the symmetry about zero. However, there are
observations available outside the summation window X1, . . . , Xm which can
be used for an empirical standardization. The idea is to construct an empirical
centering which eliminates the unknown center of symmetry from the sym-
metrization argument, or which at least results in certain bounds on the center
of symmetry. The second step then is to show that these bounds still allow for
nearly normal tails.

For simplicity of exposition it is assumed in the following that n = mp for
integersm ≥ 1 and p ≥ 2. Ifm is much smaller than n, as is typically the case for
scan problems, then this can always be arranged by discarding a small fraction
of the observations if necessary. The proposed empirical centering is given by a
linear transformation X̃ = AX, where the matrix A satisfies the conditions in
Proposition 1. One example of such an empirical centering is

X̃i := Xi −
1

p− 1

m+i(p−1)∑
j=m+(i−1)(p−1)+1

Xj , i = 1, . . . ,m (5)

Corresponding to the linear tranformation A write μ̃i :=
∑n

j=1 aijμj , where
μj is the center of symmetry of Xj . Note that it is not assumed that the Xj have
a finite expected value. In the following, the subscript I denotes averaging over
the index set I := {1, . . . ,m}, so μI := 1

m

∑m
i=1 μi and μIc := 1

n−m

∑n
i=m+1 μi.
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Proposition 1. Let A be a m × n matrix that has p non-zero entries in each
row and one non-zero entry in each column, and these entries are 1 in columns
{i : i ≤ m} and −1

p−1 in columns {i : i > m}. 1

Let Xi, i = 1, . . . , n, be independent and symmetric about μi (so the Xi − μi

need not be identically distributed).

(a) If X̃ = AX, then the self-normalized sum of the X̃i satisfies∑m
i=1 X̃i√∑m
i=1 X̃

2
i

=
n

n−m

∑m
i=1(Xi −X)√
XTATAX

=: Tm

(b) If μI ≤ μIc and μi = μI for all i ≤ m and μi = μIc for all i > m, then

IP (Tm ≥ t) ≤ min
(
3.18, g(t)

)
IP
(
N(0, 1) > t

)
(6)

for all t > 0, where g(t) := 1 + 14.11φ(t)
(9+t2)(1−Φ(t)) → 1 as t → ∞.

(c) If μI ≤ μIc and (7) or (8) hold, then the tail bound (6) holds for t ∈
(0,

√
mK) for some K = K(v) > 0.

Condition (7) requires that the μ̃i don’t vary much:

m∑
i=1

(μ̃i − μ̃I)
2 ≤ v

m∑
i=1

μ̃2
i for some v ∈ [0, 1) (7)

Condition (8) requires that the {μi, i ≤ m} don’t vary much and likewise
for {μi, i > m}:

1

m

m∑
i=1

(μi − μI)
2

1

n−m

n∑
i=m+1

(μi − μIc)2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≤ v(μI − μIc)2 for some v ≥ 0. (8)

(d) The analogous inequalities to (b) and (c) hold for the left tail of Tm if
μI ≥ μIc .

The proof of Proposition 1 shows that the transformed X̃i is symmetric about
μ̃i which may not equal zero. Nevertheless, the self-normalized sum of the X̃i

satisfies the normal tail bound (6) if the μi satisfy the conditions given in (b)
or (c). (b) is a standard assumption for testing against an elevated mean on I,
see Yao (1993). Note that Tm is similar to the statistic V used in Corollary 1
for the homoscedastic case. Indeed, the proof of Theorem 1 shows that V is the
self-normalized sum of BX for a certain (n− 1)× n matrix B.

1This uniquely determines A up to permutations of the columns {i : i ≤ m} and permu-
tations of the columns {i : i > m}.
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4.1. Scanning heteroscedastic observations having symmetric
log-concave distributions

As the statistic Tm appears to be new, it is incumbent to demonstrate its util-
ity with an analysis of its power. To this end this section considers the scan
problem where one observes independent Xi, i = 1, . . . , n, where each Xi has
a distribution that is symmetric about some μi and log-concave, i.e. Xi has
a density of the form f(x) = exp φi(x − μi), where φi : R → [−∞,∞) is a
concave function that is symmetric about 0. Special cases of log-concave distri-
butions are the class of normal distributions, where φi is a quadratic, the class
of Laplace distributions, where φi is piecewise linear, and more generally all
gamma distributions with shape parameter ≥ 1, all Weibull distributions with
exponent ≥ 1 and all beta distributions with both parameters ≥ 1. Log-concave
distributions represent an attractive and useful nonparametric surrogate for the
class of Gaussian distributions in a range of problems in inference and modeling,
see e.g. the review papers of Walther (2009), Saumard and Wellner (2014) and
Samworth (2018).

The goal of the scan problem under consideration here is to detect an elevated
mean μI > μIc on some interval I = (j, k]. Both the starting point j and the
length |I| = k−j are unknown, likewise the μi and the distributions of theXi, i.e.
the functions φi, are unknown. Thus this is the general setting of Proposition 1
with the additional assumption of log-concavity. The log-concavity assumption
allows to establish a result about the asymptotic detection power of the statistic
Tm that is similar to the homoscedastic normal case.

Tm tests for an elevated mean on the interval I = (0,m]. It is straightforward
to analyze a different interval I = (j, k], e.g. by applying Tk−j to the rearranged
data vector (Xj+1, . . . , Xn, X1, . . . , Xj). Denote this statistic by TI . Analyzing
all possible intervals I ⊂ (0, n] gives rise to a multiple testing problem that
is addressed by combining the corresponding TI into a scan statistic. Walther
and Perry (2019) analyze several ways for combining the TI such that optimal
inference is possible, e.g. the Bonferroni scan. The use of that scan requires
the availability of a tail bound for the null distribution of TI , such as (6). The
Bonferroni scan and the normal tail bound (6) give TI a critical value of the

form
√
2 log n

|I| + κn,I(α) with κn,I(α) = O(1), which follows as in the proof

of Theorem 2 in Walther and Perry (2019). Thus (11) in the following theorem
shows that the Bonferroni scan based on the TI has asymptotic power 1 if the
assumptions of the theorem are met. These assumptions are discussed following
the statement of the theorem.

Theorem 3. Let the Xi, i = 1, . . . , n, be independent with a log-concave dis-
tribution that is symmetric about some μi. Set σ

2
i := VarXi, I := (0,m], let A

be the linear transformation (5) and write σ̃2
i := Var X̃i. Assume the μi satisfy

(7) or (8).

If μI − μIc ≥
√

(2+εn)σ2
IRI log n

|I|
|I| with εn

√
log n

|I| → ∞, |I| ≥ (log n)2 and
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RI :=
∑

i∈I σ̃2
i∑

i∈I σ2
i
, and if

σ2
j

σ2
I

≤ S
√
max
i∈I

(j − i) for all j ∈ {1, . . . , n} and some S > 0, (9)

then

RI ≤ 1 + 2S

√
|I|2
n

(10)

and

IP

(
TI >

√
2 log

n

|I| +O(1)

)
→ 1 (n → ∞). (11)

This result likewise holds for intervals I = (j, j+m], 0 ≤ j ≤ n−m, by applying
the theorem to (Xj+1, . . . , Xn, X1, . . . , Xj).

In order to compare the power of this scan statistic to an optimal bench-
mark, we first consider the special case where Xi ∼ N(μi, σ

2). For this spe-
cial case of homoscedastic normal observations it is known that there is a
precise condition under which detection is possible with asymptotic power 1:

μI − μIc ≥
√

(2+εn)σ2 log n
|I|

|I| , provided that εn does not go to zero too quickly:

εn
√

log n
|I| → ∞. One the other hand, dedection is impossible if ‘

√
2 + εn’ is

replaced by ‘
√
2− εn’. Hence

√
2 measures the difficulty of the detection prob-

lem, and the theory of that problem shows that it affects this difficulty as an
exponent. This explains the efforts in the literature to approach

√
2 as fast as

possible, and the rates
√
2± εn given above appear to be the currently best

known rates. Attaining the factor
√
2 hinges on having the correct scale fac-

tor in the sub-Gaussian null distribution of the test statistic. References and
summaries of these results are given in Walther and Perry (2019) and Walther
(2022).

Theorem 3 shows that in the practically important range |I| ≤
√

n
logn , the

Bonferroni scan based on the TI does indeed have asymptotic power 1 if μI−μIc

exceeds the above detection threshold for the homoscedastic normal case, since
(10) gives RI = 1 + o(εn) and σ2

I = σ2 by homoscedasticity. It is notable that
this Bonferroni scan, which is designed to deal with heteroscedastic symmetric
observations, allows optimal detection in the special case of homoscedastic nor-
mal data. In fact, Theorem 3 shows that it achieves the detection boundary for
the homoscedastic normal case already provided only the σi, i ∈ I, are equal
and the σi outside I don’t grow too quickly, as required in (9).

If the data are heteroscedastic, then Theorem 3 requires that σ2 needs to be
replaced by σ2

IRI = 1
|I|

∑
i∈I σ̃

2
i in the lower bound for μI − μIc . It is beyond

the scope of this paper to analyze whether this condition is optimal.
There appears to be not much literature about the scanning problem with

heteroscedastic observations, presumably because it is difficult to derive ap-
propriate methodology. For example, the recent work of Enikeeva et al. (2018)



2416 G. Walther

considers the heteroscedastic Gaussian detection problem where σ is allowed to
be different on I and Ic, but it is assumed that σ is constant and known on both
I and on Ic. The finite-sample tail bound (6) holds without such a restriction
and thus self-normalized statistics may prove to be quite useful for scanning
problems.

The proof of Theorem 3 uses the following moment inequality for log-concave
distributions, which may be of independent interest:

Proposition 2. If X has a log-concave distribution that is symmetric about 0,
then for all real numbers r, s > 0:

IE|X|s ≤ (IE|X|r)
s
r Γ(s+ 1)(r + 1)

s
r

If 0 < s < r, then IE|X|s ≤ (IE|X|r) s
r by Jensen’s inequality, without any

assumptions on the law of X. The proposition shows that if the distribution is
log-concave and symmetric, then it is possible to bound higher absolute moments
in terms of lower absolute moments.

5. Proofs

5.1. Proof of Theorem 1

Write X = (X1, . . . , Xn)
T and let A be an orthogonal n × n matrix with first

row ( 1√
n
, . . . , 1√

n
). Then Y := AX is a vector of independent normal random

variables with variance σ2 and IEY1 =
√
nμ, IEYi = 0, i = 2, . . . , n. Further∑n

i=1(Xi−X)2 =
∑n

i=1 X
2
i −nX

2
=
∑n

i=1 Y
2
i −Y 2

1 =
∑n

i=2 Y
2
i . Note that this

is the same transformation that is commonly used in textbooks to derive the
distribution of Student’s t-statistic. In the latter case one is interested in

√
nX =

Y1, which is independent of
∑n

i=2 Y
2
i . In contrast, the condition

∑n
i=1 bi = 0

ensures that
∑n

i=1 biXi is a function of (Y2, . . . , Yn) only:

V =
〈b,X〉√

1
n−1

∑n
i=1

(
Xi −X

)2 =
〈b,ATY〉√
1

n−1

∑n
i=2 Y

2
i

=
〈c,Y〉√

1
n−1

∑n
i=2 Y

2
i

, (12)

where c = Ab has c1 =
∑n

i=1
1√
n
bi = 0 and thus

∑n
i=2 c

2
i =

∑n
i=1 c

2
i =∑n

i=1 b
2
i = 1.

Set Ui :=
Yi√∑n
i=2 Y 2

i

, i = 2, . . . , n. Then U = (U2, . . . , Un)
T has the uniform

distribution on the (n − 2)-dimensional unit sphere in Rn−1 since the Yi are
i.i.d. N(0, σ2). Therefore

∑n
i=2 wiUi, the length of the projection of U onto a

unit vector w = (w2, . . . , wn)
T , has the same distribution for every unit vector

w.



Tail bounds for empirically standardized sums 2417

Setting w =
(

1√
n−1

, . . . , 1√
n−1

)T

gives2

V =
√
n− 1

n∑
i=2

ciUi
d
=

√
n− 1

n∑
i=2

wiUi =

∑n
i=2 Yi√∑n
i=2 Y

2
i

d
=

∑n−1
i=1 Zi√∑n−1
i=1 Z2

i

where the Zi are i.i.d. N(0, 1). Setting w = (1, 0, . . . , 0)T gives

V
d
=

√
n− 1

n∑
i=2

wiUi =
√
n− 1

Y2√∑n
i=2 Y

2
i

d
=

√
n− 1

Z1√∑n−1
i=1 Z2

i

,

so V 2

n−1 ∼ Beta
(
1
2 ,

n−2
2

)
follows from a well known fact about the beta distribu-

tion.
It is also known that the uniform distribution on the sphere in Rm, m :=

n − 1, gives U2 the density
Γ(m

2 )

Γ( 1
2 )Γ(

m−1
2 )

(
1− u2

)m−3
2 1(u ∈ (−1, 1)), hence V

d
=

√
n− 1U2 has density

fV (t) =
1√
m

Γ(m2 )

Γ( 12 )Γ(
m−1
2 )

(
1− t2

m

)m−3
2

1(−
√
m ≤ t ≤

√
m).

The plan is to show that fV (t) is not larger than the standard normal density

φ(t) = 1√
2π

exp(− t2

2 ) for t large enough. Clearly fV (t) ≤ φ(t) for t >
√
m. For

t ∈ (0,
√
m) one has Γ(m2 ) ≤ Γ(m−1

2 )
√

m
2 for m > 2 by Gautschi’s inequality,

and log(1 + x) ≤ x− x2

2 for x ∈ (−1, 0):

fV (t) ≤
1√
2π

exp

(
m− 3

2
log

(
1− t2

m

))
≤ 1√

2π
exp

(
m− 3

2

(
− t2

m
− t4

2m2

))
= φ(t) exp

(
3

2m
t2 − m− 3

4m2
t4
)

≤ φ(t) for t2 ≥ 6m

m− 3
(13)

The condition is satisfied if e.g. t ≥ 3 and m = n − 1 ≥ 9. Less conservative
bounds obtain by employing higher order terms for bounding log(1 + x). For

example, log(1 + x) ≤ x− x2

2 + x3

3 for x = − t2

m ∈ (−1, 0) yields

fV (t) ≤ φ(t) exp

(
3

2m
t2 − m− 3

4m2
t4 − m− 3

6m3
t6
)
.

2Alternatively, construct rows 2 to n of the orthogonal matrix A such that Ab = c =(
0,
√

1
n−1

, . . . ,
√

1
n−1

)T
. Then (12) gives V =

(∑n
i=2 Yi

)
/
√∑n

i=2 Y
2
i without assuming

that the Xi are normal. This also shows that V is a self-normalized sum. However, the Yi may
not be independent if the Xi are not normal.
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Dividing the argument in the exponent by m−3
2m2 t

2 shows that the argument is
non-positive if

3m

m− 3
− 1

2
t2 − 1

3m
t4 ≤ 0

and this inequality holds for t2 ≥ g(m) := 3
4m

(√
1 + 16

m−3 − 1
)
. One checks

numerically that

max
m∈{5,...,8}

g(m) ≤ 2.752, max
m∈{9,...,75}

g(m) ≤ 2.52. (14)

Therefore fV (t) ≤ φ(t) follows for t ≥ 2.5 and m > 75 from (13), for t ≥ 2.5 and
9 ≤ m ≤ 75 from (14), and for t ≥ 2.75 and m ≥ 5 from these results together
with (14). The last claim of the theorem now obtains with n = m− 1.

5.2. Proof of Theorem 2

The proof of (a) proceeds by inverting the Cramér-Chernoff tail bound, as in
Rivera and Walther (2013) for the binomial case. X1 has moment generating
function IEθ0 exp(tX1) = exp (A(θ0 + t)−A(θ0)) for θ0 + t ∈ Θ. Markov’s in-
equality gives for x > IEθ0X1:

IPθ0

(
1

m

m∑
i=1

Xi > x

)
≤ inf

t≥0

IE exp(t
∑m

i=1 Xi)

exp(tmx)

≤ exp

{
− sup

t≥0,t+θ0∈Θ

(
tmx−m

(
A(θ0 + t)−A(θ0))

))}

= exp

{
− sup

θ∈Θ: θ≥θ0

m
(
(θ − θ0)x−

(
A(θ)−A(θ0)

))}
= exp {−logLRm(x, θ0)}

where logLRm(x, θ0) := supθ∈Θ m
(
(θ−θ0)x− (A(θ)−A(θ0))

)
. This conclusion

used the fact that the sup over {θ ∈ Θ : θ ≥ θ0} equals the sup over {θ ∈ Θ}
since convexity of A yields

(θ − θ0)x− (A(θ)−A(θ0)) ≤ (θ − θ0)x− (θ − θ0)A
′(θ0) (15)

and the RHS is negative if θ < θ0 and x > IEθ0X1 = A′(θ0). The following claim
will be proved below:

The function x �→ logLRm(x, θ0) is continuous and strictly increasing on

[IEθ0X1,∞) ∩M0 (16)

where M denotes the convex hull of the support of fθ0 . Analogously one shows
that for x < IEθ0X1:

IPθ0

(
1

m

m∑
i=1

Xi < x

)
≤ exp

{
−logLRm(x, θ0)

}
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and x �→ logLRm(x, θ0) is continuous and strictly decreasing on (−∞, IEθ0X1]∩
M0. Together with logLRm(IEθ0X1, θ0) = 0, which follows from (15) and
IEθ0X1 = A′(θ0) ∈ M0, one obtains

IPθ0

(
logLRm

( 1

m

m∑
i=1

Xi, θ0

)
> t

)
≤ 2 exp(−t)

for t > 0 and claim (a) follows. It remains to prove (16). This follows from
Lemma 6.7 in Brown (1986) or from a general result in convex analysis to
the effect that the Legendre transform φ(x) := supθ∈Θ(θx − A(θ)) satisfies
φ′(x) = argmaxθ∈Θ(θx−A(θ)) =: θ(x) if x ∈ M0 (in which case the MLE θ(x)
exists uniquely and is given by θ(x) = A′ −1(x) by exponential family theory)
and φ′′(x) = 1/A′′(θ(x)) = 1/Varθ(x)X1 > 0 since the exponential family is
minimal. Hence logLRm(x, θ0) is differentiable wrt x ∈ M0 and

d

dx
logLRm(x, θ0) = m

(
θ(x)− θ0

)
It was shown above that if x > IEθ0X1, then the maximizer θ(x) satisfies θ(x) ≥
θ0. Now (16) follows from d

dxθ(x) = φ′′(x) > 0 for x ∈ M0. Part (a) of the
theorem is proved.

As for part (b), by the definition (3)

logLRm,n(θ̂n) ≤ logLRm,n(θ0) = logLRI(θ0) + logLRIc(θ0) (17)

where I := {1, . . . ,m} and Ic := {m+ 1, . . . , n} and for an index set J write

logLRJ(θ0) = log
supθ∈Θ

∏
i∈J fθ(Xi)∏

i∈J fθ0(Xi)

XJ =
1

#J

∑
i∈J

Xi and X =
1

n

n∑
i=1

Xi

So logLRI(θ0) = logLRm(θ0). The proof of (a) established for x > 0:

IPθ0

(
logLRI(θ0) > x, XI ≥ IEθ0X1

)
≤ exp(−x) (18)

and the same bound holds with XI < IEθ0X1 in place of XI ≥ IEθ0X1 or

with Ic in place of I. (18) shows that logLRI(θ0) 1(XI ≥ IEθ0X1)
d
≤ E, where

E ∼ Exp(1).
Since {Xi, i ∈ I} and {Xi, i ∈ Ic} are independent and stochastic order is

preserved under convolution, one gets

logLRI(θ0) 1(XI ≥ IEθ0X1) + logLRIc(θ0) 1(XIc ≥ IEθ0X1)
d
≤ R (19)

where R has the Erlang distribution with density te−t1(t > 0). As (19) holds
for all possible combinations of ‘≥’ and ‘<’ in the indicator functions, the union
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bound gives

IPθ0

(
logLRI(θ0)+logLRIc(θ0) > x

)
≤ 4 IP(R > x) = 4

∫ ∞

x

te−tdt = 4(1+x)e−x.

Now the first inequality in (b) follows with (17).
As for the second inequality, set α := #I

n = m
n . Then for x > 0:

IPθ0

(
XI −XIc > x

)
= IPθ0

⎛⎝(1− α)
∑
i∈I

Xi − α
∑
i �∈I

Xi > α(1− α)nx

⎞⎠
≤ inf

t≥0

IEθ0 exp
(
(1− α)t

∑
i∈I Xi − αt

∑
i �∈I Xi

)
exp (α(1− α)tnx)

= exp
{
− sup

t≥0
n
(
α(1− α)tx− α [A(θ0 + (1− α)t)−A(θ0)]

− (1− α) [A(θ0 − αt)−A(θ0)]
)}

(20)

One way to proceed from here would be via a Taylor series approximation

of A in order to derive an exponential tail bound for α(1 − α) (XI−XIc )
2

2σ2
0

and

likewise approximate logLRm,n(θ̂n) by this quantity. But these approximations
will create notable slack in the tail bound, while the proof in (a) shows that
tight bounds are possible by employing a statistic that conforms to the Cramér-
Chernoff bound. To this end define for x ≥ 0

˜logLRn(x)

:= sup
t≥0

n
(
α(1− α)tx− [αA(θ0 + (1− α)t) + (1− α)A(θ0 − αt)−A(θ0)]

)
Then (20) gives

IPθ0

(
˜logLRn

(
XI −XIc

)
≥ x,XI −XIc ≥ 0

)
≤ exp(−x) (21)

since ˜logLRn(·) is strictly increasing with ˜logLRn(0) = 0 by Jensen’s inequality.

The goal now is to show that
∣∣∣˜logLRn

(
XI −XIc

)
− logLRm,n(θ̂n)

∣∣∣ is small

relative to ˜logLRn

(
XI −XIc

)
. This is done with the following Proposition 3,

which gives a general result about the MLE in natural exponential families, and
with Lemma 1. In order to motivate part (b) of the following proposition, recall
that the exponential family {fθ(x), θ ∈ Θ} can alternatively be parameterized
by its mean value, and the mapping θ �→ IEθX = A′(θ) is a homeomorphism
between Θ and M0, the interior of the convex hull of the support of fθ0 , see

e.g. Brown (1986). The MLE θ̂ is given by the solution of A′(θ̂) = X if it
exists. It may fail to exist if X falls on the boundary of M. For example, if
a binomial(n, p) experiment results in n successes, then X = 1, but in the
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natural parametrization the supremum of the likelihood is approached as the
natural parameter θ = log p

1−p → ∞, so the MLE θ̂ does not exist. This issue
usually becomes negligible in an asymptotic analysis of the MLE, but it has to
be accounted for in a finite sample statement.

Proposition 3. Let X1, . . . , Xn be i.i.d. from a regular one-dimensional natural
exponential family {fθ, θ ∈ Θ}. For θ0 ∈ Θ write μ0 = IEθ0X1, σ

2
0 = Varθ0X1,

and logLRn(θ0) is defined in (2).

(a) If the MLE θ̂ exists, then

n
(X − μ0

σ0

)2

≤ 2 logLRn(θ0)
M

σ2
0

n(θ̂ − θ0)
2σ2

0 ≤ 2 logLRn(θ0)
Mσ2

0

m2

n(X − μ0)(θ̂ − θ0) ≤ 2 logLRn(θ0)
M

m

where m = minθ between θ0 and θ̂ A
′′(θ), M = maxθ between θ0 and θ̂ A

′′(θ).

(b) Let δ > 0 such that [θ0 − δ, θ0 + δ] ∈ Θ and set dδ := minθ=θ0±δ

(
(θ −

θ0)A
′(θ) − (A(θ) − A(θ0)

)
. Then dδ > 0. If logLRn(θ0) ≤ ndδ, then the

MLE θ̂ exists and satisfies |θ̂ − θ0| ≤ δ.

Proof of Proposition 3: As for part (a), Taylor’s theorem gives for θ be-

tween θ0 and θ̂:

A(θ)−A(θ0) ≤ A′(θ0)(θ − θ0) +
M

2
(θ − θ0)

2

Therefore these θ satisfy

logLRn(θ0)

n
≥ (θ− θ0)X −

(
A(θ)−A(θ0)

)
≥ (θ− θ0)(X − μ0)−

M

2
(θ− θ0)

2

as A′(θ0) = μ0. Setting θ := θM := θ0 +
X−μ0

M one obtains

logLRn(θ0)

n
≥ (X − μ0)

2

2M

provided it can be shown that

θM is between θ0 and θ̂. (22)

To this end, define the functions

L(θ) := (θ − θ0)X −
(
A(θ)−A(θ0)

)
g(θ) := (θ − θ0)

(
X − μ0

)
− M

2
(θ − θ0)

2
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Then L′(θ0) = g′(θ0) = X − μ0 and L′′(θ) ≥ g′′(θ) for θ between θ0 and θ̂.

Hence one obtains L′(θ) ≥ g′(θ) for θ ∈ [θ0, θ̂] if θ̂ ≥ θ0, and L′(θ) ≤ g′(θ) for

θ ∈ [θ̂, θ0] if θ̂ < θ0.

Now consider the case θ̂ ≥ θ0. Since A′(θ̂) = X gives L′(θ̂) = 0, one gets

g′(θ̂) ≤ 0. Since θM is the maximizer of the quadratic function g(θ), g′(θ̂) ≤ 0

implies θM ≤ θ̂.

X − μ0 = A′(θ̂)−A′(θ0) = A′′(ξ)(θ̂ − θ0) for some ξ between θ0 and θ̂ (23)

implies that X − μ0 and θ̂ − θ0 have the same sign, as A′′ > 0. So X − μ0 ≥ 0,

but then g(θ0) = 0, g′(θ0) = X − μ0 ≥ 0 and g(θM ) = (X−μ0)
2

2M ≥ 0 implies

θ0 ≤ θM . (If X − μ0 = 0, then the quadratic g has only one zero and θM = θ0).

This shows (22) in the case θ̂ ≥ θ0, the case θ̂ < θ0 is analogous.
The second inequality in (a) follows from (23) which gives

(θ̂ − θ0)
2σ2

0 ≤ (X − μ0)
2

m2
σ2
0 ≤ 2

logLRn(θ0)

n

Mσ2
0

m2

as well as

(X − μ0)(θ̂ − θ0) ≤ (X − μ0)
2

m
≤ 2

logLRn(θ0)

n

M

m
.

As for part (b), the function h(θ) := (θ− θ0)A
′(θ)−

(
A(θ)−A(θ0)

)
is stricly

decreasing for θ < θ0 and strictly increasing for θ > θ0 since h′(θ) = (θ −
θ0)A

′′(θ). Further, h(θ0) = 0 and minθ=θ0±δ h(θ) = dδ. This shows that dδ > 0
and

{θ ∈ Θ : h(θ) ≤ dδ} =: [θlow, θup] ⊂ [θ0 − δ, θ0 + δ]. (24)

The motivation for defining h is that for each θ, h(θ) gives logLRn(θ0)/n when
X = A′(θ), with θ representing the argmax (i.e. the MLE). Indeed

h(θ) = sup
t∈Θ

[
(t− θ0)A

′(θ)−
(
A(t)−A(θ0)

)]
, θ ∈ Θ (25)

as is readily seen by differentiating wrt t. To make clear the dependence of
logLRn(θ0) on X we write similarly as before logLRn(X, θ0) := logLRn(θ0), i.e.

1

n
logLRn(x, θ0) = sup

t∈Θ

[
(t− θ0)x−

(
A(t)−A(θ0)

)]
, x ∈ M. (26)

This function is convex in x since it is the Legendre transform of the convex
function A(t) plus a linear function. Comparing (25) and (26) shows that

1

n
logLRn(x, θ0) = h(θ) with x = A′(θ),

so this identity holds for θ ∈ Θ and x ∈ M0, with θ being the MLE when the
mean is x. Therefore{

x ∈ M0 :
1

n
logLRn(x, θ0) ≤ dδ

}
=

[
A′(θlow), A

′(θup)
]

(27)
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(recall that A′ is strictly increasing and continuous). But this implies that a
boundary point x ∈ bdM cannot satisfy 1

n logLRn(x, θ0) ≤ dδ because the func-
tion x �→ logLRn(x, θ0) is convex and henceMδ :=

{
x ∈ M : 1

n logLRn(x, θ0) ≤
dδ
}
must be an interval. Together with (27) this shows that Mδ ∈ M0 and so

for every x ∈ Mδ the MLE exists and is given by (A′)−1(x) ∈ [θlow, θup] ⊂
[θ0 − δ, θ0 + δ].

Lemma 1. Let T > 0. If the MLEs θ̂I and θ̂Ic exist, then on the event
{
XI −

XIc ≥ 0,
√
α|θ̂I − θ0| ≤ T,

√
1− α|θ̂Ic − θ0| ≤ T

}
:

logLRm,n(θ̂n) ≤ ˜logLRn

(
XI −XIc

)
+

5√
2α(1− α)

nT 3 max
θ:|θ−θ0|≤ 3T√

2α(1−α)

|A′′′(θ)|

Proof of Lemma 1: In the case where the MLEs θ̂I and θ̂Ic exist, set
θ̃ := αθ̂I + (1− α)θ̂Ic . By definition (3):

logLRm,n(θ̂n) ≤ logLRm,n(θ̃)

= αn
(
θ̂IXI −A(θ̂I)

)
+ (1− α)n

(
θ̂IcXIc −A(θ̂Ic)

)
− n

(
θ̃X −A(θ̃)

)
= α(1− α)n

(
θ̂I − θ̂Ic

)(
XI −XIc

)
− n

[
αA(θ̃ + (1− α)t)− (1− α)A(θ̃ − αt)−A(θ̃)

]
with t := θ̂I − θ̂Ic and using X = αXI + (1− α)XIc

≤ ˜logLRn

(
XI −XIc

)
+R

(
θ̂I − θ̂Ic , θ̃

)
on

{
XI −XIc ≥ 0

}
, where

R(t, θ̃) := n
[
αA(θ0 + (1− α)t) + (1− α)A(θ0 − αt)−A(θ0)

]
− n

[
αA(θ̃ + (1− α)t) + (1− α)A(θ̃ − αt)−A(θ̃)

]
.

The last inequality uses the fact that θ̂I − θ̂Ic and XI −XIc have the same sign
since XI −XIc = A′(θ̂I)−A′(θ̂Ic) and A′′ > 0.

Taylor’s theorem gives for some ξ, τ between 0 and t:

R(t, θ̃) =
1

2
α(1− α)nt2

[
(1− α)A′′(θ0 + (1− α)ξ) + αA′′(θ0 − αξ)

− (1− α)A′′(θ̃ + (1− α)τ)− αA′′(θ̃ − ατ)
]

≤ 1

2
α(1− α)nt2

[
max

θ:|θ−θ0|≤|t|
A′′(θ)− min

θ:|θ−θ̃|≤|t|
A′′(θ)

]
≤ 5√

2α(1− α)
nT 3 max

θ:|θ−θ0|≤ 3T√
2α(1−α)

|A′′′(θ)|
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since |θ̃ − θ0| ≤ α|θ̂I − θ0| + (1 − α)|θ̂Ic − θ0| ≤ (
√
α +

√
1− α)T ≤

√
2T and

|t| = |θ̂I − θ̂Ic | ≤
(√

1
α +

√
1

1−α

)
T ≤

√
2

α(1−α)T , so

{
θ : max

(
|θ − θ0|, |θ − θ̃|

)
≤ |θ̂I − θ̂Ic |

}
⊂
{
θ : |θ − θ0| ≤

3T√
2α(1− α)

}

and

max
{
|θ1 − θ2| : |θ1 − θ0| ≤ |θ̂I − θ̂Ic |, |θ2 − θ̃| ≤ |θ̂I − θ̂Ic |

}
≤ 5T√

2α(1− α)
.

Now the proof of the theorem can be completed as follows: Let δ > 0 such
that [θ0 − δ, θ0 + δ] ⊂ Θ. If logLRI(θ0) ≤ x for some x ∈ (0, α(1− α)ndδ), then

part (b) of Proposition 3 implies that the MLE θ̂I exists and |θ̂I − θ0| ≤ δ. But

then (a) of that Proposition implies that αn(θ̂I − θ0)
2 ≤ 2x M

m2 , where M :=
maxθ:|θ−θ0|≤δ A

′′(θ) and m := minθ:|θ−θ0|≤δ A
′′(θ). Likewise, logLRIc(θ0) ≤ x

implies (1− α)n(θ̂Ic − θ0)
2 ≤ 2x M

m2 , hence we can set T :=
√

2xM
nm2 in Lemma 1

to obtain on the event {XI −XIc ≥ 0, logLRI ≤ x, logLRIc(θ0) ≤ x}:

logLRm,n(θ̂n) ≤ ˜logLRn

(
XI −XIc

)
+

√
x3

n
C

where C := 10
m3

√
M3

α(1−α) maxθ:|θ−θ0|≤δ |A′′′(θ)|. So for x ∈
(
0, n min

(
α(1 −

α)dδ, C
−2
))
:

IPθ0

(
logLRm,n(θ̂n) > x, XI −XIc ≥ 0

)
≤ IPθ0

(
˜logLRn

(
XI −XIc

)
> x

(
1−

√
x

n
C

)
, XI −XIc ≥ 0

)
+ IPθ0 (logLRI(θ0) > x) + IPθ0 (logLRIc(θ0) > x)

≤ exp

(
−x

(
1−

√
x

n
C

))
+ 2 exp(−x) by (21) and (a) of the theorem

≤ (2 + e) exp(−x) if x ≤
(
nC−2

)1/3
.

The companion inequality with XI −XIc < 0 obtains analogously. The claim

for
√
2 logLRm,n(θ̂n) follows for

1
2x

2 ≤ (nC−2)1/3, so one can use 8C−2 as the

constant C in the statement of the theorem.

5.3. Proof of Proposition 1

The requirements for the matrix A imply that
∑m

i=1 μ̃i contains each μi, i ≤ m,
exactly once with coefficient 1, and each μi, i > m, exactly once with coefficient
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−1
p−1 . Therefore

μ̃I =
1

m

m∑
i=1

μ̃i =
1

m

m∑
i=1

μi −
1

m(p− 1)

n∑
i=m+1

μi = μI − μIc (28)

Lemma 2. If (7) or (8) hold, then

m(μ̃I)
2∑m

i=1 μ̃
2
i

≥
{
1− v if (7) holds

1
4v+1 if (8) holds.

Proof of Lemma 2:
∑m

i=1(μ̃i−μ̃I)
2 =

∑m
i=1 μ̃

2
i−m(μ̃I)

2 since μ̃I = 1
m

∑m
i=1 μ̃i.

Hence (7) bounds the RHS by v
∑m

i=1 μ̃
2
i , while (8) will be shown to give the

bound
m∑
i=1

(μ̃i − μ̃I)
2 ≤ 4mv(μ̃I)

2 (29)

so the claim follows in each case by collecting terms.

For simplicity of exposition (29) will be proved for the linear transformation
A given by (5). The proof goes through in the same way for a general matrix
A given in Proposition 1 by employing more cumbersome notation. Therefore

μ̃i = μi − 1
p−1

∑m+i(p−1)
j=m+(i−1)(p−1)+1 μj for i = 1, . . . ,m. Then it follows from (28)

and Jensen’s inequality that

m∑
i=1

(μ̃i − μ̃I)
2 = 4

m∑
i=1

⎛⎝μi − μI

2
−

m+i(p−1)∑
j=m+(i−1)(p−1)+1

μj − μIc

2(p− 1)

⎞⎠2

as μ̃I = μI − μIc

≤ 4

m∑
i=1

⎛⎝1

2
(μi − μI)

2 +
1

2(p− 1)

m+i(p−1)∑
j=m+(i−1)(p−1)+1

(μj − μIc)2

⎞⎠
= 2

m∑
i=1

(μi − μI)
2 +

2

p− 1

n∑
j=m+1

(μj − μIc)2

≤ 2mv(μ̃I)
2 +

2

p− 1
(n−m)v(μ̃I)

2 by (8)

= 4mv(μ̃I)
2 since n−m = m(p− 1). �

As for proof of part (a) of the Proposition, by the construction of A the sum∑m
i=1 X̃i contains each Xi, i ≤ m, exactly once with coefficient 1, and each Xi,

i > m, exactly once with coefficient −1
p−1 . Therefore

m∑
i=1

X̃i =

m∑
i=1

Xi −
1

p− 1

n∑
i=m+1

Xi
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=
n

n−m

(
m∑
i=1

(
1− m

n

)
Xi −

m

n

n∑
i=m+1

Xi

)
since n = mp

=
n

n−m

m∑
i=1

(Xi −X).

As for (b) and (c), since each column of A has only one non-zero entry, it

follows that if i1 �= i2, then X̃i1 and X̃i2 are functions of disjoint sets of Xj .

Hence the X̃1, . . . , X̃m are independent. Xj−μj
d
= μj−Xj and the independence

of the Xj yield

IP
(
X̃i − μ̃i ≤ t

)
= IP

⎛⎝ n∑
j=1

aij(Xj − μj) ≤ t

⎞⎠ = IP

⎛⎝ n∑
j=1

aij(μj −Xj) ≤ t

⎞⎠
= IP

⎛⎝ n∑
j=1

aij(Xj − μj) ≥ −t

⎞⎠ = IP
(
X̃i − μ̃i ≥ −t

)
.

Hence X̃i is symmetric about μ̃i. Theorem 1.1 in Bentkus and Dzindzalieta

(2015) gives the bound Φ(t)

4Φ(
√
2)

≤ 3.18Φ(t) for the self-normalized Rademacher

sum and Theorem 1.1 in Pinelis (2012) gives the bound Φ(t) + 14.11φ(t)
9+t2 . Hence

the conditioning argument (4) yields

IP

⎛⎜⎜⎝
∑m

i=1

(
X̃i − μ̃i

)
√∑m

i=1

(
X̃i − μ̃i

)2
> t

⎞⎟⎟⎠ ≤ min
(
3.18, g(t)

)
IP
(
N(0, 1) > t

)
(30)

for all t > 0, where g(t) := 1 + 14.11φ(t)
(9+t2)(1−Φ(t)) → 1 as t → ∞.

Lemma 2 gives√√√√ m∑
i=1

μ̃2
i ≤ M

√
m |μ̃I | for some M ≥ 1. (31)

Suppose Tm =
∑

i≤m X̃i√∑
i≤m X̃2

i

> t for some t > 0. Then
∑m

i=1(X̃i − μ̃i) > 0 since∑m
i=1 μ̃i = mμ̃I = m(μI −μIc) ≤ 0 by (28). Hence Minkowski’s inequality gives∑m

i=1(X̃i − μ̃i)√∑m
i=1(X̃i − μ̃i)2

≥
∑m

i=1 X̃i −mμ̃I√∑m
i=1 X̃

2
i +

√∑m
i=1 μ̃

2
i

≥
t
√∑m

i=1 X̃
2
i +m |μ̃I |√∑m

i=1 X̃
2
i +M

√
m|μ̃I |

≥ t

if
√
m ≥ Mt. Hence for t ∈ (0,

√
m/M ]:

IP (Tm > t) ≤ IP

⎛⎝ ∑m
i=1(X̃i − μ̃i)√∑m
i=1(X̃i − μ̃i)2

> t

⎞⎠
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and the last term satisfies (30), proving (c).
If the μi are constant for i ≤ m and for i > m, then (8) holds with v = 0,

so one can use M = 1 in (31). Then Tm satisfies the bound (6) for all positive
t since IP(Tm > t) = 0 for t >

√
m by Cauchy-Schwartz, proving (b). (d) is

analogous. �

5.4. Proof of Theorem 3

On the event En(I) :=
{∑

i≤m X̃i ≥ 0
}

Minkowski’s inequality gives

TI ≥
∑

i≤m μ̃i +
∑

i≤m(X̃i − μ̃i)√∑
i≤m μ̃2

i +
√∑

i≤m(X̃i − μ̃i)2

By Lemma 2 there exists M ≥ 1 such that√∑
i≤m

μ̃2
i ≤ M

√
m |μ̃I | = M

√
m(μI − μIc) by (28)

Set Qn(I) :=
∑

i≤m(X̃i−μ̃i)√∑
i≤m μ̃2

i+
√∑

i≤m(X̃i−μ̃i)2
and Fn(I) :={∑

i≤m(X̃i − μ̃i)
2 ≤

∑
i≤m σ̃2

i (1 +
εn
4 )

}
. Then on the event En(I) ∩ Fn(I):

TI ≥ m(μI − μIc)

M
√
m(μI − μIc) +

√∑
i≤m σ̃2

i

(
1 + εn

4

) +Qn(I) by (28)

≥
mμmin

(∑
i≤m σ̃2

i

)−1/2

M
√
mμmin

(∑
i≤m σ̃2

i

)−1/2
+ 1 + εn

8

+Qn(I)

since μI − μIc ≥ μmin :=

√
(2+εn)σ2

IRI log n
m

m and the function x �→ ax
bx+c with

a, b, c > 0 is nondecreasing in x > 0. Now mμmin

(∑
i≤m σ̃2

i

)−1/2
=√

(2 + εn) log
n
m since σ2

IRI = m−1
∑

i≤m σ2
iRI = m−1

∑
i≤m σ̃2

i . Using
1

1+y ≥
1− y for y > 0 one obtains on the event En(I) ∩ Fn(I):

TI ≥
√
(2 + εn) log

n

m

(
1− εn

8
−M

√
(2 + εn) log

n
m

m

)
+Qn(I)

≥
(√

2 + εn

(
1

16
+ o(1)

))√
log

n

m
+Qn

since m ≥ (log n)2 and (logn)−1/2 = o(εn).
Now

|Qn(I)| ≤

∣∣∣∑i≤m(X̃i − IEX̃i)
∣∣∣√∑

i≤m(X̃i − IEX̃i)2
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so both tails ofQn(I) satisfy the bound (6) by (30). Therefore IP(TI >
√

2 log n
m+

O(1)) → 1 obtains (note that εn
√

log n
m → ∞) once it is shown that IP(En(I)∩

Fn(I)) → 1.

The proof of Proposition 1 shows that the X̃i are are independent and sym-
metric about μ̃i. Chebychev’s inequality and

∑
i≤m μ̃i = m(μI − μIc) give

IP(En(I)
c) = IP

⎛⎝∑
i≤m

(X̃i − μ̃i) < −
∑
i≤m

μ̃i

⎞⎠ ≤
∑

i≤m σ̃2
i

m2(μI − μIc)2

≤
∑

i≤m σ̃2
i

m(2 + εn)σ2
IRm log n

m

=
1

(2 + εn) log
n
m

→ 0

IP(Fn(I)
c) = IP

⎛⎝∑
i≤m

(
(X̃i − μ̃i)

2 − σ̃2
i

)
>

∑
i≤m

σ̃2
i

εn
4

⎞⎠
≤ 16

Var
(∑

i≤m(X̃i − μ̃i)
2
)

(∑
i≤m σ̃2

i

)2

ε2n

≤ 16

∑
i≤m C(σ̃2

i )
2(∑

i≤m σ̃2
i

)2

ε2n

where C := Γ(5) 32 − 1 obtains by setting r = 2, s = 4 in Proposition 2. This

uses the fact that X̃i − μ̃i has a log-concave distribution since it is the sum of
independent log-concave random variables, see e.g. Saumard andWellner (2014).
Now (9) implies for i ≤ m

σ̃2
i = σ2

i +
1

(p− 1)2

m+i(p−1)∑
j=m+(i−1)(p−1)+1

σ2
j ≤ σ2

i +
1

(p− 1)2
(p− 1)S

√
nσ2

I

≤ σ2
i + 2S

√
m

p
σ2
I (32)

≤ 3S
√
mσ2

I (33)

(33) yields

IP(Fn(I)
c) ≤ 16C

3S
√
mσ2

I∑
i≤m σ̃2

i ε
2
n

≤ 48C
S√
mε2n

→ 0

since m ≥ (logn)2 and εn
√
logn → ∞.

Finally, (10) follows from (32).

5.5. Proof of Proposition 2

The proof uses the following lemma repeatedly:

Lemma 3. Let w(x) be an integrable function on (0,∞) that does not change
its sign from + to − as x increases from 0 to ∞. Then

∫∞
0

w(x) dx = 0 implies∫∞
t

w(x) dx ≥ 0 for all t > 0.
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The lemma obtains by observing that
∫∞
t

w(x) dx < 0 for some t > 0 implies

w(z) < 0 for some z > t as well as
∫ t

0
w(x) dx =

∫∞
0

w(x) dx−
∫∞
t

w(x) dx > 0,
which implies w(s) > 0 for some s ∈ (0, t), contradicting the assumption about
the sign changes of w.

Since the density f of X is log-concave and symmetric about 0, it follows
that f is non-increasing on [0,∞) and that f0 := f(0) > 0. Hence

f(x)

{
≤ u(x) := f0 1

(
|x| ≤ 1

2f0

)
if x ∈

(
0, 1

2f0

]
,

≥ u(x) if x > 1
2f0

.

Set w(x) := f(x)− u(x). Then
∫∞
0

w(x) dx = 1
2 − 1

2 = 0 since both densities f
and u are symmetric about 0. Hence Lemma 3 gives∫ ∞

t

f(x)dx ≥
∫ ∞

t

u(x)dx for all t > 0. (34)

Let U ∼ Unif
(
− 1

2f0
, 1
2f0

)
. Then (34) yields for s > 0:

IE|X|s = 2IE|X|s1(X > 0) = 2

∫ ∞

0

IP(X > t
1
s )dt

≥ 2

∫ ∞

0

IP(U > t
1
s )dt = IE|U |s = 2f0

∫ 1
2f0

0

usds =
(2f0)

−s

s+ 1
(35)

Let V have density v(x) := f0 exp (−2f0|x|). Since log f(x) is a concave function
and log v(x) is linear on [0,∞), the function g(x) := log v(x)− log f(x) is convex
on [0,∞) and satsifies g(0) = 0. Hence g(x) cannot change its sign from + to −
as x increases from 0 to∞, and this is therefore also true for w(x) := v(x)−f(x).
Again

∫∞
0

w(x) dx = 0 holds since both densities f and v are symmetric about
0, so Lemma 3 gives∫ ∞

t

f(x)dx ≤
∫ ∞

t

v(x)dx for all t > 0.

Thus

IE|X|s = 2

∫ ∞

0

IP(X > t
1
s )dt ≤ 2

∫ ∞

0

IP(V > t
1
s )dt

= IE|V |s = 2f0

∫ ∞

0

vs exp(−2f0v)dv = Γ(s+ 1) (2f0)
−s

Together with (35) this shows that

(s+ 1)−1 ≤ (2f0)
s IE|X|s ≤ Γ(s+ 1) for all s > 0.

Hence for any r > 0: IE|X|s ≤ Γ(s+1) ((2f0)
−r)

s/r ≤ Γ(s+1) ((r + 1)IE|X|r)s/r.
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