The ensemble conditional variance estimator for sufficient dimension reduction*

Lukas Fertl¹ and Efstathia Bura²

¹d-fine Austria GmbH, Vienna, Austria
e-mail: Lukas.Fertl@d-fine.at

²Institute of Statistics and Mathematical Methods in Economics, Faculty of Mathematics and Geoinformation, TU Wien, Vienna, Austria
e-mail: efstathia.bura@tuwien.ac.at

Abstract: Ensemble Conditional Variance Estimation (ECVE) is a novel sufficient dimension reduction (SDR) method in regressions with continuous response and predictors. ECVE applies to general non-additive error regression models and operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. It is a semiparametric forward regression model-based exhaustive sufficient dimension reduction estimation method that is shown to be consistent under mild assumptions. ECVE outperforms central subspace mean average variance estimation (csMAVE), its main competitor, under several simulation settings and in a benchmark data set analysis.

Keywords and phrases: Regression, semi-parametric, linear sufficient reduction, central subspace, ensembles.

Received March 2021.

1. Introduction

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, \(Y\) a univariate continuous response and \(X\) a \(p\)-variate continuous predictor, jointly distributed, with \((X^T)^T : \Omega \to \mathbb{R}^{p+1}\). We consider the linear sufficient dimension reduction model

\[Y = g_{cs}(B^TX, \epsilon), \tag{1.1} \]

where \(X \in \mathbb{R}^p\) is independent of the random variable \(\epsilon\), \(B\) is a \(p \times k\) matrix of rank \(k\), and \(g_{cs} : \mathbb{R}^{k+1} \to \mathbb{R}\) is an unknown non-constant function, where the index \(cs\) stands for central subspace and serves to distinguish (1.1) from other link functions in the sequel.

[29, Thm. 1] showed that if \((Y, X^T)^T\) has a joint continuous distribution, (1.1) is equivalent to

\[Y \perp \perp X \mid B^TX, \tag{1.2} \]

\(^*\)L. Fertl was supported by Austrian Science Fund (FWF P 30690-N35). E. Bura was supported by Austrian Science Fund (FWF P 30690-N35) and Vienna Science and Technology Fund (WWTF ICT19-018)
where the symbol \(\perp \) indicates stochastic independence. The matrix \(\mathbf{B} \) is not unique and can be replaced by any basis of its column space, \(\text{span}\{\mathbf{B}\} \). Let \(\mathcal{S} \) denote a subspace of \(\mathbb{R}^p \), and let \(\mathbf{P}_\mathcal{S} \) denote the orthogonal projection onto \(\mathcal{S} \) with respect to the usual inner product. If the response \(Y \) and predictor vector \(\mathbf{X} \) are independent conditionally on \(\mathbf{P}_\mathcal{S}\mathbf{X} \), then \(\mathbf{P}_\mathcal{S}\mathbf{X} \) can replace \(\mathbf{X} \) as the predictor in the regression of \(Y \) on \(\mathbf{X} \) without loss of information. Such \(\mathcal{S}'s \) are called dimension reduction subspaces and their intersection, provided it satisfies the conditional independence condition (1.2), is called the central subspace and denoted by \(\mathcal{S}_{Y | \mathbf{X}} \) [see [6, p. 105], [7]].

By their equivalence, under both models (1.1) and (1.2), \(Y \perp \mathbf{X} \mid \mathbf{B}^T\mathbf{X} \) and \(\mathcal{S}_{Y | \mathbf{X}} = \text{span}\{\mathbf{B}\} \). Since the conditional distribution of \(Y \mid \mathbf{X} \) is the same as that of \(Y \mid \mathbf{B}^T\mathbf{X}, \mathbf{B}^T\mathbf{X} \) contains all the information in \(\mathbf{X} \) for modeling the target variable \(Y \), and can replace \(\mathbf{X} \) without any loss of information.

If the error term in model (1.1) is additive with \(\mathbb{E}(\epsilon \mid \mathbf{X}) = 0 \), (1.1) reduces to \(Y = g(\mathbf{B}^T\mathbf{X}) + \epsilon \). Now, \(\mathbb{E}(Y \mid \mathbf{X}) = \mathbb{E}(Y \mid \mathbf{B}^T\mathbf{X}) = \mathbb{E}(Y \mid \mathbf{P}_\mathcal{S}\mathbf{X}) \), where \(\mathcal{S} = \text{span}\{\mathbf{B}\} \). The mean subspace, denoted by \(\mathcal{S}_{\mathbb{E}(Y \mid \mathbf{X})} \), is the intersection of all subspaces \(\mathcal{S} \) such that \(\mathbb{E}(Y \mid \mathbf{X}) = \mathbb{E}(Y \mid \mathbf{P}_\mathcal{S}\mathbf{X}) \) [8]. In this case, (1.1) becomes the classic mean subspace model with \(\text{span}\{\mathbf{B}\} = \mathcal{S}_{\mathbb{E}(Y \mid \mathbf{X})} \) [8] showed that the mean subspace is a subset of the central subspace, \(\mathcal{S}_{\mathbb{E}(Y \mid \mathbf{X})} \subseteq \mathcal{S}_{Y | \mathbf{X}} \).

Several linear sufficient dimension reduction (SDR) methods estimate \(\mathcal{S}_{\mathbb{E}(Y \mid \mathbf{X})} \) consistently ([1, 22, 20, 26]). Linear refers to the reduction being a linear transformation of the predictor vector. Minimum Average Variance Estimation (MAVE) [26] has been the most accurate, and thus, competitive among them. MAVE differentiates from the majority of SDR methods in that it is not inverse regression based such as, for example, the widely used Sliced Inverse Regression (SIR, [21]). MAVE requires minimal assumptions on the distribution of \((Y, \mathbf{X}^T)^T \) and is based on estimating the gradients of the regression function \(\mathbb{E}(Y \mid \mathbf{X}) \) via local-linear smoothing [5].

The central subspace mean average variance estimation (csMAVE) [25, 13] is a MAVE extension that consistently and exhaustively estimates the \(\text{span}\{\mathbf{B}\} \) in model (1.1) without restrictive assumptions limiting its applicability. csMAVE has remained largely uncontested since it was proposed by [25]. It is based on repeatedly applying MAVE on the sliced target variables \(f_u(Y) = 1_{\{s_{u-1} < Y \leq s_u\}} \), for \(s_1 < \ldots < s_H \), where \(1_A \) denotes the indicator function of the set \(A \). [25] showed that the mean subspaces of the sliced \(Y \) can be combined to recover the central subspace \(\mathcal{S}_{Y | \mathbf{X}} \).

Several papers made contributions in establishing a road path from the mean to the central subspace [see [27] for a list of references]. [27] recognized that these approaches pointed to the same direction: if one can estimate the mean subspace of \(\mathbb{E}(f(\mathbf{X}) \mid Y) \) for sufficiently many functions \(f \in \mathcal{F} \) for a family of functions \(\mathcal{F} \), then one can recover the central subspace. Such families that are rich enough to obtain the desired outcome are called characterizing ensembles by [27], who also proposed and studied them [see [20] for an overview].

In this paper, we extend the conditional variance estimator (CVE) [10] to the exhaustive ensemble conditional variance estimator (ECVE) for recovering fully the central subspace \(\mathcal{S}_{Y | \mathbf{X}} \) in model (1.1). Conditional variance estimation is a
semi-parametric method for the consistent estimation of $\mathcal{S}_E(Y|X)$ under minimal regularity assumptions on the distribution of $(Y, X^T)^T$. In contrast to other SDR approaches, it identifies the orthogonal complement of $\mathcal{S}_E(Y|X)$, Its generalization CVE builds on the ensemble device of [27], adapting and extending ideas from conditional variance estimation [10], to exhaustively estimate the sufficient dimension reduction in (1.1). Here we lift the CVE requirement of an additive independent error regression model and extend it to regressions with errors that can depend on the predictors.

In [10], CVE was shown to be a consistent estimator for the mean subspace $\mathcal{S}_M(Y|X)$ in the model $Y = \mathbb{E}(Y | P_{\mathcal{S}_E(Y|X)}X) + \epsilon$ with $X \perp \perp \epsilon$, which restricts the central subspace $\mathcal{S}_Y|X$ to agree with the mean subspace $\mathcal{S}_E(Y|X)$. Here we show CVE to be consistent in models with $\mathbb{E}(\epsilon | X) = 0$. This allows the identification of the mean subspace $\mathcal{S}_E(f(Y)|X)$ across regression models, in particular for transformed responses $f_i(Y)$, where f_i are elements of an ensemble $\mathcal{F} = \{f_t : t \in \Omega_T\}$. We then combine them to form the consistent CVE estimate of the central subspace $\mathcal{S}_Y|X$ in much richer models of the form (1.1), where the central subspace may be a proper superset of the mean subspace, i.e. $\mathcal{S}_E(Y|X) \subseteq \mathcal{S}_Y|X$.

The paper is organized as follows. In Section 2 we define the notation and concepts we use throughout the paper. A short motivational example for the CVE is given in Section 2.1. In Section 2.2, ensembles are introduced. The ensemble conditional variance estimator (ECVE) is defined in Section 3 and its estimation procedure in Section 4. The consistency of the ensemble conditional variance estimator for the central subspace is shown in Section 5. ECVE is seen to perform better or on a par with csMAVE, as well as several refined ensemble MAVE estimators [27, 20], via simulations in Section 6, and in the Boston Housing data in Section 7. We conclude in Section 8.

2. Preliminaries

We denote by F_Z the cumulative distribution function (cdf) of a random variable or vector Z. We drop the subscript, when the attribution is clear from the context. For a vector a and a matrix A, $\|a\|$ and $\|A\|$ denote the Euclidean and the Frobenius norm, respectively. Scalar product is the usual Euclidean inner product and \perp denotes orthogonality with respect to it. The probability density function of X is denoted by f_X, and its support by $\text{supp}(f_X)$. The notation $Y \perp X$ signifies stochastic independence of the random vector X and random variable Y. The j-th standard basis vector with zeroes everywhere except for 1 on the j-th position is denoted by $e_j \in \mathbb{R}^p$, $\ell_p = (1,1,\ldots,1)^T \in \mathbb{R}^p$, and $I_p = (e_1, \ldots, e_p)$ is the identity matrix of order p. For any matrix $M \in \mathbb{R}^{p \times q}$, P_M denotes the orthogonal projection matrix on its column or range space $\text{span}\{M\}$; i.e., $P_M = P_{\text{span}(M)} = M(M^T M)^{-1}M^T \in \mathbb{R}^{p \times p}$.

For $q \leq p$, $S(p, q)$ denotes the Stiefel manifold that comprises of all $p \times q$ matrices with orthonormal columns. $S(p, q)$ is compact with $\dim(S(p, q)) = pq - q(q+1)/2$ [see [4] and [24],
Sec. 2.1]. The set
\[Gr(p,q) = S(p,q)/S(q,q) \] (2.2)
denotes a Grassmann manifold [12] that contains all \(q \)-dimensional subspaces in \(\mathbb{R}^p \). \(Gr(p,q) \) is the quotient space of \(S(p,q) \) with all \(q \times q \) orthonormal matrices in \(S(q,q) \).

2.1. CVE

To motivate the development of the \textit{ensemble conditional variance estimator} (ECVE) we start this section by a simple example describing the \textit{conditional variance estimator} (CVE) [10], which estimates the mean subspace \(S_{E(Y|X)} = \text{span}\{B\} \) in regressions with additive error term, i.e. \(Y = g(B^T X) + \epsilon \).

To appreciate the geometric intuition behind CVE, we consider a bivariate standard normal predictor vector, \(X = (X_1, X_2) \sim N(0, I_2) \), and generate the response from \(Y = g(B^T X) + \epsilon = X_1 + \epsilon \), with \(\epsilon \sim N(0, \eta^2) \) independent of \(X \) with \(\eta = 0.1 \). In this setting, \(k = 1 \), \(g_{cs}(z, u) = z + u \in \mathbb{R} \) and \(B = (1, 0)^T \) in model (1.1) is aligned with the first coordinate axis. Since \(\epsilon \) is additive and independent from \(X \), the mean subspace \(S_{E(Y|X)} \) is equal to the central subspace \(S_{Y|X} \), i.e. \(S_{Y|X} = S_{E(Y|X)} = \text{span}\{B\} \), and CVE, which corresponds to ECVE with the ensemble containing only the identity function in this case, recovers the central subspace \(S_{Y|X} \).

We see how CVE works in Figure 1, where we plot 100 draws of \(X_1 \) versus \(X_2 \). The color of the points is determined by their corresponding \(Y_i \) values, with small \(Y_i \) values in blue and large in red and the intensity of the color corresponding to their absolute magnitude. In the direction of \(B \) (x-axis), the color has high variation, whereas in the orthogonal direction (0, 1) (y-axis), the color has low variation solely due to the error term \(\epsilon \). As it is easier to detect patterns in directions of low variability, CVE identifies \(B \) through its orthogonal complement by finding the directions in which the response \(Y \) varies the least (right panel) as \(X \) ranges in an affine subspace. The same intuition underlies ECVE, even though it is more difficult to visually capture as the variation may occur in higher moments of the conditional distribution of the response given the predictors.

2.2. Ensembles

[27] introduced \textit{ensembles} as a device to extend mean subspace to central subspace SDR methods. The \textit{ensemble} approach of combining mean subspaces in order to recover the central subspace comprises of two components: (a) a rich family of functions of transformations for the response and (b) a sampling mechanism for drawing the functions from the ensemble to ascertain coverage of the central subspace. To distinguish between families of functions and ensembles, [27] use the term \textit{parametric} ensemble. Here, we drop the denomination and call these families \textit{ensembles}.
Definition. An ensemble is defined to be a family of measurable functions \(F = \{ f_t : t \in \Omega_T \} \) with respect to an index set \(\Omega_T \) in a Euclidean space.

Let \(Y \) follow model (1.1), \(F \) be an ensemble, and \(f \in F \). The space \(S_{E(f(Y)|X)} \) is defined to be the mean subspace of the transformed random variable \(f(Y) \) [see [6] or [8]].

Definition. An ensemble \(F \) characterizes the central subspace \(S_{Y|X} \), if

\[
\text{span}\{S_{E(f_t(Y)|X)} : f_t \in F\} = S_{Y|X}
\]

As an example, the ensemble \(F = \{ f_t : t \in \Omega_T \} = \{1_{\{t \leq t\}} : t \in \mathbb{R} \} \) can characterize the central subspace \(S_{Y|X} \). That is, \(\mathbb{E}(f_t(Y)|X) \) is the conditional cumulative distribution function evaluated at \(t \). To see this, let \(\mathbf{B} \in S(p,k) \) be such that \(\mathbb{E}(f_t(Y)|X) = \mathbb{E}(f_t(Y)|\mathbf{B}^T X) \) for all \(t \). Then, \(F_{Y|X}(t) = \mathbb{E}(f_t(Y)|X) = \mathbb{E}(f_t(Y)|\mathbf{B}^T X) = F_{Y|\mathbf{B}^T X}(t) \) for all \(t \). Varying over the ensemble \(F \), in this case over \(t \in \mathbb{R} \), obtains the conditional cumulative distribution function. This indicator ensemble fully recovers the conditional distribution of \(Y | X \) and, thus, also the central subspace \(S_{Y|X} \).

\[
\text{span}\{S_{E(f_t(Y)|X)} : f_t \in F\} = \text{span}\{S_{E(1(Y\leq t)|X)} : t \in \mathbb{R} \} = S_{Y|X}
\]

We reproduce a list of ensembles \(F \) and associated regularity conditions that can characterize \(S_{Y|X} \) from [27] next.

Characteristic ensemble: \(F = \{ f_t : t \in \Omega_T \} = \{\exp(it) : t \in \mathbb{R} \} \).
Indicator ensemble: $\mathcal{F} = \{1_{z \leq t} : t \in \mathbb{R}\}$, where $\text{span}\{S_{E(f_t(Y)|X)} : f_t \in \mathcal{F}\}$ recovers the conditional cumulative distribution function

Kernel ensemble: $\mathcal{F} = \{h^{-1}K((z - t)/h) : t \in \mathbb{R}, h > 0\}$, where K is a kernel suitable for density estimation, and $\text{span}\{S_{E(f_t(Y)|X)} : f_t \in \mathcal{F}\}$ recovers the conditional density

Polynomial ensemble: $\mathcal{F} = \{z^t : t = 1, 2, 3, \ldots\}$, where $\text{span}\{S_{E(f_t(Y)|X)} : f_t \in \mathcal{F}\}$ recovers the conditional moment generating function

Box-Cox ensemble: $\mathcal{F} = \{(z^t - 1)/t : t \neq 0\} \cup \{\log(z) : t = 0\}$ Box-Cox Transforms

Wavelet ensemble: Haar Wavelets

The characteristic and indicator ensembles describe the conditional characteristic and distribution function of $Y \mid X$, respectively, which always exist and uniquely determine the distribution. If the conditional density function $f_{Y\mid X}$ of $Y \mid X$ exists, then the kernel ensemble characterizes the conditional distribution $Y \mid X$. Further, if the conditional moment generating function exists, then the polynomial ensemble characterizes $S_{Y\mid X}$. [27] used the ensemble device to extend MAVE [26], which targets the mean subspace, to its ensemble version that also estimates the central subspace $S_{Y\mid X}$ consistently.

Theorem 2.1 [27, Thm 2.1] establishes when an ensemble \mathcal{F} is rich enough to characterize $S_{Y\mid X}$.

Theorem 2.1. Let $\mathcal{B} = \{1_A : A \text{ is a Borel set in supp}(Y)\}$ be the set of indicator functions on supp(Y), and $L^2(F_Y)$ be the set of square integrable random variables with respect to the marginal distribution F_Y. If $\mathcal{F} \subseteq L^2(F_Y)$ is dense in $\mathcal{B} \subseteq L^2(F_Y)$, then the ensemble \mathcal{F} characterizes the central subspace $S_{Y\mid X}$.

In Theorem 2.2 we show that finitely many functions of an ensemble \mathcal{F} are sufficient to characterize the central subspace $S_{Y\mid X}$.

Theorem 2.2. Let t_1, t_2, \ldots be an i.i.d. sequence of random variables on Ω_T. If an ensemble \mathcal{F} characterizes $S_{Y\mid X}$, then the event

$$\{\omega : \text{there exists a finite integer } m_0(\omega) \text{ such that for all } m > m_0(\omega), \text{span}\{S_{E(f_{t_i}(Y)|X)} : i \in 1, \ldots, m\} = S_{Y\mid X}\}$$

has probability 1.

Theorem 2.2 is Theorem 2.2 in [27], where its proof can be found. The importance of Theorem 2.2 lies in the fact that the search to characterize the central subspace is over a finite set with probability 1. Theorem 2.2 does not offer tools for identifying the elements of the ensemble and is not used in any proofs in the paper.

3. EnsembleCVE for the central subspace

Throughout the paper, we refer to the following assumptions as needed.
(E.1) Model (1.1), $Y = g_{cs}(B^TX, \epsilon)$, holds with $Y \in \mathbb{R}$, $g_{cs} : \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$ non constant in the first argument, $B = (b_1, \ldots, b_k) \in \mathcal{S}(p, k)$, $X \in \mathbb{R}^p$ independent of ϵ, the distribution of X is absolutely continuous with respect to the Lebesgue measure in \mathbb{R}^p, $\text{supp}(f_X)$ is compact set.

Definition. Let S exists since the complex exponential and indicator functions are bounded.

(E.2) The density $f_X : \mathbb{R}^p \to [0, \infty)$ of X is twice continuously differentiable with compact support $\text{supp}(f_X)$.

(E.3) The index set Ω_T of an ensemble \mathcal{F} is endowed with a probability measure F_T such that for all $t \in \Omega_T$ with $\mathcal{S}_{\mathcal{E}(f_Y|X)} \neq \{0\}$,

$$\mathbb{P}_{F_T} \left(\{ t \in \Omega_T : \mathcal{S}_{\mathcal{E}(f_Y|X)} = \mathcal{S}_{\mathcal{E}(f_Y|X)} \} \right) > 0.$$

(E.4) For all $f \in \mathcal{F}$, where \mathcal{F} is an ensemble, the conditional expectation

$$\mathbb{E}(f(Y) \mid X)$$

is twice continuously differentiable in the conditioning argument. Further, for all $f \in \mathcal{F}$

$$\mathbb{E}(|f(Y)|^8) < \infty.$$

Assumption (E.1) assures the existence and uniqueness of $\mathcal{S}_{Y|X} = \text{span}\{B\}$. Furthermore, it allows the mean subspace to be a proper subset of the central subspace, i.e. $\mathcal{S}_{\mathcal{E}(f_Y|X)} \subseteq \mathcal{S}_{Y|X}$. In Assumption (E.2), the compactness requirement for $\text{supp}(f_X)$ is not as restrictive as it might seem. [28, Prop. 11] showed that there is a compact set $K \subset \mathbb{R}^p$ such that $\mathcal{S}_{Y|X|K} = \mathcal{S}_{Y|X}$, where $X_{i|K} = X_{i|X \in K}$. Assumption (E.3) implies that the set of indices that characterize the central subspace $\mathcal{S}_{Y|X}$ is not a null set. In practice, the choice of the probability measure F_T on the index set Ω_T of an ensemble \mathcal{F} can always guarantee the fulfillment of this assumption. If the characteristic or indicator ensemble are used, (E.4) states that the conditional characteristic or distribution function is twice continuously differentiable. In this case, the $8th$ moment exists since the complex exponential and indicator functions are bounded.

Definition. Let \mathcal{F} be an ensemble and $f \in \mathcal{F}$. For $q \leq p \in \mathbb{N}$, and any $V \in S(p, q)$, we define

$$\hat{L}(V, s_0, f) = \mathbb{E}(f(Y) \mid X \in s_0 + \text{span}\{V\})$$

where $s_0 \in \mathbb{R}^p$ is a non-random shifting point.

Definition. Let F_T be a cumulative distribution function on the index set Ω_T of an ensemble \mathcal{F}. For $q \leq p$, and any $V \in S(p, q)$, we define

$$L_T(V) = \int_{\Omega_T} \int_{\mathbb{R}^p} \hat{L}(V, x, f_i) dF_X(x) dF_T(t)$$

$$= \mathbb{E}_{t \sim F_T} \left(\mathbb{E}_X \left(\hat{L}(V, X, f_i) \right) \right) = \mathbb{E}_{t \sim F_T} \left(L^*(V, f_i) \right),$$

where F_X is the cdf of X, and

$$L^*(V, f_i) = \mathbb{E}_X \left(\hat{L}(V, X, f_i) \right).$$
For the identity function, \(f_{t_0}(z) = z \), (3.3) is the target function of the conditional variance estimation proposed in [10]. If the random variable \(t \) is concentrated on \(t_0 \); i.e., \(t \sim \delta_{t_0} \), then the ensemble conditional variance estimator (ECVE) coincides with the conditional variance estimator (CVE).

Next we define the ensemble conditional variance estimator (ECVE) for an ensemble \(\mathcal{F} \) that characterizes the central subspace \(\mathcal{S}_{Y|X} \). Following the ensemble minimum average variance estimation formulation in [27], we extend the original objective function by integrating over the index random variable \(t \sim \mathcal{F}_T \) that indexes \(\mathcal{F} \) in (3.2).

Definition 1. Let

\[
V_q = \arg\min_{V \in S(p,q)} L_F(V)
\]

(3.4)

The **Ensemble Conditional Variance Estimator** with respect to the ensemble \(\mathcal{F} \) is defined to be any basis \(B_{p-q,F} \) of \(\text{span}\{V_q\} \perp \).

Theorem 3.1. Assume (E.1), (E.2), (E.3), and (E.4) hold, and that the function \(h(\cdot) \) defined in Theorem A.2 in Appendix A is continuous. Let \(\mathcal{F} \) be an ensemble that characterizes \(\mathcal{S}_{Y|X} \), with \(k = \text{dim}(\mathcal{S}_{Y|X}) \), and \(V \) be an element of the Stiefel manifold \(S(p,q) \) with \(q = p - k \). Then, \(V_q \) in (3.4) is well defined and

\[
\mathcal{S}_{Y|X} = \text{span}\{V_q\} \perp. \quad (3.5)
\]

4. **Estimation of the ensemble conditional variance estimator**

Assume \((Y_i, X_i^\top)_{i=1,...,n}\) is an i.i.d. sample from model (1.1), and let

\[
d_i(V, s_0) = \|X_i - P_{s_0 + \text{span}\{V\}} X_i\|_2^2 = \|X_i - s_0\|_2^2 - \langle X_i - s_0, VV^\top (X_i - s_0) \rangle
\]

\[
= \|(I_p - VV^\top)(X_i - s_0)\|_2^2 = \|Q_V (X_i - s_0)\|_2^2 \quad (4.1)
\]

where \(\langle \cdot, \cdot \rangle \) is the usual inner product in \(\mathbb{R}^p \), \(P_V = VV^\top \) and \(Q_V = I_p - P_V \). The estimators we propose involve a variation of kernel smoothing, which depends on a bandwidth \(h_n \). In our procedure, \(h_n \) is the squared width of a slice around the affine subspace \(s_0 + \text{span}\{V\} \). In order to obtain pointwise convergence for the ensemble CVE, we require the following bias and variance assumptions on the bandwidth, as is typical in nonparametric estimation.

(H.1). \(h_n \to 0 \) as \(n \to \infty \).

(H.2). \(nh_n^{(p-q)/2} \to \infty \) as \(n \to \infty \).

In order to obtain consistency of the proposed estimator, Assumption (H.2) will be strengthened to \(\log(n)/nh_n^{(p-q)/2} \to 0 \).

We also let \(K \), which we refer to as kernel, be a function satisfying the following assumptions (K.1) and (K.2).
(K.1). $K : [0, \infty) \to [0, \infty)$ is a continuous, non-increasing function, so that $|K(z)| \leq M_1$ and $\int_{\mathbb{R}^q} K(\|r\|^2) dr < \infty$, for $q \leq p - 1$.

(K.2). There exist positive finite constants L_1 and L_2 such that K satisfies either (1) or (2) below:

1. $K(u) = 0$ for $|u| > L_2$ and for all u, \tilde{u}, $|K(u) - K(\tilde{u})| \leq L_1|u - \tilde{u}|$
2. $K(u)$ is differentiable with $|\partial_u K(u)| \leq L_1$ and for some $\nu > 1$, $|\partial_u K(u)| \leq L_1|u|^{-\nu}$ for $|u| > L_2$.

The Gaussian kernel $K(z) = \exp(-z^2)$, for example, fulfills both (K.1) and (K.2) [see [14]], and is used throughout the paper. For $i = 1, \ldots, n$, we let

$$w_i(\mathbf{V}, \mathbf{s}_0) = \frac{K\left(\frac{d_i(\mathbf{V}, \mathbf{s}_0)}{h_n}\right)}{\sum_{j=1}^{n} K\left(\frac{d_j(\mathbf{V}, \mathbf{s}_0)}{h_n}\right)}$$

(4.2)

$$\hat{y}_l(\mathbf{V}, \mathbf{s}_0, f) = \sum_{i=1}^{n} w_i(\mathbf{V}, \mathbf{s}_0)f(Y_i)^l \text{ for } l = 1, 2.$$

(4.3)

We estimate $\hat{L}(\mathbf{V}, \mathbf{s}_0, f)$ in (A.3) with

$$\hat{L}_n(\mathbf{V}, \mathbf{s}_0, f) = \hat{y}_2(\mathbf{V}, \mathbf{s}_0, f) - \hat{y}_1(\mathbf{V}, \mathbf{s}_0, f)^2,$$

(4.4)

and the objective function $L^*(\mathbf{V}, f)$ in (3.3) with

$$L_n^*(\mathbf{V}, f) = \frac{1}{n} \sum_{i=1}^{n} \hat{L}_n(\mathbf{V}, \mathbf{X}_i, f),$$

(4.5)

where each data point \mathbf{X}_i is a shifting point. For an ensemble $\mathcal{F} = \{f_t : t \in \Omega_T\}$ and $(t_j)_{j=1, \ldots, m_n}$ an i.i.d. sample from \mathcal{F}_T with $\lim_{n \to \infty} m_n = \infty$, we use

$$L_{n, \mathcal{F}}(\mathbf{V}) = \frac{1}{m_n} \sum_{j=1}^{m_n} L_n^*(\mathbf{V}, f_{t_j})$$

(4.6)

to estimate the objective function in (3.2). The ensemble conditional variance estimator (ECVE) is defined to be any basis of span$\{\tilde{\mathbf{V}}_q\}^\perp$, where

$$\tilde{\mathbf{V}}_q = \arg\min_{\mathbf{V} \in S(p, q)} L_{n, \mathcal{F}}(\mathbf{V})$$

(4.7)

We use a similar algorithm to that in [10] to solve the optimization problem (4.7). It requires the explicit form of the gradient of (4.6). Theorem 4.1 provides the gradient when a Gaussian kernel is used.

Theorem 4.1. The gradient of $\hat{L}_n(\mathbf{V}, \mathbf{s}_0, f)$ in (4.4) is given by

$$\nabla_{\mathbf{V}} \hat{L}_n(\mathbf{V}, \mathbf{s}_0, f) = \frac{1}{h_n^2} \sum_{i=1}^{n} (\hat{L}_n(\mathbf{V}, \mathbf{s}_0, f) - (f(Y_i) - \hat{y}_1(\mathbf{V}, \mathbf{s}_0, f))^2)w_i d_i \nabla d_i(\mathbf{V}, \mathbf{s}_0) \in \mathbb{R}^{p \times q},$$

where $\hat{y}_i(\mathbf{V}, \mathbf{s}_0, f)$ is the estimator (4.1).
and the gradient of $L_{n,\theta}(\mathbf{V})$ in (4.6) is

$$\nabla_{\mathbf{V}} L_{n,\theta}(\mathbf{V}) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \nabla_{\mathbf{V}} \tilde{L}_n(\mathbf{V}, \mathbf{X}_i, f_t).$$

In the implementation of ECVE, we follow [10] and set the bandwidth to $h_n = 1.22 \frac{2\text{tr}(\hat{\Sigma}_x)}{p} \left(\frac{n-1}{4p-q} \right)^{1/2}$. (4.8)

where $\hat{\Sigma}_x = \sum_i (\mathbf{X}_i - \bar{\mathbf{X}})(\mathbf{X}_i - \bar{\mathbf{X}})^T/n$ and $\bar{\mathbf{X}} = \sum_i \mathbf{X}_i/n$.

4.1. Weighted estimation of $L^*_n(\mathbf{V}, f)$

The set of points $\{\mathbf{x} \in \mathbb{R}^p : \|\mathbf{x} - \mathbf{P}_{\mathbf{s}_0 + \text{span}\{\mathbf{V}\}}\mathbf{x}\|^2 \leq h_n\}$ represents a slice in the subspace of \mathbb{R}^p about $\mathbf{s}_0 + \text{span}\{\mathbf{V}\}$. In the estimation of $L(\mathbf{V})$ two different weighting schemes are used: (a) Within slices: The weights are defined in (4.2) and are used to calculate (4.4). (b) Between slices: Equal weights $(1/n)$ are used to calculate (4.5). Another idea for the between slices weighting is to assign more weight to slices with more points. This can be realized by altering (4.5) to

$$L_n^{(w)}(\mathbf{V}, f) = \sum_{i=1}^{n} \tilde{w}(\mathbf{V}, \mathbf{X}_i) \tilde{L}_n(\mathbf{V}, \mathbf{X}_i, f), \quad \text{with}$$

$$\tilde{w}(\mathbf{V}, \mathbf{X}_i) = \frac{\sum_{j=1, j \neq i}^{n} \frac{K(d_j(\mathbf{V}, \mathbf{X}_i)/h_n)}{\sum_{l, u=1, l \neq u}^{n} K(d_l(\mathbf{V}, \mathbf{X}_u)/h_n)}}{\sum_{l, u=1, l \neq u}^{n} \frac{K(d_l(\mathbf{V}, \mathbf{X}_u)/h_n)}}$$

(4.10)

The denominator in (4.10) guarantees the weights $\tilde{w}(\mathbf{V}, \mathbf{X}_i)$ sum up to one.

If (4.9) instead of (4.5) is used in (4.6) we refer to this method as weighted ensemble conditional variance estimation. For example, if a rectangular kernel is used, $\sum_{j=1, j \neq i}^{n} K(d_j(\mathbf{V}, \mathbf{X}_i)/h_n)$ equals the number of \mathbf{X}_j ($j \neq i$) points in the slice corresponding to $\tilde{L}_n(\mathbf{V}, \mathbf{X}_i, f)$. Therefore, this slice is assigned weight that is proportional to the number of \mathbf{X}_j points in it, and the more observations we use for estimating $L(\mathbf{V}, \mathbf{X}_i, f)$, the better its accuracy.

5. Consistency of ECVE

The consistency of ECVE derives from the fact that we can recover $\mathcal{S}_{\mathbf{Y}|\mathbf{X}}$ from $\mathcal{S}_{\mathcal{E}(f_t|\mathbf{Y})|\mathbf{X}}$ by varying over $f_t \in \mathcal{F} = \{f_t : t \in \Omega_T\}$ for an ensemble that characterizes $\mathcal{S}_{\mathbf{Y}|\mathbf{X}}$. This is achieved in sequential steps, starting from Theorem 5.1, which is the main building block, to Theorem 5.4. The proofs are technical and lengthy, and are, thus, given in Appendix B.
Theorem 5.1. Assume conditions (E.1), (E.2), (E.4), (K.1), (K.2), (H.1) hold, $a_n^2 = \log(n)/nh_n^{(p-q)/2} = o(1)$, and $a_n/h_n^{(p-q)/2} = O(1)$. Let \mathcal{F} be an ensemble such that $\mathbb{E}(|\epsilon|^l \mid X = x)$ is continuous for $l = 1, \ldots, 4$, and the second conditional moment is twice continuously differentiable, where ϵ is given by Theorem A.1 in Appendix A. Then, $L_n^*(V, f)$ in (4.5) converges uniformly in probability to $L^*(V, f)$ in (3.3) for all $f \in \mathcal{F}$. That is,

$$
\sup_{V \in \mathcal{S}(p, q)} |L_n^*(V, f) - L^*(V, f)| \rightarrow 0 \quad \text{in probability as } n \rightarrow \infty.
$$

Next, Theorem 5.2 shows that the ensemble conditional variance estimator is consistent for $S_{E(f_t(Y)|X)}$ for any transformation f_t.

Theorem 5.2. Under the same conditions as Theorem 5.1, the conditional variance estimator $\text{span}\{\hat{B}_{k_t}\}$ estimates $S_{E(f_t(Y)|X)}$ consistently, for $f_t \in \mathcal{F}$. That is,

$$
\|P_{\hat{B}_{k_t}} - P_{S_{E(f_t(Y)|X)}}\| \rightarrow 0 \quad \text{in probability as } n \rightarrow \infty,
$$

where \hat{B}_{k_t} is any basis of $\text{span}\{\hat{V}_{k_t}\}$ with

$$
\hat{V}_{k_t} = \arg\min_{V \in \mathcal{S}(p, q)} L_n^*(V, f_t),
$$

with $q = p - k_t$ and $k_t = \dim(S_{E(f_t(Y)|X)})$.

A straightforward application of Theorem 5.2, using the identity function, obtains that $S_{E(Y|X)}$ can be consistently estimated by ECVE.

Theorem 5.3. Assume the conditions of Theorem 5.1 hold. Let \mathcal{F} be an ensemble such that $\sup_{t \in \Omega_T} |f_t(Y)| < M < \infty$ almost surely, and let the index random variable $t \sim F_T$ be independent from the data $(Y_i, X_i)_{i=1, \ldots, n}$. Then $L_{n, F}(V)$ in (4.6) converges uniformly in probability to $L_F(V)$ in (3.2); i.e.,

$$
\sup_{V \in \mathcal{S}(p, q)} |L_{n, F}(V) - L_F(V)| \rightarrow 0 \quad \text{in probability as } n \rightarrow \infty.
$$

The assumption $\sup_{t \in \Omega_T} |f_t(Y)| < M < \infty$ in Theorem 5.3 is trivially satisfied by the elements of the characteristic and indicator ensembles. Further, the assumption $a_n/h_n^{(p-q)/2} = O(1)$ used for the truncation step in the proof of Theorem 5.1 (see Appendix B) can be dropped since obviously no truncation is needed.

The rate of convergence of m_n is not characterized in Theorem 5.3. In the simulation studies of Section 6, we find that m_n should be chosen to be very small relative to the sample size n, roughly at the rate of $\log(n)$. The consistency of ECVE is shown in Theorem 5.4.

Theorem 5.4. Assume the conditions of Theorem 5.1 and (E.3) hold. Let \mathcal{F} be an ensemble that characterizes $S_{Y|X}$ and whose members satisfy $\sup_{t \in \Omega_T} |f_t(Y)| < M < \infty$ almost surely. Also, assume the index random variable $t \sim F_T$ is independent from the data $(Y_i, X_i)_{i=1, \ldots, n}$. Then, the ensemble conditional
variance estimator (ECVE) is a consistent estimator for $S_{Y|X}$. That is, for any basis $\tilde{B}_{p-q,F}$ of $\text{span}\{\tilde{V}_q\}$, where \tilde{V}_q is defined in (4.7) with $q = p - k$ and $k = \text{dim}(S_{Y|X})$,

$$\|P_{\tilde{B}_{p-q,F}} - P_{S_{Y|X}}\| \to 0 \text{ in probability as } n \to \infty,$$

where P_M denotes the orthogonal projection onto the range space of the matrix or linear subspace M.

6. Simulation studies

6.1. Influence of m_n on ECVE

In Theorem 5.3 and 5.4, how fast m_n approaches ∞ is unspecified. In this section we study the influence of m_n, the number of functions of the ensemble F in (4.6), on the accuracy of the ensemble conditional variance estimation.

We consider the 2-dimensional regression model

$$Y = (b_2^T X) + (0.5 + (b_1^T X)^2) \epsilon,$$

where $p = 10$, $k = 2$, $X \sim N(0, I_{10})$, $\epsilon \sim N(0,1)$ independent of X, $b_1 = (1, 0, \ldots, 0)^T \in \mathbb{R}^p$, and $b_2 = (0, 1, 0, \ldots, 0)^T \in \mathbb{R}^p$. Therefore, $S_{\mathbb{E}(Y|X)} = \text{span}\{b_2\} \subseteq S_{Y|X} = \text{span}\{B\}$, with $B = (b_1, b_2) : p \times 2$ of rank 2. We set the sample size to $n = 300$ and vary m over $\{4, 8, 10, 26, 50, 76, 100\}$ for the (a) indicator, $F_{m,\text{Indicator}} = \{1(x \geq q_j) : j = 1, \ldots, m\}$, where q_j is the $j/(m + 1)$th empirical quantile of $(Y_i)_i=1,\ldots,n$; (b) characteristic or Fourier, $F_{m,\text{Fourier}} = \{\sin(jx) : j = 1, \ldots, m/2\} \cup \{\cos(jx) : j = 1, \ldots, m/2\}$; (c) monomial, $F_{m,\text{Monom}} = \{x^j : j = 1, \ldots, m\}$, (d) and Box-Cox, $F_{m,\text{BoxCox}} = \{(x^j - 1)/t_j : t_j = 0.1 + 2(j - 1)/(m - 1), j = 1, \ldots, m - 1\} \cup \{\log(x)\}$, ensembles.

The accuracy of the estimates throughout this paper is assessed using

$$\text{err} = \frac{\|P_B - P_{\hat{B}}\|}{\sqrt{2k}} \in [0, 1],$$

where $P_B = B(B^TB)^{-1}B^T$ is the orthogonal projection on $\text{span}\{B\}$. The factor $\sqrt{2k}$ normalizes the distance, with values closer to zero indicating better agreement and values closer to one indicating strong disagreement.

For each ensemble, we form the ensemble conditional variance estimator and its weighted version as in Section 4.1 (see also [10]). The results of 100 replications for each method and each value of m are displayed in Figure 2. Specifically, in model (6.1), $\text{err}_{j,m} = \|\hat{B}B^T - BB^T\|/(2k)^{1/2}$, $j = 1, \ldots, 100$, $m \in \{2, 4, 8, 10, 26, 50, 76, 100\}$. ECVE’s main competitor, csMAVE does not vary with m. csMAVE’s estimate of the central subspace has median error 0.2 with a wide range from 0.1 to 0.6. The estimation error of Fourier, Indicator and Box-Cox ECVE varies over m, and is on par or better than csMAVE’s for some m values.
For the Fourier basis, fewer basis functions give the best performance. The indicator and Box-Cox ensembles are quite robust against varying \(m \), whereas the errors get rapidly larger if \(m \) is increased for the monomial ensemble. The weighted version of ECVE improves the accuracy for all ensembles. \(F_4, \text{Fourier, weighted}, F_8, \text{Indicator, weighted}, F_4, \text{BoxCox, weighted} \) are on par or more accurate than csMAVE.

In sum, the simulation results support the choice of a small \(m \) number of basis functions. Based on this and further unreported simulations, we set the default value of \(m \) to

\[
m_n = \begin{cases}
\lceil \log(n) \rceil, & \text{if } \lceil \log(n) \rceil \text{ even} \\
\lceil \log(n) \rceil + 1, & \text{if } \lceil \log(n) \rceil \text{ odd}
\end{cases}
\]

(6.3)

for all simulations in Sections 6.2, 6.3 and the data analysis in Section 7, where \(\lfloor x \rfloor \) is the smallest integer greater than or equal to \(x \).

6.2. Demonstrating consistency

We explore the consistency rate of the conditional variance estimator (CVE), ensemble conditional variance estimator (ECVE), csMAVE and mMAVE in model (6.1).

Specifically, we apply seven estimation methods, the first five targeting the central subspace \(S_{Y|X} \) and the last two \(S_{E(Y|X)} \), as follows. For \(S_{Y|X} \), we compare ECVE for the indicator (I), Fourier (II), monomial (III) and Box-Cox (IV) ensembles, as in Section 6.1, and csMAVE (V). For \(S_{E(Y|X)} \), we use CVE (VI) of [10] and mMAVE (VII) in [26].

The simulation is performed as follows. We generate 100 i.i.d samples from (6.1), \((Y, X^T)_i = 1, ..., n\), for each sample size \(n = 100, 200, 400, 600, 800, 1000 \). Recall that (6.1) is a two dimensional model with \(S_{E(Y|X)} = \text{span}(\mathbf{b}_2) \subsetneq S_{Y|X} = \text{span}(\mathbf{B}) \). For methods (I)-(V), we set \(k = 2 \) and estimate \(\mathbf{B} \in \mathbb{R}^{10 \times 2} \). For (VI) and (VII), we set \(k = 1 \) and estimate \(\mathbf{b}_2 \in \mathbb{R}^{10 \times 1} \). Then, we calculate \(\text{err}_{j,n} = \sqrt{\frac{(\hat{\mathbf{B}}\hat{\mathbf{B}}^T - \mathbf{B}\mathbf{B}^T)^T}{(2k)^{1/2}}}, j = 1, \ldots, 100, n \in \{100, 200, 400, 600, 800, 1000\} \).

Figure 3 displays the distribution of \(\text{err}_{j,n} \) for the seven methods. As the sample size increases, ECVE Indicator, Fourier and csMAVE are on par with respect to both speed and accuracy. The accuracy of ECVE Box-Cox improves as the sample size increases but at a slower rate. There is no improvement in the accuracy of ECVE monomial. This is not surprising as the monomial, as well as the Box-Cox, do not satisfy the assumption \(\sup_{t \in \Omega} |f_t(Y)| < M < \infty \) in Theorem 5.4, in contrast to the Indicator and Fourier ensembles. The Fourier and Indicator ECVE, and csMAVE estimate \(S_{Y|X} = \text{span} \{ \mathbf{B} \} \) consistently. The mean subspace methods, CVE and mMAVE, estimate \(S_{E(Y|X)} = \text{span} \{ \mathbf{b}_2 \} \) consistently.

6.3. Evaluating estimation error

We consider seven models M1-M7, defined in Table 1, three different sample sizes \(\{100, 200, 400\} \), and three different distributions of the predictor vector
Fig 2. Box plots of the estimation errors over 100 replications of model (6.1) with \(n = 300 \)
over \(m = |\mathcal{F}| = 2, 4, 8, 10, 26, 50, 76, 100 \), across four ensembles and csMAVE.

Fig 3. Box-plots of estimation errors for model (6.1) over \(n = 100, 200, 400, 600, 800, 1000 \)
for the seven (I-VII) methods in Section 6.2.
\(X = \Sigma^{1/2}Z \in \mathbb{R}^p\), where \(\Sigma = (\Sigma_{ij})_{i,j=1,...,p}\), \(\Sigma_{i,j} = 0.5^{|i-j|}\). Throughout, \(p = 10\), \(B\) are the first \(k\) columns of \(I_p\), and \(\epsilon \sim N(0,1)\) independent of \(X\).

As in [25], we consider three distributions for \(Z \in \mathbb{R}^p\): (I) \(N(0, I_p)\), (II) \(p\)-dimensional uniform distribution on \([-\sqrt{3}, \sqrt{3}]^p\); i.e., all components of \(Z\) are independent and uniformly distributed, and (III) a mixture-distribution \(N(0, I_p) + \mu\), where \(\mu = (\mu_1, \ldots, \mu_p)^T \in \mathbb{R}^p\) with \(\mu_j = 2\), \(\mu_k = 0\), for \(k \neq j\), and \(j\) is uniformly distributed on \(\{1, \ldots, p\}\).

The simple and weighted [see Section 4.1] Fourier and indicator ensembles are used to form four ensemble conditional variance estimators. The monomial and Box-Cox ensembles were also used but did not give satisfactory results and are not reported. From these two ensembles, four ECVE estimators are formed and compared against the reference methods \(\text{csMAVE}\) [25], as implemented in the \(R\) package \(\text{MAVE}\), refined ensemble minimum average variance estimation (\(\text{reMAVE}\), [27, 20]), and refined ensemble outer product gradient (\(\text{reOPG}\) [27, 20]). The source code for \(\text{CVE}\) and its ensemble version is available at https://git.art-ist.cc/daniel/CVE.

We applied \(\text{reMAVE}\) and \(\text{reOPG}\) with the Fourier, Box-Cox, and monomial ensembles. Only the results of the former two are reported as the Monomial ensemble exhibited non-competitive performance. The same occurred for \(\text{reOPG}\), whose results are also not reported as it was always outperformed by the corresponding \(\text{reMAVE}\). For example, \(\text{reMAVE}\) using the Fourier ensemble outperformed \(\text{reOPG}\) using the same ensemble. This is not surprising since \(\text{reMAVE}\) uses \(\text{reOPG}\) as a starting point in its optimization procedure. The source code for \(\text{reMAVE}\) and \(\text{reOPG}\) is taken from [20]. The ensemble size and the number of iterations are both set to 10. In total, we report the results from seven methods: \(\text{ECVE}\) and its weighted version with Fourier ensemble denoted as \(\text{Fourier}\) and \(\text{Fourier_weighted}\), ECVE and its weighted version with Indicator ensemble denoted as \(\text{Indicator}\) and \(\text{Indicator_weighted}\), \(\text{csMAVE}\) (which corresponds to \(\text{reMAVE}\) with the indicator ensemble), and \(\text{reMAVE}\) with the Fourier and Box-Cox ensembles denoted by \(\text{reMAVEf}\) and \(\text{reMAVeb}\).

| Name | Model | \(S_E(Y|X)\) | \(S_Y|X\) | \(k\) |
|------|-------|----------------|------------|-----|
| M1 | \(Y = \frac{1}{b_f^TX} + 0.2\) | span\{b_1\} | span\{b_1\} | 1 |
| M2 | \(Y = \cos(2b_f^TX) + \cos(b_f^TX) + 0.2\) | span\{b_1, b_2\} | span\{b_1, b_2\} | 2 |
| M3 | \(Y = (b_f^TX) + (0.5 + (b_f^TX)^2)\) | span\{b_2\} | span\{b_1, b_2\} | 2 |
| M4 | \(Y = \frac{b_f^TX}{0.5 + (b_f^TX)^2} + (b_f^TX) + (b_f^TX)^2 + 0.5\) | span\{b_1, b_2\} | span\{b_1, b_2\} | 2 |
| M5 | \(Y = b_f^TX + \sin(b_f^TX)(b_f^TX)^2\) | span\{b_1\} | span\{b_1, b_2, b_3\} | 3 |
| M6 | \(Y = 0.5(b_f^TX)^2\) | span\{0\} | span\{b_1\} | 1 |
| M7 | \(Y = \cos(b_f^TX - \pi) + \cos(2b_f^TX)\) | span\{b_1\} | span\{b_1\} | 1 |

We set \(q = p - k\) and generate \(r = 100\) replicates of models M1-M7 in Table 1 with the specified distribution of \(X\) and sample size \(n\). We estimate \(B\) using the four \(\text{ECVE}\) and three reference methods. The accuracy of the estimates is assessed using (6.2). The results are displayed in Tables 2-8. In M1, which is taken from [25], even though the mean subspace agrees with the central subspace,
i.e. $S_{E(Y|X)} = S_{Y|X}$, mean subspace estimation methods, such as mean MAVE
and CVE, fail because of the unboundedness of the link function $g(x) = 1/x$. In
contrast, all four ECVE methods and csMAVE succeed in identifying the minimal
dimension reduction subspace. On the other hand, both reMAVE procedures give
unsatisfactory results, as can be seen in Table 2. Overall, Fourier is the best
performing ensemble method.

csMAVE is the best performing method for the two dimensional mean sub-
space model M2 in Table 3. M3 is the same as model (6.1), where the mean
subspace is a proper subset of the central subspace. In Table 4 we see that Indi-
cator weighted and csMAVE are the best performers and are roughly on
par. In M4, the two dimensional mean subspace, which also determines the het-
erskedasticity, agrees with the central subspace. Table 5 shows that this model
is quite challenging for all methods, and only Indicator weighted and csMAVE
give satisfactory results, with Indicator weighted the clear winner.

In M5, heteroskedasticity is induced by an interaction term and the three
dimensional central subspace is a proper superset of the one dimensional mean
subspace. M5 is quite challenging for all five methods, as can be seen In Ta-
ble 6. When we increased the sample size to 800, the two weighted ensemble
central subspace model conditional variance estimators became the best performing methods followed
by csMAVE.

M6 is a one dimensional pure central subspace model; i.e., the mean subspace
is $\{0\}$. In Table 7, we see that for $n = 100$, the two weighted ECVEs are the best
performing methods. For larger sample sizes, csMAVE is slightly more accurate
than the ECVE methods.

M7 is the model where all ensemble conditional variance estimators clearly
outperform all reference methods (Table 8). Here the one dimensional mean
subspace coincides with the central subspace and the conditional first and second
moments, $E(Y^l | X)$ for $l = 1, 2$, are highly nonlinear periodic functions of the
sufficient reduction.

7. Boston housing data

We apply the ensemble conditional variance estimator and csMAVE to the Boston
Housing data set since the other reference methods are not competitive. This
data set has been extensively used as a benchmark for assessing regression meth-
ods [see, for example, [16]], and is available in the R-package mlbench. The data
contains 506 instances of 14 variables from the 1970 Boston census, 13 of which
are continuous. The binary variable chas, indexing proximity to the Charles
river, is omitted from the analysis since ensemble conditional variance estima-
tion operates under the assumption of continuous predictors. The target variable
is the median value of owner-occupied homes, medv, in $1,000$. The 12 predic-
tors are crim (per capita crime rate by town), zn (proportion of residential land
zoned for lots over 25,000 sq.ft), indus (proportion of non-retail business acres
per town), nox (nitric oxides concentration (parts per 10 million)), rm (average
number of rooms per dwelling), age (proportion of owner-occupied units built
prior to 1940), \textit{dis} (weighted distances to five Boston employment centres), \textit{rad} (index of accessibility to radial highways), \textit{tax} (full-value property-tax rate per $10,000), \textit{ptratio} (pupil-teacher ratio by town), \textit{lstat} (percentage of lower status of the population), and \(b \) stands for \(1000(B - 0.63)^2 \) where \(B \) is the proportion of blacks by town.

We analyze these data with the weighted and unweighted Fourier and indicator ensembles, and \textit{csMAVE}. We compute unbiased error estimates by leave-one-out cross-validation. We estimate the sufficient reduction with the five methods from the standardized training set, estimate the forward model from the reduced training set using \texttt{mars}, multivariate adaptive regression splines [11], in the \texttt{R}-package \texttt{mda}, and predict the target variable on the test set. We report results for dimension \(k = 1 \). The analysis was repeated setting \(k = 2 \) with similar re-

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier</th>
<th>Fourier_weighted</th>
<th>Indicator</th>
<th>Indicator_weighted</th>
<th>csMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.172</td>
<td>0.201</td>
<td>0.248</td>
<td>0.265</td>
<td>0.210</td>
<td>0.843</td>
<td>0.972</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.047)</td>
<td>(0.054)</td>
<td>(0.064)</td>
<td>(0.063)</td>
<td>(0.063)</td>
<td>(0.177)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>I</td>
<td>200</td>
<td>0.120</td>
<td>0.142</td>
<td>0.182</td>
<td>0.197</td>
<td>0.128</td>
<td>0.779</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.029)</td>
<td>(0.037)</td>
<td>(0.045)</td>
<td>(0.049)</td>
<td>(0.037)</td>
<td>(0.266)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>0.079</td>
<td>0.091</td>
<td>0.126</td>
<td>0.136</td>
<td>0.080</td>
<td>0.678</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.020)</td>
<td>(0.024)</td>
<td>(0.037)</td>
<td>(0.040)</td>
<td>(0.024)</td>
<td>(0.280)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.174</td>
<td>0.196</td>
<td>0.241</td>
<td>0.254</td>
<td>0.193</td>
<td>0.862</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.038)</td>
<td>(0.049)</td>
<td>(0.055)</td>
<td>(0.056)</td>
<td>(0.059)</td>
<td>(0.164)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>II</td>
<td>200</td>
<td>0.110</td>
<td>0.127</td>
<td>0.170</td>
<td>0.182</td>
<td>0.121</td>
<td>0.721</td>
<td>0.974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.031)</td>
<td>(0.033)</td>
<td>(0.043)</td>
<td>(0.045)</td>
<td>(0.036)</td>
<td>(0.237)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>II</td>
<td>400</td>
<td>0.078</td>
<td>0.091</td>
<td>0.122</td>
<td>0.132</td>
<td>0.079</td>
<td>0.663</td>
<td>0.976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.021)</td>
<td>(0.026)</td>
<td>(0.031)</td>
<td>(0.033)</td>
<td>(0.020)</td>
<td>(0.305)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.187</td>
<td>0.218</td>
<td>0.256</td>
<td>0.263</td>
<td>0.204</td>
<td>0.822</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.045)</td>
<td>(0.053)</td>
<td>(0.060)</td>
<td>(0.058)</td>
<td>(0.066)</td>
<td>(0.200)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>III</td>
<td>200</td>
<td>0.118</td>
<td>0.137</td>
<td>0.171</td>
<td>0.179</td>
<td>0.118</td>
<td>0.685</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.031)</td>
<td>(0.038)</td>
<td>(0.043)</td>
<td>(0.042)</td>
<td>(0.033)</td>
<td>(0.282)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>III</td>
<td>400</td>
<td>0.082</td>
<td>0.101</td>
<td>0.127</td>
<td>0.132</td>
<td>0.079</td>
<td>0.627</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.020)</td>
<td>(0.029)</td>
<td>(0.031)</td>
<td>(0.032)</td>
<td>(0.022)</td>
<td>(0.306)</td>
<td>(0.065)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier</th>
<th>Fourier_weighted</th>
<th>Indicator</th>
<th>Indicator_weighted</th>
<th>csMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.670</td>
<td>0.601</td>
<td>0.629</td>
<td>0.582</td>
<td>0.575</td>
<td>0.659</td>
<td>0.683</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.089)</td>
<td>(0.135)</td>
<td>(0.130)</td>
<td>(0.140)</td>
<td>(0.176)</td>
<td>(0.103)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>I</td>
<td>200</td>
<td>0.478</td>
<td>0.388</td>
<td>0.436</td>
<td>0.407</td>
<td>0.219</td>
<td>0.558</td>
<td>0.561</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.201)</td>
<td>(0.152)</td>
<td>(0.193)</td>
<td>(0.162)</td>
<td>(0.136)</td>
<td>(0.175)</td>
<td>(0.175)</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>0.226</td>
<td>0.204</td>
<td>0.231</td>
<td>0.236</td>
<td>0.088</td>
<td>0.285</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.153)</td>
<td>(0.074)</td>
<td>(0.127)</td>
<td>(0.111)</td>
<td>(0.025)</td>
<td>(0.209)</td>
<td>(0.226)</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.663</td>
<td>0.652</td>
<td>0.687</td>
<td>0.658</td>
<td>0.644</td>
<td>0.706</td>
<td>0.706</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.097)</td>
<td>(0.164)</td>
<td>(0.057)</td>
<td>(0.080)</td>
<td>(0.176)</td>
<td>(0.108)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>II</td>
<td>200</td>
<td>0.525</td>
<td>0.468</td>
<td>0.601</td>
<td>0.539</td>
<td>0.182</td>
<td>0.576</td>
<td>0.659</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.171)</td>
<td>(0.171)</td>
<td>(0.127)</td>
<td>(0.148)</td>
<td>(0.096)</td>
<td>(0.151)</td>
<td>(0.087)</td>
</tr>
<tr>
<td>II</td>
<td>400</td>
<td>0.267</td>
<td>0.307</td>
<td>0.375</td>
<td>0.357</td>
<td>0.087</td>
<td>0.322</td>
<td>0.510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.081)</td>
<td>(0.146)</td>
<td>(0.154)</td>
<td>(0.141)</td>
<td>(0.021)</td>
<td>(0.203)</td>
<td>(0.215)</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.657</td>
<td>0.590</td>
<td>0.530</td>
<td>0.542</td>
<td>0.603</td>
<td>0.742</td>
<td>0.708</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.104)</td>
<td>(0.148)</td>
<td>(0.155)</td>
<td>(0.148)</td>
<td>(0.193)</td>
<td>(0.089)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>III</td>
<td>200</td>
<td>0.421</td>
<td>0.367</td>
<td>0.306</td>
<td>0.336</td>
<td>0.240</td>
<td>0.637</td>
<td>0.649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.203)</td>
<td>(0.165)</td>
<td>(0.147)</td>
<td>(0.151)</td>
<td>(0.193)</td>
<td>(0.144)</td>
<td>(0.130)</td>
</tr>
<tr>
<td>III</td>
<td>400</td>
<td>0.170</td>
<td>0.170</td>
<td>0.144</td>
<td>0.170</td>
<td>0.089</td>
<td>0.453</td>
<td>0.482</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.110)</td>
<td>(0.071)</td>
<td>(0.053)</td>
<td>(0.063)</td>
<td>(0.019)</td>
<td>(0.237)</td>
<td>(0.240)</td>
</tr>
</tbody>
</table>
Table 4
Mean and standard deviation (in parenthesis) of estimation errors of M3

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier</th>
<th>Fourier weighted</th>
<th>Indicator</th>
<th>Indicator weighted</th>
<th>csMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.744</td>
<td>0.657</td>
<td>0.668</td>
<td>0.561</td>
<td>0.602</td>
<td>0.549</td>
<td>0.697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.056)</td>
<td>(0.113)</td>
<td>(0.083)</td>
<td>(0.142)</td>
<td>(0.147)</td>
<td>(0.142)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>I</td>
<td>200</td>
<td>0.702</td>
<td>0.472</td>
<td>0.559</td>
<td>0.569</td>
<td>0.374</td>
<td>0.350</td>
<td>0.604</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.061)</td>
<td>(0.177)</td>
<td>(0.147)</td>
<td>(0.155)</td>
<td>(0.148)</td>
<td>(0.102)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>0.621</td>
<td>0.252</td>
<td>0.408</td>
<td>0.223</td>
<td>0.203</td>
<td>0.221</td>
<td>0.547</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.148)</td>
<td>(0.162)</td>
<td>(0.177)</td>
<td>(0.064)</td>
<td>(0.061)</td>
<td>(0.048)</td>
<td>(0.102)</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.751</td>
<td>0.506</td>
<td>0.683</td>
<td>0.570</td>
<td>0.635</td>
<td>0.617</td>
<td>0.707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.041)</td>
<td>(0.076)</td>
<td>(0.080)</td>
<td>(0.136)</td>
<td>(0.136)</td>
<td>(0.130)</td>
<td>(0.085)</td>
</tr>
<tr>
<td>II</td>
<td>200</td>
<td>0.719</td>
<td>0.521</td>
<td>0.584</td>
<td>0.355</td>
<td>0.387</td>
<td>0.376</td>
<td>0.631</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.040)</td>
<td>(0.163)</td>
<td>(0.111)</td>
<td>(0.097)</td>
<td>(0.144)</td>
<td>(0.129)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>II</td>
<td>400</td>
<td>0.686</td>
<td>0.267</td>
<td>0.452</td>
<td>0.252</td>
<td>0.201</td>
<td>0.238</td>
<td>0.590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.079)</td>
<td>(0.084)</td>
<td>(0.153)</td>
<td>(0.052)</td>
<td>(0.045)</td>
<td>(0.072)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.739</td>
<td>0.676</td>
<td>0.654</td>
<td>0.563</td>
<td>0.571</td>
<td>0.501</td>
<td>0.666</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.073)</td>
<td>(0.106)</td>
<td>(0.105)</td>
<td>(0.150)</td>
<td>(0.120)</td>
<td>(0.131)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>III</td>
<td>200</td>
<td>0.704</td>
<td>0.546</td>
<td>0.523</td>
<td>0.368</td>
<td>0.330</td>
<td>0.318</td>
<td>0.595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.048)</td>
<td>(0.162)</td>
<td>(0.171)</td>
<td>(0.153)</td>
<td>(0.131)</td>
<td>(0.083)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>III</td>
<td>400</td>
<td>0.616</td>
<td>0.252</td>
<td>0.297</td>
<td>0.202</td>
<td>0.179</td>
<td>0.215</td>
<td>0.551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.151)</td>
<td>(0.113)</td>
<td>(0.106)</td>
<td>(0.055)</td>
<td>(0.042)</td>
<td>(0.055)</td>
<td>(0.104)</td>
</tr>
</tbody>
</table>

Table 5
Mean and standard deviation (in parenthesis) of estimation errors of M4

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier</th>
<th>Fourier weighted</th>
<th>Indicator</th>
<th>Indicator weighted</th>
<th>csMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.836</td>
<td>0.794</td>
<td>0.774</td>
<td>0.713</td>
<td>0.803</td>
<td>0.764</td>
<td>0.797</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.052)</td>
<td>(0.076)</td>
<td>(0.074)</td>
<td>(0.105)</td>
<td>(0.087)</td>
<td>(0.091)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>I</td>
<td>200</td>
<td>0.820</td>
<td>0.733</td>
<td>0.747</td>
<td>0.545</td>
<td>0.685</td>
<td>0.631</td>
<td>0.758</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.086)</td>
<td>(0.094)</td>
<td>(0.060)</td>
<td>(0.150)</td>
<td>(0.116)</td>
<td>(0.117)</td>
<td>(0.094)</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>0.782</td>
<td>0.633</td>
<td>0.710</td>
<td>0.564</td>
<td>0.534</td>
<td>0.508</td>
<td>0.664</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.059)</td>
<td>(0.142)</td>
<td>(0.081)</td>
<td>(0.129)</td>
<td>(0.155)</td>
<td>(0.142)</td>
<td>(0.117)</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.839</td>
<td>0.828</td>
<td>0.788</td>
<td>0.751</td>
<td>0.818</td>
<td>0.789</td>
<td>0.805</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.067)</td>
<td>(0.064)</td>
<td>(0.062)</td>
<td>(0.095)</td>
<td>(0.095)</td>
<td>(0.095)</td>
<td>(0.085)</td>
</tr>
<tr>
<td>II</td>
<td>200</td>
<td>0.834</td>
<td>0.781</td>
<td>0.759</td>
<td>0.660</td>
<td>0.701</td>
<td>0.654</td>
<td>0.753</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.171)</td>
<td>(0.081)</td>
<td>(0.040)</td>
<td>(0.117)</td>
<td>(0.111)</td>
<td>(0.110)</td>
<td>(0.093)</td>
</tr>
<tr>
<td>II</td>
<td>400</td>
<td>0.812</td>
<td>0.712</td>
<td>0.739</td>
<td>0.511</td>
<td>0.544</td>
<td>0.521</td>
<td>0.681</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.059)</td>
<td>(0.097)</td>
<td>(0.038)</td>
<td>(0.135)</td>
<td>(0.151)</td>
<td>(0.116)</td>
<td>(0.088)</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.838</td>
<td>0.815</td>
<td>0.764</td>
<td>0.706</td>
<td>0.746</td>
<td>0.017</td>
<td>0.774</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.074)</td>
<td>(0.077)</td>
<td>(0.069)</td>
<td>(0.199)</td>
<td>(0.209)</td>
<td>(0.116)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>III</td>
<td>200</td>
<td>0.829</td>
<td>0.761</td>
<td>0.726</td>
<td>0.544</td>
<td>0.678</td>
<td>0.616</td>
<td>0.735</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.071)</td>
<td>(0.099)</td>
<td>(0.083)</td>
<td>(0.140)</td>
<td>(0.123)</td>
<td>(0.113)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>III</td>
<td>400</td>
<td>0.796</td>
<td>0.646</td>
<td>0.669</td>
<td>0.317</td>
<td>0.506</td>
<td>0.478</td>
<td>0.709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.069)</td>
<td>(0.139)</td>
<td>(0.113)</td>
<td>(0.110)</td>
<td>(0.146)</td>
<td>(0.122)</td>
<td>(0.085)</td>
</tr>
</tbody>
</table>

Results. Table 9 reports the first quantile, median, mean and third quantile of the out-of-sample prediction errors. The reductions estimated by the ensemble CVE methods achieve lower mean and median prediction errors than csMAVE. Also, both ECVE and csMAVE are approximately on par with the variable selection methods in [16, Section 8.3.3].

We plot the standardized response medv against the reduced Fourier and csMAVE predictors, B^TX, in Figure 4. The sufficient reductions are estimated using the entire data set. A particular feature of these data is that the response medv appears to be truncated as the highest median price of exactly $50,000 is reported in 16 cases. Both methods pick up similar patterns, which is captured by the relatively high absolute correlation of the coefficients of the two reductions, $|\hat{B}_{Fourier}^T\hat{B}_{csMAVE}| = 0.786$. The coefficients of the reductions, $\hat{B}_{Fourier}$ and
Table 6

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier weighted</th>
<th>Indicator weighted</th>
<th>csMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.705</td>
<td>0.682</td>
<td>0.708</td>
<td>0.709</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.679</td>
<td>0.634</td>
<td>0.688</td>
<td>0.642</td>
<td>0.687</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.644</td>
<td>0.588</td>
<td>0.660</td>
<td>0.591</td>
<td>0.646</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.622</td>
<td>0.543</td>
<td>0.629</td>
<td>0.495</td>
<td>0.555</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.712</td>
<td>0.688</td>
<td>0.713</td>
<td>0.697</td>
<td>0.722</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.693</td>
<td>0.669</td>
<td>0.694</td>
<td>0.669</td>
<td>0.697</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.670</td>
<td>0.614</td>
<td>0.681</td>
<td>0.633</td>
<td>0.687</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.660</td>
<td>0.584</td>
<td>0.672</td>
<td>0.585</td>
<td>0.589</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.706</td>
<td>0.687</td>
<td>0.703</td>
<td>0.691</td>
<td>0.724</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.701</td>
<td>0.655</td>
<td>0.702</td>
<td>0.668</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.689</td>
<td>0.603</td>
<td>0.664</td>
<td>0.604</td>
<td>0.682</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.657</td>
<td>0.562</td>
<td>0.651</td>
<td>0.513</td>
<td>0.602</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier weighted</th>
<th>Indicator weighted</th>
<th>csMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.304</td>
<td>0.294</td>
<td>0.492</td>
<td>0.299</td>
<td>0.539</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.217</td>
<td>0.213</td>
<td>0.329</td>
<td>0.205</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.142</td>
<td>0.146</td>
<td>0.199</td>
<td>0.138</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.108</td>
<td>0.203</td>
<td>0.279</td>
<td>0.299</td>
<td>0.488</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.205</td>
<td>0.210</td>
<td>0.321</td>
<td>0.210</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.146</td>
<td>0.140</td>
<td>0.196</td>
<td>0.142</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.373</td>
<td>0.375</td>
<td>0.504</td>
<td>0.322</td>
<td>0.562</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.226</td>
<td>0.230</td>
<td>0.340</td>
<td>0.218</td>
<td>0.218</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.149</td>
<td>0.151</td>
<td>0.194</td>
<td>0.146</td>
<td>0.114</td>
</tr>
</tbody>
</table>

*^B_{csMAVE}$, are reported in Table 10. For the Fourier ensemble, the variables rm and $lstat$ have the highest influence on the target variable $medv$. This agrees with the analysis in [16, Section 8.3.4] where it was found that these two variables are by far the most important using different variable selection techniques, such as random forests and boosted regression trees. In contrast, the reduction estimated by csMAVE has a lower coefficient for rm and higher ones for $crim$ and rad.
Table 8
Mean and standard deviation (in parenthesis) of estimation errors of M7

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Fourier weighted</th>
<th>Indicator weighted</th>
<th>csMAVE</th>
<th>reMAVE</th>
<th>reMAVEf</th>
<th>reMAVEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0.273 (0.169)</td>
<td>0.237 (0.090)</td>
<td>0.241 (0.136)</td>
<td>0.252 (0.158)</td>
<td>0.790 (0.318)</td>
<td>0.968 (0.056)</td>
</tr>
<tr>
<td>I</td>
<td>200</td>
<td>0.160 (0.093)</td>
<td>0.159 (0.041)</td>
<td>0.143 (0.083)</td>
<td>0.153 (0.093)</td>
<td>0.425 (0.391)</td>
<td>0.960 (0.115)</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>0.098 (0.024)</td>
<td>0.104 (0.022)</td>
<td>0.088 (0.031)</td>
<td>0.102 (0.093)</td>
<td>0.127 (0.020)</td>
<td>0.770 (0.364)</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>0.233 (0.057)</td>
<td>0.260 (0.134)</td>
<td>0.238 (0.142)</td>
<td>0.265 (0.185)</td>
<td>0.962 (0.219)</td>
<td>0.965 (0.030)</td>
</tr>
<tr>
<td>II</td>
<td>200</td>
<td>0.154 (0.058)</td>
<td>0.176 (0.124)</td>
<td>0.145 (0.093)</td>
<td>0.150 (0.094)</td>
<td>0.649 (0.414)</td>
<td>0.952 (0.125)</td>
</tr>
<tr>
<td>II</td>
<td>400</td>
<td>0.097 (0.025)</td>
<td>0.110 (0.094)</td>
<td>0.087 (0.022)</td>
<td>0.099 (0.093)</td>
<td>0.295 (0.391)</td>
<td>0.837 (0.295)</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>0.274 (0.201)</td>
<td>0.303 (0.237)</td>
<td>0.238 (0.160)</td>
<td>0.298 (0.163)</td>
<td>0.933 (0.163)</td>
<td>0.979 (0.037)</td>
</tr>
<tr>
<td>III</td>
<td>200</td>
<td>0.167 (0.120)</td>
<td>0.188 (0.155)</td>
<td>0.156 (0.150)</td>
<td>0.167 (0.144)</td>
<td>0.678 (0.408)</td>
<td>0.971 (0.056)</td>
</tr>
<tr>
<td>III</td>
<td>400</td>
<td>0.100 (0.023)</td>
<td>0.116 (0.090)</td>
<td>0.085 (0.023)</td>
<td>0.112 (0.120)</td>
<td>0.375 (0.431)</td>
<td>0.955 (0.130)</td>
</tr>
</tbody>
</table>

Table 9
Summary statistics of the out of sample prediction errors for the Boston Housing data obtained by LOO cross validation

<table>
<thead>
<tr>
<th></th>
<th>Fourier weighted</th>
<th>Indicator weighted</th>
<th>csMAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% quantile</td>
<td>0.766 (0.785)</td>
<td>0.973 (0.916)</td>
<td>0.851</td>
</tr>
<tr>
<td>median</td>
<td>3.323 (3.358)</td>
<td>3.844 (3.666)</td>
<td>4.515</td>
</tr>
<tr>
<td>75% quantile</td>
<td>11.129 (10.660)</td>
<td>11.099 (10.429)</td>
<td>16.521</td>
</tr>
</tbody>
</table>

Table 10
Rounded coefficients of the estimated reductions for \hat{B}_{Fourier} and \hat{B}_{csMAVE} from the full Boston Housing data

<table>
<thead>
<tr>
<th></th>
<th>crim</th>
<th>zn</th>
<th>indus</th>
<th>nox</th>
<th>rm</th>
<th>age</th>
<th>dis</th>
<th>rad</th>
<th>ppratio</th>
<th>b</th>
<th>lstat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier</td>
<td>0.21</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.62</td>
<td>0.16</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.27</td>
<td>0.19</td>
<td>-0.15</td>
</tr>
<tr>
<td>csMAVE</td>
<td>0.5</td>
<td>-0.05</td>
<td>-0.06</td>
<td>0.14</td>
<td>-0.27</td>
<td>0.11</td>
<td>0.24</td>
<td>-0.43</td>
<td>0.3</td>
<td>0.19</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

8. Discussion

In this paper, we extend the mean subspace conditional variance estimation (CVE) of [10] to the ensemble conditional variance estimation (ECVE), which exhaustively estimates the central subspace, by applying the ensemble device introduced by [27]. We show that the new estimator is consistent for the central subspace. The regularity conditions for consistency require the joint distribution of the target variable and predictors, $(Y, X^T)^T$, be sufficiently smooth. They are comparable to those under which the main competitor, csMAVE [25], is consistent.

ECVE identifies the central subspace via the orthogonal complement and thus circumvents the estimation and inversion of the variance matrix of the predictors X. This renders the method formally applicable to settings where the sample size n is small, or smaller than p, the number of predictors, and leads to potential future research.
ECVE is either on par with csMAVE or attains substantial performance improvement with respect to estimation accuracy in certain models. Yet, characterizing the defining features of the models for which the ensemble conditional variance estimation outperforms csMAVE entails further research. The nature of ECVE, i.e. the lack of closed-form solution and the lack of independence of all quantities in its calculation, presents many technical obstacles in deriving its statistical properties, such as the rate of convergence, estimation of the structural dimension, and the limiting distribution of the estimator. This can be seen from the technical difficulty of proving its consistency. An exception could be the dimension of the central subspace, \(k = \text{dim}(S_Y|X) \). We assumed \(k \) to be known throughout. Alternatively, the dimension can be estimated via cross-validation, as in [25] and [10], or information criteria.

Appendix A

For any \(V \in S(p,q) \), defined in (2.1), we generically denote a basis of the orthogonal complement of its column space \(\text{span}\{V\} \), by \(U \). That is, \(U \in S(p,p-q) \) such that \(\text{span}\{V\} \perp \text{span}\{U\} \) and \(\text{span}\{V\} \cup \text{span}\{U\} = \mathbb{R}^p \), \(U^T V = 0 \in \mathbb{R}^{(p-q) \times q} \), \(U^T U = I_{p-q} \). For any \(x, s_0 \in \mathbb{R}^p \) we can always write

\[
x = s_0 + P_V (x - s_0) + P_U (x - s_0) = s_0 + Vr_1 + Ur_2 \tag{A.1}
\]

where \(r_1 = V^T (x - s_0) \in \mathbb{R}^q \), \(r_2 = U^T (x - s_0) \in \mathbb{R}^{p-q} \).

The following theorem will be used in establishing the main result of this paper, which obtains the \textit{exhaustive} sufficient reduction of the conditional distribution of \(Y \) given the predictor vector \(X \).

Theorem A.1. Assume (E.1) and (E.2) hold, in particular model (1.1) holds. Let \(\tilde{B} \) be a basis of \(S_{\tilde{f}(f(Y)|X)} \); i.e. \(\text{span}\{\tilde{B}\} = S_{\tilde{f}(f(Y)|X)} \subseteq S_{Y|X} = \text{span}\{B\} \).
Then, for any \(f \in \mathcal{F} \) for which the statements in assumption (E.4) holds,
\[
f(Y) = g(\hat{B}^T X) + \hat{\epsilon},
\]
with \(\mathbb{E}(\hat{\epsilon} \mid X) = 0 \) and \(g : \mathbb{R}^{k_t} \to \mathbb{R} \) is a twice continuously differentiable function, where \(k_t = \dim(S_{\mathbb{E}(f(X))}). \)

By Theorem A.1, any response \(Y \) can be written as an additive error via the decomposition (A.2). The predictors and the additive error term are only required to be conditionally uncorrelated in model (A.2). The conditional variance estimator [10] also estimated \(\hat{B} \) in (A.2) but under the more restrictive condition of predictor and error independence.

Proof of Theorem A.1.
\[
f(Y) = \mathbb{E}(f(Y) \mid X) + f(Y) - \mathbb{E}(f(Y) \mid X) = \mathbb{E}(f(Y) \mid X) + \hat{\epsilon}
\]
where \(g(\hat{B}^T X) = \mathbb{E}(f(Y) \mid \hat{B}^T X) \). By the tower property of the conditional expectation, \(\mathbb{E}(\hat{\epsilon} \mid X) = \mathbb{E}(f(Y) \mid X) - \mathbb{E}(E(f(Y) \mid X) \mid X) = \mathbb{E}(f(Y) \mid X) - \mathbb{E}(f(Y) \mid X) = 0 \). The function \(g \) is twice continuous differentiable by (E.4).

Theorem A.2. Assume (E.1) and (E.2) hold. Let \(\mathcal{F} \) be an ensemble, \(s_0 \in \text{supp}(f_X) \subset \mathbb{R}^p \), \(V \in S(p, q) \) defined in (2.1). Then, for any \(f \in \mathcal{F} \) for which the statements in assumption (E.4) holds,
\[
\tilde{L}(V, s_0, f) = \mu_2(V, s_0, f) - \mu_1^2(V, s_0, f) + \text{Var}(\hat{\epsilon} \mid X \in s_0 + \text{span}\{V\}) \quad (A.3)
\]
where
\[
\mu_1(V, s_0, f) = \int_{\mathbb{R}^q} g(\hat{B}^T s_0 + \hat{B}^T Vr_1) f_X(s_0 + Vr_1) dr_1 = \frac{t(1)(V, s_0, f)}{t(0)(V, s_0, f)}, \quad (A.4)
\]
for \(g \) given in (A.2) with
\[
t(1)(V, s_0, f) = \int_{\mathbb{R}^q} g(\hat{B}^T s_0 + \hat{B}^T Vr_1) f_X(s_0 + Vr_1) dr_1, \quad (A.5)
\]
and
\[
\text{Var}(\hat{\epsilon} \mid X \in s_0 + \text{span}\{V\}) = \mathbb{E}(\hat{\epsilon}^2 \mid X \in s_0 + \text{span}\{V\})
\]
\[
= \int_{\text{supp}(f_X) \cap \mathbb{R}^q} h(s_0 + Vr_1) f_X(s_0 + Vr_1) dr_1 / \int_{\mathbb{R}^q} f_X(s_0 + Vr) dr = \frac{\hat{h}(V, s_0, f)}{t(0)(V, s_0, f)} \quad (A.6)
\]
with $\mathbb{E}(\tilde{\epsilon}^2 \mid X = x) = h(x)$ and $\tilde{h}(V, s_0, f) = \int_{\text{supp}(f_X) \cap \mathbb{R}^q} h(s_0 + Vr_1) f_X(s_0 + Vr_1) dr_1$. Further assume $h(\cdot)$ to be continuous, then $L^*(V, f_i)$ in (3.3) is well defined and continuous,

$$V_q^t = \arg\min_{V \in S(p, q)} L^*(V, f_i) \quad (A.7)$$

is well defined, and the conditional variance estimator of the transformed response $f_i(Y)$ identifies $S_{\mathbb{E}(f_i(Y)) | X}$,

$$S_{\mathbb{E}(f_i(Y)) | X} = \text{span}\{V_q^t\}^{\perp}. \quad (A.8)$$

Proof of Theorem A.2. The density of $X \mid X \in s_0 + \text{span}\{V\}$ is given by

$$f_X|X\in s_0+\text{span}\{V\}(r_1) = \frac{f_X(s_0 + Vr_1)}{\int_{\mathbb{R}^q} f_X(s_0 + Vr) dr} \quad (A.9)$$

where X is the p-dimensional continuous random covariate vector with density $f_X(x)$, $s_0 \in \text{supp}(f_X) \subset \mathbb{R}^p$, and V belongs to the Stiefel manifold $S(p, q)$ defined in (2.1). Equation (A.9) follows from Theorem 3.1 of [19] and the fact that $(\mathbb{R}^p, B(\mathbb{R}^p))$, where $B(\mathbb{R}^p)$ denotes the Borel sets on \mathbb{R}^p, is a Polish space, which in turn guarantees the existence of the regular conditional probability of $X \mid X \in s_0 + \text{span}\{V\}$ [see also [9]]. Further, the measure is concentrated on the affine subspace $s_0 + \text{span}\{V\} \subset \mathbb{R}^p$ with density (A.9), which follows from Definition 8.38, Theorem 8.39 of [18], the orthogonal decomposition (A.1), and the continuity of f_X (E.2).

By assumption (E.1), $Y = g_{ca}(B^T X, \epsilon)$ with $\epsilon \perp X$. Assume $f \in \mathcal{F}$ for which assumption (E.4) holds and let \tilde{B} be a basis of $S_{\mathbb{E}(f_i(Y)) | X}$; that is, $\text{span}\{\tilde{B}\} = S_{\mathbb{E}(f_i(Y)) | X} \subseteq S_Y | X = \text{span}\{B\}$. By Theorem A.1, $f(Y) = g(B^T X) + \tilde{\epsilon}$, with $\mathbb{E}(\tilde{\epsilon} \mid X) = 0$ and g twice continuously differentiable. Therefore,

$$\tilde{L}(V, s_0, f) = \text{Var} (f(Y) \mid X \in s_0 + \text{span}\{V\}) = \text{Var} \left(g(\tilde{B}^T X) \mid X \in s_0 + \text{span}\{V\} \right) + 2\text{cov} \left(\tilde{\epsilon}, g(\tilde{B}^T X) \mid X \in s_0 + \text{span}\{V\} \right) + \text{Var} \left(\tilde{\epsilon} \mid X \in s_0 + \text{span}\{V\} \right) \quad (A.10)$$

The covariance term in (A.10) vanishes since

$$\text{cov} \left(\tilde{\epsilon}, g(\tilde{B}^T X) \mid X \in s_0 + \text{span}\{V\} \right) = \mathbb{E} \left(\underbrace{E(\tilde{\epsilon} \mid X)}_{=0} g(\tilde{B}^T X) \mid X \in s_0 + \text{span}\{V\} \right)$$

$$- \mathbb{E} \left(g(\tilde{B}^T X) \mid X \in s_0 + \text{span}\{V\} \right) \mathbb{E} \left(\underbrace{E(\tilde{\epsilon} \mid X)}_{=0} \mid X \in s_0 + \text{span}\{V\} \right) = 0$$
i.e. the sigma field generated by $X \in s_0 + \text{span}\{V\}$ is a subset of that generated by X. By the same argument and using (A.9)

$$\text{Var}(\hat{\epsilon} \mid \mathbf{X} \in s_0 + \text{span}\{V\}) = \mathbb{E}(\hat{\epsilon}^2 \mid \mathbf{X} \in s_0 + \text{span}\{V\})$$

$$= \mathbb{E}(\mathbb{E}(\hat{\epsilon}^2 \mid \mathbf{X}) \mid \mathbf{X} \in s_0 + \text{span}\{V\}) = \mathbb{E}(h(\mathbf{X}) \mid \mathbf{X} \in s_0 + \text{span}\{V\})$$

$$= \int_{\text{supp}(f_X)^c \cap \mathbb{R}^N} h(s_0 + Vr_1) \times f_X(s_0 + Vr_1)dr_1/t(l)(V, s_0, f))$$

where $\mathbb{E}(\hat{\epsilon}^2 \mid \mathbf{X} = x) = h(x)$. Using (A.9) again for the first term in (A.10) obtains formula (A.3) and (A.6).

To see that (3.2), (A.3), and (A.6) are well defined and continuous, let $\hat{g}(V, s_0, r) = \mathbb{E}(\hat{\epsilon}^2 \mid \mathbf{X} = x) = h(x)$ by the continuity of $h(x)$. (E.4) is also being well defined and continuous by virtue of it being a parameter depending integral following the same arguments as above. Moreover, (A.7) is continuous since $\mu(V, s_0) = t(l)(V, s_0) = t(l)(V, s_0)$ is compact by (E.2). The function $\hat{g}(V, s_0, r)$ is continuous in all inputs by the continuity of $g(\mathbf{X})$ and f_X by (E.2), and therefore it attains a maximum. In consequence, all three conditions are satisfied so that $t(l)(V, s_0)$ is well defined and continuous. By the same argument (A.6) is well defined and continuous.

Next, $\mu(V, s_0) = t(l)(V, s_0)/t(l)(V, s_0)$ is continuous since $t(l)(V, s_0) > 0$ for all interior points $s_0 \in \text{supp}(f_X)$ by the continuity of f_X, convexity of the support and $\Sigma_x > 0$. Then, $L(V, s_0, f)$ in (A.3) is continuous, which results in (3.3) also being well defined and continuous by virtue of it being a parameter depending integral following the same arguments as above. Moreover, (A.7) exists as the minimizer of a continuous function over the compact set $S(p, q)$. Then, (3.3) can be written as

$$L^*(V, f) = \mathbb{E}_{s_0 \sim \mathbf{X}} \left(\mu_2(V, s_0, f) - \mu_1(V, s_0, f)^2 \right)$$

$$+ \mathbb{E}_{s_0 \sim \mathbf{X}} \left(\text{Var}(\hat{\epsilon} \mid \mathbf{X} \in s_0 + \text{span}\{V\}) \right)$$

where $s_0 \sim \mathbf{X}$ signifies that s_0 is distributed as \mathbf{X} and the expectation is with respect to the distribution of s_0.

It now suffices to show that the second term on the right hand side of (A.11) is constant with respect to \mathbf{V}. By the law of total variance,

$$\text{Var}(\hat{\epsilon}) = \mathbb{E}(\text{Var}(\hat{\epsilon} \mid \mathbf{X} \in s_0 + \text{span}\{V\})) + \text{Var}(\mathbb{E}(\hat{\epsilon} \mid \mathbf{X} \in s_0 + \text{span}\{V\}))$$

$$= \mathbb{E}(\text{Var}(\hat{\epsilon} \mid \mathbf{X} \in s_0 + \text{span}\{V\}))$$

(12)

since $\mathbb{E}(\hat{\epsilon} \mid \mathbf{X} \in s_0 + \text{span}\{V\}) = \mathbb{E}(\hat{\epsilon} \mid \mathbf{X}) | \mathbf{X} \in s_0 + \text{span}\{V\}) = 0$. Inserting (A.12) into (A.11) obtains

$$L^*(V, f_l) = \mathbb{E} (\mu_2(V, X, f_l) - \mu_1(V, X, f_l)^2) + \text{Var}(\hat{\epsilon})$$
Next we show that (3.3), or, equivalently (A.13), attains its minimum at
\[Y = (g(T^T X | X \in s_0 + \text{span}\{V\}) + \text{Var}(\tilde{\epsilon}) \] (A.13)

If (A.14) is positive, i.e. \(\tilde{B}^T \tilde{V}V^T (X - s_0) \neq 0 \) with positive probability, then the lower bound is not attained. If it is zero; i.e., for \(V \) such that \(V \) and \(\tilde{B}^T \) are orthogonal, then \(L^*(V, f) = \text{Var}(\tilde{\epsilon}) \). Since \(s_0 \) is arbitrary yet constant, the same inequality holds for (3.3); that is, (3.3) attains its minimum for \(V \) such that \(V \) and \(\tilde{B}^T \) are orthogonal. Since \(\text{span}\{\tilde{B}^T\} \) is arbitrary yet constant, \(\tilde{V} \) is simply conditionally uncorrelated with \(X \). This allows CVE to apply to problems where the mean subspace is a proper subset of the central subspace, i.e. \(\mathcal{S}_{\mathbb{E}(Y|X)} \not\subseteq \mathcal{S}_{Y|X} \).

Theorem A.2 extends this result to obtain that the conditional variance estimator (CVE) identifies the mean subspace \(\mathcal{S}_{\mathbb{E}(Y|X)} \) also in models of the form \(Y = g(B^T X) + \epsilon \), where \(\epsilon \) is simply conditionally uncorrelated with \(X \). This allows CVE to apply to problems where the mean subspace is a proper subset of the central subspace, i.e. \(\mathcal{S}_{\mathbb{E}(Y|X)} \not\subseteq \mathcal{S}_{Y|X} \).

Theorem A.2 extends this result to obtain that the conditional variance estimator (CVE) identifies the mean subspace \(\mathcal{S}_{\mathbb{E}(Y|X)} \) also in models of the form \(Y = g(B^T X) + \epsilon \), where \(\epsilon \) is simply conditionally uncorrelated with \(X \). This allows CVE to apply to problems where the mean subspace is a proper subset of the central subspace, i.e. \(\mathcal{S}_{\mathbb{E}(Y|X)} \not\subseteq \mathcal{S}_{Y|X} \).

\[\mathcal{V}^\epsilon \] in (A.7) is not unique since for all orthogonal \(O \in \mathbb{R}^{q \times q}, L^*(V_{q,t}^\epsilon O, f_t) = L^*(V_{q,t}^\epsilon , f_t) \) depends only through \(\text{span}\{V_{q,t}^\epsilon \} \) by (3.1). Nevertheless, it is a unique minimizer over the Grassmann manifold \(Gr(p,q) \) in (2.2). To see this, suppose \(V \in S(p,q) \) is an arbitrary basis of a subspace \(M \in Gr(p,q) \). We can identify \(M \) through the projection \(P_M = VV^T \). By (A.1), we write \(x = Vr_1 + Ur_2 \). Application of the Fubini-Tonelli Theorem yields

\[\tilde{t}(l)(P_M, s_0, f) = \int_{\text{supp}(f_x)} g(B^T s_0 + B^T P_M x) f_x(s_0 + P_M x) dx \] (A.15)

Therefore \(\tilde{t}(l)(P_M, s_0, f) = t(l)(V, s_0, f) / t(0)(V, s_0, f) \) and \(\mu_1(\cdot, s_0, f) \) in (A.4) can also be viewed as a function from \(Gr(p,q) \) to \(\mathbb{R} \).

Proof of Theorem 3.1. Under assumptions (E.1), (E.2), and (E.3), (3.2) is well defined and continuous by arguments analogous to those in the proof of Theorem A.2. Therefore (3.4) exists as a minimizer of a continuous function over the compact set \(S(p,q) \).
To show \(\mathcal{S}_Y^\perp = \text{span}\{V_q\}^\perp \), let \(\tilde{\mathcal{S}} \neq \mathcal{S}_Y^\perp \) with \(\dim(\tilde{\mathcal{S}}) = \dim(\mathcal{S}_Y^\perp) = k \). Also, let \(Z \in \mathbb{R}^{p \times (p-k)} \) be an orthonormal base of \(\mathcal{S}_Y^\perp \). Suppose \(L_F(Z) = \min_{V \in S(p,p-k)} L_F(V) \). By (A.7) and (A.8) in Theorem A.2, \(L^*(V, f_i) \), considered as a function from \(\mathbb{R}^{p \times (p-k)} \), is minimized by an orthonormal base of \(\mathcal{S}_{E(f_i|^{| Y)})|X|}^\perp \) with \(p - k_i \) elements, where \(k_i = \dim(\mathcal{S}_{E(f_i|^{| Y)})|X|}) \leq k \). By (E.1), \(\mathcal{S}_{E(f_i|^{| Y)})|X|} \subseteq \mathcal{S}_Y^\perp = \text{span}\{B\} \). As in the proof of Theorem A.2, we obtain that \(L^*(V, f_i) \), as a function from \(\mathbb{R}^{p \times (p-k)} \), is minimized by an orthonormal base \(U \in \mathbb{R}^{p \times (p-k)} \) of \(\text{span}\{B\}^\perp \).

Since \(\tilde{\mathcal{S}} = \text{span}\{Z\} \neq \text{span}\{U\} = \mathcal{S}_Y^\perp \), we can rearrange the bases \(U = (U_1, U_2) \) and \(Z = (Z_1, Z_2) \) such that \(\text{span}\{U_1\} = \text{span}\{Z_1\} \) and \(\text{span}\{U_2\} \neq \text{span}\{Z_2\} \). Since \(\mathcal{F} \) characterizes \(\mathcal{S}_Y^\perp \), the set \(A = \{ t \in \Omega_T : \text{span}\{U_2\} \subseteq \mathcal{S}_{E(f_i|^{| Y)})|X|} \} \) is non empty and by (E.3) \(A \) is not a null set with respect to the probability measure \(F_T \).

Thus,

\[
\min_{V \in S(p,p-k)} L_F(V) = L_F(Z) = \mathbb{E}_{t \sim F_T} (L^*(Z, f_i))
\]

\[
= \int_A L^*(Z, f_i) \, dF_T(t) + \int_{A^c} L^*(Z, f_i) \, dF_T(t) > \mathbb{E}_{t \sim F_T} (L^*(U, f_i))
\]

which contradicts our assumption that \(L_F(Z) = \min_{V \in S(p,p-k)} L_F(V) \).

Appendix B

Next we introduce notation and auxiliary lemmas for the proof of Theorem 5.1. We suppose all assumptions of Theorem 5.1 hold. We generically use the letter “C” to denote constants.

Suppose \(f \) is an arbitrary element of \(\mathcal{F} \) and let

\[
\hat{Y}_i = f(Y_i) = g(\hat{B}^T X_i) + \hat{c}_i \quad (B.1)
\]

with \(\text{span}\{\hat{B}\} = \mathcal{S}_{E(\hat{Y})|X} = \mathcal{S}_{E(f|^{| Y)})|X|} \). Condition (E.4) yields that \(g \) is twice continuously differentiable, and \(\mathbb{E}(|\hat{Y}|^8) < \infty \). Since \(f \) is fixed, we suppress it in \(t^{(l)}(V, s_0, f) \) and \(\hat{h}(V, s_0, f) \), so that

\[
t_n^{(l)}(V, s_0, f) = t_n^{(l)}(V, s_0) = \frac{1}{nh_n^{(p-q)/2}} \sum_{i=1}^n K \left(\frac{d_i(V, s_0)}{h_n} \right) \hat{Y}_i, \quad (B.2)
\]

which is the sample version of (A.5) for \(l = 0, 1, 2 \). Eqn. (4.3) can be expressed as

\[
\hat{g}_i(V, s_0) = \frac{t_n^{(l)}(V, s_0)}{t_n^{(0)}(V, s_0)}, \quad (B.3)
\]
Lemma 2. Assume (E.2) and (K.1) hold. For a continuous function g, we let $Z_n(V, s_0) = (\sum_i g(X_i)^r K(d_i(V, s_0)/h_n))/(nh_n^{(p-q)/2})$. Then,

$$\mathbb{E}(Z_n(V, s_0)) = \int_{\text{supp}(f_X) \cap \mathbb{R}^{p-q}} K(\|r_2\|^2) \int_{\text{supp}(f_X) \cap \mathbb{R}^q} \tilde{g}(r_1, h_n^{1/2}r_2) dr_1 dr_2$$

where $\tilde{g}(r_1, r_2) = g(s_0 + Vr_1 + Ur_2)^l f_X(s_0 + Vr_1 + Ur_2), x = s_0 + Vr_1 + Ur_2$ in (A.1).

Proof of Lemma 2. By (A.1), $\|P_U(x - s_0)\|^2 = \|Ur_2\|^2 = \|r_2\|^2$. Further

$$\mathbb{E}(Z_n(V, s_0)) = \frac{1}{h_n^{(p-q)/2}} \int_{\text{supp}(f_X)} g(x)^r K(\|P_U(x - s_0)/h_n^{1/2}\|^2) f_X(x) dx$$

$$= \frac{1}{h_n^{(p-q)/2}} \int_{\text{supp}(f_X) \cap \mathbb{R}^{p-q}} \int_{\text{supp}(f_X) \cap \mathbb{R}^q} g(s_0 + Vr_1 + Ur_2)^l K(\|r_2/h_n^{1/2}\|^2) \times$$

$$f_X(s_0 + Vr_1 + Ur_2) dr_1 dr_2$$

$$= \int_{\text{supp}(f_X) \cap \mathbb{R}^{p-q}} K(\|r_2\|^2) \int_{\text{supp}(f_X) \cap \mathbb{R}^q} g(s_0 + Vr_1 + h_n^{1/2}Ur_2)^l$$

$$\times f_X(s_0 + Vr_1 + h_n^{1/2}Ur_2) dr_1 dr_2,$$

where the substitution $\tilde{r}_2 = r_2/h_n^{1/2}$, $dr_2 = h_n^{(p-q)/2} d\tilde{r}_2$ was used to obtain the last equality. \(\square\)

Lemma 3. Assume (E.1), (E.2), (E.3), (E.4), (H.1) and (K.1) hold. Then, there exists a constant $C > 0$, such that

$$\text{Var} \left(nh_n^{(p-q)/2} f_n^l(V, s_0, f) \right) \leq nh_n^{(p-q)/2} C$$

for $n > n^*$ and $f_n^l(V, s_0), l = 0, 1, 2$, in (B.2).

Proof of Lemma 3. Since a continuous function attains a finite maximum over a compact set, $\sup_{x \in \text{supp}(f_X)} |g(\tilde{B}^T x)| < \infty$. Therefore,

$$|\tilde{Y}_i| \leq |g(\tilde{B}^T X_i)| + |\epsilon_i| \leq \sup_{x \in \text{supp}(f_X)} |g(\tilde{B}^T x)| + |\epsilon_i| = C + |\epsilon_i|$$

and $|\tilde{Y}_i|^{2l} \leq \sum_{u=0}^{2l} \binom{2l}{u} C^u |\epsilon_i|^{2l-u}$. Since (\tilde{Y}_i, X_i) are i.i.d.,

$$\text{Var} \left(nh_n^{(p-q)/2} f_n^l(V, s_0, f) \right) = n \text{Var} \left(\tilde{Y}^l K \left(\frac{d_i(V, s_0)}{h_n} \right) \right)$$

$$\leq n \mathbb{E} \left(\tilde{Y}^{2l} K^2 \left(\frac{d_i(V, s_0)}{h_n} \right) \right) = n \mathbb{E} \left(|\tilde{Y}|^{2l} K^2 \left(\frac{d_i(V, s_0)}{h_n} \right) \right)$$

$$\leq n \sum_{u=0}^{2l} \binom{2l}{u} C^u \mathbb{E} \left(|\epsilon_i|^{2l-u} K^2 \left(\frac{d_i(V, s_0)}{h_n} \right) \right)$$
for \(l = 0, 1, 2 \). Let \(\mathbb{E}(|\tilde{\epsilon}_i|^{2l} \mid X_i) = g_{2l- u}(X_i) \) for a continuous (by assumption) function \(g_{2l- u}(\cdot) \) with finite moments for \(l = 0, 1, 2 \) by the compactness of \(\text{supp}(f_X) \). Using Lemma 2 with

\[
Z_n(V, s_0) = \frac{1}{nh_n^{(p-q)/2}} \sum_i g_{2l- u}(X_i)K^2\left(\frac{d_i(V, s_0)}{h_n}\right),
\]

where \(K^2(\cdot) \) fulfills (K.1), we calculate

\[
\mathbb{E}\left(\mathbb{E}(|\tilde{\epsilon}_i|^{2l- u} \mid X_i)K^2\left(\frac{d_i(V, s_0)}{h_n}\right)\right) = h_n^{(p-q)/2}\mathbb{E}(Z_n(V, s_0)) = h_n^{(p-q)/2} \int_{\text{supp}(f_X) \cap \mathbb{R}^{p-q}} K^2(||r_2||^2) \times \\
\int_{\text{supp}(f_X) \cap \mathbb{R}^{q}} g_{2l- u}(s_0 + Vr_1 + h_n^{1/2}Ur_2)f_X(s_0 + Vr_1 + h_n^{1/2}Ur_2)dr_1dr_2 \\
\leq h_n^{(p-q)/2} C
\]

since all integrands in (B.5) are continuous and over compact sets by (E.2) and the continuity of \(g_{2l- u}(\cdot) \) and \(K(\cdot) \), so that the integral can be upper bounded by a finite constant \(C \). Inserting (B.5) into (B.4) yields

\[
\text{Var}\left(nh_n^{(p-q)/2}t_n^{(l)}(V, s_0, f)\right) \leq nh_n^{(p-q)/2} \sum_{u=0}^{2l} \binom{2l}{u} C^n C = nh_n^{(p-q)/2} C \quad (B.6)
\]

In Lemma 4 we show that \(d_i(V, s_0) \) in (4.1) is Lipschitz in its inputs under assumption (E.2).

Lemma 4. Under assumption (E.2) there exists a constant \(0 < C_2 < \infty \) such that for all \(\delta > 0 \) and \(V, V_j \in \mathcal{S}(p, q) \) with \(\|P_V - P_{V_j}\| < \delta \) and for all \(s_0, s_j \in \text{supp}(f_X) \subset \mathbb{R}^p \) with \(\|s_0 - s_j\| < \delta \),

\[
|d_i(V, s_0) - d_i(V_j, s_j)| \leq C_2 \delta
\]

for \(d_i(V, s_0) \) given by (4.1)

Proof of Lemma 4.

\[
|d_i(V, s_0) - d_i(V_j, s_j)| \leq ||X_i - s_0||^2 - ||X_i - s_j||^2 + \\
||X_i - s_0, P_V(X_i - s_0)|| - ||X_i - s_j, P_{V_j} (X_i - s_j)|| = I_1 + I_2 \quad (B.7)
\]
where \(\langle \cdot, \cdot \rangle \) is the scalar product in \(\mathbb{R}^p \). We bound the first term on the right hand side of (B.7) as follows using \(\|X_i\| \leq \sup_{z \in \text{supp}(f_X)} \|z\| = C_1 < \infty \) with probability 1 by (E.2).

\[
I_1 = \|X_i - s_0\|^2 - \|X_i - s_j\|^2 \leq 2 \|X_i, s_0 - s_j\| + \|s_0\|^2 - \|s_j\|^2 \\
\leq 2\|X_i\|\|s_0 - s_j\| + 2C_1\|s_0 - s_j\| \leq 2C_1\delta + 2C_1\delta = 4C_1\delta
\]

by Cauchy-Schwartz and the reverse triangular inequality for which \(\|s_0\|^2 - \|s_j\|^2 = \|s_0\| - \|s_j\| (\|s_0\| + \|s_j\|) \leq \|s_0 - s_j\|2C_1 \). The second term in (B.7) satisfies

\[
I_2 \leq \|X_i, (P_V - P_{V_j})X_i\| + 2\|X_i, P_V s_0 - P_{V_j} s_j\| + \|s_0, P_V s_0 - (s_j, P_{V_j} s_j)\| \\
\leq \|X_i\|^2\|P_V - P_{V_j}\| + 2\|X_i\|\|P_V (s_0 - s_j) + (P_V - P_{V_j}) s_j\| \\
+ \|s_0 - s_j, P_V s_0\| + \|s_j, P_V s_0 - P_{V_j} s_j\| \\
\leq C_1^2\delta + 2C_1 (\delta + C_1\delta) + C_1\delta + C_1 (\delta + C_1\delta) = 4C_1\delta + 4C_1^2\delta
\]

Collecting all constants into \(C_2 \) (i.e. \(C_2 = 8C_1 + 4C_1^2 \)) yields the result. \(\square \)

To show Theorems 5.1 and 5, we use the Bernstein inequality [3]. Let \(\{Z_i, i = 1, 2, \ldots, n\} \), be an independent sequence of bounded random variables with \(\|Z_i\| \leq b \). Let \(S_n = \sum_{i=1}^n Z_i, E_n = \mathbb{E}(S_n) \) and \(V_n = \mathbb{V}(S_n) \). Then,

\[
P(|S_n - E_n| > t) < 2 \exp \left(-\frac{t^2}{V_n + bt/3} \right) \quad (B.8)
\]

Assumption (K.2) yields

\[
|K(u) - K(u')| \leq K^*(u')\delta \quad (B.9)
\]

for all \(u, u' \) with \(|u - u'| < \delta \leq L_2 \) and \(K^*(\cdot) \) is a bounded and integrable kernel function [see 14]]. Specifically, if condition (1) of (K.2) holds, then \(K^*(u) = L_1 1_{\{|u| \leq 2L_2\}} \). If condition (2) holds, then \(K^*(u) = L_1 1_{\{|u| \leq 2L_2\}} + 1_{\{|u| > 2L_2\}|} |u - L_2|^{-r} \).

Let \(A = S(p, q) \times \text{supp}(f_X) \). In Lemma 5 and 6 we show that (B.2) converges uniformly in probability to (A.5) by showing that the variance and bias terms vanish uniformly in probability, respectively.

Lemma 5. Under the assumptions of Theorem 5.1,

\[
\sup_{V \times s_0 \in A} \left| t^{(l)}(V, s_0) - \mathbb{E} \left(t^{(l)}(V, s_0) \right) \right| = O_P(a_n), \quad l = 0, 1, 2 \quad (B.10)
\]

Proof of Lemma 5. The proof proceeds in 3 steps: (i) truncation, (ii) discretization by covering \(A = S(p, q) \times \text{supp}(f_X) \), and (iii) application of Bernstein’s inequality (B.8). If the function \(f \) in (B.1) is bounded, the truncation step and the assumption \(a_n / h_n^{(p-q)/2} = O(1) \) are not needed.
(i) We let \(\tau_n = a_n^{-1} \) and truncate \(\hat{Y}_i \) by \(\tau_n \) as follows. We let
\[
\tilde{t}_{n,\text{trc}}(\mathbf{V}, s_0) = (1/nh_n^{(p-q)/2}) \sum_i K(\|P_\mathbf{U}(\mathbf{X}_i - s_0)\|^2/h_n)\tilde{Y}_i 1_{\{|\tilde{Y}_i| \leq \tau_n\}} \tag{B.11}
\]
be the truncated version of (B.2) and \(\tilde{R}_n^{(l)} = (1/nh_n^{(p-q)/2}) \sum_i |\tilde{Y}_i| 1_{\{|\tilde{Y}_i| > \tau_n\}} \)
be the remainder of (B.2). Therefore \(R_n^{(l)}(\mathbf{V}, s_0) = t_n^{(l)}(\mathbf{V}, s_0) - \tilde{t}_{n,\text{trc}}(\mathbf{V}, s_0) \leq M_1 \tilde{R}_n^{(l)} \) due to (K.1) and
\[
\sup_{\mathbf{V} \times s_0 \in A} \left| t_n^{(l)}(\mathbf{V}, s_0) - \mathbb{E}\left(t_n^{(l)}(\mathbf{V}, s_0) \right) \right| \leq M_1(\tilde{R}_n^{(l)} + \mathbb{E}\tilde{R}_n^{(l)})
+ \sup_{\mathbf{V} \times s_0 \in A} \left| \tilde{t}_{n,\text{trc}}(\mathbf{V}, s_0) - \mathbb{E}\left(\tilde{t}_{n,\text{trc}}(\mathbf{V}, s_0) \right) \right| \tag{B.12}
\]
By Cauchy-Schwartz and the Markov inequality, \(\mathbb{P}(|Z| > t) = \mathbb{P}(Z^4 > t^4) \leq \mathbb{E}(Z^4)/t^4 \), we obtain
\[
\mathbb{E}\tilde{R}_n^{(l)} = \frac{1}{h_n^{(p-q)/2}} \mathbb{E}\left(|\tilde{Y}_i| 1_{\{|\tilde{Y}_i| \leq \tau_n\}} \right) \leq \frac{1}{h_n^{(p-q)/2}} \sqrt{\mathbb{E}(|\tilde{Y}_i|^2)} \sqrt{\mathbb{P}(|\tilde{Y}_i| > \tau_n)}
\leq \frac{1}{h_n^{(p-q)/2}} \sqrt{\mathbb{E}(|\tilde{Y}_i|^2)} \left(\frac{\mathbb{E}(|\tilde{Y}_i|^4)}{a_n^{-4}} \right)^{1/2} = o(a_n), \tag{B.13}
\]
where the last equality uses the assumption \(a_n/h_n^{(p-q)/2} = O(1) \) and the expectations are finite due to (E.4) for \(l = 0, 1, 2 \). No truncation is needed for \(l = 0 \) or if \(\tilde{Y}_i = f(Y_i) \leq \sup_{f \in \mathcal{F}} |f(Y_i)| < C < \infty \).

Therefore, the first two terms of the right hand side of (B.12) converge to 0 with rate \(a_n \) by (B.13) and Markov’s inequality. From this point on, \(\tilde{Y}_i \) will denote the truncated version \(\tilde{Y}_i 1_{\{|\tilde{Y}_i| \leq \tau_n\}} \) and we do not distinguish the truncated from the untruncated \(t_n(\mathbf{V}, s_0) \) since this truncation results in an error of magnitude \(a_n \).

(ii) For the discretization step we cover the compact set \(A = \mathcal{S}(p, q) \times \text{supp}(\mathbf{X}) \) by finitely many balls, which is possible by (E.2) and the compactness of \(\mathcal{S}(p, q) \). Let \(\delta_n = a_n h_n \) and \(A_j = \{ \mathbf{V} : \|\mathbf{P}_\mathbf{V} - \mathbf{P}_{\mathbf{V}_j}\| \leq \delta_n \} \times \{ \mathbf{s} : \|\mathbf{s} - \mathbf{s}_j\| \leq \delta_n \} \)
be a cover of \(A \) with ball centers \(\mathbf{V}_j \times \mathbf{s}_j \). Then, \(A \subseteq \bigcup_{j=1}^N A_j \) and the number of balls can be bounded by \(N \leq C \delta_n^{-d} \delta_n^{-p} \) for some constant \(C \in (0, \infty) \), where \(d = \dim(\mathcal{S}(p, q)) = pq - q(q+1)/2 \). Let \(\mathbf{V} \times s_0 \in A_j \). Then by Lemma 4 there exists \(0 < C_2 < \infty \), such that
\[
|d_i(\mathbf{V}, s_0) - d_i(\mathbf{V}_j, s_j)| \leq C_2 \delta_n \tag{B.14}
\]
for \(d_i \) in (4.1). Under (K.2), which implies (B.9), inequality (B.14) yields
\[
\left| \frac{K}{h_n} \left(\frac{d_i(\mathbf{V}, s_0)}{h_n} \right) - K \left(\frac{d_i(\mathbf{V}_j, s_j)}{h_n} \right) \right| \leq K^* \left(\frac{d_i(\mathbf{V}_j, s_j)}{h_n} \right) C_2 a_n \tag{B.15}
\]
for \(\mathbf{V} \times s_0 \in A_j \) and \(K^*(\cdot) \) an integrable and bounded function.
Define $r_n^{(l)}(V_j, s_j) = (1/nh_n^{(p-q)/2}) \sum_{i=1}^n K^*(d_i(V_j, s_j)/h_n)|\tilde{Y}_i|^l$. For notational convenience we next drop the dependence on l and j and observe that (B.15) yields

$$|t_n^{(l)}(V, s_0) - t_n^{(l)}(V_j, s_j)| \leq C_2a_n r_n^{(l)}(V_j, s_j) \quad (B.16)$$

Since K^* fulfills (K.1) except for continuity, an analogous argument as in the proof of Lemma 2 yields that $E\left(t_n^{(l)}(V_j, s_j)\right) < \infty$. By subtracting and adding $t_n^{(l)}(V_j, s_j)$, $E(t_n^{(l)}(V_j, s_j))$, the triangular inequality, (B.16) and integrability of $r_n^{(l)}$, we obtain

$$\left| r_n^{(l)}(V, s_0) - E\left(r_n^{(l)}(V, s_0)\right) \right| \leq \left| r_n^{(l)}(V, s_0) - r_n^{(l)}(V_j, s_j) \right| + \left| r_n^{(l)}(V_j, s_j) - E\left(r_n^{(l)}(V_j, s_j)\right) \right|
$$

$$\leq C_2a_n (|r_n| + |E(r_n)|) + \left| r_n^{(l)}(V_j, s_j) - E\left(r_n^{(l)}(V_j, s_j)\right) \right|
$$

$$\leq C_2a_n (|r_n - E(r_n)| + 2|E(r_n)|) + \left| r_n^{(l)}(V_j, s_j) - E\left(r_n^{(l)}(V_j, s_j)\right) \right|
$$

$$\leq 2C_3a_n + |r_n - E(r_n)| + \left| r_n^{(l)}(V_j, s_j) - E\left(r_n^{(l)}(V_j, s_j)\right) \right| \quad (B.17)$$

for any constant $C_3 > C_2E(r_n^{(l)}(V_j, s_j))$ and n such that $C_2a_n \leq 1$, since $a_n^2 = o(1)$, which in turn yields that there exists $0 < C_3 < \infty$ such that (B.17) holds.

Since $\sup_{x \in A} f(x) = \max_{1 \leq j \leq N} \sup_{x \in A_j} f(x) \leq \sum_{j=1}^N \sup_{x \in A_j} f(x)$ for any cover of A and continuous function f,

$$P\left(\sup_{V \times s_0 \in A} |t_n^{(l)}(V, s_0) - E\left(t_n^{(l)}(V, s_0)\right)| > 3C_3a_n\right)$$

$$\leq \sum_{j=1}^N P\left(\sup_{V \times s_0 \in A_j} |t_n^{(l)}(V, s_0) - E\left(t_n^{(l)}(V, s_0)\right)| > 3C_3a_n\right)$$

$$\leq N \max_{1 \leq j \leq N} P\left(\sup_{V \times s_0 \in A_j} |t_n^{(l)}(V, s_0) - E\left(t_n^{(l)}(V, s_0)\right)| > 3C_3a_n\right) \quad (B.18)$$

$$\leq N \left(\max_{1 \leq j \leq N} P\left(\left|r_n^{(l)}(V_j, s_j) - E\left(r_n^{(l)}(V_j, s_j)\right)\right| > C_3a_n\right)\right)$$

$$+ \max_{1 \leq j \leq N} P(|r_n - E(r_n)| > C_3a_n) \quad (B.19)$$

$$C_3^{-d+p} \left(\max_{1 \leq j \leq N} P\left(\left|r_n^{(l)}(V_j, s_j) - E\left(r_n^{(l)}(V_j, s_j)\right)\right| > C_3a_n\right)\right)$$

$$+ \max_{1 \leq j \leq N} P(|r_n - E(r_n)| > C_3a_n) \quad (B.20)$$

by the subadditivity of probability for the first inequality and (B.17) for the
third inequality above, where the last inequality is due to $N \leq C \delta_n^{-d} \delta_n^{-p}$ for a cover of A.

Finally, we bound the first and second term in the last line of (B.18) by the Bernstein inequality (B.8). For the first term in the last line of (B.18), let $Z_i = Y_i K(d_i(V_j, s_j)/h_n)$ and $S_n = \sum_i Z_i = nh_n^{(p-q)/2}t_n^{(l)}(V_j, s_j)$. Then, Z_i are independent with $|Z_i| \leq b = M_1 \tau_n = M_1/a_n$ by (K.1) and the truncation step (i). For $V_n = \mathbb{V} n \ar(S_n)$, Lemma 3 yields $nh_n^{(p-q)/2} C \geq V_n$ with $C > 0$, and set $t = C_3 a_n nh_n^{(p-q)/2}$. The Bernstein inequality (B.8) yields

$$\mathbb{P} \left(\left| t_n^{(l)}(V_j, s_j) - \mathbb{E} \left(t_n^{(l)}(V_j, s_j) \right) \right| > C_3 a_n \right) < 2 \exp \left(-\frac{-t^2/2}{V_n + bt/3} \right) \leq 2 \exp \left(-\frac{(1/2)C_3 \log(n)}{C/C_3 + M_1/3} \right) = 2n^{-\gamma(C_3)}$$

where $a_n^2 = \log(n)/(nh_n^{(p-q)/2})$ and $\gamma(C_3) = C_3 (2(C/C_3 + M_1/3))^{-1}$ that is an increasing function that can be made arbitrarily large by increasing C_3.

For the second term in the last line of (B.18), set $Z_i = Y_i K^*(d_i(V_j, s_j)/h_n)$ in (B.8) and proceed similarly to obtain

$$\mathbb{P} \left(\left| t_n^{(l)}(V_j, s_j) - \mathbb{E} \left(t_n^{(l)}(V_j, s_j) \right) \right| > C_3 a_n \right) < 2n^{-\gamma(C_3)}$$

By (H.1), $h_n^{(p-q)/4} \leq 1$ for n large and (H.2) implies $1/(nh_n^{(p-q)/2}) \leq 1$ for n large, therefore $h_n^{-1} \leq n^{2/(p-q)} \leq n^2$ since $p - q \geq 1$. Then, $\delta_n^{-1} = (a_n h_n)^{-1} \leq n^{1/2} h_n^{-1} h_n^{(p-q)/4} \leq n^{5/2}$. Therefore, (B.18) is smaller than $4C \delta_n^{(d+p)/2} n^{-\gamma(C_3)} \leq 4C n^{5(d+p)/2-\gamma(C_3)}$. For C_3 large enough, we have $5(d+p)/2 - \gamma(C_3) < 0$ and $n^{5(d+p)/2-\gamma(C_3)} \to 0$. This completes the proof.

If we assume $|\tilde{Y}_i| < M_2 < \infty$ almost surely, the requirement $a_n h_n^{(p-q)/2} = O(1)$ for the bandwidth can be dropped and the truncation step of the proof of Lemma 5 is no longer necessary.

Lemma 6. Under (E.1), (E.2), (E.3), (E.4), (H.1), (K.1), and $\int_{R^{p \times q}} K(||r_2||^2)$

$$dr_2 = 1,$$

$$\sup_{V \times s_0 \in A} \left| t_l^{(l)}(V, s_0) + 1_{l=2} \tilde{h}(V, s_0) - \mathbb{E} \left(t_n^{(l)}(V, s_0) \right) \right| = O(h_n), \quad l = 0, 1, 2$$

where $t_l^{(l)}(V, s_0)$ and $\tilde{h}(V, s_0)$ are defined in Theorem A.2.

Proof of Lemma 6. Let $\tilde{g}(r_1, r_2) = g(\bar{B}^T s_0 + \bar{B}^T V r_1 + \bar{B}^T U r_2)^T f_X(s_0 + V r_1 + U r_2)$, where r_1, r_2 satisfy the orthogonal decomposition (A.1).

$$\mathbb{E} \left(t_n^{(l)}(V, s_0) \right) = \mathbb{E} \left(K(d_i(V, s_0)/h_n) \right) h_n^{(p-q)/2}$$
\[E(t^{(1)}_n(V, s_0)) = E\left(K(d_i(V, s_0)/h_n)g(\overline{B}^T X_i) \right)/h_n^{(p-q)/2} \]
\[+ E\left(K(d_i(V, s_0)/h_n) \mathbb{E}(\xi_i | X) \right)/h_n^{(p-q)/2} \]
\[E(t^{(2)}_n(V, s_0)) = E\left(K(d_i(V, s_0)/h_n)g(\overline{B}^T X_i)^2 \right)/h_n^{(p-q)/2} \]
\[+ 2E\left(K(d_i(V, s_0)/h_n) \mathbb{E}(\xi_i^2 | X) \right)/h_n^{(p-q)/2} \]
\[+ E\left(K(d_i(V, s_0)/h_n) \mathbb{E}(\xi_i^2 | X) \right)/h_n^{(p-q)/2} \]

Then
\[E\left(t^{(l)}_n(V, s_0) \right) = \int_{\mathbb{R}^{p-q}} K(\|r_2\|^2) \int_{\mathbb{R}^p} \tilde{g}(r_1, h_n^{1/2} r_2) dr_1 dr_2 \] (B.22)

holds by Lemma 2 for \(l = 0, 1 \). For \(l = 2, \tilde{Y}_i^2 = g_i^2 + 2g_i \epsilon_i + \epsilon_i^2 \) with \(g_i = g(\overline{B}^T X_i) \) and can be handled as in the case of \(l = 0, 1 \). Plugging in (B.22) the second order Taylor expansion for some \(\xi \) in the neighborhood of 0, \(\tilde{g}(r_1, h_n^{1/2} r_2) = \tilde{g}(r_1, 0) + h_n^{1/2} \nabla r_2 \tilde{g}(r_1, 0)^T r_2 + h_n \nabla^2 r_2 \tilde{g}(r_1, 0) r_2, \) yields

\[E\left(t^{(l)}_n(V, s_0) \right) = \int_{\mathbb{R}^q} \tilde{g}(r_1, 0) dr_1 \]
\[+ \sqrt{h_n} \left(\int_{\mathbb{R}^p} \nabla r_2 \tilde{g}(r_1, 0) dr_1 \right)^T \int_{\mathbb{R}^{p-q}} K(\|r_2\|^2) r_2 dr_2 + h_n^{1/2} \int_{\mathbb{R}^{p-q}} K(\|r_2\|^2) \int_{\mathbb{R}^p} r_2^T \nabla^2 r_2 \tilde{g}(r_1, 0) r_2 dr_1 dr_2 = t^{(l)}(V, s_0) + h_n^{1/2} R(V, s_0) \]

since \(\int_{\mathbb{R}^p} \tilde{g}(r_1, 0) dr_1 = t^{(l)}(V, s_0) \) and \(\int_{\mathbb{R}^{p-q}} K(\|r_2\|^2) r_2 dr_2 = 0 \in \mathbb{R}^{p-q} \) due to \(K(\|\cdot\|^2) \) being even. Let \(R(V, s_0) = \int_{\mathbb{R}^{p-q}} K(\|r_2\|^2) \int_{\mathbb{R}^p} r_2^T \nabla^2 r_2 \tilde{g}(r_1, 0) r_2 dr_1 dr_2. \) By (E.4) and (E.2), \(r_2^T \nabla^2 r_2 \tilde{g}(r_1, 0) r_2 \leq C\|r_2\|^2 \) for \(C = \sup_{x,y} \|\nabla^2 r_2 \tilde{g}(x,y)\| < \infty \), since a continuous function over a compact set is bounded. Then, \(R(V, s_0) \leq CC_4 \int_{\mathbb{R}^{p-q}} K(\|r_2\|^2)\|r_2\|^2 dr_2 < \infty \) for some \(C_4 > 0 \), since the integral over \(r_1 \) is over a compact set by (E.2).

Lemma 7 follows directly from Lemmas 5 and 6 and the triangle inequality.

Lemma 7. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. If \(a_n^2 = \log(n)/nh_n^{(p-q)/2} = o(1), \) and \(a_n/h_n^{(p-q)/2} = O(1) \), then for \(l = 0, 1, 2 \)
\[\sup_{V \times s_0 \in A} \left| t^{(l)}(V, s_0) + 1_{l=2} \tilde{h}(V, s_0) - t^{(l)}(V, s_0) \right| = O_P(a_n + h_n) \]
Theorem B.1. Suppose (E.1), (E.2), (E.3), (E.4), (K.1), (K.2), (H.1) hold. Let \(a_n^2 = \log(n)/n^{(p-q)/2} = o(1) \), \(a_n/n^{(p-q)/2} = O(1) \), then
\[
\sup_{V \times s_0 \in A} \left| \bar{y}_l(V, s_0) - \mu_l(V, s_0) - 1_{\{l=2\}} \hat{h}(V, s_0) \right| = O_P(1), \quad l = 0, 1, 2
\]
and
\[
\sup_{V \times s_0 \in A} \left| \hat{L}_n(V, s_0) - \hat{L}(V, s_0) \right| = O_P(1) \tag{B.23}
\]
where \(\bar{y}_l(V, s_0) \), \(\mu_l(V, s_0) \), \(\hat{L}_n(V, s_0) \) and \(\hat{L}(V, s_0) \) are defined in (4.3), (A.4), (4.4) and (A.3), respectively.

Proof of Theorem B.1. Let \(\delta_n = \inf_{V \times s_0 \in A_n} t^{(0)}(V, s_0) \), where \(t^{(0)}(V, s_0) \) is defined in (A.5), and \(A_n = S(p, q) \times \{ x \in \text{supp}(f_x) : |x - \partial C| \geq b_n \} \), where \(\partial C \) denotes the boundary of the set \(C \) and \(|x - C| = \inf_{r \in C} |x - r| \), for a sequence \(b_n \rightarrow 0 \) so that \(\delta_n^{-1}(a_n + h_n) \rightarrow 0 \) for any bandwidth \(h_n \) that satisfies the assumptions. Then,
\[
\bar{y}_l(V, s_0) = \frac{t_n^{(l)}(V, s_0)}{t_n^{(0)}(V, s_0)} = \frac{t_n^{(l)}(V, s_0)/t^{(0)}(V, s_0)}{t_n^{(0)}(V, s_0)/t^{(0)}(V, s_0)} \tag{B.24}
\]
We consider the numerator and denominator of (B.24) separately. By Lemma 7
\[
\sup_{V \times s_0 \in A_n} \left| \frac{t_n^{(l)}(V, s_0)}{t_n^{(0)}(V, s_0)} - 1 \right| \leq \frac{\sup_A \left| t_n^{(l)}(V, s_0) - t_n^{(0)}(V, s_0) \right|}{\inf_{A_n} t_n^{(0)}(V, s_0)} = O_P(\delta_n^{-1}(a_n + h_n))
\]
and therefore by \(A_n \uparrow A = S(p, q) \times \text{supp}(f_x) \),
\[
\lim_{n \rightarrow \infty} \sup_{V \times s_0 \in A_n} \left| \frac{t_n^{(l)}(V, s_0)}{t_n^{(0)}(V, s_0)} - \mu_l(V, s_0) \right| = \lim_{n \rightarrow \infty} \sup_{V \times s_0 \in A} \left| \frac{t_n^{(l)}(V, s_0)}{t_n^{(0)}(V, s_0)} - \mu_l(V, s_0) \right|
\]
Substituting in (B.24), we obtain
\[
\bar{y}_l(V, s_0) = \frac{t_n^{(l)}(V, s_0)/t^{(0)}(V, s_0)}{t_n^{(0)}(V, s_0)/t^{(0)}(V, s_0)} = \frac{\mu_l + O_P(\delta_n^{-1}(a_n + h_n))}{1 + O_P(\delta_n^{-1}(a_n + h_n))} = \mu_l + O_P(\delta_n^{-1}(a_n + h_n)).
\]
For \(l = 2 \), \(\bar{Y}_0^2 = g(\hat{B}^T X_i)^2 \) and (B.23) follows from (A.3). □

Lemma 8. Under (E.1), (E.2), (E.4), there exists \(0 < C_5 < \infty \) such that
\[
|\mu_l(V, s_0) - \mu_l(V_j, s_0)| \leq C_5 \| P_V - P_{V_j} \| \tag{B.25}
\]
for all interior points \(s_0 \in \text{supp}(f_X) \).
Proof. From the representation $\tilde{L}^{(i)}(P_V, s_0)$ in (A.15) instead of $t^{(i)}(V, s_0)$, we consider $\mu_l(V, s_0) = \mu_l(P_V, s_0)$ as a function on the Grassmann manifold since $P_V \in Gr(p, q)$. Then,

$$|\mu(P_V, s_0) - \mu(P_{V_j}, s_0)| = \frac{|\tilde{L}^{(i)}(P_V, s_0) - \tilde{L}^{(i)}(P_{V_j}, s_0)|}{|\tilde{L}^{(i)}(P_V, s_0)|} \leq \sup \frac{|\tilde{L}^{(i)}(P_V, s_0)|}{(\inf \tilde{L}^{(i)}(P_V, s_0))^2} \frac{|\tilde{L}^{(i)}(P_V, s_0) - \tilde{L}^{(i)}(P_{V_j}, s_0)|}{|\tilde{L}^{(i)}(P_V, s_0)|}$$

with $\sup_{P_V \in Gr(p, q)} \tilde{L}^{(i)}(P_V, s_0) \in (0, \infty)$ and $\inf_{P_V \in Gr(p, q)} \tilde{L}^{(i)}(P_V, s_0) \in (0, \infty)$ since $\tilde{L}^{(i)}$ is continuous, $\Sigma_x > 0$ and $s_0 \in supp(f_x)$ an interior point.

By (E.2) and (E.4), $\bar{g}(x) = g(B^T x) f_x(x)$ is twice continuous differentiable and therefore Lipschitz continuous on compact sets. We denote its Lipschitz constant by $L < \infty$. Therefore,

$$\left|\tilde{L}^{(i)}(P_V, s_0) - \tilde{L}^{(i)}(P_{V_j}, s_0)\right| \leq \frac{L}{(\inf \tilde{L}^{(i)}(P_V, s_0))^2} \int_{supp(f_x)} |\bar{g}(s_0 + P_V r) - \bar{g}(s_0 + P_{V_j} r)| dr$$

$$\leq L \int_{supp(f_x)} \|P_V - P_{V_j}\| dr \leq L \left(\int_{supp(f_x)} r\|dr\right) \|P_V - P_{V_j}\|$$

where the last inequality is due to the sub-multiplicativity of the Frobenius norm and the integral being finite by (E.2). Plugging (B.27) in (B.26) and collecting all constants into C_5 yields (B.25).

Proof of Theorem 5.1. By (4.5) and (3.2),

$$\left|L_n(V, f) - L^*(V, f)\right| \leq \left|\frac{1}{n} \sum_i \left(\tilde{L}_n(V, X_i, f) - \tilde{L}(V, X_i, f)\right)\right|$$

$$+ \left|\frac{1}{n} \sum_i \left(\tilde{L}(V, X_i, f) - \mathbb{E}(\tilde{L}(V, X, f))\right)\right|$$

By Theorem B.1,

$$\left|\frac{1}{n} \sum_i \tilde{L}_n(V, X_i, f) - \tilde{L}(V, X_i, f)\right| \leq \sup_{V, s_0 \in A} \left|\tilde{L}_n(V, s_0, f) - \tilde{L}(V, s_0, f)\right| = o_p(1)$$

The second term in (B.28) converges to 0 almost surely for all $V \in S(p, q)$ by the strong law of large numbers. In order to show uniform convergence the same technique as in the proof of Theorem 5 is used. Let $B_j = \{V \in S(p, q) :$
\[\|VV^T - V_jV_j^T\| \leq \tilde{a}_n \} \text{ be a cover of } S(p,q) \subset \bigcup_{j=1}^N B_j \text{ with } N \leq C\tilde{a}_n^{-d} = C(n/\log(n))^{d/2} \leq Cn^{d/2}, \text{ where } d = \dim(S(p,q)) \text{ is defined in the proof of Theorem 5.} \] By Lemma 8,

\[|\mu_t(V, X_t) - \mu_t(V_j, X_j)| \leq C_5\|P_V - P_{V_j}\| \quad (B.29) \]

Let \(G_n(V, f) = \sum_i \tilde{L}(V, X_i, f)/n \) with \(\mathbb{E}(G_n(V)) = L^*(V, f) \). Using (B.29) and following the same steps as in the proof of Lemma 5 we obtain

\[|G_n(V, f) - L^*(V, f)| \leq |G_n(V, f) - G_n(V_j, f)| + |G_n(V_j, f) - L^*(V_j, f)| + |L^*(V, f) - L^*(V_j, f)| \leq 2C_6\tilde{a}_n + |G_n(V_j, f) - L^*(V_j, f)| \quad (B.30) \]

for \(V \in B_j \) and some \(C_6 > C_5 \). Inequality (B.30) leads to

\[\mathbb{P}\left(\sup_{V \in S(p,q)} |G_n(V, f) - L^*(V, f)| > 3C_6\tilde{a}_n \right) \leq Cn^{d/2}\mathbb{P}\left(\sup_{V \in B_j} |G_n(V, f) - L^*(V, f)| > 3C_6\tilde{a}_n \right) \leq Cn^{d/2}\mathbb{P}\left(|G_n(V_j, f) - L^*(V_j, f)| > C_6\tilde{a}_n \right) \leq Cn^{d/2n^{-\gamma(C_6)}} \to 0 \quad (B.31) \]

where the last inequality in (B.31) is due to (B.8) with \(Z_i = \tilde{L}(V_j, X_i, f) \), which is bounded since \((\cdot, \cdot)\) is continuous on the compact set \(A \), and \(\gamma(C_6) \) a monotone increasing function of \(C_6 \) that can be made arbitrarily large by choosing \(C_6 \) accordingly. Therefore, \(\sup_{V \in S(p,q)} |L_n^*(V, f) - L^*(V, f)| \leq o_P(1) + O_P(\tilde{a}_n) \) which implies Theorem 5.1.

Proof of Theorem 5.2. We apply [2, Thm 4.1.1] to obtain consistency of the conditional variance estimator. This theorem requires three conditions that guarantee the convergence of the minimizer of a sequence of random functions \(L_n^*(P_V, f_t) \) to the minimizer of the limiting function \(L^*(P_V, f_t) \); i.e., \(P_{\text{span}(B_f^t)} = \arg\min L_n^*(P_V, f_t) \to P_{\text{span}(B_f^t)} = \arg\min L^*(P_V, f_t) \) in probability. To apply the theorem three conditions have to be met: (1) The parameter space is compact; (2) \(L_n^*(P_V, f_t) \) is continuous in \(P_V \) and a measurable function of the data \((Y_i, X_i^T)_{i=1,\ldots,n}\), and (3) \(L_n^*(P_V, f_t) \) converges uniformly to \(L^*(P_V, f_t) \) and \(L^*(P_V, f_t) \) attains a unique global minimum at \(S_{\mathbb{E}(f_t(Y)|X)}^\perp \).

Since \(L_n^*(V, f_t) \) depends on \(V \) only through \(P_V = VV^T \), \(L_n^*(V, f_t) \) can be considered as functions on the Grassmann manifold, which is compact, and the same holds true for \(L^*(V, f_t) \) by (A.15). Further, \(L_n^*(V, f_t) \) is by definition a measurable function of the data and continuous in \(V \) if a continuous kernel, such as the Gaussian, is used. Theorem 5.1 obtains the uniform convergence and Theorem A.2 that the minimizer is unique when \(L(V) \) is minimized over the Grassmann manifold \(G(p,q) \), since \(S_{\mathbb{E}(f_t(Y)|X)} = \text{span}\{\mathbb{B}\} \) is uniquely identifiable and so is \(\text{span}\{\mathbb{B}\}^\perp \) (i.e. \(\|P_{\text{span}(\mathbb{B})^\perp} - P_{\text{span}(\mathbb{B})}\| = \|\mathbb{B}_{t_i}(\mathbb{B}_{t_i})^T - \mathbb{B}\mathbb{B}^T\| = \|\mathbb{B}_{t_i}(\mathbb{B}_{t_i})^T - \mathbb{B}\mathbb{B}^T\| = \|\mathbb{B}_{t_i}(\mathbb{B}_{t_i})^T - \mathbb{B}\mathbb{B}^T\| = \)
Markov’s and triangle inequalities and Fatou’s Lemma,

Proof of Theorem 5.3. Let \((t_j)_{j=1,...,m_n}\) be an i.i.d. sample from \(F_T\) and write

\[
|L_{n,F}(V) - L_F(V)| = \left| \frac{1}{m_n} \sum_{j=1}^{m_n} (L_n^*(V, f_{t_j}) - L^*(V, f_{t_j})) \right|
\]

Then, \(\sup_{V \in S(p,q)} |L_n^*(V, f_{t_j}) - L^*(V, f_{t_j})| \leq 8M^2\), by the triangle inequality and the assumption that \(\sup_{t \in \Omega_T} |f_t(Y)| < M < \infty\). That is, \(L_n^*(V, f_{t_j})\) estimates a variance of a bounded response \(f_t(Y) \in [-M, M]\) and is therefore bounded by the squared range \(4M^2\) of \(f_t(Y)\). The same holds true for \(L^*(V, f_{t_j})\). Further, \(8M^2\) is an integrable dominant function so that Fatou’s Lemma applies.

Consider the first term on the right hand side of (B.32) and let \(\delta > 0\). By Markov’s and triangle inequalities and Fatou’s Lemma,

\[
\limsup_n \mathbb{P} \left(\sup_{V \in S(p,q)} \left| \frac{1}{m_n} \sum_{j=1}^{m_n} L_n^*(V, f_{t_j}) - L^*(V, f_{t_j}) \right| > \delta \right)
\]

\[
\leq \frac{1}{\delta} \limsup_n \mathbb{E}_{F_T} \left(\mathbb{E} \left(\sup_{V \in S(p,q)} \left| \frac{1}{m_n} \sum_{j=1}^{m_n} L_n^*(V, f_{t_j}) - L^*(V, f_{t_j}) \right| \right) \right)
\]

\[
\leq \frac{1}{\delta} \limsup_n \mathbb{E}_{F_T} \left(\frac{1}{m_n} \sum_{j=1}^{m_n} \mathbb{E} \left(\sup_{V \in S(p,q)} |L_n^*(V, f_{t_j}) - L^*(V, f_{t_j})| \right) \right)
\]

\[
= \frac{1}{\delta} \limsup_n \mathbb{E}_{F_T} \left(\mathbb{E} \left(\sup_{V \in S(p,q)} |L_n^*(V, f_{t_j}) - L^*(V, f_{t_j})| \right) \right)
\]

\[
\leq \frac{1}{\delta} \mathbb{E}_{F_T} \left(\mathbb{E} (\limsup_n \sup_{V \in S(p,q)} |L_n^*(V, f_{t_j}) - L^*(V, f_{t_j})|) \right) = \frac{1}{\delta} \mathbb{E}_{t \sim F_T} (\mathbb{E}(0)) = 0
\]

since by Theorem 5.1 it holds \(\limsup_n \sup_{V \in S(p,q)} |L_n^*(V, f_{t_j}) - L^*(V, f_{t_j})| = 0\). The first inequality results from applying the Markov inequality.

For the second term on the right hand side of (B.32) we apply Theorem 2 of [17] in [23, p. 40]:

Theorem B.2. Let \(t_j\) be an i.i.d. sample and \(L^*(V, f_t) : \Theta \times \Omega_T \to \mathbb{R}\) where \(\Theta\) is a compact subset of an euclidean space. \(L^*(V, f_t)\) is continuous in \(V\) and measurable in \(t\) by Theorem A.2. If \(L^*(V, f_t) \leq h(t_j)\), where \(h(t_j)\) is integrable with respect to \(F_T\), then

\[
\frac{1}{m_n} \sum_{j=1}^{m_n} L^*(V, f_{t_j}) \to \mathbb{E}_{F_T} (L^*(V, f_t)) \text{ uniformly over } V \in \Theta \text{ a.s. as } n \to \infty
\]
Here \(\mathbf{V} \in \mathcal{S}(p, q) = \Theta \subseteq \mathbb{R}^{pq} \), by sup\(\Omega_{\mathcal{T}} \| f_t(Y) \| < M < \infty \) and an analogous argument as for the first term in (B.32), \(Z_j(\mathbf{V}) = L^*(\mathbf{V}, f_{t_j}) < 4M^2 \). Therefore, \(\mathbb{E}(\sup_{\mathbf{V} \in \mathcal{S}(p, q)} \| Z_j(\mathbf{V}) \|) < 4M^2 \), which is integrable. Further, since \(t_j \) are an i.i.d. sample from \(F_{\mathcal{T}} \), \(Z_j(\mathbf{V}) \) is an i.i.d. sequence of random variables, \(Z_j(\mathbf{V}) \) is continuous in \(\mathbf{V} \) by Theorem A.2 and the parameter space \(\mathcal{S}(p, q) \) is compact. Then by Theorem B.2,

\[
\sup_{\mathbf{V} \in \mathcal{S}(p, q)} \left| \frac{1}{m_n} \sum_{j=1}^{m_n} L^*(\mathbf{V}, f_{t_j}) - \mathbb{E}_{t \sim F_{\mathcal{T}}}(L^*(\mathbf{V}, f_t)) \right| \to 0 \quad \text{a.s. as } n \to \infty
\]

if \(\lim_{n \to \infty} m_n = \infty \). Putting everything together it follows that \(\sup_{\mathbf{V} \in \mathcal{S}(p, q)} |L_{n, \mathcal{T}}(\mathbf{V}) - L_{\mathcal{T}}(\mathbf{V})| \to 0 \) in probability as \(n \to \infty \).

Proof of Theorem 5.4. The proof is directly analogous to the proof of Theorem 5.2. The uniform convergence of the target function \(L_{n, \mathcal{T}}(\mathbf{V}) \) is obtained by Theorem 5.3. The minimizer over \(Gr(p, q) \) and its uniqueness derive from Theorem 3.1.

Proof of Theorem 4.1. In this proof we suppress the dependence on \(f \) in the notation. The Gaussian kernel \(K \) satisfies \(\partial_z K(z) = -zK(z) \). From (4.2) and (4.4) we have \(\hat{L}_n = \hat{y}_2 - \bar{y}_1 \) where \(\bar{y}_1 = \sum_i w_i \bar{Y}_i , t = 1, 2 \). We let \(K_j = K(d_j(\mathbf{V}, \mathbf{s}_0)/h_n) \), suppress the dependence on \(\mathbf{V} \) and \(\mathbf{s}_0 \) and write \(w_i = K_i / \sum_j K_j \). Then, \(\nabla K_i = (-1/h_n) K_i d_i \nabla d_i \) and \(\nabla w_i = -\left(K_i d_i \nabla d_i (\sum_j K_j) - K_i \sum_j K_j d_j \nabla d_j \right) / (h_n \sum_j K_j)^2 \). Next,

\[
\nabla \hat{y}_l = -\frac{1}{h_n^2} \sum_i \bar{Y}_i \frac{K_i d_i \nabla d_i - \sum_j K_j d_j \nabla d_j}{(\sum_j K_j)^2} \]

\[
= \frac{1}{h_n^2} \sum_i \bar{Y}_i w_i d_i \nabla d_i - \frac{\sum_j \bar{Y}_j w_j \sum_i w_i d_i \nabla d_i}{(\sum_j K_j)^2} \]

\[
= \frac{1}{h_n^2} \left(\sum_i (\bar{Y}_i - \bar{y}_1) w_i d_i \nabla d_i \right) \quad (B.33)
\]

Then, \(\nabla \hat{L}_n = \nabla \hat{y}_2 - 2\hat{y}_1 \nabla \hat{y}_1 \), and inserting \(\nabla \hat{y}_l \) from (B.33) yields

\[
\nabla \hat{L}_n = (-1/h_n^2) \sum_i (Y_i^2 - \bar{y}_2 - 2\bar{y}_1 (Y_i - \bar{y}_1)) w_i d_i \nabla d_i \]

\[
= (1/h_n^2) \sum_i \left(\hat{L}_n - (Y_i - \bar{y}_1)^2 \right) w_i d_i \nabla d_i \]

since \(Y_i^2 - \bar{y}_2 - 2\bar{y}_1 (Y_i - \bar{y}_1) = (Y_i - \bar{y}_1)^2 - \hat{L}_n \).
Acknowledgments

The authors thank Daniel Kapla for his programming assistance. Daniel Kapla also co-authored the CVE R package that implements the proposed method.

References

