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Abstract: This paper deals with the drift estimation in linear stochastic
evolution equations (with emphasis on linear SPDEs) with additive frac-
tional noise (with Hurst index ranging from 0 to 1) via least-squares pro-
cedure. Since the least-squares estimator contains stochastic integrals of
divergence type, we address the problem of its pathwise (and robust to
observation errors) evaluation by comparison with the pathwise integral of
Stratonovich type and using its chain-rule property. The resulting path-
wise LSE is then defined implicitly as a solution to a non-linear equation.
We study its numerical properties (existence and uniqueness of the solu-
tion) as well as statistical properties (strong consistency and the speed of
its convergence). The asymptotic properties are obtained assuming fixed
time horizon and increasing number of the observed Fourier modes (space
asymptotics). We also conjecture the asymptotic normality of the pathwise
LSE.
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1. Introduction

Least-squares type estimators of an unknown drift parameter have recently be-
come very popular in the setting of (semi)linear SPDEs driven by an infinite-di-
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mensional Brownian motion, because they have advantageous asymptotic prop-
erties (they basically coincide with MLE estimators in this case) and are rel-
atively easy to implement. For recent theoretical works, the reader may check
[27], [7], [2] or [3] to name just a few. The theory for models with Brownian mo-
tion has reached certain level of maturity so that it enables several interesting
practical applications, such as [1] or [26].

Wide range of randomly evolving phenomena are forced with auto-correlated
noise, which can be effectively modeled by a fractional Brownian motion (fBm).
Stochastic evolution equations driven by a fBm appear in diverse fields such
as biology, neuroscience, hydrology, climatology, finance and many others (see
e.g. monographs [5] or [23] for discussion). Least-squares estimators of the drift
parameter for continuously observed trajectories of solutions to one-dimensional
linear equations with additive fractional noise have been studied in [13] for Hurst
index H ≥ 1/2 and [14] for general H ∈ (0, 1).

The available literature on parameter estimation for infinite-dimensional equa-
tions driven by an (infinite-dimensional) fBm is rather sparse. A least-squares
estimator for a one-dimensional projection of the solution has been studied in
long-span asymptotic regime in [22] assuming the regular caseH ≥ 1/2. Drift es-
timation in spectral setting (Fourier modes are observed) for infinite-dimensional
equations with fractional noise has been studied in [8] (MLE approach,H ≥ 1/2)
and [17] (ergodic-type estimator, H ∈ (0, 1)). We are not aware of any study on
LSE in spectral setting (Fourier modes are observed) for these models.

LSE-type estimators typically contain stochastic integrals, which makes them
difficult to apply. For equations with Brownian noise, evaluations of Itô stochas-
tic integrals may be sensitive to small perturbations of trajectories. A robust
version of LSE can be obtained by application of Itô formula (for simple equa-
tions) or rough path theory (more complex equations), see [11]. The least-squares
estimators for equations with fBm incorporate divergence-type integrals (some-
times called the Skorokhod integrals). These are not defined pathwise, but rather
as the adjoint operators to Malliavin derivatives, which makes them extremely
difficult (if not impossible) to evaluate from the observed trajectory in practice
or in simulations, which prevents them from wider use. To avoid these com-
plications, the authors in [14] switched to the ergodic-type estimator for one-
dimensional fractional Ornstein-Uhlenbeck process, which contains only Rie-
mann integrals. Estimators of ergodic type for more general equations driven by
a finite-dimensional fBm were recently studied in [25]. Application of this ergodic
approach in the spectral setting for infinite-dimensional equations corresponds
to the weighted minimum-contrast estimator (weighted MCE) introduced in
[17]. Such estimator is plausible for stationary processes, but fails for processes
at far-from-stationary state and is difficult to generalize to more complex equa-
tions, because (in contrast to LSE) it requires ergodicity and precise knowledge
of the limiting covariance operator.

In this paper, we start with derivation of a new spectral version of the least-
squares estimator (theoretical LSE) for an unknown drift parameter in linear
SPDEs driven by an additive infinite-dimensional fractional Brownian motion
and prove its strong consistency in space (incl. speed of convergence) by the
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tools of Malliavin calculus. We choose to work in spectral setting (observations
in spectral space domain rather than in physical space domain are available) and
to study asymptotic properties under increasing number of the observed Fourier
modes while time horizon is fixed. Such approach makes it possible to consis-
tently (with error approaching zero) estimate the unknown parameter based on
observations in fixed time horizon, but with sufficient detail in space (number
of Fourier modes). This is particularly useful for observations having limited
time horizon but high space resolution/detail. It contrasts to more typical time
asymptotics, which assumes increasing time horizon and which is not studied
here. Moreover, sever complications with its numerical evaluation has led us
to construct a pathwise version of the LSE, which is defined (and computable)
from the observed trajectory and which is robust to small perturbations in the
observations.

Our construction of the robust pathwise LSE is inspired by the work [11]. It is
based on calculation of pathwise Stratonovich integral, which can be expressed
explicitly in our case, and compensation for difference between Stratonovich and
divergence-type integrals. In our setting with fBm, this leads to an implicitly
defined estimator. We prove its existence and uniqueness, as well as its strong
consistency in space. Surprisingly, if H > 1/2, it has slightly better performance
than the theoretical LSE. To our best knowledge, this is the first attempt to
define a pathwise robust LSE for equations driven by fBm. We believe that this
pathwise least-squares approach is applicable also for different models with fBm
(such as those in [22] or [14]) and may offer estimators applicable in practice or
in simulations.

Main purpose of this paper is to make the first step in the development of
a theoretical framework necessary for studying spectral asymptotic properties
as well as performing effective enumeration of the least-squares estimators for
stochastic evolution equations with infinite-dimensional auto-correlated noise.
The assumed linearity of the operators ensures reasonable clarity and simplicity
of the exposition. The next step would be to study this problem in the setting
of semilinear equations with non-linear lower order perturbation with numerous
practical applications. This, however, requires fine analysis of space regularity
of solutions and is beyond the scope of this work.

The paper is organized as follows. In section 2 we introduce the studied prob-
lem in more detail. The two new estimators – theoretical and pathwise LSE – are
derived in section 3. Existence and uniqueness of the implicitly defined pathwise
LSE is studied in section 4. Section 5 is devoted to the strong consistency of
the estimators. A simulation study is presented is section 6. Section 7 summa-
rizes main results and findings of this paper. In Appendix, we briefly describe
some elements of Malliavin calculus, which are useful for the asymptotic analy-
sis and outline the connection between cylindrical fractional Brownian motion
and Gaussian noise that is white in space and fractional in time.
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2. Problem setup

2.1. The model

Consider the evolution equation

dX(t) = λAX(t) dt+BX(t) dt+ dBH(t), X(0) = X0, (1)

in a real separable Hilbert space V where A,B are densely defined linear oper-
ators, BH is a cylindrical fractional Brownian motion on V , X0 ∈ V and λ is
a positive unknown parameter, which we want to estimate.

Throughout this paper we assume that the equation (1) is diagonalizable, i.e.
there exists an orthonormal basis {ek}∞k=1 in V such that for any k ∈ N we have

Aek = −αkek, Bek = −βkek, 〈BH(t), ek〉V = BH
k (t),

where αk ≥ 0 and βk ≥ 0. Furthermore, set

μk = λαk + βk, k ∈ N.

Remark 2.1. For existence of the solution to (1) in an appropriate interpolation
space, constructed via spectral decomposition, it suffices that for some γ ∈ R

∞∑
k=1

1

(1 + μk)γ
< ∞ (2)

holds. For more details and proof, see e.g. Theorem 2.1. (and Remark 2.1.) in
[17].

We assume (throughout the paper) that the existence condition (2) is satis-
fied. It also implies that

lim
k→∞

μk = ∞. (3)

Denote the Fourier modes (projections to eigenvectors) of the solution by
xk(t) = 〈X(t), ek〉V . By diagonality of the equation (1) these projections satisfy
the system of independent one-dimensional equations

dxk(t) = −μkxk(t) dt+ dBH
k (t), t > 0, k ∈ N,

xk(0) = 〈X0, ek〉V ,
(4)

where {BH
k (t), t ≥ 0} are mutually independent real-valued fractional Brownian

motions with the same Hurst index H ∈ (0, 1).
The solutions to the equations (4) are mutually independent real-valued frac-

tional Ornstein-Uhlenbeck processes given by a formula

xk(t) = e−μktxk(0) +

∫ t

0

e−μk(t−s) dBH
k (t), t ≥ 0. (5)

for any k ∈ N.
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Remark 2.2. If the operators A,B from (1) are negative definite self-adjoint
elliptic linear differenetial operators of even orders 2m1, 2m2 (m1,m2 ∈ N), re-
spectively, acting on a compact d-dimensional manifold, then (see [30])

αk ∼ k2m1/d, and βk ∼ k2m2/d, (6)

where

ak ∼ bk means that ak/bk → C ∈ (0,∞) as k → ∞. (7)

Such operators are of great interest as they frequently appear in various stochas-
tic PDEs.

2.2. Statistical problem

To estimate the value of λ, we have continuous sample trajectories of the first
N Fourier modes observed on a fixed time-window [0, T ] at our disposal, i.e.
our data are

{
xk(t), t ∈ [0, T ]

}
, k = 1, . . . , N . We aim at deriving an estimator

that would be computable from this data and that would be consistent with
increasing number of Fourier modes N → ∞ (the so-called space asymptotics),
the time horizon T being fixed.

Remark 2.3. In this paper we assume that the Hurst parameter H is known.
If not, it can be consistently determined from a single continuous trajectory
of the process

{
x1(t), t ∈ [0, T ]

}
by some of various techniques developed for

estimating H for real-valued processes sampled under in-fill asymptotics regime
(discrete time observation with fixed time horizon and decreasing time step),
cf. [15], [12], [9], or [29]) to name just a few. If, moreover, the noise processes
for individual Fourier modes BH

k have different intensities (volatilities, denote
by σk), we can simultaneously and consistently estimate σk and H from the
observed modes under in-fill asymptotics regime using the powers of the second
order variations (see [4], Chapter 3.3) and subsequently eliminate different noise
intensities by appropriate rescaling of the observed processes xk.

3. Derivation of the estimator

3.1. Theoretical LSE

We derive the estimator for the drift parameter by applying the least-squares
concept to the SDEs understood as a system of linear regression models. In
particular, we find λ which minimizes (for fixed time horizont T ) the formal
sum

N∑
k=1

∫ T

0

(
ẋk(t) + μkxk(t)

)2
dt.

Note that this is only a heuristic technique, since time derivatives ẋk(t) do not
exist (in the classical sense). However, we can rewrite the minimizer back in
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terms of the well-defined stochastic integrals and Riemann integrals. It reads

λ̂N = −
∑N

k=1

∫ T

0
αkxk(t) dxk(t) +

∑N
k=1

∫ T

0
αkβkx

2
k(t) dt∑N

k=1

∫ T

0
α2
kx

2
k(t) dt

, (8)

where the stochastic integral is understood in the Skorokhod sense (sometimes
referred to as the divergence type integral). Applying the stochastic differential
from the equation (4) we obtain

λ̂N = λ−
∑N

k=1 αk

∫ T

0
xk(t) dB

H
k (t)∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt

. (9)

This form is convenient for proving the asymptotic properties of the estima-
tor λ̂N whereas the form (8) is better for derivation of the pathwise version of
the LSE for λ.

Remark 3.1. We did not specify the type of stochastic integral with respect to
the fBm in the equations (1) or (4), because all integration concepts coincide in
case of additive noise. However, the choice of the appropriate type of stochastic
integration in (9) (and in (8)) is critical, since the integrands are stochastic
processes here. The choice of the Skorokhod type integral is motivated by the
fact that its expectation is zero, which is advantageous for the error term in
(9) and will be utilized in the sequel. If we choose the pathwise Stratonovich
integral, for example, its nonzero expectation would generate unwanted bias in
(9) and the corresponding estimator would not be consistent.

3.2. Robust pathwise LSE

Although the Skorokhod type integral in (8) has advantageous probabilistic
properties, it is not constructed pathwise, but rather as the adjoint operator to
Malliavin derivative. This imposes sever complications to numerical evaluation
of the estimator λ̂N for the observed single trajectory. To overcome this issue,
we derive below its robust pathwise version.

The strategy, inspired by the paper [11], is to express the estimator in terms
of the pathwise Stratonovich integral (for definition, see [14]) with appropriate
compensation for difference between Stratonovich and Skorokhod integrals.∫ T

0

xk(t) dxk(t) =

∫ T

0

−μkx
2
k(t) dt+

∫ T

0

xk(t) dB
H
k (t)

=

∫ T

0

−μkx
2
k(t) dt+

(∫ T

0

xk(t) ◦ dBH
k (t)−Δ(μk)

)

=

∫ T

0

xk(t) ◦ dxk(t)−Δ(μk),

where
∫ T

0
xk(t)◦ dxk(t) stands for the pathwise Stratonovich integral and Δ(μk)

is the compensation. Since xk is in the first Wiener chaos (it is Gaussian), the
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compensation Δ(μk) takes rather simple form (see [14], formulas (3.4)-(3.6)):

Δ(μk) = E

[∫ T

0

xk(t) ◦ dBH
k (t)

]

=
1

2
T 2H

(
1− γ(1, μkT )

)
− μ−2H

k γ(2H + 1, μkT )
(
H − 1

2

)
+ THμ1−2H

k γ(2H,μkT ),

(10)

where

γ(h, T ) =

∫ T

0

e−xxh−1 dx.

Moreover, since Stratonovich integral satisfies the rules of the first order calculus,
we can easily evaluate (without need for rough path lift):∫ T

0

xk(t) ◦ dxk(t) =
x2
k(T )− x2

k(0)

2
.

This provides a simple pathwise formula for evaluation of the Skorokhod-type
integral ∫ T

0

xk(t) dxk(t) =
x2
k(T )− x2

k(0)

2
−Δ(μk),

and the corresponding formula for LSE

λ̂N = −
∑N

k=1 αk

(
x2
k(T )−x2

k(0)
2 −Δ(μk)

)
+

∑N
k=1 αkβk

∫ T

0
x2
k(t) dt∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt

.

Unfortunately, μk = αkλ + βk in this evaluation formula depend on the
unknown value of parameter λ. A natural workaround here is to define new es-
timator (the pathwise LSE) as a solution to the following equation (in unknown
Λ):

Λ = −
∑N

k=1 αk

(
x2
k(T )−x2

k(0)
2 −Δ(αkΛ + βk)

)
+

∑N
k=1 αkβk

∫ T

0
x2
k(t) dt∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt

. (11)

Remark 3.2. Although the theoretical LSE formula (8) does not explicitly con-
tain the Hurst parameters H, its value is needed to evaluate the stochastic
Skorokhod-type integral. Hence, it is present in defining equation for pathwise
(computable) version of LSE. However, since we consider continuous-time set-
ting, value of H can be determined exactly from continuous observation of a
single trajectory

{
xk(t), t ∈ [0, T ]

}
, as discussed above.

Remark 3.3. If H = 1/2 the pathwise LSE coincides with the theoretical LSE.
This follows from the fact that the right-hand side of (11) is constant (in Λ) in
this case, which is shown below.
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4. Existence and uniqueness of pathwise LSE

We can not expect the existence and uniqueness of the positive solution to (11)
in general. This can be seen on the simplest example of LSE for one-dimensional
Ornstein-Uhlenbeck process (driven by a Wiener process)

λ̂ = −
x2(T )−x2(0)

2 − T
2∫ T

0
x2(t) dt

,

which can provide negative estimates. We address this problem below by taking
positive part of the solution and specifying, which one to choose if there are
multiple solutions. To derive the conditions for the existence and uniqueness of
the positive solution to equation (11), we need to understand the properties of
the function on its right-hand side. Set

RN (Λ) = −
∑N

k=1 αk

(
x2
k(T )−x2

k(0)
2 −Δ(αkΛ + βk)

)
+

∑N
k=1 αkβk

∫ T

0
x2
k(t) dt∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt

,

(12)
with function Δ defined in (10). Direct calculations lead to the following formula
for its first derivative (after cancelling some terms)

dΔ

dμ
(μ) = H(1− 2H)

(
Tμ−2Hγ(2H,μT )− μ−2H−1γ(2H + 1, μT )

)
= H(1− 2H)μ−2H−1

∫ μT

0

e−ss2H−1(μT − s) ds⎧⎪⎨
⎪⎩
> 0 . . . H < 1/2

= 0 . . . H = 1/2

< 0 . . . H > 1/2

, ∀μ > 0,

(13)

and the second derivative

d2Δ

dμ2
(μ) = H(2H − 1)μ−2H−2

∫ μT

0

e−ss2H−1
(
2HμT − (2H + 1)s

)
ds⎧⎪⎨

⎪⎩
< 0 . . . H < 1/2

= 0 . . . H = 1/2

> 0 . . . H > 1/2

, ∀μ > 0,

(14)

in view of∫ μT

0

e−ss2H−1
(
2HμT − (2H + 1)s

)
ds

>

∫ μT2H/(2H+1)

0

e−μT2H/(2H+1)s2H−1
(
2HμT − (2H + 1)s

)
ds

+

∫ μT

μT2H/(2H+1)

e−μT2H/(2H+1)s2H−1
(
2HμT − (2H + 1)s

)
ds = 0.
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Derivatives of R are immediate consequence of (13) and (14)

dRN

dΛ
(Λ) =

∑N
k=1 α

2
k

dΔ
dμ (αkΛ + βk)∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt

⎧⎪⎨
⎪⎩
> 0 . . . H < 1/2

= 0 . . . H = 1/2

< 0 . . . H > 1/2

, ∀Λ > 0, (15)

and

d2RN

dΛ2
(Λ) =

∑N
k=1 α

3
k

d2Δ
dμ2 (αkΛ + βk)∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt

⎧⎪⎨
⎪⎩
< 0 . . . H < 1/2

= 0 . . . H = 1/2

> 0 . . . H > 1/2

, ∀Λ > 0.

Moreover, since

lim
μ→0+

Δ(μ) =
1

2
T 2H ,

we obtain
lim

Λ→0+
RN (Λ) =: RN (0) ∈ R. (16)

Direct calculations yield

lim
Λ→∞

RN (Λ) =

{
∞ . . . H < 1/2

R∞
N ∈ R . . . H ≥ 1/2

and
lim

Λ→∞
RN (Λ)− Λ = −∞, ∀H ∈ (0, 1).

The above properties of RN lead us to the following conclusion:

Theorem 4.1. Fix N and consider the function RN defined in (12) with RN (0)
defined in (16) and let H ∈ (0, 1). Sufficient condition for the existence and
uniqueness of the positive solution to equation (11), which can be rephrased as
RN (Λ) = Λ, is

RN (0) > 0.

If H ≥ 1/2, this condition is also necessary.

Note that the condition RN (0) > 0 can be easily verified from the data by
direct evaluation of RN at Λ = 0 (if βk are positive) or by calculating the limit
for Λ → 0+ (if βk are zero). We are now in a position to define the pathwise
LSE correctly:

λ̃N :=

⎧⎪⎨
⎪⎩
positive solution to (11), if it exists and is unique;

0, if there is no positive solution to (11);

the greater solution to (11), if there are two positive solutions.

(17)

Remark 4.1. The choice of the greater solution in the third case ensures that
dRN

dΛ (λ̃N ) < 1, which corresponds to the limiting behavior of dRN

dΛ in the neigh-
borhood of the true value λ, detailed in Lemma 5.4.
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Remark 4.2. Monotonicity and convexity (ifH > 1/2) or concavity (ifH < 1/2),
respectively, ensure that the Newton-Raphson numerical method is well suited
for numerical approximation of λ̃N .

5. Strong consistency

5.1. Strong consistency of theoretical LSE

We start with strong consistency of the theoretical LSE λ̂N defined in (8),
because it will be helpful to show strong consistency of the pathwise LSE in the
sequel. For simplicity, we assume throughout this section that

xk(0) = 0, k = 1, 2, . . .

The self-similarity of a fBm enables us to study the effect of different drifts
μk on the distributions of the processes xk. Its combination with the (long-
span) asymptotic behavior of a real-valued fractional Ornstein-Uhlenbeck pro-
cess, studied in [14], forms the strategy of the proof of the strong consistency

(in space) of λ̂N .
Using integration-by-parts in the formula (5) it is possible to show that the

solutions {xk(t), t ≥ 0} can be expressed as

xk(t) =

(
BH

k (t)− μke
−μkt

∫ t

0

eμksBH
k (s) ds

)
, t ≥ 0, (18)

for any k ∈ N. This can also be verified by direct substitution of (18) into the
integral form of equation (4).

Let {x̃k(t), t ≥ 0} be the solution to the equation with unit drift

dx̃k(t) = −x̃k(t) dt+ dBH
k (t), t > 0, k ∈ N,

x̃k(0) = 0,
(19)

given by the formula

x̃k(t) =

∫ t

0

e−(t−s) dBH
k (t), t ≥ 0,

or

x̃k(t) =

(
BH

k (t)−
∫ t

0

e−(t−s)BH
k (s) ds

)
, t ≥ 0, (20)

for any k ∈ N.
Using the self-similarity of a fractional Brownian motion in the expression (20)

we get the equality of distributions

{xk(t), t ≥ 0} d
=

{
1

μH
k

x̃k(μk t), t ≥ 0

}
(21)

for any k ∈ N.
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Moreover, let {y(t), t ≥ 0} be the stationary and ergodic solution to (19) (for
k = 1) given by a formula

y(t) = e−ty0 +

∫ t

0

e−(t−s) dBH
1 (t), t ≥ 0.

Then
E y(t) = 0, var

(
y(t)

)
= HΓ(2H)

for any t ≥ 0 and

1

T

∫ T

0

y2(t) dt −−−−→
T→∞

HΓ(2H) a.s. and in L1. (22)

Lemma 5.1. The following convergence

E

[
1

T

∫ T

0

(
x̃2
1(t)− y2(t)

)
dt

]
−−−−→
T→∞

0

holds.

Proof. We have

E

[
1

T

∫ T

0

(
x̃2
1(t)− y2(t)

)
dt

]

= E

[
1

T

(∫ T

0

2y(t)
(
x̃1(t)− y(t)

)
dt+

∫ T

0

(
x̃1(t)− y(t)

)2
dt

)]

=
1

T

(∫ T

0

−2e−t
E
[
y0 y(t)

]
dt+

∫ T

0

e−2t
E [y20 ] dt

)

=
1

T

∫ 1

0

−2e−t
E
[
y0 y(t)

]
dt+

1

T

∫ T

1

−2e−t
E
[
y0 y(t)

]
dt

+HΓ(2H)
1

T

∫ T

0

e−2t dt.

Obviously, the first and third term tend to zero as T goes to infinity. Also the
second term tends to zero due to [16], Lemma 3.1, and the limit properties of

E
[
y0 y(t)

]
=

1

2
2H(2H − 1)t2H−2 +O(t2H−4), t → ∞,

for H �= 1/2 (see [6], Theorem 2.3) and

E
[
y0 y(t)

]
=

1

2
e−t, t ≥ 0,

for the Wiener case H = 1/2.
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Define the weak asymptotic equivalence 
 for sequences {aN}N∈N, {bN}N∈N

by the relation(
aN 
 bN

)
≡

(
∃ 0 < l < L < ∞ such that l bN ≤ aN ≤ L bN , ∀N ∈ N

)
.

(23)
Note that this relation is weaker than the equivalence relation ∼ defined in (7).

Recall the formula (9) (suitable for probabilistic analysis) and denote

CN =

N∑
k=1

αk

∫ T

0

xk(t) dB
H
k (t),

and

DN =

N∑
k=1

α2
k

∫ T

0

x2
k(t) dt,

so that

λ̂N = λ− CN

DN
.

For the needs of Lemma A.1 we explore the limit behavior of the variance of
CN

EDN
and DN

EDN
. Denote for a fixed T

Tk := μkT, k ∈ N.

Proposition 5.1. The expectations of CN and DN satisfy

ECN = 0 and EDN 

N∑

k=1

α2
k

μ2H
k

.

Proof. The first part is obvious. By Lemma 5.1

E

[
1

T

∫ T

0

x̃2
1(t) dt

]
−−−−→
T→∞

HΓ(2H),

thus the sequence
{
1/Tk

∫ Tk

0
E x̃2

1(t) dt
}
k∈N

is positive and bounded. Using (21)

and substitution we get

EDN =

N∑
k=1

α2
k

∫ T

0

Ex2
k(t) dt =

N∑
k=1

α2
k

μ2H
k

∫ T

0

E x̃2
k(μkt) dt

=

N∑
k=1

α2
k

μ2H
k

∫ T

0

E x̃2
1(μkt) dt =

N∑
k=1

α2
k

μ2H
k

T
1

Tk

∫ Tk

0

E x̃2
1(t) dt 


N∑
k=1

α2
k

μ2H
k

.

To study the time asymptotics of var
( ∫ T

0
x̃2
1(t) dt

)
, we utilize the results

from [14]. Denote

FT :=

∫ T

0

x̃1(t) dB
H
1 (t) =

∫ T

0

(∫ t

0

e−(t−s) dBH
1 (s)

)
dBH

1 (t).
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By (3.9) in [14] this equals

FT =

[( x̃2
1(T )

2
− E

x̃2
1(T )

2

)
+

∫ T

0

(
x̃2
1(t)− E x̃2

1(t)
)
dt

]
. (24)

Further define

QH(T ) :=

⎧⎨
⎩

1
T , H < 3

4 ,
1

T log T , H = 3
4 ,

1
T 4H−2 , H > 3

4 .

Then by [14], Lemma 17, there exists a constant 0 < CH < ∞ such that

E
[
QH(T )F 2

T

]
−−−−→
T→∞

CH . (25)

As a consequence, we obtain:

Lemma 5.2. QH(T ) var
( ∫ T

0
x̃2
1(t) dt

)
−−−−→
T→∞

CH .

Proof. In the first step we show that var
(
x̃2
1(T )

)
−−−−→
T→∞

var y20 .

Since x̃1(T ) = y(T )− e−T y0, using the triangle inequality we obtain(√
E y2(T )− e−T

√
E y20

)2

≤E x̃2
1(T ) ≤

(√
E y2(T ) + e−T

√
E y20

)2

HΓ(2H)(1− e−T )2 ≤E x̃2
1(T ) ≤ HΓ(2H)(1 + e−T )2.

Similarly,
E y40 (1− e−T )4 ≤ E x̃4

1(T ) ≤ E y40 (1 + e−T )4.

Therefore

−−−−→
T→∞

var y2
0︷ ︸︸ ︷

E y40 (1− e−T )4 −
(
HΓ(2H)(1 + e−T )2

)2 ≤ var x̃2
1(T )

≤ E y40 (1 + e−T )4 −
(
HΓ(2H)(1− e−T )2

)2︸ ︷︷ ︸
−−−−→
T→∞

var y2
0

.

In the second step we apply (25) and the first step to equality (24) and yield
the statement.

Proposition 5.2. The variances of CN and DN satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H < 3
4 ⇒ varCN 


∑N
k=1

α2
k

μ4H−1
k

, varDN 

∑N

k=1

α4
k

μ4H+1
k

,

H = 3
4 ⇒ varCN 


∑N
k=1

α2
k

μ2
k

log Tk , varDN 

∑N

k=1

α4
k

μ4
k

log Tk,

H > 3
4 ⇒ varCN 


∑N
k=1

α2
k

μ2
k

, varDN 

∑N

k=1

α4
k

μ4
k

.
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Proof. Using again (3.9) in [14], (21) and the fact that {x̃k(t), t ≥ 0} have the
same law for all k ∈ N, we get equality of laws:∫ T

0

xk(t) dB
H
k (t)

d
=

1

μ2H
k

∫ Tk

0

x̃1(t) dB
H
1 (t)

for any k ∈ N. This implies that

varCN = var
( N∑

k=1

αk

∫ T

0

xk(t) dB
H
k (t)

)
=

N∑
k=1

α2
k var

(∫ T

0

xk(t) dB
H
k (t)

)

=

N∑
k=1

α2
k

μ4H
k

var
(∫ Tk

0

x̃1(t) dB
H
1 (t)

)
=

N∑
k=1

α2
k

μ4H
k

1

QH(Tk)
E
[
QH(Tk)F

2
Tk

]
,

where the last equality follows from the definition of FT . By (25) the sequence{
E
[
QH(Tk)F

2
Tk

]}
k∈N

is bounded and together with the definition of QH the
first part of the statements follows.

For the variance of DN , apply (21) to get

varDN = var
( N∑

k=1

α2
k

∫ T

0

x2
k(t) dt

)
=

N∑
k=1

α4
k var

(∫ T

0

x2
k(t) dt

)

=

N∑
k=1

α4
k

μ4H
k

var
(∫ T

0

x̃2
k(μkt) dt

)

=

N∑
k=1

α4
k

μ4H+2
k

1

QH(Tk)
QH(Tk) var

(∫ Tk

0

x̃2
1(t) dt

)
,

and Lemma 5.2 to obtain that the sequence
{
QH(Tk) var

( ∫ Tk

0
x̃2
1(t) dt

)}
k∈N

is bounded. The second parts of the statements are again concluded by the
definition of QH .

Combining Proposition 5.1 and Proposition 5.2 we obtain the asymptotic
formulas for variances of CN

EDN
and DN

EDN
.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H < 3
4 : var

CN

EDN



∑N
k=1

α2
k

μ4H−1
k(∑N

k=1
α2

k

μ2H
k

)2 , var
DN

EDN



∑N
k=1

α4
k

μ4H+1
k(∑N

k=1
α2

k

μ2H
k

)2 ,

H = 3
4 : var

CN

EDN



∑N
k=1

α2
k

μ2
k

log Tk(∑N
k=1

α2
k

μ
3/2
k

)2 , var
DN

EDN



∑N
k=1

α4
k

μ4
k

log Tk(∑N
k=1

α2
k

μ
3/2
k

)2 ,

H > 3
4 : var

CN

EDN



∑N
k=1

α2
k

μ2
k(∑N

k=1
α2

k

μ2H
k

)2 , var
DN

EDN



∑N
k=1

α4
k

μ4
k(∑N

k=1
α2

k

μ2H
k

)2 .
(26)
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Note that if for some c, δ > 0 and for all N ∈ N

var
CN

EDN
≤ cN−δ and var

DN

EDN
≤ cN−δ (27)

holds true then application of Lemma A.1
(
CN/EDN and (DN −EDN )/EDN

are in the second Wiener chaos, see (41) in Appendix
)
provides us with

CN

EDN
−−−−→
N→∞

0 and
DN

EDN
−−−−→
N→∞

1 a.s.

so that the strong consistency of the estimate

λ̂N = λ−
CN

EDN

DN

EDN

−−−−→
N→∞

λ a.s.

follows.
It is difficult to verify the sufficient conditions (27) in general and it should

be done on case-by-case basis. However, if we adopt assumption (6), often sat-
isfied for parabolic SPDEs, the calculations of asymptotic variances simplify
substantially.

Theorem 5.1. Let B ≡ 0, i.e. βk = 0 for all k ∈ N, and the power growth (6)

is satisfied for αk. Then λ̂N is strongly consistent for any m1, d ∈ N.

Proof. Denote the growth exponent of αk by M1 := 2m1/d. Then using for-
mula (26) we obtain

var
CN

EDN

 var

DN

EDN




⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k=1 k

M1(3−4H)(∑N
k=1 k

2M1(1−H)
)2 
 N−(M1+1) , H < 3

4 ,

∑N
k=1 log(k

M1T )(∑N
k=1 k

1/2M1

)2 
 N−(M1+1) logN , H = 3
4 ,

N(∑N
k=1 k

2M1(1−H)
)2 
 N−

(
4M1(1−H)+1

)
, H > 3

4 .

(28)

Thus (27) is satisfied for anym1, d, so the conclusion follows from Lemma A.1.

Theorem 5.2. Assume the power growth of eigenvalues αk and βk given in (6):

αk ∼ k2m1/d and βk ∼ k2m2/d.

(i) If m1 > m2 then λ̂N is strongly consistent for any m1,m2, d ∈ N,
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(ii) If m1 < m2 and

m1 >

{
−d

4 + 1
2m2 , H < 3

4 ,

−d
4 +m2(2H − 1) , H ≥ 3

4 ,

then λ̂N is strongly consistent.

Proof. (i) Applying again formula (26) we obtain the same estimates as in
the proof of Theorem 5.1 thus the conclusion follows.

(ii) For conciseness, we consider the canonical case (all the involved series have
power growth) only. The special cases, where some series in the expectation
of DN or the variances of CN , DN have logarithmic growth, have to be
analyzed separately. Nevertheless, they are covered by (ii) as well.
For var DN

EDN
we get the same estimates as in the proof of Theorem 5.1 but

with M1 substituted by M2 := 2m2/d. For var
CN

EDN
formula (26) yields

var
CN

EDN




⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k=1 k

2M1−M2(4H−1)(∑N
k=1 k

2(M1−HM2)
)2 
 N−2M1+M2−1 , H < 3

4 ,

∑N
k=1 k

2M1+2M2 log(kM2T )(∑N
k=1 k

2M1−3/2M2

)2 
 N−2M1+M2−1 logN, H = 3
4 ,

∑N
k=1 k

2(M1−M2)(∑N
k=1 k

2(M1−HM2)
)2 
 N−2

(
M1+M2(1−2H)

)
−1 , H > 3

4 .

(29)

These estimates give us the required relationship between m1,m2 and d
to meet (27). The rest follows from Lemma A.1.

Remark 5.1. The case m1 = m2 is reduced to the case of Theorem 5.1.

Remark 5.2. The expressions for var CN

EDN
given in formulas (28) and (29) show

the speed of the convergence of λ̂N to λ.

5.2. Strong consistency of pathwise LSE

In this subsection, strong consistency (as N → ∞) of λ̃N is demonstrated. We
continue to denote the true value of the unknown parameter by λ. Recall that
the theoretical LSE satisfies λ̂N = RN (λ). Hence, if λ̂N is strongly consistent
(e.g. if the conditions of Theorem 5.1 or Theorem 5.2 are satisfied), we have:

lim
N→∞

RN (λ) = λ.
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To show that the pathwise LSE λ̃N = RN (λ̃N ) is arbitrarily close to λ for
sufficiently large N , the limiting behavior of derivatives of RN is studied. The
following elementary observation will be useful in the sequel:

Lemma 5.3. Let ak, bk ≥ 0 for k = 1, 2, . . . , limk→∞ bk = b ∈ (0,∞), and∑∞
k=1 ak = ∞. Then

lim
N→∞

∑N
k=1 akbk∑N
k=1 akb

= 1.

Proof. It is a simple consequence of the Stolz–Cesaro theorem.

Next lemma bounds the derivatives of RN on a compact neighborhood of λ
from above by a constant smaller than one (for sufficiently large N):

Lemma 5.4. Let the power growth condition (6) be satisfied and H �= 1/2.
Further assume:

lim
k→∞

βk

αk
= c ∈ [0,∞], (30)

∞∑
k=1

α2
k

(αk + βk)2H
= ∞. (31)

Then, almost surely, if we take arbitrary 0 < ΛL < ΛU < ∞ we have

lim
N→∞

sup
Λ∈[ΛL,ΛU ]

[
1

1− 2H

dRN

dΛ
(Λ)

]
=

(λ+ c)2H

(ΛL + c)2H
,

lim
N→∞

inf
Λ∈[ΛL,ΛU ]

[
1

1− 2H

dRN

dΛ
(Λ)

]
=

(λ+ c)2H

(ΛU + c)2H
,

(32)

where the right-hand sides equal one if c = ∞.

Proof. Recall the formula for the derivative of RN in (15) and the notation

from previous subsection DN =
∑N

k=1 α
2
k

∫ T

0
x2
k(t) dt. It follows from the proof

of Proposition 5.1 that

EDN =

N∑
k=1

α2
k

μ2H
k

Tϕ(μkT ),

where

ϕ(τ) =
1

τ

∫ τ

0

Ex̃2
1(t) dt −−−−→

τ→∞
HΓ(2H).

Use (15) to write (for any Λ > 0):

dRN

dΛ
(Λ) =

∑N
k=1 α

2
k

dΔ
dμ (αkΛ + βk)

DN
=

EDN

DN

∑N
k=1 α

2
k

dΔ
dμ (αkΛ + βk)∑N

k=1
α2

k

μ2H
k

Tϕ(μkT )
. (33)

Formula (13) together with limT→∞ γ(h, T ) = Γ(h) yield

lim
μ→∞

μ2H dΔ

dμ
(μ) = TH(1− 2H)Γ(2H). (34)
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Consequently, we can factorize

dRN

dΛ
(Λ) =

EDN

DN
UNVN (Λ)WN (Λ),

with

UN =

∑N
k=1

α2
k

μ2H
k

THΓ(2H)∑N
k=1

α2
k

μ2H
k

Tϕ(μkT )
,

VN (Λ) =

∑N
k=1 α

2
k

dΔ
dμ (αkΛ + βk)∑N

k=1
α2

k

(αkΛ+βk)2H
TH(1− 2H)Γ(2H)

,

WN (Λ) =

∑N
k=1

α2
k

(αkΛ+βk)2H
TH(1− 2H)Γ(2H)∑N

k=1
α2

k

μ2H
k

THΓ(2H)
.

Recall that condition (6) implies (cf. proofs of Theorem 5.1 and Theorem 5.2)

lim
N→∞

DN

EDN
= 1 almost surely.

Assumptions of Lemma 5.3 with

ak =
α2
k

μ2H
k

, bk = Tϕ(μkT ), and b = THΓ(2H),

are guaranteed by conditions (31) and (3). In result,

lim
N→∞

UN = 1.

Denote (motivated by Lemma 5.3)

ak(Λ) =
α2
k

(αkΛ + βk)2H
, bk(Λ) = (αkΛ + βk)

2H dΔ

dμ
(αkΛ + βk)

and
b = TH(1− 2H)Γ(2H).

Fix arbitrary 0 < ΛL < ΛU < ∞. Obviously, due to (3) and (34),

sup
Λ∈[ΛL,ΛU ]

∣∣bk(Λ)− b
∣∣ −−−−→

k→∞
0,

and, due to (31)

inf
Λ∈[ΛL,ΛU ]

N∑
k=1

ak(Λ) =

N∑
k=1

ak(ΛU ) −−−−→
N→∞

∞.
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Similarly to proof of Lemma 5.3 we can show

lim
N→∞

sup
Λ∈[ΛL,ΛU ]

∣∣VN (Λ)− 1
∣∣ = lim

N→∞
sup

Λ∈[ΛL,ΛU ]

∣∣∣∣∣
∑N

k=1 ak(Λ)bk(Λ)∑N
k=1 ak(Λ)b

− 1

∣∣∣∣∣ = 0.

For the last term we can use the upper bound:

sup
Λ∈[ΛL,ΛU ]

[
WN (Λ)

1− 2H

]
=

∑N
k=1

α2
k

(αkΛL+βk)2H∑N
k=1

α2
k

(αkλ+βk)2H

.

Assume first limk→∞
βk

αk
= c ∈ [0,∞). Then

∑N
k=1

α2
k

(αkΛL+βk)2H∑N
k=1

α2
k

(αkλ+βk)2H

=

∑N
k=1 α

2−2H
k

(
ΛL + βk

αk

)−2H

∑N
k=1 α

2−2H
k

(
λ+ βk

αk

)−2H
.

Application of Lemma 5.3 with

ak = α2−2H
k , bk =

(
Λ +

βk

αk

)−2H

, b = (Λ + c)−2H ,

and Λ = ΛL or Λ = λ, respectively, and where

∞∑
k=1

α2−2H
k ≥

∞∑
k=1

α2
k

(αk + βk)2H
= ∞,

results in

lim
N→∞

∑N
k=1

α2
k

(αkΛL+βk)2H∑N
k=1

α2
k

(αkλ+βk)2H

= lim
N→∞

∑N
k=1 α

2−2H
k (ΛL + c)−2H∑N

k=1 α
2−2H
k (λ+ c)−2H

=
(λ+ c)2H

(ΛL + c)2H
.

Next, assume instead c = ∞, i.e. limk→∞
αk

βk
= 0. We can proceed similarly to

previous case

lim
N→∞

∑N
k=1

α2
k

(αkΛL+βk)2H∑N
k=1

α2
k

(αkλ+βk)2H

= lim
N→∞

∑N
k=1

α2
k

β2H
k

(
αk

βk
ΛL + 1

)−2H

∑N
k=1

α2
k

β2H
k

(
αk

βk
λ+ 1

)−2H
= 1.

To summarize, we have

lim
N→∞

sup
Λ∈[ΛL,ΛU ]

[
WN (Λ)

1− 2H

]
=

{
(λ+c)2H

(ΛL+c)2H
if c ∈ [0,∞),

1 if c = ∞.

The limit for infimum can be obtained accordingly, since

inf
Λ∈[ΛL,ΛU ]

[
WN (Λ)

1− 2H

]
=

∑N
k=1

α2
k

(αkΛU+βk)2H∑N
k=1

α2
k

(αkλ+βk)2H

.
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Theorem 5.3. Assume that the eigenvalues αk and βk satisfy the power growth
conditions (6) and the asymptotic conditions (30), (31) and (3). Further assume

that the theoretical LSE λ̂N is strongly consistent (see e.g. Theorem 5.1 and
Theorem 5.2). Then the pathwise LSE is strongly consistent as well:

lim
N→∞

λ̃N = λ almost surely. (35)

Moreover, λ̃N and λ̂N have the same speed of convergence (up to a constant):

lim
N→∞

|λ− λ̂N |
|λ− λ̃N |

= 2H almost surely. (36)

Proof. Recall that if H = 1/2, the theorem holds true trivially, because λ̃N =

λ̂N in this case. In the rest of the proof, consider H �= 1/2. First, take ΛL < λ
so that

(1− 2H)
(λ+ c)2H

(ΛL + c)2H
< 1.

and arbitrary ΛU > λ. Lemma 5.4 guarantees that, for almost all ω and some
Ψ > 0,

inf
Λ∈[ΛL,ΛU ]

[
1− dRN

dΛ
(Λ)

]
> Ψ,

for sufficiently large N . Fix ε > 0 such that ΛL < λ−ε < λ+ε < ΛU and denote
δ = εΨ. The almost sure convergence limN→∞ RN (λ) = λ, which is guaranteed
by strong consistency of the theoretical LSE, enables us to take N large enough
in order to ∣∣λ−RN (λ)

∣∣ < δ.

Combination of the lower bound on derivative of Λ − RN (Λ) and its closeness
to zero at λ implies existence of its root inside (λ − ε, λ + ε), which is unique
therein and it equals λ̃N . This proves (35).

To demonstrate (36), note that for sufficiently large N

|λ− λ̂N |
|λ− λ̃N |

=

∣∣∣∣1− dRN

dΛ
(Λ0

N )

∣∣∣∣ ,
where Λ0

N is between λ̃N and λ and therefore converges to λ almost surely. Next,
fix arbitrary ε > 0 and take ΛL < λ < ΛU so that the right-hand sides of (32)
are close enough to one and

sup
Λ∈[ΛL,ΛU ]

∣∣∣∣ dRN

dΛ
(Λ)− (1− 2H)

∣∣∣∣ < ε,

for sufficiently large N . In particular, for N large enough we have almost surely∣∣∣∣ dRN

dΛ
(Λ0

N )− (1− 2H)

∣∣∣∣ < ε.
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This proves the desired almost sure convergence

lim
N→∞

|λ− λ̂N |
|λ− λ̃N |

= lim
N→∞

∣∣∣∣1− dRN

dΛ
(Λ0

N )

∣∣∣∣ = ∣∣1− (1− 2H)
∣∣ = 2H.

Remark 5.3. Immediate, and possibly surprising, consequence of (36) is that the
pathwise LSE performs asymptotically better than the theoretical LSE whenever
H > 1/2.

5.3. Example

As an example of the use of Theorem 5.3, consider a stochastic heat equation
with additional mean reversion, with a distributed noise autocorrelated in time
and with the Dirichlet boundary condition. Formally, we can write this equation
as

∂u

∂t
(t, ξ) = λ1 Δξu(t, ξ)− λ2 u(t, ξ) + ηH(t, ξ), for (t, ξ) ∈ R+ ×O,

u(t, ξ) = 0, for (t, ξ) ∈ R+ × ∂O,

u(0, ξ) = 0, for ξ ∈ O,

(37)

where Δξ is Laplace operator in variable ξ, O ⊂ R
d is a d-dimensional bounded

domain with smooth boundary ∂O, λ1 ≥ 0 is the diffusivity parameter deter-
mining the speed of diffusion of a modeled substance along the domainO, λ2 ≥ 0
is the rate of mean reversion related to the speed of reversion of the amount
of substance to the zero mean. The process {ηH(t, ξ); t ≥ 0, ξ ∈ O} is a Gaus-
sian noise, which is fractional (autocorrelated) in time with Hurst parameter
H ∈ (0, 1) and white in space. Formally it can be modelled as the differential of
a cylindrical fractional Brownian motion dBH(t) (see Appendix B for details).

This formal equation can be rewritten rigorously as a stochastic evolution
equation (1) in V = L2(O), with A = Δ|Dom(A), where Dom(A) = H2(O) ∩
H1

0 (O), being Dirichlet Laplace operator defined on a standard Sobolev space
(cf. [31]) and with B being the identity operator on L2(O), should λ1 be the
estimated parameter (or vice-versa, should we estimate λ2). Consequently, this
equation is diagonalizable with eigenvalues satisfying the power growth condi-
tion (6).

Firstly, assume we want to estimate the diffusivity parameter λ1. If λ2 = 0,
we have a stochastic heat equation with αk ∼ k2/d, and βk = 0. Theorem 5.1
guarantees strong consistency of the theoretical LSE λ̂N . If λ2 > 0, there is an
additional mean reversion in the process and we have αk ∼ k2/d, and βk ∼ 1.
We can apply Theorem 5.2 (i) to get strong consistency of the theoretical LSE

λ̂N . In both cases, Theorem 5.3 implies strong consistency of the pathwise LSE
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λ̃N with the speed of convergence (in terms of RMSE) given by

√
E (λ̃N − λ)2 


⎧⎪⎨
⎪⎩

N−(1/d+1/2) , H < 3
4 ,

N−(1/d+1/2)
√
logN , H = 3

4 ,

N−
(
4(1−H)/d+1/2

)
, H > 3

4 .

(38)

Secondly, let λ2 be the parameter of interest. If λ1 = 0 we have αk ∼ 1
and βk = 0, and the existence condition (2) is violated. Hence, we consider the
case λ1 > 0, when the process combines diffusion and mean reversion. For the
eigenvalues, we have αk ∼ 1, and βk ∼ k2/d. Theorem 5.2 (ii) provides us with

strong consistency of λ̂N if d > 2 for H < 3/4 and d > 4(2H − 1) otherwise.
To show strong consistency of the pathwise LSE by Theorem 5.3, we need in
addition that d ≥ 4H so that (31) is satisfied. If the conditions for consistency
are satisfied, the speed of convergence is

√
E (λ̃N − λ)2 


⎧⎪⎨
⎪⎩

N1/d−1/2 , H < 3
4 ,

N1/d−1/2
√
logN , H = 3

4 ,

N (4H−2)/d−1/2 , H > 3
4 .

(39)

6. Simulation study

To illustrate the actual performance of the studied pathwise LSE we perform
a Monte Carlo analysis for two specific equations – a 1D heat equation (the
simplest setting) and a 2D heat equation with coupling with surroundings (a
model popular e.g. in oceanography). All simulations were performed in statis-
tical software R.

6.1. 1D stochastic heat equation

This equation has very simple structure and serves as an easy-to-undersand toy-
model suitable for illustration of the theory above. We simulate a stochastic heat
equation with zero boundary condition from subsection 5.3 on the line segment
(0,1), with true diffusivity λ1 = 1 being a parameter to be estimated (λ = λ1)
and without additional mean reversion (λ2 = 0). In particular, we set

• d = 1, O = (0, 1) and time horizon T = 1,

•
(
Af

)
(ξ) = ∂2f

∂ξ2 , ξ ∈ (0, 1), B ≡ 0,

• ek(ξ) = sin(kπξ), αk = (kπ)2, βk = 0 ∀k ∈ N,
• two scenarios for Hurst index: H ∈ {0.2, 0.8},
• two scenarios for initial condition: (i) xk(0) = 0 for all k ≥ 1 (zero IC),

and (ii) x1(0) = 10, x2(0) = 5, x3(0) = 2, xk(0) = 0, k ≥ 4 (non-zero
IC).

The observed Fourier modes take the following form

xk(t) =

∫ 1

0

u(t, ξ) sin(kπξ) dξ.
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Fig 1. Heat maps of sample solutions of 1D stochastic heat equation with zero (the upper
row) and non-zero (the lower row) initial conditions. Note different colour scales in the two
rows. Horizontal axis represents the physical space domain and vertical axis the time domain.

For simulations we used the Spectral Galerkin Method (see [20], chapter 10.7.),
which is very efficient in our setting (space discretization provides system of in-
dependent linear stochastic ODEs, which, in addition, can be solved explicitly).
Heat maps of four simulated sample solutions for various scenarios are shown
in Figure 1.

We test performance of the pathwise LSE, defined in (17), and compare it
with the weighted MCE, an alternative estimator defined and studied in [17],
cf. formulas (3.21) – (3.23) and Theorem 3.2 therein. Recall that the weighted
MCE is strongly consistent and asymptotically normal with increasing number
of observed modes.

Simulation results were obtained from 200 runs for each scenarios producing
sample of 200 estimates for each setting. Figure 2 illustrates the convergence
of the estimates to the true value of the parameter with increasing number of
Fourier modes by showing selected sample quantiles. It confirms the conver-
gence for all settings. In addition, non-zero initial condition significantly im-
proves the performance of the pathwise LSE. Figure 3 shows convergence of
the root mean square error (RMSE) for samples of the two types of estimators
(pathwise LSE and weighted MCE) and its comparison with the theoretical
speed of convergence for RMSE from (38) (applicable only for solutions with
zero initial condition). In case of zero initial condition, RMSE for the pathwise
LSE and the weighted MCE practically coincide and their speed of convergence
is consistent with the theoretical one. For solutions with far-from-zero initial
conditions RMSE for the pathwise LSE is close to zero even for small number of
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Fig 2. Sample quantile ranges (green areas) and median (red line) of the simulated estimates
(200 samples), true value is 1. Left column: Hurst index = 0.2 (rough case); right column:
Hurst index = 0.8 (smooth case). First row: solutions with zero init. cond.; second row:
solutions with non-zero init. cond.

Fig 3. Root mean square error (RMSE) for pathwise LSE and weighted MCE and its theoret-
ical speed of convergence from (38) (applicable only for zero initial condition). Left column:
Hurst index = 0.2 (rough case); right column: Hurst index = 0.8 (smooth case). First row:
solutions with zero init. cond.; second row: solutions with non-zero init. cond.
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Fig 4. Q-Q plot for sample of 200 pathwise LSE estimates (calculated from 40 Fourier modes)
including 95% confidence envelope for normal distribution. Left column: Hurst index = 0.2
(rough case); right column: Hurst index = 0.8 (smooth case). First row: solutions with zero
init. cond.; second row: solutions with non-zero init. cond.

Fourier modes, whereas the weighted MCE converges significantly slower. Fig-
ure 4 shows comparison of sample quantiles of pathwise LSE (40 Fourier modes
considered) with quantiles of normal distribution including 95% confidence en-
velope. Although not proved theoretically, these Q-Q plots suggest asymptotic
normality of the pathwise LSE for all settings considered.

6.2. 2D stochastic heat equation with coupling with surroundings

Equations of this type are popular (not only) in physical oceanography, where
they model fluctuations of the temperature of the top layer of the ocean around
its long-time average, see [28] or [21]. These equations fall into the setting of
Example in 5.3 with d = 2 (a two-dimensional domain being the surface of the
ocean), where the 2D Laplace operator models thermal conduction along the
water surface, the mean-reversion term reflects atmosphere and ocean coupling
and the noise term represents random forcing (e.g. vertical heat fluxes due to
turbulent environment) – for more details see [28]. The authors in [28] and [21]
(Section 6.1.1) discuss estimation of parameters in these equations based on
observations in spectral domain under the assumption that the noise process is
white in time and space (generated by a standard cylindrical Brownian motion).
In contrast, we study parameter estimation assuming more general noise, which
can be autocorrelated in time (generated by a cylindrical fractional Brownian
motion).
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Fig 5. Heat maps of snapshots of a sample solution of 2D stochastic heat equation with mean
reversion on a rectangular physical space domain taken at four time instants (from left to
right: t=0.2, 0.4, 0.6 and 0.8).

In particular, we simulate equation (37) with the following setting:

• d = 2, O = (0, 1)2 and time horizon T = 1,
• λ1 = 1 (the parameter to be estimated), λ2 = 1,
• Hurst index H = 0.3, zero initial condition.

We used again the Spectral Galerkin Method with eigenfuctions sin(k1πξ1) ×
sin(k2πξ2) and corresponding eigenvalues 1+(k21+k22)π

2, where k1, k2 = 0, 1, 2, . . .
and (ξ1, ξ2) ∈ (0, 1)2.

The simulated distribution of the heat along the water surface at specific
time instants is shown in Figure 5. Results of the Monte Carlo study of the
behavior of the pathwise LSE obtained from 200 runs are depicted in Figure 6.
They confirm our theoretical findings on the almost-sure convergence of the
pathwise LSE and its speed of convergence (in terms of RMSE). Moreover, Q-Q
plot indicate its asymptotic normality, although we do not provide theoretical
reasoning (for conciseness).

6.3. Discussion

Results of the simulations confirm our findings on strong consistency of the
pathwise LSE and on the speed of the convergence. In case of zero initial con-
dition, it behaves similarly to the weighted MCE. However, for non-zero initial
condition, pathwise LSE significantly outperforms the weighted MCE. This is
in accordance with similar findings from finite-dimensional models (cf. [18] or
[19]), where LSE-type estimators improve with far-from-stationary initial con-
ditions (the drift part dominates the noise part in the dynamics of the process
in such case), whereas the ergodic-type estimators (such as the weighted MCE)
reflecting long-term stationary behavior are ruined.

The theory for the weighted MCE, developed in [17], covers only single-
operator equations, so it is not directly applicable for the second example (2D
stochastic heat equation with coupling with surroundings). To our best knowl-
edge, the pathwise LSE is the first efficient tool for parameter estimation in this
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Fig 6. Characteristics of the convergence of pathwise LSE for 2D heat equation with mean
reversion. 200 runs, Zero IC and H=0.3. Top-left: Four trajectories of estimates calculated
from four different samples (realizations). Top-right: Sample quantile ranges (green areas) and
median (red line), true value is 1. Bottom-left: Convergence of sample RMSE and theoretical
RMSE, see (38). Bottom-right: Q-Q plot for sample of estimates (from 40 Fourier modes)
including 95% confidence envelope for normal distribution.

equation (important in oceanography, for example) when the noise is gener-
ated by a cylindrical fractional Brownian motion with general Hurst parameter
0 < H < 1.

Although we did not address the asymptotic normality of the pathwise LSE
in this paper (to keep it concise), we conjecture that it holds. Our conjecture is
based on simulation results and asymptotic similarity with the weighted MCE,
whose asymptotic normality has been proven in [17].

7. Conclusions

Using the least-squares formalism we have derived a spectral version of the
least-squares estimator of the drift parameter in linear SPDEs with additive
fractional noise for arbitrary H ∈ (0, 1). This estimator is strongly consistent in
space, however, it can not be directly implemented pathwise, since it contains
divergence-type stochastic integral w.r.t. a fractional process. This fact prevents
its simulations and its use in practice. We addressed this issue by eliminating the
stochastic integral getting a novel pathwise LSE. This estimator is constructed
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trully pathwise and, moreover, is robust to minor perturbations of the observed
process (it does not contain differentiation of the observed trajectory), which
makes it particularly useful in practice.

Using the standard tools from classical probability and analysis, as well as
modern tools from Malliavin calculus, we demonstrated that the newly devel-
oped pathwise LSE is strongly consistent in space and we conjecture that it
is also asymptotically normal. Simulations reveal that it can efficiently utilize
information about the unknown parameter from both non-stationary and sta-
tionary parts to the observed process.

The presented pathwise least-squares estimation procedure appears to be
promising approach for various equations driven by fractional Brownian mo-
tion. The potentially interesting directions of further research may include (but
are not limited to) proving asymptotic normality, studying different observa-
tion/sampling schemes, different asymptotic regimes, or generalization to semi-
linear stochastic equations driven by fractional Brownian motion.

Appendix A: Elements from Malliavin calculus

In the Appendix, we describe some basic constructions from Malliavin calculus
in the setting of our problem. These constructions form a key ingredient for the
study of asymptotic behavior of our estimators.

A.1. Construction of an infinite-dimensional isonormal Gaussian
process

Let W (k) =
{
W (k)(h(k)), h(k) ∈ H(k)

}
be an isonormal Gaussian process gen-

erated by a fractional Brownian motion {BH
k (t), t ≥ 0} for any k ∈ N and

defined over a separable Hilbert space H(k). The processes W (k) are mutually
independent.

Define

H =

∞⊕
n=1

H(n)

as a direct sum of H(n)’s, i.e.

H =
{
(h(1), h(2), . . .), h(n) ∈ H(n) ∧

∞∑
n=1

‖h(n)‖2H(n) < ∞
}
,

with the scalar product

〈
(h(1), h(2), . . .), (g(1), g(2), . . .)

〉
H =

∞∑
n=1

〈h(n), g(n)〉H(n) .

Then H is a separable Hilbert space.
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For h = (h(1), h(2), . . .) ∈ H define

W (h) = lim
N→∞

N∑
n=1

W (n)(h(n)).

Note that this limit, understood in L2-sense, is well-defined because

E

( ∞∑
n=N

W (n)(h(n))
)2

=

∞∑
n=N

E
(
W (n)(h(n))

)2
=

∞∑
n=N

‖h(n)‖2H(n) −−−−→
N→∞

0.

Since

E
(
W (h)W (g)

)
= E

( ∞∑
n=1

W (n)(h(n))
)( ∞∑

n=1

W (n)(g(n))
)

=

∞∑
n=1

E
(
W (n)(h(n))W (n)(g(n))

)
=

∞∑
n=1

〈h(n), g(n)〉H(n) = 〈h, g〉H

for any h = (h(1), h(2), . . .), g = (g(1), g(2), . . .) ∈ H the process
{
W (h), h ∈ H

}
is an isonormal Gaussian.

Denote by CH
(k)
n the n-th Wiener chaos associated with W (k) for any k ∈ N,

i.e. CH
(k)
n is the closed (in L2(Ω)) linear subspace generated by{

Hn

(
W (k)(h(k))

)
, ‖h(k)‖H(k) = 1

}
,

where Hn is the n-th Hermite polynomial. Similarly, let CHn be the n-th Wiener
chaos associated with W , i.e. CHn is the closed linear subspace generated by{

Hn

(
W (h)

)
, ‖h‖H = 1

}
.

Fix k ∈ N, take arbitrary h(k) ∈ H(k) such that ‖h(k)‖H(k) = 1 and define

h = (0, . . . , 0, h(k)

↑kth
, 0, . . . , 0).

Then

‖h‖2H = ‖h(k)‖2H(k) = 1

and

W (h) =
∞∑

n=1

W (n)(h(n)) = W (k)(h(k)).

Consider X = Hn

(
W (k)(h(k))

)
∈ CH

(k)
n . Then X = Hn

(
W (h)

)
and X ∈ CHn.

By the linearity and L2(Ω)-closedness of CHn it follows that

CH(k)
n ⊂ CHn ∀k ∈ N. (40)
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A.2. Selected functionals of the solution in the second chaos

It can be shown (see e.g. [14]) that

∫ T

0

xk(t) dB
H
k (t) ∈ CH

(k)
2 ,

∫ T

0

x2
k(t) dt− E

[∫ T

0

x2
k(t) dt

]
∈ CH

(k)
2 .

Using the construction of the infinite-dimensional isonormal Gaussian process
above and the chaos embedding (40), we easily get for

CN =

N∑
k=1

αk

∫ T

0

xk(t) dB
H
k (t),

and

DN =

N∑
k=1

α2
k

∫ T

0

x2
k(t) dt,

that
CN ∈ CH2 and DN − EDN ∈ CH2 ∀N ∈ N. (41)

A.3. Almost sure convergence on a fixed chaos

The following lemma is an important tool to demonstrate strong consistency of
our estimators. It turns the L2-convergence of a sequence of variables on a fixed
chaos into the almost sure convergence. This idea, based on the combination of
hypercontractivity with Borel–Cantelli 0-1 law, has already been used before,
but we decided to formulate it as a separate lemma, because we believe it is
interesting on its own.

Lemma A.1. Let FN , N ∈ N, be random variables in a fixed Wiener chaos of
an isonormal Gaussian process such that for some constants c > 0 and δ > 0
the inequality

EF 2
N ≤ c

N δ

holds for any N ∈ N. Then FN −−−−→
N→∞

0 a.s.

Proof. Consider parameters ζ and η so that 0 < ζ < δ/2 and η > 1
δ/2−ζ . Denote

by C a positive constant (independent of N), which may change from line to
line and calculate

P
(
|FN | > N−ζ

)
≤ E |FN |η

N−ζη
≤ C

(EF 2
N )η/2

N ζη
≤ C

1

Nη(δ/2−ζ)
,

where Chebyshev’s inequality and hypercontractivity property on the fixed
Wiener chaos (see e.g. [24], Theorem 2.7.2) were used. Application of Borel–
Cantelli lemma yields the almost sure convergence.
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Appendix B: Cylindrical fractional Brownian motion and fractional
Gaussian noise

The use of cylindrical fractional Brownian motion as a rigorous model for frac-
tional Gaussian noise {ηH(t, ξ); t > 0, ξ ∈ O} from equation (37) can be found
in several publications. More detailed exposition can be found e.g. in [10]. In
this Appendix, we briefly outline the connection between the two objects.

Let us begin with white noise in spatial dimension O ⊂ R
d (no time coordi-

nate considered). A natural space associated with (37) is V = L2(O) with an
orthonormal basis {ek}∞k=1. Take a sequence of i.i.d. real-valued random vari-
ables {Uk}∞k=1 having standard Gaussian distribution. Now we can formally
model the white noise in space as

η(ξ) =
∞∑
k=1

ek(ξ)Uk, ξ ∈ O. (42)

Indeed, take arbitrary f, g ∈ L2(O) and calculate (again formally)∫
O
f(ξ)η(ξ) dξ =

∞∑
k=1

Uk

(∫
O
f(ξ)ek(ξ) dξ

)
,

which is a centered Gaussian random variable with variance ||f ||2V , and

E

(∫
O
f(ξ)η(ξ) dξ

)(∫
O
g(ξ)η(ξ) dξ

)
= E

( ∞∑
k=1

Uk 〈f, ek〉V
)( ∞∑

k=1

Uk 〈g, ek〉V
)

=

∞∑
k=1

〈f, ek〉V 〈g, ek〉V =

∫
O
f(ξ)g(ξ) dξ.

In particular, by taking f and g the indicator functions, we get that the noise is
uncorrelated on arbitrary two disjoint subsets of O and it has constant intensity
(variance is proportional to the volume of the subset).

Remark B.1. Although the series in (42) does not converge in the L2(Ω) sense in
the space V , it does converge in some larger Hilbert space Ṽ so that there exits a
Hilbert-Schmidt embedding of V into Ṽ (this corresponds to the fact that white
noise can not be considered as a proper function, but rather as a distribution).

Continue with modeling of the fractional (autocorrelated) noise in time do-
main. Recall that real-valued fractional Brownian motion {bH(t), t ≥ 0} with
Hurst index H ∈ (0, 1) is a centered Gaussian process with continuous trajec-
tories starting from zero and with autocovariance function

E bH(t)bH(s) =
1

2

(
t2H + s2H − |t− s|2H

)
.

As a consequence, it has stationary Gaussian increments. If H = 1/2 we obtain
standard Wiener process (with independent increments), if H < 1/2 we have
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negatively correlated increments and for H > 1/2 we have positively correlated
increments. Formal derivative of fBm (which exists only in distributional sense)
thus represents a good model for fractional noise in time.

To conclude, take the family of independent real-valued fractional Brownian
motions {BH

k (t), t ≥ 0}, k = 1, 2, . . . and construct the cylindrical fBm on V =
L2(O) using an orthonormal basis {ek}∞k=1 as a formal sum

BH(t) =

∞∑
k=1

ekB
H
k (t).

Increments (differentials) of this cylindrical fBm can serve as a model for the
noise that is white in space and fractional in time. Indeed, for a fixed 0 < s < t
we have

BH(t)−BH(s) =

∞∑
k=1

ek
(
BH

k (t)−BH
k (s)

)
,

which is the (scaled) white-in-space noise. Next, for a fixed measurable D ⊂ O
with the finite volume take

〈
BH(t), 1D

〉
V
=

∞∑
k=1

(∫
O
1D(ξ)ek(ξ) dξ

)
BH

k (t)

=

∞∑
k=1

wkB
H
k (t) = βH(t),

which itself is a (scaled) fractional Brownian motion, since
∑∞

k=1 w
2
k = ‖1D‖2V <

∞ and so it represents an integrated fractional-in-time noise.
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