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Abstract: In a binary classification problem where the goal is to fit an
accurate predictor, the presence of corrupted labels in the training data set
may create an additional challenge. However, in settings where likelihood
maximization is poorly behaved—for example, if positive and negative la-
bels are perfectly separable—then a small fraction of corrupted labels can
improve performance by ensuring robustness. In this work, we establish
that in such settings, corruption acts as a form of regularization, and we
compute precise upper bounds on estimation error in the presence of cor-
ruptions. Our results suggest that the presence of corrupted data points is
beneficial only up to a small fraction of the total sample, scaling with the
square root of the sample size.
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1. Introduction

Consider a classification problem, where our goal is to predict a binary label
Y ∈ {±1} using information captured by a feature vector X ∈ R

d. Based on
n training data points (X1, Y1), . . . (Xn, Yn), the objective is to fit a classifier

f̂ : Rd → {±1} to this data, mapping a new test feature vector X to a predicted
label +1 or −1.

In many settings, inherent noise in the measurement process can introduce
corruption into the observed labels Yi. For example, consider a medical appli-
cation where features Xi for patient i determine their likelihood of having a
particular disease, and Yi ∈ {±1} indicates presence or absence of the disease.
Imperfect diagnostic tests might mean that the observed label may differ from
the true label Yi. Writing Ỹi ∈ {±1} to denote the observed label, we might

have P{Ỹi = −1 | Yi = +1} > 0 (if the diagnostic test has a nonzero rate of

false negatives) and similarly P{Ỹi = +1 | Yi = −1} > 0 (indicating false posi-
tives).
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1.1. Setting and notation

We begin by introducing some basic notation and definitions that we will use
throughout. Consider the following model for the triples (X,Y, Ỹ ), where as
before, X ∈ R

d denotes the feature vector, Y ∈ {±1} is the true label (which we

do not observe), and Ỹ ∈ {±1} is the observed label (which may be corrupted,
i.e., may differ from the true label):

X ∼ PX (a distribution on R
d),

Y |X =

{
+1, with prob. η(X),

−1, with prob. 1− η(X),

Ỹ |X,Y =

{
−Y, with prob. ρ,

Y, with prob. 1− ρ.

Here η(x) denotes the probability of a positive (true) label,

η(x) = P{Y = +1 | X = x},

while ρ denotes the probability that the observed label is corrupted, assumed
to be identical across all data points (the “homogeneous noise” setting).

In the classification problem, our goal is to define a classification rule that,
given a feature vector x ∈ R

d, outputs a predicted label +1 or −1. The mis-
classification rate is minimized by predicting +1 or −1 depending on whether
η(x) is above or below 0.5, respectively. In a real data setting where η(x) is un-
known, the classification problem is typically addressed by fitting some function
f(x) ∈ R and then predicting the label sign(f(x)). We can interpret f(x) as con-
taining information about both our prediction for the label (via the sign) and
our confidence in this prediction (via the magnitude—values f(x) ≈ 0 indicate
uncertainty).

Given a possible choice of the function f , the misclassification rate on the
training data set {(Xi, Yi) : i = 1, . . . , n} is therefore given by the empirical 0-1
loss,

L̂0/1
n (f) =

1

n

n∑
i=1

1 {f(Xi) · Yi ≤ 0} ,

while

L̃0/1
n (f) =

1

n

n∑
i=1

1
{
f(Xi) · Ỹi ≤ 0

}
measures misclassification on the corrupted training data set {(Xi, Ỹi) : i =
1, . . . , n}. Our goal is to ensure a low “true” misclassification rate, i.e., for pre-
dicting the label Y for a new point with features X, that is,

L0/1(f) = P{f(X) · Y ≤ 0},
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where (X,Y ) is a new data point drawn from the same distribution as the
original training data—that is, X ∼ PX , and Y |X is a label in {±1} with
probabilities determined by η(X).

Since the zero/one loss is challenging to optimize, it is standard to use a
surrogate loss function � : R → R+, typically chosen to be continuous, convex,
and monotone nonincreasing. For example, a logistic surrogate loss is given by

�(t) = log(1 + e−t),

while the hinge loss is given by

�(t) = max{0, 1− t}.

Given a sample of n data points, (X1, Y1), . . . , (Xn, Yn), we then define the
empirical risk

L̂n(f) =
1

n

n∑
i=1

�(f(Xi) · Yi),

which is the average surrogate loss on the data set {(Xi, Yi) : i = 1, . . . , n}, and
the corrupted empirical risk

L̃ρ
n(f) =

1

n

n∑
i=1

�(f(Xi) · Ỹi),

which is the average surrogate loss on the corrupted data set {(Xi, Ỹi) : i =
1, . . . , n}. We will also write

L(f) = E[�(f(X) · Y )],

the “true” risk of a function f , with expectation taken over a data point (X,Y )
drawn from the same distribution as before, i.e., X ∼ PX , and label Y |X drawn
with probabilities determined by η(X).

1.2. Summary of questions and results

The key question of this work is to compare the performance of the empirical
risk minimizer,

f̂ = argminf∈F L̂n(f),

and its corrupted counterpart,

f̃ = argminf∈F L̃ρ
n(f),

where the minimization is taken over some predefined class of functions F (for
example, linear functions of x). That is, how does the presence of corrupted
labels affect the performance of the empirical risk minimizer? In particular, we
emphasize that the surrogate loss function is unchanged—we do not adjust � or
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attempt to “correct” for the presence of corruption (this is in contrast to much
of the existing literature, which we review below).

Our findings can be summarized as follows. First, we find that corruption
mimics regularization—in particular, for a fixed function f ∈ F , the cor-
rupted empirical risk L̃ρ

n(f) is a biased estimate of the true risk L(f), but acts
as an unbiased estimate of a penalized version of this risk,

L(f) + λR(f)

where λ > 0 is a penalty parameter depending on the corruption level ρ, while
the regularization function is given by

R(f) = E

[
�(f(X)) + �(−f(X))

2

]
,

the expected loss of the function f under a completely random label.
While adding a penalty introduces bias into our estimator, it also serves

to reduce variance, and for limited sample size n, this reduction in variance
may outweigh the bias. Our second finding is therefore that, in some settings,
corruption may lead to reduced risk for finite sample size, since it is
effectively acting as a regularizer and can substantially reduce variance.

1.3. Prior work

The problem of learning a classifier in the presence of corrupted labels has been
studied in many works in the recent literature. Here we give a very brief overview
of the settings and types of results considered. Consider the more general model

X ∼ PX (a distribution on R
d),

Y |X =

{
+1, with prob. η(X),

−1, with prob. 1− η(X),

Ỹ |X,Y =

{
−Y, with prob. ρ(X,Y ),

Y, with prob. 1− ρ(X,Y ).

Here η(x) denotes the probability of a positive (true) label as before, while
ρ(x, y) denotes the probability that the observed label is corrupted,

ρ(x, y) = P{Ỹ �= Y | X = x, Y = y},

which now may depend on x and/or y.
Frénay et al. [7] and Frenay and Verleysen [8] provide overviews of recent

works on this problem. They categorize the existing methods to three types: la-
bel noise-robust models, data cleaning methods, and label noise-tolerant learn-
ing algorithms.

The homogeneous noise setting assumes that ρ(x, y) ≡ ρ for all x, y—that
is, there is a constant probability for each label to be corrupted. This is the
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setting we study in the present work. Under this setting, Long and Servedio
[14] study boosting algorithms and discuss negative consequences of label noise.
Van Rooyen, Menon and Williamson [26] consider ERM method and propose
a label noise-robust loss function. Manwani and Sastry [16] discuss the noise-
tolerance property of risk minimization. Cannings, Fan and Samworth [5] show
that LDA is consistent under the noise, and Blanco, Japón and Puerto [2] pro-
pose robust algorithms that apply relabeling and clustering to SVM.

The class-dependent noise setting assumes that ρ(x, y) = ρy for all x, y—that

is, the probability of corrupting a positive label (Y = +1 but Ỹ = −1) is con-
stant with respect to the feature vector x, and similarly for a negative label, but
these two probabilities may differ. For example, in our earlier medical example,
the diagnostic test might have different false positive and false negative rates,
but these rates themselves are constant across patients (i.e., independent of fea-
tures such as age that might be included in the X vector). Liu and Tao [13],
Scott, Blanchard and Handy [25], and Blanchard et al. [1] study the consistency
of the classifier under corruption, while Reeve et al. [23] focus on the minimax
optimal learning rate of the corrupted estimator. Some recent works try correc-
tion of the loss function or the observed labels; see Natarajan et al. [19], van
Rooyen and Williamson [27], Patrini et al. [21], and Lin and Bradic [12]. Other
recent works focus on studying or developing label noise-robust methods; see
Natarajan et al. [18], Patrini et al. [20], Reeve and Kabán [24], Bootkrajang
and Kabán [3], and Bootkrajang and Kabán [4].

Finally, the general setting—where ρ(x, y) might vary with x—is studied
by Cannings, Fan and Samworth [5]. In particular, they examine a setting for

k-nearest neighbor where the corrupted labels Ỹi are more “clean” than the
original labels Yi, in the sense that the corruption mechanism defined by ρ(x, y)
acts to denoise labels near the decision boundary (i.e., η(x) ≈ 0.5) Specifically,
suppose that, for values x with η(x) slightly higher than 0.5, we have ρ(x,+1) <
ρ(x,−1) (that is, a label Yi = −1 that “should” instead be positive, has a

greater chance of being flipped to Ỹi = +1), and similarly if η(x) is slightly

lower than 0.5 then ρ(x,+1) > ρ(x,−1). In this case, the Ỹi’s carry strictly
more information for estimating the decision boundary, as compared to the Yi’s;
this setting is therefore fundamentally different from the one we consider here,
where homogeneous noise creates strictly noisier labels. Menon, Van Rooyen
and Natarajan [17] consider a similar general setting where they show that any
consistent algorithm for noise free setting is also consistent under noisy labels
under appropriate assumptions. Recent discussions on the noise-tolerence and
the robustness of the corrupted classification under this setting can be found in
Ghosh, Manwani and Sastry [9] and Cheng et al. [6].

2. Main results

2.1. Intuition: corruption acts as regularization

The key idea for studying the corrupted estimator through the framework of
regularization, is to find a regularizer that matches the expected behavior of
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the corruption. In order to do this, we first find a different representation of the
corruption variables: define

Ri
iid∼ Bernoulli(2ρ) and Zi

iid∼ Uniform{±1},

drawn independently from each other and independently of the clean data. Then
let

Ỹi = (1−Ri) · Yi +Ri · Zi.

That is, Ri determines whether the label Yi will be replaced by a random sign,
and Zi provides this random sign. Examining this construction we can see that
this yields the same distribution of the corrupted labels as the original definition.
We can then write the corrupted loss as

L̃ρ
n(f) =

1

n

n∑
i=1

�(f(Xi) · Ỹi) =
1

n

n∑
i=1

(1−Ri) · �(f(Xi) ·Yi)+

n∑
i=1

Ri · �(f(Xi) ·Zi).

Next, we treat f as fixed, and then condition on the clean data and marginalize
over the distribution of the Ri’s and Zi’s:

E

[
L̃ρ
n(f)

∣∣∣ X1:n, Y1:n

]
=

1

n

n∑
i=1

E[1−Ri] · �(f(Xi) · Yi) +
1

n

n∑
i=1

E[Ri] · E[�(f(Xi) · Zi) | Xi]

= (1− 2ρ) · L̂n(f) + ρ · 1
n

n∑
i=1

(
�(f(Xi)) + �(−f(Xi))

)
.

Recall the definition of the regularizer,

R(f) = E

[
�(f(X)) + �(−f(X))

2

]
,

the expected loss of f on purely random labels. We can also consider an empirical
version,

R̂n(f) =
1

n

n∑
i=1

�(f(Xi)) + �(−f(Xi))

2
.

We therefore see that

E

[
L̃ρ
n(f)

∣∣∣ (Xi, Yi), i = 1, . . . , n
]
= (1− 2ρ) ·

(
L̂n(f) + λR̂n(f)

)
,

where λ = 2ρ
1−2ρ . Finally, for any fixed function f , we have

E[L̂n(f) + λR̂n(f)] = L(f) + λR(f),

by definition. Therefore, we can view the corrupted empirical risk minimizer f̃
as a sample estimate of the minimizer of the penalized loss L(f) + λR(f).

To summarize our findings so far, we have seen that f̃ = argminf∈F L̃ρ
n(f)

can be described in two ways:
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• Fixing the training data {(Xi, Yi) : i = 1, . . . , n} and taking an expec-
tation over the corruption mechanism (the Ri’s and Zi’s above), we see

that L̃ρ
n(f) has (conditional) expected value L̂n(f) + λR̂n(f), a penalized

empirical risk.
• Taking expectations over both the original data and the random corrup-

tion, L̃ρ
n(f) has expected value L(f) + λR(f), a penalized true risk.

2.2. Results for the linear setting

Next, we will examine the implications of this relationship between corruption
and regularization, on the goals of minimizing risk. From this point on, we will
restrict our discussion to the setting where F consists of linear functions,

F = {x 
→ w�x : w ∈ R
d},

in order to be able to achieve precise results. Consequently we will shift our
notation from functions f to vectors w. Specifically, for each w ∈ R

d we will
define the population-level loss and regularized loss,

L(w) = E[�(X�w · Y )] and L̃ρ(w) = E[�(X�w · Y )] +
2ρ

1− 2ρ
· R(w),

where

R(w) = E

[
�(X�w) + �(−X�w)

2

]
=

L(w) + L(−w)

2
,

as well as the empirical loss and empirical corrupted loss,

L̂n(w) =
1

n

n∑
i=1

�(X�
i w · Yi) and L̃ρ

n(w) =
1

n

n∑
i=1

�(X�
i w · Ỹi).

We will also define population-level minimizers

w∗ = argminw∈Rd L(w) and w̃ρ
∗ = argminw∈Rd L̃ρ(w), (1)

and empirical minimizers

ŵn = argminw∈Rd L̂n(w) and w̃ρ
n = argminw∈Rd L̃ρ

n(w), (2)

whenever these minimizers exist. (Note that, in some settings, the loss or its
empirical or corrupted counterpart may have no minimizer—for example, lo-
gistic loss, where the positive and negative labels can be perfectly separated.)
For each of the four minimization problems, if the minimizer exists but is not
unique, our results will apply to any minimizer (e.g., w̃ρ

∗ denotes any element of

the set argminw∈Rd L̃ρ(w), etc).
It is well-known that regularization may help reduce risk, even at the cost of

increasing bias due to the influence of the regularization function. As discussed
earlier, since corruption mimics regularization, in many settings we empirically
observe that corruption reduces the risk—that is, L(w̃ρ

n) < L(ŵn), even though
the corruption introduces bias. We will next study why this phenomenon occurs,
by establishing bounds on the loss L(w̃ρ

n) of the corrupted estimator.
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2.2.1. Theoretical results

We begin by defining our assumptions. First, we require some conditions on the
loss function �:

Assumption 1. The loss function � is nonnegative, nonincreasing, convex, and
L-Lipschitz. Furthermore, � is strictly decreasing on negative values, with

�(t) ≥ �(0) + γ|t| for all t ≤ 0

for some γ > 0, and has a subexponential decay for positive values,

�(t) ≤ c1e
−c2t for all t ≥ 0,

for some c1, c2 > 0.

The last two conditions ensure that the loss function enacts a strong penalty
if X�w predicts the sign of Y incorrectly (i.e., �(t) is large for t < 0), but decays
quickly if X�w predicts the sign of Y correctly (i.e., �(t) is small for t > 0).
These conditions are satisfied by many well-known examples, for instance:

• The logistic loss �t = log(1 + e−t) satisfies Assumption 1 with γ = 1
2 and

L = c1 = c2 = 1.
• The hinge loss �t = (1 − t)+ satisfies Assumption 1 with L = γ = c1 =

c2 = 1.

We will also need some weak assumptions on the distribution of the feature
vector X:

Assumption 2. For some a0, a1, a2 > 0, it holds that

E[ea0|X�u|2 ] ≤ a1

and

E

[
e−t|X�u|

]
≤ a2

t
for all t > 0.

for all unit vectors u ∈ S
d−1.

For example, this assumption is satisfied by any multivariate Gaussian distribu-
tion with mean μ and covariance Σ, with the parameters a0, a1, a2 depending on
‖μ‖ and on the largest and smallest eigenvalues of Σ, but not on the dimension
d.

Under these assumptions, our main result establishes a bound on the loss of
the corrupted estimator w̃ρ

n.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let n ≥ 2 and fix any
α > 0. Suppose ρ ∈ (0, 1

2 ) satisfies

ρ ≥ C · d log n
n

.
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Then with probability at least 1− n−α, the set argminw∈Rd L̃ρ
n(w) is nonempty,

and for all w̃ρ
n ∈ argminw∈Rd L̃ρ

n(w) it holds that

L(w̃ρ
n) ≤ inf

w∈Rd
L(w) + C ′

[
ρ1/2 + ρ−1/2 ·

√
d log n

n

]
.

Here C,C ′ depend only on α and on the constants in Assumptions 1 and 2, but
not on n, d, or ρ.

We can see an immediate tradeoff in the upper bound in Theorem 1. The ρ1/2

term acts as an “approximation error”, where a large corruption proportion ρ
leads to a potentially large gap between the loss of the regularized estimator,
L(w̃ρ

∗), and the minimum possible loss without regularization, infw∈Rd L(w).
On the other hand, the ρ−1/2 ·

√
d logn

n term is the “estimation error”, which

is large when the corruption proportion ρ is small (i.e., insufficient regulariza-
tion). The resulting upper bound on risk is minimized when the corruption level

scales as ρ 

(
d logn

n

)1/2
, leading to an upper bound on excess risk scaling as



(
d logn

n

)1/4
. This suggests that even a very small fraction of corrupted entries

can lead to a reduced risk. In contrast, the uncorrupted minimization problem
may not behave well under these weak assumptions—for instance, if the labels
are perfectly linearly separable (as might be the case if, e.g., Y |X follows a
logistic regression with very high signal strength), then a minimizer does not

even exist (i.e., argminw∈Rd L̂n(w) is empty).

The assumption that ρ ≥ C · d logn
n is not merely an artifact of the proof—in

fact, without this type of assumption, we cannot even ensure that argminw∈Rd

L̃ρ
n(w) is nonempty. To see why, let us consider a setting where the population

is perfectly separable and � is a strictly decreasing function. In this case, the
empirical risk minimizer ŵn does not exist (or in other words, it diverges). Now,
if ρ = 1/n, then with probability (1− 1

n )
n ≈ e−1, the corrupted dataset is equal

to the original dataset, which means that the corrupted data set is also perfectly
separable and thus w̃ρ

n does not exist.
Of course, the result of Theorem 1 is an upper bound on the loss, and may be

loose for certain examples; the value of ρ that minimizes the upper bound (i.e.,

ρ 

(
d logn

n

)1/2
) might not be the same as the value of ρ that minimizes the loss

itself. In particular, the result can be viewed as a “worst case” bound that holds
even when the unregularized loss has no minimizer (such as logistic regression
with perfectly separable labels, as mentioned above); in problems where this is
not the case, regularization is not as critical, and a smaller value of ρ (or even
ρ = 0) may perform better.

2.2.2. Proof of Theorem 1

Our first step is to examine some properties of the regularized population min-
imizer w̃ρ

∗ and its empirical counterpart, the corrupted estimator w̃ρ
n.



1376 Y. Lee and R. F. Barber

Lemma 1. Suppose Assumptions 1 and 2 hold. Fix any ρ ∈ (0, 1
2 ). Then

argminw∈Rd L̃ρ(w) is nonempty, and any w̃ρ
∗ ∈ argminw∈Rd L̃ρ(w) must satisfy

‖w̃ρ
∗‖ ≤ C0ρ

−1/2 and

L(w̃ρ
∗) ≤ inf

w∈Rd
L(w) + C1ρ

1/2.

Moreover, for any α > 0, if n ≥ 2 and ρ ≥ C · d logn
n then with probability

at least 1 − n−α it holds that argminw∈Rd L̃ρ
n(w) is nonempty, that any w̃ρ

n ∈
argminw∈Rd L̃ρ

n(w) must satisfy ‖w̃ρ
n‖ ≤ C0ρ

−1/2, and that

sup
‖w‖≤C0ρ−1/2

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣ ≤ C2ρ
−1/2

√
d log n

n
.

Here C,C0, C1, C2 depend on α and on the constants in Assumptions 1 and 2,
but not on n, d, or ρ.

Now we prove the theorem. By Lemma 1, with probability at least 1− n−α,
for any w̃ρ

∗ ∈ argminw∈Rd L̃ρ(w) and all w̃ρ
n ∈ argminw∈Rd L̃ρ

n(w) it holds that
L(w̃ρ

∗) ≤ infw∈Rd L(w) + C1ρ
1/2 and that

max
{∣∣∣L̃ρ

n(w̃
ρ
∗)− L̃ρ(w̃ρ

∗)
∣∣∣ , ∣∣∣L̃ρ

n(w̃
ρ
n)− L̃ρ(w̃ρ

n)
∣∣∣} ≤ C2ρ

−1/2

√
d log n

n
.

From now on, we assume that these events all hold. Then we have

L̃ρ(w̃ρ
n) = L̃ρ(w̃ρ

∗) +
(
L̃ρ
n(w̃

ρ
∗)− L̃ρ(w̃ρ

∗)
)

+
(
L̃ρ
n(w̃

ρ
n)− L̃ρ

n(w̃
ρ
∗)
)
+
(
L̃ρ(w̃ρ

n)− L̃ρ
n(w̃

ρ
n)
)

≤ L̃ρ(w̃ρ
∗) +

(
L̃ρ
n(w̃

ρ
n)− L̃ρ

n(w̃
ρ
∗)
)
+ 2C2ρ

−1/2 ·
√

d log n

n

≤ L̃ρ(w̃ρ
∗) + 2C2ρ

−1/2 ·
√

d log n

n
by optimality of w̃ρ

n

≤ inf
w∈Rd

L(w) + C1ρ
1/2 + 2C2ρ

−1/2 ·
√

d log n

n

≤ inf
w∈Rd

L(w) + C ′

2

[
ρ1/2 + ρ−1/2 ·

√
d log n

n

]
,

where we set C ′ = max {2C1, 4C2}. Next, by definition of L̃ρ, we have

L̃ρ(w̃ρ
n)− inf

w∈Rd
L(w) = (1−ρ)·

[
L(w̃ρ

n)− inf
w∈Rd

L(w)
]
+ρ·

[
L(−w̃ρ

n)− inf
w∈Rd

L(w)
]

≥ 1

2

[
L(w̃ρ

n)− inf
w∈Rd

L(w)
]
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where the last step holds since ρ ≤ 1
2 . Therefore,

L(w̃ρ
n) ≤ inf

w∈Rd
L(w) + C ′

[
ρ1/2 + ρ−1/2 ·

√
d log n

n

]
,

which completes the proof of the theorem.

2.2.3. Another perspective on the regularizer

The results above suggest that the main source of possible improvements by
corruption is the shrinkage induced by the corruption (or, at the population
level, by the regularizer R(w)). In particular, the results of Lemma 1 show that,
in the linear setting, the corruption (or the regularizer) lead to an upper bound
on ‖w‖. We will now examine this connection more closely.

The following lemma verifies that, up to constants, R(w) is equivalent to ‖w‖.
In a sense, then, we can view regularization with R(w) as effectively placing a
penalty on ‖w‖.
Lemma 2. Suppose Assumptions 1 and 2 hold. Then it holds that

max{cL · ‖w‖, �(0)} ≤ R(w) ≤ cU · ‖w‖+ �(0) for all w ∈ R
d,

where cL, cU depend only on the constants in Assumptions 1 and 2.

Proof. In the calculations (3) and (4) appearing in the proof of Lemma 1, we
will see that Assumption 2 implies that

log 2

2a2
≤ E[|X�u|] ≤

√
a1
a0

for all unit vectors u ∈ R
d. For any w ∈ R

d, for the lower bound, we have

R(w) = E

[
�(|X�w|) + �(−|X�w|)

2

]
≥ E

[
�(−|X�w|)

2

]
≥ E

[
�(−|X�w|)− �(0)

2

]
≥ γ

2
· E[|X�w|] ≥ γ log 2

4a2
· ‖w‖,

and furthermore

R(w) = E

[
�(|X�w|) + �(−|X�w|)

2

]
≥ �(0)

by convexity of �. For the upper bound, we have

R(w) = E

[
�(|X�w|) + �(−|X�w|)

2

]
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= �(0) + E

[
�(−|X�w|)− �(0)

2

]
+ E

[
�(|X�w|)− �(0)

2

]
≤ �(0) + E

[
�(−|X�w|)− �(0)

2

]
≤ �(0) +

L

2
· E[|X�w|] ≤ �(0) +

L

2

√
a1
a0

· ‖w‖.

3. Simulations

Now we empirically investigate the effect of corruption through a simulation.1

We generate the data {(Xi, Yi)}1≤i≤n in the following way: choosing dimension
d = 50, we draw

Xi ∼ N (0, Id)

Yi | Xi =

{
+1, with probability exp{3Xi1+0.5(Xi2)

3}
1+exp{3Xi1+0.5(Xi2)3} ,

−1, with probability 1
1+exp{3Xi1+0.5(Xi2)3} ,

independently for each i = 1, . . . , n. The corrupted labels {Ỹi}1≤i≤n are gener-
ated as

Ỹi | Xi, Yi =

{
−Yi, with prob. ρ,

Yi, with prob. 1− ρ,

independently for each i = 1, . . . , n. We run the experiment at a small and large
sample size, n = 400 and n = 2000, and at a range of values of the corruption
probability, ρ ∈ {0, 0.01, 0.02, . . . , 0.2}. For each sample size n and corruption
level ρ, we run 100 independent trials of the experiment, we choose the logistic
loss function �(t) = log(1+e−t), and compute the corrupted empirical minimizer
w̃ρ

n defined in (2) and the penalized population-level minimizer w̃ρ
∗ as in (1)

(which reduces to the uncorrupted empirical minimizer ŵn and the unpenalized
population-level minimizer w∗, respectively, in the case ρ = 0). Note that the
data generating distribution does not follow the logistic regression model (due
to the cubic term), and so the logistic loss simply acts as a surrogate for the 0-1
loss (i.e., it does not correspond to a likelihood for some well-specified model).

Figure 1 shows the performance of the corrupted estimator w̃ρ
n and its

population-level version w̃ρ
∗, across the range of corruption values ρ ∈ {0, 0.01,

0.02, . . . , 0.2}, at each sample size n ∈ {400, 2000}; the result at ρ = 0 is high-
lighted in each case, as it corresponds to the uncorrupted estimator ŵn and to
the corresponding population-level minimizer w∗. Overall, the plots illustrate
how corruption acts as regularization—for the smaller sample size n = 400,
we see that a small amount of corruption substantially reduces the test risk
of the empirical minimizer w̃ρ

n, while for the larger sample size n = 2000 the
uncorrupted estimator ŵn achieves good performance and we no longer see any

1Code to reproduce this simulation is available at
https://www.stat.uchicago.edu/~rina/code/corrupted_labels_sim.R.

https://www.stat.uchicago.edu/~rina/code/corrupted_labels_sim.R
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Fig 1: Risks of the original classifier ŵn, the corrupted classifier w̃ρ
n, the optimal

classifier w∗, and the population-level corrupted classifier w̃ρ
∗ on the test set, with

sample size n = 400 (left) and n = 2000 (right). For the sample estimators ŵn and
w̃ρ

n, the figure displays the mean over 100 independent trials, with standard error bars.
See Section 3 for further details.

noticeable improvement from corruption. For the population-level minimizers,
on the other hand, increasing regularization always leads to an increase in risk,
as expected.

4. Discussion

In this work, we have shown that the corruption of labels has a regularization-
type effect on binary classification problems, leading to a possibility of an im-
provement of the fitted classifier in terms of test risk. Unlike many prior works
that apply adjustment or correction to achieve consistency or robustness of the
estimator, our result implies that corruption itself can be beneficial without any
adjustment to the estimation process, and thus it could be better in some cases
to simply fit the corrupted dataset without any modification on the methods—in
particular, this means that we do not need to know or estimate the corruption
mechanism, as would be the case for a procedure that corrects for the corrup-
tion. For the fitting of linear classifiers using empirical risk minimization under
homogeneous noise, Theorem 1 provides an explanation for the possibility of
corruption being beneficial, illustrating the tradeoff between loss approximation
and the estimation.

We can expect a similar tradeoff for more general settings where the noise
is not homogeneous, or where different estimation methods are applied; in gen-
eral, it is intuitive that a small amount of corruption can reduce the chance of
overfitting, especially when the inherent noise level is low, and that this benefit
may outweigh the low bias that is introduced. As an example of a broader set-
ting where this type of phenomenon may be useful, we can consider a setting
where some data points are known to be “clean” while others are potentially cor-
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rupted (this setting can be thought of as a special case of transfer learning—for
example, see Reeve, Cannings and Samworth [22]). While we might expect that
performance could be improved by removing or down-weighting the latter data
points in order to avoid or reduce the effect of corruption, our findings instead
suggest that the presence of the non-“clean” data might even be beneficial.

The question of corrupted labels, with its possible risks and benefits, is stud-
ied only in a very specific setting in our work (i.e., linear prediction rules in low
dimensions), and many open questions remain. First, noting that the corrupted
loss can be thought as another surrogate of 0-1 loss, we may ask how corruption
affects the prediction performance of the estimator in terms of misclassification
rate, i.e., 0-1 risk. Second, do similar phenomena occur in the high-dimensional
regime, d � n or d ∝ n? In particular, we have seen that homogeneous corrup-
tion mimics an �2 penalty in the low-dimensional setting; however, the same is
not immediately true in high dimensions, since these results rely on concentra-
tion type arguments that would no longer hold (and, in particular, for d � n,
in general both the uncorrupted data {(Xi, Yi)}1≤i≤n and the corrupted data

{(Xi, Ỹi)}1≤i≤n are perfectly linearly separable, so we cannot expect good per-
formance without some additional constraints or regularization). Finally, since
the key phenomenon underlying our results is the way that homogeneous cor-
ruption mimics �2 regularization (and therefore, corruption induces shrinkage
in the resulting estimator), this does not explain any potential benefits from
corruption if we instead use methods such as a k-nearest-neighbor estimator,
or other methods where there is no notion of shrinkage; is corruption beneficial
more broadly, by reducing the chance of overfitting in a more general sense? We
leave these questions for future work.

Appendix A: Additional proofs

A.1. Proof of Lemma 1

We first verify that L̃ρ is β-Lipschitz, where β = L
√

a1

a0
. For any w �= w′ ∈ R

d

we have∣∣∣L̃ρ(w)− L̃ρ(w′)
∣∣∣ = ∣∣∣E[�(X�w · Ỹ )− �(X�w′ · Ỹ )]

∣∣∣
≤ E

[∣∣∣�(X�w · Ỹ )− �(X�w′ · Ỹ )
∣∣∣]

≤ E

[
L ·
∣∣∣X�w · Ỹ −X�w′ · Ỹ

∣∣∣]
since � is L-Lipschitz by Assumption 1

= LE
[∣∣X�(w − w′)

∣∣] since Ỹ ∈ {±1}

= L‖w − w′‖ · E[|X�u|] where u =
w − w′

‖w − w′‖
≤ β · ‖w − w′‖,
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where the last inequality follows from Assumption 2 via the calculation

a1 ≥ E

[
ea0|X�v|2

]
≥ a0 · E[|X�v|2] ≥ a0 · E[|X�v|]2. (3)

We therefore have that L̃ρ is β-Lipschitz. Note that the above argument also
holds for ρ = 0, implying that L is also β-Lipschitz.

Now fix t = C0ρ
−1/2 for any C0 >

√
8c1a2

2

c2γ log 2 . We will show that, for any

u ∈ S
d−1,

L̃ρ(t · u) > L̃ρ(0.5t · u).
First we calculate

E

[
|X�u| · 1

{
X�u · Ỹ < 0

}]
≥ ρ · E[|X�u|] ≥ ρ · log 2

2a2

where the first inequality holds by definition of the distribution of the corrupted
label Ỹ (since P{Ỹ = +1 | X} ∈ [ρ, 1 − ρ] holds almost surely), while for the
second inequality, by Jensen’s inequality together with Assumption 2,

e−2a2E[|X�u|] ≤ E[e−2a2|X�u|] ≤ a2
2a2

=
1

2
,

so

E[|X�u|] ≥ log 2

2a2
. (4)

We also know that

�(−t · |X�u|)− �(−0.5t · |X�u|) ≥ γ · 0.5t · |X�u|,

by Assumption 1, and so

E

[(
�(t ·X�u · Ỹ )− �(0.5t ·X�u · Ỹ )

)
· 1
{
X�u · Ỹ < 0

}]
≥ E

[
γ · 0.5t · |X�u| · 1

{
X�u · Ỹ < 0

}]
≥ γ · 0.5t · ρ · log 2

2a2
.

We therefore have

L̃ρ(t · u)− L̃ρ(0.5t · u)

= E

[
�(t ·X�u · Ỹ )− �(0.5t ·X�u · Ỹ )

]
= E

[(
�(t ·X�u · Ỹ )− �(0.5t ·X�u · Ỹ )

)
· 1
{
X�u · Ỹ < 0

}]
+ E

[(
�(t ·X�u · Ỹ )− �(0.5t ·X�u · Ỹ )

)
· 1
{
X�u · Ỹ ≥ 0

}]
≥ γ · 0.5t · ρ · log 2

2a2
+ E

[(
�(t · |X�u|)− �(0.5t · |X�u|)

)
· 1
{
X�u · Ỹ ≥ 0

}]
≥ γ · 0.5t · ρ · log 2

2a2
− E

[
�(0.5t · |X�u|)

]
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≥ γ · 0.5t · ρ · log 2
2a2

− c1E
[
e−c2·0.5t·|X�u|

]
by Assumption 1

≥ γ · 0.5t · ρ · log 2
2a2

− c1a2
c2 · 0.5t

by Assumption 2

> 0 by definition of t.

In particular, this implies that L̃ρ(tu) > infw∈Rd L̃ρ(w) for all u ∈ S
d−1. Since

w 
→ L̃ρ(w) is continuous as shown above, this implies that L̃ρ(w) attains its

infimum, and any w̃ρ
∗ ∈ argminw∈Rd L̃ρ(w) must satisfy ‖w̃ρ

∗‖ ≤ t.

Next we bound L(w̃ρ
∗) for any w̃ρ

∗ ∈ argminw∈Rd L̃ρ(w). First note that the
corrupted risk can be written as

L̃ρ(w) = (1− 2ρ) · L(w) + 2ρ · R(w) = (1− ρ)L(w) + ρL(−w). (5)

Applying (5) with w = w̃ρ
∗ we obtain

L̃ρ(w̃ρ
∗) = (1− ρ)L(w̃ρ

∗) + ρL(−w̃ρ
∗),

and similarly applying (5) with w = −w̃ρ
∗ we obtain

L̃ρ(−w̃ρ
∗) = (1− ρ)L(−w̃ρ

∗) + ρL(w̃ρ
∗).

Since L̃ρ(w̃ρ
∗) ≤ L̃ρ(−w̃ρ

∗) by optimality of w̃ρ
∗, and ρ < 1

2 by assumption, this
proves that L(w̃ρ

∗) ≤ L(−w̃ρ
∗) and therefore,

L(w̃ρ
∗) ≤ L̃ρ(w̃ρ

∗).

Next, fix any w ∈ R
d. First consider the case that ‖w‖ ≤ cρ−1/2, where c =√

c1a2

2βc2
. Then

L̃ρ(w̃ρ
∗)− L(w) ≤ L̃ρ(w)− L(w) by optimality of w̃ρ

∗
= ρ (L(−w)− L(w)) by (5)

≤ 2ρβ · cρ−1/2

= 2βcρ1/2,

where the last inequality holds since L is β-Lipschitz.
Next consider the case that ‖w‖ > cρ−1/2. Let u = w/‖w‖ and t = cρ−1/2.

Then by the reasoning above, we have

L̃ρ(w̃ρ
∗)− L(tu) ≤ 2βcρ1/2.

Next, let Zu = X�u · Y , then we have

L(tu)− L(w) = E[�(t · Zu)− �(‖w‖ · Zu)]

= E[(�(t · Zu)− �(‖w‖ · Zu)) · 1 {Zu > 0}]
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+ E[(�(t · Zu)− �(‖w‖ · Zu)) · 1 {Zu < 0}]
≤ E[(�(t · Zu)− �(‖w‖ · Zu)) · 1 {Zu > 0}] since ‖w‖ > t and � is nonincreasing

≤ E[�(t · Zu) · 1 {Zu > 0}] since � is nonnegative

≤ c1E[e
−c2t|X�u|] by Assumption 1

≤ c1 ·
a2
c2t

by Assumption 2

=
c1a2
c2c

· ρ1/2.

Therefore, for this second case, we have shown that

L̃ρ(w̃ρ
∗)− L(w) ≤

(
2βc+

c1a2
c2c

)
· ρ1/2 =

√
8βc1a2

c2
· ρ1/2.

Combining the two cases, we have shown that

L(w̃ρ
∗) ≤ L̃ρ(w̃ρ

∗) ≤ L(w) +
√

8βc1a2
c2

· ρ1/2

for all w ∈ R
d, which proves the desired inequality with

C1 =

√
8βc1a2

c2
.

Now we turn to the corrupted estimator w̃ρ
n. First we will need a lemma to

establish some concentration results.

Lemma 3. Suppose Assumptions 1 and 2 hold. Fix any α > 0, ρ ∈ (0, 1
2 ),

t > 0, and r > 0. Then with probability at least 1− n−α, it holds that

inf
u∈Sd−1

{
1

n

n∑
i=1

max
{
0,−X�

i u · Ỹi

}}
≥ r1ρ− r2 ·

d log n

n
(6)

and

sup
u∈Sd−1

{
1

n

n∑
i=1

e−t|X�
i u|

}
≤ r3

t
+ r4

√
d log n

n
(7)

and

sup
‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣ ≤ r5 · r ·
√

d log n

n
, (8)

where r1, r2, r3, r4, r5 > 0 depend only on α and on the constants in Assump-
tions 1 and 2, and not on n, d, r, or t.

We are now ready to prove the remainder of Lemma 1. First we bound ‖w̃ρ
n‖.

Define C = 2r2
r1

and fix t = C0ρ
−1/2 for any C0 >

max

{
2

√
4c1(2c−1

2 r3)
γr1

,
8c1(C−1/2r4)

γr1

}
, which therefore satisfies

C0 >

√
4c1
(
2c−1

2 r3 + C0C−1/2r4
)

γr1
.
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We will show that, for any u ∈ S
d−1,

L̃ρ
n(t · u) > L̃ρ

n(0.5t · u).

Then assuming ρ ≥ C · d logn
n , the bound (6) in Lemma 3 implies that

1

n

n∑
i=1

|X�
i u| · 1

{
X�

i u · Ỹi < 0
}
=

1

n

n∑
i=1

max
{
0,−X�

i u · Ỹi

}
≥ r1

2
· ρ,

for all u ∈ S
d−1. Furthermore, since t = C0ρ

−1/2, the bound (7) in Lemma 3
(applied with 0.5c2t in place of t) together with our assumption ρ ≥ C · d logn

n
implies that

1

n

n∑
i=1

e−c2·0.5t|X�
i u| ≤ 2c−1

2 r3 + C0C
−1/2r4

t

for all u ∈ S
d−1. Following identical arguments as in the population case, we

have

L̃ρ
n(t · u)− L̃ρ

n(0.5t · u) ≥ γ · 0.5t · ρ · r1/2− c1 ·
2c−1

2 r3 + C0C
−1/2r4

t
> 0

for all u ∈ S
d−1, where the last step holds by definition of t and of C0. Since

L̃ρ
n is continuous (because we have assumed the loss � is continuous), as for the

population case this again proves that L̃ρ
n(w) must attain its infimum, and that

any w ∈ argminw∈Rd L̃ρ
n(w) must satisfy ‖w‖ ≤ t.

Finally, the bound sup‖w‖≤C0ρ−1/2

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣ ≤ C2ρ
−1/2

√
d logn

n fol-

lows immediately from the bound (8) in Lemma 3, by setting C2 = C0r5.

A.2. Proof of Lemma 3

First, we prove (6). The distribution of (X, Ỹ ) can equivalently be represented
as

(X, Ỹ ) =
(
X, (1−R) · Y +R · Z

)
,

where R ∼ Bernoulli(2ρ) is generated independently from (X,Y ), and Z ∼
Unif{±1} is generated independently from (X,Y,R). Let (Xi, Yi, Ri, Zi) gener-
ate the n i.i.d. data points. Furthermore, define

X̄ = X ·min

{
1,

4E[‖X‖]
‖X‖

}
.

and

X̄i = Xi ·min

{
1,

4E[‖X‖]
‖Xi‖

}
.

Then we can check that, for all u ∈ S
d−1,

1

n

n∑
i=1

max
{
0,−X�

i u · Ỹi

}
≥ 1

n

n∑
i=1

max
{
0,−X̄�

i u · Ỹi

}
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≥ 1

n

n∑
i=1

max
{
0,−X̄�

i u ·Ri · Zi

}
.

Define

Δ = sup
u∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

max
{
0,−X̄�

i u ·Ri · Zi

}
− E[max

{
0,−X̄�u ·R · Z

}
]

∣∣∣∣∣ .
We can verify that, since X̄, R, Z are independent, by definition of their distri-
butions we have

E
[
max

{
0,−X̄�u ·R · Z

}]
≥ ρ · E

[
|X̄�u|

]
.

Furthermore, by Jensen’s inequality,

exp
{
−4a2E

[
|X̄�u|

]}
≤ E

[
e−4a2|X̄�u|

]
≤ E

[
e−4a2|X�u|

]
+ P{‖X‖ > 4E[‖X‖]}

≤ a2
4a2

+
E[‖X‖]
4E[‖X‖] =

1

2
,

where the last inequality applies Assumption 2 together with Markov’s inequal-
ity. Rearranging terms, then,

E
[
|X̄�u|

]
≥ log 2

4a2
.

Therefore, combining everything we have shown so far, it holds deterministically
that

inf
u∈Sd−1

{
1

n

n∑
i=1

max
{
0,−X�

i u · Ỹi

}}
≥ ρ · log 2

4a2
−Δ.

Now we need to bound Δ with high probability.
By the symmetrization inequality Koltchinskii [10, Theorem 2.1] we have

E[Δ] ≤ 2E

[
sup

u∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

ξi ·max
{
0,−X̄�

i u ·Ri · Zi

}∣∣∣∣∣
]
,

where the last expectation is taken with respect to the i.i.d. data (X̄i, Ỹi) as well

as i.i.d. Rademacher random variables ξi
iid∼ Unif{±1}. Since t 
→ max{0,−t}

is 1-Lipschitz, the contraction inequality Koltchinskii [10, Theorem 2.2] verifies
that

E[Δ] ≤ 4E

[
sup

u∈Sd−1

∣∣∣∣∣ 1n
n∑

i=1

ξi · X̄�
i u ·Ri · Zi

∣∣∣∣∣
]
.

Furthermore, deterministically we have∣∣∣∣∣ 1n
n∑

i=1

ξi · X̄�
i u ·Ri · Zi

∣∣∣∣∣ =
∣∣∣∣∣u�

(
1

n

n∑
i=1

ξi ·Ri · Zi · X̄i

)∣∣∣∣∣
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≤
∥∥∥ 1
n

n∑
i=1

ξi ·Ri · Zi · X̄i

∥∥∥,
and so combining everything so far, we have shown that

E[Δ] ≤ 4E

[∥∥∥ 1
n

n∑
i=1

ξi ·Ri · Zi · X̄i

∥∥∥] .
Moreover, we can see that (X̄i, ξi · Zi) is equal in distribution to (X̄i, ξi) (since
Zi ∈ {±1} while ξi ∼ Unif{±1} is drawn independently from the data), and so

E[Δ] ≤ 4E

[∥∥∥ 1
n

n∑
i=1

ξi · X̄i ·Ri

∥∥∥] .
Finally,

E

[∥∥∥ 1
n

n∑
i=1

ξi · X̄i ·Ri

∥∥∥]2 ≤ E

[∥∥∥ 1
n

n∑
i=1

ξi · X̄i ·Ri

∥∥∥2]

=
1

n2

d∑
j=1

E

⎡⎣( n∑
i=1

X̄ijRiξi

)2
⎤⎦

=
1

n2

d∑
j=1

n∑
i=1

E[X̄2
ijR

2
i ] =

1

n2

n∑
i=1

2ρE[‖X̄i‖2] ≤
1

n
· 16E[‖X‖]2 · 2ρ,

since by definition, it holds deterministically that ‖X̄i‖ ≤ 4E[‖X‖], while Ri ∼
Bernoulli(2ρ) is independent from Xi. Combining everything so far,

E[Δ] ≤ 4

√
1

n
· 16E[‖X‖]2 · 2ρ.

Next, since for all u ∈ S
d−1 we have

E[max
{
0,−X̄�u ·R · Z

}2
] ≤ 2ρ ·

(
4E[‖X‖]

)2
and

0 ≤ max
{
0,−X̄�u ·R · Z

}
≤ 4E[‖X‖] almost surely,

applying Koltchinskii [10, Bousquet bound, Section 2.3] yields the concentration
result

P

{
Δ ≤ E[Δ] +

√
2 log(3nα) · (2ρ · 16E[‖X‖]2 + 4E[‖X‖] · 2E[Δ])

n

+ 4E[‖X‖] · log(3n
α)

3n

}
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≥ 1− 1

3nα
.

Furthermore, Assumption 2 together with Jensen’s inequality implies

ea0E[‖X‖2]/d ≤ ea0 max1≤j≤d E[|Xj |2] ≤ max
1≤j≤d

E[ea0|Xj |2 ] ≤ a1

and so E[‖X‖] ≤ E[‖X‖2]1/2 ≤
√

d log a1

a0
. Combined with our bound on E[Δ],

we can verify that this bound can be relaxed to

P

{
Δ ≤ r′

(√
ρ · d logn

n
+

d logn

n

)}
≥ 1− 1

3nα

where r′ is chosen appropriately as a function of α, a0, and a1. Therefore, we
have shown that with probability at least 1− 1

3nα ,

inf
u∈Sd−1

{
1

n

n∑
i=1

max
{
0,−X�

i u · Ỹi

}}
≥ ρ · log 2

4a2
− r′

(√
ρ · d logn

n
+

d logn

n

)
,

which is sufficient to verify (6) with r1, r2 chosen appropriately, since it holds

that
√

ρ · d logn
n ≤ r′′ρ

2 + d logn
2r′′n for all r′′ > 0.

Next we prove (7). Note that, comparing the two terms in the desired upper

bound and noting that 1/t is only dominant if t ≤
√

n
d logn , we can see that it suf-

fices to prove the result for t ≤
√

n
d logn , since t 
→ supu∈Sd−1

{
1
n

∑n
i=1 e

−t|X�
i u|
}

is monotone nonincreasing in t.
We have

sup
u∈Sd−1

{
1

n

n∑
i=1

e−t|X�
i u|

}
≤ sup

u∈Sd−1

{
1

n

n∑
i=1

e−t|X̄�
i u|

}
,

where, changing the definition of X̄ and X̄i, we let

X̄ = X ·min

{
1,

tE[‖X‖]
‖X‖

}
.

and analogously

X̄i = Xi ·min

{
1,

tE[‖X‖]
‖Xi‖

}
.

Next fix ε > 0, and take a covering u1, . . . , uM of Sd−1 such that

sup
u∈Sd−1

{
min

m=1,...,M
‖u− um‖

}
≤ ε.

By Lorentz, Golitschek and Makovoz [15, Chapter 15], for any ε > 0 we can
construct a set with this property of size M ≤ (3/ε)d. Then for any u ∈ S

d−1,
if we find m such that ‖u− um‖ ≤ ε, we have

e−t|X̄�
i u| ≤ e−t|X̄�

i um| + t‖X̄i‖ · ε ≤ e−t|X̄�
i um| + t2E[‖X‖] · ε,
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since e−t|x| is t-Lipschitz over x ∈ R. Therefore,

sup
u∈Sd−1

{
1

n

n∑
i=1

e−t|X�
i u|

}
≤ t2E[‖X‖] · ε+ max

m=1,...,M

{
1

n

n∑
i=1

e−t|X̄�
i um|

}
.

Next, for each m, by Hoeffding’s inequality,

P

{
1

n

n∑
i=1

e−t|X̄�
i um| − E[e−t|X̄�um|] >

√
log(3Mnα)

2n

}
≤ 1

3Mnα
.

Furthermore,

E[e−t|X̄�um|] ≤ E[e−t|X�um|] + P{‖X‖ > tE[‖X‖]} ≤ a2 + 1

t
,

by applying Assumption 2 together with Markov’s inequality. Therefore, com-
bining everything, with probability at least 1− 1

3nα ,

sup
u∈Sd−1

{
1

n

n∑
i=1

e−t|X�
i u|

}
≤ t2E[‖X‖] · ε+

√
log(3 · (3/ε)d · nα)

2n
+

a2 + 1

t
.

Since we have assumed that t ≤ n, taking ε = n−2.5 we obtain

sup
u∈Sd−1

{
1

n

n∑
i=1

e−t|X�
i u|

}
≤ E[‖X‖]√

n
+

√
log(3 · (3n2.5)d · nα)

2n
+

a2 + 1

t
,

which clearly satisfies (7) with r3, r4 chosen appropriately, since as shown before,

E[‖X‖] ≤
√

d log a1

a0
.

Finally we prove (8). We first bound the quantity in the expected value. We
have

E

[
sup

‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣]

= E

[
sup

‖w‖≤r

∣∣∣∣∣ 1n
n∑

i=1

(
�(X�

i w · Ỹi)− E[�(X�
i w · Ỹi)]

)∣∣∣∣∣
]

≤ 2E

[
sup

‖w‖≤r

∣∣∣∣∣ 1n
n∑

i=1

ξi�(X
�
i w · Ỹi)

∣∣∣∣∣
]
,

by the symmetrization inequality Koltchinskii [10, Theorem 2.1], where the

last expectation is taken with respect to the i.i.d. data (X̄i, Ỹi) as well as

i.i.d. Rademacher random variables ξi
iid∼ Unif{±1}. Next, the contraction in-

equality Koltchinskii [10, Theorem 2.2] verifies that

E

[
sup

‖w‖≤r

∣∣∣∣∣ 1n
n∑

i=1

ξi�(X
�
i w · Ỹi)

∣∣∣∣∣
]
≤ 2LE

[
sup

‖w‖≤r

∣∣∣∣∣ 1n
n∑

i=1

ξi ·X�
i w · Ỹi

∣∣∣∣∣
]
,
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since � is L-Lipschitz by Assumption 1. Furthermore, deterministically we have∣∣∣∣∣ 1n
n∑

i=1

ξi ·X�
i w · Ỹi

∣∣∣∣∣ =
∣∣∣∣∣w�

(
1

n

n∑
i=1

ξi · Ỹi ·Xi

)∣∣∣∣∣ ≤ ‖w‖ ·
∥∥∥ 1
n

n∑
i=1

ξi · Ỹi ·Xi

∥∥∥,
and so combining everything so far, we have shown that

E

[
sup

‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣] ≤ 4LrE

[∥∥∥ 1
n

n∑
i=1

ξi · Ỹi ·Xi

∥∥∥] .
Moreover, we can see that (Xi, ξi · Ỹi) is equal in distribution to (Xi, ξi) (since

Ỹi ∈ {±1} while ξi ∼ Unif{±1} is drawn independently from (Xi, Ỹi)), and so

E

[
sup

‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣] ≤ 4LrE

[∥∥∥ 1
n

n∑
i=1

ξi ·Xi

∥∥∥] .
Finally,

E

[∥∥∥ 1
n

n∑
i=1

ξi ·Xi

∥∥∥]2 ≤ E

[∥∥∥ 1
n

n∑
i=1

ξi ·Xi

∥∥∥2] =
1

n2

d∑
j=1

E

⎡⎣( n∑
i=1

Xijξi

)2
⎤⎦

=
1

n2

d∑
j=1

n∑
i=1

E[X2
ij ] =

1

n
E[‖X‖2] ≤ d

n
· log a1

a0
,

since E[‖X‖2] ≤ d log a1

a0
as calculated above. Therefore,

E

[
sup

‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣] ≤ 4Lr
√
log a1√
a0

·
√

d

n
.

Next we prove that the quantity sup‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣ concentrates

around its expectation. First, let (X ′, Ỹ ′) be an i.i.d. draw from the distribution

of (X, Ỹ ). For λ ≥ 0, we calculate

E

[
1

2
eλ‖XỸ−X′Ỹ ′‖ +

1

2
e−λ‖XỸ−X′Ỹ ′‖

]
≤ E

[
eλ

2‖XỸ−X′Ỹ ′‖2/2
]

≤ E

[
eλ

2·(‖XỸ ‖2+‖X′Ỹ ′‖2)
]
= E

[
eλ

2·‖XỸ ‖2
]2

= E

[
eλ

2·‖X‖2
]2

= E

[
eλ

2·
∑d

j=1 |Xj |2
]2

≤ E

⎡⎣1
d

d∑
j=1

edλ
2·|Xj |2

⎤⎦2

,

by the AM–GM inequality. Applying Assumption 2, we then obtain

E

[
1

2
eλ‖XỸ−X′Ỹ ′‖ +

1

2
e−λ‖XỸ−X′Ỹ ′‖

]
≤ a

2λ2d
a0

1
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as long as λ2 ≤ a0/d. Following the proof of Kontorovich [11, Theorem 1], since

sup‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣ is a Lr
n -Lipschitz function of each data point product

Xi · Ỹi,

P

{
sup

‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣− E

[
sup

‖w‖≤r

∣∣∣L̃ρ
n(w)− L̃ρ(w)

∣∣∣]

>
Lr

n
·

√
8nd log a1 · log(3nα)

a0

}

≤ exp

⎧⎨⎩2nλ2d log a1
a0

− λ ·

√
8nd log a1 · log(3nα)

a0

⎫⎬⎭ .

Taking

λ =
a0

4nd log a1
·

√
8nd log a1 · log(3nα)

a0

(which clearly satisfies λ ≤
√

a0

d for sufficiently large n), this probability is

bounded by 1
3nα . (If instead n is not sufficiently large (i.e., λ >

√
a0

d ), then the
guarantee (8) holds trivially.) Combining everything, and choosing r5 appropri-
ately, we have established (8).
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