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Abstract: Thanks to their simplicity and interpretable structure, auto-
regressive processes are widely used to model time series data. However,
many real time series data sets exhibit non-linear patterns, requiring non-
linear modeling. The threshold Auto-Regressive (TAR) process provides a
family of non-linear auto-regressive time series models in which the pro-
cess dynamics are specific step functions of a thresholding variable. While
estimation and inference for low-dimensional TAR models have been in-
vestigated, high-dimensional TAR models have received less attention. In
this article, we develop a new framework for estimating high-dimensional
TAR models, and propose two different sparsity-inducing penalties. The
first penalty corresponds to a natural extension of classical TAR model
to high-dimensional settings, where the same threshold is enforced for all
model parameters. Our second penalty develops a more flexible TAR model,
where different thresholds are allowed for different auto-regressive coeffi-
cients. We show that both penalized estimation strategies can be utilized
in a three-step procedure that consistently learns both the thresholds and
the corresponding auto-regressive coefficients. However, our theoretical and
empirical investigations show that the direct extension of the TAR model
is not appropriate for high-dimensional settings and is better suited for
moderate dimensions. In contrast, the more flexible extension of the TAR
model leads to consistent estimation and superior empirical performance in
high dimensions.
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1. Introduction

The threshold Auto-Regressive (TAR) model [44, 46] allows regime-specific
auto-regressive parameters, where the regimes are governed by a thresholding
random variable, typically some previous lag of the time series (see formal def-
inition in Section 2). Thanks to its flexibility, the TAR model has become a
popular framework for analyzing non-linear time series from diverse application
domains, from economics [27] and finance [11] to genomics [24] and epidemiol-
ogy [53]. Applications in macroeconomics have been particularly diverse: Enders
et al. [15] modeled the U.S. GDP growth, and constructed confidence intervals
for the parameters; Juvenal and Taylor [25] explored the validity of the law of
one price in nine European countries; and Aslan et al. [1] applied a TARmodel to
commodity prices, and used it to represent abrupt changes, time-irreversibility,
and regime-shifting behavior. See Hansen [20] for a selective review of threshold
autoregression in economics.

TARmodels have been extensively studied in univariate and fixed-dimensional
settings. For example, Chan [8] investigated the asymptotic properties of the
least squares estimation for TAR models with two regimes, Chen [12] proposed
an estimation procedure when the thresholding variable is unknown, Bruce [6]
derived the asymptotic distribution of general TAR models, and Li et al. [29]
developed the asymptotic theory of the least squares estimator for a moving
average TAR model. In other related work, Chan and Kutoyants [9] proved the
consistency of a Bayesian estimator of the TAR model, while Chan et al. [10]
proposed a novel modified LASSO approach for threshold estimation and es-
tablished its consistency in multiple threshold models. Tsay [48] first extended
univariate TAR models to multivariate settings, and proposed to use grid search
based on the Akaike information criterion (AIC) to select the thresholds. Later,
Lo and Zivot [33], Hansen and Seo [21], Dueker et al. [14], Li and Tong [28]
used grid search based methods to study the multivariate TAR models assum-
ing either a known number of thresholds or an upper bound on the number of
thresholds. However, these approaches may not work in practice, as the number
of thresholds is often unknown. More recently, Calderón V and Nieto [7], Or-
juela and Villanueva [37] introduced Bayesian methodologies for the estimation
of thresholds in multivariate TAR models with an unknown number of thresh-
olds. These methods bypass the assumptions on the number of thresholds, but
do not establish the consistency of the number of the estimated thresholds. An-
other limitation of existing approaches is that they are not applicable in high
dimensions. The advantages and limitations of existing approaches are summa-
rized in Table 3 in Appendix 6. See also Tong [45] for a review of threshold
models in time series analysis.

High-dimensional time series models have received considerable attention in
recent years [2, 26, 19]. In this setting, the ambient dimension is of the same order
or larger than the sample size. This poses numerous practical and theoretical
challenges. While a number of theoretical results have been established for linear
time series models in high dimensions, with few exceptions [e.g., 13, 42], their
non-linear counterparts have received less attention. In the context of threshold
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models, the recent work by Liu and Chen [32] investigates the estimation of
threshold factor models with growing number of variables. However, this work
assumes a single threshold, which limits the flexibility of the model. Moreover,
while the number of time series components is allowed to grow, it is assumed
to be smaller than the sample size (see Theorem 1 in [32]). In fact, to the best
of our knowledge, methods and theory for high-dimensional TAR models are
currently lacking.

Given the paucity of the literature on high-dimensional TAR models, in this
paper, we propose two estimators for detecting the (unknown) number and val-
ues of thresholds and estimating regime-specific auto-regressive parameters in
multivariate TAR models with many components. Both approaches are based
on a three-step estimation framework and utilize similar penalized estimation
strategies, but they differ in one key aspect. The first approach is a natural ex-
tension of the classical TAR model and enforces all auto-regressive parameters
to change at the same thresholds. As we discuss in Section 3, this assumption
may be too restrictive in high-dimensional settings with many components. In
fact, our theoretical and empirical investigations indicate that the extension
of the classical TAR is not appropriate for high-dimensional settings and is
better suited for moderate dimensions. As such, we refer to this first version
as the multivariate TAR (mvTAR) model. To mitigate the limitation of the
mvTAR model, we then propose a more flexible high-dimensional TAR model
(hdTAR) where different auto-regressive parameters are allowed to change at
different thresholds. This flexibility seems to introduce a new challenge, as the
model may have many thresholds. However, our theoretical and empirical in-
vestigations show that this flexibility is indeed necessary in high dimensions
and leads to improved theoretical guarantees and empirical performances. We
develop efficient algorithms for both methods and establish the consistency
of the thresholds and auto-regressive parameters under certain mixing condi-
tions.

To establish our theoretical results, we address two key challenges that arise
in penalized estimation of high-dimensional TAR models. The first challenge
involves verifying appropriate concentration inequalities, including two main
ingredients in high-dimensional statistics: (1) a restricted eigenvalue condition
and (2) a deviation bound condition [34]. These conditions are crucial in deriv-
ing consistency results in high-dimensional settings, as hinted in Bickel et al.
[4]. The conditions have been previously verified in the setting of i.i.d. obser-
vations and, more recently, studied in certain linear time series models [2, 41].
However, extending these results to non-linear TAR models is challenging. This
is primarily due to the random ordering of the design matrix based on the
threshold (switching) variable (see e.g. Equation (3)). To address this challenge,
we develop a bracketing argument [50, 10] specifically designed to handle the
threshold-type structure (see Lemmas 5 and 7 in the Appendix). These results
are verified under certain mixing conditions (see Assumption A2 in Section 4)
and are of independent interest in the context of non-linear high-dimensional
time series models. The second challenge concerns our screening step to consis-
tently estimate the number of thresholds. Many theoretical results in the context
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of TAR models assume that the number of thresholds is known [33, 32]. This
assumption may not be realistic in practice; in fact, it is appealing to infer the
number of thresholds from data. To that end, the second step of our proposed
algorithms utilizes an information criterion that screens candidate thresholds
identified in the first step and removes redundant ones. This step successfully
resolves the challenge by consistently estimating the number of thresholds with
high probability (see Theorem 2).

The rest of the paper is organized as follows. After formally defining the
multivariate TAR model in Section 2, we describe our algorithms in Section 3
and establish their theoretical properties in Section 4. In Section 5, we pro-
pose data-driven methods to select the hyper-parameters. While the required
hyper-parameters are characterized in our asymptotic results, these rates involve
unknown constants and cannot be used in practice. The empirical performance
of the proposed methods is investigated using both simulated and real data sets,
in Section 6 and Section 7, respectively. We conclude with a brief summary in
Section 8.

2. Multivariate TAR formulations

The classical TAR model, proposed by Tong and Lim [46], is defined as

xt = a0(j) +

K∑
k=1

ak(j)xt−k + σ(j)εt, if rj−1 < zt ≤ rj , (1)

where m0 denotes the number of thresholds, rjs are the threshold parameters
which partition the time series into m0 + 1 regimes, K is the number of lags
to be considered in the model, zt is a switching variable (maybe functions of
some components of xt), σjs are segment-specific error variances, and a0(j) and

ak(j) are coefficients in regime j, for j = 1, . . . ,m0 + 1 (they are allowed to be

different in each regime). The noise or innovation, εt, is an i.i.d. sequence of
random variables with zero mean and unit variance.

The original TAR model was restricted to univariate time series, but can be
extended to multivariate settings, as described in [47]. Formally, a multivariate
time series {xt} follows TAR model with one switching variable if

xt =

K∑
k=1

A(k,j)xt−k +Σ
1/2
j εt, if rj−1 < zt ≤ rj , (2)

where xt = (x(t,1), x(t,2), . . . , x(t,p))
′ is the observed process in R

p at time t,
p is the number of time series components, and K is the number of lags con-
sidered in the model. Here εt = (ε(t,1), ε(t,2), . . . , ε(t,p))

′ ∈ R
p is a multivariate

i.i.d. sequence with zero mean in all components. The covariance matrix Σj for
the j-th regime, Σj , is allowed to be different in each regime. To simplify the
notations, when there is no ambiguity, we simply denote the error term by εt in-

stead of Σ
1/2
j εt. The transition matrices A(k,j) ∈ R

p×p is the coefficient matrix
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corresponding to the k-th lag of a TAR process in regime j. More specifically,
similar to the modeling framework of [10], we assume there exist m0 threshold
values −∞ < r1 < r2 < . . . < rm0 < +∞ with r0 = −∞ and rm0+1 = +∞
which partition the process into m0+1 regimes. For each regime, the total tran-
sition matrices A(.,j) =

(
A(1,j),A(2,j), . . . ,A(K,j)

)
∈ R

p×pK are fixed where
rj−1 < zt ≤ rj for j = 1, . . . ,m0 + 1.

Our goal is to estimate the number of thresholds, i.e. m0, together with the
threshold values, rj , and the auto-regressive parameters in each regime.

Next, we introduce some additional notations. For a symmetric matrix X, let
λmin(X) and λmax(X) denote its minimum and maximum eigenvalues. Let the

h-th row of A(.,j) be A
(.,j)
h , and set the number of non-zero elements in A

(.,j)
h to

dh,j for h = 1, 2, . . . , p and j = 1, 2, . . . ,m0 +1. Denote the total sparsity of the

model by d∗n =
∑m0+1

j=1

∑p
h=1 dh,j . Further, let Ih,j represent the set of all col-

umn indexes of A
(.,j)
h , I = ∪h,jIh,j and define dn = max1≤h≤p,1≤j≤1+m0 |Ih,j |.

Note that p, m0 and the sparsity may increase with the number of time points,
T , specifically, p ≡ p(n) and m0 ≡ m0(n) and dh,j ≡ dh,j(n), where n = T −K.
For simplicity, we suppress the n-index. Finally, let εt,l be error term of l-th time

series, and recall that εt =
(
ε(t,1), ε(t,2), . . . , ε(t,p)

)′
. Throughout the paper, pos-

itive constants C,C1, C2, . . . are used to denote universal constant, A′ denotes
the transpose of a matrix A, and ‖A‖1 and ‖A‖2 denotes its �1 and Frobenius
norms, respectively. We denote the �1 and �2 norms of a vector v by ‖v‖1 and
‖v‖, respectively.

3. Regularized estimation of high-dimensional TARs

The number of parameters in the TAR model (2), (m0 + 1)(Kp2), increases
with the number of time series p and the number of thresholds m0. Estimating
these parameters becomes especially challenging when the model has more than
one threshold, i.e. m0 > 1, and the number of thresholds is unknown. This is
because identifying the thresholds would require a search over all possible values
of threshold levels zt, which is infeasible.

To overcome the above challenges, in Section 3.1 we first reformulate the TAR
estimation problem via a non-parametric model with (T −K)p2K parameters.
This over-parameterization allows us to use regularized estimation strategies to
efficiently obtain an initial estimate of the thresholds by solving a penalized
least squares estimation problem. In particular, we use a total variation penalty
[43] to obtain piecewise constant estimates of A(k,j) for regime j with respect
to the threshold variable zt.

The classical multivariate TAR model (2) requires the parameters of transi-
tion matricesA(k,j) to change at the same threshold values zt. To obtain such an
estimate, we consider a grouped fused lasso penalty in Section 3.2. The result-
ing estimate, referred to as mvTAR, is suitable for low-to-moderate-dimensional
problems, where p is fixed or small compared to the number of observations T .
However, for problems with large p, especially when p 	 T , requiring that
all transition matrix parameters change at the same threshold value becomes
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Fig 1. Example of changes of transition matrices. The left panel depicts the situation in
which the classical TAR multivariate TAR model (mvTAR) in which all elements of the
transition matrices change together at all threshold values. The right panel illustrates the
proposed flexible TAR model for high dimensions (hdTAR) in which different elements of the
transition matrices would not change at some threshold values.

restrictive. Moreover, the theoretical advantages of the group lasso penalty dis-
sipate when grouped parameters do not follow the same sparsity pattern [23].
These limitations are reflected in our theoretical and numerical analyses in Sec-
tions 4 and 6. To achieve efficient estimation in high-dimensions, in Section 3.2
we propose a more flexible high-dimensional TAR model, named hdTAR, in
which transition matrix parameters are allowed to change at different thresh-
olds. As we show, this flexibility results in theoretical and empirical advantages.
The difference between the flexible TAR model and the original version is illus-
trated in Figure 1.

Both our group and regular fused lasso penalties overestimate the number of
thresholds. This is because a key requirement for consistency of �1-regularized
estimation strategies, namely the restricted eigenvalue property [4] is not guar-
anteed to hold in our setting (see Section 4). To remove the redundant selected
thresholds, we introduce a screening criterion in Section 3.3 that consistently
estimates the (many) unknown thresholds. In Section 3.4, we obtain consistent
estimates of high-dimensional auto-regressive parameters within each estimated
regime.

3.1. Reparametrization of the TAR model

In this section, we reparametrize the TAR model (2) by considering n transition
matrices for each value of the ordered switching variable zt (assuming, without
loss of generality, that zt assumes unique values).

Let n = T −K and let π(i) be the time index of the i-th smallest element of
zt for i = 1, . . . , n. Then the TAR model (2) with lag K can be written as
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x′
π(1)

x′
π(2)

...
x′
π(n)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
x′
π(1)−1 · · · x′

π(1)−K 0

x′
π(2)−1 · · · x′

π(2)−K
x′
π(2)−1 · · · x′

π(2)−K

...

x′
π(n)−1 · · · x′

π(n)−K
x′
π(n)−1 · · · x′

π(n)−K

· · ·
· · ·
. . .

· · ·

0
0

x′
π(n)−1 · · · x′

π(n)−K

⎞⎟⎟⎠×

⎛⎜⎜⎜⎝
θ′
1

θ′
2
...
θ′
n

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
ε′π(1)
ε′π(2)
...

ε′π(n)

⎞⎟⎟⎟⎠ .

(3)

Let θ1 =
(
A1

π(1), . . . ,A
K
π(1)

)
∈ R

p×pK , and θi =
(
A1

π(i+1) −A1
π(i), . . . ,

AK
π(i+1) −AK

π(i)

)
, where Ak

π(i) is the transition matrix for i-th ordered observa-

tion at lag k. Denote the response matrix, the design matrix, the model param-
eters and the error term in Equation (3) by Y ,X ,Θ and E, respectively. Then,
(3) can be written as Y = XΘ + E. Moreover, letting Y = vec(Y) ∈ R

np×1,

Θ = vec(Θ) ∈ R
np2K×1, E = vec(E) ∈ R

np×1, and Z = Ip ⊗ X ∈ R
np×np2K

with ⊗ denoting the tensor product, (3) can be written in vector form as

Y = ZΘ+E. (4)

While redundant, the over-parametrization in (3) has an important benefit:
θ′
i �= 0 if and only if the auto-regressive coefficients change in TAR process at

time π(i). Thus, finding the thresholds is equivalent to finding non-zero θis for
i > 1. In other words, the problem of threshold estimation can be translated to
a high-dimensional variable selection problem in (4).

3.2. Penalties for moderate- and high-dimensional TARs

Sparsity-inducing penalties, such as lasso, are particularly suitable for estimat-
ing Θ in (4): A sparse estimate θ̂1 gives an interpretable estimate of the tran-

sition matrices for the smallest value of zt, while sparsity in θ̂i for i > 1 would
imply no changes in the transition matrices over zt. Such a strategy corresponds
to a fused lasso, or total variation, penalty [43, 38]. In this paper, we consider
a similar strategy and obtain an estimate of Θ by solving

Θ̂ = argmin
Θ

‖Y −ZΘ‖22 + λ1 ‖Θ‖♦ + λ2

n∑
i=1

∥∥∥∥∥
i∑

i′=1

θi′

∥∥∥∥∥
1

, (5)

The first penalty in (5), ‖ · ‖♦, encodes either an �2, or grouped fused lasso
penalty, ‖·‖2, or an �1, or fused lasso penalty, ‖·‖1. The group fused lasso penalty
encourages all entries of the transition matrices to change at the same threshold
values. In contrast, the fused lasso penalty provides a more flexible TAR model
in which different transition matrix parameters are allowed to change at different
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thresholds. As discussed earlier, the group fused lasso penalty is only suitable for
low to moderate-dimensional problems (where p is allowed to grow, but p < T ),
whereas the more flexible fused lasso penalty is appropriate for both moderate-
and high-dimensional problems (where p 	 T ); see also Figure 1. In both cases,
the magnitude of the penalty is controlled by the tuning parameter λ1, which
is chosen data-adaptively via cross validation; see Section 5 for more details.

The second penalty in (5), controlled by tuning parameter λ2, further en-
courages the overall sparsity of the estimated transition matrices by penalizing
changes in transition matrices after each potential threshold index i. While often
not needed in practice, this additional sparsity results in improved estimation
and allows us to obtain better rates of convergence for the proposed estimator
in Section 4.

With either �2 or �1 penalties, the optimization problem in (5) is convex and
can be solved efficiently. With the �2 penalty, the problem can be solved using
a sub-gradient descent algorithm. However, the problem further simplifies when
λ2 = 0 and we can instead use a more efficient proximal gradient descent al-
gorithm; see Algorithm 2 in the Appendix. With the �1 penalty, the problem
is easy to solve efficiently using a path-wise coordinate descent algorithm [17]
regardless of the value of λ2. This is because, by Proposition 1 in [17], it suf-
fices to first find the solution for λ2 = 0, and then apply an element-wise soft
thresholding operator; see Algorithm 1 in the Appendix.

3.3. Threshold selection

Using Equation (5), we can define a set of candidates threshold estimates as

Ân =
{
zπ(i−1) : ‖θ̂i‖2 �= 0 , i ≥ 2

}
. (6)

Let r̂j be the j-th sorted (from the lowest to the highest) estimated threshold

in the set Ân, and let m̂ be the cardinality of the set Ân. As we show in Sec-
tion 4, it is likely for the fused lasso to over-estimate the number of thresholds
[22]. Thus, we need to remove the redundant thresholds. In our screening step,
we aim to keep exactly m0 points in Ân which are close enough to the true
threshold values. To that end, we develop an information criterion by modify-
ing the screening procedure of [41] to make it more suitable for the threshold
structure of model (2). Essentially, this step consists of estimating the transition
parameters within each estimated regime {t : r̂j < zt ≤ r̂j+1} for j = 0, 1, . . . , m̂
with r̂0 = −∞ and r̂m̂+1 = +∞ and comparing the total sum of squared error
(SSE) before and after excluding a certain estimated threshold r̂j . The basic
idea is to keep the estimated thresholds for which the value of SSE increases
significantly if we remove them. More specifically, for a given set of estimated
thresholds {−∞, s1, s2, . . . , sm,+∞} with 1 ≤ m ≤ m̂, and for j-th estimated
threshold sj , denote by T(sj−1,sj) =

{
i : sj−1 < zπ(i) ≤ sj

}
the set of orders

of zts for which their corresponding ordered switching variable zπ(i)s fall into
the interval [sj−1, sj ]. Now, given a fixed number of thresholds m, we obtain
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the estimator θ̂s1,s2,...,sm of θs1,s2,...,sm by minimizing the following penalized
regression problem

m+1∑
j=1

1∣∣T(sj−1,sj)

∣∣ ∑
i∈T(sj−1,sj)

∥∥xπ(i) − θ(sj−1,sj)Yπ(i)

∥∥2

2
+ η(sj−1,sj)‖θ(sj−1,sj)‖1,

(7)

where Yπ(i) =
(
x′
π(i)−1 . . . x′

π(i)−K

)′
, θs1,s2,...,sm =

(
θ′
(s0,s1)

,θ′
(s1,s2)

, . . . ,

θ′
(sm−1,sm)

)
, and tuning parameters ηn =

(
η(−∞,s1), . . . , η(sm,+∞)

)
. The glmnet

package [18] readily solves the problem.

Denoting

Ln(s1, s2, . . . , sm ;ηn) =

m+1∑
j=1

∑
i∈T(sj−1,sj)

∥∥xπ(i) − θ(sj−1,sj)Yπ(i)

∥∥2

2

+

m+1∑
j=1

η(sj−1,sj)

∥∥θ(sj−1,sj)

∥∥
1
,

(8)

we construct our information criterion as

IC (s1, s2, . . . , sm ;ηn) = Ln(s1, s2, . . . , sm ;ηn) +mωn, (9)

where ωn is a carefully chosen sequence defined in Section 4. We then select a
subset of the initial m̂ candidate threshold values by solving

(m̃, r̃1, r̃1, . . . , r̃m̃) = argmin0≤m≤m̂,s=(s1,s2,...,sm)∈Ân
IC (s;ηn) . (10)

Practical choices for tuning parameters ηn and ωn are discussed in Section 5.

The over-estimation of the thresholds and the effect of the screening step
are illustrated in Figure 2. The left panel of Figure 2 — which is obtained for
one replicate of simulation Scenario 1 in Section 6 — clearly shows that the
first step of our procedure detects more threshold values. The middle panel
shows that second step successfully screens out the extra threshold estimates
and keep a single value which is very close to the true threshold (here, the
true threshold value is 4). The right panel of Figure 2 confirms that the fi-
nal estimated thresholds across all 200 replicates are indeed close to the true
thresholds.

When the number of estimated thresholds selected in Step 1 is large, it might
be computationally demanding to find the minimizer of the IC. In such cases, we
propose to approximate the optimal thresholds using the backward elimination
algorithm (BEA) proposed in [41]. Starting with the set of initial thresholds Ân,
the algorithm reduces the computational cost by removing one threshold at a
time until IC does not reduce any further.



1900 K. Zhang et al.

Fig 2. Estimated thresholds in Simulation Scenario 1 with hdTAR. On average around 8
points are selected in the first step, and Figure 2a shows the result of one single run in first
step. Figure 2b shows the results of final selected threshold estimates for single simulation in
Figure 2a, and Figure 2c shows the final selected threshold estimates all 200 simulation runs.

3.4. Estimation of auto-regressive parameters

Given the estimated thresholds, we simply take each estimated regime T(r̃j−1,r̃j)={
i : r̃j−1 < zπ(i) ≤ r̃j

}
with r̃0 = −∞ and r̃m̃+1 = −∞ for j = 1, . . . , m̃+1, and

estimate the transition matrices in each regime separately. More specifically, for
a fixed j = 1, . . . , m̃+ 1 we solve

β̂(.,j) = argmin
β

⎛⎜⎝ ∑
i∈T(r̃j−1,r̃j)

∥∥xπ(i) − βYπ(i)

∥∥2

2
+ αj ‖β‖1

⎞⎟⎠ , (11)

where αj is the tuning parameter for the j-th regime for j = 1, 2, . . . , m̃. It
can be solved efficiently using existing software and HBIC can be used to se-
lect αj . As an alternative to the separate estimation in (11), if the distances
between consecutive threshold values are of the same order, the auto-regressive
parameters can also be jointly estimated [40].

4. Theoretical properties

In this section, we establish the consistency of our procedure proposed in Sec-
tion 3.2. Recall that in the first step of our procedure we use either the �2 or
the �1 penalty in Equation (5), corresponding to classical (mvTAR) and flexible

(hdTAR) TAR models. More specifically, in the following, Θ̂ is the estimator

defined in Equation (5) with either the �1 penalty or the �2 penalty, θ̂s1,s2,...,sm is

the estimator defined in Equation (7), and finally, β̂(.,j) is the estimator defined
in Equation (11). We make the following assumptions.

Assumption A1. {εt} is a sequence of i.i.d. sub-Weibull random variables
with bounded continuous and positive density and sub-Weibull constant Kε and
sub-Weibull parameter κc > 0; specifically, there exist constants Kε and κc > 0

such that ‖εt‖ψ ≤ Kε where ‖εt‖ψ := supc≥1∧κc
c−

1
κc (E |εt|c)1/c.
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Assumption A2. For each j = 1, 2, . . . ,m0 + 1, the process

xt =

K∑
k=1

A(k,j)xt−k + εt

is sub-Weibull with sub-Weibull parameter κ1 > 0 and β-mixing stationary with
a geometrically decaying mixing coefficient bn; specifically, there exist constants
cb > 0 and κ2 > 0 such that for all n ∈ N, b(n) ≤ exp(−cbn

κ2) and for

all t, τ > 0, (xt, . . . ,xt+n)
d
= (xt+τ , . . .xt+τ+n), where

d
= denotes equality in

distribution. Moreover, E[xt] = 0p×1. In addition, assume 2/3 ≤ κ0 < 1, where

κ0 :=
(

2
κ1

+ 1
κ2

)−1

.

Assumption A3. The matrices A(.,j) are sparse for j = 1, . . . ,m0 + 1. More
specifically, for all h = 1, 2, . . . p and j = 1, 2, . . .m0 + 1, dhj  p, i.e., dkj/p =
o(1). Moreover, there exists a positive constant MA > 0 such that

max
1≤j≤m0+1

∥∥∥A(.,j)
∥∥∥
∞

≤ MA.

Assumption A4. There exists a positive constant ν such that

min
1≤j≤m0

∥∥∥A(.,j+1) −A(.,j)
∥∥∥
2
≥ ν > 0.

Moreover, there exist constants l and u such that rj ∈ [l, u] for 1 ≤ j ≤ m0.
In addition, there exists a vanishing positive sequence γn such that as n → ∞,

min1≤j≤m0+1 |rj − rj−1| /γn → +∞. For hdTAR, we assume d∗n
log(p2K)√

nγn
→ 0,

whereas for mvTAR we assume
√

p2Kd∗n
log(p2K)√

nγn
→ 0.

Assumption A5. {zt} is a β-mixing stationary process with a geometric de-
caying mixing coefficient and positive density. In addition, E|zt|2+ι < ∞ for
ι > 0.

The above assumptions are natural in high-dimensional settings and com-
monly used in the literature. Assumptions A1 and A2 are utilized to derive
appropriate concentration inequalities needed to verify the asymptotic proper-
ties of the proposed methodology and have been used in the literature [29, 54].
The sub-Weibull distribution of error terms controls the tail effects, while the
β-mixing condition ensures the dependence structure can be controlled appro-
priately. The latter is specifically needed due to the temporal correlation among
observations. We can relax the β-mixing assumption to α-mixing if we restrict
to Gaussian distributions, rather than sub-Weibull processes. However, to keep
the distributional assumption more general, we consider here the β-mixing as-
sumption. In Appendix 4, we also develop a sufficient condition for β-mixing
processes by imposing constrains on the operator norm of transition matri-
ces; this implies that the β-mixing condition is less restrictive. The assumption
κ0 ≥ 2/3 is to ensure a sharp consistency rate for estimating the thresholds and
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can be removed at the cost of worsening the consistency rate (see additional
details in Remark 1). Assumption A3 ensures the sparsity of the model and is
needed to quantify the effect of model misspecification, since exact recovery of
threshold values is not possible. A similar assumption has been used in [41] in
the context of change point detection. Further, Assumption A4 puts a minimum
jump size on the transition matrices ensuring a detectable change occurred at
threshold rj ; it also puts certain conditions on the detection rate, which is re-
lated to γn. Assumption A4 can be seen as an extension of Assumption H4 in
[10] to high-dimensions. It can be seen that the assumption is more stringent
for mvTAR, rendering this procedure not suitable for high dimensions. Finally,
Assumption A5 is used to build the relationship between the length of each
regime and the number of observations in that regime.

Our first theoretical result concerns the first step, i.e., the initial estimation
of thresholds using group or regular fused lasso penalties. The penalized esti-
mation (5) in this step does not guarantee parameter estimation consistency
since the design matrix Z in Equation (4) may not satisfy the restricted eigen-
value condition [2], which is critical for establishing the parameter estimation
consistency in high-dimensions [4]. However, with either penalty, the estimator
over-estimates the true number of thresholds, as established next.

Let An = {r1, r2, . . . , rm0} be the set of the sorted true thresholds. Define
the Hausdorff distance between two countable sets as:

dH(A,B) = max
b∈B

min
a∈A

|b− a|.

Though not a distance, dH(A,B) proves useful in Theorem 1.

Theorem 1. Under assumptions A1 to A5, there exist large constants C1, C2 >

0 such that λ̃1,n = C1
log(p2K)√

n
, and λ̃2,n = C2

n
log(p2K)√

nγn
, where for hdTAR

λ1,n = λ̃1,n and λ2,n = λ̃2,n, whereas for mvTAR, λ1,n =
√

p2Kλ̃1,n and

λ2,n =
√

p2Kλ̃2,n. Then,

min
{
P

(
|Ân| ≥ m0

)
,P

(
dH

(
An, Ân

)
≤ γn

)}
→ 1.

Theorem 1 shows that the number of estimated thresholds m̂ in Step 1 is
no less than the true number of thresholds m0 with high probability. In addi-
tion, there exists at least one estimated threshold in the γn-radius neighborhood
of the true thresholds. The rate of consistency for threshold detection, γn, de-
pends on the number of time series p, the maximum considered lag K, and
the minimum distance between consecutive true thresholds in the model. In
addition, the convergence rate for using r̂j to estimate rj could be as low as

log logn
(
log

(
p2K

))2
/n when m0 is finite.

The rate of consistency for thresholds detection, γn, for mvTAR also depends
on the number of time series p, the maximum considered lag K, and the mini-
mum distance between consecutive true thresholds in the model. However, the
assumptions on γn for hdTAR and mvTAR are different, so the consistency rate
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for thresholds detection is different for these two methods. In addition, when
using the �2 penalty, the convergence rate for using r̂j to estimate rj could

be as low as log logn
(
log

(
p2K

))2
p2K/n when m0 is finite. Thus, convergence

of mvTAR is only guaranteed in low to moderate dimensions and not in high
dimensions. Finally, the minimum sample size requirement depends on the sub-
Weibull parameter κ1 and β-mixing parameter κ2. For example, as mentioned in

Lemma 5, we need n ≥ c0
(
log(p2K)

)2/κ0−1
where κ0 :=

(
2
κ1

+ 1
κ2

)−1

. This in-

dicates that if the sub-Weilbull parameter κ1 increases (i.e., the tail probability
decays faster), the minimum sample size will decrease; similarly, the minimum
sample size decreases as the β-mixing parameter κ2 increases.

Next, we state Theorem 2 which shows the screening procedure (10) consis-
tently estimates the number and values of thresholds. For that, we need two
additional assumptions.

Assumption A6. Let Δn = min1≤j≤m0+1 |rj − rj−1|. Then,

m0 (nγn)
3/2

d∗2n /ωn → 0, and nΔn/(m0ωn) → +∞.

Assumption A7. There exist positive constants c, c1, c2 and c3 such that for
indexes j′ and j′ − 1 and corresponding estimated thresholds sj′ and sj′−1,

(a) if |sj′ − sj′−1| ≤ γn, then η(sj′−1,sj′ )
= c

√
nγn log

(
p2K

)
;

(b) if there exist rj and rj+1 such that |sj′−1−rj | ≤ γn and |sj′ −rj+1| ≤ γn,
then,

η(sj′−1,sj′ )
=

2

c3

(
c1

log(p2K)√
n(sj′ − sj′−1)

+ c2MAd
∗
n

γn
sj′ − sj′−1

)
;

(c) otherwise η(sj′−1,sj′ )
= 2

c3

(
c1

log(p2K)√
n(sj′−sj′−1)

+ c2MAd
∗
n

)
.

Assumption A6 makes a unique connection between three important quanti-
ties: (1) minimum spacing between consecutive thresholds, Δn; (2) the consis-
tency rate for estimating the threshold values, γn; (3) the penalty term in the
definition of the information criterion, ωn. This connection helps with quanti-
fying the consistency rate for estimating the threshold values as discussed after
Theorem 2.

Assumption A7 specifies three different tuning parameter rates for the screen-
ing step. Although this assumption may seem technical, but it is needed to get
the sharpest consistency rate. It is possible to define a fixed tuning parameter
for all cases in Assumption A7, but the consistency results will be worsened.
Remark 5 in [41] shed some light into this issue.

Theorem 2. Under Assumptions A1 to A7, if n → +∞, the minimizer

(m̃, r̃j , j = 1, 2, . . . , m̃)

of Equation (10) satisfies:
P(m̃ = m0) → 1. (12)
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In addition, there exists a constant B > 0 such that:

P

(
max

1≤j≤m0

|r̃j − rj | ≤ Bm0 (γn)
3/2

d∗2n
√
n

)
→ 1. (13)

When p = cnκ, where c > 0 and κ ∈ (0, 1), the proposed procedure for both
hdTAR and mvTAR can also be applied to low-dimensional time series. The
consistency results would be similar to those in Theorem 2. It is challenging to
select ηs in practice, since the distance between estimated thresholds to the true
thresholds is unknown. Instead, we set ηs to be the same and apply BIC/HBIC
to select them.

Although the consistency rates for mvTAR and hdTAR are both functions
of γn, the assumptions on γn for the two methods are different, leading to dif-
ferent rates of consistency. To illustrate this point, consider the case when m0

is finite. Then, when using the �1 penalty in the first step, we can set γn =

(logn)
ρ (

log
(
p2K

))2+2ρ
/n for some ρ > 0. With this rate, the hdTAR model

can have total sparsity d∗n = o

((
log n

(
log

(
p2K

))2)ρ/2
)
. The consistency rate

then becomes of order
(
(log n)

5
2ρ

(
log

(
p2K

))3+5ρ
)
/n. In comparison, when us-

ing the �2 penalty, we can set γn = (logn)
ρ′ (

log
(
p2K

))2+2ρ′ (
p2K

)1+ρ′
/n for

some 0 < ρ′ < 1 to ensure that Assumption A3 is satisfied. With this rate, the

mvTAR model can have total sparsity d∗n = o

((
p2K logn

(
log

(
p2K

))2)ρ′/2
)
.

Using a similar calculation, the consistency rate for mvTAR becomes of order(
(logn)

5
2ρ

′ (
log

(
p2K

))3+5ρ′ (
p2K

) 3
2+

5
2ρ

′)
/n, further highlighting that mvTAR

is not suitable in high dimensions, when p = cnκ, where c > 0 and κ ≥ 1.

Remark 1. If we remove the assumption κ0 ≥ 2/3 and only keep κ0 < 1, then,
according to Lemma 7, the choice of γn would also depend on κ0. For the hdTAR

model, we can set γn = (logn)
ρ (

log
(
p2K

))2/κ0−1+2ρ
/n for some ρ > 0, and

keep the total sparsity the same as above. The consistency rate then becomes of

order
(
(log n)

5
2ρ

(
log

(
p2K

))3/κ0−3/2+5ρ
)
/n. Similarly, for mvTAR model, we

can set γn = (log n)
ρ′ (

log
(
p2K

))2/κ0−1+2ρ′ (
p2K

)1+ρ′
/n for some 0 < ρ′ < 1,

and keep the total sparsity the same as above. The consistency rate for mvTAR

becomes of order
(
(logn)

5
2ρ

′ (
log

(
p2K

))3/κ0−3/2+5ρ′ (
p2K

) 3
2+

5
2ρ

′)
/n.

Our last theorem establishes the consistent estimation of regime-specific tran-
sition matrices in the third step.

Theorem 3. Under Assumptions A1 to A7, and selecting

αj = C
√
log(p2K)/ (nγn)

for some large enough C > 0, with high probability approach to 1, there exists a
positive constant C ′ such that we have for each fixed regime j:∥∥∥β̂(.,j) −A(.,j)

∥∥∥
2
≤ C ′√d∗n log(p

2K)/ (nγn). (14)
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The consistency rate derived in Theorem 3 is similar to that of Wong et al.
[54], Basu and Michailidis [2] for high-dimensional vector auto-regressive models.

5. Tuning parameter selection

We next provide guidance on selecting the tuning parameters for our three-step
procedure.

λ1,n We choose λ1,n by cross-validation. We first randomly choose the order
of switching variable zt with equal space. Let T be a set of time points
corresponding to selected switching variable. We use the rest of observa-
tions to estimate Θ in the first step for a range of λ1,n. To choose the
optimal value of λ1,n, we use the estimated Θ to predict the series at time
points in T. The optimal λ1,n is selected as the value corresponding to the
minimum mean squared prediction error over T.

λ2,n The rate for λ2,n vanishes fast as n increases. Thus, to lower the compu-
tational cost, we set λ2,n to zero. It is possible to select λ2,n using cross-
validation as well at the cost of increasing computation time. However,
the sensitivity analysis reported in [41] indicates that setting λ2,n = 0 is
a reasonable choice.

ηn Selecting ηn is in general difficult. For 0 ≤ m ≤ m̂ (m̂ is the number of
estimated thresholds in step 1), we choose different ηs for different regimes,
and use HBIC and eBIC [52] across all regimes. For each time series l,
l ∈ 1, 2, . . . , p, and j = 1, 2, . . . ,m+ 1, set ηlj as the tuning parameter for
l-th time series at j-th regime. Then, the HBIC for interval [sj−1, sj ] is
defined as

HBIC
(
j, ηlj

)
= log

(
SSEl,j/

∣∣T(sj−sj−1)

∣∣)+ γ1

∥∥∥θ̂l
sj−1,sj

∥∥∥
0∣∣T(sj−sj−1)

∣∣ log (pK) ,

where γ1 = 2.8 that is within the recommended range in [52]. Similarly,
the eBIC for interval [sj−1, sj ] is defined as

eBIC
(
j, ηlj

)
= log

(
SSEl,j/

∣∣T(sj−sj−1)

∣∣)+γ2

∥∥∥θ̂l
sj−1,sj

∥∥∥
0∣∣T(sj−sj−1)

∣∣ (log (pK) +

log
(∣∣T(sj−sj−1)

∣∣)) ,
where γ2 = 1.4 that is within the recommended range in [52] as well. If∣∣T(sj−sj−1)

∣∣ ≥ pK, ηlj is selected as:

η̂lj = argmin
ηl
j

eBIC
(
j, ηlj

)
. (15)

If
∣∣T(sj−sj−1)

∣∣ < pK, ηlj is selected as:

η̂lj = argmin
ηl
j

HBIC
(
j, ηlj

)
. (16)
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ωn We first perform the backward elimination algorithm (BEA) until no break
points are left. Then, we cluster the differences in the objective function
Ln into two subgroups, small and large. If removing a threshold only leads
to a small decrease in Ln, then the removed threshold is likely redundant.
In contrast, true thresholds lead to larger decrease. We choose the smallest
decrease in the second group as the optimal value of ωn. To this end, we
first calculate the minimum sum of squared error for removing all thresh-
olds in Ân one by one, denoted as L′

0, L
′
1, . . . , L

′
m̂. Then, ωn is selected as

the maximum values among L′
j+1 − L′

j for j = 0, 1, . . . , m̂− 1.
αi For simplicity, we let all time series share the same αi, denoted by αn.

For low to moderate dimensions, the tuning parameter αn for parameter
estimation is selected as the minimizer of the combined HBIC over all
regimes. For j = 1, 2, . . . , m̃+ 1, we define the HBIC on interval [r̃j−1, r̃j ]
as:

HBIC (j, αn) = log
(
det Σ̂ε,j

)
+

γ
∥∥∥β̂(.,j)

∥∥∥
0∣∣T(r̃j−1,r̃j)

∣∣ log (p2K)
,

where Σ̂ε,j is the residual sample covariance matrix with β̂ estimated in
Equation (11) and γ = 2.8. For high dimensions, we choose αn by 10-fold
cross validation.

6. Empirical evaluations

In this section, we present simulation results evaluating the performance of the
proposed procedure in both moderate dimensions and high dimensions; the first
four simulations scenarios presented are moderate-dimensional, while the last
one is high-dimensional. Details of simulation settings are presented in Appendix
7. All results are averaged over 200 replicates.

We compare our method with Tsay [48], Li and Tong [28], and the threshold
vectorized auto-regressive method [33]. These methods, which are denoted as
Tsay (1998), Li (2016) and TVAR, respectively, assume a known number of
thresholds or at least a known upper bound on the number of thresholds when
establishing the asymptotic properties of their estimators. In practice, Tsay [48]
proposes to perform a grid search to select the number of thresholds, when
unknown, by minimizing AIC. They are also restricted to low dimensions. For
instance, TVAR estimates the number of thresholds and the values of thresholds
using two separate steps and assumes the number of thresholds is at most 2.
This is in contrast to our developed mvTAR and hdTAR methods, which do
not make any assumptions about the number of thresholds. Though Calderón V
and Nieto [7] and Orjuela and Villanueva [37] do not require a known number of
thresholds, we did not include a comparison with these methods, as they cannot
handle larger dimensions, e.g., p = 20.

We compare the estimated thresholds and the percentage of simulations
where thresholds are correctly estimated; this is defined as cases where the
selected thresholds are close to the true thresholds. More specifically, a selected
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threshold is considered as close to the first true threshold, z1, if it is in the inter-
val [−∞, z1 + 0.5(z2 − z1)); similarly, a selected threshold is considered as close
to the second true threshold, z2, if it falls in the interval [z1 + 0.5(z2 − z1),∞].
Note that the number of thresholds is set to be known for Tsay (1998), Li
(2016) and TVAR, since the first two require a known number of thresholds and
TVAR does not perform well in selecting the number of threshold in its first
step (Note that when the number of thresholds is not provided, TVAR’s rates
of correctly identifying the correct number of thresholds are 84%, 87%, 65%,
and 16% (11.5% for T = 300) in the first four scenarios and the method is not
applicable in the last scenario (scenario 5) due to high-dimensionality of model.)

6.1. Simulation results

We next compare the performances of the proposed hdTAR and mvTAR meth-
ods with Tsay (1998), Li (2016) and TVAR. Here, the selection rate of Tsay
(1998), Li (2016) and TVAR is based on whether the estimated thresholds are
within one standard deviation of true threshold.

Table 1 summarizes the results of threshold estimation. In all simulations,
if any of the methods does not select a thresholds, we set the minimum value
of the threshold variable as the selected threshold. The results indicate that
Tsay (1998) and Li (2011) do not work well even for the first three scenarios,
while hdTAR, mvTAR, and TVAR perform well in the first three scenarios;
however, the estimation error and standard deviation of TVAR are larger than
those of hdTAR and mvTAR. In Scenario 4, in which only a portion of time series
components change at threshold values, the detection rate for both mvTAR and
TVAR drops significantly, while hdTAR still achieves 100% threshold detection
rate. This is expected since hdTAR is more flexible and mvTAR only works well
for scenarios in which auto-regressive components change at the same threshold
values. In Scenario 4, mvTAR tends to choose a large λ1 which leads to selecting
smaller number of threshold values in the first step than needed. Nonetheless,
when the changes in the transition matrices are large enough, the threshold
values can still be detected using the �2 penalty. Finally, hdTAR continues to
offer excellent threshold detection in the high-dimensional setting of Scenario 5;
in contrast, the other methods are not well suited for this scenario and are not
included.

Table 2 summarizes the performance of the five methods in terms of auto-
regressive parameter estimation. Since Tsay (1998) does not provide coefficients
estimates, so we use the method in our Step 3 to estimate the parameters given
the thresholds obtained by Tsay (1998). The results indicate that both hdTAR
and mvTAR perform well in the first three scenarios, as measured by their high
true positive rates and low false positive rates. Since TVAR does not perform
variable selection, all estimated values of transition matrices using this method
are non-zero. This leads to true positive and false positive rates that are both
equal to 1, which are not meaningful and are hence excluded from the table.

The results also indicate that in Scenario 4 with T = 600 and Scenario 5
hdTAR performs satisfactorily, while in Scenario 4 with T = 300, its FPR
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Table 1

Mean and standard deviation of estimated thresholds, the percentage of simulation runs
where thresholds are correctly detected (selection rate) in different simulation scenarios. If
the estimated thresholds is within one standard deviation of the true threshold, we consider

the estimated thresholds as correctly detected.

Threshold(s) Methods Mean Std Selection Rate
Scenario 1

4

hdTAR 4.05 0.05 1.00
mvTAR 4.04 0.05 1.00
TVAR 4.23 1.13 0.95
Tsay (1998) 5.36 2.01 0.57
Li (2016) 7.66 0.34 0.00

Scenario 2

4

hdTAR 4.05 0.06 1.00
mvTAR 4.04 0.05 1.00
TVAR 4.15 1.17 0.93
Tsay (1998) 5.46 2.00 0.56
Li (2016) 7.66 0.34 0.00

Scenario 3

4

hdTAR 4.04 0.06 1.00
mvTAR 4.04 0.05 1.00
TVAR 4.15 1.17 0.93
Tsay (1998) 7.63 0.76 0.03
Li (2016) 7.66 0.34 0.00

Scenario 4
4

hdTAR 4.00 0.15 1.00
(T = 600) mvTAR 2.44 1.24 0.93

TVAR 3.82 1.34 0.85

6
hdTAR 6.02 0.09 1.00
mvTAR 5.30 1.37 0.82
TVAR 6.11 1.28 0.88

Scenario 4
4

hdTAR 4.03 0.47 1.00
(T = 300) mvTAR 2.52 0.91 0.67

TVAR 3.92 1.48 0.81

6
hdTAR 6.00 0.31 1.00
mvTAR 4.78 1.16 0.42
TVAR 6.19 1.42 0.84

Scenario 5
5

hdTAR 5.06 0.29 1.00
mvTAR – – –
TVAR – – –

increases to around 20%. This is primarily due to the smaller sample size in this
scenario for each of the three regimes. Recall from Table 1 that the selection
rate of mvTAR in both of these scenarios was very low; as a result, in many
simulation replicates there were fewer number estimated regimes than needed
to obtain estimates of auto-regressive parameters. As a result, mvTAR is not
included in the comparisons for Scenarios 4 and 5. These findings underscore
the advantages of hdVAR in settings with complex patterns of changes in auto-
regressive parameters as well as in high dimensions.

Box plots summarizing the results in Table 1 are presented in Figure 3.

7. Real data application

We demonstrate the utility of our penalized estimation framework in financial
econometric applications by analyzing a bank balance sheet data. The data
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Table 2

Results of parameter estimation for simulation scenarios. The table shows mean and
standard deviation of relative estimation error (REE), true positive rate (TPR), and false

positive rate (FPR) for estimated coefficients.

Method REE SD(REE) FPR TPR
Scenario 1 hdTAR 0.31 0.04 0.03 0.95

mvTAR 0.32 0.04 0.03 0.95
TVAR 0.85 0.19 – –
Tsay (1998) 0.70 0.30 0.04 0.57
Li (2016) 1.50 0.44 1.00 1.00

Scenario 2 hdTAR 0.31 0.04 0.03 0.95
mvTAR 0.31 0.04 0.03 0.94
TVAR 0.89 0.43 – –
Tsay (1998) 0.69 0.31 0.04 0.55
Li (2016) 1.49 0.55 1.00 1.00

Scenario 3 hdTAR 0.34 0.04 0.04 0.89
mvTAR 0.34 0.04 0.04 0.89
TVAR 0.69 0.65 – –
Tsay (1998) 0.88 0.05 0.03 0.36
Li (2016) 1.33 0.64 1.00 1.00

Scenario 4 (T = 600) hdTAR 0.5 0.05 0.02 0.77
mvTAR – – – –
TVAR 0.67 0.07 – –

Scenario 4 (T = 300) hdTAR 0.77 0.09 0.19 0.71
mvTAR – – – –
TVAR 0.87 0.15 – –

Scenario 5 hdTAR 0.80 0.04 0.51 0.86
mvTAR – – – –
TVAR – – – –

Fig 3. Box plot of distances between the estimated final points and true values. The left panel
shows the results for all the five scenarios with all the five models. The right panel zooms in
the results in the first three scenarios using hdTAR and mvTAR.

consists of total balances of the top 10 largest US banks over time, each measured
in thousands of dollars (available from www.fdic.gov).

To assess the relationship between the state of the banking sector and the
overall economic conditions, we fit a multivariate TAR model of the quarterly
bank balance sheet data over the period of 1995 to 2018 with the growth rate
of the US GDP as the switching variable. For the quarterly GDP data yt; t =
1, 2, . . . , T over T observations, the growth rate is defined as

zt = 100(log yt − log yt−1), t = 2, 3, . . . , T.

www.fdic.gov
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Fig 4. The GDP growth rate and detected thresholds using data from ten top banks. The
red dash line shows the estimated threshold. The left panel shows the GDP growth rate and
detected thresholds based on data from 1995 to 2018, while the right panel shows the GDP
growth rate and detected thresholds based on data from 2005 to 2015. In both cases, the
proposed method divides economic patterns into only two conditions — recession and non-
recession.

To reduce the non-stationarity, the bank balance sheet data vt; t = 1, 2, . . . , T ,
is also transformed as

xt = log vt − log vt−1, t = 2, 3, . . . , T.

We applied the hdTAR on the entire time series consisting of T = 98 quarterly
observations from 1995 to 2018. To examine how results change with smaller
sample sizes, we also analyze the shorter time period of quarterly observations
from 2005 to 2015. The detected threshold for both time periods are shown in
Figure 4. Although hdTAR does not enforce the coefficients to change at the
same threshold value, irrespective of the sample size it identifies a single thresh-
old corresponding to the great recession of 2008. This further highlights the
flexibility and adaptability of hdTAR for both moderate- and high-dimensional
TAR models. As a comparison, we also applied the mvTAR to the same two
data sets, but exclude the results due to the inconsistency in the estimated
thresholds using mvTAR when applied to the same two data sets.

The Granger causal networks [3] of interactions among these ten banks in
both recession and non-recession periods during 1995–2018 are shown in Fig-
ure 5. The red links in each panel represent the interactions that occur in that
economic period only. The results show strong interactions between Citibank
and Harris Bank and a comparable strong interaction between PNC and JP-
Morgan Chase during the recession. The interactions become weaker during
the non-recession period, but more interactions appear among banks. A similar
observation was made in [31].

We only plot the estimated network structures during non-recession period
from 2005–2015. This is because the detected threshold is very close to the lower
boundary of the sorted values of the switching variable, resulting in very few
observations in the recession regime. From Figure 5, the interactions among
banks in non-recession period from 2005 to 2015 are similar to the structures
detected using full data set. This further confirms the satisfactory performance
of hdTAR in both larger data and smaller data sets.
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Fig 5. The Granger causality graph for the top ten banks across time. Each vertex represents
a bank, and the links display directed interactions between banks. Panel (a) corresponds to the
longer time series (1995–2018) and panel (b) corresponds to the shorter time series (2005–
2015). The left figure in panel (a) shows the interactions during the recession; the right figure
shows the interactions in non-recession. The red links in each panel represent the interactions
that occur in that economic period only. Panel (b) only show the interactions among banks
identified in non-recession period from the shorter time series. Given the very small number
of observations in the recession period in the shorter time series, the Granger causality graph
for this period is not estimated.

8. Discussion

We developed a three-step algorithm to estimate the number and values
of thresholds, as well as the auto-regressive parameters in possibly high-
dimensional TAR model. The proposed algorithm can utilize either an �2 or
an �1 penalty, or more specifically, a grouped or regular fused lasso penalty. The
�2 penalty corresponds to the natural extension of the original multivariate TAR
model in which all coefficients are forced to change at the same thresholds. The
�1 penalty, in contrast, is more flexible allowing each coefficient to potentially
change at different thresholds. Although this flexibility potentially comes at the
cost of a larger number of thresholds in the TAR model, our theoretical and
empirical results indicate that mvTAR is not appropriate for high-dimensional
settings and is better suited for moderate dimensions. In contrast, the more flex-
ible hdTAR leads to consistent estimation and superior empirical performance
in both moderate and high dimensions.

We established that both versions of our algorithm, termed mvTAR and
hdTAR, consistently estimate the model parameters under natural conditions
on the distribution and on the level of temporal correlations in the model.
The consistency rates for both models depend explicitly on several model
characteristics. Specifically, when the total number of thresholds, m0, is fi-
nite, the rate of consistency for detecting the thresholds is based on: (1)
the effective number of time points, n, (2) the number of time series com-
ponents, p, (3) the number of lags, K, and (4) the total sparsity of the

model, d∗n. For mvTAR, if we set d∗n = o

((
logn

(
log

(
p2K

))2
p2K

)ρ′/2
)

for small 0 < ρ′ < 1, then the consistency rate becomes of order
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(logn)

5
2ρ

′ (
log

(
p2K

))3+5ρ′ (
p2K

) 3
2+

5
2ρ

′)
/n. This confirms that mvTAR is

suitable for moderate dimension but may not work in high dimensions. In con-

trast, for hdTAR, setting d∗n = o

((
logn

(
log

(
p2K

))2)ρ/2
)

for some small pos-

itive ρ, the consistency rate becomes of order
(
(log n)

5
2ρ

(
log

(
p2K

))3+5ρ
)
/n.

The first component of the rate, i.e. (logn)
5
2ρ, is similar to some existing

consistency rates for univariate TAR models [10] while the additional term(
log

(
p2K

))3+5ρ
quantifies the difficulty in estimating the thresholds in high-

dimensions.
A limitation of the proposed procedure is that it requires several hyperpa-

rameters, especially in the second step. To lower the computational cost, we
chose similar tuning parameters in the second step according to eBIC/ HBIC.
However, regime-specific tuning parameters may improve the estimation perfor-
mance in finite samples. Fast selection of regime-specific tuning parameters is
an interesting future research direction. Identifying the switching variable in the
TAR model is another challenge, specifically in applications. For example, in the
bank data, we selected the GDP as the switching variable. However, it is not
obvious whether this is an optimal choice; for example, the unemployment rate
or the inflation rate could also serve as the switching variable. Selecting optimal
(data-driven) switching variable is another fruitful future research direction.

Appendix

Notations. We first describe some notations which will be used across all
proofs. For a symmetric matrix X, let λmax(X) and λmax(X) denote its
maximum and minimum eigenvalues and |‖X‖| denotes its operator norm√
λmax(X ′X). For any matrix M , if {G1, G2, . . . , Gg0} denote a partition of

{1, 2, . . . , |vec(M)|} into g0 non-overlapping groups, then we use ‖M‖2,∞ to
denote maxg=1,2,...,g0 ‖vec(M)Gg‖2 and ‖M‖2,1 to denote

∑g0
g=1 ‖vec(M)Gg‖2,

where vec(M)Gg represents all the elements of vectorized form M in Gg group.
Let S = {w1, w2, . . . , wm0}, where wj denotes the j-th order of true threshold.
Set m0 = |S|. Let bj denotes the order of the j-th estimated threshold in Step
2.

Appendix 1: Some definitions

Sub-Weibull random variable: A random variable U is sub-Weibull [39] if
there exist constants KU > 0 and κ

′ > 0 such that

‖U‖ψ := sup
c≥1∧κ′

c−
1
κ
′ (E |U |c)1/c ≤ KU ; (17)

Moreover, KU is called the sub-Weibull constant while κ
′ > 0 is called the

sub-Weibull parameter.
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Mixing conditions: We follow the definitions in [5]. Given the probability
space (Ω,F , P ), for any σ-field A ⊂ F , define L2(A) to be the family of all
square integrable A-measurable random variables. For any two σ-fields A and
B ⊂ F , we define:

α′
n = sup |P (A ∩B)− P (A)P (B)| , A ∈ A, B ∈ B; (18)

β′
n = sup

1

2

I∑
i1=1

J∑
i2=1

|P (Ai1 ∩Bi2)− P (Ai1)P (Bi2)| , (19)

where the supremum is taken over all pairs of (finite) partitions {A1, A2, . . . , AI}
and {B1, B2, . . . , BJ} of Ω such that Ai1 ∈ A for each i1 and Bi2 ∈ B for each
i2. The stochastic process is said to be α-mixing (strongly mixing) if α′

n → 0,
and β-mixing if β′

n → 0. Note that β-mixing implies α-mixing.

Appendix 2: Technical lemmas

Lemma 4. Under Assumptions A1, A2 and A5, for x ∈ R, 1 ≤ l, l′ ≤ p, 1 ≤
k ≤ K,

x((t−k),l)I (zt ≤ x) ε(t,l′)

is sub-Weibull with parameter 1
1/κ1+1/κc

;

x((t−k),l)I (zt ≤ x)x(t,l′)

is sub-Weibull with parameter κ1/2.

Proof of Lemma 4:According to Assumptions A1 and A2, we know x((t−k),l)

and ε(t,l′) are sub-Weibull with sub-Weibull parameter κ1 and κc. From Propo-
sition 3 in Vladimirova et al. [51], we have x((t−k),l)ε(t,l′) is sub-Weibull with

parameter 1
1/κ1+1/κc

. Similarly, x((t−k),l)x(t,l′) is sub-Weibull with parameter

κ1/2.
Combined with above statement and based on Theorem 1 in [51], there exists

KC > 0 such that for all yx ≥ 0, we have:

P
(∣∣x((t−k),l)I (zt ≤ x) ε(t,l′)

∣∣ ≥ yx
)
≤ P

(∣∣x((t−k),l)ε(t,l′)
∣∣ ≥ yx

)
≤ 2 exp

(
− (yx/KC)

(
κ1κc

κ1+κc

))
.

(20)

By Theorem 1 in [51] again, x((t−k),l)I (zt ≤ x) ε(t,l′) is sub-Weibull with param-

eter 1
1/κ1+1/κc

. By similar procedure, we can prove x((t−k),l)I (zt ≤ x)x(t,l′) is

sub-Weibull with sub-Weibull parameter κ1/2.

Lemma 5. Under Assumptions A1 to A4, there exist positive constants C, c0,
c1, c2, c3, such that for

n ≥ c0
(
log(p2K)

)2/κ0−1
,
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with probability at least 1− c3η1 − η2, we have:

1

n
‖Z ′E‖∞ ≤ C

log
(
p2K

)
√
n

, (21)

where η1 = exp
(
−c1 log

(
p2K

))
and

η2 = exp

(
−c2

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

Proof of Lemma 5: First, we rewrite Equation (21) with respect to the
switching variable zt and t as:

max
1≤i≤n,1≤l,l′≤p,1≤k≤K

1

n

∣∣∣∣∣
n∑

t=1

x((t−k),l)I
(
zt ≤ zπ(i)

)
ε(t,l′)

∣∣∣∣∣ . (22)

The main goal is to find a proper rate for Equation (22). The indicator term
I(zt < zπ(i)) makes the proof more complicated, since we need to maximize
Equation (22) w.r.t. t and we have no control on zπ(i). Hence, we rewrite Equa-
tion (22) in the following form:

max
x∈R,1≤l,l′≤p,1≤k≤K

1

n

∣∣∣∣∣
n∑

t=1

x((t−k),l)I (zt ≤ x) ε(t,l′)

∣∣∣∣∣ . (23)

Similar to [10], we use the bracketing technique to bound Equation (23).

To simplify the notation, we denote xk
t,l = x((t−k),l), and let W

(l′,l,k)
n (x) =

1√
n

∑n
t=1 x

k
t,lI (zt ≤ x) ε(t,l′). Define Γ(x)(a) = a1I(−∞,x) (a2) for a ∈ R

2 and

F =
{
Γ(x) : x ∈ R

}
. Write Γ(x) as Γ. Let M

(l′,l,k)
t = xk

t,lε(t,l′) and Y
(l′,l,k)
nt =(

M
(l′,l,k)
t /

√
n, zt

)
for l, l′ ∈ 1, 2, . . . , p and k ∈ 1, 2, . . . ,K, then W

(l′,l,k)
n (x) =

1√
n

∑n
t=1 M

(l′,l,k)
t I (zt ≤ x) =

∑n
t=1 Γ(x)

(
Y

(l′,l,k)
nt

)
.

For any x1 < x2, we have:

E[W (l′,l,k)
n (x1)−W (l′,l,k)

n (x2)]
2

=
1

n
E

[
n∑

t=1

M
(l′,l,k)
t [I (zt ≤ x1)− I (zt ≤ x2)]

]2

= E

[(
M

(l′,l,k)
t

)2

I (x1 < zt ≤ x2)

]
=

(
E

(
M

(l′,l,k)
t

)2
)(

G(l′,l,k) (x2)−G(l′,l,k) (x1)
)
,

(24)

where G(l′,l,k) (x) = E

[(
M

(l′,l,k)
t

)2

I (zt ≤ x)

]
/E

(
M

(l′,l,k)
t

)2

. Then for fixed

l′, l, k, we can construct a psudo-metric

d (x1, x2) =

√(
E

(
M

(l′,l,k)
t

)2
) ∣∣G(l′,l,k) (x2)−G(l′,l,k) (x1)

∣∣.
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For any 0 < δ < 1, the integral of the bracketing entropy satisfies the following∫ δ

0

√
logN (ε,F , L2)dε ≤ C

∫ δ

0

√
− log εdε < ∞, (25)

where N(ε,F , L2) denotes the brackets number, that is, the minimum number of
ε-brackets needed to cover F . Choose a fixed integer q0 such that 4δ ≤ 2−q0 ≤ 8δ.
Then, choose a nested sequence of partitions Fqu′ of F indexed by the integer
q ≥ q0. By the Chaining Lemma [49], set Pq = {Γ(x) : x ∈ Bqu′ , 1 ≤ u′ ≤ Nq}
such that:

∞∑
q=q0

2−q
√

logNq <

∫ δ

0

√
logN (ε,F , L2)dε,

EΛ2
(
Bqu′

)
:=

1

n
E

n∑
t=1

sup
(x1,x2)∈Bq

u′

(
M

(l′,l,k)
t

)2

|I (x1 < zt ≤ x2)| ≤ 2−2q.

(26)

Fix q for each level q > q0 and each partition Fqu′ . For x ∈ Bqu′ , select a
fixed xqu′ ∈ Bqu′ and define:

πqx = xqu′ ;

Bqx = Bqu′ .

Note that

n∑
t=1

Γ
(
Y

(l′,l,k)
nt

)
=

n∑
t=1

Γ(πq0x)

(
Y

(l′,l,k)
nt

)
+

n∑
t=1

(
Γ
(
Y

(l′,l,k)
nt

)
− Γ(πq0x)

(
Y

(l′,l,k)
nt

))
= H

(l′,l,k)
1 +H

(l′,l,k)
2 ,

(27)

where

H
(l′,l,k)
1 =

n∑
t=1

Γ(πq0x)

(
Y

(l′,l,k)
nt

)
and

H
(l′,l,k)
2 =

n∑
t=1

(
Γ
(
Y

(l′,l,k)
nt

)
− Γ(πq0x)

(
Y

(l′,l,k)
nt

))
.

To bound H
(l′,l,k)
1 , we apply Proposition 7 in [54], and take the union over

Nq0 balls (which is a finite number). Let K, c0, c1, and c2 be positive constants.
Then, for

n ≥ c0
(
log(p2K)

)2/κ0−1
,
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we can get:

P

(
max

1≤l,l′≤p,1≤k≤K
sup

Γ(x)∈F

n∑
t=1

Γ(πq0x)

(
Y

(l′,l,k)
nt

)
> c1K

√
n

√
log(p2K)

n

)
≤Nq0

(
2 exp

(
−c2 log

(
p2K

)))
.

(28)

To bound H
(l′,l,k)
2 , define

aq = 2−q/
[
(logn)

2
√
logNq+1

]
,

Ω
(l′,l,k)
t (B) = sup

(x1,x2)∈B

∣∣∣Γ(x1)

(
Y

(l′,l,k)
nt

)
− Γ(x2)

(
Y

(l′,l,k)
nt

)∣∣∣ ,
A

(l′,l,k)
t,q0 = I

(
Ω

(l′,l,k)
t (Bq0x) > aq0

)
,

C
(l′,l,k)
t,q−1 = I

(
Ω

(l′,l,k)
t (Bq0x) ≤ aq0 , . . . ,Ω

(l′,l,k)
t (Bq−1x) ≤ a

(l′,l,k)
q−1

)
,

D
(l′,l,k)
t,q = I

(
Ω

(l′,l,k)
t (Bq0x) ≤ aq0 , . . . ,

Ω
(l′,l,k)
t (Bq−1x) ≤ aq−1,Ω

(l′,l,k)
t (Bqx) > aq

)
.

(29)

Since EH
(l′,l,k)
2 = 0, H

(l′,l,k)
2 can be decomposed into three parts

H
(l′,l,k)
2 =

n∑
t=1

{[
Γ(x)(Y

(l′,l,k)
nt )− Γ(πq0x)

(Y
(l′,l,k)
nt )

]
A

(l′,l,k)
t,q0

− E

[[
Γ(x)(Y

(l′,l,k)
nt )− Γ(πq0x)

(Y
(l′,l,k)
nt )

]
A

(l′,l,k)
t,q0

]}
+

n∑
t=1

∞∑
q=q0+1

{[
Γ(πqx)(Y

(l′,l,k)
nt )− Γ(πq−1x)(Y

(l′,l,k)
nt )

]
C

(l′,l,k)
t,q−1

− E

[[
Γ(πqx)(Y

(l′,l,k)
nt )− Γ(πq−1x)(Y

(l′,l,k)
nt )

]
C

(l′,l,k)
t,q−1

]}
+

n∑
t=1

∞∑
q=q0+1

{[
Γ(x)(Y

(l′,l,k)
nt )− Γ(πqx)(Y

(l′,l,k)
nt )

]
D

(l′,l,k)
t,q

− E

[[
Γ(x)(Y

(l′,l,k)
nt )− Γ(πqx)(Y

(l′,l,k)
nt )

]
D

(l′,l,k)
t,q

]}
=: S

(l′,l,k)
n1 + S

(l′,l,k)
n2 + S

(l′,l,k)
n3 .

(30)

By Lemma 4 and Proposition 3 from [51], Γ(x)(Y
(l′,l,k)
nt )−Γ(πq0x)

(Y
(l′,l,k)
nt ) is

sub-Weibull. So there exists a constant C0 and κ1 > 0 such that(
E

∣∣∣Γ(x)(Y
(l′,l,k)
nt )− Γ(πq0x)

(Y
(l′,l,k)
nt )

∣∣∣c)1/c

≤ C0c
(1/κ1+1/κc)
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for all c ≥ 1. Then, using the sub-Weibull property (first part of Theorem 2.1
in [51]), for any ε > 0, we can get

P

(
sup

Γ(x)∈F

∣∣∣S(l′,l,k)
n1

∣∣∣ > ε

)
≤

n∑
t=1

P

(∣∣∣M (l′,l,k)
t

∣∣∣ > √
naq0

)
≤ n exp

(
−c3(

√
naq0)

κ1κc/(κ1+κc)
)
, (31)

where c3 is a positive constant and κ1,κc > 0. Now, take the union over p2K.
Then, for a positive constant c4 such that:

P

(
max

1≤l,l′≤p,1≤k≤K
sup

Γ(x)∈F

∣∣∣S(l′,l,k)
n1

∣∣∣ > ε

)

≤ np2K exp

(
−c3

(√
n2−q0/

[
(logn)

2
√

logNq0+1

])κ1κc/(κ1+κc)
)

≤ exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(32)

The second inequality satisfies since q0 is fixed and its value will be determined

later. To bound S
(l′,l,k)
n2 and S

(l′,l,k)
n3 , we apply a similar procedure as in Lemma

A.1 in [10]. Specifically, let

ζ
(l′,l,k)
nt

(
q,Γ(x)

)
=
{(

Γπqx

(
Y

(l′,l,k)
nt

)
− Γ(πq−1x)

(
Y

(l′,l,k)
nt

))
C

(l′,l,k)
t,q−1

− E

[(
Γπqx

(
Y

(l′,l,k)
nt

)
− Γ(πq−1x)

(
Y

(l′,l,k)
nt

))
C

(l′,l,k)
t,q−1

]}
.

For any q ≥ q0, since Γ(xq)(Y
(l′,l,k)
nt ) and Γ(xq−1)(Y

(l′,l,k)
nt ) are points lying in

one of the balls Bq−1,u′ , u′ ≤ Nq−1, {ζ(l
′,l,k)

nt (q,Γ(x))} is a centered β-mixing
process. Since β-mixing implies α-mixing, we can use the results in Lemma A.1
in [10]. For any y ≥ 0, there exists a positive constant c5 such that

P

(
sup

Γ(x)∈F

∣∣∣S(l′,l,k)
n2

∣∣∣ ≥ hq0y

)
≤

∞∑
q=q0+1

Nq exp

{
−c5y

2 logNq

2 + y

}
, (33)

where hq0 =
∑∞

q=q0
2−q/2

√
logNq, and q0, n ≥ 3. Since i and j are fixed, we

take the union over p2K again and get the bound of S
(l′,l,k)
n2 as

P

(
max

1≤l,l′≤p,1≤k≤K
sup

Γ(x)∈F

∣∣∣S(l′,l,k)
n2

∣∣∣ ≥ hq0y

)

≤
∞∑

q=q0+1

Nq exp

{
−c5y

2 logNq

2 + y
+ log

(
p2K

)}
.

(34)
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Use the same argument of S
(l′,l,k)
n2 , we have:

P

(
max

1≤l,l′≤p,1≤k≤K
sup

Γ(x)∈F

∣∣∣S(l′,l,k)
n3

∣∣∣ ≥ hq0y

)

≤
∞∑

q=q0+1

Nq exp

{
−c5y

2 logNq

2 + y
+ log

(
p2K

)}
.

(35)

When n is large enough, we can combine S
(l′,l,k)
n1 , S

(l′,l,k)
n2 , and S

(l′,l,k)
n3 . Thus,

we have:

P

{
max

1≤l,l′≤p,1≤k≤K
sup

Γ(x)∈F
H

(l′,l,k)
2 ≥ 2hq0 (y + 1)

}

≤ 2

∞∑
q=q0+1

Nq exp

{
−c5y

2 logNq

2 + y
+ log

(
p2K

)}
+

exp

(
−c4

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc) + log (np2K)

)

≤ 2p2K

∞∑
q=q0+1

Nq exp

(
−c5y

2 logNq

2 + y

)
+

np2K exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

)

≤ 2p2K

∞∑
q=q0+1

N
1− c5y2

2+y
q + np2K exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

)

(36)

Now, take y = C ′
0

log(p2K)√
n

√
n and q0 to be a smallest integer such that

q0 ≥ 3 and hq0 ≤ 1. Note that Nq0 is a constant since q0 is selected to be fixed.
Equation (28) and Equation (36) give Lemma 5 as desired. Specifically, if we
choose C ′

0 large enough, there exist positive constants C, c6, c7, c8, c9 > 1, c10

and c5y
2

2+y > 3 such that

P

(
sup

x∈R,1≤l,l′≤p,1≤k≤K

1

n

∣∣∣∣∣
n∑

t=1

x((t−k),l)I (zt ≤ x) ε(t,l′)

∣∣∣∣∣ ≥ C
log

(
p2K

)
√
n

)

≤ Nq0

(
2 exp

(
−c2 log

(
p2K

)))
+ 2p2K

∞∑
q=q0+1

N
1− c5y2

2+y
q

+ np2K exp

(
−c4

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

)
≤ Nq0

(
2 exp

(
−c2 log

(
p2K

)))
+ c7p

2K exp (−c8y)
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+ np2K exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

)
≤ Nq0

(
2 exp

(
−c2 log

(
p2K

)))
+ c7 exp

(
−c8C

′
0 log

(
p2K

)
+ log

(
p2K

))
+ exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
≤ c6 exp

(
−c9 log

(
p2K

)
+ log

(
p2K

))
+ exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

+ log
(
np2K

))

≤ c6 exp
(
−c10 log

(
p2K

))
+ exp

(
−c4

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(37)

Lemma 6. Under Assumptions A1 to A4, there exist positive constants C, c0,
c1, c2, and c3, such that for

n ≥ c0
(
log(p2K)

)2/κ0−1
,

with probability at least 1− c3η1 − η2, we have:

1

n
‖Z ′E‖2,∞ ≤ C

√
p2K log

(
p2K

)
√
n

, (38)

where η1 = exp
(
−c1 log

(
p2K

))
and

η2 = exp

(
−c2

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

Proof of Lemma 6: By combining Equation (28) and Equation (36) in
Lemma 5, we have:

P

(
1

n
‖Z ′E‖∞ ≥ C

log
(
p2K

)
√
n

)

≤ c3 exp
(
−c1 log

(
p2K

))
+ exp

(
−c2

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
,

(39)

where C, c1, c2, c3 are positive constants.

Let Gg represents the group in group lasso for g = 1, 2, . . . , n, where G1 =
{1, 2, . . . , p2K}, G2 = {p2K + 1, p2K + 2, . . . , 2p2K}, . . . , Gn = {(n − 1)p2K +
1, (n − 1)p2K + 2, . . . , np2K}. Note that for none overlapping group Gg with
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size p2K, we have:

1√
p2K

‖vec(Z ′
lE), l ∈ Gg‖2 =

√√√√ 1

p2K

∑
l∈Gg

|vec(Z ′
lE)|2 ≤ max

l∈Gg

|vec(Z ′
lE)|,

(40)

where Z ′
l represents l-th row of Z ′. Thus,

1√
p2K

‖vec(Z ′E)‖2,∞ = max
g=1,...,n

1√
p2K

‖vec(Z ′
lE), l ∈ Gg‖2

≤ max
g=1,...,n

max
l∈Gg

|vec(Z ′
lE)|

= ‖Z ′E‖∞.

(41)

Combining the Lemma 5 and Equation (41), we have:

P

(
1

n
‖vec (Z ′E) ‖2,∞ ≥ C

√
p2K

log
(
p2K

)
√
n

)

≤ P

(
1

n
‖Z ′E‖∞ ≥ C

log
(
p2K

)
√
n

)

≤ c3 exp
(
−c1 log

(
p2K

))
+ exp

(
−c2

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(42)

Lemma 7. Set σ2 (s) = E
(
x(t−k,g′)I (rj − s < zt ≤ rj)

)2
for any given 1 ≤

g′ ≤ p. Under Assumptions A1 to A4, there exist positive constants ci, C, C ′,
C ′

i, C
′′
i for i = 1, 2, . . ., such that for any given j-th threshold, with probability

at least 1− δ1,

sup
1≤k≤K,
|s|≥γn

(
nσ2 (s)

)−1
∥∥∥∥ n∑

t=1

x(t−k)x
′
(t−k)I (rj − s < zt ≤ rj)

− E

(
x(t−k)x

′
(t−k)I (rj − s < zt ≤ rj)

)∥∥∥∥
∞

≤ C

((
log(p2K)

)1/κ0−1/2

√
nγn

)
,

(43)

where

δ1 = max

{
exp

(
−C ′

1

(
n

γn

)κ0/2 (
log

(
p2K

))1−κ0/2
+ log

(
p2K

)
+ log (n)

)

+ exp

(
−C ′

2

1

γn
log

(
p2K

)2/κ0−1
+ log

(
p2K

))
,
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exp
(
−C ′

3 (nγn)
κ0/2

(
log

(
p2K

))1−κ0/2
+ log

(
p2K

)
+ log (nγn)

)
+ exp

(
−C ′

4 log
(
p2K

)2/κ0−1
+ log

(
p2K

))}
.

In addition, with probability at least 1− δ2,

sup
1≤l,l′≤p,
1≤k≤K,
|s|≥γn

(
nσ2 (s)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − s < zt ≤ rj) ε(t,l′)

∣∣∣∣∣ ≤ C ′ log(p
2K)

√
nγn

, (44)

where

δ2 = c3 exp
(
−c4 log

(
p2K

))
+ exp

(
−c5

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(45)

Proof of Lemma 7: The proof for this lemma is along the lines of the proof
of Lemma A.2 in [10]. Assume a fixed small number D > 0. Since σ2(s) is non-
decreasing in given distance s, and εt and zt both have bounded positive density
based on Assumptions A1 and A5,

σ2(s) ≥ σ2(D) ≥ CD if s ≥ D, (46)

where C is a constant greater than 0. Similar to Lemma 5, for s ≥ D ≥ γn,
according to Equation (28) and Equation (36), for a given j-th threshold, there
exist large enough positive constant C0, and positive constants C ′, ch′ , C ′

h′ for
h′ = 1, 2, . . . , 12 such that

P

(
sup

1≤l,l′≤p,
1≤k≤K,
|s|≥D

(
nσ2 (s)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − s < zt ≤ rj) ε(t,l′)

∣∣∣∣∣
≥

(
C0

CD

)
log

(
p2K

)
√
n

)

≤ P

(
sup

1≤l,l′≤p,
1≤k≤K,
|s|≥D

(
nσ2 (s)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − s < zt ≤ rj) ε(t,l′)

∣∣∣∣∣
≥ C0

log
(
p2K

)
√
n

/σ2 (s)

)

≤ c3 exp
(
−c1 log

(
p2K

))
+ exp

(
−c2

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(47)

Thus, with high probability, we obtain Equation (44) when s ≥ D.
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When s ∈ [γn, D], we want to partition the interval into small pieces, and
prove the consistency in each piece. Let M = [log (D/γn) / log b], where b > 1 is
a constant. Now,

P

(
sup

1≤l,l′≤p,
1≤k≤K,
s∈[γn,D]

(
nσ2 (s)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj−1 − s < zt ≤ rj−1) ε(t,l′)

∣∣∣∣∣ ≥ y1

)

≤
M∑
g=0

P

(
sup

1≤l,l′≤p,
1≤k≤K,

s∈[bgγn,b
g+1γn]

(
nσ2 (bgγn)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − s < zt ≤ rj − bgγn) ε(t,l′)

∣∣∣∣∣ ≥ y1/2

)

+

M∑
g=0

P

(
sup

1≤l,l′≤p,
1≤k≤K

(
nσ2 (bgγn)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − bgγn < zt ≤ rj) ε(t,j)

∣∣∣∣∣ ≥ y1/2

)

≤
M∑
g=0

P

(
sup

1≤l,l′≤p,
1≤k≤K

(
nσ2 (bgγn)

)−1

n∑
t=1

∣∣x(t−k,l)I
(
rj − bg+1γn < zt ≤ rj − bgγn

)
ε(t,l′)

∣∣ ≥ y1/2

)

+

M∑
g=0

P

(
sup

1≤l,l′≤p,
1≤k≤K

(
nσ2 (bgγn)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − bgγn < zt ≤ rj) ε(t,l′)

∣∣∣∣∣ ≥ y1/2

)

≤
M∑
g=0

P

(
sup

1≤l,l′≤p,
1≤k≤K

(C ′
1nγnb

g)
−1

n∑
t=1

∣∣x(t−k,l)I
(
rj − bg+1γn < zt ≤ rj − bgγn

)
ε(t,l′)

∣∣ ≥ y1/2

)

+
M∑
g=0

P

(
sup

1≤l,l′≤p,
1≤k≤K

(C ′
1nγnb

g)
−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − bgγn < zt ≤ rj) ε(t,l′)

∣∣∣∣∣ ≥ y1/2

)
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=:

M∑
g=0

Hng +

M∑
g=0

Ing. (48)

Recall that 1 > κ0 > 0, and the fact that the function of a β-mixing process
is also a β-mixing. Since xt and zt are β-mixing,

x(t−k,l)I (rj − bgγn < zt ≤ rj) ε(t,l′)

and
x(t−k,l)I

(
rj − bg+1γn < zt ≤ rj − bgγn

)
ε(t,l′)

are β-mixing. To bound Hng and Ing, we can apply Proposition 7 from [54]. Set

y1/2 = C ′
2

log(p2K)
√
nγn

.

For
C ′

1b
gnγn ≥ C ′

3

(
log

(
p2K

))2/κ0−1
,

we can get

Ing < P

(
(C ′

1nγnb
g)

−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − bgγn < zt ≤ rj) ε(t,l′)

∣∣∣∣∣
≥ C ′

2

√
log(p2K)

nγn

)
≤ 2 exp

(
−C ′

4 log
(
p2K

))
.

(49)

Then, we can get
M∑
g=0

Ing ≤ C ′
5 exp

(
−C ′

4 log
(
p2K

))
. (50)

Similarly, we can get

M∑
g=0

Hng ≤ C ′
6 exp

(
−C ′

4 log
(
p2K

))
. (51)

By Equation (51), Equation (50), and Equation (47), we then can get:

sup
1≤l,l′≤p,
1≤k≤K,
|s|≥γn

(
nσ2 (s)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − s < zt ≤ rj) ε(t,l′)

∣∣∣∣∣ ≤ C ′ log(p
2K)

√
nγn

, (52)

with probability 1− δ3, where

δ3 = c4 exp
(
−c5 log

(
p2K

))
+ exp

(
−c2

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(53)
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Thus, this proves Equation (44). Similarly, we can prove Equation (43). Note
that

E

(
x(t−k)x

′
(t−k)I (rj − s < zt ≤ rj)

)
is non-decreasing in s and E|xt|2 is positive and bounded from Assumption A2.
For s ≥ D ≥ γn, we first fix l, l′ in 1, 2, . . . , p and k in 1, 2, . . . ,K. Recall that

σ2(s) ≥ σ2(D) ≥ CD if s ≥ D, (54)

where C is a constant greater than 0. Note that κ0 = (1/(κ1/2) + 1/κ2)
−1

< 1.
By Assumption A2, Lemma 4, and Fact 1 and Lemma 13 in Wong et al. [54],
for n > 4,

P

(
sup
|s|≥D

(
nσ2 (s)

)−1
∣∣∣∣ n∑
t=1

x(t−k,l)x(t−k,l′)I (rj − s < zt ≤ rj)−

E
(
x(t−k,l)x(t−k,l′)I (rj − s < zt ≤ rj)

) ∣∣∣∣ ≥ y2

)

≤ P

(
sup
|s|≥D

(CDn)−1

∣∣∣∣( n∑
t=1

x(t−k,l)x(t−k,l′)I (rj − s < zt ≤ rj)−

E
(
x(t−k,l)x(t−k,l′)I (rj − s < zt ≤ rj)

))∣∣∣∣ ≥ y2

)
≤ n exp (−c6(ny2)

κ0) + exp
(
−c7ny

2
2

)
.

(55)

Then, we take the union over p2K:

P

(
sup

1≤k≤K,
|s|≥D

(
nσ2 (s)

)−1
∥∥∥∥ n∑

t=1

x(t−k)x
′
(t−k)I (rj − s < zt ≤ rj)−

E

(
x(t−k)x

′
(t−k)I (rj − s < zt ≤ rj)

)∥∥∥∥
∞

≥ y2

)

= P

(
sup

1≤l,l′≤p,
1≤k≤K,
|s|≥D

(
nσ2 (s)

)−1
∣∣∣∣ n∑
t=1

x(t−k,l)x(t−k,l′)I (rj − s < zt ≤ rj)−

E
(
x(t−k,l)x(t−k,l′)I (rj − s < zt ≤ rj)

) ∣∣∣∣ ≥ y2

)
≤ n exp

(
−c6(ny2)

κ0 + log
(
p2K

))
+ exp

(
−c7ny

2
2 + log

(
p2K

))
.

(56)
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For s ∈ [γn, D], we have:

P

(
sup

1≤k≤K,
D≥|s|≥γn

(
nσ2 (s)

)−1
∥∥∥∥ n∑

t=1

x(t−k)x
′
(t−k)I (rj − s < zt ≤ rj)−

E

(
x(t−k)x

′
(t−k)I (rj − s < zt ≤ rj)

)∥∥∥∥
∞

≥ y2

)

≤
M∑
g=0

P

(
sup

1≤k≤K,
s∈[bgγn,b

g+1γn]

(nσ2(bgγn))
−1

∥∥∥∥∥
n∑

t=1

x(t−k)x
′
(t−k)I (rj − s < zt ≤ rj − bgγn)−

E

(
x(t−k)x

′
(t−k)I (rj − s < zt ≤ rj − bgγn)

)∥∥∥∥
∞

≥ y2/2

)

+
M∑
g=0

P

(
sup

1≤k≤K,
s∈[bgγn,b

g+1γn]

(
nσ2 (bgγn)

)−1

∥∥∥∥∥
n∑

t=1

x(t−k)x
′
(t−k)I (rj − bgγn < zt ≤ rj)−

E

(
x(t−k)x

′
(t−k)I (rj − bgγn < zt ≤ rj)

)∥∥∥∥
∞

≥ y2/2

)

≤
M∑
g=0

P

((
nσ2 (bgγn)

)−1

∥∥∥∥∥
n∑

t=1

x(t−k)x
′
(t−k)I

(
rj − bg+1γn < zt ≤ rj − bgγn

)
−

E

(
x(t−k)x

′
(t−k)I

(
rj − bg+1γn < zt ≤ rj − bgγn

)) ∥∥∥∥
∞

≥ y2/2

)

+

M∑
g=0

P

(
sup

1≤k≤K,
s∈[bgγn,b

g+1γn]

(
nσ2 (bgγn)

)−1

∥∥∥∥∥
n∑

t=1

x(t−k)x
′
(t−k)I (rj − bgγn < zt ≤ rj)−

E

(
x(t−k)x

′
(t−k)I (rj − bgγn < zt ≤ rj)

)∥∥∥∥
∞

≥ y2/2

)

=:

M∑
g=0

I1ng +

M∑
g=0

I2ng.

(57)
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Note that E(x(t−k)x
′
(t−k)I(rj−s < zt ≤ rj)) is non-decreasing in s and E|xt|2 is

positive and bounded from Assumption A2. By Lemma 4, Lemma 13 in Wong
et al. [54] and taking union over p2K, for nγn > 4, we can obtain

M∑
g=0

I1ng ≤ nγn exp
(
−c8(nγny2)

κ0 + log
(
p2K

))
+ exp

(
−c9nγny

2
2 + log

(
p2K

))
.

(58)

Similarly, we have

M∑
g=0

I2ng ≤ nγn exp
(
−c10(nγny2)

κ0 + log
(
p2K

))
+ exp

(
−c11nγny

2
2 + log

(
p2K

))
.

(59)

Combining Equation (58), Equation (59) and Equation (56) and setting

y2/2 = c12

((
log(p2K)

)1/κ0−1/2

√
nγn

)

with large enough c12, we have

sup
1≤k≤K,
|s|≥γn

(nσ2(s))−1

∥∥∥∥ n∑
t=1

x(t−k)x
′
(t−k)I (rj − s < zt ≤ rj)

− E

(
x(t−k)x

′
(t−k)I (rj − s < zt ≤ rj)

)∥∥∥∥
∞

≤ c12

((
log(p2K)

)1/κ0−1/2

√
nγn

)
,

(60)

with probability 1− δ4, where

δ4 = max

{
n exp

(
−c6(ny2)

κ0 + log
(
p2K

))
+ exp

(
−c7ny

2
2 + log

(
p2K

))
,

nγn exp
(
−c8(nγny2)

κ0 + log
(
p2K

))
+ exp

(
−c9nγny

2
2 + log

(
p2K

))}

= max

{
n exp

⎛⎝−c6

(
nc12

((
log(p2K)

)1/κ0−1/2

√
nγn

))κ0

+ log
(
p2K

)⎞⎠
+ exp

⎛⎝−c7n

(
c12

((
log(p2K)

)1/κ0−1/2

√
nγn

))2

+ log
(
p2K

)⎞⎠ ,
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nγn exp

⎛⎝−c8

(
nγnc12

((
log(p2K)

)1/κ0−1/2

√
nγn

))κ0

+ log
(
p2K

)⎞⎠
+ exp

⎛⎝−c9nγn

(
c12

((
log(p2K)

)1/κ0−1/2

√
nγn

))2

+ log
(
p2K

)⎞⎠}

= max

{
exp

(
−C ′

7

(
n

γn

)κ0/2 (
log

(
p2K

))1−κ0/2
+ log

(
p2K

)
+ log (n)

)

+ exp

(
−C ′

8

1

γn
log

(
p2K

)2/κ0−1
+ log

(
p2K

))
,

exp
(
−C ′

9 (nγn)
κ0/2

(
log

(
p2K

))1−κ0/2
+ log

(
p2K

)
+ log (nγn)

)
+ exp

(
−C ′

10 log
(
p2K

)2/κ0−1
+ log

(
p2K

))}
. (61)

Note that C ′ (nγn)
κ0/2 >

(
log

(
p2K

))κ0
by Assumption A4. So

C ′nκ0/2
(
log

(
p2K

))1−κ0/2 ≥ log(p2K).

Thus, both

exp

(
−C ′

7

(
n

γn

)κ0/2 (
log

(
p2K

))1−κ0/2
+ log

(
p2K

)
+ log (n)

)
and

exp
(
−C ′

9 (nγn)
κ0/2

(
log

(
p2K

))1−κ0/2
+ log

(
p2K

)
+ log (nγn)

)
will converge to zero as sample size n tends to infinity. According to
Assumption A2, κ0 < 1, so 2/κ0 − 1 > 1. As a result, δ4 will converge to
0.

Lemma 8. Set σ2 (s) = E
(
x(t−k,g′)I (rj − s < zt < rj)

)2
for any given 1 ≤

g′ ≤ p. Let Is ∈ R
np×np be the diagonal matrix with diagonal I1(s), . . . , In(s),

where It(s) is a p × p diagonal matrix with all diagonal elements equal to
I (rj − s < zt ≤ rj) for t = 1, 2, . . . , n. Under Assumptions A1 to A4, there
exist positive constants c3, c4, c5, C

′, C ′′
1 , such that for any given j-th threshold,

with probability at least 1− δ′2,

sup
|s|≥γn

(
nσ2 (s)

)−1 ∥∥Z ′
Irj (s)E

∥∥
2,∞ ≤ C ′

√
p2K log(p2K)

√
nγn

, (62)

where

δ′2 = c3 exp
(
−c4 log

(
p2K

))
+ exp

(
−c5

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.
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Proof of Lemma 8: By Lemma 7, we have:

P

⎛⎜⎜⎜⎜⎝ sup
1≤l,l′≤p,
1≤k≤K,
|s|≥γn

(
nσ2 (s)

)−1

∣∣∣∣∣
n∑

t=1

x(t−k,l)I (rj − s < zt ≤ rj) ε(t,l′)

∣∣∣∣∣ ≤ C ′ log(p
2K)

√
nγn

⎞⎟⎟⎟⎟⎠
≤ c3 exp

(
−c4 log

(
p2K

))
+ exp

(
−c5

nκ1κc/2(κ1+κc)

(logn)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
(63)

where C ′, c3, c4, c5 are positive constants.

Note sup1≤l,l′≤p,
1≤k≤K,
|s|≥γn

(
nσ2 (s)

)−1 ∣∣∑n
t=1 x(t−k,l)I (rj − s < zt ≤ rj) ε(t,l′)

∣∣ can be

written as sup|s|≥γn

(
nσ2 (s)

)−1 ∥∥Z ′
Irj (s)E

∥∥
∞ for a given rj .

Recall that Gg represents the group in group lasso for g = 1, 2, . . . , n, where
G1 = {1, 2, . . . , p2K}, G2 = {p2K + 1, p2K + 2, . . . , 2p2K}, . . . , Gn = {(n −
1)p2K+1, (n−1)p2K+2, . . . , np2K}. For none overlapping group Gg with size
p2K, we have:

1√
p2K

‖vec(Z ′
lIrj (s)E), l ∈ Gg‖2 =

√√√√ 1

p2K

∑
l∈Gg

|vec(Z ′
lIrj (s)E)|2

≤ max
l∈Gg

|vec(Z ′
lIrj (s)E)|,

(64)

where Z ′
l represents the l-th row in Z ′. Thus,

1√
p2K

‖vec(Z ′
Irj (s)E)‖2,∞ = max

g=1,...,n

1√
p2K

‖vec(Z ′
lIrj (s)E), l ∈ Gg‖2

≤ max
g=1,...,n

max
l∈Gg

|vec(Z ′
lIrj (s)E)|

= ‖Z ′
Irj (s)E‖∞.

(65)

Combining the Lemma 7 and Equation (65), we have:

P

(
sup

|s|≥γn

(
nσ2 (s)

)−1 ‖vec
(
Z ′

Irj (s)E
)
‖2,∞ ≥ C

√
p2K

log
(
p2K

)
√
n

)

≤ P

(
sup

|s|≥γn

(
nσ2 (s)

)−1 ‖Z ′
Irj (s)E‖∞ ≥ C

log
(
p2K

)
√
n

)

≤ c3 exp
(
−c1 log

(
p2K

))
+ exp

(
−c2

nκ1κc/2(κ1+κc)

(log n)
2κ1κc/(κ1+κc)

+ log
(
np2K

))
.

(66)
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Lemma 9. Under the Assumptions A1 to A5, for m < m0, there exist constants
c1, c2 > 0 such that

P

(
min

{s1,s2,...,sm}⊂{1,2,...,n}
Ln(s1, s2, . . . , sm ηn)

>

n∑
i=1

∥∥επ(i)∥∥22 + c1nΔn − c2md∗2n (nγn)
3/2

)
→ 1.

(67)

where Δn = min1≤j≤m0+1 |rj − rj−1|.
Proof of Lemma 9: The road-map for the proof of Lemma 9 is similar to

that of Lemma 4 in [41], once adapted to the TAR modeling framework.
Denote bj′ as the order of the given j′-th estimated threshold sj′ . Since m <

m0, there exists a threshold rj such that |sj′ − rj | > Δn/4. In order to find a
lower bound on the sum of the least squares, without loss of generality, we try
to find a lower bound for the sum of squared errors plus penalty term in the
following three cases: (a) |sj′ − sj′−1| ≤ γn; (b) there exist two true thresholds
rj , rj+1 such that |sj′−1 − rj | ≤ γn and |sj′ − rj+1| ≤ γn; and (c) otherwise.

Based on the Assumption A5, {zt} is a β-mixing process, then I(u0 < zt ≤
u1) is an β-mixing process for fixed u0 and u1. By the second inequality of
Theorem 1 in [35], there exists a certain positive constant cB such that:∣∣∣∣∣

n∑
t=1

I (u0 < zt ≤ u1)

∣∣∣∣∣ < cBnE |I (u0 < zt ≤ u1)| (68)

with high probability. Since nE |I (u0 < zt ≤ u1)| ≤ n (u1 − u0),∣∣∣∣∣
n∑

t=1

I (u0 < zt ≤ u1)

∣∣∣∣∣ < ncBE |I (u0 < zt ≤ u1)| ≤ ncB |u1 − u0| (69)

with high probability. Recall that according to Assumptions A1 and A5, the
density of {εt} and zt are positive, so

σ2 (sj′ − sj′−1) ≥ c0 |sj′ − sj′−1| , (70)

where c0 is certain positive constant.
Use θ̂sj′−1,sj′ to denote the estimated parameter in the estimated regime

(sj′ − 1, sj′ ]. Recall that bj′ represents the order of the given j′-th estimated

threshold sj′ . To simplify the notation, set θ̂ = θ̂sj′−1,sj′ . For case (a), consider
the case where rj < sj′−1 < sj′ < rj+1. Then,

bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2

=

bj′∑
i=bj′−1+1

∥∥επ(i)∥∥2

2
+

bj′−1∑
i=bj′−1

∥∥∥(A(.,j+1) − θ̂
)
Yπ(i)

∥∥∥2

2
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+2

bj′∑
i=bj′−1+1

Y ′
π(i)

(
A(.,j+1) − θ̂

)′
επ(i)

=

bj′∑
i=bj′−1+1

∥∥επ(i)∥∥22 + n∑
t=1

∥∥∥(A(.,j+1) − θ̂
)
Yt

∥∥∥2
2
I (sj′−1 < zt ≤ sj′ − 1)

+2

bj′∑
i=bj′−1+1

Y ′
π(i)

(
A(.,j+1) − θ̂

)′
επ(i)

≥
bj′∑

i=bj′−1+1

∥∥επ(i)∥∥22 − 2

∣∣∣∣∣∣
bj′∑

i=bj′−1+1

Y ′
π(i)

(
A(.,j+1) − θ̂

)′
επ(i)

∣∣∣∣∣∣
≥

bj′∑
i=bj′−1+1

∥∥επ(i)∥∥22 − c2

∣∣∣∣∣∣
bj′∑

i=bj′−1+1

Y ′
π(i)επ(i)

∣∣∣∣∣∣
∞

∥∥∥A(.,j+1) − θ̂
∥∥∥
1
. (71)

In case (a), |sj′ − sj′−1| ≤ γn. Based on Lemma 5 and Equation (69), we can
get

bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2

≥
bj′∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
− c2

√
nγn log

(
p2K

) ∥∥∥A(.,j+1) − θ̂
∥∥∥
1
.

(72)

According to Assumption A7, we obtain

bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2
+ η(sj′−1,sj′ )

∥∥∥θ̂∥∥∥
1

≥
bj′∑

i=bj′−1+1

∥∥επ(i)∥∥22 − c2
√
nγn log

(
p2K

) ∥∥∥A(.,j+1)
∥∥∥
1
.

(73)

For case (b), consider the case where sj′−1 < rj and sj′ < rj+1.

1

bj′ − bj′−1

bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2
+ η(sj′−1,sj′ )

∥∥∥θ̂∥∥∥
1

≤ 1

bj′ − bj′−1

bj′∑
i=bj′−1+1

∥∥∥xπ(i) −A(.,j+1)Yπ(i)

∥∥∥2

2
+ η(sj′−1,sj′ )

∥∥∥A(.,j+1)
∥∥∥
1
.

(74)

By rearrangement, there exist constants c′ > 0, c1 > 0, c2 > 0, c3 > 0, and
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c4 > 0 that satisfy

0 ≤c′
∥∥∥A(.,j+1) − θ̂

∥∥∥2
2

≤ 1

nσ2(sj′ − sj′−1)

bj′∑
i=bj′−1+1

Y ′
π(i)

(
A(.,j+1) − θ̂

)′ (
A(.,j+1) − θ̂

)
Yπ(i)

≤ 2

nσ2(sj′ − sj′−1)

bj′∑
i=bj′−1+1

Y ′
π(i)

(
θ̂ −A(.,j+1)

)′ (
xπ(i) −A(.,j+1)Y ′

π(i)

)
+

|bj′ − bj′−1|
nσ2(sj′ − sj′−1)

η(sj′−1,sj′ )

(∥∥∥A(.,j+1)
∥∥∥
1
−

∥∥∥θ̂∥∥∥
1

)
≤

(
c1

log(p2K)√
n (sj′ − sj′−1)

+ c2MAd
∗
n

|bj′ − bj′−1|
nσ2 (sj′ − sj′−1)

)∥∥∥A(.,j+1) − θ̂
∥∥∥
1

+ c3η(sj′−1,sj′ )

(∥∥∥A(.,j+1)
∥∥∥
1
−

∥∥∥θ̂∥∥∥
1

)
≤

(
c1

log(p2K)√
n (sj′ − sj′−1)

+ c2MAd
∗
n

nγn
n (sj′ − sj′−1)

)∥∥∥A(.,j+1) − θ̂
∥∥∥
1

+ c3η(sj′−1,sj′ )

(∥∥∥A(.,j+1)
∥∥∥
1
−

∥∥∥θ̂∥∥∥
1

)
≤
c3η(sj′−1,sj′ )

2

∥∥∥A(.,j+1) − θ̂
∥∥∥
1
+ c3η(sj′−1,sj′ )

(∥∥∥A(.,j+1)
∥∥∥
1
−

∥∥∥θ̂∥∥∥
1

)
≤
3c3η(sj′−1,sj′ )

2

∥∥∥A(.,j+1) − θ̂
∥∥∥
1,I

−
c3η(sj′−1,sj′ )

2

∥∥∥A(.,j+1) − θ̂
∥∥∥
1,Ic

≤2c3η(sj′−1,sj′ )

∥∥∥A(.,j+1) − θ̂
∥∥∥
1
. (75)

This implies 3
∥∥∥A(.,j+1) − θ̂

∥∥∥
1,I

≥
∥∥∥A(.,j+1) − θ̂

∥∥∥
1,Ic

, thus, 4
∥∥∥A(.,j+1) − θ̂

∥∥∥
1,I

≥
∥∥∥A(.,j+1) − θ̂

∥∥∥
1
. By Cauchy–Schwarz inequality, we can get 4

∥∥∥A(.,j+1) − θ̂
∥∥∥
1,I

≤ 4
√
d∗n

∥∥∥A(.,j+1) − θ̂
∥∥∥
2
. In addition, we can get

∥∥∥A(.,j+1) − θ̂
∥∥∥
2

≤
c4
√
d∗nη(bj′−1,bj′ ) from Equation (75).

Recall that wj denotes the j-th order of the true threshold. By Equation (75),
we can use the same procedure as in the case (a). For some constants ch′ > 0
for h′ = 5, 6, . . . , 11, we have:

bj′∑
i=wj+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2
≥

bj′∑
i=wj+1

∥∥επ(i)∥∥2

2
+ c5 |bj′ − wj |

∥∥∥A(.,j+1) − θ̂
∥∥∥2
2

−c6

√
|n(sj′ − rj)| log(p2K)‖A(.,j+1) − θ̂‖1

≥
bj′∑

i=wj+1

∥∥επ(i)∥∥2

2
+ c5 |n(sj′ − rj)|

∥∥∥A(.,j+1) − θ̂
∥∥∥
2
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∥∥∥
2
− c6

c5

log
(
p2K

)√
d∗n√

|n(sj′ − rj)|

)

≥
bj′∑

i=wj+1

∥∥επ(i)∥∥22 − c7 |n(sj′ − rj)|
∥∥∥A(.,j+1) − θ̂

∥∥∥
2(

c8
√
d∗nη(sj′−1,sj′ ) +

log
(
p2K

)√
d∗n√

|n(sj′ − rj)|

)

≥
bj′∑

i=wj+1

∥∥επ(i)∥∥22 − c7 |n(sj′ − rj)| c9
√

d∗nη(sj′−1,sj′ )(
c8
√
d∗nη(sj′−1,sj′ )

+
log

(
p2K

)√
d∗n√

|n(sj′ − rj)|

)

≥
bj′∑

i=wj+1

‖επ(i)‖22 − c10d
∗
n

(
log(p2K)

)2
. (76)

For the threshold interval (sj′−1, rj), there exist positive constants Ch′ for h′ =
1, 2, . . . , 9 such that

wj∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
− C2

√
nγn log

(
p2K

) ∥∥∥A(.,j) − θ̂
∥∥∥
1

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
− C2

√
nγn log(p

2K)
(∥∥∥A(.,j+1) − θ̂

∥∥∥
1

+
∥∥∥A(.,j+1) −A(.,j)

∥∥∥
1

)
≥

wi∑
i=bi−1+1

∥∥επ(i)∥∥22 − C2
√
nγn log(p

2K)
(
d∗nη(sj′−1,sj′ ) +

∥∥∥A(.,j+1) −A(.,j)
∥∥∥
1

)

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
− C4d

∗
n

(
C1

log(p2K)√
n |sj′ − sj′−1|

+ C3MA
γn

|sj′ − sj′−1|

)
√
nγn log(p

2K)

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
− C5d

∗
n

√
nγn

(
log(p2K)

)2
. (77)

By Equation (76) and Equation (77), for certain constant C ′
1 > 0, we have:
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bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2
≥

bj′∑
i=bj′−1+1

∥∥επ(i)∥∥2

2
− C ′

1d
∗
n

√
nγn

(
log

(
p2K

))2
.

(78)
In case (c), sj′−1 < rj < sj′ with |sj′−1−rj | > Δn/4 and |sj′−rj | > Δn/4. In

this case, the restricted eigenvalue condition does not hold, since the distance
between two consecutive true thresholds is very large, which leads to a large
distance to the intersection of the estimated thresholds. However, if the tuning
parameters are chosen properly, then the deterministic part of the deviation
bound argument holds. Consider threshold intervals (sj′−1, rj) and (rj , sj′)

wj∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥22 + wj∑
i=bj′−1+1

∥∥∥A(.,j) − θ̂
∥∥∥2

2

∥∥Yπ(i)

∥∥2
2

− 2

wj∑
i=bj′−1+1

∥∥∥Yπ(i)επ(i)

(
A(.,j) − θ̂

)∥∥∥
1
.

(79)

According to the results from Lemma 7 and Equation (79), we have

wj∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+

∥∥∥A(.,j) − θ̂
∥∥∥
2

(
wj∑

i=bj′−1+1

∥∥Yπ(i)

∥∥2
2

∥∥∥A(.,j) − θ̂
∥∥∥
2

− C6nσ
2(rj − sj′−1)

log(p2K)
√
d∗n√

nγn

)

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+ C ′

7

∥∥∥A(.,j) − θ̂
∥∥∥
2
nE

(
x(t−k,l)x

′
(t−k,l)I (sj′−1 < zt ≤ rj)

)
(∥∥∥A(.,j) − θ̂

∥∥∥
2
− C7

log(p2K)
√

d∗n√
nγn

)

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+ C ′

7

∥∥∥A(.,j) − θ̂
∥∥∥2
2
nE

(
x(t−k,l)x

′
(t−k,l)I (sj′−1 < zt ≤ rj)

)

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+ C8n (rj − sj′−1)

∥∥∥A(.,j) − θ̂
∥∥∥2
2

≥
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+ C9nΔn, (80)
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Similarly, we have

bj′∑
i=wj+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2
≥

bj′∑
i=wj+1

∥∥επ(i)∥∥2

2
+ c′1 |bj′ − wj |

∥∥∥A(.,j+1) − θ̂
∥∥∥2

2

− c2

√
|bj′ − wj | log(p2K)

∥∥∥A(.,j+1) − θ̂
∥∥∥
1

≥
bj′∑

i=wj+1

∥∥επ(i)∥∥2

2
+ c′1 |bj′ − wj |

∥∥∥A(.,j+1) − θ̂
∥∥∥
2(∥∥∥A(.,j+1) − θ̂

∥∥∥
2
− c′2

c′1

log(p2K)
√

d∗n√
|bj′ − wj |

)
,

(81)

where c′1, c
′
2 are some positive constants.

Based on the Assumption A4,
∥∥A(.,j+1) −A(.,j)

∥∥
2
≥ v > 0, then either∥∥∥A(.,j+1) − θ̂

∥∥∥
2
≥ v/4 or

∥∥∥A(.,j) − θ̂
∥∥∥
2
≥ v/4. Assume that

∥∥∥A(.,j) − θ̂
∥∥∥
2
≥

v/4. Based on Equation (79) and Equation (81), when |sj′ − rj | ≤ γn, there
exist positive constants c′h′ for h′ = 3, 4, . . . , 8 such that:

wj−1∑
i=bj′−1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2
≥

wj∑
i=bj′−1+1

∥∥επ(i)∥∥2

2
+ c′3nΔn, (82)

and

bj′∑
i=wj+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2
≥

bj′∑
i=wj+1

∥∥επ(i)∥∥2

2
− c′4d

∗
n

(
log(p2K)

)2
. (83)

According to Equation (82) and Equation (83), we can get:

bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2
≥

bj′∑
i=bj′−1+1

∥∥επ(i)∥∥22 + c′5nΔn − c′6d
∗
n

(
log(p2K)

)2
.

(84)

When both |sj′−1 − rj | > γn and |sj′ − rj | > γn, we can follow the similar
steps that obtain Equation (84) and obtain:

bj′∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2
≥

bj′∑
i=bj′−1+1

∥∥επ(i)∥∥22 + c′7nΔn − c′8 (nγn)
3/2

d∗2n .

(85)

Combining above three cases (a),(b), and (c), we can prove the results.
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Appendix 3: proof of main results

A.1. Proof of Theorem 1

The idea is similar to Theorem 2 in [41]. However, in our case, we do not
have the assumptions related to spectral density matrices. Instead, we assume
the random variables are β-mixing, sub-Weibull and stationary. For a matrix
A ∈ R

pK×p, let ‖A‖1,I =
∑

(i′,l′)∈I |ai′l′ |, where I is the set of non-zero indices

of A and ai′l′ is the element at i′-th row and l′-th column. First, we prove
the second part. For some j = 1, 2, . . . ,m0, given the estimated threshold r̂j ,
|rj − r̂j | > γn, there exists a true threshold point rj0 which is isolated from all
the estimated thresholds, i.e., min1≤j≤m0 |r̂j − rj0 | > γn. In other words, there
exists an estimated threshold r̂j such that, rj0 − rj0−1 ∨ r̂j ≥ γn and rj0+1 ∨
r̂j+1 − rj0 ≥ γn. The idea of the proof is to show the estimated parameters in
the interval [rj0−1 ∨ r̂j , rj0+1 ∧ r̂j+1] converges in �2 to both A(.,j0) and A(.,j0+1)

which contradicts with the Assumption A4. The length of the interval is large
enough to verify restricted eigenvalue and deviation bound inequalities needed
to show parameter estimation consistency.

Define a new parameter sequence ϕq, q = 1, 2, . . . , n with ϕq = θ̂q ex-
cept for two thresholds q = r̂j and q = rj0 . For these two points, set ϕr̂j =

A(.,j0)−Âj and ϕrj0
= Âj+1−A(.,j0), where Âj =

∑wj0−1∨ŵj−1
q=1 θ̂q and Âj+1 =∑wj0∨ŵj

q=1 θ̂q, i.e. θ̂wj0∨ŵj = Âj+1 − Âj . Denote Ψ = vector(ϕ1,ϕ2, . . . ,ϕn) ∈
R

np2K×1. By Equation (5) and focusing on the case of lasso (i.e. hdTAR), we
have

1

n

∥∥∥Y −ZΘ̂
∥∥∥2

2
+ λ1,n

∥∥∥Θ̂∥∥∥
1
+ λ2,n

n∑
i=1

∥∥∥∥∥
i∑

i′=1

θ̂i′

∥∥∥∥∥
1

≤ 1

n
‖Y −ZΨ‖22 + λ1,n ‖Ψ‖1 + λ2,n

n∑
i=1

∥∥∥∥∥
i∑

i′=1

ϕi′

∥∥∥∥∥
1

.

(86)

By rearrangement, for a constant c, we can get

0 ≤ c
∥∥∥A(.,j0) − Âj+1

∥∥∥2
2

≤ 1

nσ2(rj0 − rj0−1 ∨ r̂j)

∥∥∥∥∥∥
wj0∑

i=(wj0−1∨ŵj)+1

Y ′
π(i)

(
A(.,j0) − Âj+1

)∥∥∥∥∥∥
2

2

≤ 2

nσ2(rj0 − rj0−1 ∨ r̂j)

wj0∑
i=(wj0−1∨ŵj)+1

Y ′
π(i)

(
A(.,j0) − Âj+1

)
επ(i)

+
nλ1,n

nσ2(rj0 − rj0−1 ∨ r̂j)

(∥∥∥A(.,j0) − Âj+1

∥∥∥
1
+

∥∥∥A(.,j0) − Âj

∥∥∥
1

−
∥∥∥Âj+1 − Âj

∥∥∥
1

)
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+
nλ2,n

nσ2 (rj0 − rj0−1 ∨ r̂j)
nσ2 (rj0 − rj0−1 ∨ r̂j)

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤

(
2nλ1,n

nσ2 (rj0 − rj0−1 ∨ r̂j)
+ C

log(p2K)
√
nγn

)∥∥∥A(.,j0) − Âj+1

∥∥∥
1

+ nλ2,n

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤ nλ2,n

2

∥∥∥A(.,j0) − Âj+1

∥∥∥
1
+ nλ2,n

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤ 3nλ2,n

2

∥∥∥A(.,j0) − Âj+1

∥∥∥
1,I

− nλ2,n

2

∥∥∥A(.,j0) − Âj+1

∥∥∥
1,Ic

. (87)

According to Lemma 7 and the fact that rj0 − rj0−1 ∨ r̂j ≥ γn, the second
inequality holds with high probability converging to 1 in Equation (87). The
third inequality holds because wj0 −wj0−1∨ŵj ≤ c1nσ

2(s) for a certain positive
constant c1. The fourth inequality holds with high probability converging to
1 according to second part of Lemma 7 and triangular inequality. The fifth
inequality is based on Assumption A4 and the selection for λ2,n in the statement
of the theorem. The last inequality holds by Assumption A3. Thus,∥∥∥A(.,j0) − Âj+1

∥∥∥
2
= op

(
d∗n

log
(
p2K

)
√
nγn

)
, (88)

which means that it converges to zero in probability based on Assumption A4.

The convergence of
∥∥∥A(.,j0+1) − Âj+1

∥∥∥
2
can be proved in the same procedure

in the interval [rj0 , rj0+1 ∧ r̂j+1], which contradicts Assumption A4. Thus, the
results are as desired.

Similarly, we can prove the first part. Assume
∣∣∣Ân

∣∣∣ < m0. There exist an

isolated true threshold rj0 such that rj0 − rj0−1 ∨ r̂j ≥ γn/3 and rj0+1 ∧ r̂j+1 −
rj0 ≥ γn/3. Similar procedure in the second part is applied to the interval
[rj0−1 ∨ r̂j , rj0 ] and [rj0 , rj0−1 ∧ r̂j+1], then the proof is completed for the hd-
TAR case.

Similar procedure can be applied to mvTAR which is briefly described next.
We obtain:

0 ≤ c
∥∥∥A(.,j0) − Âj+1

∥∥∥2

2

≤ 1

nσ2(rj0 − rj0−1 ∨ r̂j)

∥∥∥∥∥∥
wj0∑

i=(wj0−1∨ŵj)+1

Y ′
π(i)

(
A(.,j0) − Âj+1

)∥∥∥∥∥∥
2

2

≤ 2

nσ2(rj0 − rj0−1 ∨ r̂j)

wj0∑
i=(wj0−1∨ŵj)+1

Y ′
π(i)

(
A(.,j0) − Âj+1

)
επ(i)

+
nλ1,n

nσ2(rj0 − rj0−1 ∨ r̂j)

(∥∥∥A(.,j0) − Âj+1

∥∥∥
2
+

∥∥∥A(.,j0) − Âj

∥∥∥
2

−
∥∥∥Âj+1 − Âj

∥∥∥
2

)
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+
nλ2,n

nσ2 (rj0 − rj0−1 ∨ r̂j)
nσ2 (rj0 − rj0−1 ∨ r̂j)

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤ 2

nσ2(rj0 − rj0−1 ∨ r̂j)

∥∥Z ′
Irj (rj0 − rj0−1 ∨ r̂j))E

∥∥
2,∞

∥∥∥(A(.,j0) − Âj+1

)∥∥∥
2,1

+
nλ1,n

nσ2(rj0 − rj0−1 ∨ r̂j)

(∥∥∥A(.,j0) − Âj+1

∥∥∥
2
+

∥∥∥A(.,j0) − Âj

∥∥∥
2

−
∥∥∥Âj+1 − Âj

∥∥∥
2

)
+

nλ2,n

nσ2 (rj0 − rj0−1 ∨ r̂j)
nσ2 (rj0 − rj0−1 ∨ r̂j)

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤

(
2nλ1,n

nσ2 (rj0 − rj0−1 ∨ r̂j)
+ C

√
p2K log(p2K)

√
nγn

)∥∥∥A(.,j0) − Âj+1

∥∥∥
2

+ nλ2,n

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤

(
2nλ1,n

nσ2 (rj0 − rj0−1 ∨ r̂j)
+ C

√
p2K log(p2K)

√
nγn

)∥∥∥A(.,j0) − Âj+1

∥∥∥
1

+ nλ2,n

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤ nλ2,n

2

∥∥∥A(.,j0) − Âj+1

∥∥∥
1
+ nλ2,n

(∥∥∥A(.,j0)
∥∥∥
1
−

∥∥∥Âj+1

∥∥∥
1

)
≤ 3nλ2,n

2

∥∥∥A(.,j0) − Âj+1

∥∥∥
1,I

− nλ2,n

2

∥∥∥A(.,j0) − Âj+1

∥∥∥
1,Ic

. (89)

Note that there is only one group in
∥∥∥A(.,j0)−Âj+1

∥∥∥
2,1

, so it is
∥∥∥A(.,j0)−Âj+1

∥∥∥
2
.

According to the first part in Lemma 7 and the fact that rj0−rj0−1∨r̂j ≥ γn, the
second inequality holds with high probability converging to 1 in Equation (89).
The third inequality holds because wj0 − wj0−1 ∨ ŵj ≤ c1nσ

2(s) for a certain
positive constant c1. The fifth inequality holds with high probability converging
to 1 according to Lemma 8 and triangular inequality. The sixth inequality holds
due to Minkowski inequality. The seventh inequality is based on Assumption A4
and the selection for λ2,n in the statement of the theorem. The last inequality
holds by Assumption A3. Thus,∥∥∥A(.,j0) − Âj+1

∥∥∥
2
= op

(
d∗n

√
p2K log

(
p2K

)
√
nγn

)
, (90)

The remaining parts are similar to hdTAR case, hence details are omitted to
avoid duplication. This completes the proof for both cases.

A.2. Proof of Theorem 2

For the first part, we want to prove that P (m̃ < m0) → 0, and P (m̃ > m0) → 0.
From Theorem 1, we know that there exist estimated thresholds r̂j ∈ Ân such
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that max1≤j≤m0 |r̂j − rj | ≤ γn, where rj ∈ An. Recall that wj denotes the
j-th order of the thresholds, and bj′ denotes the j′-th order of the estimated
threshold.

Without loss of generality, we only show one of the estimated regimes. For
sj′−1 < rj < si with |rj − sj′−1| ≤ γn, the estimated coefficient is denoted

as θ̂ in (sj′−1, sj′). Similar to case (b) in the proof of Lemma 9, recall that
|bj′ − wj | ≤ ncB |sj′ − rj | according to Equation (69). For the threshold interval
(rj , sj′), we have

bj′∑
i=wj+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2
2

≤
bj′∑

i=wj+1

∥∥επ(i)∥∥2

2
+ c3 |bj′ − wj |

∥∥∥A(.,j+1) − θ̂
∥∥∥2
2

+ c4

√
|bj′ − wj | log(p2K)

∥∥∥A(.,j+1) − θ̂
∥∥∥
1

≤
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∥∥επ(i)∥∥2

2

+ c5n |sj′ − rj | d∗n

(
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log(p2K)√
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+ c2MAd
∗
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γn
sj′ − sj′−1

)2

+ c6

√
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)
d∗n

(
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log(p2K)√
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+ c2MAd
∗
n

γn
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)

≤
bj′∑

i=wj+1

∥∥επ(i)∥∥2

2
+ c7

√
nγn

(
log

(
p2K

)
d∗n

)2
≤

bj′∑
i=wj+1

∥∥επ(i)∥∥2

2
+ c (nγn)

3/2
d∗2n , (91)

where c, ch′ are positive constants for h′ = 1, 2, . . . , 7.

Let c′h′ be positive constants for h′ = 1, 2, . . . , 6. For regime (si−1, rj), we can
get

wj∑
i=bj′−1+1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2

≤
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+ c′1 |wj − bj′−1|

∥∥∥A(.,j) − θ̂
∥∥∥2
2

+ c′2

√
|wj − bj′−1| log

(
p2K

) ∥∥∥A(.,j) − θ̂
∥∥∥
1
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≤
wj∑

i=bj′−1+1

∥∥επ(i)∥∥2

2
+ c′1 |wj − bj′−1|
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+
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1

)
≤
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i=bj′−1+1

∥∥επ(i)∥∥2

2
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∗2
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(
log

(
p2K

))2
≤

bj′∑
i=wj+1

∥∥επ(i)∥∥22 + c′4 (nγn)
3/2

d∗2n . (92)

Since

η(sj′−1,sj′)

∥∥∥θ̂∥∥∥
1
≤ η(sj′−1,sj′)

(∥∥∥A(.,j+1) − θ̂
∥∥∥
1
+

∥∥∥A(.,j+1)
∥∥∥
1

)
≤ c′5d

∗
n, (93)

we combine Equation (91) to Equation (93) and get

bj′−1∑
i=bj′−1

∥∥∥xπ(i) − θ̂Yπ(i)

∥∥∥2

2
+η(bj′−1,bj′ )
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1
≤

bj′−1∑
i=bj′−1

∥∥επ(i)∥∥2

2
+c′6 (nγn)

3/2
d∗2n .

(94)
Since there are m0 + 1 regimes, we can get:

Ln(r̂1, r̂2, . . . , r̂m0 ; ηn) ≤
n∑

i=1

∥∥επ(i)∥∥22 + c′7m0 (nγn)
3/2

d∗2n . (95)

Given subset from the candidate thresholds found in Step 1. Let Ch′ be positive
constants for h′ = 1, 2, . . . , 6. Assume m̃ < m0. By Lemma 9, we can get

IC (r̃1, . . . , r̃m̃)

= Ln (r̃1, . . . , r̃m̃ ; ηn) + m̃ωn

>

n∑
i=1

∥∥επ(i)∥∥22 + C1nΔn − C2m̃d∗2n (nγn)
3/2

+ m̃ωn

≥ Ln(r̂1, r̂2, . . . , r̂m0 ; ηn) +m0ωn + C1nΔn − C2m̃d∗2n (nγn)
3/2

− C3m0 (nγn)
3/2

d∗2n − (m0 − m̃)ωn

≥ Ln(r̂1, r̂2, . . . , r̂m0 ; ηn) +m0ωn + C1nΔn − C4m0 (nγn)
3/2

d∗2n − (m0 − m̃)ωn.

(96)

According to Assumption A6, we have

m0 (nγn)
3/2

d∗2n /ωn → 0 and m0ωn/nΔn → 0.

Then,

C1nΔn − C4m0 (nγn)
3/2

d∗2n − (m0 − m̃)ωn ≥ 0. (97)
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Thus, IC(r̃1, r̃2, . . . , r̃m̃) ≥ Ln (r̂1, r̂2, . . . , r̂m0 ; ηn) +m0ωn, which proves

P (m̃ < m0) → 0.

Next, we want to prove P(m̃ > m0) → 0. Similar procedure in Lemma 9 can
be used to get:

Ln (r̃1, r̃2, . . . , r̃m̃ ; ηn) ≥
n∑

i=1

∥∥επ(i)∥∥22 − C5m̃d∗2n (nγn)
3/2

. (98)

Then,

n∑
i=1

∥∥επ(i)∥∥2

2
− C5m̃d∗2n (nγn)

3/2
+ m̃ωn ≤ IC(r̃1, r̃2, · · · , r̃m̃)
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≤
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∥∥επ(i)∥∥22 + C6m0 (nγn)
3/2

d∗2n
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(99)

Thus,

(m̃−m0)ωn ≤ C5 (nγn)
3/2

m̃d∗2n + C6m0 (nγn)
3/2

d∗2n . (100)

If m̃ > m0, it contradicts assumption that m0 (nγn)
3/2

d∗2n /ωn → 0. Then, we
can get P (m̃−m0) → 1.

Next, we prove P
(
max1≤j≤m0 |r̃j − rj | ≤ Bm0 (γn)

3/2
d∗2n

√
n
)
. Given certain

two constants C7 > 0 and c′ > 0, let B = 2C7/c
′. Suppose there exists a thresh-

old rj such that min1≤j≤m0 |r̃j − rj | ≥ Bm0 (γn)
3/2

d∗2n
√
n. Applying similar

procedure to Lemma 9, we can get:

n∑
i=1

∥∥επ(i)∥∥22 + c′Bm0 (nγn)
3/2

d∗2n ≤ Ln(r̃1, r̃2, . . . , r̃m0 ; ηn)

≤ Ln(r̂1, r̂2, . . . , r̂m0 ; ηn)

≤
n∑

i=1

‖επ(i)‖22 + C7m0 (nγn)
3/2

d∗2n ,

(101)

which contradicts the value of B.

A.3. Proof of Theorem 3

Theorem 3 can be proved according to the modification of Corollary 9 in [54].
In Corollary 9 [54], we know that for regime j, we have

‖vec(β̂(.,j))− vec(A(.,j))‖2 ≤ c1αj

√
d∗n (102)
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with high probability, where αj represent a tuning parameter determined by p,
K, and the number of observations in each regime j. Let w̃j be the order of
estimated threshold r̃j . What is left is to find a lower bound on the number
of observations. Due to Assumption A5, zt has positive density. Combining
Assumption A5 and Corollary 9 of Wong et al. [54], we have:

w̃j−1 − w̃j = nP (r̃j−1 < zt ≤ r̃j)

≥ c2n |r̃j − r̃j−1| ,
(103)

where c2 > 0 is a constant. Now, by plugging in the optimal value of αj , we get

∥∥∥β̂(.,j) −A(.,j)
∥∥∥
2
≤ c3

√
d∗n log (p

2K)

(w̃j−1 − w̃j)

≤ c4

√
d∗n log (p

2K)

nγn
,

(104)

where c3, c4 > 0 are constants.

Appendix 4: A sufficient condition for β-mixing

In this section, we provide a sufficient condition for the TAR process xt to be
β-mixing by imposing a restriction on the operator norm of transition matrices.
To that end, note that the TAR process,

xt =

K∑
k=1

A(k,j)xt−k + εt, (105)

can be rewritten as a Kp-dimensional TAR process with lag 1; that is,

X̃t = B̃(j)X̃t−1 + Ũt, (106)

where X̃t =
(
x′
t x′

t−1 . . . x′
t−K+1

)′ ∈ R
Kp×1,

B̃(j) =

⎛⎜⎜⎜⎜⎜⎝
A(1,j) A(k,j) · · · A(K−1,j) A(K,j)

Ip 0 · · · 0 0
0 Ip 0 0
...

. . .
...

...
0 0 · · · Ip 0

⎞⎟⎟⎟⎟⎟⎠ ∈ R
Kp×Kp

for Ip is a p × p identity matrix, and Ũt =
(
ε′t 0 . . . 0

)′ ∈ R
KP×1. Let

B̃max = argmaxj=1,...,m0+1

∣∣∣∣∣∣∣∣∣B̃(j)
∣∣∣∣∣∣∣∣∣ where ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣ denotes the operator norm of

matrix B̃; that is
∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣ = √

λmax

(
B̃′B̃

)
.
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Lemma 10. For the TAR model in Equation (105), if
∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣ < 1, then xt

is β-mixing with a geometrically decaying mixing coefficient. If, in addition, εt
follows a sub-Weibull distribution, then xt is also sub-Weibull. In other words,
Assumption A2 holds.

Remark 2. The condition based on the operator norm of transition matrices
may not be the optimal for xt to be β-mixing and sub-Weibull, and a condi-
tion based on the spectral norm could be less restrictive. However, a condition
based on the spectral norm does not seem achievable as the argument used for
VAR models does not hold in this case. Specifically, in VAR models, we have
a sufficient condition based on the spectral norm according to Lemma 8.2 in
Fan and Yao [16] stating that the geometric Ergodicity of any subsequence with
deterministic index entails the geometric Ergodicity of the original series. But
this result does not hold for the TAR models, as the index of the sub-sequence
in the TAR model is not deterministic.

Proof of Lemma 10: The proof of Lemma 10 is similar to that in Ap-
pendix E.1 of [54]. We mainly need to apply Proposition 1 and Proposition 2
in [30] and the fact that any measurable function of a stationary process is
β-mixing if the original stationary process is β-mixing. Proposition 1 in [30]
gives the result that the sequence is geometrically Ergodic based on certain
conditions, and we can show that the sequence will be β-mixing with geomet-
rically decaying mixing coefficients, by using Proposition 2 in [30]. Finally, we
verify the sub-Weibull assumption by using the definition of sub-Weibull distri-
butions.

To apply Proposition 1 in [30], we check the three conditions, where we
set the corresponding parameters E = R

p, and μ as the Lebesgue measure.
Condition (i) is satisfied if we set the parameter m in the Proposition 1 of [30]
to 1. (Note that here m is not the number of thresholds.) For condition (ii),
we set m̄ = �infu∈C,v∈A ‖u− v‖2� the minimum “distance” between the sets C
and set A in [30], where A is any set that A ∈ B where B is the σ-algebra of
Borel sets of E, and C is any compact set that C ⊂ E. Since C is bounded
and A is Borel, m̄ is finite. For condition (iii), the function Q(·) = ‖ · ‖ and set

Kc = {x ∈ R
p : ‖x‖ ≤ 4Cac

c } where c = 1 −
∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣ and Cac := E‖εt‖. Since

maxj=1,2,...,m0+1

∣∣∣∣∣∣∣∣∣B̃(j)
∣∣∣∣∣∣∣∣∣ < 1,

• For all ỹ ∈ E \Kc; i.e. ỹ such that ‖ỹ‖ > 4Cac

c ,

E

[
‖X̃t+1‖|X̃t = ỹ

]
= Ezt

[
E

[
‖X̃t+1‖|X̃t = ỹ, zt

]]
≤ Ezt

[∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣‖ỹ‖+ E‖εt‖
]

=
∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣‖ỹ‖+ E‖εt‖
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≡ (1− c)‖ỹ‖+ Cac

< (1− c

2
)‖ỹ‖ − Cac.

• For all ỹ ∈ Kc,

E

[
‖X̃t+1‖|X̃t = ỹ

]
= Ezt

[
E

[
‖X̃t+1‖|X̃t = ỹ, zt

]]
< Ezt

[∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣‖ỹ‖+ Cac

]
≤ 4Cac(1− c)

c
+ Cac.

• For all ỹ ∈ KC ,

0 ≤ ‖ỹ‖ ≤ 4Cac

c
.

By Proposition 1 in [30], X̃t is geometrically Ergodic and stationary. By
Proposition 2 in [30], the sequence will be β-mixing with geometrically decaying
mixing coefficients.

Next, we verify the sub-Weibull distribution. Let κ be the sub-Weibull pa-
rameter associated with Ũt in (106). Since

‖X̃t‖ψ ≤
∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣‖X̃t−1‖ψ + ‖Ũt−1‖ψ,

and
∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣ < 1,

‖X̃t‖ψ ≤ ‖εt‖ψ
1−

∣∣∣∣∣∣∣∣∣B̃max

∣∣∣∣∣∣∣∣∣ < ∞.

Now, given that X̃t is an (equivalent) representation for xt, it follows that xt

is also sub-Weibull. Therefore, Assumption A2 holds.
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Appendix 5: Algorithms

In this section, we present two algorithms for solving the optimization Equa-
tion (5). In high dimension, we use Algorithm 1, while in moderate dimen-
sion, we use Algorithm 2. Let S(·;λ) be the element-wise soft thresholding
operator. Recall that throughout the paper, for a m × n matrix A, ‖A‖∞ =
max1≤i≤m,1≤j≤n |aij |. The algorithms are as follows:

Initialize θi = 0, for i = 1, · · · , n.;
while h < maximum iteration do

for i = 1, · · · , n do

Calculate the (h+ 1)th iteration of θh+1
i by KKT condition:

θ
′(h+1)
i =

(
n∑
l=i

Yπ(l)Y
′
π(l)

)−1

S

(
n∑
l=i

Yπ(l)x
′
π(l)

−
∑
j �=i

⎛⎝ ∑
l=max (i,j)

Yπ(l)Y
′
π(l)

⎞⎠θ
′(h)
j ;λ1

⎞⎠ ,

where Y ′
π(l) =

(
xπ(l), · · · ,xπ(l)−K+1

)
1×pK

and

S(y ;λ) =

⎧⎪⎨⎪⎩
y − λ if y > λ

y + λ if y < −λ

0 otherwise

.

end

if max1≤i≤n ‖θ(h+1)
i − θ

(h)
i ‖∞ < δ, where δ is the tolerance set to 2e−4

in the paper then
Stop and denote the final estimate by Θ(intermediate).

end

end

Apply soft-thresholding to the partial sums of Θ(intermediate), i.e.∑k
i=1 θ

(intermediate)
i to find the optimizer in Equation (5). In other words,

θ̂1 = S
(
θ
(intermediate)
1 ;λ2

)
and

θ̂k = S
(∑k

i=1 θ
(intermediate)
i ;λ2

)
− S

(∑k−1
i=1 θ

(intermediate)
i ;λ2

)
for

k = 2, 3, . . . , n. Finally Θ̂ =
(
θ̂1, . . . , θ̂n

)
.

Algorithm 1: The fused lasso algorithms
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Initialize θi = 0, for i = 1, · · · , n.;
while h < maximum iteration do

for i = 1, · · · , n do

Calculate the (h+ 1)th iteration of θh+1
i : Let

Ω =θ
′(h)
i + γ

⎛⎝ n∑
l=i

Yπ(l)x
′
π(l) −

∑
j �=i

⎛⎝ ∑
l=max (i,j)

Yπ(l)Y
′
π(l)

⎞⎠θ
′(h)
j

−
n∑
l=i

(
Yπ(l)Y

′
π(l)

)
θ

′(h)
i

)

θ
′(h+1)
i =

1

2γ
argmin

U
‖U − Ω‖22 + ‖Ω‖2

=

(
1− γλ1

‖U‖2

)
+

Ω
(107)

.
end

if max1≤i≤n ‖θ(h+1)
i − θ

(h)
i ‖∞ < δ, where δ is the tolerance set to 2e−4

in the paper then
Stop and denote the final estimate by Θ(final).

end

end

Algorithm 2: The group lasso algorithms

Appendix 6: extended literature review

In this section, we summarise the existing methods for estimating multivariate
TARs, along with their treatment of the number of thresholds m0 and dimension
of the TAR model.

Table 3 highlights the limitations of existing approaches and the fact that
our methods are the only available approach that can handle both low- and
high-dimensional settings, while allowing for an unknown number of thresholds
that could diverge with the number of observations T . Allowing for an unknown
number of thresholds amounts significantly complicates the problem as previous
approaches for multivariate TAR models need to first estimate the number of
thresholds and then proceed with estimating the location of thresholds. An
incorrect estimation of number of thresholds in the first step may result in
biased estimation of thresholds due to having misspecified components in the
estimation procedure.

As seen in Table 3, many methods assume that the number of thresholds is
known, even though this information is often not available in practice. Thus,
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Table 3

Comparison of existing methods for estimating multivariate TAR models. Here m0

represents the number of thresholds and T the length of the time series.

Paper m0
m0 assumed
known?

Dimension

Tsay [48] finite (at most three) No low
Lo and Zivot [33] (TVAR) at most 2 Yes low
Hansen and Seo [21] 1 Yes low (bi-variate)
Nieto [36] finite No low (bi-variate)
Dueker et al. [14] finite Yes low
Li and Tong [28] 1 Yes low
Calderón V and Nieto [7] at most 3 No low
Orjuela and Villanueva [37] finite No low
Our method diverging with T No moderate & high

in the remainder of this section we discuss how existing approaches treat the
number of thresholds.

Utilizing this assumption, Tsay [48] performs a grid search, estimating the
coefficient using simple linear model for each interval, and selecting the thresh-
old based on the Akaike information criterion (AIC). Lo and Zivot [33] instead
assume the model as at most 2 thresholds. While a relaxation compared to a
known number of thresholds, this assumption still considerably simplifies the
problem. Using this assumption, Lo and Zivot [33] use nested hypothesis tests
(testing whether the data can be modeled by the linear model versus a TAR
model) to detect the thresholds, and apply the grid search method to estimate
the values of the thresholds based on the results of the hypothesis testing. As
an alternative, Hansen and Seo [21] couples the grid search with a maximum
likelihood estimation (MLE) of the model parameters. However, the algorithm
is difficult to implement in higher dimensions, and the consistency and/or dis-
tribution of the MLE estimator is not investigated. Dueker et al. [14] restricts
the switching variable to be constructed based on the lags of the original time
series that is being modeled and performs a grid search with respected to cer-
tain log likelihood function. The key advantage of this method is that it allows
for multiple switching variables, but with only one threshold for each switching
variable. Li and Tong [28] provides a nested sub-sample search algorithm to
reduce the time complexity of the grid search.

A few methods have recently tried to estimate multivariate TAR models un-
der less restrictive assumptions on the number of thresholds. However, these
methods can only handle finite number of thresholds or only work in low-
dimensional settings. To our knowledge, Nieto [36], Calderón V and Nieto [7]
and Calderón V and Nieto [7] are the only methods that do not require a known
number of thresholds or a bound on the number of thresholds. This is achieved
by utilizing a Bayesian estimation framework. However, the consistency of the
number of estimated thresholds is not investigated for these Bayesian methods,
which could be a challenging problem. Our proposed methods and the corre-
sponding theory thus bridge a gap in the existing literature, as the only methods
that allow for an unknown and diverging number of thresholds, m0, while also
facilitating estimation of moderate and high-dimensional time series.
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Fig 6. Images of true auto-regressive coefficients in different simulation scenarios considered.
(a): The two regimes in Simulation Scenario 1 and 2. (b): The two regimes in Simulation Sce-
nario 3. (c): The three regimes in Simulation Scenario 4. (d): The two regimes in Simulation
Scenario 5.

Appendix 7: simulation settings

In all simulation scenarios, the switching variable is generated from an AR(1)
process with coefficient 0.6. The error term follows normal distribution with
mean 0 and standard deviation 2.

Simulation Scenario 1 (Simple A with uncorrelated error) In this
scenario, T = 300, p = 20, and K = 2. There is only one threshold value r1 = 4,
which is not close to the boundary. The auto-regressive coefficients are chosen
to have the same structure but different values (see Figure 6).

Simulation Scenario 2 (Simple A with correlated error) This is the
same settings as in Scenario 1, but the covariance matrix of the error term is
changed. Specifically, we set Σε = 0.02(σij)n×n with σij = ρ|i−j|, where ρ = 0.5.

Simulation Scenario 3 (Random A with uncorrelated error) This set-
ting is also similar to Scenario 1. However, the auto-regressive coefficients are
chosen at random (see Figure 6).

Simulation Scenario 4 (Simple A with correlated error allowing
changes in different regimes) In this scenario, T = 600, p = 20, and
K = 1. There are two threshold values r1 = 4 and r2 = 6. The auto-regressive
coefficients are chosen to have the same structure as in Scenario 1 but the val-
ues change at different thresholds (see Figure 6). We also include an additional
simulation setting with T = 300 and threshold points r1 = 4 and r2 = 6 for this
scenario.
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Simulation Scenario 5 (Simple high-dimensional A with uncorrelated
error) In this scenario, T = 80, p = 100, and K = 2. There is only one
threshold value r1 = 5. The auto-regressive coefficients are chosen to have the
same structure as in Scenario 1 but with different values (see Figure 6).

The auto-regressive coefficients for the above simulation scenarios are visu-
alized in Figure 6, where different coefficient values are represented by different
colors. For Scenarios 1, 2 and 5, the 1-off diagonal values for the two lags in
the two regimes are 0.49, −0.3, −0.4, and 0.49, respectively. For Scenario 4, the
auto-regressive coefficients are allowed to change in different regimes. The 1-off
diagonal values for one lag in the first regime are 0.25. In the second regime, the
first p/3 values are decreased to −0.2. In the third regime, the last p/4 values
are increased to 0.49. For Scenario 3, the auto-regressive coefficients are chosen
at random.
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