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Abstract

We study the behavior of a tracer particle driven by a one-dimensional fluctuating
potential, defined initially as a Brownian motion, and evolving in time according to the
heat equation. We obtain two main results. First, in the short time limit, we show that
the fluctuations of the particle become Gaussian and sub-diffusive, with dynamical
exponent 3/4. Second, in the long time limit, we show that the particle is trapped by
the local minima of the potential and evolves diffusively i.e. with exponent 1/2.
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1 Introduction

Random walks in dynamical random environments have attracted a lot of attention
recently. When the time correlations of the environment decay fast, several homoge-
nization results have been obtained, see [29][7] as well as references therein. These
results establish the existence of an asymptotic velocity for the walker (law of large
numbers) and normal fluctuations around the average displacement (invariance princi-
ple). In the opposite extreme regime, when the environment becomes static, a detailed
understanding of the behavior of the walker is available in dimension d = 1, see e.g. [33]
for a review.

Diffusive environments in dimension d = 1 constitute an intermediate case where
memory effects are expected to become relevant, since correlations decay with time only
as t−1/2. Homogenization results are known when the walker drifts away ballistically, and
escapes from the correlations of the environment [4][18][8][22][30]. Recently, among
other results, a law of large numbers with zero limiting speed was derived in [19] for

*F. H. and F. S. are supported by the ANR-15-CE40-0020-01 grant LSD. F. S. is supported by the ANR/FNS-
16-CE93-0003 grant MALIN.

†Ceremade, Université Paris-Dauphine, France. E-mail: huveneers@ceremade.dauphine.fr
‡Ceremade, Université Paris-Dauphine, France. E-mail: simenhaus@ceremade.dauphine.fr

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP896
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2012.08394
mailto:huveneers@ceremade.dauphine.fr
mailto:simenhaus@ceremade.dauphine.fr


Evolution of a passive particle in a one-dimensional diffusive environment

the position of a walker evolving on top of the symmetric simple exclusion process
(SSEP), at half filling, i.e. for a particle density equal to 1/2, and for jump distributions
on empty sites and occupied sites symmetric to one another. However, the question of
the size of the fluctuations in such a case remains largely elusive, and several conflicting
conjectures appear in the literature [9][16][26][5][21]. In a particular scaling limit,
Gaussian anomalous fluctuations were shown to hold for a walker on the SSEP [23], see
also the discussion below.

The aim of this paper is to advance our understanding on the fluctuations of a walker
in an unbiased, one-dimensional, diffusive random environment, and to make clear
that different behaviors may be observed depending on the time scales that we look
at, providing insight for the resolution of the above-mentioned seemingly paradoxical
conjectures. For this, we introduce a new model where the evolution of the walker can
be described in a fair bit of detail: The walker X = (Xt)t≥0 is driven by a fluctuating
potential V in the overdamped regime:{

X0 = 0,

∂tXt = −∂xV (t,Xt)
(1.1)

where the potential V solves the heat equation{
V (0, x) = B(x),

∂tV (t, x) = ∂xxV (t, x)
(1.2)

and where B is a Brownian motion on R. We now provide some more detailed motivations
for the study of this specific model:

Long time behavior in an unbiased diffusive environment — As said above, the
SSEP is a popular diffusive environment found in the literature, and it is easy to impose
symmetry conditions so that the evolution of the walker is unbiased. To strengthen the
analogy with our model, let us denote the SSEP at time t ≥ 0 and at point x ∈ Z by
−∇V (t, x). Remarkably, the heat equation determines the average evolution of the SSEP:

∂t〈∇V (t, x)〉 = γ∆〈∇V (t, x)〉

where 〈·〉 denotes the average over all possible evolutions for a given initial environment,
where ∆ denotes the discrete Laplacean on Z, and where γ is the jump rate of the SSEP.
To unveil the long time behavior of the walker, it is thus a natural first step to understand
its evolution in the averaged environment −〈∇V (t, x))〉, a set-up that can be regarded as
a kind of mean-field version of the original problem. It is easier to carry out this step in
the continuum, as we do in this paper (notice that −∂xV (1, x) with V defined by (1.2) is
a continuous analogue of the initial condition −∇V (1, x) at half filling for the SSEP).

Theorem 2.6 below reveals that the potential V defined in (1.2) imposes potential
barriers that will trap the particle: It moves to the deepest local minimum of the potential
that becomes reachable thanks to the evolution of the potential. The mechanism at play
is thus the same as in Sinai’s walk [31], where the walker moves close to deeper and
deeper local minima of the potential thanks to its fluctuations. It is thus worth noticing
that the observed diffusive behavior is not a consequence of some homogenization but
results from the fact that the particle is dragged by a field that evolves itself on diffusive
scales. This lack of homogenization is reflected in the fact that the limiting distribution
in Theorem 2.6 is non-Gaussian.

In addition, we do conjecture that the limiting diffusive behavior that we exhibit in
Theorem 2.6 for the averaged environment yields an approximately correct picture of the
behavior in the non-averaged environment, in agreement with numerical observations
discussed below.
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Random walks in cooling random environment (RWCRE) — The environment
V defined in (1.2) is not stationary, a feature shared with the cooling environments
introduced recently in a series of papers [3, 1, 2]. A RWRCE is a random walk in a time
dependent random environment that is piecewise constant and refreshed at deterministic
times (τ(k))k≥0, with τ(k) → ∞ as k → ∞, as well as Tk := τ(k) − τ(k − 1) → ∞ as
k → ∞ (for the environment to be properly cooling). Our model features long time
correlations and the environment is never properly refreshed but, at a given time t > 0,
the evolution of the walker up to a time 2t depends mainly of the environment in a box of
size of order t1/2 at most, that will itself be roughly refreshed in a time of order t. Hence,
the evolution of the environment is indeed cooling down, with effective refreshing times
growing exponentially.

One of the interesting properties of RWCRE is that the law of their fluctuations
depends on how fast the sequence of increments (Tk)k≥1 diverges to infinity. If this
divergence is slow enough, the walker admits Gaussian fluctuations after proper renor-
malisation thanks to homogenization, see [3, Theorem 1.6] for example. If instead the
cooling is very fast, i.e. if (Tk)k≥1 goes quickly enough to infinity, the displacement of
the walker in the last time window becomes comparable or larger to its full displace-
ment, and no homogenization occurs. This leads to non-Gaussian fluctuations, see [2,
Theorem 2] and examples below this theorem (in particular Example 5 relative to double
exponential cooling).

A quick heuristic analysis indicates that our model falls in the case where no homoge-
nization occurs, as our results confirm:

1. For small t > 0, there is no trapping and, since the velocity field is of order t−1/4,
the particle travels a distance of order t3/4 in a time of order t, which is of the
same order as its full displacement. The fact that we obtain a Gaussian limiting
distribution in Theorem 2.2 below does not actually result from homogenization
but from choosing a Gaussian white noise for the initial environment.

2. For large t > 0, the particle spends most of its time in the vicinity of the local
minima of the potential V . As these are separated by a distance of order t1/2 and
need a time of order t to be destroyed, the particle will travel a distance of order√
t between the time t and 2t, thus again a displacement of the same order as the

full displacement. As stressed already, lack of homogenization is reflected in the
non-Gaussian limiting distribution.

Short and long time behaviors in a rough environment — Let us introduce a
rough environment where different behaviors for the walker can be observed, depending
on the time scales under scrutiny. We believe that this model may capture several
regimes studied in the literature through specific scaling limits and help understanding
the seemingly paradoxical conjectures quoted above. Our model in (1.1)-(1.2) is again
obtained from this one by averaging over fluctuations, while preserving its rich behavior.

Let us consider a random potential V = (V(t, x))t≥0,x∈R fluctuating with time accord-
ing to the stochastic heat equation:{

V(0, x) = B(x),

∂tV(t, x) = ∂xxV(t, x) +
√

2ξ(t, x)
(1.3)

where B is a Brownian motion on R, and where ξ(t, x) is a space-time white noise. We
refer to [17] for a gentle introduction to the stochastic heat equation. The process V is
stationary, i.e. V(t, ·) is distributed as B(·) at all times t ≥ 0, and evolves diffusively in
time, i.e. the landscape described by V(t, ·) in a box of size L is refreshed after a time of
order L2. The potential V solving (1.3) can be obtained as the scaling limit of the height
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function of diffusive particle processes on the lattice, such as the SSEP, see e.g. Chapter
11 in [24].

We would like to consider a process X = (Xt)t≥0 solving{
X0 = 0,

∂tXt = −∂xV(t,Xt).
(1.4)

Since V is rough, it is not at all clear that we can make sense of the evolution equa-
tion (1.4). Three natural questions arise:

1. Can we find a limiting procedure so that the problem (1.4) admits a unique solution
X almost surely?

2. If yes, how does X behave on short time scales?

3. And how does it behave in the long time limit?

While there seems to be no rigorous result on (1.4), a lot more is known if some
external random force is added. Let us consider the problem{

X̃0 = 0,

dX̃t = −∂xṼ(t, X̃t)dt+ dB̃t,

where Ṽ is some rough random field and where B̃ is a Brownian motion independent of Ṽ.
First, if Ṽ is independent of time, existence and uniqueness of X̃ is guaranteed for various
potentials, in particular for Ṽ(t, x) = B(x) for all (t, x) ∈ R+ ×R, see [10][20][6][14][15].
Moreover, in this case, the long time behavior of X̃ is analogous to that of Sinai’s random
walk [31]. When Ṽ depends explicitly on time, existence and uniqueness of X̃ has been
shown in [12], provided that Ṽ is α-Hölder continuous with α > 1/3 and can be endowed
with a proper rough path structure. Theorem 22 in [12] does not apply as such to
the field V defined in (1.3), because the initial condition would need to be αb-Hölder
continuous with αb > 1/2, but this is likely to be only a purely technical issue. In addition,
the results in [12] would also guarantee that the drift term (X̃t+h − X̃t) − (B̃t+h − B̃t)
has a magnitude of order at most hγ for h small enough, where γ is nearly equal to 3/4.
See also [11] and [27] for generalizations and further results.

Let us now come back to (1.4). As far as we know, this problem was first addressed
in [9] by means of a heuristic fixed point argument. First, the authors conclude that if a
process X solves (1.4), it fluctuates sub-diffusively on short time scales: Xt+∆t −Xt is
typically of order (∆t)3/4 for small ∆t. Second, the fluctuations of X become (almost)
diffusive on long time scales: Xt is of order (t ln t)1/2 as t grows large.

The validity of these claims was analyzed in [21], by means of numerical simulations
and theoretical arguments but, to the best of our knowledge, no rigorous proof has been
provided so far. The conclusion of [21] confirms the findings of [9], though the existence
of a logarithmic correction in the long time behavior could not be ascertain. Moreover,
the analysis in [21] allows to view the process X as the limit of well defined processes.
We defer to the Supplementary Material the few steps needed to recast the analysis
developed in [21] into the present framework.

The occurence of two distinct behaviors, on short and long time scales, can be
attributed to the two following mechanisms. On short time scales, if the velocity field
u = −∂xV evolves much faster than the particle X, we can use the approximation

Xt+∆t ' Xt +

∫ ∆t

0

u(t+ s,Xt)ds, (1.5)

that we expect to become exact in the limit ∆t → 0. Assuming moreover that the
fast fluctuations of u in the time interval [t, t + ∆t] are uncorrelated from Xt, we may

EJP 28 (2023), paper 10.
Page 4/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP896
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Evolution of a passive particle in a one-dimensional diffusive environment

further expect that the increments become stationary in the limit ∆t → 0, and we
approximate

∫∆t

0
u(t + s,Xt)ds by

∫∆t

0
u(s, 0)ds. Therefore, since u is Gaussian and

E(u(s, 0)u(s′, 0)) = (4π|s− s′|)−1/2 for all s, s′ ≥ 0, we arrive at

Xt+∆t −Xt

(∆t)3/4
→ N (0, D) (1.6)

in law as ∆t→ 0, with D = 4/3
√
π, and this result is consistent with the assumption that

u evolves much faster than X. It is not very surprising that the exponent 3/4 in (1.6) is
the same as the exponent found in [12] for the drift term discussed above, since both
can be obtained at a heuristic level through a similar reasoning. However, we do not
expect (1.6) to be valid in the large time limit ∆t→ +∞, because V imposes potential
barriers that will trap the particle, as already discussed above.

Let us now make the connection with the model (1.1)-(1.2) studied in this paper.
In this simpler model, the two mechanisms described above can be clearly exhibited,
and the intuitive reasonings made rigorous. In particular, we will make clear how sub-
diffusive behavior on an initial short time scale, with dynamical exponenent 3/4, can
co-exist with a diffusive behavior on long time scales. Since the potential V evolves
according to the heat equation, it becomes more and more regular as times evolves, and
the sub-diffusive behavior (1.6) only persists at t = 0. On the other hand, trapping effects
become more pronounced as the time grows large, leading to the eventual diffusive
behavior of X.

Finally, let us mention that the recent mathematical result in [23] provides a partial
and indirect support to the conjecture (1.6). Indeed, the authors of [23] study a random
walk Wn = (Wn

t )0≤t≤T , jumping on Z at a rate proportional to n, on top of the SSEP
with a diffusion constant proportional to n2. In the limit n → ∞ and in the absence
of drift, they derive that Wn

t /
√
n converges to a sum of two Gaussian processes, with

standard deviation at time t proportional to t1/2 and t3/4 respectively. As we explain in
the Supplementary Material, once properly rescaled, the processes Wn converge to the
putative process X solving (1.4), but only on a time domain that shrinks to 0 as n→∞.

Organization of this paper — In Section 2, we define properly the model studied
in this paper, and we state our two main results. The first one, Theorem 2.2, deals with
the short time behavior of the passive particle, and is shown in Section 4. The second
one, Theorem 2.6, deals with its long time behavior, and is shown in Section 6. Some
informations on the behavior of the environment are collected in Section 3, and some
intermediate results on the behavior of the zeros of the velocity field are gathered in
Section 5.

2 Definitions and results

We consider a one dimensional Brownian motion B = (B(x))x∈R and we define the
random potential V = (V (t, x))t≥0,x∈R by{

V (0, x) = B(x) for all x ∈ R
∂tV (t, x) = ∂xxV (t, x) for t > 0, x ∈ R.

(2.1)

Almost surely, the potential V is well defined and analytic as a function of t > 0 and
x ∈ R. Indeed, let D = {t ∈ C : <(t) > 0} × C and let us define the heat kernel as the
complex function on D such that

(t, x) 7→ Pt(x) =
e−

x2

4t

√
4πt

. (2.2)
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The heat kernel is analytic as a function of the variables t and x, for (t, x) ∈ D. Moreover,
almost surely, there exists C > 0 such that |B(x)| ≤ C(|x|+ 1), see e.g. [13]. Therefore,
we can define a function V on D by

V (t, x) =

∫
R

Pt(x− y)B(y)dy,

it is analytic as a function of the variables t and x, for (t, x) ∈ D, and it solves (2.1) for
t > 0 and x ∈ R.

Let u = −∂xV be a velocity field. For all t > 0 and x ∈ R, the representation

u(t, x) = −
∫
R

∂xPt(x− y)B(y)dy = −
∫
R

Pt(x− y)dB(y) (2.3)

holds. We now introduce the process X = (Xt)t≥0 that will be our main object of study,
see also Fig. 1. We will prove the following proposition in Section 4:

Proposition 2.1. There exists a unique process X = (Xt)t≥0 satisfying almost surely{
X0 = 0

∂tXt = u(t,Xt) for t > 0,
(2.4)

continuous on R+ and smooth on R∗+.

Figure 1: The process X and the potential V at different times. In the long run, the
particle X sticks most of the time to a local minimum of the potential V , as made
precise in Theorem 2.6. For the numerical simulation used to generate this plot, we have
assumed periodic boundary conditions and we have taken the initial condition Xt0 = 0

with t0 = 4× 105.

We want to show two results on the behavior of X. The first one characterizes its
short time behavior:

Theorem 2.2. When the space of continuous functions from R+ to R is endowed with
the topology of uniform convergence on compact sets, the following convergence holds:(

XθT

T 3/4

)
θ≥0

(law)−−−→
T→0

(∫ θ

0

u(s, 0)ds

)
θ≥0

. (2.5)

EJP 28 (2023), paper 10.
Page 6/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP896
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Evolution of a passive particle in a one-dimensional diffusive environment

We need to introduce some preliminary material to formulate our second result,
dealing with the long time behavior of X. Some of the objects are illustrated on Fig. 2.
Given t > 0, let us define the set of zeros of the field u at time t:

Zt = {x ∈ R : u(t, x) = 0} .

Let us distinguish attractive, or stable zeros, from repulsive, or unstable ones:{
Zs
t = {x ∈ R : u(t, x) = 0, ∂xu(t, x) < 0} ,
Zu
t = {x ∈ R : u(t, x) = 0, ∂xu(t, x) > 0}.

We may also observe zeros that are neither stable nor unstable, say neutral:

Zn
t = {x ∈ R : u(t, x) = 0, ∂xu(t, x) = 0}.

The next lemma allows to “trace back” a zero at time t up to time 0:

Lemma 2.3. Almost surely, for all t > 0 and all x ∈ Zs
t ∪ Zu

t , there exists a unique
continuous function r(t,x) : [0, t]→ R such that for all 0 < s ≤ t,

u(s, r(t,x)(s)) = 0

and actually r(t,x)(s) ∈ Zs
s if x ∈ Zs

s and r(t,x)(s) ∈ Zu
s if x ∈ Zu

s (and thus in particular
∂xu(s, r(t,x)(s)) 6= 0). The function r(t,x) is smooth on ]0, t[ and for all 0 < s ≤ t,

∂sr(t,x)(s) = −
∂su(s, r(t,x)(s))

∂xu(s, r(t,x)(s))
= −

∂xxu(s, r(t,x)(s))

∂xu(s, r(t,x)(s))
. (2.6)

Once properly rescaled, the long time behavior of X is described by the limiting
process Z = (Zt)t≥0 introduced in the following proposition:

Proposition 2.4. There exist unique processes L = (Lt)t≥0 and R = (Rt)t≥0 such that
L0 = R0 = 0 and, almost surely, for all t > 0,{

Lt = max{x ∈ Zs
t ∪ Zu

t : r(t,x)(0) < 0},
Rt = min{x ∈ Zs

t ∪ Zu
t : r(t,x)(0) > 0}.

(2.7)

Moreover, almost surely, for all t > 0, one and only one of the following events occurs(
Lt ∈ Zs

t and Rt ∈ Zu
t

)
or

(
Lt ∈ Zu

t and Rt ∈ Zs
t

)
. (2.8)

We can thus define a process Z = (Zt)t≥0 by Z0 = 0 and{
Zt = Lt if Lt ∈ Zs

t

Zt = Rt if Rt ∈ Zs
t

for t > 0. The following properties of Z hold:
1. Almost surely, Z is càdlàg.
2. Almost surely, Z is discontinuous at some time t > 0 if and only if Zt− ∈ Zn

t .
3. Almost surely, for any compact interval I ⊂ R∗+, the number of discontinuities of

(Zt)t∈I is finite and (Zt)t∈I is smooth away from the jumps.
4. (Zt)t≥0 = (T−

1
2ZTt)t≥0 in law for all T > 0.

5. The variable Z1 has a bounded density and there exists c > 0 such that, for all
z ≥ 0,

c e−z/c ≤ P(|Z1| ≥ z) ≤
1

c
e−cz.
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Figure 2: The processes L, R and X, as well as the zeros of the velocity field u. The
realization of the environment is the same as on Fig. 1.

Remark 2.5. By a straightforward adaptation of the proof, items 1 to 5 above can be
shown to hold as well with L or R in place of Z.

We now come to our result on the long time behavior of X:

Theorem 2.6. When the space of càdlàg functions from R+ to R is endowed with
the Skorokhod’s M1 topology for the convergence on compact sets, the following
convergence holds:

1

T 1/2
(XθT − ZθT )θ≥0

(probability)−−−−−−−−→
T→+∞

0 (2.9)

and thus in particular, by the scaling relation in item 4. in Proposition 2.4,(
XθT

T 1/2

)
θ≥0

(law)−−−−−→
T→+∞

(Zθ)θ≥0. (2.10)

Remark 2.7. Since the process (XθT )θ≥0 is continuous and the process (ZθT )θ≥0 has
jumps, it is not possible to obtain the convergence in the Skorokhod’s J topology. Let us
remind the definition of theM1 topology, see [32]. Let D([0, 1],R) be the space of real
càdlàg functions on [0, 1]. For f ∈ D([0, 1],R), the completed graph of f is defined as

G(f) = {(t, x) ∈ [0, 1]×R : x ∈ [f(t−) ∧ f(t), f(t−) ∨ f(t)]}

with f(t−) = lims→t,s<t f(s). We define an order on G(f) as follows

(t, x) ≤ (s, y) ⇔ t < s or t = s and |x− f(t−)| ≤ |y − f(s−)|.

A parametrization of G(f) is defined to be a continuous map ϕ : [0, 1]→ G(f) such that
ϕ(0) = (0, f(0)), ϕ(1) = (1, f(1)) and ϕ is non-decreasing for the above order. The set of
parametrizations of G(f) is denoted Π(f). TheM1 distance between two elements of
D([0, 1],R) is defined as

dM1
(f, g) = inf

ϕ∈Π(f),ψ∈Π(g)

{
sup

0≤τ≤1
|ϕ(τ)− ψ(τ)|∞

}
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where |(t, x)|∞ = max{|t|, |x|}. The definition is completely analogous on any other
compact interval of R.

Remark 2.8. Our two theorems could be generalized in several directions. First, it
would be interesting to consider the same set-up in dimension d > 1, where the velocity
field needs no longer to derive from a potential V ; rather we could still consider that
(u(0, x))x∈Rd is a spatial white noise. In this case, the velocity at time t will be typically of
order t−d/4, and increasing the dimension will have rather opposite effects in the short
and long times regimes. When t→ 0, the particle will move faster than in d = 1 and it is
actually not clear that (Xt)t∈I will be well-defined on a compact interval I containing 0.
For large times instead, the particle will move slower. So slowly that, from d ≥ 3, we
may actually expect that it will stay bounded and reach a finite limit as t→∞. This is
consistent with the general belief that trapping effects cease to be relevant for d ≥ 3.

Second, it would be possible to consider an initial velocity filed that is not a white
noise, and reach presumably similar conclusions as long as (u(0, x))x∈R satisfies some
basic requirements, such as having zero average and being short-range correlated. Our
proof relies however on the environment being Gaussian, and dropping this hypothesis
would introduce technical difficulties. Last but not least, it would be highly interesting
to reintroduce at least some fluctuations in the evolution of the velocity field, a task that
would certainly require new ideas. We leave all these questions to further investigations.

3 Description of the environment

We establish here several features of the environment u, that will be used throughout
this text. We first show the scaling property (3.1) below that will, among other things,
play a key role in establishing Theorem 2.6. Second, we construct a grid of space-time
points such that u keeps the same sign on some time interval around each of these
points, see Proposition 3.1 below as well as the subsequent constructions. This grid
allows to derive a priori bounds on the processes X, L, R and Z, that depend only on
the sign of the velocity field u. Third, we obtain estimates on the supremum of u and its
derivatives, see Lemma 3.4 below. These estimates will be mainly needed in the proof of
Proposition 2.1.

Scaling property. For any α > 0,

(u(t, x))t,x
(law)

= (α1/4u(αt, α1/2x))t,x. (3.1)

Indeed, both fields are Gaussian, centred and have the same covariance and, from the
representation of the field u in (2.3), we compute

E(u(t, x)u(s, y)) =

∫
R

Pt(x− z)Ps(z − y)dz = Pt+s(x− y), (3.2)

and α1/2Pα(t+s)(α
1/2(x− y)) = Pt+s(x− y) from (2.2).

Sign of the field u. Given ` > 0, let us define the event

D(`) = {∃y : |y| ≤ `/2 and ∀s ∈ [1/2, 1], u(s, y) > 0}. (3.3)

Let us denote the complement of an event A by A. The following proposition provides a
control on the probability of D(`):

Proposition 3.1. There exists C > 0 such that, for all ` > 0,

P
(
D(`)

)
≤ 1

C
e−C`.

EJP 28 (2023), paper 10.
Page 9/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP896
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Evolution of a passive particle in a one-dimensional diffusive environment

Remark 3.2. By symmetry of u, by translation invariance and by the scaling prop-
erty (3.1), we deduce from the above proposition that there exists C > 0 such that, for
any x ∈ R and any t > 0,

P
(
{∃y : |y − x| ≤ `

√
t/2 and ∀s ∈ [t/2, t],±u(s, y) > 0}

)
≤ 1

C
e−C`.

Let us first provide some roadmap for the proof of Proposition 3.1. It is rather
straightforward to see that, for any ` > 0, the event D(`) has positive probability, cf. the
proof of (3.11) below. The difficulty in establishing that P (D(`)) decays exponentially
with ` stems from the fact that the environments u at two different places never become
fully independent, even though correlations decay faster than exponentially with the
distance. To cope with this, we introduce a field ũ, that differs from u by the fact that the
integral over R in (2.3) is replaced by an integral over a finite box of length `?, cf. (3.5)
below. Therefore, the environments ũ become truly independent over distances larger
than `?. In addition, provided `? is taken large enough, we can find an explicit condition
on the initial environment so that ũ is a good approximation of u, cf. (3.6) below. Finally
and crucially, among 2N + 1 consecutive boxes of size `?, at least N of them will be such
that ũ evaluated in the middle of these boxes will be a good approximation of u evaluated
at the same points, with a probability that goes exponentially fast to 1 as N grows large,
cf. (3.7) below. The conclusion is obtained by combining this exponential bound with
the exponential decay stemming from the independence of the variables ũ at distant
locations.

Proof of Proposition 3.1. We divide the proof into several steps.
1. Given a compact interval I ⊂ R and some α > 0,

P

(
sup

{∫
I

ϕ(x)dB(x) : ϕ ∈ C1(I), ‖ϕ‖C1 ≤ 1

}
> α

)
≤ 1 + 2|I|3/2

α
(3.4)

with ‖ϕ‖C1 = maxx∈I{|ϕ(x)|+ |ϕ′(x)|}.
Indeed, let I = [a, b] be some compact interval, and let ϕ ∈ C1(I). An integration by

parts yields ∫
I

ϕ(x)dB(x) = ϕ(b)(B(b)−B(a))−
∫
I

ϕ′(x)(B(x)−B(a))dx.

Hence,

sup
ϕ:‖ϕ‖C1≤1

∫
I

ϕ(x)dB(x) ≤ |B(b)−B(a)|+
∫
I

|B(x)−B(a)|dx

and, by Markov inequality, for any α > 0,

P

(
sup

ϕ:‖ϕ‖C1≤1

∫
I

ϕ(x)dB(x) > α

)
≤ 1

α
E

(
|B(b)−B(a)|+

∫
I

|B(x)−B(a)|dx
)

≤ 1 + 2(b− a)3/2

α
.

2. We introduce some definitions and notations. Let `? ≥ 1. For k ∈ Z, we define the
points xk = k`? and the intervals

Ik = [xk − `?/2, xk + `?/2] ,

as well as the variables

hk =
1

`
3/2
?

sup

{∫
Ik

ϕ(x)dB(x) : ϕ ∈ C1(Ik), ‖ϕ‖C1 ≤ 1

}
.
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Let also n0 ∈ N∗ and let us define the variables

Hk = 0 ∨
⌊

lnhk
n0

⌋
.

We observe that, by (3.4), P(Hk = 0) goes to 1 as n0 goes to infinity, uniformly in `?.
3. Given k ∈ Z and t > 0, let us define

ũ(t, xk) = −
∫
Ik

Pt(xk − y)dB(y). (3.5)

We want to control the difference between ũ(t, xk) and u(t, xk). For this, let us introduce
the variables

ηk =

{
1 if Hj ≤ |k − j| ∀j ∈ Z,
0 otherwise

We claim that, given n0, for all `? large enough, and for all k such that ηk = 1,

sup
1/2≤t≤1

|u(t, xk)− ũ(t, xk)| < 1. (3.6)

Let us show (3.6). By translation invariance, it suffices to consider the case k = 0.
For all t > 0,

u(t, 0)− ũ(t, 0) = −
∑

j∈Z\{0}

∫
Ij

Pt(y)dB(y).

Since η0 = 1, it holds that hj ≤ e|j|n0 for all j ∈ Z\{0}. Moreover, there exist C, c > 0

such that ‖ − Pt(·)‖C1(Ij) ≤ Ce−c|j|
2`2? for all j ∈ Z, so that we finally obtain

sup
1/2≤t≤1

|u(t, 0)− ũ(t, 0)| ≤
∑

j∈Z\{0}

C`
3/2
? e−c|j|

2`2?e|j|n0 ,

and this becomes smaller than 1 for `? large enough.
4. For all n0 large enough, for all `? ≥ 1, and for all N ∈ N,

P(|ηN |1 < N) ≤ e−N , (3.7)

where ηN = (η−N , . . . , ηN ) and |ηN |1 =
∑N
k=−N ηk.

Indeed, on the event

EN = {Hj ≤ | |j| −N | for all |j| > 2N},

it holds that

{k ∈ Z : |k| ≤ N, ηk = 0} ⊂
⋃

−2N≤j≤2N

{j − (Hj − 1), · · · , j + (Hj − 1)}

with the convention {a, · · · , b} = ∅ if b < a. Therefore

|{k ∈ Z : |k| ≤ N, ηk = 0}| ≤
∑

−2N≤j≤2N

[(2Hj − 1) ∨ 0] ≤
∑

−2N≤j≤2N

2Hj .

We thus obtain

P(|ηN |1 < N) ≤ P(
∑

−2N≤j≤2N

2Hj > N + 1) + P(EN ). (3.8)
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For the second term, since by (3.4), for any n ∈ N, P(Hj ≥ n) ≤ 3e−n0n it holds that for
n0 large enough and all N ≥ 1,

P(EN ) ≤
∑
|j|>2N

P(Hj > ||j| −N |) ≤
1

2
e−N . (3.9)

For the first one, as the variables (Hj)j∈Z are i.i.d., we obtain

P(
∑

−2N≤j≤2N

2Hj > N + 1) ≤ e−2(N+1)E
(
e4H0

)4N+1
. (3.10)

Finally, using once again that for any n ∈ N, P(Hj ≥ n) ≤ 3e−n0n, one can choose
n0 large enough so that for all N ≥ 1, the last term in (3.10) is smaller that e−N/2.
Inserting (3.9) and (3.10) into (3.8) yields the result.

5. There exists p > 0 such that, for all `? ≥ 1 and for all k ∈ Z,

P

(
inf

1/2≤t≤1
ũ(t, xk) > 1

)
= p. (3.11)

Again, to show this, it suffices to consider the case k = 0. We observe that, almost
surely, inf1/2≤t≤1 ũ(t, 0) is a continuous function of `?, converging to inf1/2≤t≤1 u(t, 0) as
`? → ∞. Therefore, it is enough to establish the result for any fixed `? ≥ 1 and for u
instead of ũ. This last case can be handled with exactly the same proof, and we let `? ≥ 1.

We first prove that for any 0 < a < b, it holds that

P

(
inf

t∈[a,b]
ũ(t, 0) ≥ 1/2

)
≥ P

(
inf

t∈[a,(a+b)/2]
ũ(t, 0) ≥ 1/2

)
P

(
inf

t∈[(a+b)/2,b]
ũ(t, 0) ≥ 1/2

)
.

(3.12)

Indeed for all n ≥ 1, the random vector (u(t, 0))t∈[a,b]∩Z/2n is gaussian and its coordinates
are positively correlated as can be seen from the equivalent of (3.2) for ũ so that, using
[28],

P

(
inf

t∈[a,b]∩Z/2n
ũ(t, 0) ≥ 1/2

)
≥ P

(
inf

t∈[a,(a+b)/2]∩Z/2n
ũ(t, 0) ≥ 1/2

)
P

(
inf

t∈[(a+b)/2,b]∩Z/2n
ũ(t, 0) ≥ 1/2

)
.

From this, we deduce (3.12) using that u is continuous.

Let us now assume that P
(
inf1/2≤t≤1 ũ(t, 0) ≥ 1/2

)
= 0. From (3.12) we find a se-

quence of nested closed intervals (In)n≥1 with I1 = [1/2, 1] and |In| = 2−n such that, for
all n ≥ 1, P (inft∈In ũ(t, 0) ≥ 1/2) = 0. Let t0 ∈ ∩n≥1In. Since ũ(·, 0) is continuous almost
surely in t0,

{ũ(t0, 0) ≥ 1/2} a.s.
=

⋃
n≥1

{ũ(t, 0) ≥ 1/2, t ∈ In},

and thus P(ũ(t0, 0) ≥ 1/2) = 0. This is a contradiction.

6. We start now the proof of the proposition itself. Let p be the constant featuring
in (3.11), let n0 be large enough so that, for all `? ≥ 1, P(H0) ≥ 1−p/2 and such that (3.7)
holds, and finally let `? be large enough so that (3.6) holds.
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Let N ∈ N∗, and let ` = (2N + 1)`?. Since the events D(`) are increasing with `, it
suffices to show the proposition for ` of this type. We start with

P
(
D(`)

)
≤ P

(
inf

1/2≤t≤1
u(t, x) ≤ 0, ∀x ∈ [−`/2, `/2]

)

≤ P

 ⋂
−N≤i≤N

{
inf

1/2≤t≤1
u(t, xi) ≤ 0

} . (3.13)

Let us denote by A the event featuring in the right hand side of this last expression.
From (3.7), we obtain

P(A) ≤
∑

σ∈{0,1}2N+1,

|σ|1≥N

P(A | ηN = σ)P(ηN = σ) + e−N . (3.14)

Moreover from (3.6), we deduce that for all i ∈ Z,{
inf

1/2≤t≤1
u(t, xi) ≤ 0

}
∩ {ηi = 1} ⊂

{
inf

1/2≤t≤1
ũ(t, xi) ≤ 1

}
.

Given σ such that |σ|1 ≥ N , we define −N ≤ i1 < · · · < iN ≤ N to be the N distinct
smallest indexes such that for all 1 ≤ j ≤ N , σij = 1. We denote by J the complementary
set of the (ik)1≤k≤N in Z. The event {ηN = σ} can be written as ⋂

1≤k≤N

{Hik = 0}

 ∩ {(Hj)j∈J ∈ B}

with B some suitable event in NJ . Therefore, as the (Hj)j∈Z are i.i.d., we obtain

P(A|ηN = σ) ≤
N∏
k=1

P

(
inf

1/2≤t≤1
ũ(t, xik) ≤ 1

∣∣∣Hik = 0

)
≤
(

1− p
1− p/2

)N
,

and the proof follows by inserting this bound into (3.14).

In the following we make use of Proposition 3.1 to give a property of the environment
that we will use repeatedly till the end of the article. Let K ≥ 1 be a constant that will
be fixed below. Given k ≥ 0 and α ≥ 1, we define a finite family of space-time boxes

covering B(k, α) = [0, 2k]×
[
−Kα

√
2k,+Kα

√
2k
]

in the following way: For all n ≥ 0, we

define

tn(k) = 2k−n and `n(k, α) = (α+ n2)
√
tn(k),

and also the space intervals

In,j(k, α) = [j`n(k, α), (j + 1)`n(k, α)] , j ∈ Z.

We denote by Jn(k, α) the set of j such that In,j(k, α) intersects [−Kα
√

2k,Kα
√

2k], so
that B(k, α) is covered by the family of boxes [tn+1(k), tn(k)] × In,j(k, α), for n ≥ 0 and
j ∈ Jn(k, α).

From now on we fix K large enough so that for all α ≥ 1 and k ≥ 0,∑
n≥0

2`n(k, α) ≤ K

3
α
√
t0(k). (3.15)
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The reason for defining K in this way will become clear later. For all n ≥ 0 and
j ∈ Jn(k, α), we consider the event

En,j(k, α) = {∃y1, y2 ∈ In,j(k, α) : ∀s ∈ [tn+1(k), tn(k)], u(s, y1) > 0 and u(s, y2) < 0}.

and we define

G(k, α) =
⋂

n≥0,j∈Jn(k,α)

En,j(k, α). (3.16)

We note that, uniformly in α and k,

b(2K) 2n/2/(1 + n2)c ≤ |Jn(k, α)| ≤ (2K) 2n/2.

Hence, by Remark 3.2,

P
(
G(k, α)

)
≤
∑
n≥0

(2K)2n/2
1

C
e−C(α+n2) (3.17)

and we deduce that

almost surely for all k ≥ 1 there exists αk ≥ 1 so that G(k, αk) occurs. (3.18)

Actually Borel Cantelli lemma implies even that for all k ≥ 1 almost surely G(k, α) occurs
for α large enough. Property (3.18) will be useful in many of the following proofs. A first
consequence is the following

Remark 3.3. An easy consequence of (3.18) is that almost surely, for any i ∈ Z, the set
Pi = {y ∈ R : ∀s ∈ [2i−1, 2i], u(s, y) > 0} is (infinite and) not bounded. Indeed almost
surely, for all k ≥ i there are at least |Jk−i(k, αk)| points in Pi separated by a distance at
least

√
2i. As |Jk−i(k, αk)| goes to infinity when k →∞, this yields the result. The same

result holds of course for the set Ni = {y ∈ R : ∀s ∈ [2i−1, 2i], u(s, y) < 0}.
Expected size of u and its derivatives. We prove here some quantitative estimates

on the field u and its derivatives.

Lemma 3.4. For any δ > 0, there exists C > 0 such that

E
(

sup
{
t
1
4 +δu(t, x) : t ∈]0, 1], x ∈ [−1, 1]

})
≤ C, (3.19)

E
(

sup
{
t
3
4 +δ∂xu(t, x) : t ∈]0, 1], x ∈ [−1, 1]

})
≤ C, (3.20)

E
(

sup
{
t
5
4 +δ∂tu(t, x) : t ∈]0, 1], x ∈ [−1, 1]

})
≤ C. (3.21)

As the field u
(law)

= −u, similar estimates hold for the infimum instead of the supremum.

Remark 3.5. We stress that the result is false if δ = 0 as these suprema are infinite
almost surely in this case. Indeed, let us consider for example the field u. First, for
all t > 0 and x ∈ R, the variables t1/4u(t, x) are identically distributed joint Gaussian
variables. Second, given any n ≥ 1 and points x1, . . . , xn with −1 ≤ x1 < · · · < xn ≤ 1,
the Gaussian vector (t1/2u(t, x1), . . . , t1/2u(t, xn)) becomes uncorrelated as t→ 0. From
this, one concludes that supt∈]0,1],x∈[−1,1] t

1/4u(t, x) = +∞ almost surely.

Proof. Before starting the proof, we remind that we have already obtained the expression
E(u(t, x)u(s, y)) = Pt+s(x− y) in (3.2). Analogously, we derive

∂xu(t, x) = −∂x
∫
R

Pt(x− y)dBy = −
∫
R

P ′t (x− y)dBy
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and thus

E(∂xu(t, x)∂xu(s, y)) =

∫
R

P ′t (x− z)P ′s(y − z)dz = ∂x∂yPt+s(x− y)

= −∂xxPt+s(x− y), (3.22)

as well as
E(∂tu(t, x)∂tu(s, y)) = ∂4

xPt+s(x− y).

The Lemma follows from Dudley’s theorem, see e.g. [25]. Let us show (3.19). We
define a metric d on ]0, 1]× [−1, 1] by

d((t, x), (s, y)) =

(
E
(
t
1
4 +δu(t, x)− s 1

4 +δu(s, y)
)2
) 1

2

. (3.23)

Given η > 0, let N(η) be the minimal number of balls of radius η for the metric d needed
to cover ]0, 1]× [−1, 1]. Dudley’s theorem asserts that

E
(

sup
{
t
1
4 +δu(t, x) : t ∈]0, 1], x ∈ [−1, 1]

})
≤ 24

∫ ∞
0

(lnN(η))
1
2 dη. (3.24)

Given η > 0, let us derive a bound on N(η). From (3.2) and (3.23), we compute

d((t, x), (s, y))2 = (4π)−
1
2

(
t2δ + s2δ − 2s

1
4 +δt

1
4 +δ

(
s+ t

2

)− 1
2

e−
(x−y)2
2(t+s)

)
. (3.25)

Hence the bounds

d((t, x), (s, y)) ≤ (4π)−
1
4 (t2δ + s2δ)

1
2 ≤ (4π)−

1
4

√
2. (3.26)

Therefore N(η) = 1 as soon as η ≥ (4π)−
1
4

√
2. Let us thus assume that 0 < η < (4π)−

1
4

√
2.

It follows from (3.26) that the set

B0 =
]
0, c η

1
δ

]
× [−1, 1] with c = π

1
4δ

is contained in a single ball of radius η. On (]0, 1]× [−1, 1])\B0, we will show that there
exists C > 0 such that

d((t, x), (s, y)) ≤ Cη−
1
δ (|t− s|+ |x− y|) . (3.27)

This implies that there exists C > 0 such that N(η) ≤ Cη−2(1+ 1
δ ), hence that the integral

in (3.24) converges (to a value that depends on δ).
Let us show (3.27). By the triangle inequality, it holds that

d((t, x), (s, y)) ≤ d((t, x), (t, y)) + d((t, y), (s, y)).

First, from (3.25),

d((t, x), (t, y))2 = π−
1
2 t2δ

(
1− e−

(x−y)2
4t

)
≤ C

(x− y)2

t
≤ Cη−

1
δ (x− y)2

where we have used the bounds t ≤ 1 and 1 − e−z ≤ z for all z ≥ 0 to obtain the first
inequality, and t > cη

1
δ to get the second one. Next, from (3.25) again,

d((t, y), (s, y))2 = (4π)−
1
2 t2δ

(
1 +

(
1 +

s− t
t

)2δ

− 2

(
1 +

s− t
t

) 1
4 +δ (

1 +
s− t

2t

)− 1
2

)

=: t2δϕ

(
s− t
t

)
≤ C

(
s− t
t

)2

≤ Cη−
2
δ (t− s)2
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where the first inequality follows from the fact that ϕ(0) = ϕ′(0) = 0, and where the
second one is obtained thanks to the bound t > cη

1
δ .

The proof of (3.20) is analogous and we only outline the main steps. This time,

d((t, x), (s, y))2 = (16π)−
1
2

(
t2δ + s2δ − 2s

3
4 +δt

3
4 +δ

(
s+ t

2

)− 3
2
(

1− (x− y)2

t+ s

)
e−

(x−y)2
2(t+s)

)
.

Since the function z 7→ (1− z2)e−z
2/2 is bounded, we obtain a bound analogous to (3.26):

d((t, x), (s, y)) ≤ C(t2δ + s2δ)
1
2 ≤ C.

Hence, again, it is enough to show (3.27) for t > cη
1
δ for some c > 0, and the rest of the

proof uses only completely similar computations.
The proof of (3.21) is analogous.

4 Proof of Proposition 2.1 and Theorem 2.2

Proof of Proposition 2.1. Let us first show that, almost surely, there exists ε > 0 so that
(Xt)0≤t≤ε is defined as the fixed point of the map Φ from C ([0, ε], [−1, 1]) to itself such
that

Φ(f) : t 7→
∫ t

0

u(s, fs)ds

for any f ∈ C ([0, ε], [−1, 1]). First, if we choose ε small enough, Φ is well defined. Indeed,
thanks to Lemma 3.4, the time integral is a.s. convergent and moreover, taking for
example δ = 1/10, we find C > 0 such that, for all f ∈ C ([0, ε], [−1, 1]),

‖Φ(f)‖∞ ≤ C

∫ ε

0

ds

s1/4+δ
≤ 1

if ε is chosen small enough.
Next, Φ is contracting if ε is small enough. Indeed, there exists C > 0 such that, for

all f, g ∈ C ([0, ε], [−1, 1]),

‖Φ(f)− Φ(g)‖∞ ≤
∫ ε

0

|u(s, fs)− u(s, gs)|ds

≤ ‖f − g‖∞
∫ ε

0

sup
x∈[−1,1]

|∂xu(s, x)|ds ≤ C‖f − g‖∞
∫ ε

0

ds

s3/4+δ

≤ 1

2
‖f − g‖∞

if ε is chosen small enough.
It is thus almost surely possible to define (Xt)0≤t≤ε as the unique fixed point of Φ.

Clearly this process is continuous and satisfies (2.4) for 0 ≤ t ≤ ε. Let us show that this
process can be extended on R+.

We define (Xt)t∈I as the maximal solution for the Cauchy problem ∂tXt = u(t,Xt)

with the condition that, at time t = ε, Xt coincides with Xε found above. We already
know that inf I = 0 so that it remains to prove that sup I = +∞. If t? = sup I <∞ then,
(Xt)0<t<t? explodes before time t?, i.e. limt→t−? |Xt| = +∞. This is impossible thanks to

Remark 3.3. Indeed, let i be the integer such that 2i−1 < t? ≤ 2i and choose x ∈ Pi and
y ∈ Ni so that x < X2i−1 < y. This implies that Xs ∈]x, y[ for all 2i−1 ≤ s < t? and this is
a contradiction. We notice that the fact that I = R∗+ also establishes that X is smooth on
R∗+, since the field u is smooth on R∗+ ×R.

Let us finally prove the uniqueness of the process X. If X is continuous on R+

satisfying (2.4), then s 7→ u(s,Xs) is in L1
loc(R+) as the argument above shows and thus
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Xt =
∫ t

0
u(s,Xs)ds for all t ≥ 0. Hence, (Xt)0≤t≤ε is the unique fixed point of the map

Φ defined above. For larger times, uniqueness follows from the uniqueness of regular
Cauchy problems.

Proof of Theorem 2.2. We fix some θ0 > 0. For 0 < θ ≤ θ0 and T > 0, we decompose

XθT

T 3/4
=

1

T 3/4

∫ θT

0

u(s, 0)ds +
1

T 3/4

∫ θT

0

(
u(s,Xs)− u(s, 0)

)
ds.

Thanks to the scaling relation (3.1),(
1

T 3/4

∫ θT

0

u(s, 0)ds

)
0≤θ≤θ0

=

(∫ θ

0

u(s, 0)ds

)
0≤θ≤θ0

in law.

Hence, it is enough to show that almost surely

sup
0<θ≤θ0

∣∣∣∣∣ 1

T 3/4

∫ θT

0

u(s,Xs)− u(s, 0) ds

∣∣∣∣∣ → 0 as T → 0.

Let δ = 1/10. Thanks to Lemma 3.4, almost surely, there exists a constant C > 0

so that for all 0 < t ≤ 1 and all x ∈ [−1, 1], we have the bounds |t 1
4 +δu(t, x)| < C and

|t 3
4 +δ∂xu(t, x)| < C. From now on, by continuity, we take T small enough so that θ0T ≤ 1

and sups≤θ0T |Xs| ≤ 1. It thus holds that for 0 ≤ t ≤ θ0T ,

|Xt| ≤ |
∫ t

0

u(s,Xs) ds| ≤
∫ t

0

sup
x∈[−1,1]

|u(s, x)| ds ≤ C

∫ t

0

ds

s1/4+δ
≤ 2Ct3/4−δ.

Next, for all 0 ≤ θ ≤ θ0,∣∣∣∣∣ 1

T 3/4

∫ θT

0

u(s,Xs)− u(s, 0)ds

∣∣∣∣∣ ≤ 1

T 3/4

∫ θT

0

|u(s,Xs)− u(s, 0)|ds

≤ 1

T 3/4

∫ θT

0

sup
x∈[−1,1]

|∂xu(s, x)||Xs|ds

≤ 2C2

T 3/4

∫ θT

0

1

s3/4+δ
s3/4−δds ≤ 4C2 (θ0T )1−2δ

T 3/4

and the last bound (uniform on 0 ≤ θ ≤ θ0) converges to 0 as T → 0.

5 Proof of Lemma 2.3 and Proposition 2.4

We start with a Lemma, that guarantees that the zeros of u are almost surely never
degenerate, i.e. either ∂xu or ∂tu is non-zero whenever u vanishes. This will enable
us to invoke the implicit function theorem in several places. Moreover, we show also
that there are only countably many isolated points where ∂xu vanishes, corresponding
to the tops of the blue curves on Fig. 2. This is the key ingredient to show item 3 in
Proposition 2.4.

Lemma 5.1. The field u satisfies

1. P
(
∃(t, x) ∈ R∗+ ×R : u(t, x) = ∂tu(t, x) = ∂xu(t, x) = 0

)
= 0.

2. Almost surely, on any compact set K ⊂ R∗+ ×R, the set of points where u(t, x) =

∂xu(t, x) = 0 is finite.

Remark 5.2. As our proof shows, the first item holds actually for any smooth field u

such that (u, ∂tu, ∂xu) has a locally bounded density around 0.
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Proof. For the first item, let us consider the field ϕ defined by

ϕ(t, x) =
(
u(t, x), ∂tu(t, x), ∂xu(t, x)

)
, t > 0, x ∈ R. (5.1)

From the scaling relation (3.1), we obtain also(
ϕ(t, x)

)
t,x

(law)
=

(
α1/4u(αt, α1/2x), α5/4∂tu(αt, α1/2x), α3/4∂xu(αt, α1/2x)

)
t,x
. (5.2)

By sigma additivity, together with the scaling relation (5.2) and the space translation
invariance we find that it suffices to show that

P
(
∃(t, x) ∈ [1, 2]× [−1, 1] : ϕ(t, x) = 0

)
= 0,

To prove this, let us first show that there exists some C > 0 such that, for any
(t, x) ∈ [1, 2]× [−1, 1] and for any ε > 0,

P(|ϕ(t, x)| < ε) < Cε3 (5.3)

where | · | denotes the Euclidean norm. First, since t ≤ 2, by the scaling relation (5.2)
and translation invariance, for all (t, x) ∈ [1, 2]× [−1, 1]

P(|ϕ(t, x)| < ε) ≤ P(|ϕ(2, 0)| < ε).

Therefore, to show (5.3), since ϕ(2, 0) is Gaussian, it suffices to show that its covariance
is non-degenerate, i.e. invertible. Since

E(ϕiϕj) =

∫
R

∂iP2(z)∂jP2(z)dz

for 1 ≤ i, j ≤ 3, with the notation (∂1, ∂2, ∂3) = (1, ∂t, ∂x), and since P2(·), ∂tP2(·) and
∂xP2(·) are linearly independent as elements of L2(R), the covariance is indeed non-
degenerate.

Next, because ϕ is smooth, it holds that

{∃(t, x) ∈ [1, 2]× [−1, 1] : ϕ(t, x) = 0} =⋃
N∈N∗

{∃(t, x) ∈ [1, 2]× [−1, 1] : ϕ(t, x) = 0 and ‖ϕ′‖∞ < N} (5.4)

with ‖f‖∞ = max(t,x)∈[1,2]×[−1,1] ‖f(t, x)‖ for any continuous function f on [1, 2]× [−1, 1]

with values in linear maps from R2 to R3, and where ‖ · ‖ is the operator norm when
both spaces are endowed with the euclidian norms. Thus it suffices to show that, for
any N ∈ N∗, the probability of the corresponding set in the union in the right hand side
of (5.4) is zero. Let N ∈ N∗, let ε > 0 and let us define the points

(ti, xj) = (1 + iε, jε) , i ∈ N, i < 1/ε, j ∈ Z, |j| < 1/ε.

The number of such points is bounded by 2/ε2. Now, under the condition ‖ϕ′‖∞ < N , if
ϕ(t, x) = 0 for some (t, x) ∈ [1, 2]× [−1, 1], then |ϕ(ti, xj)| ≤

√
2εN for one of the points

(ti, xj) at least. Hence, using (5.3), we obtain

P (∃(t, x) ∈ [1, 2]× [−1, 1] : ϕ(t, x) = 0 and ‖ϕ′‖∞ < N) ≤
∑
i,j

P
(
|ϕ(ti, xj)| ≤

√
2εN

)
≤ 2C

ε2

(√
2εN

)3

.
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Since ε may be taken arbitrarily small for given N ∈ N∗, the left hand side vanishes for
any N ∈ N∗.

We turn to the second item. As K is compact it is enough to prove that the set of
(s, y) ∈ K, so that u(s, y) = ∂xu(s, y) = 0, has only isolated points. Using item 1, we may
assume that almost surely for all points of this set ∂tu(s, y) 6= 0. We consider one of these
points, and using the implicit function theorem, we know that there exists a real function
S defined in a neighborhood of y so that the set of zeros of the field u coincides with the
graph of this function on a neighborhood of (s, y). The function S satisfies

S′(z) = −∂xu(S(z), z)

∂tu(S(z), z)
,

S′′(z) = −1 + S′(z)

(
∂xu(S(z), z)∂ttu(S(z), z)

(∂tu(S(z), z))2
− 2

∂txu(S(z), z)

∂tu(S(z), z)

) (5.5)

for z in a neighborhood of y. Therefore, in a neighborhood of y, ∂xu(S(z), z) = 0 if and
only if S′(z) = 0 and, since S′(y) = 0, we have S′′(z) < 0, and thus also S′(z) 6= 0 for
z 6= y.

We have now all ingredients for the

Proof of Lemma 2.3. By Lemma 5.1, one may assume that almost surely on every point
(s, y) such that u(s, y) = 0, either ∂tu(s, y) 6= 0 or ∂xu(s, y) 6= 0. The main observation is
that, if (s, y) is such that u(s, y) = 0 and ∂xu(s, y) = 0, then there exists ε > 0 such that

u(s′, y′) 6= 0 for all (s′, y′) ∈]s, s+ ε[×]y − ε, y + ε[. (5.6)

Indeed, as ∂tu(s, y) = ∂xxu(s, y) 6= 0, we may assume that ∂tu(s, y) > 0 (the other
case being analogous). By continuity, there exists ε > 0 such that ∂tu(s′, y′) > 0 for
all (s′, y′) ∈]s, s + ε[×]y − ε, y + ε[, and u(s, y′) ≥ 0 for all y′ ∈]y − ε, y + ε[. Therefore
u(s′, y′) > u(s, y′) ≥ 0 or all (s′, y′) ∈]s, s + ε[×]y − ε, y + ε[, which shows the claim. Let
now t > 0 and x ∈ Zs

t ∪ Zu
t . We consider the set

F =


0 ≤ s0 < t : there exists a function r(t,x) : ]s0, t]→ R, and

a neighbourhood V of (t, x) containing the graph of r(t,x),

such that for all (s, y) ∈ V, u(s, y) = 0⇔ y = r(t,x)(s)

 .

Since ∂xu(t, x) 6= 0, the implicit function theorem guarantees that F 6= ∅. Let

smin = inf F

and let us prove by contradiction that smin = 0. Assume that smin > 0.
Remind the definitions of G(k, α) in (3.16), αk in (3.17) and also property (3.18). We

choose k large enough so that t0(k) = 2k ≥ t and |x| ≤ K
3 αk

√
t0(k). Since the graph of

r(t,x) does not intersect

{(t, x) ∈ R+ ×R : u(t, x) > 0} ∪ {(t, x) ∈ R+ ×R : u(t, x) < 0}, (5.7)

we obtain that for all i ≥ 0, |r(t,x)(ti(k)) − r(t,x)(ti+1(k))| ≤ 2`i(k). Hence, by definition

of K in (3.15), for all smin ≤ s ≤ t, |r(t,x)(s)| ≤ 2K
3 αk

√
t0(k), and the set {(s, rx(s)) :

smin < s ≤ t} is bounded. By compactness, there exists y ∈ R such that (smin, y) lies
in its closure. Therefore, by continuity, u(smin, y) = 0 and, by the implicit function
theorem again, ∂xu(smin, y) = 0 as otherwise one should have inf F < smin. We reach a
contradiction with (5.6).
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Let us next show that r(t,x) is continuous in 0. This is a consequence of the fact that
r(t,x) satisfies Cauchy property as s goes to 0. Indeed, with the same argument as above,
for all j large enough and 0 < s, s′ < tj(k),

|r(t,x)(s)− r(t,x)(s
′)| ≤

∑
n≥j

2`n(k),

and this last sum goes to zero as j → +∞.
Finally, that stable zeros remain stable, and unstable ones remain unstable, follows

from the fact that ∂xu(s, r(t,x)(s)) 6= 0 for all s ∈]0, t], as the above argument shows. The
expression (2.6) follows from the implicit function theorem.

Proof of Proposition 2.4: existence of the processes L and R satisfying (2.7) and (2.8).
Let us first show that there exist processes L and R satisfying (2.7) almost surely for
any t > 0. To fix the ideas, let us deal with L. As, almost surely, u(t, ·) is analytic
for any t > 0, Zt has no accumulation points, and it is enough to prove that the set
{x ∈ Zs

t ∪ Zu
t : r(t,x)(0) < 0} is non-empty and bounded above. Let us fix t > 0 and show

that, almost surely, for any t′ ∈]0, t], {x ∈ Zs
t′ ∪ Zu

t′ : r(t′,x)(0) < 0} is non-empty and
bounded above.

We choose k large enough so that 2k ≥ t. Using Remark 3.3, almost surely, u(t′, ·)
changes sign infinitely often on ] −∞,−Kαk

√
2k[. As u is continuous, each interval

where u changes sign intersects Zt′ . One can actually say more as, from the first item
in Lemma 5.1, we may assume that ∂xxu = ∂tu 6= 0 whenever u = ∂xu = 0 and thus, for
all y ∈ Zn

t′ , the function u(t, ·) vanishes but does not change sign in a neighborhood of y.
From this one deduces that each interval where u changes sign intersects Zs

t′ ∪ Zu
t′ (we

will use repeatedly this argument in the following).
Thus there exists x ∈] − ∞,−Kαk

√
2k[∩(Zs

t′ ∪ Zu
t′). Arguing as in the proof of

Lemma 2.3, we obtain that for all 0 < s ≤ t′, rt′,x(s) ≤ − 2K
3 αk

√
2k and in particular

rt′,x(0) < 0. This implies that {x ∈ Zs
t′ ∪ Zu

t′ : r(t′,x)(0) < 0} is non-empty. Moreover it is

also bounded above as, with the same argument, for x ∈ Zs
t′ ∪Zu

t′ such that x ≥ Kαk
√

2k,
it holds that rt′,x(s) ≥ 2K

3 αk
√

2k > 0.
Second, let us show (2.8). For this, let us first prove that the probability of the event

W = {∃(t, x) ∈ R∗+ ×R : r(t,x)(0) = 0} (5.8)

vanishes. Let us decompose this event as

W =
⋃
t>0

Wt(0) with Wt(y) = {∃x ∈ R : r(t,x)(0) = y}, y ∈ R.

Since, by Lemma 2.3, the eventsWt(0) increase as t decreases, it is enough to show that
P(Wt(0)) = 0 for any t > 0. Let t > 0. As argued above, the set Zs

t ∪ Zu
t is almost surely

unbounded above and below, and countable. Let us denote its elements by (zk)k∈Z, with
zk < zk+1 for all k ∈ Z and z0 = min(Zs

t ∪ Zu
t ) ∩ R+. Therefore, given y ∈ R, it holds

that P(Wt(y)) > 0 if and only if P(r(t,zk)(0) = y) > 0 for some k ∈ Z. Since the atoms of
a random variable are at most countable, the set of y ∈ R such that P(Wt(y)) > 0 is at
most countable. As P(Wt(y)) is constant in y ∈ R by translation invariance, we deduce
that P(Wt(y)) = 0 for all y ∈ R.

On Wc, let us assume by contradiction that there exists some t > 0 such that
Lt, Rt ∈ Zs

t (one rules out analogously the case Lt, Rt ∈ Zu
t ). Since u(t, x) < 0 for x > Lt

in a neighborhood of Lt and since u(t, x) > 0 for x < Rt in a neighborhood of Rt, we
find that there exists x ∈ Zu

t ∩]Lt, Rt[. By (2.7), we would have r(t,x)(0) = 0, but this is
impossible ifWc is realized.
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Proof of item 1 in Proposition 2.4. First, let us show that Z is continuous in t = 0. This
follows from the fact that L and R are continuous in t = 0. To fix the ideas, let us show
this for L. We actually prove a bit more: For all ε > 0, almost surely if t > 0 is small
enough, |Lt| ≤ t1/2−ε. Let ε > 0. As rt,Lt(0) < 0, arguing as in the proof of Lemma 2.3,
we obtain that there exists C > 0 such that, for all 0 < t ≤ 1,

Lt ≤
∑

n≥b− log2 tc

2`n(0, α0) =
∑

n≥b− log2 tc

2(α0 + n2)
√

2−n ≤ C(log2 t)
2t1/2.

Thus, for t > 0 small enough, the upper bound Lt ≤ t1/2−ε holds. Moreover, the above
bound implies that for t > 0 small enough,

t1/2−ε −
∑

n≥b− log2 tc

2`n(0, α0) ≥ 2`b− log2 tc(0, α0).

Therefore, the function u(t, ·) changes sign in [−t1/2−ε,−
∑
n≥b− log2 tc

2`n(0, α0)[ so that
this interval intersects Zt. Using the same argument as in the proof of Lemma 2.3,
one can even say that this interval intersects Zs

t ∪ Zu
t and we consider some x in

this intersection. Using once again the same argument, almost surely, rt,x(0) ≤ x +∑
n≥b− log2 tc

2`n(0, α0) < 0 and this implies that Lt ≥ x ≥ −t1/2−ε.
Second, let t > 0 and let us prove that Z is càdlàg at t. Because Lt, Rt ∈ Zs

t ∪ Zu
t , the

implicit function theorem implies that there exist ε > 0 as well as xL, xR ∈ Zs
t+ε ∪ Zu

t+ε

so that

Lt = r(t+ε,xL)(t), Rt = r(t+ε,xR)(t).

By definition of Lt and Rt, it holds that ]Lt, Rt[∩(Zs
t ∪ Zu

t ) = ∅ so that the only zeros that
could be in ]Lt, Rt[ are neutral, and there is only a finite number of them since Zt has no
accumulation point. We call them zi, i = 1, · · · , n (of course n can be 0 and, even if we
did not need to prove it for our purposes, we believe that n is at most 1). We claim that,
for ε > 0 small enough, there is no zero of u in the domain

{(s, x) ∈ R+ ×R : t < s ≤ t+ ε, x ∈]r(t+ε,xL)(s), r(t+ε,xR)(s)[}

Indeed, otherwise, as u is continuous there would be a sequence of zeros in this set
converging to some zi, and this is impossible due to (5.6), or to Lt or Rt and this is also
impossible thanks to the implicit function theorem as both points are in Zs

t ∪ Zu
t . This

implies that Zs = r(t+ε,xL)(s) for all s ∈ [t, t + ε] or Zs = r(t+ε,xR)(s) for all s ∈ [t, t + ε],
and this proves thus that Z is right continuous at t.

If n ≥ 1 and if i ∈ {1, . . . , n}, using Lemma 5.1, almost surely ∂tu(t, zi) 6= 0 and from
the implicit function theorem there exists a function Si defined in a neighborhood of zi
such that the set of zeros of the field u in a neighborhood of (t, zi) coincides with the
graph of Si. This argument is similar to the one used to define S in the proof of the
second item of Lemma 5.1 so that Si also satisfies (5.5) and (Si)′′ < 0 on a neighborhood
of zi. This implies that Si defines two bijections: one from a left neighborhood of zi into
]t− ε, t[ (for a small enough ε > 0) and another one from a right neighborhood of zi into
]t− ε, t[. Considering the inverse bijections, we define two continuous functions xi1 and
xi2, such that for all t− ε ≤ s < t, xi1(s) and xi2(s) are in Zs

s ∪ Zu
s , xi1(s) < zi < xi2(s) and

the graphs of xi1 and xi2 coincide with the graph of Si in a neighborhood of (t, zi).
Finally, we find that for all t− ε ≤ s < t,

[r(t+ε,xL)(s), r(t+ε,xR)(s)] ∩ (Zs
s ∪ Zu

s )

= {xij(s), i = 1, . . . , n; j = 1, 2} ∪ {r(t+ε,xL)(s), r(t+ε,xR)(s)}
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with the convention that the first set in the union in the right hand side is empty if n = 0.
This implies that Z coincides on [t− ε, t[ with one of these (n+ 2) functions and thus that
it is left continuous at t.

Proof of item 2 in Proposition 2.4. Suppose first that Zt− ∈ Zn
t . Using (5.6), there exists

ε > 0 so that there is no zero in ]t, t + ε[×]Zt− − ε, Zt− + ε[. This implies that Z is
discontinuous at t. Suppose next that Zt− ∈ Zs

t ∪ Zu
t , and thus by continuity that

Zt− ∈ Zs
t . Without loss of generality, we may assume that r(t,Zt− )(0) < 0. First, if z ∈ Zs

t

satisfies z < Zt− , then r(t,z)(0) < r(t,Zt− ) < 0 and thus z 6= Zt. Second, if z ∈ Zs
t satisfies

z > Zt− , then there exists z0 ∈]Zt− , z[∩Zu
t and, by continuity, there exists s ∈]0, t[ such

that Zs < r(t,z0)(s). Therefore, r(t,z0)(0) > 0 and since r(t,z)(0) > r(t,z0)(0), this implies
also z 6= Zt. We conclude that Zt = Zt− .

Proof of item 3 in Proposition 2.4. This follows from the second item in Lemma 5.1 and
the fact that Z is discontinuous at t if and only if Zt− ∈ Zn

t .

Proof of item 4 in Proposition 2.4. In this proof, it is convenient to write Z and r as
functions of the environment. We fix T > 0 and define (Z̃Tθ )θ≥0 = (T−1/2ZθT )θ≥0. Given
an environment u, we also define (uT (t, x))t,x = (T 1/4u(Tt, T 1/2x))t,x. Our goal is to
prove that Z̃T (u) = Z(uT ). Hence, since u and uT have the same law, this will imply our
claim. Let θ > 0 and observe that

1. a real x belongs to Zθ(uT ) if and only if T 1/2x ∈ ZθT (u),

2. in this case both zeros are of the same type and, if moreover x is not neutral, then
for all 0 ≤ s ≤ θ

r(θ,x)(uT )(s) = T−1/2r(θT,T 1/2x)(u)(sT ).

To prove this last point we observe that the function φ : s→ T−1/2r(θT,T 1/2x)(u)(sT )

is continuous, satisfies φ(θ) = x and uT (s, φ(s)) = 0 for all 0 < s ≤ θ. This is enough
to conclude as, by definition, r(θ,x)(uT ) is the only function to have these properties.

By definition of the process Z, these two points imply that Z̃T (u) = Z(uT ).

Proof of item 5 in Proposition 2.4. Let us first show that there exists c > 0 so that
P(|Z1| ≥ z) ≥ ce−z/c for all z ≥ 0. Given z ≥ 0, the bound

P(|Z1| ≥ z) ≥ P(u(1, x) > 0, ∀x ∈ [−z, z])

holds. Since u is continuous almost surely, for any x ∈ R,

{u(1, x) > 1} =
⋃
a>0

{u(1, y) > 1, ∀y ∈ [x− a, x+ a]}.

Therefore, since P(u(1, x) > 0) > 0, there exists a > 0 such that,

c := P(u(1, y) > 1, ∀y ∈ [x− a, x+ a]) > 0.

For z > 0, using that u(1, ·) is continuous we obtain

P(u(1, x) > 0, ∀x ∈ [−z, z]) ≥ P(u(1, x) ≥ 1, ∀x ∈ [−z, z])
= lim

n
P(u(1, x) ≥ 1, ∀x ∈ [−z, z] ∩Z/2n).

(5.9)

For all n ≥ 1, the random vector (u(1, x))x∈[−z,z]∩Z/2n is gaussian and its coordinates are
positively correlated from (3.2) so that, using [28], and assuming z > a,

P(u(1, x) ≥ 1, ∀x ∈ [−z, z] ∩Z/2n) ≥ P(u(1, x) ≥ 1, ∀x ∈ [−a, a] ∩Z/2n)dz/ae. (5.10)

EJP 28 (2023), paper 10.
Page 22/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP896
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Evolution of a passive particle in a one-dimensional diffusive environment

We finally obtain, using again that u(1, ·) is continuous, that

P(u(1, x) > 0, ∀x ∈ [−z, z]) ≥ lim
n

P(u(1, x) ≥ 1, ∀x ∈ [−a, a] ∩Z/2n)dz/ae

= P(u(1, x) ≥ 1, ∀x ∈ [−a, a])dz/ae

= e− ln(1/c)dz/ae.

(5.11)

Second, let us show that there exists c > 0 so that P(|Z1| ≥ z) ≤ e−cz/c. We first
remind that, from (3.17), there exists C > 0 such that for all α ≥ 1,

P(G(0, α)) ≤ 1

C
e−Cα. (5.12)

On G(0, α) the function u(1, ·) changes sign on ] 2
3Kα,Kα[ so that, using the same argu-

ment as in the proof of Lemma 2.3, this interval intersects Zu
1 ∪ Zs

1. We consider a point
x in this intersection. On G(0, α), r1,x(0) ≥ 1

3Kα > 0. With the same argument there
exists y ∈] − Kα,− 2

3Kα[∩(Zu
1 ∪ Zs

1) such that r1,y(0) ≤ − 1
3Kα < 0. This implies that

G(0, α) ⊂ {|Z1| ≤ 2
3Kα} and, together with (5.12), concludes the proof of this point.

Let us finally show that Z1 has a bounded density. For this, it is enough to show that
the cumulative distribution function of Z1 is Lipschitz. Let us thus show that there exists
C > 0 such that, for any ε > 0 and for any x ∈ R,

P(Z1 ∈ [x, x+ ε]) ≤ Cε.

We start with the bound

P(Z1 ∈ [x, x+ ε]) ≤ P([x, x+ ε] ∩ Z1 6= ∅) = P([0, ε] ∩ Z1 6= ∅).

In the sequel, to simplify writings, let us write u(x) for u(1, x) for any x ∈ R. By a second
order Taylor expansion, there exists a function θ : [0, ε]→ [0, ε] such that, for all x ∈ [0, ε],

u(x) = u(0) + ∂xu(0)x+
∂xxu(θ(x))x2

2
. (5.13)

Let δ > 0 to be fixed later and let us decompose P([0, ε] ∩ Z1 6= ∅) according to the
following alternative:

P([0, ε] ∩ Z1 6= ∅) ≤ P(∃y ∈ [0, ε] : |u(0) + ∂xu(0)y| ≤ δ)
+ P(∃x ∈ [0, ε] : u(x) = 0 and ∀y ∈ [0, ε] : |u(0) + ∂xu(0)y| > δ).

(5.14)

To get a bound on the first term, we notice that u(0) and ∂xu(0) are independent Gaussian
variables, and one finds that there exists C > 0 such that, for any δ ∈]0, ε] and any ε > 0,

P(∃y ∈ [0, ε] : |u(0) + ∂xu(0)y| ≤ δ) ≤ Cε. (5.15)

To get a bound on the second term, we use the expansion (5.13):

P(∃x ∈ [0, ε] : u(x) = 0 and ∀y ∈ [0, ε] : |u(0) + ∂xu(0)y| > δ)

= P

(
∃x ∈ [0, ε] :

∂xxu(θ(x))x2

2
= −(u(0) + ∂xu(0)x) and inf

y∈[0,ε]
|u(0) + ∂xu(0)y| > δ

)
≤ P(∃x ∈ [0, ε] : |∂xxu(θ(x))|x2 ≥ 2δ)

≤ P

(
sup
x∈[0,ε]

|∂xxu(x)| ≥ 2δ

ε2

)
≤ ε2

2δ
E

(
sup
x∈[0,ε]

∂xxu(x)

)
≤ Cε2

2δ

where the last bound follows from Lemma 3.4. Therefore, taking δ = ε, we obtain the
claim by inserting this last bound together with (5.15) into (5.14).
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6 Proof of Theorem 2.6

Given T > 0, let us define the processes (Z̃Tθ )θ≥0 = (T−1/2ZθT )θ≥0 as well as
(X̃T

θ )θ≥0 = (T−1/2XθT )θ≥0. Let us also define (Y Tθ )θ≥0 by Y T0 = 0 and, for θ > 0,

dY Tθ
dθ

= T 1/4u(θ, Y Tθ ).

Note that this definition makes sense, as can be shown exactly with the same arguments
as in the proof of Proposition 2.1.

Let us first show that (
Z̃Tθ , X̃

T
θ

)
θ≥0

=
(
Zθ, Y

T
θ

)
θ≥0

in law. (6.1)

For this, it is convenient to explicitly write the couple of processes as a function of the
environment. Given an environment u, let (uT (t, x))t≥0,x∈R = (T 1/4u(Tt, T 1/2x))t≥0,x∈R
and let us show that (

Z̃Tθ , X̃
T
θ

)
(u) =

(
Zθ, Y

T
θ

)
(uT )

for any θ ≥ 0. As u and uT have the same law by the scaling relation (3.1), this will
imply (6.1). The relation Z̃Tθ (u) = Zθ(uT ) has already been shown in the proof of item
4 in Proposition 2.4. To show X̃T

θ (u) = Y Tθ (uT ), we notice that X̃T
0 = 0 and that for all

θ > 0,
dX̃T

θ

dθ
= T 1/4uT (θ, X̃T

θ )

and the claim follows from the fact that these relations characterize the process
(Y Tθ )θ≥0(uT ).

To prove Theorem 2.6, it is thus enough to prove that, almost surely, Y T con-
verges to Z in the M1 topology on compact sets as T → ∞. Indeed, this implies
that Y T − Z converges to 0 in probability as T → ∞ and, thanks to (6.1), this implies
that (T−1/2(XθT − ZθT ))θ≥0 converges to 0 in probability as T → ∞. For notational
convenience, we will show that (Y Tt )t∈[0,1] converges to (Zt)t∈[0,1], but our proof still
holds for [0, 1] replaced by any compact interval.

We use characterization (v) of [32] for the convergence in theM1 topology. We first
introduce some notations needed to state it. Given a, b, c ∈ R, let

‖a− [b, c]‖ = min
τ∈[0,1]

|a− (τb+ (1− τ)c)|.

For δ > 0 and f, g ∈ D([0, 1],R), let

v(f, g, t, δ) = sup{|f(t1)− g(t2)|, 0 ∨ (t− δ) ≤ t1, t2 ≤ 1 ∧ (t+ δ)}

and

ws(f, t, δ) = sup{‖f(t2)− [f(t1), f(t3)]‖, 0 ∨ (t− δ) ≤ t1 < t2 < t3 ≤ 1 ∧ (t+ δ)}.

The characterization is the following: fT → f converges to f as T → ∞ for the M1

topology on D([0, 1]) if and only if

1. fT (1) converges to f(1).

2. For all 0 ≤ t ≤ 1 that is not a discontinuity point of f

lim
δ→0

lim
T→+∞

v(fT , f, t, δ) = 0.

3. For all 0 ≤ t ≤ 1 that is a discontinuity point of f

lim
δ→0

lim
T→+∞

ws(f
T , t, δ) = 0.
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The first point is actually a consequence of the second one as, for all t ≥ 0 (and in
particular for t = 1), almost surely, Z is continuous at t. Indeed we first observe, from
item 4 in Proposition 2.4, that s→ P(Zs− 6= Zs) is constant on R∗+. Then∫

P(Zs− 6= Zs) ds = E

(∫
1Zs− 6=Zs ds

)
= 0,

as almost surely the discontinuity points of Z are countable. This implies that P(Zs− 6=
Zs) = 0 for all s > 0.

We start with the proof of the second item in the above characterization:

Lemma 6.1. Almost surely, for all t0 ∈ [0, 1] such that Z is continuous in t0,

lim
δ→0

lim
T→+∞

v(Y T , Z, t0, δ) = 0.

Proof. We first consider the case t0 = 0. Almost surely, for all T > 0 and all 0 < t ≤ 1

small enough,

|Y Tt | ≤
∑

n≥b− ln2 tc

2`n(0, α0) =
∑

n≥b− ln2 tc

2(α0 + n2)
√

2−n.

This implies that, for any ε > 0, t > 0 small enough and for any T > 0,

|Y Tt | ≤ t
1
2−ε. (6.2)

As Z is right continuous at 0 with limit 0 this gives the result in the case t0 = 0.
We consider 0 < t0 ≤ 1 so that Z is continuous at t0 and fix some ε > 0. To fix ideas,

and as the other case is analogous, let us assume that Zt0 = Lt0 . Using Proposition 2.4,
there exists δ > 0 so that Z is continuous on [t0 − 2δ, t0 + δ] so that, if δ > 0 has been
chosen small enough,

v(Z,Z, t0, δ) < ε,

and we only have to show that for δ > 0 small enough and all T larger than some T0(δ),

sup{|Zs − Y Ts |, t0 − δ ≤ s ≤ t0 + δ} < ε. (6.3)

We use the notations ti = t0 + iδ, i ∈ {−2,−1, 0, 1}. We stress that for all t ∈ [t−2, t1],
Zt = r(t1,Lt1 )(t) as, for x ∈ Zs

t1 , r(t1,x) is the only continuous function so that r(t1,x)(t1) = x

and u(s, r(t1,x)(s)) = 0 for 0 < s ≤ t1. Using Lemma 2.4, it is also possible to choose δ > 0

small enough so that the only neutral zeros of u in the domain

{(s, x) ∈ R+ ×R : t−2 ≤ s ≤ t1, x ∈ [r(t1,Lt1 )(s), r(t1,Rt1 )(s)]} (6.4)

lies in Zt0 . Using Remark 2.5, this choice for δ implies that R is continuous on [t−2, t−1]

and, with the same argument as above, that for all t ∈ [t−2, t−1], Rt = r(t−1,Rt−1
)(t). Note

however that it is not necessarily the case that Rt = r(t1,Rt1 )(t), as R could jump at time
t0.

Before going to the proof of (6.3) itself, let us first prove the following intermediate
result: For all t > 0 so that Zt = Lt, and if ε > 0 has been chosen small enough, there
exists T0 > 0 so that for all T ≥ T0:

r(t,Lt)(s)− ε ≤ Y Ts ≤ r(t,Rt)(s)− ε for all s ∈ [0, t]. (6.5)

By the definition of L and R in Proposition 2.4, it holds that r(t,Lt)(0) < 0 and
r(t,Rt)(0) > 0. Since the functions r(t,Lt) and r(t,Rt) are continuous, and since Y T satisfies
the bound (6.2), we conclude that there exists τ ∈]0, t] so that (6.5) holds for s ∈ [0, τ ].
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Let us now assume that s ∈ [τ, t] and show the lower bound on Y T in (6.5) (the proof
of the upper bound is analogous). By Lemma 2.3, the function s → ∂xu(s, r(t,Lt)(s)) is
continuous and strictly negative on [τ, t] so that by compactness, there exists c > 0 such
that

∂xu(s, r(t,Lt)(s)) ≤ −c for all s ∈ [τ, t].

For s ∈ [τ, t], let
r̃(t,Lt)(s) = r(t,Lt)(s)− ε.

A second order expansion yields

u(s, r̃(t,Lt)(s)) = −ε∂xu(s, r(t,Lt)(s)) +
ε2

2
∂xxu(s, yε(s))

with yε(s) ∈ [r̃(t,Lt)(t), r(t,Lt)(s)]. By continuity of ∂xxu and compactness, there exists
K ≥ 0 such that

u(s, r̃(t,Lt)(s)) ≥ cε−Kε2 ≥ cε

2
(6.6)

for all s ∈ [τ, t], provided ε > 0 was taken small enough. Suppose now that the lower
bound in (6.5) is not satisfied so that there exists s ∈ [τ, t] such that Ys = r̃(t,Lt)(s) and
∂sYs ≤ ∂sr̃(t,Lt)(s) = ∂sr(t,Lt)(s) i.e. explicitly

T
1
4u(s, r̃(t,Lt)(s)) ≤ −

∂xxu(r(t,Lt)(s))

∂xu(r(t,Lt)(s))
. (6.7)

Since the right hand side is uniformly bounded in s ∈ [τ, t], the lower bound (6.6) leads
to a contradiction for T large enough. This concludes the proof of (6.5).

Let us now derive the result (6.3) from (6.5). We choose T0 large enough so that (6.5)
holds both for time t1 and t−2. It remains to show that for T large enough, Y Tt ≤
r(t1,Lt1 )(t) + ε for all t ∈ [t−1, t1]. For this, we first show that there exists t? ∈ [t−2, t−1]

such that Y Tt? ≤ r(t1,Lt1 )(t?) + ε. By the definition of L and R, and since the setW defined
in (5.8) has probability 0, for all t > 0, it holds that ]Lt ∩Rt[∩(Zs

t ∪ Zu
t ) = ∅. Hence, the

choice of δ made before (6.4) implies that almost surely,

{(s, x) ∈ R+ ×R : t−2 ≤ s ≤ t−1, x ∈]Ls, Rs[, u(s, x) = 0} = ∅.

As Zt = Lt for all t ∈ [t−2, t−1], we obtain that u(t, x) < 0 for all (t, x) ∈
⋃
t−2≤s≤t−1

]Ls, Rs[

and thus, by compactness, there exists c > 0 such that u(t, x) < −c for all (t, x) such that
Lt + ε ≤ x ≤ Rt − ε with t ∈ [t0 − 2δ, t0 − δ]. Assume by contradiction that Yt > Lt + ε for
all t ∈ [t−2, t−1]. Then, since we know that Yt ≤ Rt − ε, we conclude that

Yt ≤ Yt−2 − cT 1/4(t− t−2).

For T large enough, this yields a contradiction. Second, once we know that Yt? ≤
r(t1,Lt1 )(t?) + ε, we may proceed as in the proof of (6.5) and show that, for T large
enough, Yt ≤ r(t1,Lt)(t) + ε for all t ∈ [t?, t1].

Next, we turn to the proof of the third item in the above characterization:

Lemma 6.2. Almost surely, for all t0 ∈ [0, 1] such that t0 is a jump point of Z,

lim
δ→0

lim
T→+∞

ws(Y
T , t0, δ) = 0.

Proof. We first describe how the environment looks like around a fixed jump point
t0 ∈]0, 1[ of Z. In the following we will always suppose that δ > 0 is small enough so that
t0 is the only jump of Z on [t0 − δ, t0 + δ]. As the three other cases are similar, we may

EJP 28 (2023), paper 10.
Page 26/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP896
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Evolution of a passive particle in a one-dimensional diffusive environment

also assume that Zs = Ls for all t0 − δ ≤ s < t0 and Zs = Rs for all t0 ≤ s ≤ t0 + δ. We
also consider δ small enough so that R is continuous on [t0, t0 + δ]. Using Remark 2.5,
this implies that

{(s, x) ∈ R+ ×R : t0 < s ≤ t0 + δ, x ∈]Ls, Rs[;u(s, x) = 0} = ∅. (6.8)

We first focus on the behaviour of the environment just before the jump and prove that,
for all ε > 0 (small enough), there exists δ > 0 so that for all t0 − δ ≤ t < t0,

u(t, Zt0− − ε) > 0,

u(t, Zt0−) < 0,

Zt0−δ ∈]Zt0− − ε, Zt0−[.

(6.9)

We next describe the environment just after the jump at time t0: For all ε > 0 (small
enough) there exists δ > 0 so that

Lt < Zt0− − ε for all t0 ≤ t ≤ t0 + δ,

sup{|Zs − Zt|, t0 ≤ s, t ≤ t0 + δ} ≤ ε.
(6.10)

We delay the proof of these two points and first assume that (6.9) and (6.10) hold for
some ε > 0 and δ > 0. We prove that it implies that, for T large enough,

Zt0− − ε ≤ Y Tt ≤ Zt0− for all t0 − δ ≤ t ≤ t0,
Y T is increasing on [t0, h] where h = inf{t ≥ t0, Y Tt ≥ Zt − ε} ∧ (t0 + δ),

Y Tt ∈ [Zt − ε, Zt + ε] for all h < t ≤ t0 + δ.

(6.11)

R (space)

t0

t0 − δ

t0 + δ

R+ (time)

Zt−0
Zt−0
− ε

+ −

(Lt)t0≤t≤t0+δ
h

(Yt)t≥0

(Zt + ε)t0≤t≤t0+δ(Zt − ε)t0≤t≤t0+δ

Figure 3: The environment and the process Y as in Equations (6.9),(6.10) and (6.11).
The thick line represents the process Z and the red one the process Y , both of them
near the time t = t0.

Indeed, for the first point of (6.11), as t0−δ is not a jump point of Z and Zt0−δ ∈]Zt0−−
ε, Zt0−[, Lemma 6.1 ensures that for T large enough Y Tt0−δ lies also in ]Zt0− − ε, Zt0−[

and both barriers defined in (6.9) ensures that Y T stays in this interval till t0. For
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the second point of (6.11), from (6.8) and (6.10) we deduce that u > 0 in the domain
{(t, x), t0 ≤ t ≤ t0 + δ;Zt0−− ε ≤ x ≤ Rt− ε} and as Y Tt0 ∈]Zt0−− ε, Zt0−[ this implies that
Y T is increasing on [t0, h]. The proof of the last point in (6.11) follows with the argument
that has been used to prove (6.5).

One can check that conditions in (6.11) together with the second point in (6.10)
implies that ws(Y T , t0, δ) < 2ε and that concludes the proof. It remains to prove (6.9)
and (6.10).

For (6.10), as Lt0 < Zt0− − ε (if ε is small enough), continuity of L ensures that is still
true for t ∈ [t0, t0 + δ] if δ is taken small enough, and this yields the first point of (6.10).
The second one follows from uniform continuity.

We turn to (6.9). As Zt0− ∈ Zn
t , arguing as in the proof of the second item of

Lemma 5.1, there exists a function S defined in a neighborhood of Zt−0
so that, in a

neighborhood B of (t0, Zt−0
), the zeros of u coincide with the graph of S. Moreover S

satisfies

S(x)− t0 = −1

2
(x− Zt0−)2 +O(|x− Zt0−|3) (6.12)

as x → Zt0−. As we assumed that Zs = Ls for all t0 − δ ≤ s < t0 and Zs = Rs for all
t0 ≤ s ≤ t0 + δ, it holds that, for all (t, x) ∈ B, u(t, x) > 0 if t > S(x) and has opposite
sign if t < S(x). Using (6.12), we deduce that for ε > 0 small enough there exists δ > 0

so that for all t0 − δ ≤ t ≤ t0, u(t, Zt0− − ε) > 0 and u(t, Zt0−) < 0. Moreover for δ > 0

small enough

{(t, Zt) : t0 − δ ≤ t < t0} = {(S(x), x) : Zt0−δ ≤ x < Zt0−},

so that from the continuity of Z and (6.12) we obtain that for δ > 0 small enough
Zt0−δ ∈]Zt0− − ε, Zt0−[.

Supplementary material

We provide here the needed details to understand the implications of two earlier
works, [21] and [23], for the understanding of the processX evolving in a rough potential,
as described in the introduction, see (1.3) and (1.4). We can try to construct a process
X solving (1.4) in three steps: First, we replace the velocity field u by a regularized
field u`, varying smoothly in space on some length scale ` > 0; second, we define the
associated process X`; and third, we obtain X as the limit of the processes X` when the
regularization is removed, i.e. for `→ 0. Concretely, for ` > 0, let

u`(t, ·) = P`2 ? u(t, ·), (6.13)

where the heat kernel P is defined in (2.2) and where u = −∂xV with V solving (1.3). Let
then X` be the solution of the Cauchy problem (1.4) with u` instead of u, i.e. X`

0 = 0 and

∂tX
`
t = u`(t,X

`
t ). (6.14)

Let us first consider the analysis performed in [21]: We recall the main results found
there, and we explain the connection with the above problem. Let λ > 0. In [21], the
process Sλ satisfying Sλ0 = 0 and solving

∂tS
λ
t = λu1(t, Sλt ), t ≥ 0, (6.15)

is studied numerically for various values of λ > 0. The upshot is that, in the limit λ→ 0,
and as far as numerical simulations can be reliably performed,

E((Sλt )2) ∼ λ2t3/2 for 0 ≤ t ≤ λ−4 and E((Sλt )2) ∼ t for t ≥ λ−4, (6.16)
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up to possible logarithmic corrections for t ≥ λ−4.
For ` > 0, we can now define a process X̃` that will have the same law as X`

solving (6.14): For all t ≥ 0,

X̃`
t = `S`

1/2

t/`2 . (6.17)

Indeed, since S` solves (6.15), the process X̃` solves

∂tX̃
`
t = `−1/2u1(`−2t, `−1X̃`

t ). (6.18)

With the regularization (6.13), the scaling relation(
u1(t, x)

)
t≥0,x∈R =

(
`1/2u`(`

2t, `x)
)
t≥0,x∈R (6.19)

holds in law for all ` > 0, as can be checked by computing the covariance of both fields.
Therefore, we conclude from (6.18) that X̃` = X` in law. At this point, using (6.17) and
the equality X̃` = X` in law, we may reformulate (6.16) as:

E((X`
t )

2) ∼ t3/2 for 0 ≤ t ≤ 1 and E((X`
t )

2) ∼ t for t ≥ 1.

Since these estimates do not depend on `, they make the case for the existence of a limit
process X solving (1.4).

Let us next move to the result in [23] quoted in the introduction. We have already
described in the main text the convergence of the processes (Wn)n≥1 studied in [23].
Here, to make our point, let us define a sequence of processes Un = (Unt )0≤t≤T that can
reasonably be expected to behave as the processes Wn, and for which the connection
with (1.4) can be made very easily through a scaling argument. For n ∈ N∗, let Un be a
real valued process satisfying Un0 = 0 and solving

∂tU
n
t = nu1(n2t, Unt ) for 0 ≤ t ≤ T. (6.20)

For large values of t, and in the large n limit, we may expect that Un and Wn behave in a
similar way. In particular, we expect the scaling E(Un(t)2) ∼ nt3/2 to hold in this regime.

Again, for ` > 0, let us define a process X̂` = (X̂`
t )0≤t≤`T that will turn out to have

the same law as X` for 0 ≤ t ≤ `T :

X̂`
t = `U `

−1/2

t/` ,

where we have assumed that ` is such that `−1/2 is an integer. Indeed, from (6.20), we
deduce that X̂`

t solves

∂tX̂
`
t = `−1/2u1(`−2t, `−1X̃`

t ) for 0 ≤ t ≤ `T

and, by the scaling relation (6.19), we deduce that X` = X̂` in law, for t ∈ [0, `T ]. We
observe also that E((X̃`(t))2) ∼ t3/2 on this time interval. This brings thus some support
to the validity of (1.6), but the time interval [0, `T ] shrinks to 0 as `→∞, and X̂` should
thus be controlled on longer time scales to reach a firm conclusion.
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