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Abstract

For Markov processes with absorption, we provide general criteria ensuring the
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1 Introduction

Let (X¢,t € I) be a Markov process in E U {0} where FE is a measurable space and
d ¢ E, with set of time indices I which might be R or +Z, for some k € N :={1,2,...},
where Z, :={0,1,...}. For all z € E'U {0}, we denote as usual by P, the law of X given
Xo = z and for any probability measure ;. on E'U {0}, we define P, = fEu{a} P, u(dx).
We also denote by IE, and IE,, the associated expectations. We assume that 0 is absorbing,
which means that X; = 0 for all t > 75, P,-almost surely, where

T — 1nf{t S I, Xt = 5)}

Our goal is to study the existence of quasi-limiting distributions on E for the process X,
i.e. probability measures v such that
tGI,litg—&-oo P,(X: e A|t<Ty) =v(A)

for some probability measure ; on F and for all A C E measurable. Such a measure v is
a quasi-stationary distribution for X, i.e. a probability measure such that P, (X; € - | ¢t <
To) = v(-) for all t € I. We refer the reader to [34, 83, 104] for general introductions to
quasi-stationary distributions. In particular, it is well-known that there exists a constant
Ao > 0, called the decay parameter of the quasi-stationary distribution v, such that
P, (t < 79) = e M forall t € I (for discrete time processes, i.e. [ = Z, the term refers
to 0y = 6_>‘0).

More precisely, our first goal is to give general criteria involving Lyapunov-type
functions ¢1 > 1 and ¢2 < 1 ensuring the existence of a quasi-stationary distribution
vgosp such that

p(p1)
p(p2)’
for some constants C' € (0,400) and « € (0, 1) and for all probability measure y on FE
such that (1) < o0 and p(ps) > 0, where () := [, ¢(z) p(dx) and, for all probability
measures 1 and po,

P (Xe € - [t < T0) = vQspllpy(,,) < Cd vt e, (1.1)

[ = pallrv(py) = sup [ (f) = p2(f)]-
f:E—TR measurable s.t. | f|<¢1
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When ¢; is bounded, we recover convergence for the usual total variation distance
| - [|7v(1) since the norms | - [|7v(1) and || - ||7v(,,) are equivalent. The measure vgsp
in (1.1) is the only quasi-stationary distribution v such that v(¢1) < 400 and v(p2) > 0.

Our second goal is to show how our criteria can be applied to a wide range of Markov
processes, including several classes of processes for which even the existence of a
quasi-stationary distribution was not known, such as diffusions in irregular domains or
perturbed dynamical systems in unbounded domains.

General criteria ensuring that the convergence in (1.1) holds uniformly with respect
to the initial distribution ;» have been studied in [10, 20]. In this case, vgsp is the quasi-
limiting distribution of any initial distributions. However, these results do not apply to
processes admitting several quasi-stationary distributions, which is known to happen
in a variety of specific cases, even for processes irreducible in E (including branching
processes [95, 2, 73, 76], one-dimensional birth and death processes [99, 47, 46, 108]
and one-dimensional diffusion processes [75, 81]). In addition, as for non-absorbed
processes, uniform convergence with respect to the initial distribution only happens for
processes that come back quickly in compact sets [85, 20] or are killed fast [106]. The
present paper provides general criteria generalizing those of [20] to cases of non-uniform
convergence.

Given a quasi-stationary distribution v, its domain of attraction is defined as the set
of probability measures ;1 on E such that P, (X; € - | t < 7p) converges in total variation
norm to v. In the case where the domain of attraction of v contains all Dirac masses, v is
called the Yaglom limit, or the minimal quasi-stationary distribution. In all the models
admitting several quasi-stationary distributions cited above, it has been proved that the
minimal quasi-stationary distribution exists. The convergence (1.1) implies in addition
that the domain of attraction of the Yaglom limit vgsp actually contains all measures p
such that u(p1) < oo and p(p2) > 0.

We provide in Section 2 criteria ensuring (1.1) for all ¢ € Z_... We also obtain several
consequences, including a large subset of the domain of attraction of vgsp and the
geometric uniform convergence of x — e*"P,(n < 75)/¢1(z) as n — +oo to n/¢1, where
7 is a function which satisfies E,(17(X,,)1,,<.,) = e "n(z) foralln € Z, and » € E. We
also obtain the existence of the process (X,,,n € Z.) conditioned to never be absorbed
(the so-called Q-process) and its geometric ergodicity. Links between ergodicity of the
Q-processes and quasi-limiting properties were already studied in various context (see
for instance [1, 53, 86, 98, 49, 89]). All these results are proved in Sections 9 and 10.

The criterion developed in Section 2 assumes that (X,,n € Z.) is aperiodic but
of course applies to 1-periodic processes (X;,t € I). Under additional aperiodicity
assumptions, we show in Section 3 how the previous results extend to general time
indices t € I and provide practical versions of our criteria for continuous-time processes.
We also provide alternative conditions allowing to check our criteria, that are easier to
check in some cases. We also show that the known criteria for uniform convergence
in (1.1) obtained in [20] can be recovered using this new approach. These results are
proved in Section 11.

These results allow us to put in a unified framework a large body of works on quasi-
stationary distributions as illustrated by the rest of the paper, which is devoted to the
application of our abstract criteria. We start in Section 4 with diffusion processes in R?,
d > 1, absorbed at the boundary of a domain D. Our analysis provides for example the
following general result.

Theorem 1.1. Assume that E = D is a bounded connected open subset of R? and that
(Xt,t € Ry) is solution to

dXt = b(Xt)dt + O'(Xt)dBt

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
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until its first exit time 15 from D, where B is a r-dimensional Brownian motion and
b:R?Y = R? and o : R — R%*" are Hélder functions, such that o is uniformly elliptic.
Then, the process X has a unique quasi-stationary distribution vggsp which satisfies

C
IPL(X: €]t <79) —vgspllyy < — af, Vt € [0, +00),

w(n)

for some constants C' < +oo and « € (0,1), where the function ) is C*(D) and satisfies

d a'f] 1 d r (927]
> bi(x)a—%(x) +3 > onl@)oj(x) (z) = =Aon(z), YzeD

;02 ;
i=1 i,j=1k=1 0z;0z;

and
n(x) = lim e 'P,(t < 7p), V€ D,

t——+o0
where the convergence is uniform in D.

We emphasize that one of the main contributions of this result with respect to the
existing literature (see for example [90, 53, 15, 70, 43, 17, 26]) is that it applies to any
bounded domain D without any regularity assumption, with possible applications to
recent Monte-Carlo methods (see [92, 109]). Theorem 1.1 is in fact obtained in Section 4
as a particular case of a criterion for unbounded domains and coefficients b and o only
locally Holder and locally uniformly elliptic in D. We also consider the case of diffusions
with killing in Section 4.4. All these results are proved in Section 12.

Absorbed one-dimensional diffusions with or without killing have received a lot
of attention (see for instance [78, 33, 75, 81, 96, 14, 74, 71, 61, 87, 23, 22]). We
consider these models in Section 4.5. Our main contributions with respect to the
literature are the characterization of a larger subset of the domain of attraction of
the minimal quasi-stationary distribution, weaker regularity of the drift and diffusion
coefficients and explicit general bounds on ¢; and Ay allowing practical verification of
our assumptions. Our criteria also provide alternative approaches to other classes of
processes in continuous time and space, as those studied for example in [32, 6] using a
spectral approach based on Tychonov’s fixed point theorem, in [62, 49, 56, 13, 7] based
on compactness or quasi-compactness properties, and in [80] for branching Markov
processes using Lyapunov conditions on the conditioned semigroup.

The case of continuous-time Markov processes in discrete state spaces is considered
in Section 5 with application to multitype birth and death processes absorbed at the
exit of any connected F C Zi (in the sense of the nearest neighbors structure of Zi).
Note that the quasi-stationary behavior of finite state space processes [39] and of one-
dimensional birth and death processes [67, 54, 16, 68, 99, 100] has been extensively
studied using spectral methods that do not generalize easily to the multi-dimensional
countable state-space setting. The quasi-stationary behavior of multi-dimensional birth
and death processes was studied in the case of uniform convergence in (1.1) in [21, 26,
30, 311.

All the previous examples assumed irreducibility of X in E. In Section 6, we show that
our criteria also apply to reducible cases, as those considered in [88] (for Galton-Watson
processes), [55] (for discrete processes), [19] (for Feller diffusions) and [18, 104] (in the
finite case). We first give a general criterion in Subsection 6.1 and we study in details an
example with a countable infinity of communication classes in Subsection 6.2.

In Section 7, we consider general models in discrete time and continuous space,
first extending the criteria of [10, 17] in order to cover the case of Euler schemes for
stochastic differential equations absorbed at the boundary of a domain (as defined
in [79, 51]) and penalized semigroups (as in [41, 42]; note that all our results naturally

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
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extend to penalized homogeneous semigroups, provided the penalization rate is bounded
from above, see [24, 25]). We then study in details the case of perturbed dynamical
systems, as those considered for example in [9, 5, 62], where the quasi-stationary
behavior was studied using the criterion of [10]. As an illustration of our method, let us
mention the following original result.

Theorem 1.2. Let £ = D be a measurable set of R? with positive Lebesgue measure
and let 0 ¢ D. Assume that

v Jf(X) + 6 i X, # 0 and f(X,) + & €D,
e 0 otherwise,

where f : R? — R? is a locally bounded measurable function such that

x| = [f(2)] ——— +o0
|z]|—+o0
and (&,)nen is an i.i.d. non-degenerate Gaussian sequence in RY. Then (1.1) is satisfied
for 1 (z) = e*! and a positive measurable function y, on D.

Finally, we study in Section 8 the case of processes in discrete time and discrete space.
This is the most studied situation in the literature since it covers both the Galton-Watson
processes [112, 59, 64, 2] and the general discrete case [38, 95, 47, 48, 46, 45, 55, 82].
We first show in Subsection 8.1 that our results allow to recover the general criterion
of [45], based on the theory of R-positive matrices. We then consider general population
processes dominated by population-dependent multi-type Galton-Watson processes in
Subsection 8.2. The case of population-dependent Galton-Watson processes with a single
type was studied in [55] using quasi-compactness methods. We also obtain as a corollary
several results on subcritical multi-type Galton-Watson processes. We do not recover the
optimal L log I assumption on the offspring distribution [64, 60] for the existence of a
minimal quasi-stationary distribution vgsp having finite first moment, but we obtain a
stronger form of convergence in (1.1), a larger subset of its domain of attraction and
stronger moments properties on vggsp.

2 Main results

Let (X¢,t € I) be a Markov process in E U {0} where FE is a measurable space and
0 ¢ E, with set of time indices I which might be Z, = {0,1,...}, Ry or +Z, for some
ke IN=1{1,2,...}. We define the absorption time 75 as

7o =inf{t € I, X; = 0}.

In this section, we study the sub-Markovian transition semigroup of X considered at
integer times, (P, ) ez, , defined as

P.f(z) =E, (f(Xn)ln<r,), Yn € Zy,

for all bounded or nonnegative measurable function f on F and all z € E. We also define
as usual the left-action of P, on measures as

PP f = By (F(Xo)Lnery) = /E P, f(z) p(de),

for all probability measure ;. on E. We make the following assumption.

Assumption (E). There exist a positive integer n, positive real constants 6, 05, c1, cs, c3,
two functions ¢, 2 : E — Ry and a probability measure v on a measurable subset
K C E such that

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
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(E1) (Local Dobrushin coefficient). Vx € K,
P,(Xp, €-) > av(-NK).
(E2) (Global Lyapunov criterion). We have 6, < 65 and
inf ¢1(z) > 1, sup ¢1(z) < 0
zeE zeK
inf SDQ(x) >0, sup QDQ(J") <1,
reK r€E
Pipi(z) < brp1(x) + colg(x), Ve € E
Prpa(x) 2 O2¢p2(x), Vo € E.

(E3) (Local Harnack inequality). We have

sup sup, e e Py(n < 79) <y
nez, nfyer Py(n <7) ~

(E4) (Aperiodicity). For all 2 € K, there exists n4(z) such that, for all n > ny(x),
P.(X, € K)>0.

Note that it follows from (E2) that 65 < 1 and thus 6, < 1. We also emphasize that
our assumptions neither require that 75 < 400 P,-a.s., nor that P,(n < 79) > 0 for all
t > 0 and x € E. Several examples of Markov processes satisfying Assumption (E) are
provided in Sections 4 to 8.

Assumption (E) is an extension of the ergodicity criteria developed in [84]. Indeed, if
we assume that 79 = oo P -almost surely for all z € F, then Condition (E3) becomes void
and one can take ¢, =1 in (E2), so that 3 = 6y = 1. We recognize in (E1) the standard
“small set” assumption of [84], in (E2) for ¢, a standard Foster-Lyapunov criterion and
in (E4) an aperiodicity condition. As such, it is well-known that alternative formulations
of these conditions can be given. In the general case, we provide in Section 3.1 conditions
ensuring the existence of Lyapunov functions satisfying (E2) in terms of exponential
moment of hitting times for ¢; and exponential decay of the probability to be in K for
(2, and conditions ensuring (E1) and (E3) based on comparisons between transition
probabilities. Similarly as for the ergodicity criteria developed in [84], we extend our
criterion to the continuous-time setting in Section 3.2.

In the rest of this section, we state the main general consequences of Assumption (E).
We start with the exponential contraction in total variation of the conditional marginal
distributions of the process given non-absorption. Its proof is given in Section 9.

Theorem 2.1. Assume that Condition (E) holds true. Then there exist a constant C > 0,
a constant a € (0,1), a probability measure vgsp on E such that vgsp(K) > 0 and such
that

<can M)y s 2.1)

H 1Py
—VQsD <
TV (¢1) 11(p2)

MPn]lE

for all probability measure ;1 on E such that u(p1) < oo and u(p2) > 0. In addition, vgsp
is the unique quasi-stationary distribution satisfying vgsp(y2) > 0 and vgsp(p1) < oc.

Remark 2.2. For all p > 1, Holder’s inequality entails
Pl(@}/p) < (B1p1 + call )P < ei/p%’}/p + Cé/p]llo

so that (@}/p, 2) satisfies Assumption (E) for all p < log 6,/ log 62. Therefore, the expo-

nential convergence (2.1) actually holds true for the norm || - and measures j

such that u(api/p) < +oo0 for some p < log 6,/ log 6.

lrv ooy
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In the following result, we show the existence of an eigenfunction n of P, for the
eigenvalue 0y, where 0y € (0, 1] is such that

PLosp(n < 79) =0y, YnelN.

We recall that the existence of the decay parameter 6 is a classical general result for
quasi-stationary distributions [83, 34]. The proof of the following result is initiated in
Section 10.1 and concluded in Section 10.3. To state this result, we define for all positive
function ¢ on E the space L>°(¢) as the set of measurable real functions f on E such
that || f|| Lo () := sup,ep f(2)/1(x) < co. Note that (L>°(¢)), || - || L(y)) is @ Banach space.

Theorem 2.3. Assume that Condition (E) holds true. Then there exists a function
n: E — R4 such that

_ . ]P:E(n < TB) _ . —n

where the convergence is geometric in L>(y¢1). In addition, we have inf,cx n(y) > 0,
vosp(n) =1,1m€ L™ (<p11°g(1/90)/10g‘(1/91))’

P177=90’l7 and 0y > 05 > 0.

Remark 2.4. In general, there is no simple relation between ¢, and 7, in particular ¢, is
not necessarily an element of L°°(n). However, it is true that, for all x € E, Pyys(z) > 0
for some k > 0 if and only if (x) > 0 (see Corollary 2.10 below).

Remark 2.5. Note that, when 7 is bounded, the last result implies that one can actually
take po = 1n/||n]| in Condition (E2). Results with unbounded 2 or 1/¢; can also be
obtained by taking the ¢,-transform of (P,),cz, (see [4, 25]).

We consider now the @Q-process and its ergodicity properties under Condition (E). In
the next result, proved in Section 10.2, Q = E%+ is the canonical state space of Markov
chains on E and (F,)nez . is the associated canonical filtration. We emphasize that the
constant a may differ from the one in Theorem 2.1. In the following result, we define

E':={z € E, n(z)>0}.
Theorem 2.6. Condition (E) implies the following properties.

(i) Existence of the Q-process. There exists a family (Q,).cp of probability measures
on () defined by
lim P,(A|n <79 =Qs(A4)

n—-+oo
for all x € E’, for all F,,-measurable set A and for all m > 0. The process
(, (Fu)nezs» (Xn)nez, , (Qu)zcrr) is an E’'-valued homogeneous Markov chain.
(ii) Semigroup. The semigroup of the Markov process X under (Q,).cr’ is given for all
bounded measurable function ¢ on E’ and n > 0 by

—n

0
()

Po(ne)(z). (2.3)

(iii) Exponential ergodicity. The probability measure 3 on E’ defined by

B(dz) = n(x)vgsp(dr).

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
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is the unique invariant distribution of the Markov process X under (Q.).cg -
Moreover, there exist constants C' > 0 and « € (0,1) such that, for all initial
distributions p on E’ such that u(y1/n) < oo and

|uP =), oy SCO i /m), ¥ >0, (2.4)

where Q, = [}, Q, p(dz). In addition, for all initial distributions ;. on E’,

Huﬁn—ﬁH — 0 (2.5)

TV n—oo

We conclude this section with corollaries of the last theorem. The following result is
proved in Section 10.3.

Corollary 2.7. Assume that Condition (E) holds true. Then there exist constants C' > (
and « € (0,1) such that, for all probability measure u on E such that u(p1) < 400,

16057 1P — p()v@sp||py(,,) < Ca”uler). (2.6)

Remark 2.8. The proof of Theorem 2.6 makes use of [57, 58], which allows to derive
explicit expressions for the constants C' and « (we refer the interested reader to Re-
mark 10.1). In particular, using these estimates in the proof of Corollary 2.7 would also
provide explicit constants in (2.6).

Remark 2.9. The formulation (2.6) for the convergence of the semigroup is natural in
this setting, since a property of equivalence between (2.6) and Condition (E) is proved
in [4, 25].

The last corollary has consequences on the attraction domain of vgsp.

Corollary 2.10. Assume that Condition (E) holds true. Then
E' ={zx € E:3k >0, Pyps(z) >0}

and the domain of attraction of vgsp for the total variation norm contains all probability
measures on E such that u(E’) > 0 and u(@i/p) < 400 for some p < log6,/logf,. If in
addition ¢, is bounded, then the domain of attraction of vgsp is the set of probability
measures on E such that (E’) > 0 and vgsp is the unique quasi-stationnary distribution
giving positive mass to E'.

Convergence estimates can also be obtained for initial distributions on E’ satisfying
w(n) < 400 but not necessarily ;1(p1) < +o00. The following result is proved in 10.5.

Corollary 2.11. Assume that Condition (E) holds true. Then, for all probability measures
w on E' such that p(n) < +oo,

07" ool @)
In particular, if 7 is positive on E, then vggp is the unique quasi-stationary distribution
of X such that vgsp(n) < +oc. If in addition 7 is lower bounded away from 0 on E, then
for all probability measures p on E such that u(n) < +oo, we have

||IP#(X7L S | n < Ta) — I/QSD”TV(n) —— 0. (2.8)

n—-+oo

In particular, the domain of attraction of vgsp contains all probability measures ;1 on E
such that u(n) < 4oc.
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3 Other formulations and particular cases of Assumption (E)

In this section, we provide general comments on Assumption (E). Alternative formu-
lations of our assumptions and simple criteria are gathered in Subsection 3.1. Subsec-
tion 3.2 focuses on criteria adapted to continuous time processes and we consider the
case of uniform convergence in Theorem 2.1 in Subsection 3.3.

3.1 General comments on the assumptions

We propose here alternative formulations of Condition (E2) and criteria ensuring (E1)
and (E3) when (E2) and (E4) are satisfied, that may be easier to check in some practical
situations. In particular, we make strong use of these results in Sections 7 and 8.

3.1.1 Construction of Lyapunov functions satisfying (E2)

In order to prove the existence of functions ¢; and ¢, in Condition (E2), one may use
probabilistic properties of the Markov process X, as stated in the following lemmas,
proved in Sections 11.1 and 11.2. The first lemma shows a way to construct ¢,.

Lemma 3.1. Let K be a measurable subset of E. If there exists 0> > 0 such that

inf 05" P, (X, € K) — +oo,
reK n—+oo

then the function s : E — [0,1] defined by o () = 32:27: i;h 05" P, (X}, € K), for any
2
¢ is such that 955 infrex P.(Xy € K) > 1, verifies inf i w2 > 0 and Pypa(x) > 02 pa(x).

Moreover, (E4) is satisfied.

The second lemma shows how ¢ can be constructed. This is a well-known result in
the case without absorption [84], which can provide easier ways to check (E2) in some
situations. We define

Tx =inf{n € Z,, X, € K}. (3.1)

Lemma 3.2. Let K be a measurable subset of E. If there exists a constant #; > 0 such
that

. (91_TKAT"’) < 400 Vz € E and C := sg}g E, (IEX1 (91_TK/\T'9> 111<T8> < 400,
y

then the function ¢, : E — [1,+00) defined by ¢1(x) = E, (HITKA[TM) satisfies

C
suppy < +oo  and Py <0191+ e—]lK.
K 1

Conversely, if there exist two constants C > 0, §; > 0 and a function ¢; : E — [1,+00)
such that supy @1 < +oo and Piyp; < 0191 + Clg, then, for all § > 6,, there exists a
constant Cy such that

E, (0~ 7%"7) < Cpp1(z) Vz € E and sup E, (Ex, (77%") 1;.,,) < +o0.
yeK

Note that the hitting time T is defined from the process (X, )nez, . When I # Z, it
might be easier to use criteria based on the hitting time 7% defined from the full process
(Xn)ner- We refer the reader to Lemma 3.6 below for that.
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3.1.2 Checking (E1) and (E3) from comparisons between transition probabili-
ties

Condition (E3) is a form of Harnack inequality, and one can indeed use general versions
of these inequalities to check (E3) and (E1) (for example, our results on diffusions given
in Section 4 use this idea, cf. Section 12.2). We propose below another criterion, based
on comparison techniques on transition probabilities, to check that Conditions (E1) and
(E3) hold true when Conditions (E2) and (E4) are satisfied. This result is proved in
Subsection 11.3.

Proposition 3.3. Assume that Conditions (E2) and (E4) are satisfied and that there exist
two constants C' > 0 and ng < mg € IN such that
P,(Xp, € NK)<CPy (X, €-), V€ Eandy € K. (3.2)

Then Condition (E) is satisfied.

3.1.3 Optimal value of 0, in (E2)

As many results of Section 2 make use of the function <p}/ P with a parameter p €
[1,1log 61/log6y), it is important to characterize the largest possible value of ;. This
result is proved in Section 11.4.

Lemma 3.4. If Condition (E) is satisfied for some functions ¢, and s with constants
01 and 05, then, for all 8, € (0, 0y) it is also satisfied for p; and some function y} with
constants 0, and 0.

3.2 On continuous time

In Section 2, we only considered the conditional behavior of the process X at integer
times. In general, the results of Section 2 do not give information about the process
at intermediate times. In this section, we derive a sufficient condition which is well
suited for practical verification in the case of continuous time Markov processes or for
aperiodic Markov processes, in particular because (F2) below is usually easier to check
than (E2). We consider an absorbed Markov process (X;);c; with time parameter in
I =7, or[0,+00).

Assumption (F). There exist positive real constants v;,7v2,c1,¢c2 and cs, t1,t2 € I, a
measurable function ¢; : E — [1,+00), and a probability measure v on a measurable
subset L C E such that

(FO) (A strong Markov property). Defining
T :=inf{t e I: X; € L}, (3.3)

assume that for all x € F, X, € L, P,-almost surely on the event {7, < oo} and
for all t € I and all measurable f: EU {0} — Ry,

By [f(X) L <t<ro] = Ea []lrLgt/\raEx,L (X)Lt —ucr,] \u:m} :
(F1) (Local Dobrushin coefficient). Vx € L,
P,(Xy, € ) > cav(-NL).
(F2) (Global Lyapunov criterion). We have v; < 75 and

B, (Y1(Xeo)Lty<rinr) < M201(2), Vo € E
E, (1 (Xe)ltr,) < ca, Vo € L, Yt € [0,t2] N1,
vy 'P.(X; € L) ——— +o0, Yz € L.

t——+o0
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(F3) (Local Harnack inequality). We have

sup,cr, Py (t < 719)
sup - <c3
t>0 1nfyeL IPy(t < Ta)

Be careful that the definition of 7, in (3.3) is different from that of 7}, in (3.1). Note
also that, in (F2), the Lyapunov function ¢- has been replaced by an alternative condition
similar to Lemma 3.1. Both are actually equivalent thanks to (FO) (see the beginning of
Section 11.5.1).

The following result is proved in Section 11.5.

Theorem 3.5. Under Assumption (F), (X;);c; admits a quasi-stationary distribution
vosp, which is the unique one satisfying vosp (1) < oo and vgsp(L) > 0 for some
t € I. Moreover, there exist constants o € (0,1) and C > 0 such that, for all probability
measures p on E satisfying p(y1) < oo and pu(ip2) > 0,

¢ (1)
1(32)

||IP#(X,5 S |t<Ta)*I/QSD||TV(w1) <Ca , Vtel, (3.4)

where ¢y (z) = >, v5 2P, (X4, € L) for some ng > 1 large enough. In addition, there
exists a constant \g > 0 such that Ao < log(1/y2) <log(1/y1) and P, (t < 19) = e~ o’
for allt > 0, and there exists a function n such that

n(z) = lim eM'P,(t <75), VzcF, (3.5)

t——+oo

where the convergence is exponential in Lm(w}/”) for all p € [1,log(1/v1)/Xo), and
Pyn(z) = e~ ?oty(z) forallz € E and t € I.

A key point that guided our formulation of Condition (F) is that, for continuous-time
Markov processes, usual practical conditions for the existence of ¢, are provided by
Foster-Lyapunov inequalities (cf. [84]). They involve the extended infinitesimal generator
L of the process X (see e.g. [84, 26]) and take the form

E_wl(x) < —Alwl(x) + CILK(J?), Vr € E. (3.6)

This inequality does not imply, in general, that (E2) holds true for ¢; = ;. How-
ever, Equation (3.6) implies (formally, assuming one can apply Dynkin’s formula) that
Ey[11<rynryt1(X1)] < e 291 () and E, [0y (X)) 1i<ry] < e“p1(x). Hence the first two
lines of (F2) can be deduced from classical Foster Lyapunov criteria. This will be used
for diffusion processes in Section 4 or in discrete state space in Section 5.

Alternatively, one can use controls on the exponential moments for the return times
in L. The following result, similar to Lemma 3.2, is proved in Section 11.6.

Lemma 3.6. Assume that there exist positive constants v; > 0 and t» € I such that

E, (VfTLATa) <oo,VxeE and supl, (IE)X,52 (717”/\7“’) ]lt2<m) < 00,
z€EL

then i1 (z) = E, (v; ™="\™) satisfies

B, (¢V1(Xt,) Mty <rpnry) < V201 (2), Vo € B
Ex(q/jl(Xt)ﬂt<Ta) < Cca, Vz € L, YVt € [O,tg] n I,

for some constant ¢, > 0.
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Remark 3.7. In the proof of Theorem 3.5, we will show that Assumption (F) implies that
Assumption (E) is satisfied for the sub-Markovian semigroup (P,),>o of the absorbed
—ta_,

Markov process (X, )nez, , with the functions ¢; = 1, and ¢, = Wﬂ}g, any
5 _

2

01 € (712,75%), 02 = 75 and the set

K={y€E, Py(rz <t2)/1(y) > (61 —71*)/c2} D L.

In particular, all the consequences of (E) stated in Section 2 hold true. Moreover, it is
also possible to obtain a continuous-time version of Theorem 2.6 about the Q-process by
adapting the proof given in Section 10.2.

Remark 3.8. If ] = R, it follows from the fact that P, = e~ 0!y that, setting 1(9) = 0,
the function n defined on F U {9} belongs to the domain of the infinitesimal generator £
of the semigroup of the Markov process X on E U {0}, seen as acting on L>( i/p) for
p € [1,log(1/71)/ o), and Ln = —Aon.

3.3 The case of uniform exponential convergence

We now want to characterize the case of exponential convergence in total variation
of the conditional distributions of (X,,) to vgsp, uniformly with respect to the initial
distribution p. This question was already studied in [20]. The next result, proved in
Section 11.7, gives a necessary and sufficient condition based on Condition (E).

Proposition 3.9. There exists constants C and a < 1 such that, for all probability
measure p on E and all integer n,

[Pu(Xn €| n<Ts) —vgsplly, < Ca”, (3.7)

if and only if Condition (E) is satisfied with a bounded function p; and there exists an
integer n)y > 0 such that

c:= Iuele P (X, € K |nj <75) >0, (3.8)

4 Application to diffusion processes

In this section, we apply the criteria (E) and (F) to diffusion processes absorbed at
the boundary of a domain. We give a general criterion in Subsection 4.1 and apply it to
uniformly elliptic diffusions in Subsection 4.2 and to an example with vanishing diffusion
coefficient at the boundary of the domain in Subsection 4.3. Our criteria are extended
to diffusions with killing in Subsection 4.4 and the particular case of one-dimensional
diffusions is studied in Subsection 4.5.

4.1 A general criterion in any dimension

We consider a diffusion process X on a connected, open domain D C R¢ for some
d > 1, solution to the SDE

dXt = b(Xt)dt+U(Xf)dBt, (41)

where B is a standard, r-dimensional Brownian motion and b : D — R% and o : D — R*"
are locally Holder functions, such that o is locally uniformly elliptic in D, i.e.

s*o(x)o*(x)s
VK C D compact, inf inf # > 0,
€K seRa\{0} |s]
where | - | is the standard Euclidean norm on R?. We assume that the process is

immediately absorbed at some cemetery point 9 ¢ D at its first exit time of D, denoted 7.
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The existence and basic properties of this process need some care since the coefficients
b and o are only defined in the open set D without any assumption on the boundary of D,
and so may not be possible to extend as continuous functions out of this set. Details are
given in Subsection 12.1. For the moment, let us only observe that, for all £ > 1, defining
the compact set

Ky={reD:|z| <kandd(xz,D) >1/k},

a weak solution to (4.1) can be constructed up to the first exit time 7x. of K}, as defined
in (3.3). The proper definition of the absorption time 75 is

Ty = SUP TK. 4.2)
E>1

We introduce the differential operator associated to the SDE (4.1), related to the

infinitesimal generator of the process X: for all f € C?(D), we define for all x € D

d

d T 2
Lf(z)=)" M@%(m) + % > onl@)o(x) a:i- ng (z). (4.3)

i=1 ij=1k=1

We also define the constant

Ao = inf {)\ >0, s.t. gim_gnfeAt P, (X: € B) > O} (4.4)
— 400

for some x € D and some open ball B such that B C D. It is standard to prove using
Harnack inequalities (proved in our case in Section 12.2) that, under the previous
assumptions, \g < +oco and its value is independent of the choice of x € D and of the
non-empty, open ball B such that B C D.

The following result is proved in Sections 12.1 to 12.3.

Theorem 4.1. Assume that there exist some constants C > 0, A\; > )\, a C%(D) function
¢ : D —[l,+00) and a subset Dy C D closed in D such that sup,.p, ¥(v) < +oo and

Lo(x) < —=Aip(z) + Clyep,, Yo € D. (4.5)
Assume also that there exists a time s; > 0 such that

sup P.(s1 < 7k, AT9) —— 0. (4.6)
z€Dy k—o0

Then X admits a quasi-stationary distribution vgsp which satisfies vy s D((pl/ P) < +oo for
all p > 1. Moreover, for all p € (1, A\1/\o), there exist a constant «, € (0,1), a constant C,
and a function s, : D — (0,400) uniformly bounded away from 0 on compact subsets
of D such that, for all probability measures ;. on E satisfying p(¢/?) < oo,

Bu(Xe € 1< 79) — vaspllgy g < Cpat, A7)
M(SDQ,p)

, Vt € [0, +00).

In particular, vgsp is the only quasi-stationary distribution of X which satisfies
vosp(pt/P) < +oco for at least one value of p € (1, A1/ )o).

Remark 4.2. Note that 7, = 0 P,-a.s. for all z € K}, thus

sup P,(s1 <7r, AT9) = sup P.(s1 < 7k, ATo).
x€Dg weDg\Kk

Hence Condition (4.6) requires the process to be absorbed or return in K, fast starting
in DO \ Kk
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Remark 4.3. We shall actually prove that, under the conditions of the previous theorem,
Assumption (F) is satisfied with L = K, for some k& > 1, and ¢, = ¢'/?, for any
pe (1, )\1/)\0)

Remark 4.4. In general, the assumptions of Theorem 4.1 do not ensure the non-
explosion of the Markov process X. In the case of an explosive Markov process, the
definition of 75 in (4.2) implies that, in the event of an explosion, the absorption time 75
is defined as equal to the explosion time.

The last result has other consequences of interest, gathered in the next corollary,
proved in Section 12.4.

Corollary 4.5. Under the assumptions of Theorem 4.1, the infimum defining the constant
Ao in (4.4) is actually a minimum and it satisfies P, (t < 79) = e~ ' for allt > 0. In
addition, the function n of Theorem 3.5 satisfies Py = e~ o'y for all t > 0. In particular,
1 belongs to the domain of the infinitesimal generator of the semigroup of the process
X defined as acting on the Banach space L>(y1), and it is an eigenfunction for the
eigenvalue — ). In addition, n € C*(D) and Ln(x) = —\on(z) for all z € D.

4.2 Application to uniformly elliptic diffusion processes

We consider the case where ¢ can be extended to R? as a locally uniformly elliptic
matrix-valued function. In the following corollary, we give a general situation where (4.6)
holds true. We emphasize that, contrary to previous results on existence of quasi-
stationary distributions for diffusions in a domain (see e.g. [90, 53, 70, 43, 17]), no
regularity on the boundary of D is required.

Corollary 4.6. Let D be an open connected subset of R4, d > 1. Let X be solution to
the SDE

dXt = b(Xt)dt + O'(Xt)dBt, t < TO, (47)

where b : RY - R? and o : R? — R%*" are locally Hélder continuous in R? and o is
locally uniformly elliptic on R®. Recall the definition (4.4) of \y and assume that there
exist constants C' > 0, \; > \g, a C*>(D) function ¢ : D — [1,+0c0) and a bounded subset
Dy C D closed in D such that

Lo(x) < =Mp(x) + Clyep,, Vo € D. (4.8)
Then the process X absorbed at the boundary of D (in the sense of (4.2)) satisfies the

assumptions of Theorem 4.1.

Note that we do not assume that ¢(z) — +oo when |z| — 400, hence the process X
may be explosive (see Remark 4.4).

Proof. Let us consider the diffusion process Y solution to (4.7) on R?. Due to our
regularity assumptions on b and o, this process is well-defined up to a possibly finite
explosion time 7exp. The Harnack inequality (12.6) applied to Y on the compact set D
ensures the existence of constants § > 0 and N such that, for all f : R? — [0, 1], for all
x € Dg and all y € B(z,9),

By [Ls1 52 <rpn f (Ysi52)] < NEy[L51 062 <y f (Yo 4252)]-

By compactness of Dy, there exist a positive integer n and y,...,y, € Dy such that
Dy c U}, B(yi,d). Setting s1 = § + 4%, we deduce that, for all k > 1 and all z € D,

P, (Y, € D\ K;) < N max P, (Y, 152 € D\ K;) — 0.

1<i<n k—+oo
Hence (4.6) is satisfied. This and Theorem 4.1 end the proof of Corollary 4.6. O
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We give three examples of application.
Example 4.7. Assume that D is bounded. Then, one can choose Dy = D and ¢ =1 in
Corollary 4.6. This implies that Assumption (F) is satisfied for ); = ¢” bounded (see
Remark 4.3), so that it follows from Theorem 3.5 that the convergence of e*'Px (t < 75)
to 7 is uniform and that 7 is bounded. Theorem 3.5 also implies that Assumption (E) is
satisfied for some bounded ¢; and ¢-. Since Pinp = e*’\(’n and e~ *° > 6, > 6, we deduce
that (E) is still satisfied if ¢, is replaced by 7/||7||«. Therefore,

[P.(Xn €-|n<7Ts) —v@spllpy < o™, Vn e IN.

C
()
The extension to any ¢ € [0,+00) can be obtained using the same argument as in
Section 11.5.2 replacing ¢2 and ¢, with 5. This implies Theorem 1.1 of the introduction.

Example 4.8. Assume that D C ]Ri is open connected and that
dXt = b(Xt)dt + O'(Xt)dBt

in D, where b : R — R% and ¢ : R* — R?*" are locally Holder continuous in R?, ¢ is
locally uniformly elliptic on R? and

{b(z), 1) _

, 1
<LU, 1> |z]|—=+o0 ’

where (-,-) is the standard Euclidean product in R? and | - | is the associated norm.
Then (4.8) is satisfied for ¢(z) =1+ 21 + ... + 24 and hence the process X absorbed at
the boundary of D satisfies the assumptions of Theorem 4.1.

Example 4.9. Assume that D C R is open connected and that

in D, where b : RY — R? is locally Hélder continuous in R? and

lim sup M < —§\/)\>07 (4.9)

where (-, -) is the standard Euclidean product in R? and )\, is defined in (4.4). Then the
process X absorbed at the boundary of D satisfies the assumptions of Theorem 4.1.
Indeed, let us check that (4.8) is satisfied for ¢(x) = exp(v/Ao|z|). One has, for all

x # 0,

VAolal 2 N ..
Lo(x) = Z e (N Vo; i Ao} ) n Z oV olel Vobi(z) z;
i i=1

275\l ~ RP TP "
< Voela) (dz_x|1 0 <b(g|7x>>
<~ (o +)p(a)

for some ¢ > 0 and for all z such that |z| is large enough. This implies (4.8).

To apply this criterion, it is necessary to obtain a priori bounds on \g. We will give
some ideas about how to do so for one-dimensional diffusions in Section 4.5. In general,
one can also use of course that (4.9) is implied by

(b(x),x)

lim ———— = -0
|z]|—+o00 |IL‘|
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4.3 Non-uniformly elliptic diffusions: the Feller diffusion with competition

We provide an example where the diffusion matrix ¢ cannot be extended out of
D as a locally uniformly elliptic matrix. This example deals with Feller diffusions
with competition and is motivated by models of population dynamics with d species in
interaction, where absorption corresponds to the extinction of one of the populations [15,
26].

Assume that D = (0,0)¢ and

dX{ = \/7:X} dB] + X{bi(X,) dt,

where v; > 0foralll <: <d, B, ..., B? are independent standard Brownian motions
and b, are locally Hélder in (0, 00)¢ and locally bounded in R¢.

Proposition 4.10. Assume that there exist constants cy,c; > 0 such that

ibi
Z v ’y(x) <co—ecilz], Vz e (0,00)%
i=1 I

Then the process X absorbed at the boundary of D satisfies the assumptions of Theo-
rem 4.1.

Compared to the existing literature on multi-dimensional Feller diffusions [15, 26],
the main novelty of this result is that it covers cases where the process does not come
down from infinity, e.g. b;(z) =r; — 25:1 Cij li—;J for some positive constants r; and c;;
such that r; < ¢;; for all 1 < ¢ < d, and where b does not derive from a potential (see for
instance [15], based on a spectral theoretic approach). While our results on existence
and convergence to quasi-stationary distributions are more general than those of [15],
we do not recover finer results on the spectrum of the process, such as its discreteness.

Proof. Our aim is to prove that the assumptions of Theorem 4.1 hold true with ¢(z) =
exp(c(z1/v1 + ... + %, /7n)), where ¢ = ¢; min; v;/Vd.
We have, forall z € D,

Lola) = Edj (22 + 220 o) < (e - 280 o),

Choosing A; = Ap+1and Dy = {z € D, s.t. |z| < (2co+2X1/c)/c1}, one deduces that (4.5)
holds true with C' = coc maxp, .
Let us now prove that

P,(1 < 79) ——— 0, (4.10)
x—0D,x€Dg

which implies that (4.6) holds true with s; = 1. Fix ¢ > 0 and define the set ' =
{z e RY, s.t. p(x) > e sup,ep, ¢(y)/e}. Using Itd’s formula (see the proof of (12.9) in
Section 12.3 for details), we deduce from (4.5) that, For all z € D,

P,(rp < 1)e” sup o(y)/e < By (0(Xrpn1)lrpnrar,) < €“o(x),
yeDo

so that P, (rr < 1) < e forall z € Dy. Since F¢ is bounded, we have

gi= sup [bi(x)] < +o0.
Let (Zi)ie(o,4+00) == (22, ..., Z{)1eo,+00) be the solution of the system of SDEs

dZ} = \/vZidB} + Z/3dt, Z} = X{ € (0,+00),
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with absorption at the boundary of D. Note that the components of Z are independent
one dimensional diffusion processes such that 0 is reachable and hence that

P, (Vt€[0,1], Vi € {1,...,d}, Z{ > 0) mo.

Standard comparison arguments show that X} < Z; forallt < 79 A 7= A 1 and all
i €{1,...,d}, so that
P, (Vte[0,1],Vie{l,...,d}, X; >0and 1 < 7p) —— 0.

r—0D

ButP,(1 < 7r) > 1 —¢, so that

limsup P, (V¢ € [0,1], Vi € {1,...,d}, X; >0) <e.

z—0D
Since this is true for all ¢ > 0 and since {Vt € [0,1], Vi € {1,...,d}, X{ >0} = {1 < 75},
we deduce that (4.10) holds true, which concludes the proof or Proposition 4.10. O

4.4 Diffusion processes with killing

This section is devoted to the study of diffusion processes with killing. More precisely,
we consider as above a diffusion process X on a connected, open domain D C R? for
some d > 1, solution to the SDE

absorbed in 0 at its first exit time 74 of D, as defined in (4.2), with the same assumptions
as in Section 4.1. We also assume that the process is subject to an additional measurable
killing rate x : D — R which is locally bounded: there exists an independent exponential
random variable £ with parameter 1 such that the process is instantaneously sent to the
cemetery point 9 ¢ D at time

t
TaTexitAin{tEO,/ K(Xs)ds >§}.
0

Since « is assumed to be locally bounded, one easily checks that )y in (4.4) is finite,
and that it does not depend on = € D or on the open ball B such that B C D.

The following result is an extension to the multi-dimensional setting of [71, Theo-
rem 4.3].

Theorem 4.11. Assume that there exist a subset Dy C D closed in D such that

inf  k(x) > Ao, (4.12)
x€D\ Dy
and a time sy > 0 such that
sup P,(s1 < 79 A7k,) — 0. (4.13)
€Dy k=00

Then the process X absorbed at time 75 admits a unique quasi-stationary distribution
vgsp and there exist a positive function ¢, on D (uniformly bounded away from 0 on
compact subsets of D) and a positive constant C' such that

C
IPL(X: €|t <79) —vgspllyy < —— af, VE € [0,+00)

p(p2)

for all probability measures i on E.
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Remark 4.12. Let us make some comments on the assumptions of the above result.

1. If the process without killing rate satisfies (4.13), then the process with killing rate
also satisfies this property. Hence the analysis provided in Section 4.2 can also be
used to check the assumptions of the above theorem.

2. Ifinf,c p\ i, K(2) — +00 when k — +oo, then the assumptions of Theorem 4.7 are
trivially satisfied.

3. In order to reach the conclusion of Theorem 4.1 in the setting of killed diffusion,
it is also possible to use a Lyapunov type criterion: the assumption (4.5) can be
simply replaced by the assumption that there exist A > )y and C' > 0 such that

Lo(z) = w(x)p(x) < =Ap(x) + Claen, -

Note that (4.12) of course implies the last inequality for ¢ = 1. This extension
follows from a simple adaptation of the arguments of Theorem 4.1 observing that

E, [f(X0)Licry] = Eq | F(XP)Locr, oxp (— / m(XsD)ds)},

where the process X” is the process solution to (4.11) without killing, absorbed at
its first exit time of D, at time 7Teyit.

4. If in addition the killing rate « is locally Holder in D, we can apply [50, Cor. 3.1]
as in Section 12.4 to prove that 7 is C?(D) and Ln(x) — k(x)n(x) = —\on(z) for all
zeD.

Proof. The proof follows the same lines as the proof of Theorem 4.1 in Section 12. We
emphasize that the construction of the process in Section 12.1 is still valid. The same is
true for the Harnack inequalities of Section 12.2 since they are based on Krylov’s and
Safonov’s general result [72] which is obtained for diffusion processes with a bounded
and measurable killing rate. The rest of the proof is exactly the same, replacing p; = ¢

4.5 The case of one-dimensional diffusions

In this section, we consider the case of one-dimensional diffusion processes. Here, the
Holder regularity of the coefficients is not needed. Let X be the solution in D = (¢, 8),
where —oco < a < 8 < 400, to the SDE

dX; = O'(Xt> dB; + b(Xt) dt7 X € D7

where 0 : D — (0,+0cc) and b : D — R are measurable functions such that (1 + |b])/c?
is locally integrable on D. We assume that the process is sent to a cemetery point 0
when it reaches the boundary of D and that it is subject to an additional killing rate
k : D — R4 which is measurable and locally integrable w.r.t. Lebesgue’s measure. This
assumption implies that the killed process is regular in the sense that, for all z,y € D,
IPI(T{y} < 00) > 0.

We define )\g as in (4.4). The fact that Ay does not depend on x nor B is a consequence
of the regularity of the process.

Let§: D — R4 and s: D — R be defined by

5(x) = exp <—2/O::((Z))2du> and s(ac):/a: 5(u) du,

for some arbitrary ag € D. We recall that s is the scale function of X (unique up to an
affine transformation), meaning that s(X;) is a local martingale. We also recall that the
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boundary « (and similarly for 3) is said to be reachable (for the process without killing)
if s(ay) > —o0 and

dr < +oc.

/+ s(2) - s(ay)
o o@73(x)

Theorem 4.13. Assume that one among the following conditions (i), (ii) or (iii) holds
true:

(i) « and B are reachable boundaries;

(i) « is reachable and there exist \; > \g, a C*(D) function ¢ : D — [1,+00) and x1 € D
such that, for all © > x4,
o(x)?
2

@"(x) + b(x)¢' (x) — K()p(r) < =Aip(z); (4.14)

(ili) there exist Ay > X\, a C*(D) function ¢ : D — [1,+00) and x9 < x; € D such
that (4.14) holds true for all x € (a, xg) U (z1, 5).

Then the conclusions of Theorem 4.1 hold true.

Remark 4.14. We shall not detail the proof of this result since it is very close to the
proof of Theorem 4.1 given in Section 12. We only explain the places that need to be
modified. First, weak existence, weak uniqueness and the strong Markov property are
well-known under the assumptions that o > 0 and (1 + |b|)/o? € L (D) (weak existence
and uniqueness in law are proved up to an explosion time in [66, Thm. 5.5.15], so
we can construct a unique weak solution and prove the strong Markov property as in
Section 12.1). Second, in order to construct an appropriate function ¢ on D, we choose
Dy = (a,x1] in case (ii) and Dy = [z, 1] in case (iii) and we can extend ¢ on Dy as a
bounded C?(D) function. In case (i), we can take ¢ = 1 and Dy = D. Third, (4.6) follows
from the fact that the boundaries « and S are reachable in case (i) and « is reachable in
case (ii), since

sup IPz(sl < 7'0) < IPoz+1/k(51 < T{Ot}) 0.
(oot /H] k—+o0

In case (iii), the limit is trivial since Dy C K}, for k large enough. Finally, all the arguments
using Harnack’s inequality can be replaced by arguments using the regularity of the
process and standard coupling arguments for one-dimensional diffusions (see [23, 22]).

In order to apply this result in practice, one needs to find computable estimates for
Ao and candidates for . One may for instance use the bounds for the first eigenvalue of
the (Dirichlet) infinitesimal generator of (X;,¢ > 0) obtained in a L? (symmetric) setting
using Rayleigh-Ritz formula in [91, 110, 111], as observed in [71]. We propose here
two different upper bounds for Ay which follow from the characterization (4.4) of the
eigenvalue )\ and Dynkin’s formula.

Proposition 4.15. For all o < a < b < 3, we have

1
Mo < sup { - mo(2) + k()

If 2+ b(z)/o(z)? is C1([a, b]), then

Xo < su M—Fa(m)z <b) (x) + bz)’ + k().

< p
vclab] 2(b—a)?
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Proof. For the proof of the first inequality, set
_ [ slw) = s(a)
f(z) = sin (’Ns(b) — 3(a)> .

Then, for all z € (a, b),

@ F(@) +b(@) ' (x) — (@) f(z) = — ( %

2o (x)?

_ 5 +k(x) | f)
2(fy exp (—2 [ Hedz) ay) )
> —Cf(x),

where

1
C:= su mo(z)

sup 4 -
zefa,b] | 2 f: exp (—2 fj sz((zz)) dz) dy
Since f is C? and bounded, we deduce from It&’s formula that, for all z € (a,b),

E:r:(f(Xt)]lKT{a,h}) 2 e_th(x).

Now, using the fact that 0 < f(z) <1 forall z € (a,b), we deduce that

+ k(x)

P.(X; € (a,b)) > e “f(x), Yz € D.

As a consequence, the definition of A\ entails \y < C.
The proof of the second inequality is the same, using instead the function

o) imexp (- [ 2% au) sin (12

for some ¢ € (a, b). O

The next result provides two candidates for ¢. Its proof is a straightforward computa-
tion.

Proposition 4.16. Let ¢ : (0, +00) be any C%(D) function such that, for some constants
a_<ag<ay €D,

s(x) ife > ay,
= 4.15
#@) { —s(z) ifr<a_. ( )

Then, for all z € (o, a—] U [y, B)

o\r 2 o\r 2 X 2
L)+ a0 - ado(o) < - (D2 4 ww)) pto)
Ifz+— b(z)/o(z)? is C*(D), then
p(z) = exp (— /I :2((12) du) (4.16)

satisfies
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Remark 4.17. The first function ¢ is always uniformly lower bounded on (o, a_|U[ay, 5)
by min{y/s(ay),/—s(a_)}. To ensure that the second one is also uniformly lower
bounded, one needs further assumptions on the behavior of b/c? close to o and 3.

The above results can be used as follows. In the case where « is reachable and b = 0,
Condition (ii) of Theorem 4.13 holds true if

2
lim inf o’(z)

il a2 + k() > Ao,

choosing ay = « and using the function ¢ of (4.15). Similarly, in the case where « is
reachable, 0 = 1 and b is C*, condition (ii) of Theorem 4.13 holds true if

2( /
lim inf # + Yiz) + k(x) > Ao,

Tz— - 2
using the function ¢ of (4.16).
We give below more precise examples.
Example 4.18. Assume that D = (0, +0), « is locally bounded and that X is solution to
the SDE in D
dX; = /Xy dB; — X dt.

Then 0 is reachable for X and, since

o(x)?d(x)?
85(3?)2 T—+00

+00,

we deduce from Proposition 4.16 and Theorem 4.13 that X admits a quasi-stationary
distribution vgsp and, for all p > 1, there exist positive constants Cp, vy, and a positive
function ¢, , on (0, 4+00) such that

0,100y €xP(x/p) p(d)

ef’YPt
M(WZP)

HIP;L(Xt €-|t<mp) — VQSDHTv(exp(./p)) < Cp )
for all probability measure . on D. In particular, one deduces that the domain of
attraction vgsp contains any initial distribution ; admitting a finite exponential moment.
Note that, in the case where x = 0, the process X is a continuous state branching
process (Feller diffusion), for which quasi-stationarity was already studied (see [73] and
the references therein).

Example 4.19. Assume that (o, 8) = R, that b = 0 and o is bounded measurable on R.
Assume also that the absorption of X is due to the killing rate x(z) = kg (1 — %le) for

some constant xy > 0. We deduce from the first inequality of Proposition 4.15 (taking
b > 0 and a = —b) that

72| o2 1 1
Ao < ——=2 1—— | < 1— ——
0= "gp2 +'“°( 1+b>“°< 1+2b>

for b large enough. Moreover, choosing ¢ = 1 and xy = —3b, ;1 = 3b, one deduces that,
forall ¢ & [—x1,21],

o(x)?

P 0) ~ r()pla) < o (1= 1535 ) ¥l

Hence Theorem 4.13 implies that there exists a unique quasi-stationary distribution
vgosp for X and that it attracts all probability measures ;1 on D.
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Example 4.20. We consider the case (a, ) = (0,4+00), o(z) = 1, b(xz) = xsinz, and
k() = Ko (1 - 14%93) for some constant ko > w2 + 3. This corresponds to a SDE dX; =

dB: + VU (X;)dt where the potential U(z) = sinx — x cos 2 has infinitely many wells with
arbitrarily large depths, meaning that the process X without killing has a tendency to be
“trapped” away from zero for large initial conditions. Nevertheless, thanks to the killing,
we are able to prove convergence to a unique quasi-stationary distribution. Indeed,
using the second inequality of Proposition 4.15, we have

72 sinz +zcosz + x?sin’x
A< sup — + + Ko 1—
z€(0,1) 2 2

1 ™2 3
< — 4= 2.
1+$)_ 2+2+I€0/

Moreover, 0 is a reachable boundary for X and, taking ¢ = 1, one has, for all ; > 0 and
all z > 1,

o(x)?

2

() + B(a) () — n(aolo) < —ro (1 15— ) (o)

Hence, since we assumed that x; > 72 + 3, one deduces that there exists a unique
quasi-stationary distribution vggp for X and that it attracts all probability measures p
on D.

Remark 4.21. The case of general one-dimensional diffusion processes [65] can be han-
dled using our framework, although using the infinitesimal generator is more tricky [63].
However, in the case of a regular diffusion process on (0, +c0) such that 0 is a reachable
boundary and such that 4+oc0 is entrance, one easily shows (see for instance [23]) that,
for all A > 0, there exists y > 0 such that

sup [, (e’\T[U’yJ) < 4o00.
z€(0,+00)

Hence, using the same proof as in Theorem 4.1 and using Lemma 3.6, we deduce that
there exists a unique quasi-stationary distribution vggp for X and that it satisfies

1
P (X €-|t<Tg) — I/QSDHTV < ——aof, Vte [0, +00)
1(p2)
for some positive function ¢, and some « < 1. Whether the convergence to vgsp holds
uniformly with respect to the initial distribution (as in Proposition 3.9) without further

assumptions remains an open problem. It has been shown to be true for a wide range of
cases in [23, 22].

5 Application to processes in discrete state space and continuous
time
Let X be a non-explosive! Markov process in a countable state space FU{d} absorbed

in 9, with jump rate ¢, from z to y # z such that 3 5 1oy (s} oy < 00 forall z € E.
The extended generator £ acts on nonnegative real functions f on E U {9} such that

> yepufoy doyf(y) < oo forallz € E as

Li@)= > y(fly) - f@x), YzeB, LfO)=0 (5.1)

y#xeEU{0}

10ne could actually consider the case of explosive Markov processes as in Section 4 (see Remark 4.4), with
Tg defined as the infimum between the first hitting time of 9 and the explosion time.
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Theorem 5.1. Assume that there exists a finite subset Dy of E such that P, (X; =y) > 0
for all z,y € Dy, so that the constant

Ao = inf {)\ >0, s.t. liminfeM P, (X =2) > O}
t—+oo
is finite and independent of x € Dy. If in addition there exist constants C > 0, Ay > Ao,
a function p : EU{0} — Ry such that o1 > 1, ¢(0) =0, }°, ¢ p (4} GoyP(y) < oo for all
x € F and such that

Lo(z) < =Aip(x) + Clyep,, Yo € E, (5.2)

then Assumption (F) is satisfied with L. = Dy, 71 = e ™, any 75 € (e™*,e ) and

Y1 = pg. In addition, P, (t < 79) = e~ for all t > 0, the function n of Theorem 2.3
satisfies Py = e~ o'y for all t > 0 and 3\ (4} 4u,y7(y) < 00 and Ln(z) = —Aon(z) for
allz € E.

Remark 5.2. If in addition to the assumptions of Theorem 5.1 we assume that \; >
sup,eg ¢(x,0), it is possible to adapt the proof of Theorem 3.5 given in Section 11.5 to
prove that the conclusion of Theorem 3.5 holds true with v, = 1. Therefore, we obtain
the improved convergence, for all h € L>®(yp),

By (h(Xy) [ £ < 79) = vosp ()| < Cu(p) o' [|h/¢lloe, VE =0,

instead of (3.4). If moreover ¢ is bounded over E, the convergence is uniform and there
exists a unique quasi-stationary distribution.

Before turning to the proof of Theorem 5.1, we give an example of application.

Example 5.3. Assume that X is a birth and death process with killing on £ = IN and
0 = 0. This means that there exist non-negative numbers (b, ).en, (dz)zen, (Kz)zenw such
that b, >0forallx > 1, d, > 0 forall x > 2, and d; = 0, and such that, forall x € FE,

b, ify=x+1,
_Jdy ify=x-1,
Gow = ke ify=0,
0 otherwise.

We set

5= 1S a, (5.3)

with o = (Hf;ll bi) / (Hle di). Recent advances on existence of quasi-stationary
distribution of birth and death processes with killing were obtained in [35, 100, 101],
see also the nice survey [104].

In this setting, Theorems 5.1 and 3.5 translate as follows: if there exists a function
@ :Z4 — [1,400) such that ¢(0) = 0 and

Ao < liminf 2@+ —9(@) +d(p(z — 1) — (@)

+ K, (5.4)

then there exists a unique quasi-stationary distribution vggp such that vgsp(p) < +o00
which attracts exponentially fast all initial distributions integrating ¢. To check (5.4),
one may use in practice the fact that \g < inf,cn b, + d + K, or adapt the ideas of
Section 4.5 to birth and death processes, or use the finer upper bounds for \y proved
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in [105]. We consider now three situations where the criterion (5.4) improves known
results in the literature.

First, if S < 400, [35, Theorem 6.6] proves that there exists a unique quasi-stationary
distribution for X assuming that (k. ).cn has finite support. We extend this result to any
killing rates (k. )zen and also prove that the unique quasi-stationary distribution attracts
all initial distributions exponentially fast. We can indeed check that (5.4) is satisfied by a
bounded function ¢ defined as follows: fix A\; > \g and choose zy € IN large enough such
that (see for instance [20, Equation (4.7)])

sup B, (eM 720 0) < too.
zeN

where Dy = {1,...,20}. Then we define ¢(0) = 0 and
o(z) = E, (eMTP0"2) | Yz € NN.

Using Markov’s property at the first time of jump, one checks that (since b, + d, — +o0
when = — +00, we assume w.l.o.g. that b, + d, + k, > A forall x > zg + 1),

da

© by
B bm"‘rdz""ﬁm_)\l

R R v g

p(x) (z+1)

+bz+dz+ﬁ7r_>\l

oz —1)

, Vo > a9+ 1.

Hence Ay = —[b.(p(z+1) —p(x)) +de(@(x —1) — p(x))]/o(z) + Ko for © > o+ 1 and (5.4)
is satisfied.

Second, if S = 400 and if Ay < liminf,_, . k., it was proved in [101, Theorem 4.3]
that there exists a quasi-stationary distribution. The criterion (5.4) improves this result
since it implies that the quasi-stationary distribution is unique and that it attract all
initial distributions exponentially fast. Indeed, (5.4) is clearly satisfied for ¢ = 1.

Last, we can also extend [101, Theorem 4.3] to processes that do not necessarily
admit a unique quasi-stationary distribution, and in particular that do not come down
from infinity. For example, assuming that, for some € > 0,

liminf K, + Ldz — &by > g,
z—+00 14¢
Condition (5.4) is satisfied for p(z) = (1 + ).

Note that, because of Corollary 2.7, our criteria imply the \g-positive recurrence of
the process X (cf. e.g. [104, Eq. (26)]). Therefore, it can only apply to such situations.
For results on birth and death processes with killing which are not \y-positive recurrent,
we refer the reader to [101, Theorem 4.2].

Example 5.4. We consider general multitype birth and death processes in continuous
time, taking values in a connected (in the sense of the nearest neighbors structure of
Z%) subset E of Z4 for some d > 1, with transition rates

bi(x) ify=x+e;,
Gy = § di(z) ify=x—e,
0 otherwise,

with e; = (0,...,0,1,0,...,0) where the nonzero coordinate is the i-th one and with the
convention that the process is sent instantaneously to 0 when it jumps to a point y ¢ E
according to the previous rates. To ensure irreducibility, it is sufficient (although not
optimal) to assume that b;(z) > 0 and d;(x) > 0foralll1 <i<dandz € E.
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We show below that Theorem 5.1 applies either under the assumption that

1
1+ |z

d
Z(dz(af) —bi(x)) ————— +o0. (5.5)

z€E, |z|—+o00

or that there exists § > 1 such that

d

> (di(z) = 6bi(x)) ———— +oc. (5.6)
Pt z€E, |x|—=+o00

This improves the general criteria obtained in [26] since this reference assumes (among
other assumptions) that £ = Z¢ and that Zle(di(z) —bi(x)) > |z|*T" for some n > 0
and |z| large enough.

Let us first show that (5.5) implies that the assumptions of Theorem 5.1 are satisfied.
In order to do so, we define p(z) = |x| +1==z1 + ...+ 24+ 1 and ¢(d) = 0 and obtain

(0i (@) Lage,gpp(@ + €) + di(2)Lo—ec,gpp(T — €;))

(1=
E)

Lo(z) =Y (bilw) — di(x)) —

=1 %

S0 (di(x) — bi(w))

|x] + 1

d () —bs (2
The proof is concluded by setting Dy = {x € FE, s.t. W < )Xo+ 1}.

Let us now show that (5.6) implies that the assumptions of Theorem 5.1 are satisfied.
Setting ¢(z) = exp{a, x) for a given a € (0,00)? and (J) = 0, we obtain

d
Lo(x) < —p(x) (Z(l —e ")di(x) + (1 - 6“)@(%)) :

i=1
Choosing a = (e, ..., ) with € small enough, we have

d
lim inf Z(l —e *)d;(z) + (1 — e*)b;(x) = +o0.

z€EE, |z|—+o00 4
i=1

Taking Dy = {a: €E, s.t. Z?Zl(l —e %)d;(z) + (1 —e®)bi(x) < Ao + 1} allows us to
conclude the proof.

Proof of Theorem 5.1. The fact that )y is independent of x is classical for irreducible
processes (cf. e.g. [69]). We set L = Dg. Since X is a non-explosive pure jump continuous
time process, it satisfies the strong Markov property and the entrance times 7, and 7y
are stopping times. This entails (FO0).

For all z,y € L, we have

Po(Xp €)= inf Pu(X1=0)Py(Xi€),
where inf, ,er P, (X1 = v) > 0 by assumption, which implies (F1) and (F3).

We set ¢ = ¢. For all 0 < s <1, using (5.2) and Dynkin’s formula, one has that for
allz € L

E, (Y1(Xs)Lscr,) < €% sup i (y).
yeL
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Similarly, setting v, = e, forallz € E'\ L,

Ey (Y1 (X1)Licronr) < € M1 (z) = mehr (2).

Choosing any 72 € (7y1,e~ ), one obtains that (F2) is satisfied and the first part of
Theorem 5.1 is proved.

The inequality ZyeE\{m} dz,yM(y) < oo for all 2 € FE follows from the fact that n €
L>(1,) and the fact that P;n(x) = e~ o'y (x) was proved in Theorem 3.5. It then follows
from Markov’s property and the last equality that (e*!n(X;),* > 0) is a martingale for
the canonical filtration associated to X, with the convention that n(9) = 0. Now, it is
standard to represent the Markov process X as a solution to a stochastic differential
equation driven by a Poisson point process: assume that the elements of the finite or
countable set E are labeled by distinct positive integers, that 0 = 0 and, for all z,i € Z,
let 5;(x) = gy0 + Gs1 + - - . + gz, With the convention that ¢, , = 0 and ¢, ; = 0 for all z or
i ¢ EU{0} and set q(x) = >_,cy, ¢u.i < oc. Given a Poisson point measure N(ds,df) on
]R?|r with intensity the Lebesgue measure on ]Ri, the process X solution

q(Xs-) ©
X, = Xo+// > ol (o (. (i — Xo )N (ds, dO)
=0

is well-defined for all time ¢ > 0 almost surely and is a Markov process with matrix
of jump rates (¢; ;)i jez, . Introducing the compensated Poisson measure N(ds,df) =
N(ds, d#)—dsdb, it follows from basic stochastic calculus for jump processes (cf. e.g. [93])
that

e*in( Xo+/ / AUSZ:ﬂee i (Xo )i (%o (0(3) = (X2 )N (ds, df)

+/ o (Z ax.,i(n(i) —n(Xs)) + )\077(Xs)> ds.
0 i=0

Since e*'n(X;) is a IP,-martingale, the Doob-Meyer decomposition theorem entails that

[ e (Z ax..in(i) = n(X,)) + Aon<Xs>> ds =0

PP,-almost surely for all ¢t > 0 and all x € E. Hence, if there exists y € E such that
Ln(y) # —Xon(y), by irreducibility, there exists an event with positive probability under
P, such that the previous integral is non-constant. We obtain a contradiction and hence
Ln(x) = —Xon(x) forall xz € E. O

6 On reducible examples

The criteria and examples studied in the last two sections assume that the process X is
irreducible in E. However, the abstract results of Section 2 do not require the state space
to be irreducible. Our goal in this section is to explain that our criteria are also well-suited
to cases of reducible absorbed Markov processes, in the sense that the state space F can
be partitioned in a finite or countable family of communication classes. The study of quasi-
stationary behavior for such processes has been up to now restricted to the case of finite
state spaces or to particular classes of models [77, 38, 88, 55, 19, 102, 103, 18, 104, 8].
Our criteria provide new practical tools to tackle this problem, further exploited in [28].

In Subsection 6.1, we consider a general setting with three successive sets. In
Subsection 6.2, we consider a birth and death process with a countable infinity of
communication classes.
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Dy > Dy

’
9,

Figure 1: Transition graph displaying the relation between the sets D, Dy, D3 and 0.

6.1 Three successive sets

In this section, we consider a discrete time Markov process (X,,,n € Z,) evolving
in a measurable set E U {0} with absorption at 0 ¢ E. We assume that the transition
probabilities of X satisfy the structure displayed in Figure 1: one can find a partition
{D1, D2, D3} of E such that the process starting from D; can access D; U Dy U D3 U {3},
the process starting from Ds can only access Dy U D3 U {9}, and the process starting
from D3 can only access D3 U{3d}. More formally, we assume that P, (Tp, A7 < Tp,) =1
for all z € D; and that P, (79 < Tp,up,) = 1 for all z € D3, where we recall that, for any
measurable set A C E, Ty =inf{n € Z;, X,, € A}.

Our aim is to provide sufficient conditions ensuring that X satisfies Assumption (E).
In order to do so, we assume that Assumption (E) is satisfied by the process X before
exiting D,. This corresponds to the following assumption.

Assumption (H1). The absorbed Markov process Y evolving in Dy U {0}, defined by

v _ Xy ifn <Tp,upsufoys
= .
o ifn >Tp,up,ufay},

satisfies Assumption (E). In what follows, we denote the objects related to Y with a
superscript Y, for instance, the constants of Assumption (E) for Y are denoted by 67 > 0,
6Y > 0.

We also assume that the exit times from D; and Dj for the process X admit exponen-
tial moments of sufficiently high order, as stated by the following assumption.

Assumption (H2). There exists a positive constant v < 93/ such that, for all z € Dy,

T,

E, (77TD2 90}/ (XTD2) ]lTD2 <TD3/\7'8) < +oo, E, (77 Ds/\TB]]‘TDg/\Ta<TD2) < o0,

and such that

sup IE; ('y*Ta) < +00.
x€D3

We are now able to state the main result of this section.
Theorem 6.1. Under Assumptions (H1) and (H2), the process X satisfies Assumption (E)
with K = KY,
p1(x) =E, (fy_TK/\T@) and @o(x) > clyek, Ve € E, (6.1)

for some constant ¢ > 0. In particular, it admits a unique quasi-stationary distribution
vosp such that vgsp(p1) < oo and vgsp(p2) > 0. Moreover, there exist two constants
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C >0 and « € (0,1) such that, for all probability measure y on E such that u(e1) < 0o
and p(p2) > 0,

IPu(Xn € | < 72) = vaspllpy (s, < Ca” “?’” 6.2)

1(p2)

Finally, 0 = 67, vgosp(D1) = 0 and the function n of Theorem 2.3 vanishes on Dj.
Before turning to the proof of this result, let us make some remarks.

Remark 6.2. 1. The fact that there are three different sets D;, Dy and D3 in the
decomposition of F is not restrictive on the number of communication classes.
Indeed, the three sets can contain several communication classes.

2. A similar result can be obtained for continuous time processes, based on Assump-
tion (F) instead of (E), with the additional technical assumption that the strong
Markov property can be applied at the exit times of D, and D-.

3. We emphasize that, besides the exponential moment assumption, there is no
additional requirement on the behavior of the Markov process in D; and D3. In
these sets, the process might be for instance periodic or deterministic and could
satisfy that P,(n < 79) = 0 for some n € IN.

4. One easily checks from the proof that the function ¢; in (6.1) is bounded (up to a
multiplicative positive constant) from above by

E, (,y_TDz gp{ (XTD2) ]]'TD2<TD3/\78) +E, (V_TDSATO]ITD3A73<TD2)

on Dy, by ¢} on D, and by a constant on Ds.

5. In particular, if ¢} is uniformly bounded and if the first statement in Assump-
tion (H2) is replaced by

sup [E, ('y_TD:»UDB/\Ta) < +09,
zeD,

then one can also choose a bounded function ¢; in Assumption (E) for X.

Remark 6.3. In general, processes on reducible state spaces may not satisfy Assump-
tion (E). For example the convergence in (6.2) may not be exponential, or quasi-stationary
distributions may not be unique, even if the process X restricted to D, D, or D3 satisfy
condition (E). We refer the reader to [28] for a more general discussion on quasi-
stationary distributions and quasi-limiting behavior for general processes on reducible
state spaces.

Proof of Theorem 6.1. Let us prove that Assumption (E) is satisfied by the process X.
Note that, because of Lemma 3.4, one can assume without loss of generality that v < 6.

Step 1. Assumption (E1).
Weset K = K¥,ny =n}, c; =c) and v = v¥. Assumption (E1) for X is an immediate
consequence of Assumption (E1) for Y.

Step 2. Assumption (E2).
We set 0 = 03 and
oY (x) ifx € Dy
pa(r) = .
0 ifx € D, U Ds.

Then the second and fourth lines of Assumption (E) for X are direct consequences of the
same lines of Assumption (E) for Y.
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Without loss of generality, we assume (increasing ~ if necessary, which does not
change the fact that Assumptions (H2) is true) that v € (6),60)). We define

p1(z) =B, (v 1<), Vze EU{0}.

Let us first check that ¢; is finite on E. For all x € D3, using that P, (79 < Tp,up,) =1
and that K C D, one deduces that

p1(z) =B, (y7) < A:= sup E, (v ) < +oo.
z€Dsg

For all x € D5, using the strong Markov property and inequality (9.7) for the process Y,
one deduces that

Spl(x) =E, (,Y*TK/\TDE ]lTK<TD§) + I, (77T8]1TD5 <TK)
=, (,Y—TK/\TDE 1TK<TD§) + IE, (,}/_TK/\TDE 1TD§<TKEXTDC (777'6)>
2
_ : A
<AIE)I( TKATD%) < — oY (x). 6.3
For all x € D4, one has, using the Markov property and the above inequalities,

E, (,_YfTK/\Ta) =E, (,Y*TDQUD:;/\TB(pl(XTDZUD?’/\Ta))

< 1o/~ 8y [Em ~~Tp, 90%/ (XTD2) 17y, <TD3/\T8) +E, (’Y_TDB/\TQ]lTD3/\Ta<TD2)] , (6.4)
1

which is finite by Assumption (H2).

The definition of ¢; immediately implies that infz ¢; > 1 and, since ¢} is uniformly
bounded over K C Ds, (6.3) implies that sup @1 < +00. Hence the first line of Assump-
tion (E2) is satisfied. Moreover, for all z € K,

Pipi(z) = Bz (Ix,ep,Ex, (v77%"7)) + Es (Ix,ep,Ex, (v77))

A
< E, (]1X16D210¥/7<P¥(X1)> + A

A A

A P () A< —
oy, e 0T

(9}/ sup ¢ + cg) + A.
K

Hence, the third line of (E2) for X with #; =  follows from Lemma 3.2.

Step 3. Assumption (E3).
For all z € K, we have, foralln > 1,

IPI(TL<T(9) SIPI(TL<T¢9/\TD3)+IPI(TD3 §n<7'3). (6.5)

On the one hand, by Lemma 9.9, there exists a constant C' > 0 such that

C(p’l (x) . C SUup g <01§ .
T < —T v ) < — c).
IPz(n< a/\TDg) %// Yylnf IPy(n<TD2) %,/ v ylnf IPy(n<TD2)

On the other hand, using Markov’s property and Markov’s inequality,
IPQU(TD3 §n<Ta)=Em <]1TD3<TL]PXTD, (n—u<7'3)‘ >
3 u:TD3

< B, (Lry, <o (X, )77 702) < AB, (L, cn™ 7).,

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
Page 30/84


https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

General criteria for the study of quasi-stationarity

since {Tp, < n} C {ITp; = Tp,}. Now, using Theorem 2.3 and the fact that n* is
uniformly bounded from above and away from O on K, we deduce that there exist
constants C, C’ > 0 such that

k=1 k=1
= 1
S C eY k—1 ,yn—k <C HY n—1
> () @) T

Finally, we obtain from (6.5) that there exists a constant C” > 0 such that, for all
e K,
P.(n<79) <C” ylgf{ P,(n < Tp,) <C” ylélf{ P,(n < 7s). (6.6)

This concludes Step 3.

Step 4. Conclusion.

Assumption (E4) for the process X is an immediate consequence of Assumption (E4)
for the process Y, and hence we have checked that X satisfies Assumption (E). The
convergence result of Theorem 6.1 is exactly the convergence result obtained in Theo-
rem 2.1.

Note that (6.6) entails that, for any « € K,

limsup (6y )" P, (n < Tpg) < limsup (OF) " P, (n < 75)

n—-4o0o n—-4o0o
< C"limsup (6))""P,(n < Tpg)

n—-+00

and that Theorem 2.3 applied to Y entails

limsup (63 ) "P,(n < Tpg) =n" (z) < +oc.

n—-+oo

Since it follows from Theorem 2.3 applied to X that lim, 4 05 "P,(n < 79) > 0, we
deduce that 0y = 6] .
Finally, for all x € K, the structure of the transition graph of X implies that

0= ]Px(Xn € Dy | n < Ta) m VQSD(Dl)a

so that vggp(D1) = 0. Moreover, for all x € D3, Markov’s inequality and Assumption (H2)
yield the inequality P, (n < 75) < A4", forall € K and all n > 1. Since 6y = 6} > ~ by
assumption, we deduce that, for all z € K, lim,,_, o 6;"P,(n < 79) = 0, which means
that n(z) = 0.

This concludes the proof of Theorem 6.1. O

6.2 Countably many communication classes

In this section, we study a particular case of a continuous time cadlag Markov process
(Xt)te[0,+00) With a countable infinity of communication classes and we show that the
process admits a quasi-stationary distribution.

More precisely, we assume that X evolves in the state space IN x Z, and, denoting
N; € N and Y; € Z, the two components of X; for all ¢ € [0, +00), that there exist three
positive functions b,d, f : N — (0, 400) such that
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* N is a Poisson process with intensity 1,

* Y is a process such that, at time ¢,

FINDB(Y;) ify=Yi+1landY,>1,
Y jumps from Y; to y € Z, withrate < f(N)d(Y;) ify=Y;,—1landV; >1,

0 otherwise.

The set IN x {0} is absorbing for X and we are interested in the quasi-stationary behavior
of X conditioned to not hit this set. Note that, in this case, each set {n} x N is a
communication class.

Remark 6.4. This process can be used to model the survival of an individual (for example
a bacterium) whose metabolic efficiency (for example its ability to consume resources)
changes with time, due to aging [96]. Here Y is the vitality of the individual, who
dies when its vitality hits 0, f(/N) is the metabolic rate of the individual, which may for
example decrease in the early life of the individual up to age ny and then accelerates
progressively.

This can also model the accumulation of deleterious mutations in a population under
the assumption that mutations do not overlap, i.e. that when a mutant succeeds to
invade the population (either because they are advantaged or due to genetic drift for
deleterious mutations), other types of mutants disappear rapidly. Here Y represents
the size of the population and N the number of mutations. It is typical to assume that
the first no mutations that invade are advantageous (which corresponds to adaptation),
and afterwards that deleterious mutations start to accumulate, hence accelerating the
extinction of the species (extinction vortex [37, 36]).

In both cases, it is relevant to assume that f is decreasing on {1,2,...,n9} and
increasing on {ng,no + 1,...}.

We assume that (d(y) — b(y))/y — 400 when y — +oo or that there exists § > 1
such that d(y) — 0 b(y) — 400. Hence the birth and death process Z evolving in IN, with
birth rates (b(z)).cw and death rates (d(z)).en, satisfies Assumption (F) by Theorem 5.1
(see Example 5.4). In particular, there exist an eigenvalue A\Y > 0 and eigenfunction
n% : N — (0,+00) such that, for all z € IN, £LZn? = —\¥n%, where the operator LZ is
defined as the operator £ in (5.1).

Theorem 6.5. Assume also that there exists a unique ny € IN such that f(ng) =
min,en f(n) and that liminf,, ,, f(n) > f(ng) + ﬁ Then the process X satisfies
Assumption (F) and admits a quasi-stationary distributtion vosp whose domain of attrac-
tion contains all Dirac measures 6,, ., withn < ng andy € IN.

Of course, all the consequences of Theorem 3.5 also apply here, taking the functions
11 and 1 as described in the proof.

Proof. The proof maks use of the special structure of the process Y, which can be
constructes as

In general, we shall denote the objects related to Z with a superscript Z, for example z/)lz
is the functions involved in (F2) and LZ is the set involved in (F) for Z. We can assume
without loss of generality as in Theorem 5.1 that LZ = DZ, i.e.

LZYZ < —NpZ +Cp2 (6.7)

with 7 (0) = 0 and \Z > )\¢.
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Our goal is to apply Theorem 5.1 to the process X = (NV,Y). We define the finite set
Dy = {no} x L?, so that P, (X1 = (ng,y)) > 0 for all (ng, =) and (ng,y) in Do, and
check that \g < f(ng)A¢ + 1. Indeed, forally € LZ,

NIV (N, Vi) = (no,y) > e MONTPE (24, = y)

o Wvdsp({y}) > 0.

We fix \; such that

Fno)ANE +1< ) < ()\g inf f(n)+ 1) A ()\5 ngj_r;if(n)) A (M f(no) +1)

n#ng
and we choose

* ny > ng such that, for all n > ny, A\; < A\ f(n);

¢ > 0 small enough so that o7 (x) > en?(z) for all z > 1 (such a constant exists
thanks to Theorem 2.3);

* a > 0 large enough so that \; < A\? f(ng) +1 —e™%

* £ > 0 small enough so that \; < (\Z —¢) inf,2n, f(n) +1;

« b > a large enough so that \; < (\Y — e)inf,zn, f(n) + 1 — 7% and Ce® b <
einf,crz n?(y), where the constant C is the one of (6.7).

We can now define

Wi (y) ifn = no,
ety (y) + e’ mMn? (y) if n < no,

wl (ny Zl/) = _a(n—no) Z i
ce n? (y) ifng <n < nq,
Cefa(nlfno)nz (y) ifn; <n.

In the case where n < ng, it follows from (6.7) that
L (n,y) < — (A f(n) +1—e ) el (y)
- ()‘gf(n) +1- 6_b1n<n0—1) eb(ng—n)nZ(y>
C
a(no—n),,Z
S nz(z)f(n)e n”(y)
<= Xet gl (y) — [(AF =) f(n) + 1 — e " Lncny—1] 20707 (y)
+ €f(n)6a(n0_n) (eb—a _ e(b—a)(no—n)) nZ(y)
S - )\1¢1(”>y)-
When n = ng, we have
Ly (no,y) < =AY f(no)f (y) + CLpz(y) f(no) + ce " n” (y) — ¥{ (y)
< —Mivi(no, y) + Cf(no)lp, (no,y)-

When ng < n < nq, we have

L1 (n,y) < =G f(n) ce ®@7mIpZ (y) + cem*mm0)pZ (y) (e — 1)

< —
< =Mvi(n,y).

When n; < n, we have

Lp1(n,y) < =M f(n)n? (y) < =M (n,y).
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Finally we have proved that L1 (n,y) < —A\1(n,y) + Cf(n)lp,(n,y), where A\; > A.
Now, note that, since Z is a birth-death process, basic comparison arguments imply that
n?(k) > n?(1) > 0 for all k > 1. Therefore, the function 1; is uniformly lower bounded,
so that it satisfies the assumptions of Theorem 5.1 up to a multiplicative constant.
Hence, Theorem 5.1 allows us to conclude the proof. The fact that all Dirac masses
d(n,y) With n < ngy belong to the domain of attraction follows from Corollary 2.10. O

7 Application to processes in continuous state space and discrete
time

Discrete time Markov models in continuous state space and with absorption naturally
arise in many applications. Examples of such processes are given by perturbed dynami-
cal systems, cf. e.g. [44, 9, 5, 62], or piecewise deterministic Markov processes when
one looks at the process at jump times only (see e.g. [3]). We provide in Section 7.1 a
general criterion applying to such processes with arbitrarily close to 1, state-dependent
killing probability, and we give applications to Euler schemes for diffusions absorbed
at the boundary of a domain. In Section 7.2, we consider perturbed dynamical systems
in finite dimension. We first consider the case of unbounded domains with unbounded
perturbation. Subsection 7.2.1 assumes that the perturbation has bounded density with
respect to Lebesgue’s measure and Subsection 7.2.2 provides examples with perturba-
tions with unbounded density. Finally, the case of bounded perturbations is studied in
Subsection 7.2.3. Theorem 1.2 of the Introduction is obtained as an application of the
results of Section 7.2.1.

7.1 Two sided estimates for processes with killing

Let (Y,,n € Z, ) be a Markov process evolving on a measurable state space £ U {0}
with transition kernel (Q(y, -),cpua}) such that 0 ¢ E is absorbing (i.e. Q(9,{9}) = 1)
satisfying a two-sided estimate (see for instance [10, 40, 17]), which means that there
exist a probability measure ¢ on E, a positive function g : E — (0,+0c0) and a constant
C > 1 such that, for all y € F and all measurable sets A C F,

9(y)¢(A) < Q(y, A) < Cg(y)((A). (7.1)

Condition (7.1) is known to be satisfied for various models (see e.g. [9] or the references
in [17]). It is also well known (see [10, 17]) that this implies that Y admits a unique
quasi-stationary distribution 1/5 gp for which the convergence in (2.1) holds true for
the total variation distance with geometric speed uniform with respect to the initial
distribution x4 on E. Our aim is to generalize this result to processes obtained from Y
with additional killing (or penalization).

More precisely, let p: E x E — (0, 1] be measurable and consider the Markov process
X evolving in £ U {0} with transition kernel P(z,),cgu{s} defined by

p(z,y)Q(z,dy) + (1 — p(z,y))0s(dy) ifz € E

Pla, dy) = {63(dy) ifx=0.

Observe that Condition (7.1) may not be satisfied by the kernel P in cases where
inf, yep p(x,y) = 0. We also emphasize that the kernel P generates a penalized semi-
group of (Y, )nez, . in the sense that, for any function f: £ — Ry, allz € Fandalln > 1,
one has

E, (f(Xn)]ln<Ta) =E,; (p(x, Yl) t 'p(Yn—lv Yn) f(Y")]ln<‘r§/) )

where 75, resp. Tg, is the absorption time for X, resp. Y, in 9.
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Theorem 7.1. Assume that there exists an increasing sequence (Ly);>1 of measurable
subsets of E such that E = U{> Ly, and inf, yer, p(z,y) > 0 for all k > 1. Then X
satisfies Assumption (E) with ¢; = 1 and y positive on E. In particular, X admits a
unique quasi-stationary distribution whose domain of attraction contains all probability
measures on E.

Example 7.2. Typical examples of discrete-time Markov processes in continuous state
space are given by Euler schemes for stochastic differential equations. We consider
the SDE dY; = b(Y;)dt + o(Y;)dB; in R, with b and o bounded measurable on R¢ and o
uniformly elliptic on R¢. Its standard Euler scheme with time-step § is the Markov chain
(Xn,n > 0) defined as

Xnp1 = b(X)0 + Vi0(X,) G, (7.2)

where (G,,n > 0) is an i.i.d. sequence of N'(0,1d) Gaussian variables in R?. In the case
of a SDE absorbed at its first exit time of a bounded open connected domain D C R¢,
the “naive” Euler scheme, constructed as above with the additional rule that X,, is
immediately sent to 0 when X,, ¢ D, is not good in terms of weak error. Indeed, when
X, is close to the boundary of D and X,,4; remains in D, the path of the SDE Y in
the time interval [nd, (n + 1)d] might have exited D. In this case, it is more efficient to
construct the Brownian path that links 0 to G,, on the time interval [nd, (n + 1)J] as a
Brownian bridge (G, € [nd, (n + 1)d]) such that Gns =0 and é(nﬂ)(g = G, so that one
can approximate the path of the diffusion on this time interval as

X, = b(X,)(t — nd) + Voo (X,)Gy, Yt € [nd, (n+1)d],

and approximate the absorption event as {3t € [nd, (n+1)4] : X, ¢ D}. The corresponding
Euler scheme is thus obtained as the Markov chain X as defined in (7.2) with the
penalization p(X,, X,,+1) = P(3t € [nd, (n +1)d] : X, ¢ D). For a detailed presentation
and study of this kind of modified Euler schemes, we refer the reader to [79, 51, 52, 11].

Using Theorem 7.1, we obtain the existence and convergence to a unique quasi-
stationary distribution for this modified Euler scheme. Indeed, (7.1) is satisfied for the
naive Euler scheme with ( equal to the restriction of Lebesgue’s measure to D and a
constant function g, thanks to the boundedness of the domain D, the uniform ellipticity
of 0 and the boundedness of b and ¢. In addition, it follows from the connectedness
of the domain D, the uniform ellipticity of ¢ and the boundedness of b and o that
inf; yex p(x,y) > 0 for any compact subset K of D.

Proof of Theorem 7.1. For all k > 1, we define the set K, = {x € L s.t. g(x) > 1/k}.
Let ko be large enough so that ((K%,) > 0. Then one has, for all k¥ > ko, all z € K, and
all measurable set A C F,

IPI(Xl c Aka‘g) > g(x)A . p(x’y) C(dy) > C(Kko)infu],:elm p(uvv) V(AkaU)7
NKgq

(7.3)
where v is the probability measure on Ky, defined by v(A) = ((A4)/¢(Kk,). We fix k > ko

C(Krg) infuver, plu,v)
ko

large enough so that C/k < , where the constant C' is the one of (7.1),
and set K = K.

Let us now check that Condition (E) is satisfied with the above choices of K and v
C(Kg) infu ver,, pu,v)

(extended by 0 to K, \ K},), and with §; = C/k and 6, < 03 < To
Setting ¢1 = 1, one has

Pl@l(x) S 17 Vx € K7
Pipi(x) < Cyg(z) <01 =b1p1(x), Vo € B\ K,
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so that the first and third lines of Condition (E2) are satisfied. Using Markov’s property,
one deduces from (7.3) that 6; " inf,cx P, (X, € Ki,) — +00 when n — +oo. Hence
Lemma 3.1 implies that the second and fourth lines of Condition (E2) are satisfied. It
also implies that Condition (E4) is satisfied. Note also that the function 5 provided by
Lemma 3.1 is positive on E since g is positive in (7.1).

Moreover, for all x € F, all y € K and all measurable set A C F,

C k
P,(X, € ANK) < Cg(z)((ANK) < M / p(y,2) ((dz)
infrwrp Jank
k
< Clalk %) ¢ an ).

infryrp
We deduce from Proposition 3.3 with nyg = mg = 1 that Conditions (E1) and (E3) are
satisfied, which concludes the proof of Theorem 7.1. O

7.2 Perturbed dynamical systems

We consider the following perturbed dynamical system

XnJrl = f(Xn) + é-'ru

where f : RY — R? is a measurable function and (¢, ),cn is an i.i.d. sequence in R%. We
assume that the process evolves in a measurable set D of R? with positive Lebesgue
measure, meaning that it is immediately sent to 9 ¢ R¢ as soon as X,, ¢ D. We shall
consider two situations below, where the random variables &,, are unbounded or almost
surely bounded. In the unbounded case, different methods must be used depending on
whether &, has a bounded density with respect to Lebesgue’s measure or not.

The same arguments would also work if X,, 1 = f(X,,) + &,.(X,,), where the sequence
of random maps (z — &,(z)),>0 are i.i.d. We leave the appropriate extensions of our
assumptions and arguments to the reader.

7.2.1 The case of unbounded perturbation with bounded density

We consider here the case where the random variables &, have support R¢.

Proposition 7.3. Assume that f is locally bounded, that the law of &, has a bounded
density g(x) with respect to Lebesgue’s measure such that

inf g(z) >0, VR >0,
|lz|[<R

and that there exists a locally bounded function ¢ : R? — [1,+occ) such that x
E(p(z + &)) is locally bounded on R? and such that

lim sup w =0. (7.4)
|z|—+oc0, z€ED (P(J?)

Then Condition (E) is satisfied with p; = ¢ and 5 positive on D.
Note that, if D is bounded, the last result is already a consequence of the classical
criterion based on (7.1). Before proving this result, let us give three applications.

Example 7.4. If there exists a > 0 such that Ee®létl < +oo and if |z| — |f(z)] — +oo
when |z| — +00, then Proposition 7.3 applies. Indeed, choosing ¢(z) = exp(alz|), we
have

Eo(lf (@) + &) - Laf@)-lzhpeols] ' 0.

For instance, this covers the case of Gaussian perturbations, as stated in Theorem 1.2 in
the introduction.
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Example 7.5. If there exists p > 0 such that E(¢)) < +o00 and if |f(z)| = o(|z|) when
|z| — 400, then Proposition 7.3 applies. Indeed, choosing ¢(x) = (1 + |z|)?, we have

Ep(|f(x) +&]) _ (1+|f(2)])P :
o(x) = (1+ [z|)P E[(Hlfl\)]mo.

Example 7.6. If Elog(1+|¢,]) < oo and |f(z)| < C|z|*®) for some C' > 0 and some &(z) —
0 when |z| — 400, then Proposition 7.3 applies. Indeed, choosing ¢(z) = log(e + |z|), we
have

Eo(lf(z) + &) _ logle + C) +e(x)log(e + |z]) | Elog(l +[& )
o(z) - log(e + |z|) log(e + [z[) -
Proof of Proposition 7.3. We first prove Conditions (E2) and (E4) and conclude the proof
with Proposition 3.3.

Step 1. Conditions (E2) and (E4) are satisfied.
Let K1 C D be a bounded measurable set with positive Lebesgue measure. Then, for
all € K, denoting by )\; the Lebesgue measure on R?,

]Pm(Xl € K1> = IP(f(Q?) +£1 € Kl) > )\d(Kl)

(u) >0

inf g
€K1 +B(0,supsc, |f1)
Fix 05 € (0, \g(K1) nfue gy +B(0supg, 1£1) g(u) ), we deduce that, for all z € K7,

6,7 inf Pu(X, € K1) > 6," inf Pu(X) € Ky, Xy € K1) ——— +oc.
re Ky

TE€K, n—+400

Fix 0 < 61 < 65, and, using (7.4), consider a bounded subset K C D containing K; and
such that, forall z € D\ K, Pip(z) < 61¢(x). Since K is bounded, one has

inf P,(X; € K1) > MN(K inf > 0,
aclfr:‘lK ( 1 1) - d( 1) u€K1+Bl(%VSUPK |f‘)g(u)
so that
0" inf Po(X,, € K) > 05" (K inf inf P,(X,,_1 € K
2" inf Pu(Xp € K) > 6, Na(K1) ueKﬁBl(Ig)’supk‘f‘)g(u)mlenK1 2(Xn-1 € K1)

and thus 6, " inf,cx P, (X, € K) converges to +occ when n — +o0o. Lemma 3.1 then
entail that Condition (E4) is satisfied and that there exists a function ¢5 : D — [0, 1] such
that Pyga(x) > O2¢po(x) for all x € D and such that inf x o > 0. In addition, for all z € D,
P, (X1 € K) > M\g(K)infyeg—f(z) 9(u) > 0, so that Pi1x(z) > 0. Hence, the function ¢,
of Lemma 3.1 also satisfies that p(z) > 0 forall « € E.

Setting ¢1 = ¢, we deduce that Conditions (E2) and (E4) are satisfied for the set K.

Step 2. Comparison of transition probabilities.
Let us prove that Proposition 3.3 applies with nyo = my = 1. For all x € D, we have

P (X, € N K) < sup g(u) Aa(- 1 K).
u€R4

Moreover, forall y € K,

Py(X1€-) >P(f(y) +& €-NK)
>

inf w) Ag(- N K).
werct Bipupy 1y I Al O E)

Hence, forallx € Fand all y € K,
SUPRa g
Inf g4 B(o,supy [£1) 9

IPI(Xl S OK) < IPy(Xl S )

We deduce from Step 1 and Proposition 3.3 that Condition (E) is satisfied with the
functions ¢; and g9, which concludes the proof. O
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7.2.2 An example with unbounded perturbation and singular density

The last result made strong use of the boundedness of g. Actually, our criteria also apply
to perturbations with singular density. We consider here the following example: assume
that f(r) = Az + B, where A is an invertible d x d matrix and B € R¢, and that there
exists a > 0 such that the density g of {,, satisfies for some constant C|,

1 d
We have the following result.
Proposition 7.7. Let || - || be a norm on R? and assume that
A
sup |4z < 1. (7.6)

seri\{0} 1zl
Assume also that Fe®é1l < co for some « > 0 and that

inf >0, VR>D0.
ﬁ%gg(x)

Then Condition (E) is satisfied with ¢, = ¢ and - positive on D.

The proof of Proposition 7.3 made use of Proposition 3.3 with ng = mg = 1. The proof
of Proposition 7.7 requires to apply Proposition 3.3 with ny > 2.

Proof. The first step of the proof of Proposition 7.3 remains valid taking ¢(x) = ecllzll for
a > 0 small enough and using (7.6) and the equivalence of the norms |- | and || - || (the
computation is similar to the one of Example 7.4). So we only have to prove that (3.2) is
satisfy and apply Proposition 3.3.

We define ny = [d/a] and we assume without loss of generality (reducing slightly a if
needed) that nga > d. We observe that

XTL() - A"”:C—FAnO*l(B—F&) + +B+§n0-

Using (7.5) and the fact that sup,_. % < Cf where the constant C. is such that
Cril- 1< -1 < Cyyl - |, the density g2 of A& + & satisfies

1
= — A )d
g2() dotA] o g(z —y)g(A™ y)dy
C? 1 1 1
< 9 dy +C <1+ )
|detAl Jiyja-1y1<13nB(e1) |2 — yl?7 [ATyld=e J |detA|

c2c?d-a) 1 1 1
gl /
<2l dy +C, (1 + )
|detA| B(0,02,) |z —y|d=a |y|d—a I |detA

cori= 1 1
— 2l / du+C <1+
|detA| |z|d—2e B(0,C7., /lz]) \LI _ u‘d’“ |u|d—a I

@) 77

where we made the change of variable u = y/|x|.
If 2a > d (i.e. if ng = 2), we can bound the integral in the right-hand side as follows:

1 1 1
du<C+ 2d/ ————du
/B<O,C2“> e u‘d_a |ud=a B<0,%)\B(o,z) |u|2d=2a

‘.
To]
||

<C+ ¢ !

- 2a — d |z|2e—d’
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where the constant C' may change from line to line. Therefore, g is bounded if 2a > d.

Otherwise, if 2a < d, the integral in the right-hand side of (7.7) can be bounded by
the same integral over R? and thus it is uniformly bounded with respect to z, so g is
bounded by C(1V 1/|z|¢~2%). In this case, we can proceed similarly to bound the density
g3 of A%2¢; + A& + &3, and prove by induction that the density g,, of A™71¢ + -+ + &,
is bounded.

We deduce that

P,.(X,, € NK) < sup. Gno (W) Aa(- N K).
u€ER

The end of the proof is the same as for Proposition 7.3, using Proposition 3.3 with
mop = no. O

7.2.3 Two examples with bounded perturbation

The case where &; is a bounded random variable is more involved. To avoid complications,
we will focus on the case where ¢, is a uniform random variable on the unit ball B(0, 1)
of R?. Extensions to different distributions are possible.

We start with the simpler case of bounded domain D and contracting dynamical
system f.
Proposition 7.8. Assume that D is a bounded, connected open set of R?, that f is
continuous and satisfies | f(x) — x| < 1 for all x € D. Then Condition (E) is satisfied.

Proof. Again, the proof makes use of the criterion of Proposition 3.3.

Step 1. Construction and properties of the sets K., € > 0.
For all € > 0, let K. be the connected component of {z € D : d(x,0D) > 2¢} with
larger Lebesgue measure and let

K, = U B(z,e),

TeK]

which is a also a connected compact subset of D with distance to D¢ larger than . For
all § > 0 and all 7,y € K., we call a sequence (zg,z1,...,7,) € K" for some n € IN
a 0-path linking « to y in K, if g = =, 2, = y and |z — 2x—1| < dforall 1 < k < n.
By construction, the set K. satisfies that, for all § > 0 and all z,y € K, there exists a
d-path linking z to y in K. In addition, since K. is compact, there exists an integer n. s
depending only on € and ¢ such that, for all z,y € K., there exists a J-path in K, linking
x to y with length less than n. 5. Forall z € K. and all k € {1,...,n. s} let us define

E®(@) ={yeR?: Jay,... 001 € Ko, |2g —zo 1| <dforalll <L <k
with g = z and x;, = y}

Note that in general, K E(k(;) is not included in K., but it is included in D if § < . It follows

from above that ng’;ﬁ)(x) DK, forallze K..

Let us also prove that UK. = D. Let (z,),>1 be a dense sequence in D and for
alln > 1, let r, = d(z,,0D)/2. Since D = U,>1B(x,, ), there exists ng > 1 such that
Ut<n<noB(xn,rs) has Lebesgue measure larger than \y(D)/2. Since D is connected,
there exists a continuous path in D linking z; to z; forall 1 <, j < ng. Since the distance
between this path and 9D is positive, there exists ¢ > 0 small enough such that all the
points 1, ..., x,, belong to the same connected component of {z € D : d(z,0D) > 2¢}.
We can assume without loss of generality that ¢ < r,/2 for all 1 < n < ng, so that this
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connected component actually contains Ui<p<n,B(2x,,) and hence has the largest
Lebesgue measure among all the connected components of {x € D : d(z,0D) > 2¢}. In
particular, K. contains B(z1,7,) for all ¢ small enough. Now, given any = € D, there
exists a path linking « to x; in D. Since the distance between this path and 0D is positive,
x belongs to K. for all € > 0 small enough. Hence, we have proved that U.~qgK. = D and
that the family (K. ).~ is non-increasing with respect to € > 0 when ¢ is small enough.

Step 2. Proof of Condition (3.2) of Proposition 3.3.
For all € > 0, since f is continuous,

0 1= (1— sup f(x)—x|>/\€>0.

rzeK,

Hence, forall z € K,
P.(X; € -NB(x,d:)) > cara(- N B(z,d:)), (7.8)

for a positive constant ¢4 only depending on the dimension of the space. In other words,
forall x € K¢,
]Pz(Xl € ) > CdIP(ZL' +U € )

where U is a uniform random variable on B(0, J.). Hence, defining the Markov chain
Y, = Yo+ U, +... + U, where U; are i.i.d. uniform random variable on B(0,J.), we
deduce that

P.(Xp€-)>cP,(V1,...,Y, 1 € K.and Y, € ), Voe K., Vk€N. (7.9)

In view of Step 1, the following Lemma 7.9 about the process Y implies that there exists
a constant ¢ > 0 such that

P, (X

Ne,5-/3

€)>dN(NK.), VreK.. (7.10)

Since the law of X; is dominated by the Lebesgue measure independently of X,, we
have proved that, for all € > 0, (3.2) is satisfied for K = K., ng = 1 and mg = n.s_y3.
This concludes Step 2 of the proof.
Lemma 7.9. For all 1 < k < n.;_s3, there exists a constant c¢;, > 0 such that, for all
r e K.,

P,(Yi,...,Yi1 € K. and Yy € 1) > i ( n Ks(f?s/?)(o:)) , (7.11)

where )\, is Lebesgue’s measure on R¢.

Step 3. Proof of (E2) and (E4).
Fix g9 > 0 such that K., is non-empty and (K:).¢(o,c,] is non-increasing. It follows
from the definition of K. that inf,cx, Aa(Ke, N B(7,0¢,)) > 0. Fixing

92<4/\{Cd H}(f )\d(KEODB(xa(SEo))}’
S €0

we deduce from (7.8) that

lim 65" inf P,(X, € K,,) = +o0. (7.12)

n——+o0o €K,

Since the law of X is dominated by the Lebesgue measure and D = Uy<.<., K., there
exists 1 € (0, 0] small enough such that

sup P, (X; € D\ K.,) < 6>/4.
xzeD
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Hence, the function

1 ifr e K,

4/6, ifze D\ K.,

satisfies P11 (x) <2 < (02/2)p1(x) for all z € D \ K., . Hence the first and third lines of
Condition (E2) are satisfied with 6; = 6,/2 and K = K_,.

We also deduce from (7.10), (7.12), the fact that K., C K., and Markov’s property
that

(p12$€Dl—>{

lim 65" inf P, (X, € K.,) = +o0.

n——+oo {L‘GKEI

Hence, it follows from Lemma 3.1 that (E4) is satisfied with K = K., and that there
exists a function 9 satisfying the conditions of (E2) with 6, defined above and K = K, .

Therefore, the result follows from Step 2 and Proposition 3.3 with K = K., ng =1
and mg = n€17551/3‘ O

Proof of Lemma 7.9. We prove this result by induction over k. Since Y; = =z 4+ U; is
uniform in B(z, d.), the case k = 1 is clear since Ks(,l(S)E/S = B(x,0./3) C B(x,d).

So assume that (7.11) is satisfied for some 1 < k < n. 5_/3 — 1 and let us prove it for
k+ 1. Let A ¢ R? be measurable. Using (7.11) for k£ and the fact that Y4 is uniform in
B(Yk, d.) conditionally on Y}, we have

IPw(Yl,...,Yk € K., Yk+1 S A)

>P, (Yl,...,yk_1 cK. Y,eK®

5755/3(x) mKEa Yk-‘rl € AmB(Yka(sa))

C/
> 7k/ dy dz
Aa(B(0,6¢)) K®)  (@)nK. ANB(y,5.)

¥

G (k)
Aa(B(0,6.)) /A MK 4@ N KN B(2,8.)} dz

v
ES

{ (k)
—_— K K. NDB(z,0.) ¢ dz,
Na(B(0,5.) /m<k+1><$d{ lo. (@) KN Bz | ds

€,8¢/3

where the third equality follows from Fubini’s theorem.

Now, for all z € Kgg/l;(az), there exists a path z¢g = z,z1,...,2; € K. such that
|xg — xp—1] < d:/3 forall 1 < ¢ < k and |z, — 2| < 0./3. By definition of K, there exists
y € K. such that 21 € B(y,e) C K.. Let ¢/ be the unique point such that |y — z;_1| =
/6 of the half-line with initial point z;_; and containing y. Then B(y’,0./6) C K.. Since
|z — 2] < 6-/3 and |zk—1 — x| < I-/3, we also have B(y’,d./6) C B(z,0.). In addition, for
ally” € B(y',4./6), the path o = x,x1,...,25—1,y" lies in K, and has distance between

consecutive point smaller than §./3. Therefore, B(y',./6) C K%

£,0:/3
k+1
that, for all z € Ké,és/;(x),

(z). We conclude

N {KY) (@) 0 KL 0 B(z,62) } = Ml(B(0,6./6)).

Hence

Po(Vi, . Vi € Koy Yigr € 4) > e (AN KU @)

- /
for a positive constant ¢ , ;. O

The general case of dynamical systems with bounded perturbations raises several
additional difficulties. We illustrate two of them with the next example in dimension 1.
We consider the Markov process in D = (0, +00) defined as

1

Xo € (07+OQ)7 Xny1 = aX, — TAX“ +&n, Yn2>0
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where a € (0,1) and &, are i.i.d. with uniform distribution on [—1, 1] and the process is
immediately sent to the cemetery point 0 when it leaves D. The first difficulty comes
from the fact that

1
P,(X; > 0) = {1— (—ax)} VO ——0,
1+ z—0+

which means that the probability of immediate absorption converges to 1 when z
approaches the boundary of D. The second difficulty comes from the fact that |f(z) — z|
is unbounded on D (in contrast with Proposition 7.8). This example is covered by the
following general result.

Proposition 7.10. Assume that X,, 11 = f(X,) + &, with D = (0, +00), &, i.i.d. uniform
on [—1,1], f continuous and there exists ©* € D such that

(0,z")={x e D:|f(x)—x| <1} and [z*,4+0)={zeD: flx)+1<xa}.
Then Condition (E) is satisfied.

Proof. Fix Ky C (0,2*) a closed interval with non-empty interior. As in the proof of
Proposition 7.8, using in particular (7.9) and (7.11), there exists ng > 1 and ¢y > 0 such
that, for all x € K,

]PI(X’H,Q S ) > CO)\l(‘ N Ko)

Hence there exists a constant 03 € (0, 1) such that

0;" inf P,(X, € Ko) — +o0. (7.13)
rzeKo n—-+00

Fix now 6; < 03 and K C (0,z*) a closed interval such that Ky C K and

0
M {(0,2%)\ K} < o
where
2(1 + el="+2)/0n)
01 ’
As above, there exists n; > 1 and ¢; > 0 such that, for all z € K,

P.(X,, €) > il (-NK).

M =

In particular, inf,cx P, (X,, € Ko) > 0, so that, using Markov property and (7.13), we
deduce that
05" inf P, (X, € K) —— +o0.
rzeK n—+00
Using Lemma 3.1, we deduce that there exists a function (- satisfying the conditions
of (E2) and that (E4) is satisfied. For all x € D, let
1 ifr e K,
p1(z) =< M ifex e (0,2*)\ K,
e/ if ¢ > g*.
For x > x*, using the fact that the density of X; on D with respect to Lebesgue measure
is bounded by 31 for all value of X,, we have

Proy(x) < Ep(eXV/ 0 1y, 500 ) + Po(Xy € K) + MP,(X; € (0,2%) \ K)

S B0+ DA {(0,07) \ K)

< S01(m)e(f(ﬂﬂ)*30’)/911}333651/91 + 971
- 2

671

-1
< pi(z)e eh —eh 01

il < :
201 + 5 ei(e) < b1 (2)
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Forz € (0,2*)\ K, since f(z)+ & <z 42 <a*+2,
Pipy(x) <P (X) € K)+e® /0P (X) > 2*) + MP,(X; € (0,2*) \ K)

) M
<14 @+ 4 7A1 {(0,z*)\ K}

01 01
< — — | < .
_M(2 + QM) < 011 ()

Since P i (x) is clearly bounded for z < z*, we have proved (E2).

To conclude, it remains to observe that (3.2) can be deduced for ng = 1 and my
large enough exactly as in the proof of Proposition 7.8. Hence the result follows from
Proposition 3.3. O

8 Irreducible processes in discrete state space and discrete time

The theory of R-positive matrices is a powerful tool to study absorbed Markov
processes in discrete time and space [45]. The goal of Section 8.1 is to show that our
criteria allow to recover the results on convergence to quasi-stationarity of this theory.
We then study in Section 8.2 a class of discrete Markov chains in discrete time to which
criteria based on R-positive matrices do not apply easily.

8.1 R-positive matrices

We consider a Markov chain (X,,,n € Z.) in a countable state space E U {0} with
0 ¢ F an absorbing point and with irreducible transition probabilities in F, i.e. such that
for all x,y € E, there exists n = n(z,y) > 1 such that P,(X,, = y) > 0. In this case, the
most general criterion for existence and convergence to a quasi-stationary distribution is
provided in [45]. In this paper, the authors obtain a convergence result similar to the one
of Theorem 2.1 restricted to Dirac initial distributions, and the pointwise convergence
to n as in Theorem 2.3, using the theory of R-positive matrices. In this section, we
show how our criterion allows to recover these results, providing in addition the several
refinements of Section 2 (including the characterization of a non-trivial subset of the
domain of attraction, the convergence of (2.1) for unbounded functions f and a stronger
convergence to 7).

We denote by P the transition matrix of the chain (X,,,n € Z. ) and we assume that
the absorption time 7y is almost surely finite. Without loss of generality, we will assume
that the process is aperiodic, meaning that P, (X,, = y) > 0 for all z,y € E provided n is
large enough; the extension to general periodic processes is routine, as observed in [45]
(see also [27] on this topic in our general setting).

Proposition 8.1. The assumptions of [45, Theorem 1] imply Assumption (E).

Proof. Since F is finite or countable and because of the irreducibility assumption, it is
known [107] that the limit

L — 1 _ N\1/n
= ngrfoo P.(X,=vy) 8.1)

exists with 1 < R < o0, and is independent of z,y € E. Using [45, Lemma 1], the
assumptions of [45, Theorem 1] can be stated as follows: there exist a non-empty set
K C F and x(y € K such that

(a) there exist ¢y > 0 and a constant C; such that, for all z € K and all n > 0,

IPI(TL < 0Ok /\Ta) < Cl(R+€o)7n,
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where ok is the first return time in K

o :=inf{n >1,X, € K}.

(b) there exists a constant C5 such that, for all x € K and n > 0,

P.(n < 19) < CoP, (n < 79);

(c) there exist ng > 0 and a constant C'3 > 0 such that, for all z € K,
P, (T2 < no) > Cs,
where we recall that Ty, :=inf{n € Z; : X,, € L} forall L C E.

Let us first prove (E1). By aperiodicity and irreducibility, there exists m; > 1 such
that, for all n > mq, P, (X,, = z¢) > 0. Combining this with (c), the Markov Property
entails that, for all z € K,

IPx(Xn0+m1 = CCO) >C3 mlSk’H%ifg)-Fm1 Py, (Xk = IO)-
This is (E1) with v = §,, and ny = ng + my.
We now prove (E2) and (E4). Condition (a) implies that

(74 3) sy By |tcn, (R4 5)™7) | = spy [ (m4 5)™ | <o

For all z € E\ K, the irreducibility assumption implies that there exist y € K and
n =n(z,y) > 1 such that P,(X,, =z and n < ox) > 0. By Markov’s property,

€0 oK NTH €0 O NTH
E, (R+5) >P,(X, =z and n < ox)E, (R+5) .
Since o = Tk almost surely under P, for z € E'\ K, Lemma 3.2 provides a function ¢,
satisfying the conditions of (E2), with 6; := (R + %’)‘1. According to [45, (1.16)], which
holds true under their assumption by [45, Theorem 1], and setting 6, = (R + %") _1, one
has
lim 605"P,, (X, = z9) = +0o0.

n—-+o0o

Using Markov’s property, Condition (c) immediately entails that

lim 65" inf P,(X, € K) = +o0.
n——+00 zeK
Using Lemma 3.1, we deduce that there exists a function ¢ : E — [0, 1] satisfying the
conditions of (E2) and that (E4) holds true. This concludes the proof of (E2) and (E4).
To conclude, Conditions (b) and (E1) imply, for all n > 0,

inf P, (n < 19) > inf Py(n+ni <719) > 1Py (n <719) > a sup Py (n < 7).
yeK yeK ° Cz yeK

This proves (E3) and concludes the proof of Proposition 8.1. O

Remark 8.2. One can actually prove that, in the particular case of a discrete state space
F and aperiodic and irreducible transition probability on E, Assumption (E) is equivalent
to the Conditions (a), (b) and (c) of [45]. Besides the additional properties provided in
Section 2, one of our main contribution in this particular setting is to provide a more
tractable criterion. Indeed, the use of Lyapunov type functions has the advantage to be
quite flexible.
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8.2 Application to the extinction of biological populations dominated by Galton-
Watson processes

In this section, we show how our criteria can be applied to general population
processes dominated by population-dependent Galton-Watson processes. In particular,
we refine existing results for the classical multi-type Galton-Watson process.

More precisely, we consider an aperiodic and irreducible Markov population process
(Zn)nen on Z% = E U {0} absorbed at d = 0 such that, for alln > 0,

|Zn‘
1Zamll <€, (8.2)

i=1
where | - || is a norm on R? and |z| = 21 + ...+ z4 for all z € Z4 and, for all n > 0,
the nonnegative random variables ELZR"), . ,fl(ZZ nl)n are assumed independent (but not

necessarily identically distributed) given Z,, and the families (51(772, z € Zi,l <i<|z])
are i.i.d. forn € Z,.
We assume that

K
E (> "¢ | <mllzll, VzeZd such that [z] > ng, (8.3)
=1

for some m < 1 and ng € IN. This means that the population size has a tendency to
decrease (in mean) when it is too large. This also implies that 79 < oo a.s.
In the following theorem, R > 0 is the limiting value defined in (8.1).

Theorem 8.3. Assume that (Z,,n € Z,) is aperiodic irreducible, that it satisfies the

assumptions (8.2) and (8.3) and that, for some qq > 10;(2%/1371,) V1,

sup  E[(6))"] < oo,
ZEZi, 1<i<]z|

Then Condition (E) holds true with ¢ (z) = ||

9, forall g € (%vmo .

Remark 8.4. This result easily applies if supcz¢ 1<i<s| E[(ff;))q] < ooforall ¢ > 0. In

other cases, we need an upper bound for R > 0 to check the assumptions of Theorem 8.3.
For instance, one may use the fact that R <1/ SUp ez P.(Z, = z). One may also use
Lyapunov techniques, in the same spirit as in Section 4.15 for diffusion processes.

Remark 8.5. A particular case of application of the above theorem is when 7 is obtained
from a Galton-Watson multi-type process (see below for a more precise definition)
with additional population-dependent death rates. For example, one can assume that
additional death events may affect a fraction of the population, modelling global death
events. In this case, compared to the Galton-Watson case, the independence between
the progeny of individuals breaks down. Another situation covered by the above result
is the case where the domain of absorption of Z is a larger set than 0, for example the
process may be absorbed when it reaches one edge of Zi (i.e. when one type disappears).
Another typical application of Theorem 8.3 is the case of population-dependent Galton-
Watson processes, i.e. of processes such that, given Z,, Z,,41 is the sum of |Z,| i.i.d.
random variables whose law may depend on Z,,. In this situation, Theorem 8.3 and its
consequences stated in Section 2 generalize the results of [55] to the multi-type situation
and provides finer results on the domain of attraction of the minimal quasi-stationary
distribution. The reducible cases considered in [55] can also be recovered using the
criterion of Theorem 6.1 in Section 6.1 or the criteria of [28]. Of course, the above cases
may be combined.
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Let us now consider the case of multi-type Galton-Watson processes. A Markov
process (Z,,n € Z.) evolving in Z¢ = E U {0} absorbed at 0 = 0 is called a Galton-
Watson process with d types if, foralln > 0and all¢ € {1,...,d},

d zk
Zhr = ZZC(" ) (8.4)
k=1 ¢=1

where the random variables (¢, (n 9

such that, for all & € {1,..., }, (Ck’1 ,...,Ck’d’z))mg is an i.i.d. family. We define the
matrix M = (Mk,;)1<k,i<q of mean offspring as

ey Ck d )n’(’k in Z, are assumed independent and

My, = E((Y), Whiie{L,...,d},

and assume that M, ; < 4+oo and that there exists n > 1 such that [M"];; > 0 for all
ke {l,...,d}.

Using the classical formalism of [59], we consider a positive right eigenvector v of the
matrix M of mean offspring and we denote by p(M) its spectral radius. The sub-critical
case corresponds to p(M) < 1. It is well-known [64] (see also [60, 2]) that this implies the
existence of a quasi-stationary distribution whose domain of attraction contains all Dirac
measures (a so-called Yaglom limit or minimal quasi-stationary distribution). The authors
also prove that vggp(| - |) < oo if and only if E[|Z1|log(|Z1]) | Zo = (1,...,1)] < co. While
the following result makes the stronger assumption that E[|Z1]|% | Z; = (1,...,1)] < oo
for some ¢y > 1, we obtain the finer results of Section 2, including a stronger form of
convergence (in total variation norm with exponential speed), a non-trivial subset of the
domain of attraction of the minimal quasi-stationary distribution and stronger moment
properties for this quasi-stationary distribution.

Corollary 8.6. If (Z,,n > 0) is a d-type irreducible, aperiodic sub-critical Galton-Watson
process, and if, for some qg > 1,

E[|Z)]® | Zo = (1,...,1)] < o0,

then Condition (E) holds true with p1(z) = |z|? for any q € (1,qo]. In particular, the
domain of attraction of vgsp contains all the probability measures such that u(] - |?) < oo
for some q > 1.

This corollary easily derives from Theorem 8.3. Indeed, setting ||z|| = (v, z) and
& (Zn) _ Z? 105 (,g" 0 (assuming that ¢ is the ¢ — th individual of type k in the population),

7,mn

one obtains
|Zn|

Zn
1Zarall = > €%
=1

and
[Zn|

d zr d
B (el 4= | =303 u (57) = sl

k=1¢=1 j=1
for all z € Z‘i. Since, in the case of multi-type Galton-Watson process, one has R =
1/p(M) (see for instance Theorems 2 and 3 of [64]), Theorem 8.3 applies with m = p(M).

To prove Theorem 8.3, we use the following lemma.
Lemma 8.7. For all q € (méo(lm V1 qo} there exists a constant C,; such that, for all
d
z €79,
2| a

E D68 ~BEl) | | <Cylzv@r2,

i=1

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
Page 46/84


https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

General criteria for the study of quasi-stationarity

Proof. If ¢ € (1,2], this is exactly Lemma 1 of [29]. If ¢ > 2, Burkholder’s inequality [12]
implies that there exists a constant ¢, such that

2 “ 2 )\ 42
Bl (Y e —mEl) | | e | |2 {7 Bk}
i=1 i=1
i q/2
q/2 1 & () 2
= ¢|+|"E 4;§X£ G}
q
S%MWE i)
S%MWE E(¢())
<2022 sup E[(ER)),
zeZi,1§i§||

where we used Jensen’s inequality in the third line, that the r.v. fz(zn) are nonnegative in
the fourth line and Holder’s inequality in the last inequality. O

Proof of Theorem 8.3. We introduce an increasing sequence (Kj, k > 0) of finite subsets
of Z4 \ {0}, where K}, is the smallest set containing {z € Z% : 1 < |z| < k} such that the
process Z restricted to K is irreducible and aperiodic. The existence of this set follows
from the irreducibility assumption and the fact that Zi is countable. We shall choose
K = Kj, for an appropriate value of k£ > 0.

Fix ¢ € (bé"ﬁw“ qo], 6, € (m9,1/R), 6, € (61,1/R) and o,(2) = ||2||9. Using

Minkowski’s inequality in the first inequality, Lemma 8.7 in the third line and the
equivalence between norms on ]Ri,

q q
|zl |2l

Sl < B> e -Bel)

i=1 i=1

1/q 4
< | (@)™ e

q
= m||2]|7 (14 /A1)

< 7 + Cy 2711002,

A

Pipi(2) =E

(8.5)

for constants C; and C} only depending on ¢ and m. Since ¢ — 1+ 1/(¢ A 2) < g, there
exists k; > 0 such that, forall z & Ky,

Prp1(2) < 0101(2).

We also deduce that, for all z € Ky,

(8.6)

Pipi(z) < max mi|z)|? 4+ CY|z]1 M) < foo.
€K,

Setting K = K},, we deduce that the first and third lines of Condition (E2) are satisfied.

By definition of R, we have lim,,_, 6; " inf.cx P.(X,, € K) = 400 and hence, using
Lemma 3.1, there exists a function @5 : E — [0, 1] such that the second and fourth lines
of Condition (E2) are satisfied. It also implies that Condition (E4) holds true.
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Since the process is irreducible and aperiodic and K is finite, (3.2) is clearly satisfied
for np = 1 and my large enough, so that Theorem 8.3 follows from Proposition 3.3. O

9 Proof of Theorem 2.1

In all the proof, the constants C are all positive and finite and may change from line
to line. We first assume from Subsections 9.1 to 9.6 that foralln > 0 and all x € F,
P.(n < 75) > 0. The general case will be handled in Subsection 9.8.

9.1 Main steps of the proof

The proof is based on a careful study of the semigroup of the process conditioned
to not be absorbed before time T'. In this section, we give the main ideas and steps of
the proof of (2.1) for the total variation norm || - ||7v := || - [|rv (1) in place of || - |7y (),
and leave the details for the following subsections, where preliminary results and the
following Propositions 9.1, 9.2, 9.3 and Lemma 9.4 are proved. The general case of the
| - l7v(e,) norm is handled in Subsection 9.7.

For any T' € Z., we consider the law of the process X conditioned to not be absorbed
before time T'. We introduce the linear operators (Sg;n)ggmgnST defined by

P_m (fPT—nILE) (x)
PT—m]lE(I) .

St (@) =B(f(Xp) | X =2, T < 19) =

It is well-known that (Sg;,n)(]gmgnST forms a time-inhomogeneous semigroup (i.e.
St Sk, =8I forallm < n < p < T) and that the process (X,,0 < n < T) un-
T

m,n

T
der IP;E"" is a (time-inhomogeneous) Markov process, where we denote by IPf“" the law
of the process (X,,,0 < n < T) conditionally on T' < 79 and X, = z.
Fix 6 € (61/62,1). For any T > 0, we set, for x € E,

T
/(/)T(x) = Ex(e_TK/\T | T < Tg)) = Efﬂ,» (Q—TK/\T) ’
where
Tx :=inf{n € Z, : X,, € K}

is the first hitting time of K by the process (X,,,n € Z.). Be careful that T is not the
first hitting time of K by the full process (X;,t € I), unless I = Z,..

The following proposition provides a Lyapunov-type property for the inhomogeneous
semigroup S.

Proposition 9.1. There exists a constant C > 0 such that, for all 0 < m < T and
1<k<T—m,

ST k¥ — (i) (@) < O Yr_p(2) + C, Va € E. 9.1)

The next proposition provides a Dobrushin coefficient-type property for the inhomo-
geneous semigroup S.

Proposition 9.2. There exists a constant g € (0, 1) such that, for all R > 0, there exists
kr > 1 such that, for all T > kr and all z,y € E such that ¥ (z) + ¢¥r(y) < R, we have

H(;wsgjkﬁ. - 6ysg:kR”TV <2(1- 040).

The following property is a consequence of the two previous ones.
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Proposition 9.3. There exist constants ng > 1, C > 0 and a € (0,1) such that, Vn > 1
and all z,y € F,

12865mn = Oy Soimen| gy < CA™(2+ Yngn(2) + Pnon(y))-

Let us now deduce (2.1) with the total variation norm in place of | - ||y (,,), from the
last proposition. We have, for all z,y € E,

H(Sa:Pnng - 5$Pn7lo]lE 6yS&?g7L|‘TV

S Can (261Pnng]lE + Eac (e_TK/\nnO]lnno<‘ra) + ¢non(y)5xPnno]lE) .

Hence, for any probability measure ;. on E, integrating the above inequality over u(dz)
leads to

||Hpnno - ,U'Pnno]lE 59561(;1717LHTV

<Ca" (2/J’Pnn0]lE +E, (Q_TKAnnO]lnno<Ta) + wnon(y)ﬂpnno]lE) :
We make use of the following lemma.
Lemma 9.4. For all § € (6,/0-,1), there exists a constant C such that, forall0 <m < T
and all probability measure p over E such that u(ps2) > 0,

p(p1)
p(p2)

This implies that, for all x such that u(ps) > 0,

E, (0" ,,)<C P, (T < 19).

||,UJPnno - 5yS(TJL,C;LZn#P7m01EHTV

1(p2)
Hence
/U‘PTWLU non n ( :u(spl) )
—— — 6,50, <Ca" |2+ + ¥, .
H /J'PnnO]lE v 0mo TV ,UI(QD2) w Lon(y)

Using the same procedure w.r.t. y, we deduce that, for any probability measures ;1 and
p2 on E such that pq(p2) > 0 and pa(v2) > 0,

‘ <o (B2 263).

where we used the fact that u(p1)/u(e2) > 1 for all probability measure p on E such
that u(p2) > 0.

Because of Lemma 9.6 below, we deduce that, for some constant D; > 0 and for all
0< k< no,

Therefore, up to a change in the constant C' and replacing a by o'/, we deduce that,
for all probability measures u; and us on E such that uq(¢2) > 0 and us(¢2) > 0 and for
alln >0,

H1 Pnno M2Pnn0

Hanng]lE .U2P7m0]1E

TV

Nlpnno+k /~L2Pnng+k

/J/IPnno—i-k]lE M2Pnno+k]lE

P P
< Ca” (/h kL1 + H2 k:sD1>
1 Pro2  paPrps

n [ B1(e1) pa(p1)
= Co (Ml(sﬁz) VO p2(p2) v Dl) '

TV

H NJan N2Pn
mPoly P lg

< Cam (Ml(@l) n Mz(sﬁl)) . 9.2)

TV p(p2)  p2(p2)
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; _ — P ; B
Fix zyp € K. We set 1 = 0, and po = ngﬁE in (9.2). Since Mi@; < oo and because of

Lemma 9.6 below, we have % < 0o. We deduce that, for some constant C > 0,

and hence, using the completeness of the space of probability measures on E for the
total variation norm, we deduce that there exists a quasi-limiting measure vgsp (which
is hence a quasi-stationary distribution) such that

61:0 PnJrl 51:0 Pn

— < Ca",
6320P7L+1]1E 63?0P7L]1E

TV

Oz P 2C
Y — UV o .
SuPully 2P|, T 1-a
In particular, it follows from Lemma 9.8 below that vgsp(K) > 0 and hence that
vosp(p2) > 0. Since Lemma 9.6 implies that g"%m is uniformly bounded in n > 0, we

deduce that vgsp (1 A M) is bounded uniformly in A/ > 0 and hence vgsp(p1) < oo.

Using (9.2) again (up to another change of the constant (), we obtain that, for all
C)

probability measure p on E such that (o) < 00
by n (1)
— VOsSD S Ca .
H Py %P, e

This also entails that there exists a unique quasi-stationary distribution such that

vQsp(p1)/vgsp(ps) < oo.
This ends the proof of (2.1) for the total variation norm. The general case with the

norm || - |7y (,,) is proved in Subsection 9.7.

9.2 Preliminary results
We start by proving two basic inequalities which are direct consequences of (E2).
Lemma 9.5. Forallz: € E\ K and alln > 0,

]Pz(n < TK A 7_8) S Ex[sol(Xn)]ln<TK/\'ra] é 9?@1(1')

Forallx € E andn > 0,

IP,;(n < Ta) > Ez[¢2<XN)]1n<Ta] > 93902(55)-

Proof of Lemma 9.5. These two properties follow easily by induction from (E2). For
example, the first one makes use of the following relation: foralln > 1 and x € F,

I, [‘Pl(Xn)ﬂn<TK/\Ta} = IlocEE\K Py [E (‘Pl(Xn—l)Iln—1<TK/\Ta)] (I)
This and (E2) entail the property at time n = 1 and, by induction, at any timen > 1. O

The next lemma states that the expectation of ;1 (X,,) is controlled by the expectation
of p2(X,,) uniformly in time.

Lemma 9.6. For all § € (01/02,1], there exists a finite constant Dy > 0 such that, for all
probability measure p on E such that p(p1)/1(p2) < oo, forallT € Z and allz € E,

#Pren <9T“(m> v Dy. (9.3)
uPrps w(p2)

Proof of Lemma 9.6. It follows from (E2) that

uPri1p1 < O1uProy + CpuPrig
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and
uPr 102 > 021 Prps.
Hence
wPri1o1 < 01uPro1 + CuPrlg(x)
wPri1ps — 0211 Pripo
<Ohpbron, C ‘
02 wPros  Oxinfyci pa(y)
Since 6, /62 < 0, these arithmetico-geometric inequalities entail (9.3). O

We now give an irreducibility inequality.
Lemma 9.7. For all C > 1, there exists a time n5(C) € IN such that

5( ) HEM(E) s.t. u(p1)<Cu(p2) N( 5(C) ) ( )

Proof of Lemma 9.7. It follows from (E4) that there exists a time n, € IN such that, for
alln >n,, P,(X, € K) >0, and, using (E1), that for all n > n, + ny,

inf P, (X, € K) > e1Py(Xyon, € K) > 0.
fAS

Let C > 1 and p be such that pu(¢1) < Cu(yps2). It follows from Lemma 9.5 that, for all
n>1,

Pu(Tk N1o >n) < By [o1(Xn) L1 arp>n] < 071(p1) < COT p(p2).
and
Pu(n < 7o) = Eulp2(Xn)] = 05 u(p2).
Therefore,
P, (T <n <T19) = (05 — COY) u(p2).

Choosing n(C) = [2C/log(62/61)], we deduce that

en(C) en(c)
Pu(Ti <n(C) < 79) = Z5—plp2) = =5

Therefore,

]P[L(X’I’L(C)+ny+n1 € K) > Eu ]lTKSn(C')]PXTK (Xn(C)+ny+n17k: € K)‘k:TK:|

9;(0)
> i inf P, (X, € K .
- nu+n1§kglnljl+m+n(0) ek (X ) 2C
Hence we have proved Lemma 9.7 with n5(C) = n, + ny + n(C). O

The next lemma shows that conditional distributions with initial conditions in K give
to K a mass uniformly bounded from below.

Lemma 9.8. There exists a time ng € IN such that

inf inf Py(X7 € K |T <79) > 0.
T>ne xeK
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Proof of Lemma 9.8. Since ¢1/p2 is bounded over K, we deduce from Lemma 9.6 that,

setting C' := D1 +sup,cg z;gig we have for all z € K and all T' > n5(C),

Pr_..c)p1(z)

< C. (9.5)
Pr_p.o)p2(z)

82 Pr—ng(c)

Using Lemma 9.7 applied to p = [

T > ns5(0),

, we deduce that, for all x € K and

P, 1
Po(Xr € K|T <) =K 5 po)lk > a5(C). O
wPns o) le
The next lemma shows that survival probabilities are controlled by the function ;.

Lemma 9.9. There exists a constant C > 0 such that, for all p € [1,log6,/logbs), x € E
andn > 1,

1/p
P.(n <715) < C% inf P, (n < 15). (9.6)
1-6, Ploy veK
Proof of Lemma 9.9. It follows from Lemma 9.5 that, forallp > 1,2 € F\ K and n > 1,
P.(n < Tk A7o) < 07701 (z)'/7. (9.7)

Note that this inequality is trivial for € K. In particular, for p > 1 such that 9% /P < 05,
forall x € K,

]Ez(92—TK/\T6) < 901(1»)1/17

< /. (9.8)
1017 /6,

Fix p € [1,1og0;/log6s3). Using (9.7), the second inequality of Lemma 9.5 and (E3),
we have forall x € F

P.(n<719)=P,(n<Trg A7) + Pu(Tk ANTo < n < 7p)
<5 ()P + ZPI(TK AN1g=k)sup Py(n —k < 79)
k=0 yeK
infzeK IPZ(’H, < Ta)
inf,ex w2(2)

1/p - i _
(pl(iE) +63kZ:OIPx(TK N Ty k)ylgf{IPy(n k<7’a)

< C inf P 1/p inf P P, (T = k)05 "
< Czng 2(n < 79) 1(x) +02ng 2(n< Ta)kz_% (T N1o = k)05 ",
(9.9)
where we used the fact that, for some constant C > 0, foralln > k£ > 0and all z € K,

P.(n < 79) > CO4 iglf(IPy(n —k < 719). (9.10)
y

This is proved using the three following equations. For all n > k > ng and all z € K, by
Lemmata 9.8 and 9.5,

P.in<19) >P(Xr € K|k <T19)P.(k <75) ig}f(IPy(n —k <T9)
y
> CO5pa(z) inf Py(n—k < 7p)
yeK
> C05 inf Py(n—k <
= 2yng y(” Ta)v
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since inf,c g ¢2(2z) > 0. Also, for all n > ng > k, using the last inequality,
P.(n <71p) > CO3° inf Py(n—ng < 7y)
yeK
> C0% inf PP —k
> C03° inf Py(n —k <)
> (C05°) 05 inf Py(n—k < 715).
yeK
Finally, for all £ < n < ng,
P.(n<719) >P,(ng <719) > COF® > (0936)95 ig}f{IPy(n —k < T19),
Yy

s0 (9.10) is proved.
Combining (9.8) and (9.9) ends the proof of Lemma 9.9. O

9.3 Proof of Proposition 9.1
Markov’s property implies that, forallz € E\ K and T,m > 1,

ngllﬂT,1($) = S£T$+11/JT,1(.’17) = QI/JT(.’L‘) (9.11)
Indeed,
Ex(oliTKAT1T<Ta)
(@) = —p T <)
E, [Li<,Ex, (0-T«"T=D | T -1 < 79)Px, (T — 1 < 79)] T
= = Sp1¥r-1(z).
IPZ(T < Ta)
Similarly, for all x €K,
58. (p—ox
Sgatr—1(x) = Syt roa () = OB (077%"T), 9.12)

where
ok :=min{n >1, X, € K}
is the first return time in K. Setting

ST
C := sup sup E,* (#~7x"T),
T>02€K

which is finite (see Lemma 9.10), we can apply recursively (9.11) and (9.12) to obtain

SZL,77L+I€77Z)T—(W+/€) = S’rjr:,m+k—1 (]lE\KSTJr:—&-k—l,m-i-k(¢T—(m+k)))
+ S make1 (L Skt ma e (VT (ms k)
< 9S£,m+k—11/1’f—(m+k—1) +C0

k

< LSO (z) +C Y 0"
(=1

Hence Proposition 9.1 follows from the next lemma.
Lemma 9.10. For all § € (6,/62,1),

56, 1 p—
sup sup ;% (0775 ) < .
T>0xeK
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Proof of Lemma 9.10. Fix x € K. On the one hand, by Lemma 9.9 (with p = 1), we have
forany 1 <n<T,

P,(n<ogand T < 719) = E;(Lncopnr, Px, (T —n < 7))
< Cylg}f( IPy(T —n< Ta)]EI(]l’I’L<O'K/\T{)<p1(X’I’L))'
Using (E2) and Markov’s property as in the proof of Lemma 9.5, we deduce
P,(n <oxand T < 15) < C inf P, (T —n < 75)0} ' Py () (9.13)
Yy
< C inf P,(T —n < 79)07. (9.14)
yeK

On the other hand, Lemma 9.8 implies the existence of a constant C' > 0 such that, for
all x € K and all n > ng,

P.(X, € K) > CP,(n < 79).
We deduce from Markov’s property and Lemma 9.5 that, for all T' > n > ng,
P,(T <79) > Pu(X,, € K) yigé]Py(T —n < Tp)
> CP,(n < 19) ylglf(IPy(T —-n<T)
> Coy ylél}f{IPy(T —n < Tp).

Combining this with (9.13), we finally deduce that there exists a constant C' > 0 such
that, forall z € K and all T' > n > ng,

0 n
IPx(n<UK|T<Ta)§C<91> . (9.15)
2
The extension to any T' > n is trivial, so the conclusion follows. O

9.4 Proof of Proposition 9.2
We start by stating a lemma proved at the end of this subsection.
Lemma 9.11. Forallz € K andn; +ng <n<T,

P.(X, € |T <79) > cv, (9.16)

where the measure v and the integer ny are the one of Condition (E1), the integer ng is
from Lemma 9.7 and ¢} > 0 is independent of x,n and T.

Fix 6 € (601/62,1) and set kg = [log(2R)/log(1/0)] + n1 + ne and fix T' > kr. For all
x € E such that ¢p(z) < R, Markov’s inequality implies that

st R 1
]PI(TK>]€R77L1777J6 |7_'<7_3):]P;1;0Y (TK >k'R*TL1*TL6) S m S 5
It follows from Lemma 9.11 that, for all measurable A C E,
PO (X e ) > E, [ZIZZ”I*% Ury=kPx (Xppn € A, T =k < Ta)]
e \ha = P, (T < 75)
B [T kP (T k< 7o)
>
z av(4) P, (T < 1)
= CIIV(A)]PQE(TK S ij — N1 —Ng | T < Ta)
1
Z §C/]_Z/(A)
This concludes the proof of Proposition 9.2 with «g = ¢ /2.
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Proof of Lemma 9.11. For all measurable set A C K, we deduce from Markov’s property
that, forallx € K and all T > n > ny + ng,

P,(X,€A T<19) >E, []an—n1€K ]EXn—nl (]anleAIPan (T—-n< Ta))]
>E, [1x,_, ek Px,_, (Xn, € A)] ylgf( Py (T —n < 7p)

Y

V(AP (Xpn—n, € K) 1g]f( P, (T —n < 15), (9.17)
y

where we used (E1). Now, using Lemma 9.9, we deduce that there exists a constant
¢ > 0 such that

P (T <79) <P(T —n1 <79) =By (In—n,<r,Px,_,, (T —n < 7p))

< By (Ln—ny<rp©1(Xn—n,)) inf Py(T —n < 75).
yeK

Since 1 (x)/p2(x) is uniformly bounded over z € K, Lemma 9.6 implies that there exists
a constant ¢/ > 0 such that, for all z € K,

E; []ln—n1<TaS01(Xn—m)] < B, []ln—n1<TaS02(Xn—n1)] <P, (n—mn1 <7p).

But n — ny; > ng, hence Lemma 9.8 entails that there exists a constant ¢/ > 0 such that,
forallz € K,

P,(n—n1 <79) <"Pp(Xp_pn, € K).
Hence we obtain

P.(T <79) <cd " Py (Xp—p, € K) inf P,(T —n < 19).

yeK
Combining this with (9.17), we obtain
C1
This ends the proof of Lemma 9.11. O

9.5 Proof of Proposition 9.3

We transpose the ideas of [57] (see also [58]) to the time-inhomogeneous setting.
We fix the constants R = 4C/(1 — ) and 8 = «y/2C, where C is the constant of
Proposition 9.1. Forall 7 > 0 and all ¢ : E — R, we set

B lo(x) — o(y)]
llelll- = ms;lepE 2+ Byr(x) + Bvr(y)
< 1. Then,

Fix n and T > 0 such that (n + 1)kr < T and let ¢ be such that |||y, 1y, <
replacing ¢ by ¢ + ¢ for some appropriate constant ¢, one has [p| < 1+ B¢p_(n11)k, (Se€
Lemma 3.8 p.14 in [57]).

If 17— nkp (@) + Y7_niy (y) > R, then, using Proposition 9.1,

kaR,(nH)ka(w) - SgkR,(nH)kR‘P(y)
<24 08U iy (€) + 08%T iy (y) + 28C
<2+ (04 (1—0)/2) (BY7r—nkp (@) + BYT—nkr ()
—(RB)(1—0)/2+2pC
< (1= a1)(2+ BYr—nkp () + BYT—nkg (7)),
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where a; € (0,1) issuch that 2+ (0 4+ (1 —0)/2)y < (1 — a1)(2 +y) for all y > BR.
If Yr_nkp () + Yr_nky (y) < R, then, considering
p=¢ +¢"

with |¢’| <1 and [¢"”| < BYr—(nt1)k,, Propositions 9.1 and 9.2 entail

kaR,(nH)ka(fc) - SZkR,(nH)kR‘P(ZU)
<

2(1 — ap) + BOVT —nky (%) + BOVT _niy (v) + 2BC.

Our choice 3 = ag/2C implies that

Sk (nt 1)k P(E) — SEkR7(n+l)kR¢(y)’ < (1= @2) 2+ BY7r—nkn (T) + BYr—nks (Y)).

for the constant ay = 52 A (1 —6) > 0.
Hence, we obtained

|

which implies by iteration that

This concludes the proof of Proposition 9.3.

< (L=on Aaa) ol gy

T
SnkR,(n—&-l)kR(meinkR

SnkR

0,nkr ¥ <A —arna)[lelly < (1 =1 Aaz)[l@llee/(1 4 B).

nkR

9.6 Proof of Lemma 9.4

This lemma in a generalization of Lemma 9.10. Its proof is based on similar computa-
tions. We give the details for sake of completeness.

For all probability measure p on F, for any 0 < n < 7T, using Lemma 9.9 for the
second inequality and Lemma 9.5 for the third inequality, we have

P,(n<Tkxand T < 79) < E,(Lp<rPx, (T —n < 7))
< C inf Py (T —n < 70) By (In<ric p1(Xn))

< C inf Py (T —n < 79)07 1(p1). (9.18)
yeK
For all integer n > n,,, where

u(p1)
Do p(p2)

log(1/6) |’

log
ny, = |[ns5(Dg) +

it follows from Lemma 9.6 that

Py )1 _ 1y, <9”"5<D9)M> < Dy
,U/anfns(Dg)SOQ /’L(SO2)

and from Lemma 9.7 that

an]lK
—_— > D 0.
MPn]lE o a5( 9) ~
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Therefore, we obtain from the Markov property and Lemma 9.5 that
P.(T <7m)>P,X, € K) Jg’(IPy(T —n < Ty)
> as(Dg)P,(n < 75) ylg}”{ P, (T —n <)
= a5(Dg)03 1i(ip2) inf Py(T'—n < 7).

Combining this with (9.18), we obtain that, for all n > n,,

9 n
P, (n< Ty and T < 75) < —© (1) u(wl)IPH(T<Ta).

as(Dg) \02) p(p2)
Hence
- p(p1)
E“ (9 TKAT]ITKZnW T<Ta) S C/L((,OQ)PH (T < 7'3) .

We deduce that

Eu (e—TK/\T]lT<Ta) < <C:U’((pl) + e—nu) IPH (T < 7—8) .
1(p2)

0*(77'5(D9)+1)'u(@1)

. —n,
Since 7" < Dop(p2)

, we have proved Lemma 9.4.
9.7 Conclusion of the proof of (2.1) for the norm || - |7y ()

For all n > 1, we introduce the linear operator on L>(y1), defined for all h € L> (i)
as

Ruoh(2) = By (M(Xp) 11y <ner,), Vz€ E. (9.19)

Note that this operator is well-defined since |R,h(x)| < ||| 1o (p,) Pa1(x) < co. We first
give some properties of R,, which can be seen as a bounded approximation of P, in

L (1).
Lemma 9.12. We have

R := sup sup R,,¢1(z) < oo,
n>lzcE

and foralln>1andx € E,
0 < Pupi(z) — Rupr(z) < 07 p1(2).

Proof. Using Markov’s property,

Ropr(z) = B[k Poripr (X))
k<n

< sup Prpi(y) Po(Tk <n)
yeK, k>0

P,
< sup M < D1V sup 1)

veK, k>0 Prp2(y) yek P2(y)

< 400

by Lemma 9.6. This proves the first inequality. For the second one, we observe that for
allz € E,

Pn(pl(x) - Rnsol(x) = Ez(sol(Xn)]ln<TK) < 0?901(33)

by Lemma 9.5. O
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We fix 1 < k < n, h such that |h| < ¢; and p such that p(p1)/u(p2) < Dy, where
0= 1+921/92 and Dy is from Lemma 9.6. The inequality (2.1) with || - ||7v in place of
| - l7v(4,) and Lemma 9.12 entail

uPn i Rih
uPn i 1g

—vgsp(Rih)| < Ca™* Gy sup |Rih(z)] < CDyRa™F.
1($2) zeE

The second inequality of Lemma 9.12 implies
vasp[(Py — Ri)h]| < 0tvosp(#1)
and, by Lemma 9.6,

Py n(Ps — Ri)h P,
pPr i (B — Ry) < geP PPt _ g (De y M(<P1)> — 05Dy,
uPn i 1g PPk p2 w(p2)

Combining the last three inequalities and recalling that vgsp Prh = GISVQS p(h), we
obtain that, for some constant C > 0,

uPyh
9’5HPn—k11E

— Z/QSD(}L)‘ S C (Oznikeo_k + (91/00)k) .

Applying the last inequality to h = 1, we obtain

1 1
ngﬂpn,k]lE ,upn]lE

Cla" 05" + (61/60)*)
,UPn]IE

<

so that, using Lemma 9.6,

uPyh uPyh

Ggupn,k]l}; ,UPn]lE

P, ke
< C(a" 05"+ (01/00)") S 5" < CDy(a" 405" +(61/00)").

Hence, for some & < 1, foralln > 0,

’ uP,h

wP, g - VQSD(h)’ < C(an_kaak + (91/90)k) <Cca".

Dy according to Lemma 9.6. We deduce from the previous inequality applied to
wPr/uPrlg that, for alln > 0,

Finally, if pu(¢1)/u(p2) > Dy, thenlet T = {W‘”‘(ﬁww so that uPry;1/uPres <

while, using again Lemma 9.6, we obtain, foralln € {0,7 — 1},

(1) n (1)
— v SDh‘ng\/(G >+I/ splp1) < CH
asp(h) 1(p2) (e1) 1(p2)’
The last two inequalities conclude the proof of (2.1) with @ = @ Vv 0 and hence of
Theorem 2.1.

9.8 The case where P, (n < 79) =0 for some x € Eand n > 1

In this section, we assume that X satisfies assumption (E), but we do not assume
anymore that P,(n < 79) > 0 for all z € F and all n > 1. We introduce E = {z €
E, P,(n<79)>0Vn>0}and E = E\ E. One immediately deduces from (E2) that, for
allz € Eandalln >0, p2(z) = 0 and P,(X,, € K) = 0, and hence that 6, P,,¢1 < 071 ()
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by Lemma 9.5. In addition, one easily checks that the semi-group P restricted to £ U {9}
still satisfies assumption (E), and in particular (2.1) applies.
Let p be a probability measure on E such that u(p2) > 0 and u(p1) < +o0. Then, for
alln > 0and all || < ¢,
|,upnh - VQSD(h),UPn]lE| < |ﬂpnh - ﬂ\E‘Pnh| =+ |N|EPnh - VQSD(h),UqEPn]lE
+vgsp(e1) |wePale — nPolg|.

Each term can be bounded as follows:
|uPuh — g Pah| < g Papr < 07 i,

we(e1) HpPalp < Co” (1) WP,
M\E(Wz) 1(p2)

vQsp(p1) |1 g Pals — nPale| < vosp(p1)i g Papr < vosp(p1)8f 1.

|15 Pub — vosp (W)p pPale| < Ca™

Since pP,1g > 0% u(p2), we deduce that

uPph
anllE

~—

—vosp(h)| < ((61/02)" +vqsp(p1)(01/02)" + Ca™) ugi; '

~

=

This concludes the proof of (2.1) in the general case.

10 Proof of the other results of Section 2

The previous section ensures the existence of a quasi-stationary distribution vgsp
such that vgsp(p1) < +oo and vgsp(K) > 0. Denoting by 6y its associated decay
parameter, we observe that 65 < 6, since Lemma 9.5 entails that, for alln > 1,

06 =Puqsn(n < 70) 2 vosp(K) inf Py(n < 75) 2 vosp(K)0y inf 2(y).

We begin to prove Theorem 2.3 in Section 10.1, except for the exponential conver-
gence in L*™(¢1). We then prove Theorem 2.6 in Section 10.2. In Section 10.3, we
conclude the proof of Theorem 2.3 and prove Corollary 2.7. We prove Corollary 2.11 in
Subsection 10.5.

10.1 Proof of the existence of the eigenfunction 7

In this section, we show that the limit (2.2) is well defined pointwise, vgsp(n) =1,

Pin = 6y, n is lower bounded away from 0 on K and n € L°°(<p11°g(1/0°>/log(l/el)).

Foralln > 0and z € E U {0}, let us denote

IPJC(TL < Ta)

Mu(x) =05 "Py(n < 19) = P

vQsD (n < 7_3) .

By Lemma 9.9, forall x € F,

nn(z) < CO™ inf Py(n < 19)p1(2)
yeK
C Cp1(z)

< Py, (n< - .
= ) 0 Qs (n Ta)(p1($) VQSD<K)

10.1
vosn (K (10.1)

This implies that the sequence (7,,),>0 is uniformly bounded in L*(¢1).
For all probability measure p on F and for all n,m > 0, by Markov’s property,

1(Mntm) = () E, [QSmPXn (m <79) |n< 7—8] .
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Hence, by Theorem 2.1, for all i such that u(p2) > 0 and pu(p;) < +oo,

(M) — 1(0) | = p(0n) B (0m (Xn) | 7 < 79) — 1
= () [Eu(mm(Xn) | n < 79) — vQsp(m)]
n 1(p1)
1u(p2)”
For any z € E, applying this result to u = (§, + vgsp)/2, we deduce that

< Cu(pr)a

[ntm (@) — ()] < C(,O1(33)204n.

This shows that (7,,(z)),>0 is a Cauchy sequence and hence that, forall z € E,

n(z) = lim 60,"P,(n < 71)

n—+00

and, by (10.1), that n € L>(p4).
Then, since 7, is bounded in L*°(¢;), we deduce by dominated convergence that
vosp(n) =1 and that, forall z € E,

627P177 = nglfoo 51P177n = nEIJIrloo 001771_;,_1(58) = 007](1’) (102)

The fact that n is lower bounded away from 0 on K is an immediate consequence of
Lemma 9.9 (integrating (9.6) with respect to vgsp(dz)) and the fact that vgsp(¢1) <
+00.

It only remains to prove that n € L (cpllog B0/ 1og b1

). To prove this, we use the operator

R, introduced in (9.19). By Lemma 9.12 and using the fact that n € L>(p;), for all
reFl,

n(x) =0y " Pan(z) < CO," [Rup1(2) + (P — Ra)p1(2))]
< C’R@g” +C (Z;) v1(x).

Applying this inequality for n = |—log @1 (z)/log 6; |, we deduce

n(z) < Cexp M log 6y | < C(pl(x)logeo/logfh’
log 91

which concludes the proof.

10.2 Proof of Theorem 2.6

We start with Point (i). We introduce I';, = 1,,<,, and define for all z € E' and n > 0
the probability measure
r,

Iz
n = Pz7
@ E, (T,)

so that the Q-process exists if and only if Q}'* admits a proper limit when n — oo. For
all 0 < k < n, we have by the Markov property
E, (Fn ‘ ]:k) _ ]lk<Ta]PXk (’I’L —k< Ta)
E. (T,) P, (n <719

By the pointwise convergence in (2.2) (proved in Subsection 10.1), this converges almost
surely as n — +oo to

_sn(X _en(X
M, = ]lk<‘r39() kM _ 90 k77( k)

()
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and E, (M) = 6, kP Zz’g) = 1. These two properties allow to apply the penalization’s
theorem of Roynette, Vallois and Yor [94, Theorem 2.1], which implies that M is a
martingale under P, and that Q%:*(A) converges to I, (M;1,4) for all A € F;, when

n — oo. This means that Q, is well defined and

dQ.
dP, | £,

— M,.

Note that the fact that n(z) = 0 for all z € E'\ E’ implies that (X,,,n > 0) is E’'-valued
Q. -almost surely for all x € E’. The fact that X is Markov under (Q,).cr and Point (ii)
can be easily deduced from the last formula (see e.g. [20, Section 6.1]).

It remains to prove Point (iii). We define the function ¢ = @1 /1 X ||| £ (,,) On E.
Note that, since n € L> (1), ¢ is uniformly lower bounded. Moreover, for all z € F’,

= 05 "Il L= 01 c2 [l L ~
J2 _ Y% ¢ p <h (1) 9 <0 =
() = T P () < gla(e) + T (0) < Do) + 7
where 6 = 6, /6, and
~ calnllzee (e
C= ———————
Opinfr n
Hence, forallz € Fand alln > 1,
Pop(z) < 0P, _1p(x) + T < ... < 0"p(x) + " < = (10.3)
Using Lemma 9.5, we have that, for all z € F/,
— Xn n
Qx(TK > n) =E, <90 n(i;(g( ))ﬂTK>n]anEE/> <0 1/}(55) (10.4)

Now, choosing m large enough so that sup,c 0™« [supg ¥+¢/(1—6)] < 1/2, we deduce
that, for all x € K and all ng > 0,

Q.(3n € {no,....no + mg}, X, € K) >1—0"5P, (x) > 1/2. (10.5)

Now, let nx > 1 be such that inf,cx P, (X,, € K) > 0 for all n > ng (such a nx exists by
(E1) and (E4), see the proof of Lemma 9.7) and let

a:= inf inf P,(X, € K) > 0.

ne{nk,...nk+mg} r€K
so that, forallz € K, alln € {nk,...,nx + mx} and all A C F measurable,

007774777,1
n(x) ]EJJ(]an,eK]EXn (W(an )]1an EA))

"™ 0" " v(n) acy
>0 aciv(nly) = L——aciv, (A) > — v, (A),
(@) n() ! cs "
where we used (E1) and (E3) and defined v, (dz) := %. We deduce from the last
inequality and (10.5) that, for all ng > 0,

QJ;(Xn-Hn S A) Z Qw(Xn S K7 X7L+n1 S A) =

no+meg

acy
Qw(Xn0+n1+nK+mK € ) > Z Qm []aneKQXn(Xno+n1+nK+mK7n S )] > Eyn-
n=ng

Hence, forall n > ng + mg + nq,

acy

Q:(Xn€:)>—rv,, Vzek.

263
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For all z € E’, setting k, = [%], it follows from (10.4) that Q. (Tx < k,) > 3,
and hence

acy
Qo (Xkytngtmutn, €)= TVTI'
C3
In particular, for all R > 0, setting kr = (ligl(%} +ng +my+ni, we have, forall z,y € E’

such that ¥ (z) + ¥ (y) < R,

ac
162 Prepy — 0y Pl oy < 1— 4—1. (10.6)

C3
By [57, Thm 3.9], together with (10.3), the last assertion implies that there exist
constants C' > 0 and &; € (0,1) such that, for all real function h on E’ such that

Al < oc,

oo 24+ (@) + 0(y)

This implies (2.4). In particular, for all x € E’,

P.h

| < cariinl, (10.7)

where

||5wﬁn - BHTV — 0.
n—-+oo

Hence, (2.5) is a consequence of Lebesgue’s dominated convergence theorem. This ends
the proof of Theorem 2.6.

Remark 10.1. As noted in [57, Remark 3.10], it is possible to obtain explicit constants C
and «; in (10.7) from the parameters in (10.3) and (10.6) (note that a slight modification

of the proof of Lemma 9.9 entails that one can actually take ¢ = 1_1519/190 < 1_1(419}92 ). More

precisely, setting a = 7 and K =¢/(1 - 5) and v = 0, then taking any ag € (0,) and

2K . _ 2a
R > = and setting b = WRJF‘%K,

24+ byR+byK

= (1 —
ap=(1-a+ag)V ST IR

€ (0,1),

and Cr = 2/b+1+K+K/(17V), we obtain that, for all f € L™ (¢1/7),

QR

P.f - 5(f)‘ < CROZZ/kR||fHLoo(¢1/n)-

10.3 Proof of Corollary 2.7 and end of the proof of Theorem 2.3
Let |g| < ¢1 and set h = ¢g/n. Then (2.4) entails that, for all x € E’,

166 "Ex(9(Xn)lx, err) — n(x)vosp(gle)

< Ca"pi(x).
In what follows, we set v/ = vgsp(- N E’) and, forall k > 1,

gk(x) =lyep B, (]1X1€E’g(Xk)]lk<q—a) .

Note that, defining £” := E \ E’, E” U {0} is an absorbing set. Since K C E’, we thus
have

91(®) < Dpepr By (Tgarinr, 01 (Xi)) < 01 ().
We also define the measure v/ on E” by

I//I = Z GO_Z]EU/ (]]'X1¢E/]]‘Xl€‘) = 290_21/(94).
>1 >1
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Hence we have foralln >1and all z € E’

106 "B (9(Xn)1x,e0) — n(z)"(g)] < Z 106 " Ea(9e(Xn—r)) — 96677(17)1/(94)’
<3051 [0 "B (ge(Xame)) = (@) (90)]

< Z 05 01(2)Ca™ | gell Lo (1)
n i L
< Cor(x) <1> a"t.
= \bo

We thus proved that, setting v = v/ + v/, and up to a change in the constants C and a,
forallz € F/,

|90_n]Em(g(Xn)1n<Ta) - 77(-77)1/0(9)| < C@n901(56)-

Now, by Lemma 9.5, for all z €”, |E,g(X,,)1,<r,| < 07p1(z). This, we have proved that,

up to a change in @, forall x € F,

165" Ex (9(X)) — n(@)m(9)] < Ca" (x). (10.8)

Integrating with respect to vgsp shows that vy = vggp. Thus, we have proved (2.6).
To conclude, we can now end the proof of Theorem 2.3. Indeed, taking g = 1
immediately entails that the convergence (2.2) is geometric in L (7).

10.4 Proof of Corollary 2.10

If n(z) > 0, it follows from Corollary 2.7 and the fact that vggp(p2) > 0 that there
exists k > 0 such that §,Pyp> > 0. Hence E' C {& € F : 3k > 0, Pypa(z) > 0}.

Conversely, if P,y2(z) > 0, we apply Theorem 2.1 to y = 53}{{}3. Since vgsp(n) > 0,
n+k
there exists n > 0 such that 0 < /ﬁ”}: ’i’; = 5‘1}1212’;12 =5 }0,:+kﬂE77(at). Hence we have

proved that B/ = {z € E : 3k > 0, Pypa(z) > 0}.
The fact that any p such that u(E’) > 0 and u(gai/p) < +oo for some p < log 6/ log 02
belongs to the domain of attraction of vggp follows from Remark 2.2 and Corollary 2.7.
In the case where ¢; is bounded, the domain of atttraction contains all measures p
such that pu(E’) > 0. If u(n) = 0, then pPyn = 0 for all k£ > 0, which means that p Py, gives
no mass to E’. Hence the convergence of conditional distributions to vgsp cannot hold
true. The uniqueness of the quasi-stationary distribution follows immediately.

10.5 Proof of Corollary 2.11
Applying (2.5) with u(n-)/p(n) instead of u and recalling that u(E \ E’) = 0, we obtain

sup 9_”M—B(f) — 0.

FIE SR, || flleo<1 0 w(n) n—+oo
This entails the convergence result (2.7).
Assume from now on that 7 is positive on E. Let v be a quasi-stationary distribution
on £ such that v(n) < +oc and denote by 0y € (0, 1] the associated decay parameter, such
that P, (X,, € -) = 6¢v for all n > 0. Then, according to (2.7), we have, for all g € L*°(n),

|00—n0_611/(g) — y(?])VQSD(g)| m 0.
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This entails that , = 6, and that v is proportional to vgsp. Since they both are
probability measures, we deduce that v = vggp, which concludes the proof of the second
claim of Corollary 2.11.

Finally, assuming that n is lower bounded away from 0 on F, we deduce from (2.7)
with g = 1 that, for all probability measure x on E such that u(n) < +oo,

Oy "pP g P p(n) > 0.
This and (2.7) imply that

sup B, (9(Xn) [ n < 7o) —vgsp(9)| ——— 0,
GE—R, (gl Lo () <1 n—4o0

hence (2.8) holds true and the proof of Corollary 2.11 is completed.

11 Proof of the results of Section 3

In this section are proved Lemma 3.1 in Subsection 11.1, Lemma 3.2 in Subsec-
tion 11.2, Proposition 3.3 in Subsection 11.3 and Lemma 3.4 in Subsection 11.4. Then we
prove Theorem 3.5 in Subsection 11.5, Lemma 3.6 in Subsection 11.6 and Proposition 3.9
in Subsection 11.7.

11.1 Proof of Lemma 3.1
The function ¢, defined in the statement satisfies, for all z € F, pa(x) € [0,1] and, for

-1
all v € K, ga(x) > 2,71 > 0. Moreover, we have, for all = € E,
R

0y —1
05° —1

Pripa(2) = Oaip2(2) — (B2l k() — 05 Pl e () > Bas(x)

since /£ is chosen such that 6 ‘P15 (z) > 1k (z) forall z € E.

Our assumption also implies that there exists ng such that, for all n > nyg,
05" infcx P, (X, € K) > 1. Choosing n4(z) = no for all © € K entails (E4), which
concludes the proof of Lemma 3.1.

11.2 Proof of Lemma 3.2
Assume that

E, (GfTKAm) < 400 Vx € F and 51612 E, (]EX1 (91_TK/\T‘9) ]11<Ta) < +00
y

and set ¢1(z) = E, (GfTKArTEﬂ) for all x € E. Then, for all z € E \ K, using Markov’s
property at time 1,

Pipy(@) = Ba (Bx, (07 1) 11cs, ) < B (07 T 170) = 0101 (0).

Moreover, for all z € K, Pypi(z) < 9;1 sup, e i By (]EX1 (HfTKATf’) ]11<m), and hence
the first part of the lemma is proved.

Assume now that there exist two constants C > 0, §; > 0 and a function ¢; : F —
[1,+00) such that supy ¢1 < 400 and Pyp; < 0191 + Clg. Then, for all n > 1 and all
reFE\K,

Ez (01(Xn)Ln<Tinr) < 07p1(2).
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Thus we deduce that, for all x € F,
P, (n < Tk A1) < 0701(x).

In particular, for all # > 6; and all x € F,

]Ez (G—TK/\T@) <

! (x) < 400
=9—0, " '

We also deduce that

sup E, (Ex, (0°7<"7)) < sup Pygy () < +oo.
rxeK 9 - 01 reK

This concludes the proof of Lemma 3.2.

11.3 Proof of Proposition 3.3

Condition (E4) implies that there exists z¢ € E such that P, (X,, € K) > 0. We then
deduce from our assumption (3.2) that Condition (E1) is satisfied with the probability
measure v on K defined by
u() = P, (X, € -NK)

]Px() (X’!L() e K)
and the constants ¢; = P, (X, € K)/C > 0 and ny = my.

Let us now check Condition (E3) and the last part of Proposition 3.3. We define
TI((”“) = inf{n > ng s.t. X,, € K}. Lemma 9.5 (which only makes use of Condition (E2))
implies that, for all x € E, P,(n < Tk A 79) < 07¢1(z). Hence, for all z € E and all
n = ng,

Po(n < 1o ATR")) = By (Lng<ry Px,, (n — 1o < 70 A Tk))
< 9?7710 ]E1 (]ln0<7—3901 (Xno))
< (O +c2)™07 ™ i1 ().

Since ¢; > 1, we also have P, (n < 15) < C}p1(x) for all n < ng. Hence we proved that,
forallx € Fand n > 0,
P.(n <719 ATS) < CO oy (). (11.1)

Therefore, for some constant C' > 0,
P.(n<79) <Pr(n <19 A Ti((no)) + IPI(TI((nO) <n<Ty)

<Coi@)or + 3 E, (nT;(no):klPXk (n—k< ra)) : (11.2)

k‘:TLO
Now, forallz € FE, ally € K and all k € {ng,...,n}, (3.2) and (11.1) entail
E, (ILTI(:O):]CIPXIC (n—k< Ta)) <E, (1k7n0<T§g10)/\7—3EX’€*ﬂ0 (1X¢LOEK ]PXnO (n —k< Ta)))

< E, (]lk—no<T§:'U)/\‘raO]Py(n +tmo—k < Ta))
<OV 00 (2) CPy(n — k < 75),

where the constant C' may change from line to line. Using Lemma 9.8, which only makes
use of (E1), (E2) and (E4), there exists ng € Z; such that, for all y € K and for all
n,k € Z, such thatn — k > ng,

P,(n<79) >Py(X,_) € K) ig{IPz(k < Tp)
S _ e :
>Py(n—k<1y) T§£6 Zlél}f{IPZ(XT EK|T <T1p) Zlg}f(Pkcpg(z)
> C"0EP,(n— k < 1),

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
Page 65/84


https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

General criteria for the study of quasi-stationarity

where C” > (. Hence,

0.\" o™ C
1) L P,(n < 7o)

E, (]ITL"O)=kIPXk (n—Fk< Ta)) < p1(2) (92 o

Now, we deduce from (11.2) and (11.1) that, forallz € Fand ally € K,

n—mne 0 k
07 + Py(n < 19) Z <9;>

k=1
< C () [9? +Py(n<79) + 9?7"6}
< Coi(z)Py(n < 75)

P.(n < 719) <Copi(x) + le(T[((nO) ANTog >n—ng)

since P, (n < 75) > 6% infx 2. This implies (E3) since supy ¢1 < oo.

11.4 Proof of Lemma 3.4
Combining Theorem 2.3 and the fact that infx n > 0, we deduce that

liminf inf 6,"P .
Wit Jek 00 el <o) > 0

Let 05 < 6y. Using Lemma 9.8,

lim (05)™" a}g}f{ P, (X, € K) = +o0.

n—-+oo

Hence the result follows from Lemma 3.1.

11.5 Proof of Theorem 3.5

We assume that Assumption (F) is satisfied. In Subsection 11.5.1, we prove that
Assumption (E) holds true for the sub-Markovian semigroup (P,,)»>o of the absorbed
Markov process (X,:,,n € Z. ). In Subsection 11.5.2, we prove the existence of a quasi-
stationary distribution for (X}):c; with the claimed properties and in Subsection 11.5.3,
we prove the convergence of e*!P,(t < 75) to n(z) fort € I, t — +oc.

11.5.1 Proof of (E)

We fix 0, € (7}%,75?) and set 0, = ~5>. Let us first remark that the last line of Condi-
tion (F2) implies that vgt]Pu(Xt € L) — +oo when t — +oo. Hence, using Condition (F1),
we deduce that

75 inf P (X, € L) ——— +o0. (11.3)
reLl t—+o00

We consider a number ny € IN* large enough so that fy;t infpep Pp(Xe € L) >1V 5 "’;tz,
1=

for all t > (no — 1)tz and we set

no—1

—to
_,1 _
w1 =11 and = 722%@ E vy ¥ Pl
T2 -1 k=0

Step 1. Proof of (E2), (E4) and (E1) for (P,)nez., -
Forall z € E\ L, it follows from (F0) and the second line of (F2) that

Pip1(z) = By (V1( X)) Liz<rpnr,) + Eo (]ITLStzATaEXTL (1t275<7—8w1(Xt275))‘SZTL)
<1 (@) + Po(rp < ta)eca.
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We define
K={yeE, Py(rs, <t2)/¢1(y) > (b1 —1*)/c2}.

The second line of (F2) at time ¢ = 0 and the fact that §; — 7{2 < 1 imply that L C K.
Moreover, we have, for all z ¢ K,

P (z) < 0191 (x). (11.4)

Hence, forall z € F,
Propy(x) < 01991 (x) + col g (). (11.5)

Note that it immediately follows from the definition of K that sup,¢x ¥1(z) < oo. In
particular, the first and third lines of (E2) are proved.

Moreover, using the Markov property provided by (FO) and the definition of ny, we
deduce that, for all t > ngto,

inf 75 'P,(X, € L) > inf P <ty) inf inf~;'P,(X,_s€ L)>1 11.
nf AtE)_gKAm_ﬁg&mé% y (Xi—s € L) >1, (11.6)

t
where we used the fact that, for all z € K, P, (7 < t2) > %. In particular,

—to
ot -1
Py =500 + 22—

—(no—1
5 1 (’72 (o )tzpnoﬂL - 752]1L) > 522 = Oapo.
5 _

In addition, for all z € K,

1 —752

72*”0& -1 :

> e PalXag € 1) 2
2

Hence (E2) is proved. Moreover, (11.6) also entails that (E4) holds true.
Fix n1 > ng such that nits — t; > note. Condition (F1) and then (11.6) imply that, for
allz € K,

Po(Xpyt, € NK)>Pu(Xnyty—t, € L)erv(-NL) >3 "ew(-NL).

Extending v as a probability measure on K, we obtain (E1).

Step 3. Estimation of the survival probability.
Our goal here is to prove a version of Lemma 9.9, where (9.6) is replaced by

gc—fiﬁ—hﬁPﬂmz<nﬁ Vo € E,Vn € . (11.7)

P, (nty < 79) 1= 0,/6, L

Since the proof is similar, we only highlight the main differences. First, Lemma 9.8 only
uses (E1), (E2) and (E4), so that there exist ng > 1 and (; > 0 such that, forall z € K
and all n > ng,

0. Pl > (10, P 1E.

Hence, for all x € K and all N > ng + ng, using (11.6),
6:PN1L > 450" 0, Pronglie > (175°" 00 PN—nolp > (173°" 0, Py1E.
Hence,

inf inf P, (X L | Nt 0. 11.8
NzlnItJrne 7‘12K (Xne, € L | 2 <o) > ( )

Third, it follows from (F2) that, forallz € E\ L,

P, (nty < 71 A7) < Y701 (x) = 0701 (). (11.9)
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and from (E2) that, for all x € F,
P.(nty < 7o) > V52 pa(). (11.10)

Therefore, following the same lines as in (9.9) (replacing K with L), we deduce from (11.9)
and (11.10) that, forallz € F

nta
P, (nte < 79) < 071 (x) + 03/ 1r€1fL P, ((n—[s/ta])ta < 19) Py(rp AT € ds)
0 Y

—to
. 63’)/2 . —A
< C inf P(nty < 79)p1(x) + —>— inf Po(nty < 79)E, (v5 =),

which entails (11.7), where we used in the second inequality the fact that

P, (nty < 75) > a2 inE P,((n—k)ts <T9), Vxe€lL,
ye

which is deduced from (11.8) exactly as in Lemma 9.9.

Step 4. Proof of (E3).
Using (11.7) and the fact that sup,cx ¢1(z) < 400, we deduce that there exists a
constant C' > 0 such that, for all n € IN,

sup P, (nts < 79) < C inf Py (nty < 75).
zeK yel

Moreover, using the Markov property at time ngt; and (11.6), we have that, for all t > 0,

. . to -
;g}f{ P.(t <79) > xlg}f( P, (t + nota < 79) > y5°"2 qu1£ Py (t < 7a).

These inequalities imply (E3).

11.5.2 Existence of a quasi-stationary distribution for (X;);c;

Subsection 11.5.1 and Theorem 2.1 imply that there exists a probability measure vgsp
on F such that

]PVQSD(Xntz c - | nty < Ta) = VQsSD, Vn € Z+,

such that vggp(p1) < oo and vgsp(p2) > 0, which is equivalent to vgsp(L) > 0 because
of the quasi-stationarity and the form of ¢,. For all ¢ € [0, t3], let us define the probability
measure v; on F by

vi=Posp (Xt €|t < 75).

For all n € Z, we have, using the Markov property and the fact that vgsp is a quasi-
stationary distribution for (X, )n>o0,
Py, (Xnt, € - | nta <79) = Eppsp (Px,,,, (X € - [t < 7o) [ nta < Tp) = Ppysp(Xi € - [t < 7)),
hence v, is a quasi-stationary distribution for (P,),>¢. Moreover, the third line of (F2)
and the quasi-stationarity of v; imply that 14 (L) is positive.

Fix p; € (0}”2 ,72). It follows from (11.9) that there exists a constant C' > 0 such that,
forallx € F,

@ (x) :=Ey (p7™"70) < C oy ().

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
Page 68/84


https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

General criteria for the study of quasi-stationarity

We also have that, forallz € F\ L,
EZL’ (]lt2<TL/\Ta(p/1(Xt2)) = piQEw (]lt2<TLATap;TLATa)
< ol (@) (11.11)

and the inequality is trivial for + € L. In addition, for all ¢ € [0,¢2] and all x € L,
E, (0](Xt)licr,) < CE, (¥1(Xt)1t<r,) < Ceo. Hence Condition (F) is satisfied replacing
~1 with p; and ; with ¢}. Therefore, we can apply Step 1 to prove that (E) is satisfied
with ¢} and ¢/, where

—to n6—1

vy 2 —1 —k
Py = 7*2716& E vy " Pl
Y2 g

for an integer n{, that can be chosen larger than ny. We also deduce as in the beginning
of Step 2 that vggp is the unique quasi-stationary distribution of (P,),>¢ such that
VQSD((pll) < o0 and Z/QSD(L) > 0.
Moreover, by Markov’s property at time ¢ we have forall z € F and t > 0,
9011(3:) = Ea: []lt<TL/\Tapl_TL/\T8] + Ew []lter/\mpl_TL/\Ta]
<P By [Licrnrg 01 (X)) + o1 T Pu(t > 7 A 7o)
< o1 (BolLecry ) (Xe)] + 1) (11.12)

so that, for all ¢ € [0, 5],

Vt((pll) < pli(mit) [EVQSD (]lt2<7'999/1 (thz)) /IPVQSD (t < Ta) + 1]
< pl_(tz_t) []EVQSD (I[t2<‘r050l1 (th)) /]PVQSD (t2 < 7—3) + 1}
= p~ 27 (vsp(py) + 1) < oo

Since we observed that 1v,(L) > 0, we deduce that 1, = vggp forallt € I N[0, 2].

Using the Markov property, we deduce that v, = vgsp for all ¢ € I and hence that
vosp is a quasi-stationary distribution for (X;):c;. Since any quasi-stationary distribution
for (X;).er is also a quasi-stationary distribution for (P, ), >0, we deduce that vggsp is
the unique quasi-stationary distribution for (X;);c; such that vgsp(p1) < +oo and
VQSD (L) > 0.

Let ¢ > ¢, be fixed and define &k € IN such that 0 <t — kty < t5. It follows from the fact
that Py¢) < C¢} and from (11.12) that

Eo[Licr, 9y (Xe)] < CFBo [Li—pty<ro ©) (Xi—kt, )]
Ckp, = DtHtR [Liy<ry @1 (Xiy) + Li—kty<rs)
< CCFpy "R, (1, orp01 (Xy,) + 1]
CCFpy~ R0 (9 4 ey + 1) (2). (11.13)

Note that a similar inequality may not hold true with ¢} replaced by ¢; under our
assumptions. This explains why we need to introduce ¢ .

Now, let 1 be a probability measure such that u(y1) < oo and p(¢2) > 0. Then, for all
t > ngto, it follows from (11.6) that, for all k > 0,

P (Xeyrt, € L) 2 Pp(Xpe, € L) ;Tellz Py (X, € L) > %P u(Xye, € L).
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Therefore, for all ¢ € [ngts, (ng + 1)t2],

—to no—1
Yot 1 ,
E,(p2(X1) = 2 — > PP (Xiyne, € L)

T2 k=0
no—1

—to

Y -1 no+1 n 1

- WWS N P, (X, € L) = 25TV (i00).
2 - k=0

This and inequality (11.13) imply that (using that n{ > ny), for all ¢t € [ngta, (ng + 1)t2]
and for a constant C' > 0 that may change from line to line,

e (1) ) (1)
i) = nlon) = S ilon)

)

where p; :=P,(X; € - | t < 79). It then follows the fact that (E) is satisfied by (P,,n > 0)
with the functions ¢} and ¢/, that there exist constants aw < 1 and C' > 0 such that, for all
t € [not2, (no + 1)t2],

MtPn n /J(QO1>
o —ugsp|| < Ca 7
‘ pPrl N TV 1(p2)
Using Markov property, we deduce that
1P (Xt € - | s +1 < 70) — vospllpy < Cam AP,
1(p2)

This ends the proof of (3.4).

11.5.3 Convergence to 7

To finish the proof of Theorem 3.5, it remains to prove that the convergence (3.5) is
exponential in Loo(wi/p) and that P,y = e~?o'. Because of Remark 2.2, it is enough
to prove this for p = 1. Since we proved that (E) holds true for the semigroup (P,),>0
and for the functions ¢} and ¢, it follows from Theorem 2.3 that there exist constants
Ao € [0,log(1/v2)], @ € (0,1) and C > 0 such that, for all y € E,

e (nty < 19) —n(y)| < Ca™¢l (y).

For any t € [t2, 2L-], integrating this inequality with respect to P, (X; € dy;t < 75), we
deduce from (11.13) that

’e)\gntZ]Pw(ntz +t < Ta) — Em(’r](Xt)]lt<‘ra)‘ < Can@l(ac)

for a constant C' independent of ¢ € [ty,2t5]. Setting n,(z) = E, [e*in(Xy)1<r, ], we
obtain for all ¢ € [ta, 2t5]

‘e)‘O("tQ"’t)IPI(ntQ +it<TH) — m(a:)‘ < C’e”‘”tQa”gol(x).

Proceeding as in (10.2), we deduce, letting n — 400, that Pyn; = e"\0t277t. It then follows
from Corollary 2.7 that n(z) = n(z)vgsp(n:) for all z € E. Since we proved above
that vgsp is a quasi-stationary distribution with decay parameter )\, by definition of 7,,
vosp(n:) = 1 and thus P;n = e~ o'y, This ends the proof of Theorem 3.5.
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11.6 Proof of Lemma 3.6
Proceeding asin (11.11) and (11.12), we have that, forallx € Fand t € I,

E, (1( X)) Liyarpnr) < A0%01(x) and oy (z) < 97" (Be [Lecrytr (Xe)] + 1)

Therefore, forallt <ty andall z € L,

E; [Licr,¥1(X0)] <91 VB, {[Ex, (Lty—r<ry¥1(Xip—e)) + 1 Tiry }
< PV E, (Liyary i (X)) + 1]

<cpi=p [Sup Ey (Lt,<rp¥1(Xe,)) +11 .
yeL
This concludes the proof of Lemma 3.6.

11.7 Proof of Proposition 3.9

Let us first assume that (E) is satisfied with ¢; bounded and (3.8) and prove that (3.7)
holds true. Theorem 2.1 and Remark 2.2 entail that, for all n > n,

o5

n—nj ‘|<p1||00 'uP"iﬂE
an]lE -

TV inszK 902(x) lupnl]lK
01 ]lo
cinfrex w2(x)

<«

—VQsSD

7
<ot

Hence the convergence is uniform.
Let us now assume that (3.7) holds true. It was proved in [20] that this is equivalent
to the following condition.

Condition (A). There exist positive constants ¢y, ¢y, a positive integer kg and a probabil-
ity measure v on F such that

(A1) (Conditional Dobrushin coefficient) For all z € E,
IPz(XkO S | ko < 7'3) > civ.
(A2) (Global Harnack inequality) We have

“up sup,ep Py(k < 79) <o
kEZ., IPV(]C < Ta) -

Several consequences of Condition (A) were deduced in [20], among which the fact
that the convergence (2.2) in Theorem 2.3 holds true with respect to the L>° norm on
E with n(z) > 0 for all x € E. In particular, 7 is bounded, P;n = 6yn and there exists a
constant C’ such that, for all n > 0,

sup P, (n < 719) < C'6f. (11.14)
zel
We fix € € (0,1/(4C")). Since 7 is positive on F, there exists § > 0 such that the set
K :={x € E : n(z) > ¢} satisfies vgsp(K) > 1 —¢ and v(K) > 0. Setting v2 = n/||7]|cc,
the part of (E2) dealing about s is satisfied with 0§, = 6. Since the convergence in
Theorem 2.3 holds true with respect to the L°° norm, we deduce from the choice of K
that there exists & > k¢ such that

= i . > i z .
c mlg}f{ P.(ko < 718) > ;Qﬂm(k <719) >0
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It follows from (A1) and (A2) that, for all n > 0,

inf P,(n <79) > inf Pr(n+ko<79) >ci1ePy(n<7s) > ac sup Py (n < 15).

ze€K zeK C2 ycE
This implies (E3) and that inf,cx P, (ko < 79) > 0. Hence, (E1) follows from (A1) with
the probability measure ”l(,'(r;g ). Moreover, for any n large enough to have Ca™ < 1/2
where the constants C' and « are those of (3.7), we have P, (X, € K |t < 79) >
vosp(K) — Ca™ > 1/2 —e¢ > 0 and hence (E4) is satisfied. The last computation also
entails (3.8) with n), = n.

It remains to construct a function ¢, satisfying (E2) with 6, < 6. For all x € F,

P, (X, € E\K|n<my) <vgsp(E\K)+ Ca™ <e+ Ca".
Using (11.14), we deduce that
P,(X, € E\K)<C'(e+ Ca™bg,

so that there exists ng large enough such that

1 o \"
IP&?(HO <Tk /\Ta) < 5900 = <31/no> ’

From this follows that, for all K € IN and all x € F,

90 k}’no

In particular, for 0, := 6y/2/",
o1(z) = E, (91_TKMT‘9]> , Ve ek,
is a bounded function on F and Lemma 3.2 implies that, for all x € FE,

Prp1(z) < 0101(2) + [[1 oo L ().

Since 0, < 0y, (E2) is proved.

12 Proof of the results of Section 4.1

In order to prove Theorem 4.1, we check Condition (F). The goal of Subsection 12.1
is to give the construction of the process X and to check (F0) with L. = Kj, for any k£ > 1.
In Subsection 12.2, we explain how (F1) and (F3) can be deduced from general Harnack
inequalities. Finally, Subsection 12.3 completes the proof of Theorem 4.1. The proof of
Corollary 4.5 is then given in Subsection 12.4.

12.1 Construction of the diffusion process X and Markov property

The goal of this section is to construct a weak solution X to the SDE (4.1) with
absorption out of D, and prove that it is Markov and satisfies a strong Markov property
at appropriate stopping times, enough to entail Condition (F0) for L = K}, for any k£ > 1.
We introduce the natural path space for the process X as

D= {w Ry - DU{d}: Vk > 1, wis continuous on [0, 7% (w)]

and w(t) =9, Vt > suka(w)} ,
k>1
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where 7 (w) := inf{t > 0: w; € D\ Kj}. Note that D contains functions which are not
cadlag since they may not have a left limit at 79— and, indeed, it is easy to construct
examples where X is not cadlag PP-a.s.? Note also that this definition means that we are
looking for a process X such that

Ty := SUP TP\ K, »
E>1

which is the natural definition of 75 when the left limit of X at time 75 does not exist.
We endow the path space D with its natural filtration

Fr=o0(ws,s <t) = \/ o(wey, Wiy, ..., W)
n>1,0<t; <t2<...<t, <t

and we follow the usual method which consists in constructing for all z € D a probability
measure P, on D and a stochastic process (B;,t > 0) on D x C(R4,R"), such that
B is a standard r-dimensional Brownian motion under P, ® W”, where W7 is the r-
dimensional Wiener measure and such that wy = ¢z P, ® W"-almost surely and the
canonical process (w:,t > 0) solves the SDE (4.1) for this Brownian motion B on the
time interval [0, sup;, 74 (w)) 3

For this construction, we use the fact that b and o can be extended out of K to R? as
globally Holder and bounded functions b, and o and such that o is uniformly elliptic on
R%. Hence (see e.g. [66, Rk.5.4.30]) the martingale problem is well-posed for the SDE

dXF = bp(XF)dt + op (XF)dB;.

Let us denote by P* the solution to this martingale problem for the initial condition
x € R?. This is a probability measure on C := C (R, ]Rd), equipped with its canonical
filtration (Gy):>o0.

For all k > 1, we define 7, (w) = inf{¢t > 0,w; ¢ int(K})}, where int(K}) is the interior
of K. Since the paths w € D or C are continuous at time 7{ and R?\ int(K},) is closed, it
is standard to prove that 7, is a stopping time for the canonical filtration (F;);>o on D
and for the canonical filtration (G;):;>o on C. We define as usual the stopped o-fields 7,/
and ¢/, and we define forall z € int(K}) the restriction of P, to F; as the restriction of
]Pf7 to ng/‘, where we can identify the events of the two filtrations since they both concern
continuous parts of the paths. This construction is consistent for k£ and k£ + 1 (meaning
that if x € K, they give the same probability to events of 7, ) by uniqueness of the
solutions P*¥ and PX*! to the above martingale problems. Hence there exists a unique
extension P, of the above measures to sz1 F;. Note that, because of the specific
structure of the path space D, we have

Fr = Fuo. (12.1)
k>1

2For example, one may consider D the open disc of radius 1 centered at 0 in R2, ¢ = Id and b(z) =
(—z28(|z|), z18(|x|)) where x = (z1,z2) € D. Decomposing the process in polar coordinates (R:,6:) :=
(1 X¢], arctan(Xt“)/Xt@))), the radius R; is a 2-dimensional Bessel process, and X; is sent to 0 when Ry hits 1
(in a.s. finite time). The angle 0, is solution to d0; = R, 1sz — B(R¢)dt before 7y, for some Brownian motion
W. Hence, if B(r) converges sufficiently fast to +0co when r — 1, 6; a.s. converges to —oo when ¢t — 75—, so
X does not admit a left limit at time 75.

3Since o(x) is non-degenerate for all € D, the space C(R+, R") equipped with the Wiener measure W is
only used to construct the Brownian path B; after time sup,, 7 (w) and could be omitted for our purpose since
we only need to construct the process B up to time sup;, 7 (w).
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To check this, it suffices to observe that, for all ¢ > 0 and all measurable A C D U {9},

{w, € A} ={t <79, wy € AND}YU {75 <t, 0 € A}

= Jlt<m weAnD}|u | ({r <toeA}], (12.2)
E>1 E>1

hence {w; € A} € \/k21 Fr;, and, proceeding similarly, the same property holds for
events of the form {w;, € Ay,...,wy, € Ay}

We recall (see [66, Section 5.4]) that (P¥), .z« forms a strong Markov family on the
canonical space C. Our goal is now to prove that the family of probability measures
(P2)zepu{ay, where PPy is defined as the Dirac measure on the constant path equal to 0,
forms a Markov kernel of probability measures, for which the strong Markov property
applies at well-chosen stopping times.

We first need to prove that (P, ).cp defines a kernel of probability measures, i.e. that
x — P, (T) is measurable for all events I' of F,,. We prove it for an event of the form
{w,; € A}, the extension to events of the form {w;, € A;,...,w,, € A,}, and hence to all
events of F,, being easy. This follows from (12.2):

P.(w; € A) = kEI_POOIP,;(t <7h wg € AND) + lpea kgl-,iI—loo P.(r, <t)

= lim P*(t <7, wy € AND)+1pca lim PF (7 <t).
k—+o00 ’ k—+o00

Since all the probabilities in the right-hand side are measurable functions of x, so is
x = Py(w € A).

Now, let us prove that (X;,¢ > 0) is Markov. It is well-known that this is implied by
the following property: foralln > 1and 0 <t¢; <...<t,41 and 44,..., A,+1 measurable
subsets of D U {0},

Po(wy, € Ayq,... s W,y € Api1) =E, []lwtleAl ..... wtneAnIPwtn (wtnﬂftn € An+1)] .
We prove this property only for n = 1. It is easy to extend the proof to all values of n > 1.
We have
IPz(wtl S Al,wt2 < Ag) = IPx(wtl € Al,wtz S A277—3 > t2)
+Po(wy, € A1ty <7 < ta)lgea, + Pu(to < t1)loca,na,-

Now, using that (]Pfc)xeﬁd is a Markov family for all £ > 1,

IPx(wtl S Al,wt2 c AQ,T{) > tg)

lim IPz(wtl € Al,wt2 S AQ,T]C > tg)

k—o0

= lim ]Pl;(wtl S Al,’UJt2 (S Ag,Tk > tg)
k—oo

= lim ]E]; |:]lwt1 €A17t1<7-k]Pﬁ)t (’Ll)tzftl € A27Tk > to — tl):|
k—o0 1

= lim [, []lwtleAl,thIPwtl (Wey—py, € Ao, T > 1p — tl)}
k—o0

- Em I:]lwtl €A17t1<7'a]Pwt1 (wtgftl S A27T0 > t2 - tl)]

and similarly
P, (wy, € Aty <79 < to)loca, = By [Tu, eyt <rp Py, (To < ta — t1)] Toea,

- ]E:E []lwt,l €A1,t1<T6]Pu)f,1 (7_8 S t2 - t17wt2—t1 S AQ)} .
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Since

]Px(TB S tl)]laeAlﬁAg = ]E.L []l'wtl EA1,Ta§t11Pwt1 (wtg—tl S A2)] 5

we have proved that P, (wy, € Ay, wy, € A) = E; [1u, €4, Pu,, (wi,—¢, € Az)]. This ends
the proof of the Markov property.

To conclude this subsection, let us prove that the strong Markov property holds for all
stopping times 77 where F' C D is closed in D. Note that 77 is indeed a stopping time for
the filtration F; since 7p = sup,, 7p A 7}, = sup,, T(FUDe)UInt(K,)e» Where the complement is
understood in R?, (F U D¢)Uint(K})C is a closed subset of R¢ and all w € D is continuous
at time 7(pupe)Uint(K,)e- Let ¢ € D, t1,t2,5 > 0 and A, B C D be measurable sets. We
proceed as above: first, observe that

{wtl €A t1 <Tp <to, Wrpts € B}

= LJ{wt1 €A, t1 <71 <ty Wrpts € B, w, € K, Vr € 0,75 + s]}
>1

= LJ{w,g1 €At <t AT, < to, Wrpnrigs € B, > TE + s}

£>1
Since 7 A 7, is a G;-stopping time on C(R ., Rd) and using the strong Markov property
under P¢, we deduce that
P,(wy, € A, t1 < 7p <ta, Wrpts € B)

= ZETwPi(wtl €A, t1 <TR ATy <ty Wrpnryys € B, 7> TR + 8)

: l £ /
= lim I, |:]1wt1 €A, t1<TF/\Té§t2]PwTF/\ (ws € B, s < TZ)]

{— 00 7

— 1 £ 14 /
- ZE—i—moo I, |:Ilwt1€A; t1<TFST(f/\t21PwTF (ws €B,s< TZ):|

- E:v |:]lwt1 €A, t1<TF§Ta/\t21Pw.,F (ws S B7 s < 7-8)] .
Similarly,

Pz(wtl € A» t1 <7Tp < t2» Wrpts = a)

:e—ligl Pl(w, €A, ty <Tp <toAT), T) < T +5)
o0

=E, |:Ilwt1€Ay t1<TF§tzATaIPwTF (ws = 8)}
and thus

Pm(wtl S A> tl <TF S t2> Wrp+s S B) = E:z: |:]lwt1€A, t1<‘rF§t2/\‘ra]Pw7F (ws S B)}

for all A, B C D U {0} measurable. The previous computation extends without difficulty
to prove

P, (wtl € Al, W, € An, tn <7 < tpta, Wrpts, € By, .. Wrpts,, € Bm)
= Er 171)1,1 €A1,...,w¢, €EAn, tn<7F§tn+1IPw1-F (wsl S Bla ey Ws,, S Bm):| (123)

foralln,m >1,0<t <...<tp1,0<s <...<spand Ay,..., A, By,...,B,, C
D U {9} measurable. This implies the strong Markov property at time 7, in the sense
that, forallk > 1,allz € Fand allT' € F,

P, (w™ €T |Hqsp) =Py, (I'), P,-almost surely,
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where w™ = (wr, 45,5 > 0) and

Horp :0({wt1 €A,...,wy, € Ap,ty <7p <tpp1}t,n €N,
0<ty <...<tps1, A1,..., A, € Dmeasurable).

This form of strong Markov property at time 77 is enough for our purpose, since it
entails (FO) for L = K}, forall k£ > 1.

12.2 Harnack inequalities

Our goal here is to check Conditions (F1) and (F3) for the diffusion process con-
structed above. We will make use of general Harnack inequalities of Krylov and Sa-
fonov [72].

Proposition 12.1. There exist a probability measure v on D and a constant t, > 0 such
that, for all kK > 1, there exists a constant b, > 0 such that

P, (X, € ) > bpr(:), Vo € K. (12.4)
Moreover, for all k > 1 such that K}, is non-empty,

nf infrex, Pr(t < 79)
t>0 SUp,e g, Po(t < 79)

> 0. (12.5)

Proof. Consider a bounded measurable function f : D — R with || || < 1 and define
the application u : (t,z) € Ry x E +— E;[li<r, f(X:)]. It is proved in [26] using [72] that,
for all £ > 1, there exist two constants N, > 0 and J; > 0, which do not depend on f

(provided || f|loc < 1), such that

u(6%,z) < Npu(26%,y), for all x,y € K}, such that |z — y| < §x/2. (12.6)

Note that the proof given in [26] makes use of the following strong Markov property:
for all open ball B such that B C K}, for some k> 1, all x € B, t > 0 and all measurable
f . D U {8} — IR+,

I, [f(Xt)]lTD\BSKTa] =E, ]lTD\BStEX [f(Xt—u)]lt—u<Ta} ‘

7-D\B 'IJ,_TD\B:| ’

This property follows from (12.3).

Step 1: Proof of (12.4)
Fix 1 € D and k; > 1 such that z; € int(K},). Let v denote the conditional law
Py, (Xs2 €| 67 < 7o). Then, for all measurable A C DU{8}, Harnack’s inequality (12.6)

with f = 14 entails that, for all z € D such that |z — z;| < 6% ANd(z1, D\ Ky,),

Ile ((5,%1 < Ta)

P, (207, € A) > N
k1

v(A).

Since the diffusion is locally elliptic and D is connected, for all k¥ > 1, there exists a
constant di > 0 such that

inf P, (X, € Blay, (3, /2) Ad(a1, D\ Ki,)) > di.
€Ky,

This and Markov’s property entail that, for all z € Ky,

Ile ((5,%1 < Tg) y

Pz(XHzégl €)= dy N,

1

EJP 28 (2023), paper 22. https://www.imstat.org/ejp
Page 76/84


https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

General criteria for the study of quasi-stationarity

This implies the first part of Proposition 12.1.

Step 2: Proof of (12.5)

Fix k > 1 such that K} is non-empty and consider ¢ > k such that K is included in
one connected component of int(K,). For all ¢ > 25,%, the inequality (12.6) applied to
f(z) =P, (t — 267 < 79) and the Markov property entail that

P, (t— 67 < 79) < NP, (t < 7p), for all 2,y € K, such that |z — y| < §,/2.
Since s — P, (s < 79) is non-increasing, we deduce that
P.(t < 19) < NPy (t < 15), for all z,y € K, such that |z — y| < 6,/2.

Since K} has a finite diameter and is included in a connected component of K,, we
deduce that there exists IV;, equal to some power of IV, such that, for all ¢t > 262,

P,(t < 719) < NP, (t < 79), forall z,y € K.

Now, for t < 267, we simply use the fact that, for all z € Ky, P, (207 < 75) > P,(267 < )
where B = (z,1/2k) and hence z — P, (207 < 7) is uniformly bounded from below on
K}, by a constant 1/N;' > 0. In particular,

P.(t < 7o) <1< NP, (207 < 79) < NJ/P,(t < 7p), forall z,y € K.

This concludes the proof of Proposition 12.1. O

12.3 Proof of Theorem 4.1

Our aim is to prove that Condition (F) holds true with L = K} for some k£ > 1 large
enough. We have already proved (F0), (F1) and (F3) with L = K}, for any £ > 1. Hence
we only have to check (F2). Fix p1 € (Ao, A1), p2 € (Ao, p1) and p € (1, \1/p1) and define

P1(z) = p(z)'/?, Vo € D. (12.7)
Fix p} € (p1,A\1/p) and
251(C + A1) log 2
t2 Z / 7 )
A1 —ppi PL—p1
where the constant C' comes from (4.5). Set L = K}, with k¢ large enough so that
v(Ky,) > 0 and, using (4.6),

]P;c(sl < TKy, /\T@) < ef(P/lﬂLc/P)tQ

for all x € Dy.

From the definition of Ay and applying the same argument as in Step 2 of the proof of
Proposition 12.1 with f(z) = P;(X; 952 € L) with £ large enough to have K, included
in one connected component of K,, we deduce that

lim inf e”*" inf P,(X; € L) = +o0,
t—+o00 xz€L
and hence the last line of (F2) is proved with v5 = e¢™"2.

Let us now check that the first line of Assumption (F2) holds true for all x € Dy and
then for all € D\ Dy. For all z € Dy, we have ;(z) < sup,cp, ¢'/?(z) < +o0, and
hence, for all ¢ € [s1, 5], using Holder’s inequality and the definition of kg,

p—1
Ey (Y1(Xe)Licrpnry) < By (]lt<‘ra<P(Xt))1/p P,(t<TLATo) ®
< gp(x)l/PeCtQ/pIPI(sl <7 A Ta)p%l (12.8)
< e—Pit2 < e*PItZwl(l,)'
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To prove (12.8), we used the fact that Lo < C < Cy and It6’s formula to obtain
P,p < e“!. Since this argument is used repeatedly in the sequel, we give it in details for
sake of completeness. It follows from It6’s formula that, for all £ > 1, P,-almost surely,

t
) (Xinn ) = #l@) + [ acre© (Lo(X) - Co(X.)) ds
t
+ [ Lagng e OV o(X)B,
0

Since Vp(z) and o(z) are uniformly bounded on K}, the last term has zero expectation,
and thus

E, |:ec(t/\TK,§)<p (XtATKE)] < 99(1‘)
Letting £k — 400, we deduce form Fatou’s lemma that

E, [e"“ 1icryo(X1)] < p(2) (12.9)

as claimed.

This proves the second line of (F2) for all x € Dy and 71 = e 1.

Now, for all x € D\ Dy, since Dy is closed in D, it follows from the strong Markov
property (12.3) at time 7p, that

EI (1/}1 (Xt2)]lt2<TL/\T6) = EI (]lt2—51<7'L/\7'6/\7'D0 EXtQ—sl (T/H (X51)151<7'L/\7'6))

+ E, (IlTDOStZ_Sl]EXTDO (1/’1 (Xt2_u)1t2—u<7'8/\TL) ‘u*TD ) - (12.10)
- 9

Using Holder’s inequality and (12.9), we deduce that, forall y € D,

51 C

7 1(y).

s1C

Ey (61(Xs,) Lo <rpnre) < By (0(Xo))Lsi<ry) /P < e p(y)V/P =€

Hence, the first term in the right-hand side of (12.10) satisfies

s1C

Ea: (]lt2751<7‘L/\73/\TD0EXt2_51 (QZ)l(Xsl)]lsl<7‘L/\‘ra)) S eTEz (]lt2781<‘rL/\7'3/\'rD0wl(thfsl)) .

As a consequence, using again Hoélder’s inequality and applying as above It6’s formula
using that Lo(z) < —A1p(z) for all z ¢ Dy, one has

_ tg—sy1 s51C

E, (]lt2751<7'L/\7'3/\7'D0EXt2_51 (wl(Xsl)]lsl<'rL/\Ta)) <e M e r @(x)l/p
1421/

<e T g (a),

where we used in the last inequality that ¢, > %;’;1). Moreover, using (12.8), we

obtain that the second term in the right-hand side of (112.10) satisfies

E, <]17D0<t231EX7D0 (’(/Jl (thfu)]ltzfu<7'a/\‘rL> ‘u*TD >
- 0
< e_p/1t2IPm(TD0 <ty—s1) < e~ 1t (z).
We finally deduce from (12.10) that, for all x € D \ Dy,

E, (1(Xi,) Lty <rpary) < 26771120 (2) < e7P124 (2),
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where we used that t2 > log2/(p} — p1). This concludes the proof that the first line of (F2)
holds true with v; = e™*1.

Since ¢ is locally bounded, sup; ¢ < oo, and hence, using again (12.9), we deduce
that, forall ¢t > 0,

sup I, (¢1 (X¢)Li<r,) < sup By (p(Xe)licr,) < e sup ¢(r) < oo,
z€L €L zeL
which implies the scond line of Assumption (F2).
In addition, because of the local uniform ellipticity of the diffusion X, for all no > 1,
Po 1= ZZOZO P, 1} is uniformly bounded away from zero on all compact subsets of D. This
and Theorem 3.5 concludes the proof of Theorem 4.1.

12.4 Proof of Corollary 4.5
Using Theorem 3.5, there exists A}, such that, for all z € D,

_ Aot
n(z) = tilglooe o' P (t < T9).
We choose in the definition of )¢ a ball B such that vggp(B) > 0 (recall that A¢ is
independent of the choice of B). Given = € D such that n(z) > 0,
Jim XPL(X, € B) = n(@)vgs(B) € (0, +00).

Hence, Ao = \{ and the infimum in the definition of )\ is a minimum. The facts that
Poosp(t < 7o) = e~ and P,n = e~ o'y are then direct consequences of Theorem 3.5.

Let us now prove that 7 is C2. First, it follows from [97, Theorem 7.2.4] that = —
ekot]Pl.(t < 7p) is continuous for all ¢ > 0 (see e.g. [26] for a detailed proof). Hence the
uniform convergence in Theorem 2.3 implies that 7 is continuous on D.

Now, let B be any non-empty open ball such that B ¢ D. We consider the following
initial-boundary value problem (in the terminology of [50]) associated to the differential
operator £ defined in (4.3)

Owu(t,r) — Lu(t,x) — Mou(t,z) =0 forall (¢,z) € (0,T] x B,
u(0,z) = n(x) for all z € B,
u(t,z) = n(zx) forall (¢t,z) € (0,T] x 0B.

Since the coefficients of £ are Hélder and uniformly elliptic in B and since 7 is continuous,
we can apply Corollary 1 of Chapter 3 of [50] to obtain the existence and uniqueness of
a solution u to the above problem, continuous on [0,7] x B and C1'?((0,7] x B). Now, we
can apply Itd’s formula to e*o*u(T — s, X,): for all s < 7gc AT and all z € B, P,-almost
surely,

erosu(T — s, X)) = u(T,z) + / ot <_§Z + Lu+ )\ou) (T—r X, )dr
0

+ [ e - n X )a(X,) dB.
0

Since u is bounded and continuous on [0,7] x B and Vu(t,z) is locally bounded in
(0,T) x B, it follows from standard localization arguments that

u(T,z) = E, [eAO(TMBC)u(T — (T AN1Be), Xrprpe )}
- E:z: [eAO(TATBC)n(XT/\TBc) .
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Now, the Markov property and the fact that P = e~ *°!5) entail that e!n(X;) is a
martingale on (D, (F;)¢>0, P,), hence

n(@) = By [Ty (X, )| = u(T, ),
Therefore, n € C?(D) and Ln(z) = —\on(z) for all x € D.
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