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1 Introduction

Let (Xt, t ∈ I) be a Markov process in E ∪ {∂} where E is a measurable space and
∂ 6∈ E, with set of time indices I which might be R+ or 1

kZ+ for some k ∈ N := {1, 2, . . .},
where Z+ := {0, 1, . . .}. For all x ∈ E ∪ {∂}, we denote as usual by Px the law of X given
X0 = x and for any probability measure µ on E ∪ {∂}, we define Pµ =

∫
E∪{∂}Px µ(dx).

We also denote by Ex and Eµ the associated expectations. We assume that ∂ is absorbing,
which means that Xt = ∂ for all t ≥ τ∂ , Px-almost surely, where

τ∂ = inf{t ∈ I, Xt = ∂}.

Our goal is to study the existence of quasi-limiting distributions on E for the process X,
i.e. probability measures ν such that

lim
t∈I, t→+∞

Pµ(Xt ∈ A | t < τ∂) = ν(A)

for some probability measure µ on E and for all A ⊂ E measurable. Such a measure ν is
a quasi-stationary distribution for X, i.e. a probability measure such that Pν(Xt ∈ · | t <
τ∂) = ν(·) for all t ∈ I. We refer the reader to [34, 83, 104] for general introductions to
quasi-stationary distributions. In particular, it is well-known that there exists a constant
λ0 ≥ 0, called the decay parameter of the quasi-stationary distribution ν, such that
Pν(t < τ∂) = e−λ0t for all t ∈ I (for discrete time processes, i.e. I = Z+, the term refers
to θ0 = e−λ0).

More precisely, our first goal is to give general criteria involving Lyapunov-type
functions ϕ1 ≥ 1 and ϕ2 ≤ 1 ensuring the existence of a quasi-stationary distribution
νQSD such that

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV (ϕ1) ≤ Cα
tµ(ϕ1)

µ(ϕ2)
, ∀t ∈ I, (1.1)

for some constants C ∈ (0,+∞) and α ∈ (0, 1) and for all probability measure µ on E

such that µ(ϕ1) < +∞ and µ(ϕ2) > 0, where µ(ϕ) :=
∫
E
ϕ(x)µ(dx) and, for all probability

measures µ1 and µ2,

‖µ1 − µ2‖TV (ϕ1) = sup
f :E→R measurable s.t. |f |≤ϕ1

|µ1(f)− µ2(f)|.
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When ϕ1 is bounded, we recover convergence for the usual total variation distance
‖ · ‖TV (1) since the norms ‖ · ‖TV (1) and ‖ · ‖TV (ϕ1) are equivalent. The measure νQSD
in (1.1) is the only quasi-stationary distribution ν such that ν(ϕ1) < +∞ and ν(ϕ2) > 0.

Our second goal is to show how our criteria can be applied to a wide range of Markov
processes, including several classes of processes for which even the existence of a
quasi-stationary distribution was not known, such as diffusions in irregular domains or
perturbed dynamical systems in unbounded domains.

General criteria ensuring that the convergence in (1.1) holds uniformly with respect
to the initial distribution µ have been studied in [10, 20]. In this case, νQSD is the quasi-
limiting distribution of any initial distributions. However, these results do not apply to
processes admitting several quasi-stationary distributions, which is known to happen
in a variety of specific cases, even for processes irreducible in E (including branching
processes [95, 2, 73, 76], one-dimensional birth and death processes [99, 47, 46, 108]
and one-dimensional diffusion processes [75, 81]). In addition, as for non-absorbed
processes, uniform convergence with respect to the initial distribution only happens for
processes that come back quickly in compact sets [85, 20] or are killed fast [106]. The
present paper provides general criteria generalizing those of [20] to cases of non-uniform
convergence.

Given a quasi-stationary distribution ν, its domain of attraction is defined as the set
of probability measures µ on E such that Pµ(Xt ∈ · | t < τ∂) converges in total variation
norm to ν. In the case where the domain of attraction of ν contains all Dirac masses, ν is
called the Yaglom limit, or the minimal quasi-stationary distribution. In all the models
admitting several quasi-stationary distributions cited above, it has been proved that the
minimal quasi-stationary distribution exists. The convergence (1.1) implies in addition
that the domain of attraction of the Yaglom limit νQSD actually contains all measures µ
such that µ(ϕ1) <∞ and µ(ϕ2) > 0.

We provide in Section 2 criteria ensuring (1.1) for all t ∈ Z+. We also obtain several
consequences, including a large subset of the domain of attraction of νQSD and the
geometric uniform convergence of x 7→ eλ0nPx(n < τ∂)/ϕ1(x) as n→ +∞ to η/ϕ1, where
η is a function which satisfies Ex(η(Xn)1n<τ∂ ) = e−λ0nη(x) for all n ∈ Z+ and x ∈ E. We
also obtain the existence of the process (Xn, n ∈ Z+) conditioned to never be absorbed
(the so-called Q-process) and its geometric ergodicity. Links between ergodicity of the
Q-processes and quasi-limiting properties were already studied in various context (see
for instance [1, 53, 86, 98, 49, 89]). All these results are proved in Sections 9 and 10.

The criterion developed in Section 2 assumes that (Xn, n ∈ Z+) is aperiodic but
of course applies to 1-periodic processes (Xt, t ∈ I). Under additional aperiodicity
assumptions, we show in Section 3 how the previous results extend to general time
indices t ∈ I and provide practical versions of our criteria for continuous-time processes.
We also provide alternative conditions allowing to check our criteria, that are easier to
check in some cases. We also show that the known criteria for uniform convergence
in (1.1) obtained in [20] can be recovered using this new approach. These results are
proved in Section 11.

These results allow us to put in a unified framework a large body of works on quasi-
stationary distributions as illustrated by the rest of the paper, which is devoted to the
application of our abstract criteria. We start in Section 4 with diffusion processes in Rd,
d ≥ 1, absorbed at the boundary of a domain D. Our analysis provides for example the
following general result.

Theorem 1.1. Assume that E = D is a bounded connected open subset of Rd and that
(Xt, t ∈ R+) is solution to

dXt = b(Xt)dt+ σ(Xt)dBt

EJP 28 (2023), paper 22.
Page 4/84

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


General criteria for the study of quasi-stationarity

until its first exit time τ∂ from D, where B is a r-dimensional Brownian motion and
b : Rd → Rd and σ : Rd → Rd×r are Hölder functions, such that σ is uniformly elliptic.
Then, the process X has a unique quasi-stationary distribution νQSD which satisfies

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV ≤
C

µ(η)
αt, ∀t ∈ [0,+∞),

for some constants C < +∞ and α ∈ (0, 1), where the function η is C2(D) and satisfies

d∑
i=1

bi(x)
∂η

∂xi
(x) +

1

2

d∑
i,j=1

r∑
k=1

σik(x)σjk(x)
∂2η

∂xi∂xj
(x) = −λ0η(x), ∀x ∈ D

and
η(x) = lim

t→+∞
eλ0tPx(t < τ∂), ∀x ∈ D,

where the convergence is uniform in D.

We emphasize that one of the main contributions of this result with respect to the
existing literature (see for example [90, 53, 15, 70, 43, 17, 26]) is that it applies to any
bounded domain D without any regularity assumption, with possible applications to
recent Monte-Carlo methods (see [92, 109]). Theorem 1.1 is in fact obtained in Section 4
as a particular case of a criterion for unbounded domains and coefficients b and σ only
locally Hölder and locally uniformly elliptic in D. We also consider the case of diffusions
with killing in Section 4.4. All these results are proved in Section 12.

Absorbed one-dimensional diffusions with or without killing have received a lot
of attention (see for instance [78, 33, 75, 81, 96, 14, 74, 71, 61, 87, 23, 22]). We
consider these models in Section 4.5. Our main contributions with respect to the
literature are the characterization of a larger subset of the domain of attraction of
the minimal quasi-stationary distribution, weaker regularity of the drift and diffusion
coefficients and explicit general bounds on ϕ1 and λ0 allowing practical verification of
our assumptions. Our criteria also provide alternative approaches to other classes of
processes in continuous time and space, as those studied for example in [32, 6] using a
spectral approach based on Tychonov’s fixed point theorem, in [62, 49, 56, 13, 7] based
on compactness or quasi-compactness properties, and in [80] for branching Markov
processes using Lyapunov conditions on the conditioned semigroup.

The case of continuous-time Markov processes in discrete state spaces is considered
in Section 5 with application to multitype birth and death processes absorbed at the
exit of any connected E ⊂ Zd+ (in the sense of the nearest neighbors structure of Zd+).
Note that the quasi-stationary behavior of finite state space processes [39] and of one-
dimensional birth and death processes [67, 54, 16, 68, 99, 100] has been extensively
studied using spectral methods that do not generalize easily to the multi-dimensional
countable state-space setting. The quasi-stationary behavior of multi-dimensional birth
and death processes was studied in the case of uniform convergence in (1.1) in [21, 26,
30, 31].

All the previous examples assumed irreducibility of X in E. In Section 6, we show that
our criteria also apply to reducible cases, as those considered in [88] (for Galton-Watson
processes), [55] (for discrete processes), [19] (for Feller diffusions) and [18, 104] (in the
finite case). We first give a general criterion in Subsection 6.1 and we study in details an
example with a countable infinity of communication classes in Subsection 6.2.

In Section 7, we consider general models in discrete time and continuous space,
first extending the criteria of [10, 17] in order to cover the case of Euler schemes for
stochastic differential equations absorbed at the boundary of a domain (as defined
in [79, 51]) and penalized semigroups (as in [41, 42]; note that all our results naturally
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extend to penalized homogeneous semigroups, provided the penalization rate is bounded
from above, see [24, 25]). We then study in details the case of perturbed dynamical
systems, as those considered for example in [9, 5, 62], where the quasi-stationary
behavior was studied using the criterion of [10]. As an illustration of our method, let us
mention the following original result.

Theorem 1.2. Let E = D be a measurable set of Rd with positive Lebesgue measure
and let ∂ 6∈ D. Assume that

Xn+1 =

{
f(Xn) + ξn if Xn 6= ∂ and f(Xn) + ξn ∈ D,
∂ otherwise,

where f : Rd → Rd is a locally bounded measurable function such that

|x| − |f(x)| −−−−−→
|x|→+∞

+∞

and (ξn)n∈N is an i.i.d. non-degenerate Gaussian sequence in Rd. Then (1.1) is satisfied
for ϕ1(x) = e|x| and a positive measurable function ϕ2 on D.

Finally, we study in Section 8 the case of processes in discrete time and discrete space.
This is the most studied situation in the literature since it covers both the Galton-Watson
processes [112, 59, 64, 2] and the general discrete case [38, 95, 47, 48, 46, 45, 55, 82].
We first show in Subsection 8.1 that our results allow to recover the general criterion
of [45], based on the theory of R-positive matrices. We then consider general population
processes dominated by population-dependent multi-type Galton-Watson processes in
Subsection 8.2. The case of population-dependent Galton-Watson processes with a single
type was studied in [55] using quasi-compactness methods. We also obtain as a corollary
several results on subcritical multi-type Galton-Watson processes. We do not recover the
optimal L logL assumption on the offspring distribution [64, 60] for the existence of a
minimal quasi-stationary distribution νQSD having finite first moment, but we obtain a
stronger form of convergence in (1.1), a larger subset of its domain of attraction and
stronger moments properties on νQSD.

2 Main results

Let (Xt, t ∈ I) be a Markov process in E ∪ {∂} where E is a measurable space and
∂ 6∈ E, with set of time indices I which might be Z+ = {0, 1, . . .}, R+ or 1

kZ+ for some
k ∈ N = {1, 2, . . .}. We define the absorption time τ∂ as

τ∂ = inf{t ∈ I, Xt = ∂}.

In this section, we study the sub-Markovian transition semigroup of X considered at
integer times, (Pn)n∈Z+

, defined as

Pnf(x) = Ex (f(Xn)1n<τ∂ ) , ∀n ∈ Z+,

for all bounded or nonnegative measurable function f on E and all x ∈ E. We also define
as usual the left-action of Pn on measures as

µPnf = Eµ (f(Xn)1n<τ∂ ) =

∫
E

Pnf(x)µ(dx),

for all probability measure µ on E. We make the following assumption.

Assumption (E). There exist a positive integer n1, positive real constants θ1, θ2, c1, c2, c3,
two functions ϕ1, ϕ2 : E → R+ and a probability measure ν on a measurable subset
K ⊂ E such that
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(E1) (Local Dobrushin coefficient). ∀x ∈ K,

Px(Xn1
∈ ·) ≥ c1ν(· ∩K).

(E2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈E

ϕ1(x) ≥ 1, sup
x∈K

ϕ1(x) <∞

inf
x∈K

ϕ2(x) > 0, sup
x∈E

ϕ2(x) ≤ 1,

P1ϕ1(x) ≤ θ1ϕ1(x) + c21K(x), ∀x ∈ E
P1ϕ2(x) ≥ θ2ϕ2(x), ∀x ∈ E.

(E3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Py(n < τ∂)

infy∈K Py(n < τ∂)
≤ c3

(E4) (Aperiodicity). For all x ∈ K, there exists n4(x) such that, for all n ≥ n4(x),

Px(Xn ∈ K) > 0.

Note that it follows from (E2) that θ2 ≤ 1 and thus θ1 < 1. We also emphasize that
our assumptions neither require that τ∂ < +∞ Px-a.s., nor that Px(n < τ∂) > 0 for all
t ≥ 0 and x ∈ E. Several examples of Markov processes satisfying Assumption (E) are
provided in Sections 4 to 8.

Assumption (E) is an extension of the ergodicity criteria developed in [84]. Indeed, if
we assume that τ∂ =∞ Px-almost surely for all x ∈ E, then Condition (E3) becomes void
and one can take ϕ2 ≡ 1 in (E2), so that θ2 = θ0 = 1. We recognize in (E1) the standard
“small set” assumption of [84], in (E2) for ϕ1 a standard Foster-Lyapunov criterion and
in (E4) an aperiodicity condition. As such, it is well-known that alternative formulations
of these conditions can be given. In the general case, we provide in Section 3.1 conditions
ensuring the existence of Lyapunov functions satisfying (E2) in terms of exponential
moment of hitting times for ϕ1 and exponential decay of the probability to be in K for
ϕ2, and conditions ensuring (E1) and (E3) based on comparisons between transition
probabilities. Similarly as for the ergodicity criteria developed in [84], we extend our
criterion to the continuous-time setting in Section 3.2.

In the rest of this section, we state the main general consequences of Assumption (E).
We start with the exponential contraction in total variation of the conditional marginal
distributions of the process given non-absorption. Its proof is given in Section 9.

Theorem 2.1. Assume that Condition (E) holds true. Then there exist a constant C > 0,
a constant α ∈ (0, 1), a probability measure νQSD on E such that νQSD(K) > 0 and such
that ∥∥∥∥ µPn

µPn1E
− νQSD

∥∥∥∥
TV (ϕ1)

≤ C αn µ(ϕ1)

µ(ϕ2)
, ∀n ≥ 0, (2.1)

for all probability measure µ on E such that µ(ϕ1) <∞ and µ(ϕ2) > 0. In addition, νQSD
is the unique quasi-stationary distribution satisfying νQSD(ϕ2) > 0 and νQSD(ϕ1) <∞.

Remark 2.2. For all p ≥ 1, Hölder’s inequality entails

P1(ϕ
1/p
1 ) ≤ (θ1ϕ1 + c21K)1/p ≤ θ1/p

1 ϕ
1/p
1 + c

1/p
2 1K ,

so that (ϕ
1/p
1 , ϕ2) satisfies Assumption (E) for all p < log θ1/ log θ2. Therefore, the expo-

nential convergence (2.1) actually holds true for the norm ‖ · ‖
TV (ϕ

1/p
1 )

and measures µ

such that µ(ϕ
1/p
1 ) < +∞ for some p < log θ1/ log θ2.
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In the following result, we show the existence of an eigenfunction η of P1 for the
eigenvalue θ0, where θ0 ∈ (0, 1] is such that

PνQSD (n < τ∂) = θn0 , ∀n ∈ N.

We recall that the existence of the decay parameter θ0 is a classical general result for
quasi-stationary distributions [83, 34]. The proof of the following result is initiated in
Section 10.1 and concluded in Section 10.3. To state this result, we define for all positive
function ψ on E the space L∞(ψ) as the set of measurable real functions f on E such
that ‖f‖L∞(ψ) := supx∈E f(x)/ψ(x) <∞. Note that (L∞(ψ), ‖ · ‖L∞(ψ)) is a Banach space.

Theorem 2.3. Assume that Condition (E) holds true. Then there exists a function
η : E → R+ such that

η(x) = lim
n→+∞

Px(n < τ∂)

PνQSD (n < τ∂)
= lim
n→+∞

θ−n0 Px(n < τ∂), ∀x ∈ E, (2.2)

where the convergence is geometric in L∞(ϕ1). In addition, we have infy∈K η(y) > 0,

νQSD(η) = 1, η ∈ L∞
(
ϕ

log (1/θ0)/ log (1/θ1)
1

)
,

P1η = θ0η and θ0 ≥ θ2 > θ1.

Remark 2.4. In general, there is no simple relation between ϕ2 and η, in particular ϕ2 is
not necessarily an element of L∞(η). However, it is true that, for all x ∈ E, Pkϕ2(x) > 0

for some k ≥ 0 if and only if η(x) > 0 (see Corollary 2.10 below).

Remark 2.5. Note that, when η is bounded, the last result implies that one can actually
take ϕ2 = η/‖η‖∞ in Condition (E2). Results with unbounded ϕ2 or 1/ϕ1 can also be
obtained by taking the ϕ1-transform of (Pn)n∈Z+

(see [4, 25]).

We consider now the Q-process and its ergodicity properties under Condition (E). In
the next result, proved in Section 10.2, Ω = EZ+ is the canonical state space of Markov
chains on E and (Fn)n∈Z+

is the associated canonical filtration. We emphasize that the
constant α may differ from the one in Theorem 2.1. In the following result, we define

E′ := {x ∈ E, η(x) > 0} .

Theorem 2.6. Condition (E) implies the following properties.

(i) Existence of the Q-process. There exists a family (Qx)x∈E′ of probability measures
on Ω defined by

lim
n→+∞

Px(A | n < τ∂) = Qx(A)

for all x ∈ E′, for all Fm-measurable set A and for all m ≥ 0. The process
(Ω, (Fn)n∈Z+

, (Xn)n∈Z+
, (Qx)x∈E′) is an E′-valued homogeneous Markov chain.

(ii) Semigroup. The semigroup of the Markov process X under (Qx)x∈E′ is given for all
bounded measurable function ϕ on E′ and n ≥ 0 by

P̃nϕ(x) =
θ−n0

η(x)
Pn(ηϕ)(x). (2.3)

(iii) Exponential ergodicity. The probability measure β on E′ defined by

β(dx) = η(x)νQSD(dx).
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is the unique invariant distribution of the Markov process X under (Qx)x∈E′ .
Moreover, there exist constants C > 0 and α ∈ (0, 1) such that, for all initial
distributions µ on E′ such that µ(ϕ1/η) <∞ and∥∥∥µP̃n − β(h)

∥∥∥
TV (ϕ1/η)

≤ Cαn µ (ϕ1/η) , ∀n ≥ 0, (2.4)

where Qµ =
∫
E′
Qx µ(dx). In addition, for all initial distributions µ on E′,∥∥∥µP̃n − β∥∥∥

TV
−−−−→
n→∞

0. (2.5)

We conclude this section with corollaries of the last theorem. The following result is
proved in Section 10.3.

Corollary 2.7. Assume that Condition (E) holds true. Then there exist constants C > 0

and α ∈ (0, 1) such that, for all probability measure µ on E such that µ(ϕ1) < +∞,∥∥θ−n0 µPn − µ(η)νQSD
∥∥
TV (ϕ1)

≤ C αnµ(ϕ1). (2.6)

Remark 2.8. The proof of Theorem 2.6 makes use of [57, 58], which allows to derive
explicit expressions for the constants C and α (we refer the interested reader to Re-
mark 10.1). In particular, using these estimates in the proof of Corollary 2.7 would also
provide explicit constants in (2.6).

Remark 2.9. The formulation (2.6) for the convergence of the semigroup is natural in
this setting, since a property of equivalence between (2.6) and Condition (E) is proved
in [4, 25].

The last corollary has consequences on the attraction domain of νQSD.

Corollary 2.10. Assume that Condition (E) holds true. Then

E′ = {x ∈ E : ∃k ≥ 0, Pkϕ2(x) > 0}

and the domain of attraction of νQSD for the total variation norm contains all probability

measures on E such that µ(E′) > 0 and µ(ϕ
1/p
1 ) < +∞ for some p < log θ1/ log θ2. If in

addition ϕ1 is bounded, then the domain of attraction of νQSD is the set of probability
measures on E such that µ(E′) > 0 and νQSD is the unique quasi-stationnary distribution
giving positive mass to E′.

Convergence estimates can also be obtained for initial distributions on E′ satisfying
µ(η) < +∞ but not necessarily µ(ϕ1) < +∞. The following result is proved in 10.5.

Corollary 2.11. Assume that Condition (E) holds true. Then, for all probability measures
µ on E′ such that µ(η) < +∞,∥∥θ−n0 µPn − µ(η)νQSD

∥∥
TV (η)

−−−−−→
n→+∞

0. (2.7)

In particular, if η is positive on E, then νQSD is the unique quasi-stationary distribution
of X such that νQSD(η) < +∞. If in addition η is lower bounded away from 0 on E, then
for all probability measures µ on E such that µ(η) < +∞, we have

‖Pµ(Xn ∈ · | n < τ∂)− νQSD‖TV (η) −−−−−→n→+∞
0. (2.8)

In particular, the domain of attraction of νQSD contains all probability measures µ on E
such that µ(η) < +∞.
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3 Other formulations and particular cases of Assumption (E)

In this section, we provide general comments on Assumption (E). Alternative formu-
lations of our assumptions and simple criteria are gathered in Subsection 3.1. Subsec-
tion 3.2 focuses on criteria adapted to continuous time processes and we consider the
case of uniform convergence in Theorem 2.1 in Subsection 3.3.

3.1 General comments on the assumptions

We propose here alternative formulations of Condition (E2) and criteria ensuring (E1)
and (E3) when (E2) and (E4) are satisfied, that may be easier to check in some practical
situations. In particular, we make strong use of these results in Sections 7 and 8.

3.1.1 Construction of Lyapunov functions satisfying (E2)

In order to prove the existence of functions ϕ1 and ϕ2 in Condition (E2), one may use
probabilistic properties of the Markov process X, as stated in the following lemmas,
proved in Sections 11.1 and 11.2. The first lemma shows a way to construct ϕ2.

Lemma 3.1. Let K be a measurable subset of E. If there exists θ2 > 0 such that

inf
x∈K

θ−n2 Px(Xn ∈ K) −−−−−→
n→+∞

+∞,

then the function ϕ2 : E → [0, 1] defined by ϕ2(x) =
θ−1
2 −1

θ−`2 −1

∑`−1
k=0 θ

−k
2 Px(Xk ∈ K), for any

` is such that θ−`2 infx∈K Px(X` ∈ K) ≥ 1, verifies infK ϕ2 > 0 and P1ϕ2(x) ≥ θ2 ϕ2(x).
Moreover, (E4) is satisfied.

The second lemma shows how ϕ1 can be constructed. This is a well-known result in
the case without absorption [84], which can provide easier ways to check (E2) in some
situations. We define

TK = inf{n ∈ Z+, Xn ∈ K}. (3.1)

Lemma 3.2. Let K be a measurable subset of E. If there exists a constant θ1 > 0 such
that

Ex

(
θ−TK∧τ∂1

)
< +∞ ∀x ∈ E and C := sup

y∈K
Ey

(
EX1

(
θ−TK∧τ∂1

)
11<τ∂

)
< +∞,

then the function ϕ1 : E → [1,+∞) defined by ϕ1(x) = Ex

(
θ
−TK∧dτ∂e
1

)
satisfies

sup
K
ϕ1 < +∞ and P1ϕ1 ≤ θ1ϕ1 +

C

θ1
1K .

Conversely, if there exist two constants C > 0, θ1 > 0 and a function ϕ1 : E → [1,+∞)

such that supK ϕ1 < +∞ and P1ϕ1 ≤ θ1ϕ1 + C1K , then, for all θ > θ1, there exists a
constant Cθ such that

Ex
(
θ−TK∧τ∂

)
≤ Cθϕ1(x) ∀x ∈ E and sup

y∈K
Ey
(
EX1

(
θ−TK∧τ∂

)
11<τ∂

)
< +∞.

Note that the hitting time TK is defined from the process (Xn)n∈Z+
. When I 6= Z+, it

might be easier to use criteria based on the hitting time τK defined from the full process
(Xn)n∈I . We refer the reader to Lemma 3.6 below for that.
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3.1.2 Checking (E1) and (E3) from comparisons between transition probabili-
ties

Condition (E3) is a form of Harnack inequality, and one can indeed use general versions
of these inequalities to check (E3) and (E1) (for example, our results on diffusions given
in Section 4 use this idea, cf. Section 12.2). We propose below another criterion, based
on comparison techniques on transition probabilities, to check that Conditions (E1) and
(E3) hold true when Conditions (E2) and (E4) are satisfied. This result is proved in
Subsection 11.3.

Proposition 3.3. Assume that Conditions (E2) and (E4) are satisfied and that there exist
two constants C > 0 and n0 ≤ m0 ∈ N such that

Px(Xn0
∈ · ∩K) ≤ C Py(Xm0

∈ ·), ∀x ∈ E and y ∈ K. (3.2)

Then Condition (E) is satisfied.

3.1.3 Optimal value of θ2 in (E2)

As many results of Section 2 make use of the function ϕ
1/p
1 with a parameter p ∈

[1, log θ1/ log θ2), it is important to characterize the largest possible value of θ2. This
result is proved in Section 11.4.

Lemma 3.4. If Condition (E) is satisfied for some functions ϕ1 and ϕ2 with constants
θ1 and θ2, then, for all θ′2 ∈ (θ1, θ0) it is also satisfied for ϕ1 and some function ϕ′2 with
constants θ1 and θ′2.

3.2 On continuous time

In Section 2, we only considered the conditional behavior of the process X at integer
times. In general, the results of Section 2 do not give information about the process
at intermediate times. In this section, we derive a sufficient condition which is well
suited for practical verification in the case of continuous time Markov processes or for
aperiodic Markov processes, in particular because (F2) below is usually easier to check
than (E2). We consider an absorbed Markov process (Xt)t∈I with time parameter in
I = Z+ or [0,+∞).

Assumption (F). There exist positive real constants γ1, γ2, c1, c2 and c3, t1, t2 ∈ I, a
measurable function ψ1 : E → [1,+∞), and a probability measure ν on a measurable
subset L ⊂ E such that

(F0) (A strong Markov property). Defining

τL := inf{t ∈ I : Xt ∈ L}, (3.3)

assume that for all x ∈ E, XτL ∈ L, Px-almost surely on the event {τL < ∞} and
for all t ∈ I and all measurable f : E ∪ {∂} → R+,

Ex [f(Xt)1τL≤t<τ∂ ] = Ex

[
1τL≤t∧τ∂EXτL [f(Xt−u)1t−u<τ∂ ]

u=τL

]
.

(F1) (Local Dobrushin coefficient). ∀x ∈ L,

Px(Xt1 ∈ ·) ≥ c1ν(· ∩ L).

(F2) (Global Lyapunov criterion). We have γ1 < γ2 and

Ex(ψ1(Xt2)1t2<τL∧τ∂ ) ≤ γt21 ψ1(x), ∀x ∈ E
Ex(ψ1(Xt)1t<τ∂ ) ≤ c2, ∀x ∈ L, ∀t ∈ [0, t2] ∩ I,
γ−t2 Px(Xt ∈ L) −−−−→

t→+∞
+∞, ∀x ∈ L.
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(F3) (Local Harnack inequality). We have

sup
t≥0

supy∈LPy(t < τ∂)

infy∈LPy(t < τ∂)
≤ c3

Be careful that the definition of τL in (3.3) is different from that of TL in (3.1). Note
also that, in (F2), the Lyapunov function ϕ2 has been replaced by an alternative condition
similar to Lemma 3.1. Both are actually equivalent thanks to (F0) (see the beginning of
Section 11.5.1).

The following result is proved in Section 11.5.

Theorem 3.5. Under Assumption (F), (Xt)t∈I admits a quasi-stationary distribution
νQSD, which is the unique one satisfying νQSD(ψ1) < ∞ and νQSD(L) > 0 for some
t ∈ I. Moreover, there exist constants α ∈ (0, 1) and C > 0 such that, for all probability
measures µ on E satisfying µ(ψ1) <∞ and µ(ψ2) > 0,

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV (ψ1) ≤ C α
t µ(ψ1)

µ(ψ2)
, ∀t ∈ I, (3.4)

where ψ2(x) =
∑n0

k=0 γ
−kt2
2 Px(Xkt2 ∈ L) for some n0 ≥ 1 large enough. In addition, there

exists a constant λ0 ≥ 0 such that λ0 ≤ log(1/γ2) < log(1/γ1) and PνQSD (t < τ∂) = e−λ0t

for all t ≥ 0, and there exists a function η such that

η(x) = lim
t→+∞

eλ0tPx(t < τ∂), ∀x ∈ E, (3.5)

where the convergence is exponential in L∞(ψ
1/p
1 ) for all p ∈ [1, log(1/γ1)/λ0), and

Ptη(x) = e−λ0tη(x) for all x ∈ E and t ∈ I.
A key point that guided our formulation of Condition (F) is that, for continuous-time

Markov processes, usual practical conditions for the existence of ψ1 are provided by
Foster-Lyapunov inequalities (cf. [84]). They involve the extended infinitesimal generator
L̄ of the process X (see e.g. [84, 26]) and take the form

L̄ψ1(x) ≤ −λ1ψ1(x) + C1K(x), ∀x ∈ E. (3.6)

This inequality does not imply, in general, that (E2) holds true for ϕ1 = ψ1. How-
ever, Equation (3.6) implies (formally, assuming one can apply Dynkin’s formula) that
Ex[11≤τL∧τ∂ψ1(X1)] ≤ e−λ1ψ1(x) and Ex[ψ1(Xt)1t<τ∂ ] ≤ eCtψ1(x). Hence the first two
lines of (F2) can be deduced from classical Foster Lyapunov criteria. This will be used
for diffusion processes in Section 4 or in discrete state space in Section 5.

Alternatively, one can use controls on the exponential moments for the return times
in L. The following result, similar to Lemma 3.2, is proved in Section 11.6.

Lemma 3.6. Assume that there exist positive constants γ1 > 0 and t2 ∈ I such that

Ex
(
γ−τL∧τ∂1

)
<∞, ∀x ∈ E and sup

x∈L
Ex
(
EXt2

(
γ−τL∧τ∂1

)
1t2<τ∂

)
< +∞,

then ψ1(x) = Ex
(
γ−τL∧τ∂1

)
satisfies

Ex(ψ1(Xt2)1t2<τL∧τ∂ ) ≤ γt21 ψ1(x), ∀x ∈ E
Ex(ψ1(Xt)1t<τ∂ ) ≤ c2, ∀x ∈ L, ∀t ∈ [0, t2] ∩ I,

for some constant c2 > 0.
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Remark 3.7. In the proof of Theorem 3.5, we will show that Assumption (F) implies that
Assumption (E) is satisfied for the sub-Markovian semigroup (Pn)n≥0 of the absorbed

Markov process (Xnt2)n∈Z+
, with the functions ϕ1 = ψ1 and ϕ2 =

γ
−t2
2 −1

γ
−(n0+1)t2
2 −1

ψ2, any

θ1 ∈ (γt21 , γ
t2
2 ), θ2 = γt22 and the set

K =
{
y ∈ E, Py(τL ≤ t2)/ψ1(y) ≥ (θ1 − γt21 )/c2

}
⊃ L.

In particular, all the consequences of (E) stated in Section 2 hold true. Moreover, it is
also possible to obtain a continuous-time version of Theorem 2.6 about the Q-process by
adapting the proof given in Section 10.2.

Remark 3.8. If I = R+, it follows from the fact that Ptη = e−λ0tη that, setting η(∂) = 0,
the function η defined on E ∪ {∂} belongs to the domain of the infinitesimal generator L
of the semigroup of the Markov process X on E ∪ {∂}, seen as acting on L∞(ψ

1/p
1 ) for

p ∈ [1, log(1/γ1)/λ0), and Lη = −λ0η.

3.3 The case of uniform exponential convergence

We now want to characterize the case of exponential convergence in total variation
of the conditional distributions of (Xn) to νQSD, uniformly with respect to the initial
distribution µ. This question was already studied in [20]. The next result, proved in
Section 11.7, gives a necessary and sufficient condition based on Condition (E).

Proposition 3.9. There exists constants C and α < 1 such that, for all probability
measure µ on E and all integer n,

‖Pµ(Xn ∈ · | n < τ∂)− νQSD‖TV ≤ Cα
n, (3.7)

if and only if Condition (E) is satisfied with a bounded function ϕ1 and there exists an
integer n′4 > 0 such that

c := inf
x∈E

Px(Xn′4
∈ K | n′4 < τ∂) > 0. (3.8)

4 Application to diffusion processes

In this section, we apply the criteria (E) and (F) to diffusion processes absorbed at
the boundary of a domain. We give a general criterion in Subsection 4.1 and apply it to
uniformly elliptic diffusions in Subsection 4.2 and to an example with vanishing diffusion
coefficient at the boundary of the domain in Subsection 4.3. Our criteria are extended
to diffusions with killing in Subsection 4.4 and the particular case of one-dimensional
diffusions is studied in Subsection 4.5.

4.1 A general criterion in any dimension

We consider a diffusion process X on a connected, open domain D ⊂ Rd for some
d ≥ 1, solution to the SDE

dXt = b(Xt)dt+ σ(Xt)dBt, (4.1)

where B is a standard, r-dimensional Brownian motion and b : D → Rd and σ : D → Rd×r

are locally Hölder functions, such that σ is locally uniformly elliptic in D, i.e.

∀K ⊂ D compact, inf
x∈K

inf
s∈Rd\{0}

s∗σ(x)σ∗(x)s

|s|2
> 0,

where | · | is the standard Euclidean norm on Rd. We assume that the process is
immediately absorbed at some cemetery point ∂ 6∈ D at its first exit time of D, denoted τ∂ .
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The existence and basic properties of this process need some care since the coefficients
b and σ are only defined in the open set D without any assumption on the boundary of D,
and so may not be possible to extend as continuous functions out of this set. Details are
given in Subsection 12.1. For the moment, let us only observe that, for all k ≥ 1, defining
the compact set

Kk = {x ∈ D : |x| ≤ k and d(x,Dc) ≥ 1/k} ,

a weak solution to (4.1) can be constructed up to the first exit time τKc
k

of Kk as defined
in (3.3). The proper definition of the absorption time τ∂ is

τ∂ = sup
k≥1

τKc
k
. (4.2)

We introduce the differential operator associated to the SDE (4.1), related to the
infinitesimal generator of the process X: for all f ∈ C2(D), we define for all x ∈ D

Lf(x) :=

d∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

r∑
k=1

σik(x)σjk(x)
∂2f

∂xi∂xj
(x). (4.3)

We also define the constant

λ0 := inf

{
λ > 0, s.t. lim inf

t→+∞
eλtPx (Xt ∈ B) > 0

}
(4.4)

for some x ∈ D and some open ball B such that B ⊂ D. It is standard to prove using
Harnack inequalities (proved in our case in Section 12.2) that, under the previous
assumptions, λ0 < +∞ and its value is independent of the choice of x ∈ D and of the
non-empty, open ball B such that B ⊂ D.

The following result is proved in Sections 12.1 to 12.3.

Theorem 4.1. Assume that there exist some constants C > 0, λ1 > λ0, a C2(D) function
ϕ : D → [1,+∞) and a subset D0 ⊂ D closed in D such that supx∈D0

ϕ(x) < +∞ and

Lϕ(x) ≤ −λ1ϕ(x) + C1x∈D0
, ∀x ∈ D. (4.5)

Assume also that there exists a time s1 > 0 such that

sup
x∈D0

Px(s1 < τKk ∧ τ∂) −−−−→
k→∞

0. (4.6)

Then X admits a quasi-stationary distribution νQSD which satisfies νQSD(ϕ1/p) < +∞ for
all p > 1. Moreover, for all p ∈ (1, λ1/λ0), there exist a constant αp ∈ (0, 1), a constant Cp
and a function ϕ2,p : D → (0,+∞) uniformly bounded away from 0 on compact subsets
of D such that, for all probability measures µ on E satisfying µ(ϕ1/p) <∞,

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV (ϕ1/p) ≤ Cpα
t
p

µ(ϕ1/p)

µ(ϕ2,p)
, ∀t ∈ [0,+∞).

In particular, νQSD is the only quasi-stationary distribution of X which satisfies
νQSD(ϕ1/p) < +∞ for at least one value of p ∈ (1, λ1/λ0).

Remark 4.2. Note that τKk = 0 Px-a.s. for all x ∈ Kk, thus

sup
x∈D0

Px(s1 < τKk ∧ τ∂) = sup
x∈D0\Kk

Px(s1 < τKk ∧ τ∂).

Hence Condition (4.6) requires the process to be absorbed or return in Kk fast starting
in D0 \Kk.
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Remark 4.3. We shall actually prove that, under the conditions of the previous theorem,
Assumption (F) is satisfied with L = Kk for some k ≥ 1, and ψ1 = ϕ1/p, for any
p ∈ (1, λ1/λ0).

Remark 4.4. In general, the assumptions of Theorem 4.1 do not ensure the non-
explosion of the Markov process X. In the case of an explosive Markov process, the
definition of τ∂ in (4.2) implies that, in the event of an explosion, the absorption time τ∂
is defined as equal to the explosion time.

The last result has other consequences of interest, gathered in the next corollary,
proved in Section 12.4.

Corollary 4.5. Under the assumptions of Theorem 4.1, the infimum defining the constant
λ0 in (4.4) is actually a minimum and it satisfies PνQSD (t < τ∂) = e−λ0t for all t ≥ 0. In
addition, the function η of Theorem 3.5 satisfies Ptη = e−λ0tη for all t ≥ 0. In particular,
η belongs to the domain of the infinitesimal generator of the semigroup of the process
X defined as acting on the Banach space L∞(ϕ1), and it is an eigenfunction for the
eigenvalue −λ0. In addition, η ∈ C2(D) and Lη(x) = −λ0η(x) for all x ∈ D.

4.2 Application to uniformly elliptic diffusion processes

We consider the case where σ can be extended to Rd as a locally uniformly elliptic
matrix-valued function. In the following corollary, we give a general situation where (4.6)
holds true. We emphasize that, contrary to previous results on existence of quasi-
stationary distributions for diffusions in a domain (see e.g. [90, 53, 70, 43, 17]), no
regularity on the boundary of D is required.

Corollary 4.6. Let D be an open connected subset of Rd, d ≥ 1. Let X be solution to
the SDE

dXt = b(Xt)dt+ σ(Xt)dBt, t < τ∂ , (4.7)

where b : Rd → Rd and σ : Rd → Rd×r are locally Hölder continuous in Rd and σ is
locally uniformly elliptic on Rd. Recall the definition (4.4) of λ0 and assume that there
exist constants C > 0, λ1 > λ0, a C2(D) function ϕ : D → [1,+∞) and a bounded subset
D0 ⊂ D closed in D such that

Lϕ(x) ≤ −λ1ϕ(x) + C1x∈D0 , ∀x ∈ D. (4.8)

Then the process X absorbed at the boundary of D (in the sense of (4.2)) satisfies the
assumptions of Theorem 4.1.

Note that we do not assume that ϕ(x)→ +∞ when |x| → +∞, hence the process X
may be explosive (see Remark 4.4).

Proof. Let us consider the diffusion process Y solution to (4.7) on Rd. Due to our
regularity assumptions on b and σ, this process is well-defined up to a possibly finite
explosion time τexpl. The Harnack inequality (12.6) applied to Y on the compact set D0

ensures the existence of constants δ > 0 and N such that, for all f : Rd → [0, 1], for all
x ∈ D0 and all y ∈ B(x, δ),

Ex[1δ+δ2<τexpl
f(Yδ+δ2)] ≤ NEy[1δ+2δ2<τexpl

f(Yδ+2δ2)].

By compactness of D0, there exist a positive integer n and y1, . . . , yn ∈ D0 such that
D0 ⊂

⋃n
i=1B(yi, δ). Setting s1 = δ + δ2, we deduce that, for all k ≥ 1 and all x ∈ D0,

Px(Ys1 ∈ D \Kk) ≤ N max
1≤i≤n

Pyi(Ys1+δ2 ∈ D \Kk) −−−−−→
k→+∞

0.

Hence (4.6) is satisfied. This and Theorem 4.1 end the proof of Corollary 4.6.
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We give three examples of application.

Example 4.7. Assume that D is bounded. Then, one can choose D0 = D and ϕ = 1 in
Corollary 4.6. This implies that Assumption (F) is satisfied for ψ1 = ϕp bounded (see
Remark 4.3), so that it follows from Theorem 3.5 that the convergence of eλ0tPX(t < τ∂)

to η is uniform and that η is bounded. Theorem 3.5 also implies that Assumption (E) is
satisfied for some bounded ϕ1 and ϕ2. Since P1η = e−λ0η and e−λ0 ≥ θ2 > θ1, we deduce
that (E) is still satisfied if ϕ2 is replaced by η/‖η‖∞. Therefore,

‖Pµ(Xn ∈ · | n < τ∂)− νQSD‖TV ≤
C

µ(η)
αn, ∀n ∈ N.

The extension to any t ∈ [0,+∞) can be obtained using the same argument as in
Section 11.5.2 replacing ϕ2 and ϕ′2 with η. This implies Theorem 1.1 of the introduction.

Example 4.8. Assume that D ⊂ Rd+ is open connected and that

dXt = b(Xt)dt+ σ(Xt)dBt

in D, where b : Rd → Rd and σ : Rd → Rd×r are locally Hölder continuous in Rd, σ is
locally uniformly elliptic on Rd and

〈b(x), 1〉
〈x, 1〉

−−−−−→
|x|→+∞

−∞,

where 〈·, ·〉 is the standard Euclidean product in Rd and | · | is the associated norm.
Then (4.8) is satisfied for ϕ(x) = 1 + x1 + . . .+ xd and hence the process X absorbed at
the boundary of D satisfies the assumptions of Theorem 4.1.

Example 4.9. Assume that D ⊂ Rd is open connected and that

dXt = b(Xt)dt+ dBt

in D, where b : Rd → Rd is locally Hölder continuous in Rd and

lim sup
|x|→+∞

〈b(x), x〉
|x|

< −3

2

√
λ0, (4.9)

where 〈·, ·〉 is the standard Euclidean product in Rd and λ0 is defined in (4.4). Then the
process X absorbed at the boundary of D satisfies the assumptions of Theorem 4.1.

Indeed, let us check that (4.8) is satisfied for ϕ(x) = exp(
√
λ0|x|). One has, for all

x 6= 0,

Lϕ(x) =

d∑
i=1

e
√
λ0|x|

2

(√
λ0

|x|
−
√
λ0x

2
i

|x|3
+
λ0x

2
i

|x|2

)
+

d∑
i=1

e
√
λ0|x|

√
λ0bi(x)xi
|x|

≤
√
λ0ϕ(x)

(
d− 1

2|x|
+

√
λ0

2
+
〈b(x), x〉
|x|

)
≤ −(λ0 + ε)ϕ(x)

for some ε > 0 and for all x such that |x| is large enough. This implies (4.8).
To apply this criterion, it is necessary to obtain a priori bounds on λ0. We will give

some ideas about how to do so for one-dimensional diffusions in Section 4.5. In general,
one can also use of course that (4.9) is implied by

lim
|x|→+∞

〈b(x), x〉
|x|

= −∞.
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4.3 Non-uniformly elliptic diffusions: the Feller diffusion with competition

We provide an example where the diffusion matrix σ cannot be extended out of
D as a locally uniformly elliptic matrix. This example deals with Feller diffusions
with competition and is motivated by models of population dynamics with d species in
interaction, where absorption corresponds to the extinction of one of the populations [15,
26].

Assume that D = (0,∞)d and

dXi
t =

√
γiXi

t dBit +Xi
tbi(Xt) dt,

where γi > 0 for all 1 ≤ i ≤ d, B1, . . . , Bd are independent standard Brownian motions
and bi are locally Hölder in (0,∞)d and locally bounded in Rd+.

Proposition 4.10. Assume that there exist constants c0, c1 > 0 such that

d∑
i=1

xibi(x)

γi
≤ c0 − c1|x|, ∀x ∈ (0,∞)d.

Then the process X absorbed at the boundary of D satisfies the assumptions of Theo-
rem 4.1.

Compared to the existing literature on multi-dimensional Feller diffusions [15, 26],
the main novelty of this result is that it covers cases where the process does not come
down from infinity, e.g. bi(x) = ri −

∑d
j=1 cij

xj
1+xj

, for some positive constants ri and cij
such that ri < cii for all 1 ≤ i ≤ d, and where b does not derive from a potential (see for
instance [15], based on a spectral theoretic approach). While our results on existence
and convergence to quasi-stationary distributions are more general than those of [15],
we do not recover finer results on the spectrum of the process, such as its discreteness.

Proof. Our aim is to prove that the assumptions of Theorem 4.1 hold true with ϕ(x) =

exp(c(x1/γ1 + . . .+ xn/γn)), where c = c1 mini γi/
√
d.

We have, for all x ∈ D,

Lϕ(x) =

d∑
i=1

(
xic

2

2γi
+
cxibi(x)

γi

)
ϕ(x) ≤

(
c0c−

c1c|x|
2

)
ϕ(x).

Choosing λ1 = λ0+1 and D0 = {x ∈ D, s.t. |x| ≤ (2c0+2λ1/c)/c1}, one deduces that (4.5)
holds true with C = c0c maxD0

ϕ.
Let us now prove that

Px(1 < τ∂) −−−−−−−−→
x→∂D,x∈D0

0, (4.10)

which implies that (4.6) holds true with s1 = 1. Fix ε > 0 and define the set F ={
x ∈ Rd+, s.t. ϕ(x) ≥ eC supy∈D0

ϕ(y)/ε
}

. Using Itô’s formula (see the proof of (12.9) in
Section 12.3 for details), we deduce from (4.5) that, For all x ∈ D0,

Px(τF ≤ 1) eC sup
y∈D0

ϕ(y)/ε ≤ Ex (ϕ(XτF∧1)1τF∧1<τ∂ ) ≤ eCϕ(x),

so that Px(τF ≤ 1) ≤ ε for all x ∈ D0. Since F c is bounded, we have

β := sup
x∈F c,i∈{1,...,d}

|bi(x)| < +∞.

Let (Zt)t∈[0,+∞) := (Z1
t , . . . , Z

d
t )t∈[0,+∞) be the solution of the system of SDEs

dZit =
√
γiZit dBit + Zitβ dt, Zi0 = Xi

0 ∈ (0,+∞),
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with absorption at the boundary of D. Note that the components of Z are independent
one dimensional diffusion processes such that 0 is reachable and hence that

Px
(
∀t ∈ [0, 1], ∀i ∈ {1, . . . , d}, Zit > 0

)
−−−−→
x→∂D

0.

Standard comparison arguments show that Xi
t ≤ Zit for all t < τ∂ ∧ τF ∧ 1 and all

i ∈ {1, . . . , d}, so that

Px
(
∀t ∈ [0, 1], ∀i ∈ {1, . . . , d}, Xi

t > 0 and 1 < τF
)
−−−−→
x→∂D

0.

But Px(1 < τF ) ≥ 1− ε, so that

lim sup
x→∂D

Px
(
∀t ∈ [0, 1], ∀i ∈ {1, . . . , d}, Xi

t > 0
)
≤ ε.

Since this is true for all ε > 0 and since {∀t ∈ [0, 1], ∀i ∈ {1, . . . , d}, Xi
t > 0} = {1 < τ∂},

we deduce that (4.10) holds true, which concludes the proof or Proposition 4.10.

4.4 Diffusion processes with killing

This section is devoted to the study of diffusion processes with killing. More precisely,
we consider as above a diffusion process X on a connected, open domain D ⊂ Rd for
some d ≥ 1, solution to the SDE

dXt = b(Xt)dt+ σ(Xt)dBt (4.11)

absorbed in ∂ at its first exit time τexit of D, as defined in (4.2), with the same assumptions
as in Section 4.1. We also assume that the process is subject to an additional measurable
killing rate κ : D → R+ which is locally bounded: there exists an independent exponential
random variable ξ with parameter 1 such that the process is instantaneously sent to the
cemetery point ∂ /∈ D at time

τ∂ = τexit ∧ inf

{
t ≥ 0,

∫ t

0

κ(Xs) ds > ξ

}
.

Since κ is assumed to be locally bounded, one easily checks that λ0 in (4.4) is finite,
and that it does not depend on x ∈ D or on the open ball B such that B ⊂ D.

The following result is an extension to the multi-dimensional setting of [71, Theo-
rem 4.3].

Theorem 4.11. Assume that there exist a subset D0 ( D closed in D such that

inf
x∈D\D0

κ(x) > λ0, (4.12)

and a time s1 > 0 such that

sup
x∈D0

Px(s1 < τ∂ ∧ τKk) −−−−−→
k→+∞

0. (4.13)

Then the process X absorbed at time τ∂ admits a unique quasi-stationary distribution
νQSD and there exist a positive function ϕ2 on D (uniformly bounded away from 0 on
compact subsets of D) and a positive constant C such that

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV ≤
C

µ(ϕ2)
αt, ∀t ∈ [0,+∞)

for all probability measures µ on E.
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Remark 4.12. Let us make some comments on the assumptions of the above result.

1. If the process without killing rate satisfies (4.13), then the process with killing rate
also satisfies this property. Hence the analysis provided in Section 4.2 can also be
used to check the assumptions of the above theorem.

2. If infx∈D\Kk κ(x)→ +∞ when k → +∞, then the assumptions of Theorem 4.7 are
trivially satisfied.

3. In order to reach the conclusion of Theorem 4.1 in the setting of killed diffusion,
it is also possible to use a Lyapunov type criterion: the assumption (4.5) can be
simply replaced by the assumption that there exist λ > λ0 and C > 0 such that

Lϕ(x)− κ(x)ϕ(x) ≤ −λϕ(x) + C1x∈D0 .

Note that (4.12) of course implies the last inequality for ϕ ≡ 1. This extension
follows from a simple adaptation of the arguments of Theorem 4.1 observing that

Ex [f(Xt)1t<τ∂ ] = Ex

[
f(XD

t )1t<τexit exp

(
−
∫ t

0

κ(XD
s )ds

)]
,

where the process XD is the process solution to (4.11) without killing, absorbed at
its first exit time of D, at time τexit.

4. If in addition the killing rate κ is locally Hölder in D, we can apply [50, Cor. 3.1]
as in Section 12.4 to prove that η is C2(D) and Lη(x)− κ(x)η(x) = −λ0η(x) for all
x ∈ D.

Proof. The proof follows the same lines as the proof of Theorem 4.1 in Section 12. We
emphasize that the construction of the process in Section 12.1 is still valid. The same is
true for the Harnack inequalities of Section 12.2 since they are based on Krylov’s and
Safonov’s general result [72] which is obtained for diffusion processes with a bounded
and measurable killing rate. The rest of the proof is exactly the same, replacing ϕ1 = ϕ

by ϕ1 = 1.

4.5 The case of one-dimensional diffusions

In this section, we consider the case of one-dimensional diffusion processes. Here, the
Hölder regularity of the coefficients is not needed. Let X be the solution in D = (α, β),
where −∞ ≤ α < β ≤ +∞, to the SDE

dXt = σ(Xt) dBt + b(Xt) dt, X0 ∈ D,

where σ : D → (0,+∞) and b : D → R are measurable functions such that (1 + |b|)/σ2

is locally integrable on D. We assume that the process is sent to a cemetery point ∂
when it reaches the boundary of D and that it is subject to an additional killing rate
κ : D → R+ which is measurable and locally integrable w.r.t. Lebesgue’s measure. This
assumption implies that the killed process is regular in the sense that, for all x, y ∈ D,
Px(τ{y} <∞) > 0.

We define λ0 as in (4.4). The fact that λ0 does not depend on x nor B is a consequence
of the regularity of the process.

Let δ : D → R+ and s : D → R be defined by

δ(x) = exp

(
−2

∫ x

α0

b(u)

σ(u)2
du

)
and s(x) =

∫ x

α0

δ(u) du,

for some arbitrary α0 ∈ D. We recall that s is the scale function of X (unique up to an
affine transformation), meaning that s(Xt) is a local martingale. We also recall that the
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boundary α (and similarly for β) is said to be reachable (for the process without killing)
if s(α+) > −∞ and ∫ +

α

s(x)− s(α+)

σ(x)2δ(x)
dx < +∞.

Theorem 4.13. Assume that one among the following conditions (i), (ii) or (iii) holds
true:

(i) α and β are reachable boundaries;

(ii) α is reachable and there exist λ1 > λ0, a C2(D) function ϕ : D → [1,+∞) and x1 ∈ D
such that, for all x ≥ x1,

σ(x)2

2
ϕ′′(x) + b(x)ϕ′(x)− κ(x)ϕ(x) ≤ −λ1ϕ(x); (4.14)

(iii) there exist λ1 > λ0, a C2(D) function ϕ : D → [1,+∞) and x0 < x1 ∈ D such
that (4.14) holds true for all x ∈ (α, x0) ∪ (x1, β).

Then the conclusions of Theorem 4.1 hold true.

Remark 4.14. We shall not detail the proof of this result since it is very close to the
proof of Theorem 4.1 given in Section 12. We only explain the places that need to be
modified. First, weak existence, weak uniqueness and the strong Markov property are
well-known under the assumptions that σ > 0 and (1 + |b|)/σ2 ∈ L1

loc(D) (weak existence
and uniqueness in law are proved up to an explosion time in [66, Thm. 5.5.15], so
we can construct a unique weak solution and prove the strong Markov property as in
Section 12.1). Second, in order to construct an appropriate function ϕ on D, we choose
D0 = (α, x1] in case (ii) and D0 = [x0, x1] in case (iii) and we can extend ϕ on D0 as a
bounded C2(D) function. In case (i), we can take ϕ ≡ 1 and D0 = D. Third, (4.6) follows
from the fact that the boundaries α and β are reachable in case (i) and α is reachable in
case (ii), since

sup
x∈(α,α+1/k]

Px(s1 < τ∂) ≤ Pα+1/k(s1 < τ{α}) −−−−−→
k→+∞

0.

In case (iii), the limit is trivial sinceD0 ⊂ Kk for k large enough. Finally, all the arguments
using Harnack’s inequality can be replaced by arguments using the regularity of the
process and standard coupling arguments for one-dimensional diffusions (see [23, 22]).

In order to apply this result in practice, one needs to find computable estimates for
λ0 and candidates for ϕ. One may for instance use the bounds for the first eigenvalue of
the (Dirichlet) infinitesimal generator of (Xt, t ≥ 0) obtained in a L2 (symmetric) setting
using Rayleigh-Ritz formula in [91, 110, 111], as observed in [71]. We propose here
two different upper bounds for λ0 which follow from the characterization (4.4) of the
eigenvalue λ0 and Dynkin’s formula.

Proposition 4.15. For all α < a < b < β, we have

λ0 ≤ sup
x∈[a,b]

1

2

 πσ(x)∫ b

a
exp

(
−2
∫ y
x

b(z)
σ2(z) dz

)
dy

2

+ κ(x)

 .

If x 7→ b(x)/σ(x)2 is C1([a, b]), then

λ0 ≤ sup
x∈[a,b]

π2σ(x)2

2(b− a)2
+ σ(x)2

(
b

2σ2

)′
(x) +

b(x)2

2σ(x)2
+ κ(x).
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Proof. For the proof of the first inequality, set

f(x) = sin

(
π
s(x)− s(a)

s(b)− s(a)

)
.

Then, for all x ∈ (a, b),

σ(x)2

2
f ′′(x) + b(x)f ′(x)− κ(x)f(x) = −

(
π2σ(x)2δ(x)2

2(s(b)− s(a))2
+ κ(x)

)
f(x)

= −

 π2σ(x)2

2
(∫ b

a
exp

(
−2
∫ y
x

b(z)
σ2(z) dz

)
dy
)2 + κ(x)

 f(x)

≥ −Cf(x),

where

C := sup
x∈[a,b]

1

2

 πσ(x)∫ b

a
exp

(
−2
∫ y
x

b(z)
σ2(z) dz

)
dy

2

+ κ(x)

 .

Since f is C2 and bounded, we deduce from Itô’s formula that, for all x ∈ (a, b),

Ex(f(Xt)1t<τ{a,b}) ≥ e
−Ctf(x).

Now, using the fact that 0 < f(x) ≤ 1 for all x ∈ (a, b), we deduce that

Px(Xt ∈ (a, b)) ≥ e−Ctf(x), ∀x ∈ D.

As a consequence, the definition of λ0 entails λ0 ≤ C.
The proof of the second inequality is the same, using instead the function

f(x) := exp

(
−
∫ x

c

b(u)

σ(u)2
du

)
sin

(
π
x− a

b− a

)
for some c ∈ (a, b).

The next result provides two candidates for ϕ. Its proof is a straightforward computa-
tion.

Proposition 4.16. Let ϕ : (0,+∞) be any C2(D) function such that, for some constants
α− < α0 < α+ ∈ D,

ϕ(x) =

{√
s(x) if x ≥ α+,√
−s(x) if x ≤ α−.

(4.15)

Then, for all x ∈ (α, α−] ∪ [α+, β)

σ(x)2

2
ϕ′′(x) + b(x)ϕ′(x)− κ(x)ϕ(x) ≤ −

(
σ(x)2δ(x)2

8s(x)2
+ κ(x)

)
ϕ(x).

If x 7→ b(x)/σ(x)2 is C1(D), then

ϕ(x) = exp

(
−
∫ x

α0

b(u)

σ2(u)
du

)
(4.16)

satisfies

σ(x)2

2
ϕ′′(x) + b(x)ϕ′(x)− κ(x)ϕ(x) = −

(
b2(x)

2σ2(x)
+
σ2(x)

2

(
b

σ2

)′
(x) + κ(x)

)
ϕ(x).
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Remark 4.17. The first function ϕ is always uniformly lower bounded on (α, α−]∪ [α+, β)

by min{
√
s(α+),

√
−s(α−)}. To ensure that the second one is also uniformly lower

bounded, one needs further assumptions on the behavior of b/σ2 close to α and β.

The above results can be used as follows. In the case where α is reachable and b ≡ 0,
Condition (ii) of Theorem 4.13 holds true if

lim inf
x→β−

σ2(x)

8(x− α)2
+ κ(x) > λ0,

choosing α0 = α and using the function ϕ of (4.15). Similarly, in the case where α is
reachable, σ ≡ 1 and b is C1, condition (ii) of Theorem 4.13 holds true if

lim inf
x→β−

b2(x)

2
+
b′(x)

2
+ κ(x) > λ0,

using the function ϕ of (4.16).
We give below more precise examples.

Example 4.18. Assume that D = (0,+∞), κ is locally bounded and that X is solution to
the SDE in D

dXt =
√
XtdBt −Xtdt.

Then 0 is reachable for X and, since

σ(x)2δ(x)2

8s(x)2
−−−−−→
x→+∞

+∞,

we deduce from Proposition 4.16 and Theorem 4.13 that X admits a quasi-stationary
distribution νQSD and, for all p ≥ 1, there exist positive constants Cp, γp and a positive
function ϕ2,p on (0,+∞) such that

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV (exp(·/p)) ≤ Cp

∫
(0,+∞)

exp(x/p)µ(dx)

µ(ϕ2,p)
e−γpt,

for all probability measure µ on D. In particular, one deduces that the domain of
attraction νQSD contains any initial distribution µ admitting a finite exponential moment.
Note that, in the case where κ ≡ 0, the process X is a continuous state branching
process (Feller diffusion), for which quasi-stationarity was already studied (see [73] and
the references therein).

Example 4.19. Assume that (α, β) = R, that b ≡ 0 and σ is bounded measurable on R.

Assume also that the absorption of X is due to the killing rate κ(x) = κ0

(
1− 1

1+|x|

)
for

some constant κ0 > 0. We deduce from the first inequality of Proposition 4.15 (taking
b > 0 and a = −b) that

λ0 ≤
π2‖σ‖2∞

8b2
+ κ0

(
1− 1

1 + b

)
≤ κ0

(
1− 1

1 + 2b

)
for b large enough. Moreover, choosing ϕ = 1 and x0 = −3b, x1 = 3b, one deduces that,
for all x 6∈ [−x1, x1],

σ(x)2

2
ϕ′′(x)− κ(x)ϕ(x) ≤ −κ0

(
1− 1

1 + 3b

)
ϕ(x).

Hence Theorem 4.13 implies that there exists a unique quasi-stationary distribution
νQSD for X and that it attracts all probability measures µ on D.
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Example 4.20. We consider the case (α, β) = (0,+∞), σ(x) = 1, b(x) = x sinx, and

κ(x) = κ0

(
1− 1

1+x

)
for some constant κ0 > π2 + 3. This corresponds to a SDE dXt =

dBt +∇U(Xt)dt where the potential U(x) = sinx− x cosx has infinitely many wells with
arbitrarily large depths, meaning that the process X without killing has a tendency to be
“trapped” away from zero for large initial conditions. Nevertheless, thanks to the killing,
we are able to prove convergence to a unique quasi-stationary distribution. Indeed,
using the second inequality of Proposition 4.15, we have

λ0 ≤ sup
x∈(0,1)

π2

2
+

sinx+ x cosx+ x2 sin2 x

2
+ κ0

(
1− 1

1 + x

)
≤ π2

2
+

3

2
+ κ0/2.

Moreover, 0 is a reachable boundary for X and, taking ϕ = 1, one has, for all x1 > 0 and
all x > x1,

σ(x)2

2
ϕ′′(x) + b(x)ϕ′(x)− κ(x)ϕ(x) ≤ −κ0

(
1− 1

1 + x1

)
ϕ(x)

Hence, since we assumed that κ0 > π2 + 3, one deduces that there exists a unique
quasi-stationary distribution νQSD for X and that it attracts all probability measures µ
on D.

Remark 4.21. The case of general one-dimensional diffusion processes [65] can be han-
dled using our framework, although using the infinitesimal generator is more tricky [63].
However, in the case of a regular diffusion process on (0,+∞) such that 0 is a reachable
boundary and such that +∞ is entrance, one easily shows (see for instance [23]) that,
for all λ > 0, there exists y > 0 such that

sup
x∈(0,+∞)

Ex
(
eλτ[0,y]

)
< +∞.

Hence, using the same proof as in Theorem 4.1 and using Lemma 3.6, we deduce that
there exists a unique quasi-stationary distribution νQSD for X and that it satisfies

‖Pµ(Xt ∈ · | t < τ∂)− νQSD‖TV ≤
1

µ(ϕ2)
αt, ∀t ∈ [0,+∞)

for some positive function ϕ2 and some α < 1. Whether the convergence to νQSD holds
uniformly with respect to the initial distribution (as in Proposition 3.9) without further
assumptions remains an open problem. It has been shown to be true for a wide range of
cases in [23, 22].

5 Application to processes in discrete state space and continuous
time

Let X be a non-explosive1 Markov process in a countable state space E∪{∂} absorbed
in ∂, with jump rate qx,y from x to y 6= x such that

∑
y∈E∪{∂}\{x} qx,y <∞ for all x ∈ E.

The extended generator L acts on nonnegative real functions f on E ∪ {∂} such that∑
y∈E∪{∂} qx,yf(y) <∞ for all x ∈ E as

Lf(x) =
∑

y 6=x∈E∪{∂}

qx,y(f(y)− f(x)), ∀x ∈ E, Lf(∂) = 0. (5.1)

1One could actually consider the case of explosive Markov processes as in Section 4 (see Remark 4.4), with
τ∂ defined as the infimum between the first hitting time of ∂ and the explosion time.
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Theorem 5.1. Assume that there exists a finite subset D0 of E such that Px(X1 = y) > 0

for all x, y ∈ D0, so that the constant

λ0 := inf

{
λ > 0, s.t. lim inf

t→+∞
eλtPx (Xt = x) > 0

}
is finite and independent of x ∈ D0. If in addition there exist constants C > 0, λ1 > λ0,
a function ϕ : E ∪ {∂} → R+ such that ϕ E ≥ 1, ϕ(∂) = 0,

∑
y∈E\{x} qx,yϕ(y) <∞ for all

x ∈ E and such that

Lϕ(x) ≤ −λ1ϕ(x) + C1x∈D0
, ∀x ∈ E, (5.2)

then Assumption (F) is satisfied with L = D0, γ1 = e−λ1 , any γ2 ∈ (e−λ1 , e−λ0) and
ψ1 = ϕ E . In addition, PνQSD (t < τ∂) = e−λ0t for all t ≥ 0, the function η of Theorem 2.3
satisfies Ptη = e−λ0tη for all t ≥ 0 and

∑
y∈E\{x} qx,yη(y) < ∞ and Lη(x) = −λ0η(x) for

all x ∈ E.

Remark 5.2. If in addition to the assumptions of Theorem 5.1 we assume that λ1 >

supx∈E q(x, ∂), it is possible to adapt the proof of Theorem 3.5 given in Section 11.5 to
prove that the conclusion of Theorem 3.5 holds true with ψ2 ≡ 1. Therefore, we obtain
the improved convergence, for all h ∈ L∞(ϕ),

|Eµ(h(Xt) | t < τ∂)− νQSD(h)| ≤ C µ(ϕ)αt ‖h/ϕ‖∞, ∀t ≥ 0,

instead of (3.4). If moreover ϕ is bounded over E, the convergence is uniform and there
exists a unique quasi-stationary distribution.

Before turning to the proof of Theorem 5.1, we give an example of application.

Example 5.3. Assume that X is a birth and death process with killing on E = N and
∂ = 0. This means that there exist non-negative numbers (bx)x∈N, (dx)x∈N, (κx)x∈N such
that bx > 0 for all x ≥ 1, dx > 0 for all x ≥ 2, and d1 = 0, and such that, for all x ∈ E,

qx,y =


bx if y = x+ 1,

dx if y = x− 1,

κx if y = 0,

0 otherwise.

We set

S :=
∑
k≥1

1

dkαk

∑
l≥k

αl, (5.3)

with αk =
(∏k−1

i=1 bi

)
/
(∏k

i=1 di

)
. Recent advances on existence of quasi-stationary

distribution of birth and death processes with killing were obtained in [35, 100, 101],
see also the nice survey [104].

In this setting, Theorems 5.1 and 3.5 translate as follows: if there exists a function
ϕ : Z+ → [1,+∞) such that ϕ(0) = 0 and

λ0 < lim inf
x→+∞

−bx(ϕ(x+ 1)− ϕ(x)) + dx(ϕ(x− 1)− ϕ(x))

ϕ(x)
+ κx, (5.4)

then there exists a unique quasi-stationary distribution νQSD such that νQSD(ϕ) < +∞
which attracts exponentially fast all initial distributions integrating ϕ. To check (5.4),
one may use in practice the fact that λ0 ≤ infx∈N bx + dx + κx, or adapt the ideas of
Section 4.5 to birth and death processes, or use the finer upper bounds for λ0 proved
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in [105]. We consider now three situations where the criterion (5.4) improves known
results in the literature.

First, if S < +∞, [35, Theorem 6.6] proves that there exists a unique quasi-stationary
distribution for X assuming that (κx)x∈N has finite support. We extend this result to any
killing rates (κx)x∈N and also prove that the unique quasi-stationary distribution attracts
all initial distributions exponentially fast. We can indeed check that (5.4) is satisfied by a
bounded function ϕ defined as follows: fix λ1 > λ0 and choose x0 ∈ N large enough such
that (see for instance [20, Equation (4.7)])

sup
x∈N

Ex(eλ1τD0
∧τ∂ ) < +∞.

where D0 = {1, . . . , x0}. Then we define ϕ(0) = 0 and

ϕ(x) = Ex
(
eλ1τD0

∧τ∂
)
, ∀x ∈ N.

Using Markov’s property at the first time of jump, one checks that (since bx + dx → +∞
when x→ +∞, we assume w.l.o.g. that bx + dx + κx > λ1 for all x ≥ x0 + 1),

ϕ(x) =
dx

bx + dx + κx − λ1
ϕ(x− 1) +

bx
bx + dx + κx − λ1

ϕ(x+ 1)

+
κx

bx + dx + κx − λ1
, ∀x ≥ x0 + 1.

Hence λ1 = −[bx(ϕ(x+ 1)−ϕ(x)) +dx(ϕ(x−1)−ϕ(x))]/ϕ(x) +κx for x ≥ x0 + 1 and (5.4)
is satisfied.

Second, if S = +∞ and if λ0 < lim infx→+∞ κx, it was proved in [101, Theorem 4.3]
that there exists a quasi-stationary distribution. The criterion (5.4) improves this result
since it implies that the quasi-stationary distribution is unique and that it attract all
initial distributions exponentially fast. Indeed, (5.4) is clearly satisfied for ϕ ≡ 1.

Last, we can also extend [101, Theorem 4.3] to processes that do not necessarily
admit a unique quasi-stationary distribution, and in particular that do not come down
from infinity. For example, assuming that, for some ε > 0,

lim inf
x→+∞

κx +
ε

1 + ε
dx − εbx > λ0,

Condition (5.4) is satisfied for ϕ(x) = (1 + ε)x.
Note that, because of Corollary 2.7, our criteria imply the λ0-positive recurrence of

the process X (cf. e.g. [104, Eq. (26)]). Therefore, it can only apply to such situations.
For results on birth and death processes with killing which are not λ0-positive recurrent,
we refer the reader to [101, Theorem 4.2].

Example 5.4. We consider general multitype birth and death processes in continuous
time, taking values in a connected (in the sense of the nearest neighbors structure of
Zd) subset E of Zd+ for some d ≥ 1, with transition rates

qx,y =


bi(x) if y = x+ ei,

di(x) if y = x− ei,
0 otherwise,

with ei = (0, . . . , 0, 1, 0, . . . , 0) where the nonzero coordinate is the i-th one and with the
convention that the process is sent instantaneously to ∂ when it jumps to a point y 6∈ E
according to the previous rates. To ensure irreducibility, it is sufficient (although not
optimal) to assume that bi(x) > 0 and di(x) > 0 for all 1 ≤ i ≤ d and x ∈ E.
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We show below that Theorem 5.1 applies either under the assumption that

1

1 + |x|

d∑
i=1

(di(x)− bi(x)) −−−−−−−−−→
x∈E, |x|→+∞

+∞. (5.5)

or that there exists δ > 1 such that

d∑
i=1

(di(x)− δ bi(x)) −−−−−−−−−→
x∈E, |x|→+∞

+∞. (5.6)

This improves the general criteria obtained in [26] since this reference assumes (among
other assumptions) that E = Zd+ and that

∑d
i=1(di(x) − bi(x)) ≥ |x|1+η for some η > 0

and |x| large enough.
Let us first show that (5.5) implies that the assumptions of Theorem 5.1 are satisfied.

In order to do so, we define ϕ(x) = |x|+ 1 = x1 + . . .+ xd + 1 and ϕ(∂) = 0 and obtain

Lϕ(x) =

d∑
i=1

(bi(x)− di(x))−
d∑
i=1

(bi(x)1x+ei 6∈Eϕ(x+ ei) + di(x)1x−ei 6∈Eϕ(x− ei))

≤ −ϕ(x)

∑d
i=1(di(x)− bi(x))

|x|+ 1

The proof is concluded by setting D0 =
{
x ∈ E, s.t.

∑d
i=1(di(x)−bi(x))

|x|+1 ≤ λ0 + 1
}

.

Let us now show that (5.6) implies that the assumptions of Theorem 5.1 are satisfied.
Setting ϕ(x) = exp〈a, x〉 for a given a ∈ (0,∞)d and ϕ(∂) = 0, we obtain

Lϕ(x) ≤ −ϕ(x)

(
d∑
i=1

(1− e−ai)di(x) + (1− eai)bi(x)

)
.

Choosing a = (ε, . . . , ε) with ε small enough, we have

lim inf
x∈E, |x|→+∞

d∑
i=1

(1− e−ai)di(x) + (1− eai)bi(x) = +∞.

Taking D0 =
{
x ∈ E, s.t.

∑d
i=1(1− e−ai)di(x) + (1− eai)bi(x) ≤ λ0 + 1

}
allows us to

conclude the proof.

Proof of Theorem 5.1. The fact that λ0 is independent of x is classical for irreducible
processes (cf. e.g. [69]). We set L = D0. Since X is a non-explosive pure jump continuous
time process, it satisfies the strong Markov property and the entrance times τL and τ∂
are stopping times. This entails (F0).

For all x, y ∈ L, we have

Px(X2 ∈ ·) ≥ inf
u,v∈L

Pu(X1 = v)Py(X1 ∈ ·),

where infu,v∈LPu(X1 = v) > 0 by assumption, which implies (F1) and (F3).
We set ψ1 = ϕ. For all 0 ≤ s ≤ 1, using (5.2) and Dynkin’s formula, one has that for

all x ∈ L

Ex (ψ1(Xs)1s<τ∂ ) ≤ eCs sup
y∈L

ψ1(y).
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Similarly, setting γ1 = e−λ1 , for all x ∈ E \ L,

Ex (ψ1(X1)11<τL∧τ∂ ) ≤ e−λ1ψ1(x) = γ1ψ1(x).

Choosing any γ2 ∈ (γ1, e
−λ0), one obtains that (F2) is satisfied and the first part of

Theorem 5.1 is proved.
The inequality

∑
y∈E\{x} qx,yη(y) < ∞ for all x ∈ E follows from the fact that η ∈

L∞(ψ1) and the fact that Ptη(x) = e−λ0tη(x) was proved in Theorem 3.5. It then follows
from Markov’s property and the last equality that (eλ0tη(Xt), t ≥ 0) is a martingale for
the canonical filtration associated to X, with the convention that η(∂) = 0. Now, it is
standard to represent the Markov process X as a solution to a stochastic differential
equation driven by a Poisson point process: assume that the elements of the finite or
countable set E are labeled by distinct positive integers, that ∂ = 0 and, for all x, i ∈ Z+,
let κi(x) = qx,0 + qx,1 + . . .+ qx,i with the convention that qx,x = 0 and qx,i = 0 for all x or
i 6∈ E ∪ {∂} and set q(x) =

∑
i∈Z+

qx,i <∞. Given a Poisson point measure N(ds,dθ) on

R2
+ with intensity the Lebesgue measure on R2

+, the process X solution

Xt = X0 +

∫ t

0

∫ q(Xs−)

0

∞∑
i=0

1θ∈[κi+1(Xs−),κi(Xs−))(i−Xs−)N(ds,dθ)

is well-defined for all time t ≥ 0 almost surely and is a Markov process with matrix
of jump rates (qi,j)i,j∈Z+

. Introducing the compensated Poisson measure Ñ(ds,dθ) =

N(ds,dθ)−dsdθ, it follows from basic stochastic calculus for jump processes (cf. e.g. [93])
that

eλ0tη(Xt) = X0 +

∫ t

0

∫ q(Xs−)

0

eλ0s
∞∑
i=0

1θ∈[κi+1(Xs−),κi(Xs−))(η(i)− η(Xs−))Ñ(ds,dθ)

+

∫ t

0

eλ0s

( ∞∑
i=0

qXs,i(η(i)− η(Xs)) + λ0η(Xs)

)
ds.

Since eλ0tη(Xt) is a Px-martingale, the Doob-Meyer decomposition theorem entails that∫ t

0

eλ0s

( ∞∑
i=0

qXs,i(η(i)− η(Xs)) + λ0η(Xs)

)
ds = 0

Px-almost surely for all t ≥ 0 and all x ∈ E. Hence, if there exists y ∈ E such that
Lη(y) 6= −λ0η(y), by irreducibility, there exists an event with positive probability under
Px such that the previous integral is non-constant. We obtain a contradiction and hence
Lη(x) = −λ0η(x) for all x ∈ E.

6 On reducible examples

The criteria and examples studied in the last two sections assume that the processX is
irreducible in E. However, the abstract results of Section 2 do not require the state space
to be irreducible. Our goal in this section is to explain that our criteria are also well-suited
to cases of reducible absorbed Markov processes, in the sense that the state space E can
be partitioned in a finite or countable family of communication classes. The study of quasi-
stationary behavior for such processes has been up to now restricted to the case of finite
state spaces or to particular classes of models [77, 38, 88, 55, 19, 102, 103, 18, 104, 8].
Our criteria provide new practical tools to tackle this problem, further exploited in [28].

In Subsection 6.1, we consider a general setting with three successive sets. In
Subsection 6.2, we consider a birth and death process with a countable infinity of
communication classes.
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Figure 1: Transition graph displaying the relation between the sets D1, D2, D3 and ∂.

6.1 Three successive sets

In this section, we consider a discrete time Markov process (Xn, n ∈ Z+) evolving
in a measurable set E ∪ {∂} with absorption at ∂ /∈ E. We assume that the transition
probabilities of X satisfy the structure displayed in Figure 1: one can find a partition
{D1, D2, D3} of E such that the process starting from D1 can access D1 ∪D2 ∪D3 ∪ {∂},
the process starting from D2 can only access D2 ∪D3 ∪ {∂}, and the process starting
from D3 can only access D3∪{∂}. More formally, we assume that Px(TD3

∧ τ∂ < TD1
) = 1

for all x ∈ D2 and that Px(τ∂ < TD1∪D2
) = 1 for all x ∈ D3, where we recall that, for any

measurable set A ⊂ E, TA = inf{n ∈ Z+, Xn ∈ A}.
Our aim is to provide sufficient conditions ensuring that X satisfies Assumption (E).

In order to do so, we assume that Assumption (E) is satisfied by the process X before
exiting D2. This corresponds to the following assumption.

Assumption (H1). The absorbed Markov process Y evolving in D2 ∪ {∂}, defined by

Yn =

{
Xn if n < TD1∪D3∪{∂},

∂ if n ≥ TD1∪D3∪{∂},

satisfies Assumption (E). In what follows, we denote the objects related to Y with a
superscript Y , for instance, the constants of Assumption (E) for Y are denoted by θY1 > 0,
θY2 > 0.

We also assume that the exit times from D1 and D3 for the process X admit exponen-
tial moments of sufficiently high order, as stated by the following assumption.

Assumption (H2). There exists a positive constant γ < θY0 such that, for all x ∈ D1,

Ex
(
γ−TD2ϕY1

(
XTD2

)
1TD2

<TD3
∧τ∂
)
< +∞, Ex

(
γ−TD3

∧τ∂1TD3
∧τ∂<TD2

)
< +∞,

and such that
sup
x∈D3

Ex
(
γ−τ∂

)
< +∞.

We are now able to state the main result of this section.

Theorem 6.1. Under Assumptions (H1) and (H2), the process X satisfies Assumption (E)
with K = KY ,

ϕ1(x) = Ex
(
γ−TK∧τ∂

)
and ϕ2(x) ≥ c1x∈K , ∀x ∈ E, (6.1)

for some constant c > 0. In particular, it admits a unique quasi-stationary distribution
νQSD such that νQSD(ϕ1) <∞ and νQSD(ϕ2) > 0. Moreover, there exist two constants
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C > 0 and α ∈ (0, 1) such that, for all probability measure µ on E such that µ(ϕ1) <∞
and µ(ϕ2) > 0,

‖Pµ(Xn ∈ · | n < τ∂)− νQSD‖TV (ϕ1) ≤ Cα
n µ(ϕ1)

µ(ϕ2)
. (6.2)

Finally, θ0 = θY0 , νQSD(D1) = 0 and the function η of Theorem 2.3 vanishes on D3.

Before turning to the proof of this result, let us make some remarks.

Remark 6.2. 1. The fact that there are three different sets D1, D2 and D3 in the
decomposition of E is not restrictive on the number of communication classes.
Indeed, the three sets can contain several communication classes.

2. A similar result can be obtained for continuous time processes, based on Assump-
tion (F) instead of (E), with the additional technical assumption that the strong
Markov property can be applied at the exit times of D1 and D2.

3. We emphasize that, besides the exponential moment assumption, there is no
additional requirement on the behavior of the Markov process in D1 and D3. In
these sets, the process might be for instance periodic or deterministic and could
satisfy that Px(n < τ∂) = 0 for some n ∈ N.

4. One easily checks from the proof that the function ϕ1 in (6.1) is bounded (up to a
multiplicative positive constant) from above by

Ex
(
γ−TD2ϕY1

(
XTD2

)
1TD2

<TD3
∧τ∂
)

+ Ex
(
γ−TD3

∧τ∂1TD3
∧τ∂<TD2

)
on D1, by ϕY1 on D2 and by a constant on D3.

5. In particular, if ϕY1 is uniformly bounded and if the first statement in Assump-
tion (H2) is replaced by

sup
x∈D1

Ex
(
γ−TD2∪D3

∧τ∂
)
< +∞,

then one can also choose a bounded function ϕ1 in Assumption (E) for X.

Remark 6.3. In general, processes on reducible state spaces may not satisfy Assump-
tion (E). For example the convergence in (6.2) may not be exponential, or quasi-stationary
distributions may not be unique, even if the process X restricted to D1, D2 or D3 satisfy
condition (E). We refer the reader to [28] for a more general discussion on quasi-
stationary distributions and quasi-limiting behavior for general processes on reducible
state spaces.

Proof of Theorem 6.1. Let us prove that Assumption (E) is satisfied by the process X.
Note that, because of Lemma 3.4, one can assume without loss of generality that γ < θY2 .

Step 1. Assumption (E1).
We set K = KY , n1 = nY1 , c1 = cY1 and ν = νY . Assumption (E1) for X is an immediate

consequence of Assumption (E1) for Y .

Step 2. Assumption (E2).
We set θ2 = θY2 and

ϕ2(x) =

{
ϕY2 (x) if x ∈ D2

0 if x ∈ D1 ∪D3.

Then the second and fourth lines of Assumption (E) for X are direct consequences of the
same lines of Assumption (E) for Y .
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Without loss of generality, we assume (increasing γ if necessary, which does not
change the fact that Assumptions (H2) is true) that γ ∈ (θY1 , θ

Y
2 ). We define

ϕ1(x) = Ex
(
γ−TK∧τ∂

)
, ∀x ∈ E ∪ {∂}.

Let us first check that ϕ1 is finite on E. For all x ∈ D3, using that Px(τ∂ < TD1∪D2) = 1

and that K ⊂ D2, one deduces that

ϕ1(x) = Ex
(
γ−τ∂

)
≤ A := sup

x∈D3

Ex
(
γ−τ∂

)
< +∞.

For all x ∈ D2, using the strong Markov property and inequality (9.7) for the process Y ,
one deduces that

ϕ1(x) = Ex

(
γ
−TK∧TDc21TK<TDc2

)
+ Ex

(
γ−τ∂1TDc2<TK

)
= Ex

(
γ
−TK∧TDc21TK<TDc2

)
+ Ex

(
γ
−TK∧TDc21TDc2<TK

EXTDc2

(
γ−τ∂

))
≤ AEx

(
γ
−TK∧TDc2

)
≤ A

1− θY1 /γ
ϕY1 (x). (6.3)

For all x ∈ D1, one has, using the Markov property and the above inequalities,

Ex
(
γ−TK∧τ∂

)
= Ex

(
γ−TD2∪D3

∧τ∂ϕ1(XTD2∪D3
∧τ∂ )

)
≤ A

1− θY1 /γ
[
Ex
(
γ−TD2ϕY1

(
XTD2

)
1TD2

<TD3
∧τ∂
)

+ Ex
(
γ−TD3

∧τ∂1TD3
∧τ∂<TD2

)]
, (6.4)

which is finite by Assumption (H2).
The definition of ϕ1 immediately implies that infE ϕ1 ≥ 1 and, since ϕY1 is uniformly

bounded over K ⊂ D2, (6.3) implies that supK ϕ1 < +∞. Hence the first line of Assump-
tion (E2) is satisfied. Moreover, for all x ∈ K,

P1ϕ1(x) = Ex
(
1X1∈D2EX1

(
γ−TK∧τ∂

))
+ Ex

(
1X1∈D3EX1

(
γ−τ∂

))
≤ Ex

(
1X1∈D2

A

1− θY1 /γ
ϕY1 (X1)

)
+A

=
A

1− θY1 /γ
PY1 ϕ

Y
1 (x) +A ≤ A

1− θY1 /γ

(
θY1 sup

K
ϕY1 + cY2

)
+A.

Hence, the third line of (E2) for X with θ1 = γ follows from Lemma 3.2.

Step 3. Assumption (E3).
For all x ∈ K, we have, for all n ≥ 1,

Px(n < τ∂) ≤ Px(n < τ∂ ∧ TD3) + Px(TD3 ≤ n < τ∂). (6.5)

On the one hand, by Lemma 9.9, there exists a constant C > 0 such that

Px(n < τ∂ ∧ TD3
) ≤ CϕY1 (x)

1− θY1 /θY2
inf
y∈K

Py(n < TDc2) ≤ C supK ϕ
Y
1

1− θY1 /θY2
inf
y∈K

Py(n < TDc2).

On the other hand, using Markov’s property and Markov’s inequality,

Px(TD3 ≤ n < τ∂) = Ex

(
1TD3

≤nPXTD3
(n− u < τ∂)

u=TD3

)
≤ Ex

(
1TD3

≤nϕ1(XTD3
)γn−TD3

)
≤ AEx

(
1TDc2≤n

γ
n−TDc2

)
,
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since {TD3
≤ n} ⊂ {TDc2 = TD3

}. Now, using Theorem 2.3 and the fact that ηY is
uniformly bounded from above and away from 0 on K, we deduce that there exist
constants C,C ′ > 0 such that

Ex

(
1TDc2≤n

γ
n−TDc2

)
=

n∑
k=1

Px(TDc2 = k) γn−k ≤
n∑
k=1

Px(TDc2 > k − 1) γn−k

≤ C
n∑
k=1

(θY0 )k−1 γn−k ≤ C (θY0 )n−1 1

1− γ/θY0

≤ C C ′ (θY0 )−1

1− γ/θY0
inf
y∈K

Py(n < TDc2).

Finally, we obtain from (6.5) that there exists a constant C ′′ > 0 such that, for all
x ∈ K,

Px(n < τ∂) ≤ C ′′ inf
y∈K

Py(n < T cD2
) ≤ C ′′ inf

y∈K
Py(n < τ∂). (6.6)

This concludes Step 3.

Step 4. Conclusion.
Assumption (E4) for the process X is an immediate consequence of Assumption (E4)

for the process Y , and hence we have checked that X satisfies Assumption (E). The
convergence result of Theorem 6.1 is exactly the convergence result obtained in Theo-
rem 2.1.

Note that (6.6) entails that, for any x ∈ K,

lim sup
n→+∞

(θY0 )−nPx(n < TDc2) ≤ lim sup
n→+∞

(θY0 )−nPx(n < τ∂)

≤ C ′′ lim sup
n→+∞

(θY0 )−nPx(n < TDc2)

and that Theorem 2.3 applied to Y entails

lim sup
n→+∞

(θY0 )−nPx(n < TDc2) = ηY (x) < +∞.

Since it follows from Theorem 2.3 applied to X that limn→+∞ θ−n0 Px(n < τ∂) > 0, we
deduce that θ0 = θY0 .

Finally, for all x ∈ K, the structure of the transition graph of X implies that

0 = Px(Xn ∈ D1 | n < τ∂) −−−−−→
n→+∞

νQSD(D1),

so that νQSD(D1) = 0. Moreover, for all x ∈ D3, Markov’s inequality and Assumption (H2)
yield the inequality Px(n < τ∂) ≤ Aγn, for all x ∈ K and all n ≥ 1. Since θ0 = θY0 > γ by
assumption, we deduce that, for all x ∈ K, limn→+∞ θ−n0 Px(n < τ∂) = 0, which means
that η(x) = 0.

This concludes the proof of Theorem 6.1.

6.2 Countably many communication classes

In this section, we study a particular case of a continuous time càdlàg Markov process
(Xt)t∈[0,+∞) with a countable infinity of communication classes and we show that the
process admits a quasi-stationary distribution.

More precisely, we assume that X evolves in the state space N×Z+ and, denoting
Nt ∈ N and Yt ∈ Z+ the two components of Xt for all t ∈ [0,+∞), that there exist three
positive functions b, d, f : N→ (0,+∞) such that
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• N is a Poisson process with intensity 1,

• Y is a process such that, at time t,

Y jumps from Yt to y ∈ Z+ with rate


f(Nt) b(Yt) if y = Yt + 1 and Yt ≥ 1,

f(Nt) d(Yt) if y = Yt − 1 and Yt ≥ 1,

0 otherwise.

The set N×{0} is absorbing for X and we are interested in the quasi-stationary behavior
of X conditioned to not hit this set. Note that, in this case, each set {n} × N is a
communication class.

Remark 6.4. This process can be used to model the survival of an individual (for example
a bacterium) whose metabolic efficiency (for example its ability to consume resources)
changes with time, due to aging [96]. Here Y is the vitality of the individual, who
dies when its vitality hits 0, f(N) is the metabolic rate of the individual, which may for
example decrease in the early life of the individual up to age n0 and then accelerates
progressively.

This can also model the accumulation of deleterious mutations in a population under
the assumption that mutations do not overlap, i.e. that when a mutant succeeds to
invade the population (either because they are advantaged or due to genetic drift for
deleterious mutations), other types of mutants disappear rapidly. Here Y represents
the size of the population and N the number of mutations. It is typical to assume that
the first n0 mutations that invade are advantageous (which corresponds to adaptation),
and afterwards that deleterious mutations start to accumulate, hence accelerating the
extinction of the species (extinction vortex [37, 36]).

In both cases, it is relevant to assume that f is decreasing on {1, 2, . . . , n0} and
increasing on {n0, n0 + 1, . . .}.

We assume that (d(y) − b(y))/y → +∞ when y → +∞ or that there exists δ > 1

such that d(y)− δ b(y)→ +∞. Hence the birth and death process Z evolving in N, with
birth rates (b(z))z∈N and death rates (d(z))z∈N, satisfies Assumption (F) by Theorem 5.1
(see Example 5.4). In particular, there exist an eigenvalue λZ0 > 0 and eigenfunction
ηZ : N → (0,+∞) such that, for all z ∈ N, LZηZ = −λZ0 ηZ , where the operator LZ is
defined as the operator L in (5.1).

Theorem 6.5. Assume also that there exists a unique n0 ∈ N such that f(n0) =

minn∈N f(n) and that lim infn→+∞ f(n) > f(n0) + 1
λZ0

. Then the process X satisfies

Assumption (F) and admits a quasi-stationary distribution νQSD whose domain of attrac-
tion contains all Dirac measures δn,y, with n ≤ n0 and y ∈ N.

Of course, all the consequences of Theorem 3.5 also apply here, taking the functions
ψ1 and ψ2 as described in the proof.

Proof. The proof maks use of the special structure of the process Y , which can be
constructes as

Yt = Z∫ t
0
f(Ns)ds

, ∀t ≥ 0.

In general, we shall denote the objects related to Z with a superscript Z, for example ψZ1
is the functions involved in (F2) and LZ is the set involved in (F) for Z. We can assume
without loss of generality as in Theorem 5.1 that LZ = DZ

0 , i.e.

LZψZ1 ≤ −λZ1 ψZ1 + C̄1LZ (6.7)

with ψZ1 (0) = 0 and λZ1 > λZ0 .
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Our goal is to apply Theorem 5.1 to the process X = (N,Y ). We define the finite set
D0 = {n0} × LZ , so that P(n0,x)(X1 = (n0, y)) > 0 for all (n0, x) and (n0, y) in D0, and
check that λ0 ≤ f(n0)λZ0 + 1. Indeed, for all y ∈ LZ ,

et(f(n0)λZ0 +1)P(n0,y)((Nt, Yt) = (n0, y)) ≥ etf(n0)λZ0 PZy (Zf(n0)t = y)

−−−−→
t→+∞

ηZ(y)νZQSD({y}) > 0.

We fix λ1 such that

f(n0)λZ0 + 1 < λ1 <

(
λZ0 inf

n 6=n0

f(n) + 1

)
∧
(
λZ0 lim inf

n→+∞
f(n)

)
∧
(
λZ1 f(n0) + 1

)
and we choose

• n1 > n0 such that, for all n ≥ n1, λ1 < λZ0 f(n);

• c > 0 small enough so that ψZ1 (x) ≥ cηZ(x) for all x ≥ 1 (such a constant exists
thanks to Theorem 2.3);

• a > 0 large enough so that λ1 < λZ1 f(n0) + 1− e−a;
• ε > 0 small enough so that λ1 < (λZ0 − ε) infn 6=n0

f(n) + 1;

• b > a large enough so that λ1 < (λZ0 − ε) infn 6=n0 f(n) + 1 − e−b and C̄ea−b <

ε infy∈LZ η
Z(y), where the constant C̄ is the one of (6.7).

We can now define

ψ1(n, y) =


ψZ1 (y) if n = n0,

ea(n0−n)ψZ1 (y) + eb(n0−n)ηZ(y) if n < n0,

ce−a(n−n0)ηZ(y) if n0 < n < n1,

ce−a(n1−n0)ηZ(y) if n1 ≤ n.

In the case where n < n0, it follows from (6.7) that

Lψ1(n, y) ≤−
(
λZ1 f(n) + 1− e−a

)
ea(n0−n)ψZ1 (y)

−
(
λZ0 f(n) + 1− e−b1n<n0−1

)
eb(n0−n)ηZ(y)

+
C̄

infz∈LZ ηZ(z)
f(n)ea(n0−n)ηZ(y)

≤− λ1e
a(n0−n)ψZ1 (y)−

[
(λZ0 − ε)f(n) + 1− e−b1n<n0−1

]
eb(n0−n)ηZ(y)

+ εf(n)ea(n0−n)
(
eb−a − e(b−a)(n0−n)

)
ηZ(y)

≤− λ1ψ1(n, y).

When n = n0, we have

Lψ1(n0, y) ≤ −λZ1 f(n0)ψZ1 (y) + C̄1LZ (y)f(n0) + ce−aηZ(y)− ψZ1 (y)

≤ −λ1ψ1(n0, y) + C̄f(n0)1D0(n0, y).

When n0 < n < n1, we have

Lψ1(n, y) ≤ −λZ0 f(n) c e−a(n−n0)ηZ(y) + c e−a(n−n0)ηZ(y)
(
e−a − 1

)
≤ −λ1ψ1(n, y).

When n1 ≤ n, we have

Lψ1(n, y) ≤ −λZ0 f(n)ηZ(y) ≤ −λ1ψ1(n, y).
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Finally we have proved that Lψ1(n, y) ≤ −λ1ψ1(n, y) + C̄f(n)1D0
(n, y), where λ1 > λ0.

Now, note that, since Z is a birth-death process, basic comparison arguments imply that
ηZ(k) ≥ ηZ(1) > 0 for all k ≥ 1. Therefore, the function ψ1 is uniformly lower bounded,
so that it satisfies the assumptions of Theorem 5.1 up to a multiplicative constant.

Hence, Theorem 5.1 allows us to conclude the proof. The fact that all Dirac masses
δ(n,y) with n ≤ n0 belong to the domain of attraction follows from Corollary 2.10.

7 Application to processes in continuous state space and discrete
time

Discrete time Markov models in continuous state space and with absorption naturally
arise in many applications. Examples of such processes are given by perturbed dynami-
cal systems, cf. e.g. [44, 9, 5, 62], or piecewise deterministic Markov processes when
one looks at the process at jump times only (see e.g. [3]). We provide in Section 7.1 a
general criterion applying to such processes with arbitrarily close to 1, state-dependent
killing probability, and we give applications to Euler schemes for diffusions absorbed
at the boundary of a domain. In Section 7.2, we consider perturbed dynamical systems
in finite dimension. We first consider the case of unbounded domains with unbounded
perturbation. Subsection 7.2.1 assumes that the perturbation has bounded density with
respect to Lebesgue’s measure and Subsection 7.2.2 provides examples with perturba-
tions with unbounded density. Finally, the case of bounded perturbations is studied in
Subsection 7.2.3. Theorem 1.2 of the Introduction is obtained as an application of the
results of Section 7.2.1.

7.1 Two sided estimates for processes with killing

Let (Yn, n ∈ Z+) be a Markov process evolving on a measurable state space E ∪ {∂}
with transition kernel (Q(y, ·)y∈E∪{∂}) such that ∂ /∈ E is absorbing (i.e. Q(∂, {∂}) = 1)
satisfying a two-sided estimate (see for instance [10, 40, 17]), which means that there
exist a probability measure ζ on E, a positive function g : E → (0,+∞) and a constant
C > 1 such that, for all y ∈ E and all measurable sets A ⊂ E,

g(y)ζ(A) ≤ Q(y,A) ≤ Cg(y)ζ(A). (7.1)

Condition (7.1) is known to be satisfied for various models (see e.g. [9] or the references
in [17]). It is also well known (see [10, 17]) that this implies that Y admits a unique
quasi-stationary distribution νYQSD for which the convergence in (2.1) holds true for
the total variation distance with geometric speed uniform with respect to the initial
distribution µ on E. Our aim is to generalize this result to processes obtained from Y

with additional killing (or penalization).
More precisely, let p : E ×E → (0, 1] be measurable and consider the Markov process

X evolving in E ∪ {∂} with transition kernel P (x, ·)x∈E∪{∂} defined by

P (x, dy) =

{
p(x, y)Q(x, dy) + (1− p(x, y))δ∂(dy) if x ∈ E
δ∂(dy) if x = ∂.

Observe that Condition (7.1) may not be satisfied by the kernel P in cases where
infx,y∈E p(x, y) = 0. We also emphasize that the kernel P generates a penalized semi-
group of (Yn)n∈Z+ , in the sense that, for any function f : E → R+, all x ∈ E and all n ≥ 1,
one has

Ex (f(Xn)1n<τ∂ ) = Ex

(
p(x, Y1) · · · p(Yn−1, Yn) f(Yn)1n<τY∂

)
,

where τ∂ , resp. τY∂ , is the absorption time for X, resp. Y , in ∂.
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Theorem 7.1. Assume that there exists an increasing sequence (Lk)k≥1 of measurable
subsets of E such that E = ∪+∞

k=1Lk and infx,y∈Lk p(x, y) > 0 for all k ≥ 1. Then X

satisfies Assumption (E) with ϕ1 = 1 and ϕ2 positive on E. In particular, X admits a
unique quasi-stationary distribution whose domain of attraction contains all probability
measures on E.

Example 7.2. Typical examples of discrete-time Markov processes in continuous state
space are given by Euler schemes for stochastic differential equations. We consider
the SDE dYt = b(Yt)dt+ σ(Yt)dBt in Rd, with b and σ bounded measurable on Rd and σ
uniformly elliptic on Rd. Its standard Euler scheme with time-step δ is the Markov chain
(Xn, n ≥ 0) defined as

Xn+1 = b(Xn)δ +
√
δσ(Xn)Gn, (7.2)

where (Gn, n ≥ 0) is an i.i.d. sequence of N (0, Id) Gaussian variables in Rd. In the case
of a SDE absorbed at its first exit time of a bounded open connected domain D ⊂ Rd,
the “naive” Euler scheme, constructed as above with the additional rule that Xn is
immediately sent to ∂ when Xn 6∈ D, is not good in terms of weak error. Indeed, when
Xn is close to the boundary of D and Xn+1 remains in D, the path of the SDE Y in
the time interval [nδ, (n+ 1)δ] might have exited D. In this case, it is more efficient to
construct the Brownian path that links 0 to Gn on the time interval [nδ, (n + 1)δ] as a
Brownian bridge (G̃t, t ∈ [nδ, (n+ 1)δ]) such that G̃nδ = 0 and G̃(n+1)δ = Gn, so that one
can approximate the path of the diffusion on this time interval as

X̃t = b(Xn)(t− nδ) +
√
δσ(Xn)G̃t, ∀t ∈ [nδ, (n+ 1)δ],

and approximate the absorption event as {∃t ∈ [nδ, (n+1)δ] : X̃t 6∈ D}. The corresponding
Euler scheme is thus obtained as the Markov chain X as defined in (7.2) with the
penalization p(Xn, Xn+1) = P(∃t ∈ [nδ, (n + 1)δ] : X̃t 6∈ D). For a detailed presentation
and study of this kind of modified Euler schemes, we refer the reader to [79, 51, 52, 11].

Using Theorem 7.1, we obtain the existence and convergence to a unique quasi-
stationary distribution for this modified Euler scheme. Indeed, (7.1) is satisfied for the
naive Euler scheme with ζ equal to the restriction of Lebesgue’s measure to D and a
constant function g, thanks to the boundedness of the domain D, the uniform ellipticity
of σ and the boundedness of b and σ. In addition, it follows from the connectedness
of the domain D, the uniform ellipticity of σ and the boundedness of b and σ that
infx,y∈K p(x, y) > 0 for any compact subset K of D.

Proof of Theorem 7.1. For all k ≥ 1, we define the set Kk = {x ∈ Lk s.t. g(x) ≥ 1/k}.
Let k0 be large enough so that ζ(Kk0) > 0. Then one has, for all k ≥ k0, all x ∈ Kk and
all measurable set A ⊂ E,

Px(X1 ∈ A ∩Kk0) ≥ g(x)

∫
A∩Kk0

p(x, y) ζ(dy) ≥ ζ(Kk0) infu,v∈Lk p(u, v)

k
ν(A ∩Kk0),

(7.3)

where ν is the probability measure on Kk0 defined by ν(A) = ζ(A)/ζ(Kk0). We fix k ≥ k0

large enough so that C/k <
ζ(Kk0 ) infu,v∈Lk0

p(u,v)

k0
, where the constant C is the one of (7.1),

and set K = Kk.
Let us now check that Condition (E) is satisfied with the above choices of K and ν

(extended by 0 to Kk \Kk0), and with θ1 = C/k and θ1 < θ2 <
ζ(Kk0 ) infu,v∈Lk0

p(u,v)

k0
.

Setting ϕ1 = 1, one has

P1ϕ1(x) ≤ 1, ∀x ∈ K,
P1ϕ1(x) ≤ C g(x) ≤ θ1 = θ1ϕ1(x), ∀x ∈ E \K,
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so that the first and third lines of Condition (E2) are satisfied. Using Markov’s property,
one deduces from (7.3) that θ−n2 infx∈K Px(Xn ∈ Kk0) → +∞ when n → +∞. Hence
Lemma 3.1 implies that the second and fourth lines of Condition (E2) are satisfied. It
also implies that Condition (E4) is satisfied. Note also that the function ϕ2 provided by
Lemma 3.1 is positive on E since g is positive in (7.1).

Moreover, for all x ∈ E, all y ∈ K and all measurable set A ⊂ E,

Px(X1 ∈ A ∩K) ≤ Cg(x)ζ(A ∩K) ≤ Cg(x)kg(y)

infK×K p

∫
A∩K

p(y, z) ζ(dz)

≤ C‖g‖∞k
infK×K p

Py(X1 ∈ A ∩K).

We deduce from Proposition 3.3 with n0 = m0 = 1 that Conditions (E1) and (E3) are
satisfied, which concludes the proof of Theorem 7.1.

7.2 Perturbed dynamical systems

We consider the following perturbed dynamical system

Xn+1 = f(Xn) + ξn,

where f : Rd → Rd is a measurable function and (ξn)n∈N is an i.i.d. sequence in Rd. We
assume that the process evolves in a measurable set D of Rd with positive Lebesgue
measure, meaning that it is immediately sent to ∂ 6∈ Rd as soon as Xn 6∈ D. We shall
consider two situations below, where the random variables ξn are unbounded or almost
surely bounded. In the unbounded case, different methods must be used depending on
whether ξn has a bounded density with respect to Lebesgue’s measure or not.

The same arguments would also work if Xn+1 = f(Xn) + ξn(Xn), where the sequence
of random maps (x 7→ ξn(x))n≥0 are i.i.d. We leave the appropriate extensions of our
assumptions and arguments to the reader.

7.2.1 The case of unbounded perturbation with bounded density

We consider here the case where the random variables ξn have support Rd.

Proposition 7.3. Assume that f is locally bounded, that the law of ξn has a bounded
density g(x) with respect to Lebesgue’s measure such that

inf
|x|≤R

g(x) > 0, ∀R > 0,

and that there exists a locally bounded function ϕ : Rd → [1,+∞) such that x 7→
E(ϕ(x+ ξ1)) is locally bounded on Rd and such that

lim sup
|x|→+∞, x∈D

E(ϕ(f(x) + ξ1))

ϕ(x)
= 0. (7.4)

Then Condition (E) is satisfied with ϕ1 = ϕ and ϕ2 positive on D.

Note that, if D is bounded, the last result is already a consequence of the classical
criterion based on (7.1). Before proving this result, let us give three applications.

Example 7.4. If there exists α > 0 such that Eeα|ξ1| < +∞ and if |x| − |f(x)| → +∞
when |x| → +∞, then Proposition 7.3 applies. Indeed, choosing ϕ(x) = exp(α|x|), we
have

Eϕ(|f(x) + ξ1|)
ϕ(x)

≤ eα(|f(x)|−|x|)Eeα|ξ1| −−−−−→
|x|→+∞

0.

For instance, this covers the case of Gaussian perturbations, as stated in Theorem 1.2 in
the introduction.
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Example 7.5. If there exists p > 0 such that E(ξp1) < +∞ and if |f(x)| = o(|x|) when
|x| → +∞, then Proposition 7.3 applies. Indeed, choosing ϕ(x) = (1 + |x|)p, we have

Eϕ(|f(x) + ξ1|)
ϕ(x)

≤ (1 + |f(x)|)p

(1 + |x|)p
E[(1 + |ξ1|)p] −−−−−→

|x|→+∞
0.

Example 7.6. If E log(1+|ξ1|) <∞ and |f(x)| ≤ C|x|ε(x) for some C > 0 and some ε(x)→
0 when |x| → +∞, then Proposition 7.3 applies. Indeed, choosing ϕ(x) = log(e+ |x|), we
have

Eϕ(|f(x) + ξ1|)
ϕ(x)

≤ log(e+ C) + ε(x) log(e+ |x|)
log(e+ |x|)

+
E log(1 + |ξ1|)

log(e+ |x|)
.

Proof of Proposition 7.3. We first prove Conditions (E2) and (E4) and conclude the proof
with Proposition 3.3.

Step 1. Conditions (E2) and (E4) are satisfied.
Let K1 ⊂ D be a bounded measurable set with positive Lebesgue measure. Then, for

all x ∈ K1, denoting by λd the Lebesgue measure on Rd,

Px(X1 ∈ K1) = P(f(x) + ξ1 ∈ K1) ≥ λd(K1) inf
u∈K1+B(0,supK1

|f |)
g(u) > 0.

Fix θ2 ∈ (0, λd(K1) infu∈K1+B(0,supK1
|f |) g(u) ), we deduce that, for all x ∈ K1,

θ−n2 inf
x∈K1

Px(Xn ∈ K1) ≥ θ−n2 inf
x∈K1

Px(X1 ∈ K1, . . . , Xn ∈ K1) −−−−−→
n→+∞

+∞.

Fix 0 < θ1 < θ2, and, using (7.4), consider a bounded subset K ⊂ D containing K1 and
such that, for all x ∈ D \K, P1ϕ(x) ≤ θ1ϕ(x). Since K is bounded, one has

inf
x∈K

Px(X1 ∈ K1) ≥ λd(K1) inf
u∈K1+B(0,supK |f |)

g(u) > 0,

so that

θ−n2 inf
x∈K

Px(Xn ∈ K) ≥ θ−n2 λd(K1) inf
u∈K1+B(0,supK |f |)

g(u) inf
x∈K1

Px(Xn−1 ∈ K1)

and thus θ−n2 infx∈K Px(Xn ∈ K) converges to +∞ when n → +∞. Lemma 3.1 then
entail that Condition (E4) is satisfied and that there exists a function ϕ2 : D → [0, 1] such
that P1ϕ2(x) ≥ θ2ϕ2(x) for all x ∈ D and such that infK ϕ2 > 0. In addition, for all x ∈ D,
Px(X1 ∈ K) ≥ λd(K) infu∈K−f(x) g(u) > 0, so that P11K(x) > 0. Hence, the function ϕ2

of Lemma 3.1 also satisfies that ϕ2(x) > 0 for all x ∈ E.
Setting ϕ1 = ϕ, we deduce that Conditions (E2) and (E4) are satisfied for the set K.

Step 2. Comparison of transition probabilities.
Let us prove that Proposition 3.3 applies with n0 = m0 = 1. For all x ∈ D, we have

Px(X1 ∈ · ∩K) ≤ sup
u∈Rd

g(u)λd(· ∩K).

Moreover, for all y ∈ K,

Py(X1 ∈ ·) ≥ P(f(y) + ξ1 ∈ · ∩K)

≥ inf
u∈K+B(0,supK |f |)

g(u)λd(· ∩K).

Hence, for all x ∈ E and all y ∈ K,

Px(X1 ∈ · ∩K) ≤ supRd g

infK+B(0,supK |f |) g
Py(X1 ∈ ·).

We deduce from Step 1 and Proposition 3.3 that Condition (E) is satisfied with the
functions ϕ1 and ϕ2, which concludes the proof.
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7.2.2 An example with unbounded perturbation and singular density

The last result made strong use of the boundedness of g. Actually, our criteria also apply
to perturbations with singular density. We consider here the following example: assume
that f(x) = Ax + B, where A is an invertible d × d matrix and B ∈ Rd, and that there
exists a > 0 such that the density g of ξn satisfies for some constant Cg

g(x) ≤ Cg
(

1

|x|d−a
∨ 1

)
∀x ∈ Rd. (7.5)

We have the following result.

Proposition 7.7. Let ‖ · ‖ be a norm on Rd and assume that

sup
x∈Rd\{0}

‖Ax‖
‖x‖

< 1. (7.6)

Assume also that Eeα|ξ1| <∞ for some α > 0 and that

inf
|x|≤R

g(x) > 0, ∀R > 0.

Then Condition (E) is satisfied with ϕ1 = ϕ and ϕ2 positive on D.

The proof of Proposition 7.3 made use of Proposition 3.3 with n0 = m0 = 1. The proof
of Proposition 7.7 requires to apply Proposition 3.3 with n0 ≥ 2.

Proof. The first step of the proof of Proposition 7.3 remains valid taking ϕ(x) = eα‖x‖ for
α > 0 small enough and using (7.6) and the equivalence of the norms | · | and ‖ · ‖ (the
computation is similar to the one of Example 7.4). So we only have to prove that (3.2) is
satisfy and apply Proposition 3.3.

We define n0 = dd/ae and we assume without loss of generality (reducing slightly a if
needed) that n0a > d. We observe that

Xn0 = An0x+An0−1(B + ξ1) + · · ·+B + ξn0 .

Using (7.5) and the fact that supx6=0
|Ax|
|x| ≤ C2

‖·‖ where the constant C‖·‖ is such that

C−1
‖·‖ | · | ≤ ‖ · ‖ ≤ C‖·‖| · |, the density g2 of Aξ1 + ξ2 satisfies

g2(x) =
1

|detA|

∫
Rd
g(x− y)g(A−1y)dy

≤
C2
g

|detA|

∫
{y:|A−1y|≤1}∩B(x,1)

1

|x− y|d−a
1

|A−1y|d−a
dy + Cg

(
1 +

1

|detA|

)

≤
C2
gC

2(d−a)
‖·‖

|detA|

∫
B(0,C2

‖·‖)

1

|x− y|d−a
1

|y|d−a
dy + Cg

(
1 +

1

|detA|

)

=
C2
gC

2(d−a)
‖·‖

|detA|
1

|x|d−2a

∫
B(0,C2

‖·‖/|x|)

1∣∣∣ x|x| − u∣∣∣d−a
1

|u|d−a
du+ Cg

(
1 +

1

|detA|

)
, (7.7)

where we made the change of variable u = y/|x|.
If 2a > d (i.e. if n0 = 2), we can bound the integral in the right-hand side as follows:∫

B

(
0,
C2
‖·‖
|x|

) 1∣∣∣ x|x| − u∣∣∣d−a
1

|u|d−a
du ≤ C + 2d

∫
B

(
0,
C2
‖·‖
|x|

)
\B(0,2)

1

|u|2d−2a
du

≤ C +
C

2a− d
1

|x|2a−d
,
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where the constant C may change from line to line. Therefore, g2 is bounded if 2a > d.
Otherwise, if 2a < d, the integral in the right-hand side of (7.7) can be bounded by

the same integral over Rd and thus it is uniformly bounded with respect to x, so g2 is
bounded by C(1 ∨ 1/|x|d−2a). In this case, we can proceed similarly to bound the density
g3 of A2ξ1 +Aξ2 + ξ3, and prove by induction that the density gn0

of An0−1ξ1 + · · ·+ ξn0

is bounded.
We deduce that

Px(Xn0 ∈ · ∩K) ≤ sup
u∈Rd

gn0(u)λd(· ∩K).

The end of the proof is the same as for Proposition 7.3, using Proposition 3.3 with
m0 = n0.

7.2.3 Two examples with bounded perturbation

The case where ξ1 is a bounded random variable is more involved. To avoid complications,
we will focus on the case where ξn is a uniform random variable on the unit ball B(0, 1)

of Rd. Extensions to different distributions are possible.
We start with the simpler case of bounded domain D and contracting dynamical

system f .

Proposition 7.8. Assume that D is a bounded, connected open set of Rd, that f is
continuous and satisfies |f(x)− x| < 1 for all x ∈ D. Then Condition (E) is satisfied.

Proof. Again, the proof makes use of the criterion of Proposition 3.3.

Step 1. Construction and properties of the sets Kε, ε > 0.
For all ε > 0, let K ′ε be the connected component of {x ∈ D : d(x, ∂D) ≥ 2ε} with

larger Lebesgue measure and let

Kε :=
⋃
x∈K′ε

B(x, ε),

which is a also a connected compact subset of D with distance to Dc larger than ε. For
all δ > 0 and all x, y ∈ Kε, we call a sequence (x0, x1, . . . , xn) ∈ Kn+1

ε for some n ∈ N
a δ-path linking x to y in Kε if x0 = x, xn = y and |xk − xk−1| < δ for all 1 ≤ k ≤ n.
By construction, the set Kε satisfies that, for all δ > 0 and all x, y ∈ Kε, there exists a
δ-path linking x to y in Kε. In addition, since Kε is compact, there exists an integer nε,δ
depending only on ε and δ such that, for all x, y ∈ Kε, there exists a δ-path in Kε linking
x to y with length less than nε,δ. For all x ∈ Kε and all k ∈ {1, . . . , nε,δ} let us define

K
(k)
ε,δ (x) =

{
y ∈ Rd : ∃x1, . . . , xk−1 ∈ Kε, |x` − x`−1| < δ for all 1 ≤ ` ≤ k

with x0 = x and xk = y

}
.

Note that in general, K(k)
ε,δ is not included in Kε, but it is included in D if δ < ε. It follows

from above that K
(nε,δ)
ε,δ (x) ⊃ Kε for all x ∈ Kε.

Let us also prove that ∪ε>0Kε = D. Let (xn)n≥1 be a dense sequence in D and for
all n ≥ 1, let rn = d(xn, ∂D)/2. Since D = ∪n≥1B(xn, rn), there exists n0 ≥ 1 such that
∪1≤n≤n0B(xn, rn) has Lebesgue measure larger than λd(D)/2. Since D is connected,
there exists a continuous path in D linking xi to xj for all 1 ≤ i, j ≤ n0. Since the distance
between this path and ∂D is positive, there exists ε > 0 small enough such that all the
points x1, . . . , xn0

belong to the same connected component of {x ∈ D : d(x, ∂D) ≥ 2ε}.
We can assume without loss of generality that ε < rn/2 for all 1 ≤ n ≤ n0, so that this

EJP 28 (2023), paper 22.
Page 39/84

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


General criteria for the study of quasi-stationarity

connected component actually contains ∪1≤n≤n0
B(xn, rn) and hence has the largest

Lebesgue measure among all the connected components of {x ∈ D : d(x, ∂D) ≥ 2ε}. In
particular, Kε contains B(x1, r1) for all ε small enough. Now, given any x ∈ D, there
exists a path linking x to x1 in D. Since the distance between this path and ∂D is positive,
x belongs to Kε for all ε > 0 small enough. Hence, we have proved that ∪ε>0Kε = D and
that the family (Kε)ε>0 is non-increasing with respect to ε > 0 when ε is small enough.

Step 2. Proof of Condition (3.2) of Proposition 3.3.
For all ε > 0, since f is continuous,

δε :=

(
1− sup

x∈Kε
|f(x)− x|

)
∧ ε > 0.

Hence, for all x ∈ Kε,

Px(X1 ∈ · ∩B(x, δε)) ≥ cdλd(· ∩B(x, δε)), (7.8)

for a positive constant cd only depending on the dimension of the space. In other words,
for all x ∈ Kε,

Px(X1 ∈ ·) ≥ cdP(x+ U ∈ ·)

where U is a uniform random variable on B(0, δε). Hence, defining the Markov chain
Yn = Y0 + U1 + . . . + Un where Ui are i.i.d. uniform random variable on B(0, δε), we
deduce that

Px(Xk ∈ ·) ≥ ckdPx(Y1, . . . , Yk−1 ∈ Kε and Yk ∈ ·), ∀x ∈ Kε, ∀k ∈ N. (7.9)

In view of Step 1, the following Lemma 7.9 about the process Y implies that there exists
a constant c′ > 0 such that

Px(Xnε,δε/3
∈ ·) ≥ c′λd(· ∩Kε), ∀x ∈ Kε. (7.10)

Since the law of X1 is dominated by the Lebesgue measure independently of X0, we
have proved that, for all ε > 0, (3.2) is satisfied for K = Kε, n0 = 1 and m0 = nε,δε/3.
This concludes Step 2 of the proof.

Lemma 7.9. For all 1 ≤ k ≤ nε,δε/3, there exists a constant c′k > 0 such that, for all
x ∈ Kε,

Px(Y1, . . . , Yk−1 ∈ Kε and Yk ∈ ·) ≥ c′kλd
(
· ∩K(k)

ε,δε/3
(x)
)
, (7.11)

where λd is Lebesgue’s measure on Rd.

Step 3. Proof of (E2) and (E4).
Fix ε0 > 0 such that Kε0 is non-empty and (Kε)ε∈(0,ε0] is non-increasing. It follows

from the definition of Kε that infx∈Kε0 λd(Kε0 ∩B(x, δε0)) > 0. Fixing

θ2 < 4 ∧
{
cd inf

x∈Kε0
λd(Kε0 ∩B(x, δε0))

}
,

we deduce from (7.8) that

lim
n→+∞

θ−n2 inf
x∈Kε0

Px(Xn ∈ Kε0) = +∞. (7.12)

Since the law of X1 is dominated by the Lebesgue measure and D = ∪0<ε≤ε0Kε, there
exists ε1 ∈ (0, ε0] small enough such that

sup
x∈D

Px(X1 ∈ D \Kε1) ≤ θ2/4.
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Hence, the function

ϕ1 : x ∈ D 7→

{
1 if x ∈ Kε,

4/θ2 if x ∈ D \Kε1 ,

satisfies P1ϕ1(x) ≤ 2 ≤ (θ2/2)ϕ1(x) for all x ∈ D \Kε1 . Hence the first and third lines of
Condition (E2) are satisfied with θ1 = θ2/2 and K = Kε1 .

We also deduce from (7.10), (7.12), the fact that Kε0 ⊂ Kε1 and Markov’s property
that

lim
n→+∞

θ−n2 inf
x∈Kε1

Px(Xn ∈ Kε1) = +∞.

Hence, it follows from Lemma 3.1 that (E4) is satisfied with K = Kε1 and that there
exists a function ϕ2 satisfying the conditions of (E2) with θ2 defined above and K = Kε1 .

Therefore, the result follows from Step 2 and Proposition 3.3 with K = Kε1 , n0 = 1

and m0 = nε1,δε1/3.

Proof of Lemma 7.9. We prove this result by induction over k. Since Y1 = x + U1 is
uniform in B(x, δε), the case k = 1 is clear since K(1)

ε,δε/3
= B(x, δε/3) ⊂ B(x, δε).

So assume that (7.11) is satisfied for some 1 ≤ k ≤ nε,δε/3 − 1 and let us prove it for
k + 1. Let A ⊂ Rd be measurable. Using (7.11) for k and the fact that Yk+1 is uniform in
B(Yk, δε) conditionally on Yk, we have

Px(Y1, . . . , Yk ∈ Kε, Yk+1 ∈ A)

≥ Px
(
Y1, . . . , Yk−1 ∈ Kε, Yk ∈ K(k)

ε,δε/3
(x) ∩Kε, Yk+1 ∈ A ∩B(Yk, δε)

)
≥ c′k
λd(B(0, δε))

∫
K

(k)

ε,δε/3
(x)∩Kε

dy

∫
A∩B(y,δε)

dz

=
c′k

λd(B(0, δε))

∫
A

λd

{
K

(k)
ε,δε/3

(x) ∩Kε ∩B(z, δε)
}

dz

≥ c′k
λd(B(0, δε))

∫
A∩K(k+1)

ε,δε/3
(x)

λd

{
K

(k)
ε,δε/3

(x) ∩Kε ∩B(z, δε)
}

dz,

where the third equality follows from Fubini’s theorem.
Now, for all z ∈ K

(k+1)
ε,δε/3

(x), there exists a path x0 = x, x1, . . . , xk ∈ Kε such that

|x` − x`−1| < δε/3 for all 1 ≤ ` ≤ k and |xk − z| < δε/3. By definition of Kε, there exists
y ∈ Kε such that xk−1 ∈ B(y, ε) ⊂ Kε. Let y′ be the unique point such that |y′ − xk−1| =
δε/6 of the half-line with initial point xk−1 and containing y. Then B(y′, δε/6) ⊂ Kε. Since
|xk− z| < δε/3 and |xk−1−xk| < δε/3, we also have B(y′, δε/6) ⊂ B(z, δε). In addition, for
all y′′ ∈ B(y′, δε/6), the path x0 = x, x1, . . . , xk−1, y

′′ lies in Kε and has distance between

consecutive point smaller than δε/3. Therefore, B(y′, δε/6) ⊂ K
(k)
ε,δε/3

(x). We conclude

that, for all z ∈ K(k+1)
ε,δε/3

(x),

λd

{
K

(k)
ε,δε/3

(x) ∩Kε ∩B(z, δε)
}
≥ λd(B(0, δε/6)).

Hence
Px(Y1, . . . , Yk ∈ Kε, Yk+1 ∈ A) ≥ c′k+1λd

(
A ∩K(k+1)

ε,δε/3
(x)
)

for a positive constant c′k+1.

The general case of dynamical systems with bounded perturbations raises several
additional difficulties. We illustrate two of them with the next example in dimension 1.
We consider the Markov process in D = (0,+∞) defined as

X0 ∈ (0,+∞), Xn+1 = αXn −
1

1 +Xn
+ ξn, ∀n ≥ 0
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where α ∈ (0, 1) and ξn are i.i.d. with uniform distribution on [−1, 1] and the process is
immediately sent to the cemetery point ∂ when it leaves D. The first difficulty comes
from the fact that

Px(X1 > 0) =

[
1−

(
1

1 + x
− αx

)]
∨ 0 −−−−→

x→0+
0,

which means that the probability of immediate absorption converges to 1 when x

approaches the boundary of D. The second difficulty comes from the fact that |f(x)− x|
is unbounded on D (in contrast with Proposition 7.8). This example is covered by the
following general result.

Proposition 7.10. Assume that Xn+1 = f(Xn) + ξn with D = (0,+∞), ξn i.i.d. uniform
on [−1, 1], f continuous and there exists x∗ ∈ D such that

(0, x∗) = {x ∈ D : |f(x)− x| < 1} and [x∗,+∞) = {x ∈ D : f(x) + 1 ≤ x} .

Then Condition (E) is satisfied.

Proof. Fix K0 ⊂ (0, x∗) a closed interval with non-empty interior. As in the proof of
Proposition 7.8, using in particular (7.9) and (7.11), there exists n0 ≥ 1 and c0 > 0 such
that, for all x ∈ K0,

Px(Xn0 ∈ ·) ≥ c0λ1(· ∩K0).

Hence there exists a constant θ2 ∈ (0, 1) such that

θ−n2 inf
x∈K0

Px(Xn ∈ K0) −−−−−→
n→+∞

+∞. (7.13)

Fix now θ1 < θ2 and K ⊂ (0, x∗) a closed interval such that K0 ⊂ K and

λ1 {(0, x∗) \K} ≤
θ1

M
,

where

M :=
2(1 + e(x∗+2)/θ1)

θ1
.

As above, there exists n1 ≥ 1 and c1 > 0 such that, for all x ∈ K,

Px(Xn1
∈ ·) ≥ c1λ1(· ∩K).

In particular, infx∈K Px(Xn1 ∈ K0) > 0, so that, using Markov property and (7.13), we
deduce that

θ−n2 inf
x∈K

Px(Xn ∈ K) −−−−−→
n→+∞

+∞.

Using Lemma 3.1, we deduce that there exists a function ϕ2 satisfying the conditions
of (E2) and that (E4) is satisfied. For all x ∈ D, let

ϕ1(x) =


1 if x ∈ K,
M if x ∈ (0, x∗) \K,
ex/θ1 if x ≥ x∗.

For x ≥ x∗, using the fact that the density of X1 on D with respect to Lebesgue measure
is bounded by 1

21D for all value of X0, we have

P1ϕ1(x) ≤ Ex(eX1/θ11X1≥x∗) + Px(X1 ∈ K) +MPx(X1 ∈ (0, x∗) \K)

≤ Ex(eX1/θ1) +
M

2
λ1 {(0, x∗) \K}

≤ ϕ1(x)e(f(x)−x)/θ1Exe
ξ1/θ1 +

θ1

2

≤ ϕ1(x)e−θ
−1
1
eθ
−1
1 − e−θ

−1
1

2θ−1
1

+
θ1

2
ϕ1(x) ≤ θ1ϕ1(x).
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For x ∈ (0, x∗) \K, since f(x) + ξ1 ≤ x+ 2 ≤ x∗ + 2,

P1ϕ1(x) ≤ Px(X1 ∈ K) + e(x∗+2)/θ1Px(X1 ≥ x∗) +MPx(X1 ∈ (0, x∗) \K)

≤ 1 + e(x∗+2)/θ1 +
M

2
λ1 {(0, x∗) \K}

≤M
(
θ1

2
+

θ1

2M

)
≤ θ1ϕ1(x).

Since P1ϕ1(x) is clearly bounded for x ≤ x∗, we have proved (E2).
To conclude, it remains to observe that (3.2) can be deduced for n0 = 1 and m0

large enough exactly as in the proof of Proposition 7.8. Hence the result follows from
Proposition 3.3.

8 Irreducible processes in discrete state space and discrete time

The theory of R-positive matrices is a powerful tool to study absorbed Markov
processes in discrete time and space [45]. The goal of Section 8.1 is to show that our
criteria allow to recover the results on convergence to quasi-stationarity of this theory.
We then study in Section 8.2 a class of discrete Markov chains in discrete time to which
criteria based on R-positive matrices do not apply easily.

8.1 R-positive matrices

We consider a Markov chain (Xn, n ∈ Z+) in a countable state space E ∪ {∂} with
∂ 6∈ E an absorbing point and with irreducible transition probabilities in E, i.e. such that
for all x, y ∈ E, there exists n = n(x, y) ≥ 1 such that Px(Xn = y) > 0. In this case, the
most general criterion for existence and convergence to a quasi-stationary distribution is
provided in [45]. In this paper, the authors obtain a convergence result similar to the one
of Theorem 2.1 restricted to Dirac initial distributions, and the pointwise convergence
to η as in Theorem 2.3, using the theory of R-positive matrices. In this section, we
show how our criterion allows to recover these results, providing in addition the several
refinements of Section 2 (including the characterization of a non-trivial subset of the
domain of attraction, the convergence of (2.1) for unbounded functions f and a stronger
convergence to η).

We denote by P the transition matrix of the chain (Xn, n ∈ Z+) and we assume that
the absorption time τ∂ is almost surely finite. Without loss of generality, we will assume
that the process is aperiodic, meaning that Px(Xn = y) > 0 for all x, y ∈ E provided n is
large enough; the extension to general periodic processes is routine, as observed in [45]
(see also [27] on this topic in our general setting).

Proposition 8.1. The assumptions of [45, Theorem 1] imply Assumption (E).

Proof. Since E is finite or countable and because of the irreducibility assumption, it is
known [107] that the limit

1

R
:= lim

n→+∞
Px(Xn = y)1/n (8.1)

exists with 1 ≤ R < ∞, and is independent of x, y ∈ E. Using [45, Lemma 1], the
assumptions of [45, Theorem 1] can be stated as follows: there exist a non-empty set
K ⊂ E and x0 ∈ K such that

(a) there exist ε0 > 0 and a constant C1 such that, for all x ∈ K and all n ≥ 0,

Px(n < σK ∧ τ∂) ≤ C1(R+ ε0)−n,
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where σK is the first return time in K

σK := inf{n ≥ 1, Xn ∈ K}.

(b) there exists a constant C2 such that, for all x ∈ K and n ≥ 0,

Px(n < τ∂) ≤ C2Px0
(n < τ∂);

(c) there exist n0 ≥ 0 and a constant C3 > 0 such that, for all x ∈ K,

Px(T{x0} ≤ n0) ≥ C3,

where we recall that TL := inf{n ∈ Z+ : Xn ∈ L} for all L ⊂ E.

Let us first prove (E1). By aperiodicity and irreducibility, there exists m1 ≥ 1 such
that, for all n ≥ m1, Px0(Xn = x0) > 0. Combining this with (c), the Markov Property
entails that, for all x ∈ K,

Px(Xn0+m1 = x0) ≥ C3 min
m1≤k≤n0+m1

Px0(Xk = x0).

This is (E1) with ν = δx0
and n1 = n0 +m1.

We now prove (E2) and (E4). Condition (a) implies that(
R+

ε0

2

)
sup
y∈K

Ey

[
11<τ∂EX1

((
R+

ε0

2

)TK∧τ∂)]
= sup
y∈K

Ey

[(
R+

ε0

2

)σK∧τ∂]
<∞.

For all x ∈ E \ K, the irreducibility assumption implies that there exist y ∈ K and
n = n(x, y) ≥ 1 such that Py(Xn = x and n < σK) > 0. By Markov’s property,

Ey

[(
R+

ε0

2

)σK∧τ∂]
≥ Py(Xn = x and n < σK)Ex

[(
R+

ε0

2

)σK∧τ∂]
.

Since σK = TK almost surely under Px for x ∈ E \K, Lemma 3.2 provides a function ϕ1

satisfying the conditions of (E2), with θ1 := (R+ ε0
2 )−1. According to [45, (1.16)], which

holds true under their assumption by [45, Theorem 1], and setting θ2 =
(
R+ ε0

3

)−1
, one

has

lim
n→+∞

θ−n2 Px0
(Xn = x0) = +∞.

Using Markov’s property, Condition (c) immediately entails that

lim
n→+∞

θ−n2 inf
x∈K

Px(Xn ∈ K) = +∞.

Using Lemma 3.1, we deduce that there exists a function ϕ2 : E → [0, 1] satisfying the
conditions of (E2) and that (E4) holds true. This concludes the proof of (E2) and (E4).

To conclude, Conditions (b) and (E1) imply, for all n ≥ 0,

inf
y∈K

Py(n < τ∂) ≥ inf
y∈K

Py(n+ n1 < τ∂) ≥ c1Px0
(n < τ∂) ≥ c1

C2
sup
y∈K

Py(n < τ∂).

This proves (E3) and concludes the proof of Proposition 8.1.

Remark 8.2. One can actually prove that, in the particular case of a discrete state space
E and aperiodic and irreducible transition probability on E, Assumption (E) is equivalent
to the Conditions (a), (b) and (c) of [45]. Besides the additional properties provided in
Section 2, one of our main contribution in this particular setting is to provide a more
tractable criterion. Indeed, the use of Lyapunov type functions has the advantage to be
quite flexible.
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8.2 Application to the extinction of biological populations dominated by Galton-
Watson processes

In this section, we show how our criteria can be applied to general population
processes dominated by population-dependent Galton-Watson processes. In particular,
we refine existing results for the classical multi-type Galton-Watson process.

More precisely, we consider an aperiodic and irreducible Markov population process
(Zn)n∈N on Zd+ = E ∪ {∂} absorbed at ∂ = 0 such that, for all n ≥ 0,

‖Zn+1‖ ≤
|Zn|∑
i=1

ξ
(Zn)
i,n , (8.2)

where ‖ · ‖ is a norm on Rd and |z| = z1 + . . . + zd for all z ∈ Zd+ and, for all n ≥ 0,

the nonnegative random variables ξ(Zn)
1,n , . . . , ξ

(Zn)
|Zn|,n are assumed independent (but not

necessarily identically distributed) given Zn and the families (ξ
(z)
i,n , z ∈ Zd+, 1 ≤ i ≤ |z|)

are i.i.d. for n ∈ Z+.
We assume that

E

 |z|∑
i=1

ξ
(z)
i,n

 ≤ m‖z‖, ∀z ∈ Zd+ such that |z| ≥ n0, (8.3)

for some m < 1 and n0 ∈ N. This means that the population size has a tendency to
decrease (in mean) when it is too large. This also implies that τ∂ <∞ a.s.

In the following theorem, R > 0 is the limiting value defined in (8.1).

Theorem 8.3. Assume that (Zn, n ∈ Z+) is aperiodic irreducible, that it satisfies the
assumptions (8.2) and (8.3) and that, for some q0 >

logR
log(1/m) ∨ 1,

sup
z∈Zd+, 1≤i≤|z|

E[(ξ
(z)
i,1 )q0 ] <∞,

Then Condition (E) holds true with ϕ1(x) = ‖x‖q, for all q ∈
(

logR
log(1/m) ∨ 1, q0

]
.

Remark 8.4. This result easily applies if supz∈Zd+, 1≤i≤|z|E[(ξ
(z)
i,n )q] <∞ for all q > 0. In

other cases, we need an upper bound for R > 0 to check the assumptions of Theorem 8.3.
For instance, one may use the fact that R ≤ 1/ supz∈Zd+ Pz(Z1 = z). One may also use
Lyapunov techniques, in the same spirit as in Section 4.15 for diffusion processes.

Remark 8.5. A particular case of application of the above theorem is when Z is obtained
from a Galton-Watson multi-type process (see below for a more precise definition)
with additional population-dependent death rates. For example, one can assume that
additional death events may affect a fraction of the population, modelling global death
events. In this case, compared to the Galton-Watson case, the independence between
the progeny of individuals breaks down. Another situation covered by the above result
is the case where the domain of absorption of Z is a larger set than 0, for example the
process may be absorbed when it reaches one edge of Zd+ (i.e. when one type disappears).
Another typical application of Theorem 8.3 is the case of population-dependent Galton-
Watson processes, i.e. of processes such that, given Zn, Zn+1 is the sum of |Zn| i.i.d.
random variables whose law may depend on Zn. In this situation, Theorem 8.3 and its
consequences stated in Section 2 generalize the results of [55] to the multi-type situation
and provides finer results on the domain of attraction of the minimal quasi-stationary
distribution. The reducible cases considered in [55] can also be recovered using the
criterion of Theorem 6.1 in Section 6.1 or the criteria of [28]. Of course, the above cases
may be combined.
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Let us now consider the case of multi-type Galton-Watson processes. A Markov
process (Zn, n ∈ Z+) evolving in Zd+ = E ∪ {∂} absorbed at ∂ = 0 is called a Galton-
Watson process with d types if, for all n ≥ 0 and all i ∈ {1, . . . , d},

Zin+1 =

d∑
k=1

Zkn∑
`=1

ζ
(n,`)
k,i , (8.4)

where the random variables (ζ
(n,`)
k,1 , . . . , ζ

(n,`)
k,d )n,`,k in Z+ are assumed independent and

such that, for all k ∈ {1, . . . , d}, (ζ
(n,`)
k,1 , . . . , ζ

(n,`)
k,d )n,` is an i.i.d. family. We define the

matrix M = (Mk,i)1≤k,i≤d of mean offspring as

Mk,i = E(ζ
(n,`)
k,i ), ∀k, i ∈ {1, . . . , d},

and assume that Mk,i < +∞ and that there exists n ≥ 1 such that [Mn]k,i > 0 for all
k, i ∈ {1, . . . , d}.

Using the classical formalism of [59], we consider a positive right eigenvector v of the
matrix M of mean offspring and we denote by ρ(M) its spectral radius. The sub-critical
case corresponds to ρ(M) < 1. It is well-known [64] (see also [60, 2]) that this implies the
existence of a quasi-stationary distribution whose domain of attraction contains all Dirac
measures (a so-called Yaglom limit or minimal quasi-stationary distribution). The authors
also prove that νQSD(| · |) <∞ if and only if E[|Z1| log(|Z1|) | Z0 = (1, . . . , 1)] <∞. While
the following result makes the stronger assumption that E[|Z1|q0 | Z0 = (1, . . . , 1)] <∞
for some q0 > 1, we obtain the finer results of Section 2, including a stronger form of
convergence (in total variation norm with exponential speed), a non-trivial subset of the
domain of attraction of the minimal quasi-stationary distribution and stronger moment
properties for this quasi-stationary distribution.

Corollary 8.6. If (Zn, n ≥ 0) is a d-type irreducible, aperiodic sub-critical Galton-Watson
process, and if, for some q0 > 1,

E[|Z1|q0 | Z0 = (1, . . . , 1)] <∞,

then Condition (E) holds true with ϕ1(z) = |z|q for any q ∈ (1, q0]. In particular, the
domain of attraction of νQSD contains all the probability measures such that µ(| · |q) <∞
for some q > 1.

This corollary easily derives from Theorem 8.3. Indeed, setting ‖z‖ = 〈v, z〉 and

ξ
(Zn)
i,n =

∑d
j=1 vjζ

(n,`)
k,j (assuming that i is the `− th individual of type k in the population),

one obtains

‖Zn+1‖ =

|Zn|∑
i=1

ξ
(Zn)
i,n

and

E

|Zn|∑
i=1

ξ
(Zn)
i,n

∣∣∣∣∣∣ Zn = z

 =

d∑
k=1

zk∑
`=1

d∑
j=1

vjE
(
ζ

(n,`)
k,j

)
= ρ(M)‖z‖,

for all z ∈ Zd+. Since, in the case of multi-type Galton-Watson process, one has R =

1/ρ(M) (see for instance Theorems 2 and 3 of [64]), Theorem 8.3 applies with m = ρ(M).
To prove Theorem 8.3, we use the following lemma.

Lemma 8.7. For all q ∈
(

logR
log(1/m) ∨ 1, q0

]
, there exists a constant Cq such that, for all

z ∈ Zd+,

E

 |z|∑
i=1

ξ
(z)
i,n − E(ξ

(z)
i,n )

q ≤ Cq|z|1∨(q/2).

EJP 28 (2023), paper 22.
Page 46/84

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


General criteria for the study of quasi-stationarity

Proof. If q ∈ (1, 2], this is exactly Lemma 1 of [29]. If q ≥ 2, Burkholder’s inequality [12]
implies that there exists a constant cq such that

E

 |z|∑
i=1

ξ
(z)
i,n − E(ξ

(z)
i,n )

q ≤ cqE

 |z|∑
i=1

{
ξ

(z)
i,n − E(ξ

(z)
i,n )
}2

q/2


= cq|z|q/2E


 1

|z|

|z|∑
i=1

{
ξ

(z)
i,n − E(ξ

(z)
i,n )
}2

q/2


≤ cq|z|q/2E

 1

|z|

|z|∑
i=1

∣∣∣ξ(z)
i,n − E(ξ

(z)
i,n )
∣∣∣q


≤ cq|z|q/2E

 1

|z|

|z|∑
i=1

∣∣∣ξ(z)
i,n

∣∣∣q + E(ξ
(z)
i,n )q


≤ 2cq|z|q/2 sup

z∈Zd+, 1≤i≤|z|
E[(ξ

(z)
i,n )q],

where we used Jensen’s inequality in the third line, that the r.v. ξ(z)
i,n are nonnegative in

the fourth line and Hölder’s inequality in the last inequality.

Proof of Theorem 8.3. We introduce an increasing sequence (Kk, k ≥ 0) of finite subsets
of Zd+ \ {∂}, where Kk is the smallest set containing {z ∈ Zd+ : 1 ≤ |z| ≤ k} such that the
process Z restricted to Kk is irreducible and aperiodic. The existence of this set follows
from the irreducibility assumption and the fact that Zd+ is countable. We shall choose
K = Kk for an appropriate value of k ≥ 0.

Fix q ∈
(

logR
log(1/m) ∨ 1, q0

]
, θ1 ∈ (mq, 1/R), θ2 ∈ (θ1, 1/R) and ϕ1(z) = ‖z‖q. Using

Minkowski’s inequality in the first inequality, Lemma 8.7 in the third line and the
equivalence between norms on Rd+,

P1ϕ1(z) = E

∣∣∣∣∣∣
|z|∑
i=1

ξ
(z)
i,n

∣∣∣∣∣∣
q ≤

E
∣∣∣∣∣∣
|z|∑
i=1

ξ
(z)
i,n − E(ξ

(z)
i,n )

∣∣∣∣∣∣
q1/q

+

|z|∑
i=1

E(ξ
(z)
i,n )


q

≤
[(
Cq|z|1∨(q/2)

)1/q

+m‖z‖
]q

= mq‖z‖q
(

1 + C ′q|z|1/(q∧2)−1
)q

≤ mq‖z‖q + C ′′q |z|q−1+1/(q∧2), (8.5)

for constants C ′q and C ′′q only depending on q and m. Since q − 1 + 1/(q ∧ 2) < q, there
exists k1 ≥ 0 such that, for all z 6∈ Kk1 ,

P1ϕ1(z) ≤ θ1ϕ1(z). (8.6)

We also deduce that, for all z ∈ Kk1 ,

P1ϕ1(z) ≤ max
x∈Kk1

mq‖x‖q + C ′′q |x|q−1+1/(q∧2) < +∞.

Setting K = Kk1 , we deduce that the first and third lines of Condition (E2) are satisfied.
By definition of R, we have limn→∞ θ−n2 infz∈K Pz(Xn ∈ K) = +∞ and hence, using

Lemma 3.1, there exists a function ϕ2 : E → [0, 1] such that the second and fourth lines
of Condition (E2) are satisfied. It also implies that Condition (E4) holds true.
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Since the process is irreducible and aperiodic and K is finite, (3.2) is clearly satisfied
for n0 = 1 and m0 large enough, so that Theorem 8.3 follows from Proposition 3.3.

9 Proof of Theorem 2.1

In all the proof, the constants C are all positive and finite and may change from line
to line. We first assume from Subsections 9.1 to 9.6 that for all n ≥ 0 and all x ∈ E,
Px(n < τ∂) > 0. The general case will be handled in Subsection 9.8.

9.1 Main steps of the proof

The proof is based on a careful study of the semigroup of the process conditioned
to not be absorbed before time T . In this section, we give the main ideas and steps of
the proof of (2.1) for the total variation norm ‖ · ‖TV := ‖ · ‖TV (1) in place of ‖ · ‖TV (ϕ1),
and leave the details for the following subsections, where preliminary results and the
following Propositions 9.1, 9.2, 9.3 and Lemma 9.4 are proved. The general case of the
‖ · ‖TV (ϕ1) norm is handled in Subsection 9.7.

For any T ∈ Z+, we consider the law of the process X conditioned to not be absorbed
before time T . We introduce the linear operators (STm,n)0≤m≤n≤T defined by

STm,nf(x) = E(f(Xn) | Xm = x, T < τ∂) =
Pn−m (fPT−n1E) (x)

PT−m1E(x)
.

It is well-known that (STm,n)0≤m≤n≤T forms a time-inhomogeneous semigroup (i.e.
STm,nS

T
n,p = STm,p for all m ≤ n ≤ p ≤ T ) and that the process (Xn, 0 ≤ n ≤ T ) un-

der P
ST0,·
x is a (time-inhomogeneous) Markov process, where we denote by P

ST0,·
x the law

of the process (Xn, 0 ≤ n ≤ T ) conditionally on T < τ∂ and X0 = x.

Fix θ ∈ (θ1/θ2, 1). For any T ≥ 0, we set, for x ∈ E,

ψT (x) = Ex(θ−TK∧T | T < τ∂) = E
ST0,·
x

(
θ−TK∧T

)
,

where

TK := inf{n ∈ Z+ : Xn ∈ K}

is the first hitting time of K by the process (Xn, n ∈ Z+). Be careful that TK is not the
first hitting time of K by the full process (Xt, t ∈ I), unless I = Z+.

The following proposition provides a Lyapunov-type property for the inhomogeneous
semigroup S.

Proposition 9.1. There exists a constant C̄ > 0 such that, for all 0 ≤ m < T and
1 ≤ k ≤ T −m,

STm,m+kψT−(m+k)(x) ≤ θkψT−m(x) + C̄, ∀x ∈ E. (9.1)

The next proposition provides a Dobrushin coefficient-type property for the inhomo-
geneous semigroup S.

Proposition 9.2. There exists a constant α0 ∈ (0, 1) such that, for all R > 0, there exists
kR ≥ 1 such that, for all T ≥ kR and all x, y ∈ E such that ψT (x) + ψT (y) ≤ R, we have∥∥δxST0,kR − δyST0,kR∥∥TV ≤ 2(1− α0).

The following property is a consequence of the two previous ones.
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Proposition 9.3. There exist constants n0 ≥ 1, C > 0 and α ∈ (0, 1) such that, ∀n ≥ 1

and all x, y ∈ E, ∥∥δxSn0n
0,n0n

− δySn0n
0,n0n

∥∥
TV
≤ Cαn(2 + ψn0n(x) + ψn0n(y)).

Let us now deduce (2.1) with the total variation norm in place of ‖ · ‖TV (ϕ1), from the
last proposition. We have, for all x, y ∈ E,∥∥δxPnn0 − δxPnn01E δyS

n0n
0,n0n

∥∥
TV

≤ Cαn
(
2δxPnn0

1E + Ex
(
θ−TK∧nn01nn0<τ∂

)
+ ψn0n(y)δxPnn0

1E
)
.

Hence, for any probability measure µ on E, integrating the above inequality over µ(dx)

leads to∥∥µPnn0 − µPnn01E δyS
n0n
0,n0n

∥∥
TV

≤ Cαn
(
2µPnn01E + Eµ

(
θ−TK∧nn01nn0<τ∂

)
+ ψn0n(y)µPnn01E

)
.

We make use of the following lemma.

Lemma 9.4. For all θ ∈ (θ1/θ2, 1), there exists a constant C such that, for all 0 ≤ m ≤ T
and all probability measure µ over E such that µ(ϕ2) > 0,

Eµ
(
θ−TK∧T1T<τ∂

)
≤ C µ(ϕ1)

µ(ϕ2)
Pµ (T < τ∂) .

This implies that, for all µ such that µ(ϕ2) > 0,∥∥µPnn0
− δySn0n

0,n0n
µPnn0

1E
∥∥
TV

≤ Cαn
(

2µPnn01E +
µ(ϕ1)

µ(ϕ2)
µPnn01E + ψn0n(y)µPnn01E

)
.

Hence ∥∥∥∥ µPnn0

µPnn01E
− δySn0n

0,n0n

∥∥∥∥
TV

≤ Cαn
(

2 +
µ(ϕ1)

µ(ϕ2)
+ ψn0n(y)

)
.

Using the same procedure w.r.t. y, we deduce that, for any probability measures µ1 and
µ2 on E such that µ1(ϕ2) > 0 and µ2(ϕ2) > 0,∥∥∥∥ µ1Pnn0

µ1Pnn0
1E
− µ2Pnn0

µ2Pnn0
1E

∥∥∥∥
TV

≤ Cαn
(
µ1(ϕ1)

µ1(ϕ2)
+
µ2(ϕ1)

µ2(ϕ2)

)
,

where we used the fact that µ(ϕ1)/µ(ϕ2) ≥ 1 for all probability measure µ on E such
that µ(ϕ2) > 0.

Because of Lemma 9.6 below, we deduce that, for some constant D1 > 0 and for all
0 ≤ k < n0,∥∥∥∥ µ1Pnn0+k

µ1Pnn0+k1E
− µ2Pnn0+k

µ2Pnn0+k1E

∥∥∥∥
TV

≤ Cαn
(
µ1Pkϕ1

µ1Pkϕ2
+
µ2Pkϕ1

µ2Pkϕ2

)
≤ Cαn

(
µ1(ϕ1)

µ1(ϕ2)
∨D1 +

µ2(ϕ1)

µ2(ϕ2)
∨D1

)
.

Therefore, up to a change in the constant C and replacing α by α1/n0 , we deduce that,
for all probability measures µ1 and µ2 on E such that µ1(ϕ2) > 0 and µ2(ϕ2) > 0 and for
all n ≥ 0, ∥∥∥∥ µ1Pn

µ1Pn1E
− µ2Pn
µ2Pn1E

∥∥∥∥
TV

≤ Cαn
(
µ1(ϕ1)

µ1(ϕ2)
+
µ2(ϕ1)

µ2(ϕ2)

)
. (9.2)
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Fix x0 ∈ K. We set µ1 = δx0
and µ2 = µ1P1

µ1P11E
in (9.2). Since µ1ϕ1

µ1ϕ2
< ∞ and because of

Lemma 9.6 below, we have µ2ϕ1

µ2ϕ2
<∞. We deduce that, for some constant C > 0,∥∥∥∥ δx0Pn+1

δx0
Pn+11E

− δx0Pn
δx0

Pn1E

∥∥∥∥
TV

≤ Cαn,

and hence, using the completeness of the space of probability measures on E for the
total variation norm, we deduce that there exists a quasi-limiting measure νQSD (which
is hence a quasi-stationary distribution) such that∥∥∥∥ δx0

Pn
δx0

Pn1E
− νQSD

∥∥∥∥
TV

≤ 2C

1− α
αn.

In particular, it follows from Lemma 9.8 below that νQSD(K) > 0 and hence that

νQSD(ϕ2) > 0. Since Lemma 9.6 implies that Pnϕ1(x0)
Pn1E(x0) is uniformly bounded in n ≥ 0, we

deduce that νQSD(ϕ1 ∧M) is bounded uniformly in M > 0 and hence νQSD(ϕ1) <∞.
Using (9.2) again (up to another change of the constant C), we obtain that, for all

probability measure µ on E such that µ(ϕ1)
µ(ϕ2) <∞,∥∥∥∥ µPn

µPn1E
− νQSD

∥∥∥∥
TV

≤ Cαnµ(ϕ1)

µ(ϕ2)
.

This also entails that there exists a unique quasi-stationary distribution such that
νQSD(ϕ1)/νQSD(ϕ2) <∞.

This ends the proof of (2.1) for the total variation norm. The general case with the
norm ‖ · ‖TV (ϕ1) is proved in Subsection 9.7.

9.2 Preliminary results

We start by proving two basic inequalities which are direct consequences of (E2).

Lemma 9.5. For all x ∈ E \K and all n ≥ 0,

Px(n < TK ∧ τ∂) ≤ Ex[ϕ1(Xn)1n<TK∧τ∂ ] ≤ θn1ϕ1(x).

For all x ∈ E and n ≥ 0,

Px(n < τ∂) ≥ Ex[ϕ2(Xn)1n<τ∂ ] ≥ θn2ϕ2(x).

Proof of Lemma 9.5. These two properties follow easily by induction from (E2). For
example, the first one makes use of the following relation: for all n ≥ 1 and x ∈ E,

Ex[ϕ1(Xn)1n<TK∧τ∂ ] = 1x∈E\K P1 [E· (ϕ1(Xn−1)1n−1<TK∧τ∂ )] (x).

This and (E2) entail the property at time n = 1 and, by induction, at any time n ≥ 1.

The next lemma states that the expectation of ϕ1(Xn) is controlled by the expectation
of ϕ2(Xn) uniformly in time.

Lemma 9.6. For all θ ∈ (θ1/θ2, 1], there exists a finite constant Dθ > 0 such that, for all
probability measure µ on E such that µ(ϕ1)/µ(ϕ2) <∞, for all T ∈ Z+ and all x ∈ E,

µPTϕ1

µPTϕ2
≤
(
θT
µ(ϕ1)

µ(ϕ2)

)
∨Dθ. (9.3)

Proof of Lemma 9.6. It follows from (E2) that

µPT+1ϕ1 ≤ θ1µPTϕ1 + CµPT1K
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and

µPT+1ϕ2 ≥ θ2µPTϕ2.

Hence

µPT+1ϕ1

µPT+1ϕ2
≤ θ1µPTϕ1 + CµPT1K(x)

θ2µPTϕ2

≤ θ1

θ2

µPTϕ1

µPTϕ2
+

C

θ2 infy∈K ϕ2(y)
.

Since θ1/θ2 < θ, these arithmetico-geometric inequalities entail (9.3).

We now give an irreducibility inequality.

Lemma 9.7. For all C ≥ 1, there exists a time n5(C) ∈ N such that

a5(C) := inf
µ∈M1(E) s.t. µ(ϕ1)≤Cµ(ϕ2)

Pµ(Xn5(C) ∈ K) > 0. (9.4)

Proof of Lemma 9.7. It follows from (E4) that there exists a time nν ∈ N such that, for
all n ≥ nν , Pν(Xn ∈ K) > 0, and, using (E1), that for all n ≥ nν + n1,

inf
x∈K

Px(Xn ∈ K) ≥ c1Pν(Xn−n1
∈ K) > 0.

Let C ≥ 1 and µ be such that µ(ϕ1) ≤ Cµ(ϕ2). It follows from Lemma 9.5 that, for all
n ≥ 1,

Pµ(TK ∧ τ∂ > n) ≤ Eµ [ϕ1(Xn)1TK∧τ∂>n] ≤ θn1µ(ϕ1) ≤ Cθn1µ(ϕ2).

and

Pµ(n < τ∂) ≥ Eµ[ϕ2(Xn)] ≥ θn2µ(ϕ2).

Therefore,

Pµ(TK ≤ n < τ∂) ≥ (θn2 − Cθn1 )µ(ϕ2).

Choosing n(C) = d2C/ log(θ2/θ1)e, we deduce that

Pµ(TK ≤ n(C) < τ∂) ≥ θ
n(C)
2

2
µ(ϕ2) ≥ θ

n(C)
2

2C
.

Therefore,

Pµ(Xn(C)+nν+n1
∈ K) ≥ Eµ

[
1TK≤n(C)PXTK (Xn(C)+nν+n1−k ∈ K)

k=TK

]
≥ min
nν+n1≤k≤nν+n1+n(C)

inf
x∈K

Px(Xk ∈ K)
θ
n(C)
2

2C
.

Hence we have proved Lemma 9.7 with n5(C) = nν + n1 + n(C).

The next lemma shows that conditional distributions with initial conditions in K give
to K a mass uniformly bounded from below.

Lemma 9.8. There exists a time n6 ∈ N such that

inf
T≥n6

inf
x∈K

Px(XT ∈ K | T < τ∂) > 0.
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Proof of Lemma 9.8. Since ϕ1/ϕ2 is bounded over K, we deduce from Lemma 9.6 that,
setting C := D1 + supx∈K

ϕ1(x)
ϕ2(x) , we have for all x ∈ K and all T ≥ n5(C),

PT−n5(C)ϕ1(x)

PT−n5(C)ϕ2(x)
≤ C. (9.5)

Using Lemma 9.7 applied to µ =
δxPT−n5(C)

δxPT−n5(C)1E
, we deduce that, for all x ∈ K and

T ≥ n5(C),

Px(XT ∈ K | T < τ∂) =
µPn5(C)1K

µPn5(C)1E
≥ µPn5(C)1K ≥ a5(C).

The next lemma shows that survival probabilities are controlled by the function ϕ1.

Lemma 9.9. There exists a constant C > 0 such that, for all p ∈ [1, log θ1/ log θ2), x ∈ E
and n ≥ 1,

Px(n < τ∂) ≤ C ϕ1(x)1/p

1− θ1/p
1 /θ2

inf
y∈K

Py(n < τ∂). (9.6)

Proof of Lemma 9.9. It follows from Lemma 9.5 that, for all p ≥ 1, x ∈ E \K and n ≥ 1,

Px(n < TK ∧ τ∂) ≤ θn/p1 ϕ1(x)1/p. (9.7)

Note that this inequality is trivial for x ∈ K. In particular, for p ≥ 1 such that θ1/p
1 < θ2,

for all x ∈ K,

Ex(θ−TK∧τ∂2 ) ≤ ϕ1(x)1/p

1− θ1/p
1 /θ2

. (9.8)

Fix p ∈ [1, log θ1/ log θ2). Using (9.7), the second inequality of Lemma 9.5 and (E3),
we have for all x ∈ E

Px(n < τ∂) = Px(n < TK ∧ τ∂) + Px(TK ∧ τ∂ ≤ n < τ∂)

≤ θn2ϕ1(x)1/p +

n∑
k=0

Px(TK ∧ τ∂ = k) sup
y∈K

Py(n− k < τ∂)

≤ infz∈K Pz(n < τ∂)

infz∈K ϕ2(z)
ϕ1(x)1/p + c3

n∑
k=0

Px(TK ∧ τ∂ = k) inf
y∈K

Py(n− k < τ∂)

≤ C inf
z∈K

Pz(n < τ∂)ϕ1(x)1/p + C inf
z∈K

Pz(n < τ∂)

n∑
k=0

Px(TK ∧ τ∂ = k)θ−k2 ,

(9.9)

where we used the fact that, for some constant C > 0, for all n ≥ k ≥ 0 and all z ∈ K,

Pz(n < τ∂) ≥ Cθk2 inf
y∈K

Py(n− k < τ∂). (9.10)

This is proved using the three following equations. For all n ≥ k ≥ n6 and all z ∈ K, by
Lemmata 9.8 and 9.5,

Pz(n < τ∂) ≥ Pz(Xk ∈ K | k < τ∂)Pz(k < τ∂) inf
y∈K

Py(n− k < τ∂)

≥ Cθk2ϕ2(z) inf
y∈K

Py(n− k < τ∂)

≥ Cθk2 inf
y∈K

Py(n− k < τ∂),
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since infz∈K ϕ2(z) > 0. Also, for all n ≥ n6 ≥ k, using the last inequality,

Pz(n < τ∂) ≥ Cθn6
2 inf

y∈K
Py(n− n6 < τ∂)

≥ Cθn6
2 inf

y∈K
Py(n− k < τ∂)

≥ (Cθn6
2 ) θk2 inf

y∈K
Py(n− k < τ∂).

Finally, for all k ≤ n < n6,

Pz(n < τ∂) ≥ Pz(n6 < τ∂) ≥ Cθn6
2 ≥ (Cθn6

2 ) θk2 inf
y∈K

Py(n− k < τ∂),

so (9.10) is proved.
Combining (9.8) and (9.9) ends the proof of Lemma 9.9.

9.3 Proof of Proposition 9.1

Markov’s property implies that, for all x ∈ E \K and T,m ≥ 1,

ST0,1ψT−1(x) = ST+m
m,m+1ψT−1(x) = θψT (x). (9.11)

Indeed,

θψT (x) =
Ex(θ1−TK∧T1T<τ∂ )

Px(T < τ∂)

=
Ex
[
11<τ∂EX1

(θ−TK∧(T−1) | T − 1 < τ∂)PX1
(T − 1 < τ∂)

]
Px(T < τ∂)

= ST0,1ψT−1(x).

Similarly, for all x ∈K,

ST0,1ψT−1(x) = ST+m
m,m+1ψT−1(x) = θE

ST0,·
x (θ−σK∧T ), (9.12)

where

σK := min{n ≥ 1, Xn ∈ K}

is the first return time in K. Setting

C := sup
T≥0

sup
x∈K

E
ST0,·
x (θ−σK∧T ),

which is finite (see Lemma 9.10), we can apply recursively (9.11) and (9.12) to obtain

STm,m+kψT−(m+k) = STm,m+k−1

(
1E\KS

T
m+k−1,m+k(ψT−(m+k))

)
+ STm,m+k−1

(
1KS

T
m+k−1,m+k(ψT−(m+k))

)
≤ θSTm,m+k−1ψT−(m+k−1) + Cθ

≤ . . . ≤ θkψT−m(x) + C

k∑
`=1

θ`.

Hence Proposition 9.1 follows from the next lemma.

Lemma 9.10. For all θ ∈ (θ1/θ2, 1),

sup
T≥0

sup
x∈K

E
ST0,·
x (θ−σK∧T ) <∞.
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Proof of Lemma 9.10. Fix x ∈ K. On the one hand, by Lemma 9.9 (with p = 1), we have
for any 1 ≤ n < T ,

Px(n < σK and T < τ∂) = Ex(1n<σK∧τ∂PXn(T − n < τ∂))

≤ C inf
y∈K

Py(T − n < τ∂)Ex(1n<σK∧τ∂ϕ1(Xn)).

Using (E2) and Markov’s property as in the proof of Lemma 9.5, we deduce

Px(n < σK and T < τ∂) ≤ C inf
y∈K

Py(T − n < τ∂)θn−1
1 P1ϕ1(x) (9.13)

≤ C inf
y∈K

Py(T − n < τ∂)θn1 . (9.14)

On the other hand, Lemma 9.8 implies the existence of a constant C > 0 such that, for
all x ∈ K and all n ≥ n6,

Px(Xn ∈ K) ≥ CPx(n < τ∂).

We deduce from Markov’s property and Lemma 9.5 that, for all T ≥ n ≥ n6,

Px(T < τ∂) ≥ Px(Xn ∈ K) inf
y∈K

Py(T − n < τ∂)

≥ CPx(n < τ∂) inf
y∈K

Py(T − n < τ∂)

≥ Cθn2 inf
y∈K

Py(T − n < τ∂).

Combining this with (9.13), we finally deduce that there exists a constant C > 0 such
that, for all x ∈ K and all T ≥ n ≥ n6,

Px(n < σK | T < τ∂) ≤ C
(
θ1

θ2

)n
. (9.15)

The extension to any T ≥ n is trivial, so the conclusion follows.

9.4 Proof of Proposition 9.2

We start by stating a lemma proved at the end of this subsection.

Lemma 9.11. For all x ∈ K and n1 + n6 ≤ n ≤ T ,

Px(Xn ∈ · | T < τ∂) ≥ c′1ν, (9.16)

where the measure ν and the integer n1 are the one of Condition (E1), the integer n6 is
from Lemma 9.7 and c′1 > 0 is independent of x, n and T .

Fix θ ∈ (θ1/θ2, 1) and set kR = dlog(2R)/ log(1/θ)e + n1 + n6 and fix T ≥ kR. For all
x ∈ E such that ψT (x) ≤ R, Markov’s inequality implies that

Px(TK > kR − n1 − n6 | T < τ∂) = P
ST0,·
x (TK > kR − n1 − n6) ≤ R

θ−kR+n1+n6
≤ 1

2
.

It follows from Lemma 9.11 that, for all measurable A ⊂ E,

P
ST0,·
x (XkR ∈ A) ≥

Ex

[∑kR−n1−n6

k=1 1TK=kPXk(XkR−k ∈ A, T − k < τ∂)
]

Px(T < τ∂)

≥ c′1ν(A)
Ex

[∑kR−n1−n6

k=1 1TK=kPXk(T − k < τ∂)
]

Px(T < τ∂)

= c′1ν(A)Px(TK ≤ kR − n1 − n6 | T < τ∂)

≥ 1

2
c′1ν(A).

This concludes the proof of Proposition 9.2 with α0 = c′1/2.
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Proof of Lemma 9.11. For all measurable set A ⊂ K, we deduce from Markov’s property
that, for all x ∈ K and all T ≥ n ≥ n1 + n6,

Px(Xn ∈ A, T < τ∂) ≥ Ex
[
1Xn−n1

∈K EXn−n1

(
1Xn1

∈APXn1
(T − n < τ∂)

)]
≥ Ex

[
1Xn−n1

∈K PXn−n1
(Xn1

∈ A)
]

inf
y∈K

Py(T − n < τ∂)

≥ c1ν(A)Px (Xn−n1
∈ K) inf

y∈K
Py(T − n < τ∂), (9.17)

where we used (E1). Now, using Lemma 9.9, we deduce that there exists a constant
c > 0 such that

Px(T < τ∂) ≤ Px(T − n1 < τ∂) = Ex
(
1n−n1<τ∂PXn−n1

(T − n < τ∂)
)

≤ cEx (1n−n1<τ∂ϕ1(Xn−n1)) inf
y∈K

Py(T − n < τ∂).

Since ϕ1(x)/ϕ2(x) is uniformly bounded over x ∈ K, Lemma 9.6 implies that there exists
a constant c′ > 0 such that, for all x ∈ K,

Ex [1n−n1<τ∂ϕ1(Xn−n1)] ≤ c′Ex [1n−n1<τ∂ϕ2(Xn−n1)] ≤ c′Px (n− n1 < τ∂) .

But n− n1 ≥ n6, hence Lemma 9.8 entails that there exists a constant c′′ > 0 such that,
for all x ∈ K,

Px (n− n1 < τ∂) ≤ c′′Px(Xn−n1
∈ K).

Hence we obtain

Px(T < τ∂) ≤ cc′c′′Px (Xn−n1
∈ K) inf

y∈K
Py(T − n < τ∂).

Combining this with (9.17), we obtain

Px(Xn ∈ A | T < τ∂) ≥ c1
cc′c′′

ν(A).

This ends the proof of Lemma 9.11.

9.5 Proof of Proposition 9.3

We transpose the ideas of [57] (see also [58]) to the time-inhomogeneous setting.
We fix the constants R = 4C̄/(1 − θ) and β = α0/2C̄, where C̄ is the constant of
Proposition 9.1. For all T ≥ 0 and all ϕ : E → R, we set

|||ϕ|||T = sup
x,y∈E

|ϕ(x)− ϕ(y)|
2 + βψT (x) + βψT (y)

.

Fix n and T ≥ 0 such that (n+ 1)kR ≤ T and let ϕ be such that |||ϕ|||T−(n+1)kR
≤ 1. Then,

replacing ϕ by ϕ+ c for some appropriate constant c, one has |ϕ| ≤ 1 + βψT−(n+1)kR (see
Lemma 3.8 p.14 in [57]).

If ψT−nkR(x) + ψT−nkR(y) > R, then, using Proposition 9.1,∣∣∣STnkR,(n+1)kR
ϕ(x)− STnkR,(n+1)kR

ϕ(y)
∣∣∣
≤ 2 + θβψT−nkR(x) + θβψT−nkR(y) + 2βC̄

≤ 2 + (θ + (1− θ)/2) (βψT−nkR(x) + βψT−nkR(y))

− (Rβ)(1− θ)/2 + 2βC̄

≤ (1− α1)(2 + βψT−nkR(x) + βψT−nkR(x)),
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where α1 ∈ (0, 1) is such that 2 + (θ + (1− θ)/2) y ≤ (1− α1)(2 + y) for all y ≥ βR.

If ψT−nkR(x) + ψT−nkR(y) ≤ R, then, considering

ϕ = ϕ′ + ϕ′′,

with |ϕ′| ≤ 1 and |ϕ′′| ≤ βψT−(n+1)kR , Propositions 9.1 and 9.2 entail

∣∣∣STnkR,(n+1)kR
ϕ(x)− STnkR,(n+1)kR

ϕ(y)
∣∣∣

≤ 2(1− α0) + βθψT−nkR(x) + βθψT−nkR(y) + 2βC̄.

Our choice β = α0/2C̄ implies that∣∣∣STnkR,(n+1)kR
ϕ(x)− STnkR,(n+1)kR

ϕ(y)
∣∣∣ ≤ (1− α2)(2 + βψT−nkR(x) + βψT−nkR(y)).

for the constant α2 = α0

2 ∧ (1− θ) > 0.

Hence, we obtained∣∣∣∣∣∣∣∣∣STnkR,(n+1)kR
ϕ
∣∣∣∣∣∣∣∣∣
T−nkR

≤ (1− α1 ∧ α2)|||ϕ|||T−(n+1)kR
,

which implies by iteration that∣∣∣∣∣∣∣∣∣SnkR0,nkR
ϕ
∣∣∣∣∣∣∣∣∣
nkR
≤ (1− α1 ∧ α2)n|||ϕ|||0 ≤ (1− α1 ∧ α2)n‖ϕ‖∞/(1 + β).

This concludes the proof of Proposition 9.3.

9.6 Proof of Lemma 9.4

This lemma in a generalization of Lemma 9.10. Its proof is based on similar computa-
tions. We give the details for sake of completeness.

For all probability measure µ on E, for any 0 ≤ n < T , using Lemma 9.9 for the
second inequality and Lemma 9.5 for the third inequality, we have

Pµ(n < TK and T < τ∂) ≤ Eµ(1n<TKPXn(T − n < τ∂))

≤ C inf
y∈K

Py(T − n < τ∂)Eµ(1n<TKϕ1(Xn))

≤ C inf
y∈K

Py(T − n < τ∂)θn1µ(ϕ1). (9.18)

For all integer n ≥ nµ, where

nµ :=

n5(Dθ) +
log µ(ϕ1)

Dθµ(ϕ2)

log(1/θ)

 ,
it follows from Lemma 9.6 that

µPn−n5(Dθ)ϕ1

µPn−n5(Dθ)ϕ2
≤ Dθ ∨

(
θn−n5(Dθ)µ(ϕ1)

µ(ϕ2)

)
≤ Dθ

and from Lemma 9.7 that

µPn1K
µPn1E

≥ a5(Dθ) > 0.
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Therefore, we obtain from the Markov property and Lemma 9.5 that

Pµ(T < τ∂) ≥ Pµ(Xn ∈ K) inf
y∈K

Py(T − n < τ∂)

≥ a5(Dθ)Pµ(n < τ∂) inf
y∈K

Py(T − n < τ∂)

≥ a5(Dθ)θ
n
2µ(ϕ2) inf

y∈K
Py(T − n < τ∂).

Combining this with (9.18), we obtain that, for all n ≥ nµ,

Pµ(n < TK and T < τ∂) ≤ C

a5(Dθ)

(
θ1

θ2

)n
µ(ϕ1)

µ(ϕ2)
Pµ(T < τ∂).

Hence

Eµ
(
θ−TK∧T1TK≥nµ, T<τ∂

)
≤ Cµ(ϕ1)

µ(ϕ2)
Pµ (T < τ∂) .

We deduce that

Eµ
(
θ−TK∧T1T<τ∂

)
≤
(
C
µ(ϕ1)

µ(ϕ2)
+ θ−nµ

)
Pµ (T < τ∂) .

Since θ−nµ ≤ θ−(n5(Dθ)+1)µ(ϕ1)
Dθµ(ϕ2) , we have proved Lemma 9.4.

9.7 Conclusion of the proof of (2.1) for the norm ‖ · ‖TV (ϕ1)

For all n ≥ 1, we introduce the linear operator on L∞(ϕ1), defined for all h ∈ L∞(ϕ1)

as

Rnh(x) = Ex (h(Xn)1TK≤n<τ∂ ) , ∀x ∈ E. (9.19)

Note that this operator is well-defined since |Rnh(x)| ≤ ‖h‖L∞(ϕ1) Pnϕ1(x) <∞. We first
give some properties of Rn, which can be seen as a bounded approximation of Pn in
L∞(ϕ1).

Lemma 9.12. We have

R̄ := sup
n≥1

sup
x∈E

Rnϕ1(x) <∞,

and for all n ≥ 1 and x ∈ E,

0 ≤ Pnϕ1(x)−Rnϕ1(x) ≤ θn1ϕ1(x).

Proof. Using Markov’s property,

Rnϕ1(x) =
∑
k≤n

Ex[1TK=kPn−kϕ1(Xk)]

≤ sup
y∈K, k≥0

Pkϕ1(y)Px(TK ≤ n)

≤ sup
y∈K, k≥0

Pkϕ1(y)

Pkϕ2(y)
≤ D1 ∨ sup

y∈K

ϕ1(y)

ϕ2(y)
< +∞

by Lemma 9.6. This proves the first inequality. For the second one, we observe that for
all x ∈ E,

Pnϕ1(x)−Rnϕ1(x) = Ex(ϕ1(Xn)1n<TK ) ≤ θn1ϕ1(x)

by Lemma 9.5.
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We fix 1 ≤ k ≤ n, h such that |h| ≤ ϕ1 and µ such that µ(ϕ1)/µ(ϕ2) ≤ Dθ, where
θ = 1+θ1/θ2

2 and Dθ is from Lemma 9.6. The inequality (2.1) with ‖ · ‖TV in place of
‖ · ‖TV (ϕ1) and Lemma 9.12 entail∣∣∣∣µPn−kRkhµPn−k1E

− νQSD(Rkh)

∣∣∣∣ ≤ Cαn−k µ(ϕ1)

µ(ϕ2)
sup
x∈E
|Rkh(x)| ≤ CDθR̄α

n−k.

The second inequality of Lemma 9.12 implies

|νQSD[(Pk −Rk)h]| ≤ θk1νQSD(ϕ1)

and, by Lemma 9.6,

µPn−k(Pk −Rk)h

µPn−k1E
≤ θk1

µPn−kϕ1

µPn−kϕ2
≤ θk1

(
Dθ ∨

µ(ϕ1)

µ(ϕ2)

)
= θk1Dθ.

Combining the last three inequalities and recalling that νQSDPkh = θk0νQSD(h), we
obtain that, for some constant C > 0,∣∣∣∣ µPnh

θk0µPn−k1E
− νQSD(h)

∣∣∣∣ ≤ C (αn−kθ−k0 + (θ1/θ0)k
)
.

Applying the last inequality to h = 1E , we obtain∣∣∣∣ 1

θk0µPn−k1E
− 1

µPn1E

∣∣∣∣ ≤ C(αn−kθ−k0 + (θ1/θ0)k)

µPn1E

so that, using Lemma 9.6,∣∣∣∣ µPnh

θk0µPn−k1E
− µPnh

µPn1E

∣∣∣∣ ≤ C(αn−kθ−k0 + (θ1/θ0)k)
µPnϕ1

µPn1E
≤ CDθ(α

n−kθ−k0 + (θ1/θ0)k).

Hence, for some ᾱ < 1, for all n ≥ 0,∣∣∣∣ µPnhµPn1E
− νQSD(h)

∣∣∣∣ ≤ C(αn−kθ−k0 + (θ1/θ0)k) ≤ Cᾱn.

Finally, if µ(ϕ1)/µ(ϕ2) > Dθ, then let T =
⌈

ln(Dθµ(ϕ1)/µ(ϕ2))
− ln θ

⌉
, so that µPTϕ1/µPTϕ2 ≤

Dθ according to Lemma 9.6. We deduce from the previous inequality applied to
µPT /µPT1E that, for all n ≥ 0,∣∣∣∣ µPT+nh

µPT+n1E
− νQSD(h)

∣∣∣∣ ≤ Cᾱn ≤ CᾱnθT−1µ(ϕ1)

µ(ϕ2)

while, using again Lemma 9.6, we obtain, for all n ∈ {0, T − 1},∣∣∣∣ µPnhµPn1E
− νQSD(h)

∣∣∣∣ ≤ Dθ ∨
(
θn
µ(ϕ1)

µ(ϕ2)

)
+ νQSD(ϕ1) ≤ Cθnµ(ϕ1)

µ(ϕ2)
.

The last two inequalities conclude the proof of (2.1) with α = ᾱ ∨ θ and hence of
Theorem 2.1.

9.8 The case where Px(n < τ∂) = 0 for some x ∈ E and n ≥ 1

In this section, we assume that X satisfies assumption (E), but we do not assume
anymore that Px(n < τ∂) > 0 for all x ∈ E and all n ≥ 1. We introduce Ē = {x ∈
E, Px(n < τ∂) > 0 ∀n ≥ 0} and ¯̄E = E \ Ē. One immediately deduces from (E2) that, for
all x ∈ ¯̄E and all n ≥ 0, ϕ2(x) = 0 and Px(Xn ∈ K) = 0, and hence that δxPnϕ1 ≤ θn1ϕ1(x)
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by Lemma 9.5. In addition, one easily checks that the semi-group P restricted to Ē ∪ {∂}
still satisfies assumption (E), and in particular (2.1) applies.

Let µ be a probability measure on E such that µ(ϕ2) > 0 and µ(ϕ1) < +∞. Then, for
all n ≥ 0 and all |h| ≤ ϕ1,

|µPnh− νQSD(h)µPn1E | ≤
∣∣µPnh− µ|ĒPnh∣∣+

∣∣µ|ĒPnh− νQSD(h)µ|ĒPn1E
∣∣

+ νQSD(ϕ1)
∣∣µ|ĒPn1E − µPn1E∣∣ .

Each term can be bounded as follows:∣∣µPnh− µ|ĒPnh∣∣ ≤ µ| ¯̄EPnϕ1 ≤ θn1µϕ1,∣∣µ|ĒPnh− νQSD(h)µ|ĒPn1E
∣∣ ≤ Cαnµ|Ē(ϕ1)

µ|Ē(ϕ2)
µ|ĒPn1E ≤ Cαn

µ(ϕ1)

µ(ϕ2)
µPn1E ,

νQSD(ϕ1)
∣∣µ|ĒPn1E − µPn1E∣∣ ≤ νQSD(ϕ1)µ| ¯̄EPnϕ1 ≤ νQSD(ϕ1)θn1µϕ1.

Since µPn1E ≥ θn2µ(ϕ2), we deduce that∣∣∣∣ µPnhµPn1E
− νQSD(h)

∣∣∣∣ ≤ ((θ1/θ2)n + νQSD(ϕ1)(θ1/θ2)n + Cαn)
µ(ϕ1)

µ(ϕ2)
.

This concludes the proof of (2.1) in the general case.

10 Proof of the other results of Section 2

The previous section ensures the existence of a quasi-stationary distribution νQSD
such that νQSD(ϕ1) < +∞ and νQSD(K) > 0. Denoting by θ0 its associated decay
parameter, we observe that θ2 ≤ θ0, since Lemma 9.5 entails that, for all n ≥ 1,

θn0 = PνQSD (n < τ∂) ≥ νQSD(K) inf
y∈K

Py(n < τ∂) ≥ νQSD(K)θn2 inf
y∈K

ϕ2(y).

We begin to prove Theorem 2.3 in Section 10.1, except for the exponential conver-
gence in L∞(ϕ1). We then prove Theorem 2.6 in Section 10.2. In Section 10.3, we
conclude the proof of Theorem 2.3 and prove Corollary 2.7. We prove Corollary 2.11 in
Subsection 10.5.

10.1 Proof of the existence of the eigenfunction η

In this section, we show that the limit (2.2) is well defined pointwise, νQSD(η) = 1,

P1η = θ0η, η is lower bounded away from 0 on K and η ∈ L∞(ϕ
log(1/θ0)/ log(1/θ1)
1 ).

For all n ≥ 0 and x ∈ E ∪ {∂}, let us denote

ηn(x) = θ−n0 Px(n < τ∂) =
Px(n < τ∂)

PνQSD (n < τ∂)
.

By Lemma 9.9, for all x ∈ E,

ηn(x) ≤ Cθ−n0 inf
y∈K

Py(n < τ∂)ϕ1(x)

≤ C

νQSD(K)
θ−n0 PνQSD (n < τ∂)ϕ1(x) =

Cϕ1(x)

νQSD(K)
. (10.1)

This implies that the sequence (ηn)n≥0 is uniformly bounded in L∞(ϕ1).
For all probability measure µ on E and for all n,m ≥ 0, by Markov’s property,

µ(ηn+m) = µ(ηn)Eµ
[
θ−m0 PXn(m < τ∂) | n < τ∂

]
.
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Hence, by Theorem 2.1, for all µ such that µ(ϕ2) > 0 and µ(ϕ1) < +∞,

|µ(ηn+m)− µ(ηn)| = µ(ηn) |Eµ(ηm(Xn) | n < τ∂)− 1|
= µ(ηn) |Eµ(ηm(Xn) | n < τ∂)− νQSD(ηm)|

≤ Cµ(ϕ1)αn
µ(ϕ1)

µ(ϕ2)
.

For any x ∈ E, applying this result to µ = (δx + νQSD)/2, we deduce that

|ηn+m(x)− ηn(x)| ≤ Cϕ1(x)2αn.

This shows that (ηn(x))n≥0 is a Cauchy sequence and hence that, for all x ∈ E,

η(x) = lim
n→+∞

θ−n0 Px(n < τ∂)

and, by (10.1), that η ∈ L∞(ϕ1).
Then, since ηn is bounded in L∞(ϕ1), we deduce by dominated convergence that

νQSD(η) = 1 and that, for all x ∈ E,

δxP1η = lim
n→+∞

δxP1ηn = lim
n→+∞

θ0ηn+1(x) = θ0η(x). (10.2)

The fact that η is lower bounded away from 0 on K is an immediate consequence of
Lemma 9.9 (integrating (9.6) with respect to νQSD(dx)) and the fact that νQSD(ϕ1) <

+∞.
It only remains to prove that η ∈ L∞

(
ϕ

log θ0/ log θ1
1

)
. To prove this, we use the operator

Rn introduced in (9.19). By Lemma 9.12 and using the fact that η ∈ L∞(ϕ1), for all
x ∈ E,

η(x) = θ−n0 Pnη(x) ≤ Cθ−n0 [Rnϕ1(x) + (Pn −Rn)ϕ1(x))]

≤ CR̄θ−n0 + C

(
θ1

θ0

)n
ϕ1(x).

Applying this inequality for n = b− logϕ1(x)/ log θ1c, we deduce

η(x) ≤ C exp

(
logϕ1(x)

log θ1
log θ0

)
≤ Cϕ1(x)log θ0/ log θ1 ,

which concludes the proof.

10.2 Proof of Theorem 2.6

We start with Point (i). We introduce Γn = 1n<τ∂ and define for all x ∈ E′ and n ≥ 0

the probability measure

QΓ,x
n =

Γn
Ex (Γn)

Px,

so that the Q-process exists if and only if QΓ,x
n admits a proper limit when n→∞. For

all 0 ≤ k ≤ n, we have by the Markov property

Ex (Γn | Fk)

Ex (Γn)
=
1k<τ∂PXk (n− k < τ∂)

Px (n < τ∂)
.

By the pointwise convergence in (2.2) (proved in Subsection 10.1), this converges almost
surely as n→ +∞ to

Mk := 1k<τ∂θ
−k
0

η(Xk)

η(x)
= θ−k0

η(Xk)

η(x)
,
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and Ex(Mk) = θ−k0
Pkη(x)
η(x) = 1. These two properties allow to apply the penalization’s

theorem of Roynette, Vallois and Yor [94, Theorem 2.1], which implies that M is a
martingale under Px and that QΓ,x

n (A) converges to Ex (Mk1A) for all A ∈ Fk when
n→∞. This means that Qx is well defined and

dQx
dPx Fk

= Mk.

Note that the fact that η(x) = 0 for all x ∈ E \ E′ implies that (Xn, n ≥ 0) is E′-valued
Qx-almost surely for all x ∈ E′. The fact that X is Markov under (Qx)x∈E′ and Point (ii)
can be easily deduced from the last formula (see e.g. [20, Section 6.1]).

It remains to prove Point (iii). We define the function ψ = ϕ1/η × ‖η‖L∞(ϕ1) on E′.
Note that, since η ∈ L∞(ϕ1), ψ is uniformly lower bounded. Moreover, for all x ∈ E′,

P̃1ψ(x) =
θ−1

0 ‖η‖L∞(ϕ1)

η(x)
P1ϕ1(x) ≤ θ1

θ0
ψ(x) +

c2‖η‖L∞(ϕ1)

θ0η(x)
1K(x) ≤ θ̃ψ(x) + c̃,

where θ̃ = θ1/θ0 and

c̃ =
c2‖η‖L∞(ϕ1)

θ0 infK η
.

Hence, for all x ∈ E and all n ≥ 1,

P̃nψ(x) ≤ θ̃P̃n−1ψ(x) + c̃ ≤ ... ≤ θ̃nψ(x) +
c̃

1− θ̃
. (10.3)

Using Lemma 9.5, we have that, for all x ∈ E′,

Qx(TK > n) = Ex

(
θ−n0

ϕ1(Xn)

η(Xn)
1TK>n1Xn∈E′

)
≤ θ̃nψ(x) (10.4)

Now, choosing mK large enough so that supx∈K θ̃
mK [supK ψ+ c̃/(1− θ̃)] ≤ 1/2, we deduce

that, for all x ∈ K and all n0 ≥ 0,

Qx(∃n ∈ {n0, . . . , n0 +mK}, Xn ∈ K) ≥ 1− θ̃mK P̃n0ψ(x) ≥ 1/2. (10.5)

Now, let nK ≥ 1 be such that infx∈K Px(Xn ∈ K) > 0 for all n ≥ nK (such a nK exists by
(E1) and (E4), see the proof of Lemma 9.7) and let

a := inf
n∈{nK ,...,nK+mK}

inf
x∈K

Px(Xn ∈ K) > 0.

so that, for all x ∈ K, all n ∈ {nK , . . . , nK +mK} and all A ⊂ E measurable,

Qx(Xn+n1
∈ A) ≥ Qx(Xn ∈ K,Xn+n1

∈ A) =
θ−n−n1

0

η(x)
Ex(1Xn∈KEXn(η(Xn1

)1Xn1
∈A))

≥ θ−n−n1
0

η(x)
ac1ν(η1A) =

θ−n−n1
0 ν(η)

η(x)
ac1νη(A) ≥ ac1

c3
νη(A),

where we used (E1) and (E3) and defined νη(dx) := η(x)ν(dx)
ν(η) . We deduce from the last

inequality and (10.5) that, for all n0 ≥ 0,

Qx(Xn0+n1+nK+mK ∈ ·) ≥
n0+mK∑
n=n0

Qx [1Xn∈KQXn(Xn0+n1+nK+mK−n ∈ ·)] ≥
ac1
2c3

νη.

Hence, for all n ≥ nK +mK + n1,

Qx(Xn ∈ ·) ≥
ac1
2c3

νη, ∀x ∈ K.
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For all x ∈ E′, setting kx = d log(2ψ(x))

− log θ̃
e, it follows from (10.4) that Qx(TK ≤ kx) ≥ 1

2 ,

and hence
Qx(Xkx+nK+mK+n1 ∈ ·) ≥

ac1
4c3

νη.

In particular, for all R > 0, setting kR = d log(2R)

− log θ̃
e+nK+mk+n1, we have, for all x, y ∈ E′

such that ψ(x) + ψ(y) < R,

‖δxPkR − δyPkR‖TV ≤ 1− ac1
4c3

. (10.6)

By [57, Thm 3.9], together with (10.3), the last assertion implies that there exist
constants C > 0 and α̃1 ∈ (0, 1) such that, for all real function h on E′ such that
|||h||| <∞, ∣∣∣∣∣∣∣∣∣P̃nh∣∣∣∣∣∣∣∣∣ ≤ Cα̃n1 |||h|||, (10.7)

where

|||h||| = sup
x,y∈E′

|h(x)− h(y)|
2 + ψ(x) + ψ(y)

.

This implies (2.4). In particular, for all x ∈ E′,

‖δxP̃n − β‖TV −−−−−→
n→+∞

0.

Hence, (2.5) is a consequence of Lebesgue’s dominated convergence theorem. This ends
the proof of Theorem 2.6.

Remark 10.1. As noted in [57, Remark 3.10], it is possible to obtain explicit constants C̃
and α̃1 in (10.7) from the parameters in (10.3) and (10.6) (note that a slight modification
of the proof of Lemma 9.9 entails that one can actually take c̃ = 1/θ1

1−θ1/θ0 ≤
1/θ1

1−θ1/θ2 ). More

precisely, setting α = ac1
4c3

and K = c̃/(1− θ̃) and γ = θ̃, then taking any α0 ∈ (0, α) and

R > 2K
1−γ , and setting b = 2α0

γR+2K ,

αR = (1− α+ α0) ∨ 2 + bγR+ bγK

2 + bR
∈ (0, 1),

and CR = 2/b+1+K+K/(1−γ)
αR

, we obtain that, for all f ∈ L∞(ϕ1/η),∣∣∣P̃nf − β(f)
∣∣∣ ≤ CRαn/kRR ‖f‖L∞(ϕ1/η).

10.3 Proof of Corollary 2.7 and end of the proof of Theorem 2.3

Let |g| ≤ ϕ1 and set h = g/η. Then (2.4) entails that, for all x ∈ E′,∣∣θ−n0 Ex(g(Xn)1Xn∈E′)− η(x)νQSD(g1E′)
∣∣ ≤ C ᾱnϕ1(x).

In what follows, we set ν′ = νQSD(· ∩ E′) and, for all k ≥ 1,

gk(x) = 1x∈E′Ex (1X1 /∈E′g(Xk)1k<τ∂ ) .

Note that, defining E′′ := E \ E′, E′′ ∪ {∂} is an absorbing set. Since K ⊂ E′, we thus
have

gk(x) ≤ 1x∈E′ Ex (1k<TK∧τ∂ϕ1(Xk)) ≤ θk1ϕ1(x).

We also define the measure ν′′ on E′′ by

ν′′ =
∑
`≥1

θ−`0 Eν′ (1X1 /∈E′1X`∈·) =
∑
`≥1

θ−`0 ν′(g`).
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Hence we have for all n ≥ 1 and all x ∈ E′

∣∣θ−n0 Ex(g(Xn)1Xn∈E′′)− η(x)ν′′(g)
∣∣ ≤ n∑

`=1

∣∣θ−n0 Ex(g`(Xn−`))− θ−`0 η(x)ν′(g`)
∣∣

≤
n∑
`=1

θ−`0

∣∣∣θ−(n−`)
0 Ex(g`(Xn−`))− η(x)ν′(g`)

∣∣∣
≤

n∑
`=1

θ−`0 ϕ1(x)Cᾱn−`‖g`‖L∞(ϕ1)

≤ Cϕ1(x)

n∑
`=1

(
θ1

θ0

)`
ᾱn−`.

We thus proved that, setting ν0 = ν′ + ν′′, and up to a change in the constants C and ᾱ,
for all x ∈ E′, ∣∣θ−n0 Ex(g(Xn)1n<τ∂ )− η(x)ν0(g)

∣∣ ≤ C ᾱnϕ1(x).

Now, by Lemma 9.5, for all x ∈′′, |Exg(Xn)1n<τ∂ | ≤ θn1ϕ1(x). This, we have proved that,
up to a change in ᾱ, for all x ∈ E,∣∣θ−n0 Ex(g(Xn))− η(x)ν0(g)

∣∣ ≤ C ᾱnϕ1(x). (10.8)

Integrating with respect to νQSD shows that ν0 = νQSD. Thus, we have proved (2.6).
To conclude, we can now end the proof of Theorem 2.3. Indeed, taking g ≡ 1

immediately entails that the convergence (2.2) is geometric in L∞(ϕ1).

10.4 Proof of Corollary 2.10

If η(x) > 0, it follows from Corollary 2.7 and the fact that νQSD(ϕ2) > 0 that there
exists k ≥ 0 such that δxPkϕ2 > 0. Hence E′ ⊂ {x ∈ E : ∃k ≥ 0, Pkϕ2(x) > 0}.
Conversely, if Pkϕ2(x) > 0, we apply Theorem 2.1 to µ = δxPk

δxPk1E
. Since νQSD(η) > 0,

there exists n ≥ 0 such that 0 < µPnη
µPn1E

= δxPn+kη
δxPn+k1E

=
θn+k
0

δxPn+k1E
η(x). Hence we have

proved that E′ = {x ∈ E : ∃k ≥ 0, Pkϕ2(x) > 0}.
The fact that any µ such that µ(E′) > 0 and µ(ϕ

1/p
1 ) < +∞ for some p < log θ1/ log θ2

belongs to the domain of attraction of νQSD follows from Remark 2.2 and Corollary 2.7.
In the case where ϕ1 is bounded, the domain of atttraction contains all measures µ

such that µ(E′) > 0. If µ(η) = 0, then µPkη = 0 for all k ≥ 0, which means that µPk gives
no mass to E′. Hence the convergence of conditional distributions to νQSD cannot hold
true. The uniqueness of the quasi-stationary distribution follows immediately.

10.5 Proof of Corollary 2.11

Applying (2.5) with µ(η·)/µ(η) instead of µ and recalling that µ(E \E′) = 0, we obtain

sup
f :E′→R, ‖f‖∞≤1

∣∣∣∣θ−n0

µPn(ηf)

µ(η)
− β(f)

∣∣∣∣ −−−−−→n→+∞
0.

This entails the convergence result (2.7).
Assume from now on that η is positive on E. Let ν be a quasi-stationary distribution

on E such that ν(η) < +∞ and denote by θ̄0 ∈ (0, 1] the associated decay parameter, such
that Pν(Xn ∈ ·) = θ̄n0 ν for all n ≥ 0. Then, according to (2.7), we have, for all g ∈ L∞(η),∣∣θ−n0 θ̄n0 ν(g)− ν(η)νQSD(g)

∣∣ −−−−−→
n→+∞

0.
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This entails that θ̄0 = θ0 and that ν is proportional to νQSD. Since they both are
probability measures, we deduce that ν = νQSD, which concludes the proof of the second
claim of Corollary 2.11.

Finally, assuming that η is lower bounded away from 0 on E, we deduce from (2.7)
with g ≡ 1 that, for all probability measure µ on E such that µ(η) < +∞,

θ−n0 µPn1E −−−−−→
n→+∞

µ(η) > 0.

This and (2.7) imply that

sup
g:E→R, ‖g‖L∞(η)≤1

|Eµ(g(Xn) | n < τ∂)− νQSD(g)| −−−−−→
n→+∞

0,

hence (2.8) holds true and the proof of Corollary 2.11 is completed.

11 Proof of the results of Section 3

In this section are proved Lemma 3.1 in Subsection 11.1, Lemma 3.2 in Subsec-
tion 11.2, Proposition 3.3 in Subsection 11.3 and Lemma 3.4 in Subsection 11.4. Then we
prove Theorem 3.5 in Subsection 11.5, Lemma 3.6 in Subsection 11.6 and Proposition 3.9
in Subsection 11.7.

11.1 Proof of Lemma 3.1

The function ϕ2 defined in the statement satisfies, for all x ∈ E, ϕ2(x) ∈ [0, 1] and, for

all x ∈ K, ϕ2(x) ≥ θ−1
2 −1

θ−`2 −1
> 0. Moreover, we have, for all x ∈ E,

P1ϕ2(x) = θ2ϕ2(x)− θ−1
2 − 1

θ−`2 − 1

(
θ21K(x)− θ−`+1

2 P`1K(x)
)
≥ θ2ϕ2(x)

since ` is chosen such that θ−`2 P`1K(x) ≥ 1K(x) for all x ∈ E.
Our assumption also implies that there exists n0 such that, for all n ≥ n0,

θ−n2 infx∈K Px(Xn ∈ K) ≥ 1. Choosing n4(x) = n0 for all x ∈ K entails (E4), which
concludes the proof of Lemma 3.1.

11.2 Proof of Lemma 3.2

Assume that

Ex

(
θ−TK∧τ∂1

)
< +∞ ∀x ∈ E and sup

y∈K
Ey

(
EX1

(
θ−TK∧τ∂1

)
11<τ∂

)
< +∞

and set ϕ1(x) = Ex

(
θ
−TK∧dτ∂e
1

)
for all x ∈ E. Then, for all x ∈ E \K, using Markov’s

property at time 1,

P1ϕ1(x) = Ex

(
EX1

(
θ
−TK∧dτ∂e
1

)
11<τ∂

)
≤ Ex

(
θ
−(TK∧dτ∂e−1)
1

)
= θ1ϕ1(x).

Moreover, for all x ∈ K, P1ϕ1(x) ≤ θ−1
1 supy∈K Ey

(
EX1

(
θ−TK∧τ∂1

)
11<τ∂

)
, and hence

the first part of the lemma is proved.
Assume now that there exist two constants C > 0, θ1 > 0 and a function ϕ1 : E →

[1,+∞) such that supK ϕ1 < +∞ and P1ϕ1 ≤ θ1ϕ1 + C1K . Then, for all n ≥ 1 and all
x ∈ E \K,

Ex (ϕ1(Xn)1n<TK∧τ∂ ) ≤ θn1ϕ1(x).
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Thus we deduce that, for all x ∈ E,

Px (n < TK ∧ τ∂) ≤ θn1ϕ1(x).

In particular, for all θ > θ1 and all x ∈ E,

Ex
(
θ−TK∧τ∂

)
≤ 1

θ − θ1
ϕ1(x) < +∞.

We also deduce that

sup
x∈K

Ex
(
EX1

(
θ−TK∧τ∂

))
≤ 1

θ − θ1
sup
x∈K

P1ϕ1(x) < +∞.

This concludes the proof of Lemma 3.2.

11.3 Proof of Proposition 3.3

Condition (E4) implies that there exists x0 ∈ E such that Px0
(Xn0

∈ K) > 0. We then
deduce from our assumption (3.2) that Condition (E1) is satisfied with the probability
measure ν on K defined by

ν(·) =
Px0(Xn0 ∈ · ∩K)

Px0
(Xn0

∈ K)

and the constants c1 = Px0
(Xn0

∈ K)/C > 0 and n1 = m0.
Let us now check Condition (E3) and the last part of Proposition 3.3. We define

T
(n0)
K = inf{n ≥ n0 s.t. Xn ∈ K}. Lemma 9.5 (which only makes use of Condition (E2))

implies that, for all x ∈ E, Px(n < TK ∧ τ∂) ≤ θn1ϕ1(x). Hence, for all x ∈ E and all
n ≥ n0,

Px(n < τ∂ ∧ T (n0)
K ) = Ex

(
1n0<τ∂PXn0

(n− n0 < τ∂ ∧ TK)
)

≤ θn−n0
1 Ex (1n0<τ∂ϕ1(Xn0))

≤ (θ1 + c2)n0θn−n0
1 ϕ1(x).

Since ϕ1 ≥ 1, we also have Px(n < τ∂) ≤ Cθn1ϕ1(x) for all n < n0. Hence we proved that,
for all x ∈ E and n ≥ 0,

Px(n < τ∂ ∧ T (n0)
K ) ≤ Cθn1ϕ1(x). (11.1)

Therefore, for some constant C > 0,

Px(n < τ∂) ≤ Px(n < τ∂ ∧ T (n0)
K ) + Px(T

(n0)
K ≤ n < τ∂)

≤ C ϕ1(x)θn1 +

n∑
k=n0

Ex

(
1
T

(n0)

K =k
PXk(n− k < τ∂)

)
. (11.2)

Now, for all x ∈ E, all y ∈ K and all k ∈ {n0, . . . , n}, (3.2) and (11.1) entail

Ex

(
1
T

(n0)

K =k
PXk(n− k < τ∂)

)
≤ Ex

(
1
k−n0<T

(n0)

K ∧τ∂
EXk−n0

(
1Xn0∈K PXn0

(n− k < τ∂)
))

≤ Ex
(
1
k−n0<T

(n0)

K ∧τ∂
C Py(n+m0 − k < τ∂)

)
≤ θk−n0

1 ϕ1(x)C Py(n− k < τ∂),

where the constant C may change from line to line. Using Lemma 9.8, which only makes
use of (E1), (E2) and (E4), there exists n6 ∈ Z+ such that, for all y ∈ K and for all
n, k ∈ Z+ such that n− k ≥ n6,

Py(n < τ∂) ≥ Py(Xn−k ∈ K) inf
z∈K

Pz(k < τ∂)

≥ Py(n− k < τ∂) inf
T≥n6

inf
z∈K

Pz(XT ∈ K | T < τ∂) inf
z∈K

Pkϕ2(z)

≥ C ′′θk2 Py(n− k < τ∂),
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where C ′′ > 0. Hence,

Ex

(
1
T

(n0)

K =k
PXk(n− k < τ∂)

)
≤ ϕ1(x)

(
θ1

θ2

)k
θ−n0

1 C

C ′′
Py(n < τ∂).

Now, we deduce from (11.2) and (11.1) that, for all x ∈ E and all y ∈ K,

Px(n < τ∂) ≤ C ϕ1(x)

[
θn1 + Py(n < τ∂)

n−n6∑
k=1

(
θ1

θ2

)k]
+ Px(T

(n0)
K ∧ τ∂ ≥ n− n6)

≤ C ϕ1(x)
[
θn1 + Py(n < τ∂) + θn−n6

1

]
≤ C ϕ1(x)Py(n < τ∂)

since Py(n < τ∂) ≥ θn2 infK ϕ2. This implies (E3) since supK ϕ1 <∞.

11.4 Proof of Lemma 3.4

Combining Theorem 2.3 and the fact that infK η > 0, we deduce that

lim inf
n→+∞

inf
x∈K

θ−n0 Px(n < τ∂) > 0.

Let θ′2 < θ0. Using Lemma 9.8,

lim
n→+∞

(θ′2)−n inf
x∈K

Px(Xn ∈ K) = +∞.

Hence the result follows from Lemma 3.1.

11.5 Proof of Theorem 3.5

We assume that Assumption (F) is satisfied. In Subsection 11.5.1, we prove that
Assumption (E) holds true for the sub-Markovian semigroup (Pn)n≥0 of the absorbed
Markov process (Xnt2 , n ∈ Z+). In Subsection 11.5.2, we prove the existence of a quasi-
stationary distribution for (Xt)t∈I with the claimed properties and in Subsection 11.5.3,
we prove the convergence of eλ0tPx(t < τ∂) to η(x) for t ∈ I, t→ +∞.

11.5.1 Proof of (E)

We fix θ1 ∈ (γt21 , γ
t2
2 ) and set θ2 = γt22 . Let us first remark that the last line of Condi-

tion (F2) implies that γ−t2 Pν(Xt ∈ L)→ +∞ when t→ +∞. Hence, using Condition (F1),
we deduce that

γ−t2 inf
x∈L

Px(Xt ∈ L) −−−−→
t→+∞

+∞. (11.3)

We consider a number n0 ∈ N∗ large enough so that γ−t2 infx∈LPx(Xt ∈ L) ≥ 1 ∨ c2
θ1−γ

t2
1

,

for all t ≥ (n0 − 1)t2 and we set

ϕ1 = ψ1 and ϕ2 =
γ−t22 − 1

γ−n0t2
2 − 1

n0−1∑
k=0

γ−kt22 Pk1L.

Step 1. Proof of (E2), (E4) and (E1) for (Pn)n∈Z+
.

For all x ∈ E \ L, it follows from (F0) and the second line of (F2) that

P1ψ1(x) = Ex (ψ1(Xt2)1t2<τL∧τ∂ ) + Ex

(
1τL≤t2∧τ∂EXτL (1t2−s<τ∂ψ1(Xt2−s)) s=τL

)
≤ γt21 ψ1(x) + Px(τL ≤ t2)c2.
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We define
K =

{
y ∈ E, Py(τL ≤ t2)/ψ1(y) ≥ (θ1 − γt21 )/c2

}
.

The second line of (F2) at time t = 0 and the fact that θ1 − γt21 < 1 imply that L ⊂ K.
Moreover, we have, for all x /∈ K,

P1ψ1(x) ≤ θ1ψ1(x). (11.4)

Hence, for all x ∈ E,
P1ψ1(x) ≤ θ1ψ1(x) + c21K(x). (11.5)

Note that it immediately follows from the definition of K that supx∈K ψ1(x) < ∞. In
particular, the first and third lines of (E2) are proved.

Moreover, using the Markov property provided by (F0) and the definition of n0, we
deduce that, for all t ≥ n0t2,

inf
x∈K

γ−t2 Px(Xt ∈ L) ≥ inf
x∈K

Px(τL ≤ t2) inf
s∈[0,t2]

inf
y∈L

γ−t2 Py (Xt−s ∈ L) ≥ 1, (11.6)

where we used the fact that, for all x ∈ K, Px(τL ≤ t2) ≥ θ1−γ
t2
1

c2
. In particular,

P1ϕ2 = γt22 ϕ2 +
γ−t22 − 1

γ−n0t2
2 − 1

(
γ
−(n0−1)t2
2 Pn0

1L − γt22 1L

)
≥ γt22 ϕ2 = θ2ϕ2.

In addition, for all x ∈ K,

ϕ2(x) ≥ γ−t22 − 1

γ−n0t2
2 − 1

γ
−(n0−1)t2
2 Px(Xn0t2 ∈ L) ≥ 1− γt22

γ−n0t2
2 − 1

.

Hence (E2) is proved. Moreover, (11.6) also entails that (E4) holds true.
Fix n1 > n0 such that n1t2 − t1 ≥ n0t2. Condition (F1) and then (11.6) imply that, for

all x ∈ K,

Px(Xn1t2 ∈ · ∩K) ≥ Px(Xn1t2−t1 ∈ L)c1ν(· ∩ L) ≥ γn1t2−t1
2 c1ν(· ∩ L).

Extending ν as a probability measure on K, we obtain (E1).

Step 3. Estimation of the survival probability.
Our goal here is to prove a version of Lemma 9.9, where (9.6) is replaced by

Px(nt2 < τ∂) ≤ C ϕ1(x)

1− θ1/θ2
inf
y∈L

Py(nt2 < τ∂), ∀x ∈ E,∀n ∈ N. (11.7)

Since the proof is similar, we only highlight the main differences. First, Lemma 9.8 only
uses (E1), (E2) and (E4), so that there exist n6 ≥ 1 and ζ1 > 0 such that, for all x ∈ K
and all n ≥ n6,

δxPn1K ≥ ζ1δxPn1E .

Hence, for all x ∈ K and all N ≥ n0 + n6, using (11.6),

δxPN1L ≥ γn0t2
2 δxPN−n0

1K ≥ ζ1γn0t2
2 δxPN−n0

1E ≥ ζ1γn0t2
2 δxPN1E .

Hence,
inf

N≥n0+n6

inf
x∈K

Px(XNt2 ∈ L | Nt2 < τ∂) > 0. (11.8)

Third, it follows from (F2) that, for all x ∈ E \ L,

Px(nt2 < τL ∧ τ∂) ≤ γnt21 ψ1(x) = θn1ϕ1(x). (11.9)
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and from (E2) that, for all x ∈ E,

Px(nt2 < τ∂) ≥ γnt22 ϕ2(x). (11.10)

Therefore, following the same lines as in (9.9) (replacingK with L), we deduce from (11.9)
and (11.10) that, for all x ∈ E

Px(nt2 < τ∂) ≤ θn1ϕ1(x) + c3

∫ nt2

0

inf
y∈L

Py ((n− ds/t2e) t2 < τ∂) Px(τL ∧ τ∂ ∈ ds)

≤ C inf
z∈L

Pz(nt2 < τ∂)ϕ1(x) +
c3γ
−t2
2

c
inf
z∈L

Pz(nt2 < τ∂)Ex
(
γ−τL∧τ∂2

)
,

which entails (11.7), where we used in the second inequality the fact that

Px(nt2 < τ∂) ≥ cγkt22 inf
y∈L

Py ((n− k)t2 < τ∂) , ∀x ∈ L,

which is deduced from (11.8) exactly as in Lemma 9.9.

Step 4. Proof of (E3).
Using (11.7) and the fact that supx∈K ϕ1(x) < +∞, we deduce that there exists a

constant C > 0 such that, for all n ∈ N,

sup
x∈K

Px(nt2 < τ∂) ≤ C inf
y∈L

Py(nt2 < τ∂).

Moreover, using the Markov property at time n0t2 and (11.6), we have that, for all t ≥ 0,

inf
x∈K

Px(t < τ∂) ≥ inf
x∈K

Px(t+ n0t2 < τ∂) ≥ γn0t2
2 inf

y∈L
Py(t < τ∂).

These inequalities imply (E3).

11.5.2 Existence of a quasi-stationary distribution for (Xt)t∈I

Subsection 11.5.1 and Theorem 2.1 imply that there exists a probability measure νQSD
on E such that

PνQSD (Xnt2 ∈ · | nt2 < τ∂) = νQSD, ∀n ∈ Z+,

such that νQSD(ϕ1) <∞ and νQSD(ϕ2) > 0, which is equivalent to νQSD(L) > 0 because
of the quasi-stationarity and the form of ϕ2. For all t ∈ [0, t2], let us define the probability
measure νt on E by

νt = PνQSD (Xt ∈ · | t < τ∂).

For all n ∈ Z+, we have, using the Markov property and the fact that νQSD is a quasi-
stationary distribution for (Xnt2)n≥0,

Pνt(Xnt2 ∈ · | nt2 < τ∂) = EνQSD (PXnt2 (Xt ∈ · | t < τ∂) | nt2 < τ∂) = PνQSD (Xt ∈ · | t < τ∂),

hence νt is a quasi-stationary distribution for (Pn)n≥0. Moreover, the third line of (F2)
and the quasi-stationarity of νt imply that νt(L) is positive.

Fix ρ1 ∈ (θ
1/t2
1 , γ2). It follows from (11.9) that there exists a constant C > 0 such that,

for all x ∈ E,

ϕ′1(x) := Ex
(
ρ−τL∧τ∂1

)
≤ C ϕ1(x).
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We also have that, for all x ∈ E \ L,

Ex (1t2<τL∧τ∂ϕ
′
1(Xt2)) = ρt21 Ex

(
1t2<τL∧τ∂ρ

−τL∧τ∂
1

)
≤ ρt21 ϕ′1(x) (11.11)

and the inequality is trivial for x ∈ L. In addition, for all t ∈ [0, t2] and all x ∈ L,
Ex (ϕ′1(Xt)1t<τ∂ ) ≤ CEx (ψ1(Xt)1t<τ∂ ) ≤ Cc2. Hence Condition (F) is satisfied replacing
γ1 with ρ1 and ψ1 with ϕ′1. Therefore, we can apply Step 1 to prove that (E) is satisfied
with ϕ′1 and ϕ′2 where

ϕ′2 =
γ−t22 − 1

γ
−n′0t2
2 − 1

n′0−1∑
k=0

γ−kt22 Pk1L

for an integer n′0 that can be chosen larger than n0. We also deduce as in the beginning
of Step 2 that νQSD is the unique quasi-stationary distribution of (Pn)n≥0 such that
νQSD(ϕ′1) <∞ and νQSD(L) > 0.

Moreover, by Markov’s property at time t we have for all x ∈ E and t ≥ 0,

ϕ′1(x) = Ex
[
1t<τL∧τ∂ρ1

−τL∧τ∂
]

+ Ex
[
1t≥τL∧τ∂ρ1

−τL∧τ∂
]

≤ ρ1
−tEx [1t<τL∧τ∂ϕ

′
1(Xt)] + ρ1

−tPx(t ≥ τL ∧ τ∂)

≤ ρ1
−t (Ex[1t<τ∂ϕ

′
1(Xt)] + 1) (11.12)

so that, for all t ∈ [0, t2],

νt(ϕ
′
1) ≤ ρ1

−(t2−t)
[
EνQSD (1t2<τ∂ϕ

′
1(Xt2)) /PνQSD (t < τ∂) + 1

]
≤ ρ1

−(t2−t)
[
EνQSD (1t2<τ∂ϕ

′
1(Xt2)) /PνQSD (t2 < τ∂) + 1

]
= ρ1

−(t2−t) (νQSD(ϕ′1) + 1) <∞.

Since we observed that νt(L) > 0, we deduce that νt = νQSD for all t ∈ I ∩ [0, t2].

Using the Markov property, we deduce that νt = νQSD for all t ∈ I and hence that
νQSD is a quasi-stationary distribution for (Xt)t∈I . Since any quasi-stationary distribution
for (Xt)t∈I is also a quasi-stationary distribution for (Pn)n≥0, we deduce that νQSD is
the unique quasi-stationary distribution for (Xt)t∈I such that νQSD(ϕ1) < +∞ and
νQSD(L) > 0.

Let t ≥ t2 be fixed and define k ∈ N such that 0 ≤ t− kt2 < t2. It follows from the fact
that P1ϕ

′
1 ≤ C̄ϕ′1 and from (11.12) that

Ex[1t<τ∂ϕ
′
1(Xt)] ≤ C̄kEx [1t−kt2<τ∂ϕ

′
1(Xt−kt2)]

≤ C̄kρ1
−(k+1)t2+tEx [1t2<τ∂ϕ

′
1(Xt2) + 1t−kt2<τ∂ ]

≤ CC̄kρ1
−(k+1)t2+tEx [1t2<τ∂ϕ1(Xt2) + 1]

≤ CC̄kρ1
−(k+1)t2+t(θ1 + c2 + 1)ϕ1(x). (11.13)

Note that a similar inequality may not hold true with ϕ′1 replaced by ϕ1 under our
assumptions. This explains why we need to introduce ϕ′1.

Now, let µ be a probability measure such that µ(ϕ1) <∞ and µ(ϕ2) > 0. Then, for all
t ≥ n0t2, it follows from (11.6) that, for all k ≥ 0,

Pµ(Xt+kt2 ∈ L) ≥ Pµ(Xkt2 ∈ L) inf
y∈L

Py(Xt ∈ L) ≥ γt2Pµ(Xkt2 ∈ L).
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Therefore, for all t ∈ [n0t2, (n0 + 1)t2],

Eµ(ϕ2(Xt)) =
γ−t22 − 1

γ−n0t2
2 − 1

n0−1∑
k=0

γkt22 Pµ(Xt+kt2 ∈ L)

≥ γ−t22 − 1

γ−n0t2
2 − 1

γ
(n0+1)t2
2

n0−1∑
k=0

γkt22 Pµ(Xkt2 ∈ L) = γ
(n0+1)t2
2 µ(ϕ2).

This and inequality (11.13) imply that (using that n′0 ≥ n0), for all t ∈ [n0t2, (n0 + 1)t2]

and for a constant C > 0 that may change from line to line,

µt(ϕ
′
1)

µt(ϕ′2)
≤ Cµt(ϕ

′
1)

µt(ϕ2)
≤ Cµ(ϕ1)

µ(ϕ2)
,

where µt := Pµ(Xt ∈ · | t < τ∂). It then follows the fact that (E) is satisfied by (Pn, n ≥ 0)

with the functions ϕ′1 and ϕ′2 that there exist constants α < 1 and C > 0 such that, for all
t ∈ [n0t2, (n0 + 1)t2], ∥∥∥∥ µtPn

µtPn1E
− νQSD

∥∥∥∥
TV

≤ Cαn µ(ϕ1)

µ(ϕ2)
,

Using Markov property, we deduce that

‖Pµ(Xnt2+t ∈ · | nt2 + t < τ∂)− νQSD‖TV ≤ Cα
n µ(ϕ1)

µ(ϕ2)
.

This ends the proof of (3.4).

11.5.3 Convergence to η

To finish the proof of Theorem 3.5, it remains to prove that the convergence (3.5) is
exponential in L∞(ψ

1/p
1 ) and that Ptη = e−λ0tη. Because of Remark 2.2, it is enough

to prove this for p = 1. Since we proved that (E) holds true for the semigroup (Pn)n≥0

and for the functions ϕ′1 and ϕ′2, it follows from Theorem 2.3 that there exist constants
λ0 ∈ [0, log(1/γ2)], α ∈ (0, 1) and C > 0 such that, for all y ∈ E,∣∣eλ0nt2Py(nt2 < τ∂)− η(y)

∣∣ ≤ Cαnϕ′1(y).

For any t ∈ [t2, 2t2], integrating this inequality with respect to Px(Xt ∈ dy; t < τ∂), we
deduce from (11.13) that∣∣eλ0nt2Px(nt2 + t < τ∂)− Ex(η(Xt)1t<τ∂ )

∣∣ ≤ Cαnϕ1(x)

for a constant C independent of t ∈ [t2, 2t2]. Setting ηt(x) = Ex
[
eλ0tη(Xt)1t<τ∂

]
, we

obtain for all t ∈ [t2, 2t2]∣∣∣eλ0(nt2+t)Px(nt2 + t < τ∂)− ηt(x)
∣∣∣ ≤ Ce2λ0t2αnϕ1(x).

Proceeding as in (10.2), we deduce, letting n→ +∞, that P1ηt = e−λ0t2ηt. It then follows
from Corollary 2.7 that ηt(x) = η(x)νQSD(ηt) for all x ∈ E. Since we proved above
that νQSD is a quasi-stationary distribution with decay parameter λ0, by definition of ηt,
νQSD(ηt) = 1 and thus Ptη = e−λ0tη. This ends the proof of Theorem 3.5.
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11.6 Proof of Lemma 3.6

Proceeding as in (11.11) and (11.12), we have that, for all x ∈ E and t ∈ I,

Ex (ψ1(Xt2)1t2<τL∧τ∂ ) ≤ γt21 ψ1(x) and ψ1(x) ≤ γ−t1 (Ex [1t<τ∂ψ1(Xt)] + 1) .

Therefore, for all t ≤ t2 and all x ∈ L,

Ex [1t<τ∂ψ1(Xt)] ≤ γ−(t2−t)
1 Ex {[EXt (1t2−t<τ∂ψ1(Xt2−t)) + 1]1t<τ∂}

≤ γ−(t2−t)
1 [Ex (1t2<τ∂ψ1(Xt2)) + 1]

≤ c2 := γ−t21

[
sup
y∈L

Ey (1t2<τ∂ψ1(Xt2)) + 1

]
.

This concludes the proof of Lemma 3.6.

11.7 Proof of Proposition 3.9

Let us first assume that (E) is satisfied with ϕ1 bounded and (3.8) and prove that (3.7)
holds true. Theorem 2.1 and Remark 2.2 entail that, for all n ≥ n′4,∥∥∥∥ µPn

µPn1E
− νQSD

∥∥∥∥
TV

≤ αn−n
′
4
‖ϕ1‖∞

infx∈K ϕ2(x)

µPn′41E

µPn′41K

≤ αn−n
′
4

‖ϕ1‖∞
c infx∈K ϕ2(x)

.

Hence the convergence is uniform.
Let us now assume that (3.7) holds true. It was proved in [20] that this is equivalent

to the following condition.

Condition (A). There exist positive constants c1, c2, a positive integer k0 and a probabil-
ity measure ν on E such that

(A1) (Conditional Dobrushin coefficient) For all x ∈ E,

Px(Xk0 ∈ · | k0 < τ∂) ≥ c1ν.

(A2) (Global Harnack inequality) We have

sup
k∈Z+

supy∈E Py(k < τ∂)

Pν(k < τ∂)
≤ c2.

Several consequences of Condition (A) were deduced in [20], among which the fact
that the convergence (2.2) in Theorem 2.3 holds true with respect to the L∞ norm on
E with η(x) > 0 for all x ∈ E. In particular, η is bounded, P1η = θ0η and there exists a
constant C ′ such that, for all n ≥ 0,

sup
x∈E

Px(n < τ∂) ≤ C ′θn0 . (11.14)

We fix ε ∈ (0, 1/(4C ′)). Since η is positive on E, there exists δ > 0 such that the set
K := {x ∈ E : η(x) ≥ δ} satisfies νQSD(K) ≥ 1− ε and ν(K) > 0. Setting ϕ2 = η/‖η‖∞,
the part of (E2) dealing about ϕ2 is satisfied with θ2 = θ0. Since the convergence in
Theorem 2.3 holds true with respect to the L∞ norm, we deduce from the choice of K
that there exists k ≥ k0 such that

c := inf
x∈K

Px(k0 < τ∂) ≥ inf
x∈K

Px(k < τ∂) > 0.
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It follows from (A1) and (A2) that, for all n ≥ 0,

inf
x∈K

Px(n < τ∂) ≥ inf
x∈K

Px(n+ k0 < τ∂) ≥ c1cPν(n < τ∂) ≥ c1c

c2
sup
y∈E

Py(n < τ∂).

This implies (E3) and that infx∈K Px(k0 < τ∂) > 0. Hence, (E1) follows from (A1) with
the probability measure ν(·∩K)

ν(K) . Moreover, for any n large enough to have Cαn ≤ 1/2

where the constants C and α are those of (3.7), we have Px(Xn ∈ K | t < τ∂) ≥
νQSD(K) − Cαn ≥ 1/2 − ε > 0 and hence (E4) is satisfied. The last computation also
entails (3.8) with n′4 = n.

It remains to construct a function ϕ1 satisfying (E2) with θ1 < θ0. For all x ∈ E,

Px(Xn ∈ E \K | n < τ∂) ≤ νQSD(E \K) + Cαn ≤ ε+ Cαn.

Using (11.14), we deduce that

Px(Xn ∈ E \K) ≤ C ′(ε+ Cαn)θn0 ,

so that there exists n0 large enough such that

Px(n0 < TK ∧ τ∂) ≤ 1

3
θn0

0 =

(
θ0

31/n0

)n0

.

From this follows that, for all k ∈ N and all x ∈ E,

Px(kn0 < TK ∧ τ∂) ≤
(

θ0

31/n0

)kn0

.

In particular, for θ1 := θ0/2
1/n0 ,

ϕ1(x) := Ex

(
θ
−TK∧dτ∂e
1

)
, ∀x ∈ E,

is a bounded function on E and Lemma 3.2 implies that, for all x ∈ E,

P1ϕ1(x) ≤ θ1ϕ1(x) + ‖ϕ1‖∞1K(x).

Since θ1 < θ0, (E2) is proved.

12 Proof of the results of Section 4.1

In order to prove Theorem 4.1, we check Condition (F). The goal of Subsection 12.1
is to give the construction of the process X and to check (F0) with L = Kk for any k ≥ 1.
In Subsection 12.2, we explain how (F1) and (F3) can be deduced from general Harnack
inequalities. Finally, Subsection 12.3 completes the proof of Theorem 4.1. The proof of
Corollary 4.5 is then given in Subsection 12.4.

12.1 Construction of the diffusion process X and Markov property

The goal of this section is to construct a weak solution X to the SDE (4.1) with
absorption out of D, and prove that it is Markov and satisfies a strong Markov property
at appropriate stopping times, enough to entail Condition (F0) for L = Kk for any k ≥ 1.
We introduce the natural path space for the process X as

D :=

{
w : R+ → D ∪ {∂} : ∀k ≥ 1, w is continuous on [0, τk(w)]

and w(t) = ∂, ∀t ≥ sup
k≥1

τk(w)

}
,
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where τk(w) := inf{t ≥ 0 : wt ∈ D \Kk}. Note that D contains functions which are not
càdlàg since they may not have a left limit at τ∂− and, indeed, it is easy to construct
examples where X is not càdlàg P-a.s.2 Note also that this definition means that we are
looking for a process X such that

τ∂ := sup
k≥1

τD\Kk ,

which is the natural definition of τ∂ when the left limit of X at time τ∂ does not exist.

We endow the path space D with its natural filtration

Ft = σ(ws, s ≤ t) =
∨

n≥1,0≤t1<t2<...<tn≤t

σ(wt1 , wt2 , . . . , wtn)

and we follow the usual method which consists in constructing for all x ∈ D a probability
measure Px on D and a stochastic process (Bt, t ≥ 0) on D × C(R+,R

r), such that
B is a standard r-dimensional Brownian motion under Px ⊗Wr, where Wr is the r-
dimensional Wiener measure and such that w0 = x Px ⊗Wr-almost surely and the
canonical process (wt, t ≥ 0) solves the SDE (4.1) for this Brownian motion B on the
time interval [0, supk τk(w)) 3.

For this construction, we use the fact that b and σ can be extended out of Kk to Rd as
globally Hölder and bounded functions bk and σk and such that σk is uniformly elliptic on
Rd. Hence (see e.g. [66, Rk. 5.4.30]) the martingale problem is well-posed for the SDE

dXk
t = bk(Xk

t )dt+ σk(Xk
t )dBt.

Let us denote by Pkx the solution to this martingale problem for the initial condition
x ∈ Rd. This is a probability measure on C := C(R+,R

d), equipped with its canonical
filtration (Gt)t≥0.

For all k ≥ 1, we define τ ′k(w) = inf{t ≥ 0, wt 6∈ int(Kk)}, where int(Kk) is the interior
of Kk. Since the paths w ∈ D or C are continuous at time τ ′k and Rd \ int(Kk) is closed, it
is standard to prove that τ ′k is a stopping time for the canonical filtration (Ft)t≥0 on D
and for the canonical filtration (Gt)t≥0 on C. We define as usual the stopped σ-fields Fτ ′k
and Gτ ′k , and we define for all x ∈ int(Kk) the restriction of Px to Fτ ′k as the restriction of

Pkx to Gτ ′k , where we can identify the events of the two filtrations since they both concern
continuous parts of the paths. This construction is consistent for k and k + 1 (meaning
that if x ∈ Kk, they give the same probability to events of Fτk ) by uniqueness of the
solutions Pkx and Pk+1

x to the above martingale problems. Hence there exists a unique
extension Px of the above measures to

∨
k≥1 Fτ ′k . Note that, because of the specific

structure of the path space D, we have∨
k≥1

Fτ ′k = F∞. (12.1)

2For example, one may consider D the open disc of radius 1 centered at 0 in R2, σ = Id and b(x) =
(−x2β(|x|), x1β(|x|)) where x = (x1, x2) ∈ D. Decomposing the process in polar coordinates (Rt, θt) :=

(|Xt|, arctan(X(1)
t /X

(2)
t )), the radius Rt is a 2-dimensional Bessel process, and Xt is sent to ∂ when Rt hits 1

(in a.s. finite time). The angle θt is solution to dθt = R−1
t dWt − β(Rt)dt before τ∂ , for some Brownian motion

W . Hence, if β(r) converges sufficiently fast to +∞ when r → 1, θt a.s. converges to −∞ when t→ τ∂−, so
X does not admit a left limit at time τ∂ .

3Since σ(x) is non-degenerate for all x ∈ D, the space C(R+,Rr) equipped with the Wiener measure Wr is
only used to construct the Brownian path Bt after time supk τk(w) and could be omitted for our purpose since
we only need to construct the process B up to time supk τk(w).
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To check this, it suffices to observe that, for all t ≥ 0 and all measurable A ⊂ D ∪ {∂},

{wt ∈ A} = {t < τ∂ , wt ∈ A ∩D} ∪ {τ∂ ≤ t, ∂ ∈ A}

=

⋃
k≥1

{t < τ ′k, wt ∈ A ∩D}

 ∪
⋂
k≥1

{τ ′k ≤ t, ∂ ∈ A}

 , (12.2)

hence {wt ∈ A} ∈
∨
k≥1 Fτ ′k , and, proceeding similarly, the same property holds for

events of the form {wt1 ∈ A1, . . . , wtn ∈ An}.
We recall (see [66, Section 5.4]) that (Pkx)x∈Rd forms a strong Markov family on the

canonical space C. Our goal is now to prove that the family of probability measures
(Px)x∈D∪{∂}, where P∂ is defined as the Dirac measure on the constant path equal to ∂,
forms a Markov kernel of probability measures, for which the strong Markov property
applies at well-chosen stopping times.

We first need to prove that (Px)x∈D defines a kernel of probability measures, i.e. that
x 7→ Px(Γ) is measurable for all events Γ of F∞. We prove it for an event of the form
{wt ∈ A}, the extension to events of the form {wt1 ∈ A1, . . . , wtn ∈ An}, and hence to all
events of F∞, being easy. This follows from (12.2):

Px(wt ∈ A) = lim
k→+∞

Px(t < τ ′k, wt ∈ A ∩D) + 1∂∈A lim
k→+∞

Px(τ ′k ≤ t)

= lim
k→+∞

Pk+1
x (t < τ ′k, wt ∈ A ∩D) + 1∂∈A lim

k→+∞
Pk+1
x (τ ′k ≤ t).

Since all the probabilities in the right-hand side are measurable functions of x, so is
x 7→ Px(wt ∈ A).

Now, let us prove that (Xt, t ≥ 0) is Markov. It is well-known that this is implied by
the following property: for all n ≥ 1 and 0 ≤ t1 ≤ . . . ≤ tn+1 and A1, . . . , An+1 measurable
subsets of D ∪ {∂},

Px(wt1 ∈ A1, . . . , wtn+1
∈ An+1) = Ex

[
1wt1∈A1,...,wtn∈AnPwtn (wtn+1−tn ∈ An+1)

]
.

We prove this property only for n = 1. It is easy to extend the proof to all values of n ≥ 1.
We have

Px(wt1 ∈ A1, wt2 ∈ A2) = Px(wt1 ∈ A1, wt2 ∈ A2, τ∂ > t2)

+ Px(wt1 ∈ A1, t1 < τ∂ ≤ t2)1∂∈A2
+ Px(τ∂ ≤ t1)1∂∈A1∩A2

.

Now, using that (Pkx)x∈Rd is a Markov family for all k ≥ 1,

Px(wt1 ∈ A1, wt2 ∈ A2, τ∂ > t2)

= lim
k→∞

Px(wt1 ∈ A1, wt2 ∈ A2, τk > t2)

= lim
k→∞

Pkx(wt1 ∈ A1, wt2 ∈ A2, τk > t2)

= lim
k→∞

Ekx

[
1wt1∈A1,t1<τkP

k
wt1

(wt2−t1 ∈ A2, τk > t2 − t1)
]

= lim
k→∞

Ex
[
1wt1∈A1,t1<τkPwt1 (wt2−t1 ∈ A2, τk > t2 − t1)

]
= Ex

[
1wt1∈A1,t1<τ∂Pwt1 (wt2−t1 ∈ A2, τ∂ > t2 − t1)

]
and similarly

Px(wt1 ∈ A1, t1 < τ∂ ≤ t2)1∂∈A2
= Ex

[
1wt1∈A1,t1<τ∂Pwt1 (τ∂ ≤ t2 − t1)

]
1∂∈A2

= Ex
[
1wt1∈A1,t1<τ∂Pwt1 (τ∂ ≤ t2 − t1, wt2−t1 ∈ A2)

]
.
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Since

Px(τ∂ ≤ t1)1∂∈A1∩A2
= Ex

[
1wt1∈A1,τ∂≤t1Pwt1 (wt2−t1 ∈ A2)

]
,

we have proved that Px(wt1 ∈ A1, wt2 ∈ A2) = Ex
[
1wt1∈A1

Pwt1 (wt2−t1 ∈ A2)
]
. This ends

the proof of the Markov property.
To conclude this subsection, let us prove that the strong Markov property holds for all

stopping times τF where F ⊂ D is closed in D. Note that τF is indeed a stopping time for
the filtration Ft since τF = supk τF ∧ τ ′k = supk τ(F∪Dc)∪int(Kk)c , where the complement is
understood in Rd, (F ∪Dc)∪ int(Kk)c is a closed subset of Rd and all w ∈ D is continuous
at time τ(F∪Dc)∪int(Kk)c . Let x ∈ D, t1, t2, s ≥ 0 and A,B ⊂ D be measurable sets. We
proceed as above: first, observe that

{wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B}

=
⋃
`≥1

{wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B, wr ∈ K` ∀r ∈ [0, τF + s]}

=
⋃
`≥1

{wt1 ∈ A, t1 < τF ∧ τ ′` ≤ t2, wτF∧τ ′`+s ∈ B, τ
′
` > τF + s}.

Since τF ∧ τ ′` is a Gt-stopping time on C(R+,R
d) and using the strong Markov property

under P`, we deduce that

Px(wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B)

= lim
`→+∞

P`x(wt1 ∈ A, t1 < τF ∧ τ ′` ≤ t2, wτF∧τ ′`+s ∈ B, τ
′
` > τF + s)

= lim
`→+∞

E`x

[
1wt1∈A, t1<τF∧τ

′
`≤t2P

`
wτF∧τ′`

(ws ∈ B, s < τ ′`)
]

= lim
`→+∞

E`x

[
1wt1∈A, t1<τF≤τ

′
`∧t2P

`
wτF

(ws ∈ B, s < τ ′`)
]

= Ex

[
1wt1∈A, t1<τF≤τ∂∧t2PwτF (ws ∈ B, s < τ∂)

]
.

Similarly,

Px(wt1 ∈ A, t1 < τF ≤ t2, wτF+s = ∂)

= lim
`→+∞

P`x(wt1 ∈ A, t1 < τF ≤ t2 ∧ τ ′`, τ ′` ≤ τF + s)

= Ex

[
1wt1∈A, t1<τF≤t2∧τ∂PwτF (ws = ∂)

]
and thus

Px(wt1 ∈ A, t1 < τF ≤ t2, wτF+s ∈ B) = Ex

[
1wt1∈A, t1<τF≤t2∧τ∂PwτF (ws ∈ B)

]
for all A,B ⊂ D ∪ {∂} measurable. The previous computation extends without difficulty
to prove

Px (wt1 ∈ A1, . . . , wtn ∈ An, tn < τF ≤ tn+1, wτF+s1 ∈ B1, . . . , wτF+sm ∈ Bm)

= Ex

[
1wt1∈A1,...,wtn∈An, tn<τF≤tn+1

PwτF (ws1 ∈ B1, . . . , wsm ∈ Bm)
]

(12.3)

for all n,m ≥ 1, 0 ≤ t1 ≤ . . . ≤ tn+1, 0 ≤ s1 ≤ . . . ≤ sm and A1, . . . , An, B1, . . . , Bm ⊂
D ∪ {∂} measurable. This implies the strong Markov property at time τF , in the sense
that, for all k ≥ 1, all x ∈ E and all Γ ∈ F∞,

Px (wτF ∈ Γ | HτF ) = PwτF (Γ), Px-almost surely,
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where wτF = (wτF+s, s ≥ 0) and

HτF = σ
(
{wt1 ∈ A1, . . . , wtn ∈ An, tn < τF ≤ tn+1} , n ∈ N,

0 ≤ t1 ≤ . . . ≤ tn+1, A1, . . . , An ∈ D measurable
)
.

This form of strong Markov property at time τF is enough for our purpose, since it
entails (F0) for L = Kk for all k ≥ 1.

12.2 Harnack inequalities

Our goal here is to check Conditions (F1) and (F3) for the diffusion process con-
structed above. We will make use of general Harnack inequalities of Krylov and Sa-
fonov [72].

Proposition 12.1. There exist a probability measure ν on D and a constant tν > 0 such
that, for all k ≥ 1, there exists a constant bk > 0 such that

Px(Xtν ∈ ·) ≥ bkν(·), ∀x ∈ Kk. (12.4)

Moreover, for all k ≥ 1 such that Kk is non-empty,

inf
t≥0

infx∈Kk Px(t < τ∂)

supx∈Kk Px(t < τ∂)
> 0. (12.5)

Proof. Consider a bounded measurable function f : D → R+ with ‖f‖∞ ≤ 1 and define
the application u : (t, x) ∈ R+ ×E 7→ Ex[1t<τ∂f(Xt)]. It is proved in [26] using [72] that,
for all k ≥ 1, there exist two constants Nk > 0 and δk > 0, which do not depend on f

(provided ‖f‖∞ ≤ 1), such that

u(δ2
k, x) ≤ Nku(2δ2

k, y), for all x, y ∈ Kk such that |x− y| ≤ δk/2. (12.6)

Note that the proof given in [26] makes use of the following strong Markov property:
for all open ball B such that B ⊂ Kk for some k ≥ 1, all x ∈ B, t ≥ 0 and all measurable
f : D ∪ {∂} → R+,

Ex
[
f(Xt)1τD\B≤t<τ∂

]
= Ex

[
1τD\B≤tEXτD\B [f(Xt−u)1t−u<τ∂ ]

u=τD\B

]
.

This property follows from (12.3).

Step 1: Proof of (12.4)
Fix x1 ∈ D and k1 ≥ 1 such that x1 ∈ int(Kk1). Let ν denote the conditional law

Px1(Xδ2k1
∈ · | δ2

k1
< τ∂). Then, for all measurableA ⊂ D∪{∂}, Harnack’s inequality (12.6)

with f = 1A entails that, for all x ∈ D such that |x− x1| <
δk1
2 ∧ d(x1, D \Kk1),

Px(2δ2
k1 ∈ A) ≥

Px1(δ2
k1
< τ∂)

Nk1
ν(A).

Since the diffusion is locally elliptic and D is connected, for all k ≥ 1, there exists a
constant dk > 0 such that

inf
x∈Kk

Px(X1 ∈ B(x1, (δk1/2) ∧ d(x1, D \Kk1)) ≥ dk.

This and Markov’s property entail that, for all x ∈ Kk,

Px(X1+2δ2k1
∈ ·) ≥ dk

Px1(δ2
k1
< τ∂)

Nk1
ν.
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This implies the first part of Proposition 12.1.

Step 2: Proof of (12.5)
Fix k ≥ 1 such that Kk is non-empty and consider ` > k such that Kk is included in

one connected component of int(K`). For all t ≥ 2δ2
` , the inequality (12.6) applied to

f(x) = Px(t− 2δ2
` < τ∂) and the Markov property entail that

Px(t− δ2
` < τ∂) ≤ N`Py(t < τ∂), for all x, y ∈ K` such that |x− y| ≤ δ`/2.

Since s 7→ Px(s < τ∂) is non-increasing, we deduce that

Px(t < τ∂) ≤ N`Py(t < τ∂), for all x, y ∈ K` such that |x− y| ≤ δ`/2.

Since Kk has a finite diameter and is included in a connected component of K`, we
deduce that there exists N ′k equal to some power of N` such that, for all t ≥ 2δ2

` ,

Px(t < τ∂) ≤ N ′kPy(t < τ∂), for all x, y ∈ Kk.

Now, for t ≤ 2δ2
` , we simply use the fact that, for all x ∈ Kk, Px(2δ2

` < τ∂) ≥ Px(2δ2
` < τB)

where B = (x, 1/2k) and hence x 7→ Px(2δ2
` < τ∂) is uniformly bounded from below on

Kk by a constant 1/N ′′k > 0. In particular,

Px(t < τ∂) ≤ 1 ≤ N ′′kPy(2δ2
` < τ∂) ≤ N ′′kPy(t < τ∂), for all x, y ∈ Kk.

This concludes the proof of Proposition 12.1.

12.3 Proof of Theorem 4.1

Our aim is to prove that Condition (F) holds true with L = Kk for some k ≥ 1 large
enough. We have already proved (F0), (F1) and (F3) with L = Kk for any k ≥ 1. Hence
we only have to check (F2). Fix ρ1 ∈ (λ0, λ1), ρ2 ∈ (λ0, ρ1) and p ∈ (1, λ1/ρ1) and define

ψ1(x) = ϕ(x)1/p, ∀x ∈ D. (12.7)

Fix ρ′1 ∈ (ρ1, λ1/p) and

t2 ≥
2s1(C + λ1)

λ1 − pρ′1
∨ log 2

ρ′1 − ρ1
,

where the constant C comes from (4.5). Set L = Kk0 with k0 large enough so that
ν(Kk0) > 0 and, using (4.6),

Px(s1 < τKk0 ∧ τ∂) ≤ e−(ρ′1+C/p)t2

for all x ∈ D0.
From the definition of λ0 and applying the same argument as in Step 2 of the proof of

Proposition 12.1 with f(x) = Px(Xt−2δ2`
∈ L) with ` large enough to have Kk0 included

in one connected component of K`, we deduce that

lim inf
t→+∞

eρ2t inf
x∈L

Px(Xt ∈ L) = +∞,

and hence the last line of (F2) is proved with γ2 = e−ρ2 .
Let us now check that the first line of Assumption (F2) holds true for all x ∈ D0 and

then for all x ∈ D \ D0. For all x ∈ D0, we have ψ1(x) ≤ supx∈D0
ϕ1/p(x) < +∞, and

hence, for all t ∈ [s1, t2], using Hölder’s inequality and the definition of k0,

Ex (ψ1(Xt)1t<τL∧τ∂ ) ≤ Ex (1t<τ∂ϕ(Xt))
1/p
Px(t < τL ∧ τ∂)

p−1
p

≤ ϕ(x)1/peCt2/pPx(s1 < τL ∧ τ∂)
p−1
p (12.8)

≤ e−ρ
′
1t2 ≤ e−ρ1t2ψ1(x).
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To prove (12.8), we used the fact that Lϕ ≤ C ≤ Cϕ and Itô’s formula to obtain
Ptϕ ≤ eCtϕ. Since this argument is used repeatedly in the sequel, we give it in details for
sake of completeness. It follows from Itô’s formula that, for all k ≥ 1, Px-almost surely,

e
−C
(
t∧τKc

k

)
ϕ
(
Xt∧τKc

k

)
= ϕ(x) +

∫ t

0

1s≤τKc
k
e−Cs (Lϕ(Xs)− Cϕ(Xs)) ds

+

∫ t

0

1s≤τKc
k
e−Cs∇ϕ(Xs)

∗σ(Xs)dBs.

Since ∇ϕ(x) and σ(x) are uniformly bounded on Kk, the last term has zero expectation,
and thus

Ex

[
e
−C
(
t∧τKc

k

)
ϕ
(
Xt∧τKc

k

)]
≤ ϕ(x).

Letting k → +∞, we deduce form Fatou’s lemma that

Ex
[
e−Ct1t<τ∂ϕ(Xt)

]
≤ ϕ(x) (12.9)

as claimed.
This proves the second line of (F2) for all x ∈ D0 and γ1 = e−ρ1 .
Now, for all x ∈ D \D0, since D0 is closed in D, it follows from the strong Markov

property (12.3) at time τD0
that

Ex (ψ1(Xt2)1t2<τL∧τ∂ ) = Ex
(
1t2−s1<τL∧τ∂∧τD0

EXt2−s1 (ψ1(Xs1)1s1<τL∧τ∂ )
)

+ Ex

(
1τD0

≤t2−s1EXτD0
(ψ1(Xt2−u)1t2−u<τ∂∧τL)

u=τD0

)
. (12.10)

Using Hölder’s inequality and (12.9), we deduce that, for all y ∈ D,

Ey (ψ1(Xs1)1s1<τL∧τ∂ ) ≤ Ey (ϕ(Xs1)1s1<τ∂ )
1/p ≤ e

s1C
p ϕ(y)1/p = e

s1C
p ψ1(y).

Hence, the first term in the right-hand side of (12.10) satisfies

Ex
(
1t2−s1<τL∧τ∂∧τD0

EXt2−s1 (ψ1(Xs1)1s1<τL∧τ∂ )
)
≤ e

s1C
p Ex

(
1t2−s1<τL∧τ∂∧τD0

ψ1(Xt2−s1)
)
.

As a consequence, using again Hölder’s inequality and applying as above Itô’s formula
using that Lϕ(x) ≤ −λ1ϕ(x) for all x /∈ D0, one has

Ex
(
1t2−s1<τL∧τ∂∧τD0

EXt2−s1 (ψ1(Xs1)1s1<τL∧τ∂ )
)
≤ e−λ1

t2−s1
p e

s1C
p ϕ(x)1/p

≤ e−t2
ρ′1+λ1/p

2 ψ1(x),

where we used in the last inequality that t2 ≥ 2s1(C+λ1)
λ1−pρ′1

. Moreover, using (12.8), we
obtain that the second term in the right-hand side of (12.10) satisfies

Ex

(
1τD0

≤t2−s1EXτD0
(ψ1(Xt2−u)1t2−u<τ∂∧τL)

u=τD0

)
≤ e−ρ

′
1t2Px(τD0

≤ t2 − s1) ≤ e−ρ
′
1t2ψ1(x).

We finally deduce from (12.10) that, for all x ∈ D \D0,

Ex (ψ1(Xt2)1t2<τL∧τ∂ ) ≤ 2e−ρ
′
1t2ψ1(x) ≤ e−ρ1t2ψ1(x),
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where we used that t2 ≥ log 2/(ρ′1−ρ1). This concludes the proof that the first line of (F2)
holds true with γ1 = e−ρ1 .

Since ϕ is locally bounded, supL ϕ < ∞, and hence, using again (12.9), we deduce
that, for all t ≥ 0,

sup
x∈L

Ex(ψ1(Xt)1t<τ∂ ) ≤ sup
x∈L

Ex(ϕ(Xt)1t<τ∂ ) ≤ eCt sup
x∈L

ϕ(x) <∞,

which implies the scond line of Assumption (F2).
In addition, because of the local uniform ellipticity of the diffusion X, for all n0 ≥ 1,

ψ2 :=
∑n0

k=0 Pk1L is uniformly bounded away from zero on all compact subsets of D. This
and Theorem 3.5 concludes the proof of Theorem 4.1.

12.4 Proof of Corollary 4.5

Using Theorem 3.5, there exists λ′0 such that, for all x ∈ D,

η(x) = lim
t→+∞

eλ
′
0tPx(t < τ∂).

We choose in the definition of λ0 a ball B such that νQSD(B) > 0 (recall that λ0 is
independent of the choice of B). Given x ∈ D such that η(x) > 0,

lim
t→+∞

eλ
′
0tPx(Xt ∈ B) = η(x)νQSD(B) ∈ (0,+∞).

Hence, λ0 = λ′0 and the infimum in the definition of λ0 is a minimum. The facts that
PνQSD (t < τ∂) = e−λ0t and Ptη = e−λ0tη are then direct consequences of Theorem 3.5.

Let us now prove that η is C2. First, it follows from [97, Theorem 7.2.4] that x 7→
eλ0tPx(t < τ∂) is continuous for all t ≥ 0 (see e.g. [26] for a detailed proof). Hence the
uniform convergence in Theorem 2.3 implies that η is continuous on D.

Now, let B be any non-empty open ball such that B ⊂ D. We consider the following
initial-boundary value problem (in the terminology of [50]) associated to the differential
operator L defined in (4.3)

∂tu(t, x)− Lu(t, x)− λ0u(t, x) = 0 for all (t, x) ∈ (0, T ]×B,
u(0, x) = η(x) for all x ∈ B,
u(t, x) = η(x) for all (t, x) ∈ (0, T ]× ∂B.

Since the coefficients of L are Hölder and uniformly elliptic in B and since η is continuous,
we can apply Corollary 1 of Chapter 3 of [50] to obtain the existence and uniqueness of
a solution u to the above problem, continuous on [0, T ]×B and C1,2((0, T ]×B). Now, we
can apply Itô’s formula to eλ0su(T − s,Xs): for all s < τBc ∧ T and all x ∈ B, Px-almost
surely,

eλ0su(T − s,Xs) = u(T, x) +

∫ s

0

eλ0r

(
−∂u
∂t

+ Lu+ λ0u

)
(T − r,Xr) dr

+

∫ s

0

eλ0r∇u(T − r,Xr)σ(Xr) dBr.

Since u is bounded and continuous on [0, T ] × B and ∇u(t, x) is locally bounded in
(0, T ]×B, it follows from standard localization arguments that

u(T, x) = Ex

[
eλ0(T∧τBc )u(T − (T ∧ τBc), XT∧τBc )

]
= Ex

[
eλ0(T∧τBc )η(XT∧τBc )

]
.
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Now, the Markov property and the fact that Ptη = e−λ0tη entail that eλ0tη(Xt) is a
martingale on (D, (Ft)t≥0,Px), hence

η(x) = Ex

[
eλ0(T∧τBc )η(XT∧τBc )

]
= u(T, x).

Therefore, η ∈ C2(D) and Lη(x) = −λ0η(x) for all x ∈ D.
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[78] P. Mandl. Spectral theory of semi-groups connected with diffusion processes and its applica-
tion. Czechoslovak Math. J., 11 (86):558–569, 1961. MR0137143

[79] R. Mannella. Absorbing boundaries and optimal stopping in a stochastic differential equation.
Phys. Lett. A, 254(5):257–262, 1999. MR1687576

[80] A. Marguet. A law of large numbers for branching Markov processes by the ergodicity of
ancestral lineages. ESAIM Probab. Statist., 23:638–661, 2019. MR4011569

[81] S. Martínez and J. San Martín. Classification of killed one-dimensional diffusions. Ann. Probab.,
32(1A):530–552, 2004. MR2040791

[82] S. Martínez, J. San Martín, and D. Villemonais. Existence and uniqueness of a quasistationary
distribution for Markov processes with fast return from infinity. J. Appl. Probab., 51(3):756–
768, 2014. MR3256225

[83] S. Méléard and D. Villemonais. Quasi-stationary distributions and population processes.
Probab. Surv., 9:340–410, 2012. MR2994898

[84] S. P. Meyn and R. L. Tweedie. Stability of Markovian processes. III. Foster-Lyapunov criteria
for continuous-time processes. Adv. in Appl. Probab., 25(3):518–548, 1993. MR1234295

[85] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge University
Press, Cambridge, second edition, 2009. With a prologue by Peter W. Glynn. MR2509253

[86] Y. Miura. Ultracontractivity for Markov semigroups and quasi-stationary distributions. Stoch.
Anal. Appl., 32(4):591–601, 2014. MR3219695

[87] Y. Miura. Ultracontractivity for Markov semigroups and quasi-stationary distributions. Stoch.
Anal. Appl., 32(4):591–601, 2014. MR3219695

[88] Y. Ogura. Asymptotic behavior of multitype Galton-Watson processes. J. Math. Kyoto Univ.,
15(2):251–302, 1975. MR0383560

EJP 28 (2023), paper 22.
Page 83/84

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0212895
https://mathscinet.ams.org/mathscinet-getitem?mr=1876169
https://mathscinet.ams.org/mathscinet-getitem?mr=1121940
https://mathscinet.ams.org/mathscinet-getitem?mr=0094854
https://mathscinet.ams.org/mathscinet-getitem?mr=1123824
https://mathscinet.ams.org/mathscinet-getitem?mr=0152014
https://mathscinet.ams.org/mathscinet-getitem?mr=2658978
https://mathscinet.ams.org/mathscinet-getitem?mr=2917771
https://mathscinet.ams.org/mathscinet-getitem?mr=0563790
https://mathscinet.ams.org/mathscinet-getitem?mr=2299923
https://mathscinet.ams.org/mathscinet-getitem?mr=3012095
https://mathscinet.ams.org/mathscinet-getitem?mr=1781008
https://mathscinet.ams.org/mathscinet-getitem?mr=3706758
https://mathscinet.ams.org/mathscinet-getitem?mr=0108854
https://mathscinet.ams.org/mathscinet-getitem?mr=0137143
https://mathscinet.ams.org/mathscinet-getitem?mr=1687576
https://mathscinet.ams.org/mathscinet-getitem?mr=4011569
https://mathscinet.ams.org/mathscinet-getitem?mr=2040791
https://mathscinet.ams.org/mathscinet-getitem?mr=3256225
https://mathscinet.ams.org/mathscinet-getitem?mr=2994898
https://mathscinet.ams.org/mathscinet-getitem?mr=1234295
https://mathscinet.ams.org/mathscinet-getitem?mr=2509253
https://mathscinet.ams.org/mathscinet-getitem?mr=3219695
https://mathscinet.ams.org/mathscinet-getitem?mr=3219695
https://mathscinet.ams.org/mathscinet-getitem?mr=0383560
https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


General criteria for the study of quasi-stationarity

[89] W. Oçafrain. Convergence to quasi-stationarity through Poincaré inequalities and Bakry-
Émery criteria. Electron. J. Probab., 26:1–30, 2021. MR4278594

[90] R. G. Pinsky. On the convergence of diffusion processes conditioned to remain in a bounded re-
gion for large time to limiting positive recurrent diffusion processes. Ann. Probab., 13(2):363–
378, 1985. MR0781410

[91] R. G. Pinsky. Explicit and almost explicit spectral calculations for diffusion operators. J. Funct.
Anal., 256(10):3279–3312, 2009. MR2504526

[92] M. Pollock, P. Fearnhead, A. M. Johansen, and G. O. Roberts. The scalable langevin exact
algorithm: Bayesian inference for big data. arXiv preprint arXiv:1609.03436, 2016.

[93] P. E. Protter. Stochastic integration and differential equations, volume 21 of Applications of
Mathematics (New York). Springer-Verlag, Berlin, second edition, 2004. Stochastic Modelling
and Applied Probability. MR2020294

[94] B. Roynette, P. Vallois, and M. Yor. Some penalisations of the Wiener measure. Jpn. J. Math.,
1(1):263–290, 2006. MR2261065

[95] E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains
with a denumerable infinity of states. J. Appl. Probab., 3:403–434, 1966. MR0207047

[96] D. Steinsaltz and S. N. Evans. Markov mortality models: Implications of quasistationarity and
varying initial conditions. Theo. Pop. Bio., 65(65):319–337, 2004.

[97] D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes. Classics in
Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1997 edition. MR2190038

[98] M. Takeda. Existence and uniqueness of quasi-stationary distributions for symmetric markov
processes with tightness property. J. Theoret. Probab., Jan 2019. MR4020697

[99] E. A. van Doorn. Quasi-stationary distributions and convergence to quasi-stationarity of
birth-death processes. Adv. Appl. Probab., 23(4):683–700, 1991. MR1133722

[100] E. A. van Doorn. Conditions for the existence of quasi-stationary distributions for birth-death
processes with killing. Stoch. Process. Appl., 122(6):2400–2410, 2012. MR2922634

[101] E. A. van Doorn. Weighted sums of orthogonal polynomials related to birth-death processes
with killing. Adv. Dyn. Syst. Appl., 8(2):401–412, 2013. MR3162157

[102] E. A. van Doorn and P. K. Pollett. Survival in a quasi-death process. Linear Algebra Appl.,
429(4):776–791, 2008. MR2428129

[103] E. A. van Doorn and P. K. Pollett. Quasi-stationary distributions for reducible absorbing
Markov chains in discrete time. Markov Process. Related Fields, 15(2):191–204, 2009.
MR2538313

[104] E. A. van Doorn and P. K. Pollett. Quasi-stationary distributions for discrete-state models.
European J. Oper. Res., 230(1):1–14, 2013. MR3063313

[105] E. A. van Doorn and A. I. Zeifman. Extinction probability in a birth-death process with killing.
J. Appl. Probab., 42(1):185–198, 2005. MR2144903

[106] A. Velleret. Unique quasi-stationary distribution, with a possibly stabilizing extinction. Stoch.
Process. Appl., 148:98–138, 2022. MR4393344

[107] D. Vere-Jones. Ergodic properties of nonnegative matrices. I. Pacific J. Math., 22:361–386,
1967. MR0214145

[108] D. Villemonais. Minimal quasi-stationary distribution approximation for a birth and death
process. Electron. J. Probab., 20:no. 30, 18, 2015. MR3325100

[109] A. Q. Wang, M. Kolb, G. O. Roberts, and D. Steinsaltz. Theoretical properties of quasi-
stationary monte carlo methods. Ann. Appl. Probab., 29(1):434–457, 2019. MR3910008

[110] J. Wang. First eigenvalue of one-dimensional diffusion processes. Electron. Commun. Probab.,
14:232–244, 2009. MR2507752

[111] J. Wang. Sharp bounds for the first eigenvalue of symmetric Markov processes and their
applications. Acta Math. Sin. (Engl. Ser.), 28(10):1995–2010, 2012. MR2966951

[112] A. M. Yaglom. Certain limit theorems of the theory of branching random processes. Doklady
Akad. Nauk SSSR (N.S.), 56:795–798, 1947. MR0022045

EJP 28 (2023), paper 22.
Page 84/84

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4278594
https://mathscinet.ams.org/mathscinet-getitem?mr=0781410
https://mathscinet.ams.org/mathscinet-getitem?mr=2504526
https://arXiv.org/abs/1609.03436
https://mathscinet.ams.org/mathscinet-getitem?mr=2020294
https://mathscinet.ams.org/mathscinet-getitem?mr=2261065
https://mathscinet.ams.org/mathscinet-getitem?mr=0207047
https://mathscinet.ams.org/mathscinet-getitem?mr=2190038
https://mathscinet.ams.org/mathscinet-getitem?mr=4020697
https://mathscinet.ams.org/mathscinet-getitem?mr=1133722
https://mathscinet.ams.org/mathscinet-getitem?mr=2922634
https://mathscinet.ams.org/mathscinet-getitem?mr=3162157
https://mathscinet.ams.org/mathscinet-getitem?mr=2428129
https://mathscinet.ams.org/mathscinet-getitem?mr=2538313
https://mathscinet.ams.org/mathscinet-getitem?mr=3063313
https://mathscinet.ams.org/mathscinet-getitem?mr=2144903
https://mathscinet.ams.org/mathscinet-getitem?mr=4393344
https://mathscinet.ams.org/mathscinet-getitem?mr=0214145
https://mathscinet.ams.org/mathscinet-getitem?mr=3325100
https://mathscinet.ams.org/mathscinet-getitem?mr=3910008
https://mathscinet.ams.org/mathscinet-getitem?mr=2507752
https://mathscinet.ams.org/mathscinet-getitem?mr=2966951
https://mathscinet.ams.org/mathscinet-getitem?mr=0022045
https://doi.org/10.1214/22-EJP880
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Main results
	Other formulations and particular cases of Assumption (E)
	General comments on the assumptions
	Construction of Lyapunov functions satisfying (E2)
	Checking (E1) and (E3) from comparisons between transition probabilities
	Optimal value of 2 in (E2)

	On continuous time
	The case of uniform exponential convergence

	Application to diffusion processes
	A general criterion in any dimension
	Application to uniformly elliptic diffusion processes
	Non-uniformly elliptic diffusions: the Feller diffusion with competition
	Diffusion processes with killing
	The case of one-dimensional diffusions

	Application to processes in discrete state space and continuous time
	On reducible examples
	Three successive sets
	Countably many communication classes

	Application to processes in continuous state space and discrete time
	Two sided estimates for processes with killing
	Perturbed dynamical systems
	The case of unbounded perturbation with bounded density
	An example with unbounded perturbation and singular density
	Two examples with bounded perturbation


	Irreducible processes in discrete state space and discrete time
	R-positive matrices
	Application to the extinction of biological populations dominated by Galton-Watson processes

	Proof of Theorem 2.1
	Main steps of the proof
	Preliminary results
	Proof of Proposition 9.1
	Proof of Proposition 9.2
	Proof of Proposition 9.3
	Proof of Lemma 9.4
	Conclusion of the proof of (2.1) for the norm "026B30D "026B30D TV(1)
	The case where Px(n<)=0 for some xE and n1

	Proof of the other results of Section 2
	Proof of the existence of the eigenfunction 
	Proof of Theorem 2.6
	Proof of Corollary 2.7 and end of the proof of Theorem 2.3
	Proof of Corollary 2.10
	Proof of Corollary 2.11

	Proof of the results of Section 3
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Proposition 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Proof of (E)
	Existence of a quasi-stationary distribution for (Xt)tI
	Convergence to 

	Proof of Lemma 3.6
	Proof of Proposition 3.9

	Proof of the results of Section 4.1
	Construction of the diffusion process X and Markov property
	Harnack inequalities
	Proof of Theorem 4.1
	Proof of Corollary 4.5

	References

