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Abstract

In this paper, we study the joint behaviour of the degree, depth, and label of and graph
distance between high-degree vertices in the random recursive tree. We generalise
the results obtained by Eslava [12] and extend these to include the labels of and graph
distance between high-degree vertices. The analysis of both these two properties of
high-degree vertices is novel, in particular in relation to the behaviour of the depth of
such vertices.

In passing, we also obtain results for the joint behaviour of the degree and depth
of and graph distance between any fixed number of vertices with a prescribed label.
This combines several isolated results on the degree [22], depth [7, 24], and graph
distance [9, 15] of vertices with a prescribed label already present in the literature.
Furthermore, we extend these results to hold jointly for any number of fixed vertices
and improve these results by providing more detailed descriptions of the distributional
limits.

Our analysis is based on a correspondence between the random recursive tree and
a representation of the Kingman n-coalescent.
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1 Introduction

The random recursive tree model has, since its introduction by Na and Rapoport [30],
received a wealth of interest and many properties have been studied. This wide range
of topics includes, among others, the degree distribution [20, 26, 27], the degree of
vertices with a prescribed label [7, 22], the maximum degree [1, 3, 8, 17, 34], the height
of the tree [32], the insertion depth of the tree [7, 24], and the graph distance between
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Joint properties of vertices with a given degree or label in the RRT

vertices [9, 15]. Beyond these statistics, real-world applications of random recursive
trees have been considered as well [16, 28, 31]. See also [10, 25] for two surveys
on random trees that include a more extensive overview of the research literature on
random recursive trees.

Different approaches for studying the random recursive tree model have been consid-
ered throughout the literature. Using the recursive definition of the model and the fact
that the random recursive tree with n vertices is defined to be a uniform tree among all
increasing trees with n vertices (labelled trees where the vertices on a path from the
root to any vertex have increasing labels) are among the most prevalent. Other methods
include using continuous-time embedding in Crump-Mode-Jagers branching processes,
first introduced by Athreya and Karlin for Pólya urns in [2] and later used for a wide range
of recursive tree models such as the random recursive tree (see e.g. [4, 18, 19, 32]),
Pólya urns [20] and a representation of Kingman’s coalescent [1, 12, 32].

In most studies found in the literature regarding the random recursive tree model,
statistics like those mentioned above are considered in isolation, rather then studying
their joint behaviour. As far as the author is aware, only a handful of papers consider
the joint behaviour of different statistics for the random recursive tree. In [12], Eslava
studies the depth of high-degree vertices, Banerjee and Bhamidi study the label size of
the vertex attaining the maximum degree in [3], and the author studies the labels of
high-degree vertices in the more general weighted recursive tree model [23], of which
the random recursive tree model is a particular example.

The aim of this paper is to extend what is known about the joint behaviour of several
statistics of the random recursive tree. We consider, in particular, two settings. First,
we study the joint behaviour of the depth and label of and graph distance between any
fixed number of vertices selected uniformly at random, conditionally on having a degree
that exceeds a certain quantity. We combine, extend, improve and recover the results
of the author [23] (in the particular case of the random recursive tree) and Eslava [12].
We also recover the results of Addario-Berry and Eslava [1] and Eslava, the author, and
Ortgiese [14] (again, in the particular case of the random recursive tree).

Let Tn denote the random recursive tree with n vertices. Eslava considers in [12] the
vector (din − blog2 nc, (hin − µ log n)/

√
σ2 log n)i∈[n], where din and hin denote the degree

and depth of the vertex with the ith largest degree (ties broken uniformly at random),
respectively, and µ := 1 − 1/(2 log 2), σ2 := 1 − 1/(4 log 2). Eslava shows this vector
converges in distribution along suitable subsequences (nt)t∈N to a marked point process
on (Z ∪ {∞})×R, where the marks are independent standard normal random variables.
The author proves a similar result for the vector

(din − blog2 nc, (`in − µ log n)/
√

(1− σ2) log n)i∈[n]

in [23], where `in denotes the label of the vertex with degree din (ties broken uniformly at
random). Again, along suitable subsequences, this vector converges in distribution to
a marked point process on (Z ∪ {∞})×R, where the marks are independent standard
normal random variables. Our results here combine these results to show that the vector

(din − blog2 nc, (hin − µ log n)/
√
σ2 log n, (`in − µ log n)/

√
(1− σ2) log n)i∈[n]

converges along suitable subsequences to a marked point process on (Z ∪ {∞})×R2,
where the marks are i.i.d. copies of (M

√
1− µ/σ2 +N

√
µ/σ2,M), with M,N , two i.i.d.

standard normal random variables. This recovers both results and, additionally, provides
a novel and interesting dependence between the scaling limit of the depth and label of
high-degree vertices. It describes exactly how large the largest degrees in the tree are,
as well as where and when they appear in the tree. This natural extension of the current
knowledge provides a rather complete picture of the behaviour of high-degree vertices.
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Moreover, we also obtain the distributional convergence of the (properly rescaled)
depth and label of and graph distance between any finite number of vertices selected
uniformly at random, conditionally on their degrees growing infinitely large as n→∞.
The graph distance between such high-degree vertices has not been studied previously,
and we are, in particular, able to characterise the limiting law of the graph distance in
terms of the limiting law of the depth of these vertices.

Second, we study the joint behaviour of the degree and depth of and graph distance
between any fixed number of vertices with a prescribed label. This combines, extends,
improves and recovers a range of results on the degree [7, 22] and depth [7, 24] of
and graph distance [9, 15] between vertices with a prescribed label. Given any fixed
k ≥ 2 vertices with labels (vi,n)i∈[k] such that vi,n diverges with n, we obtain the joint
distributional convergence of the degree and depth of and graph distance between
vertices v1,n, . . . , vk,n. Again, we characterise the limiting law of the graph distances in
terms of those of the depths of vertices v1,n, . . . , vk,n, which is novel.

Our extensions of the aforementioned results arise mainly due to two contributions.
First, we are able to analyse the joint behaviour of multiple statistics beyond what was
known already in the literature. Second, we obtain these results for any finite number
of vertices, whereas only a single vertex or single pair of vertices is considered in most
results available to date. It is exactly the correlations that arise due to considering
several statistics and many vertices at once that prove to be the most challenging aspects
of the analysis. The improvement of the existing results is mostly due to the fact that
considering the joint behaviour of several statistics allows us, in certain cases, to obtain
more detailed descriptions of their limiting laws beyond what was known previously.

The analysis in this paper is based on the Kingman n-coalescent construction of
the random recursive tree. This construction was first observed by Pittel in [32] and
later recovered and used by Addario-Berry and Eslava [1], and Eslava [12, 13]. This
construction provides several advantages compared to the more common recursive
construction of the random recursive tree. First, rather than in the recursive construction
in which distinct vertices have different arrival times (which influence their degree,
depth, label, and graph distance), the coalescent construction allows for a perspective in
which all vertices are exchangeable. Second, the coalescent construction enables a more
natural decoupling of the statistics of distinct vertices, which provides us with tools to
tackle the correlations between these statistics in a more refined manner. Finally, in
particular the degree, label and depth of a vertex can be expressed in terms of random
numbers of coin flips, simplifying the analysis of these statistics. The degree of a vertex
equals the length of the first streak of heads, the label equals the step at which the first
tails occurs and the depth equals the total number of tails thrown.

Notation. Throughout the paper we use the following notation: we let N := {1, 2, . . .}
denote the natural numbers, set N0 := {0, 1, . . .} and let [t] := {i ∈ N : i ≤ t} for any
t ≥ 1. For x ∈ R, we let dxe := inf{n ∈ Z : n ≥ x} and bxc := sup{n ∈ Z : n ≤ x}.
For x ∈ R, k ∈ N, we let (x)k := x(x − 1) · · · (x − (k − 1)) and (x)0 := 1 and use the
notation d̄ to denote a k-tuple d = (d1, . . . , dk) (the size of the tuple will be clear from
the context), where the d1, . . . , dk are either numbers or sets. For sequences (an, bn)n∈N
such that bn is positive for all n we say that an = o(bn), an = ω(bn), an ∼ bn, an = O(bn) if
limn→∞ an/bn = 0, limn→∞ |an|/bn =∞, limn→∞ an/bn = 1 and if there exists a constant
C > 0 such that |an| ≤ Cbn for all n ∈ N, respectively. For random variables X, (Xn)n∈N

we letXn
d−→ X,Xn

P−→ X andXn
a.s.−→ X denote convergence in distribution, probability

and almost sure convergence of Xn to X, respectively. Also, let Φ : R→ (0, 1) denote the
cumulative density function of a standard normal random variable.

We also provide a table with the most important symbols used throughout the paper
and their definitions, in order of appearance.
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Symbol Definition
Tn Random recursive tree on n vertices
dTn(u) In-degree of vertex u in Tn
distTn(u, v) Graph distance between vertices u, v in Tn
hTn(u) Depth of vertex u in Tn (graph distance to the root, distTn(u, 1))
vj jth vertex in Tn, in decreasing order of in-degree
djn In-degree of vj , dTn(vj)

hjn Depth of vj , hTn(vj)

µ 1− 1
2 log 2

σ2 1− 1
4 log 2

(vi)i∈[k] k distinct vertices in Tn selected uniformly at random
T (n) Kingman n-coalescent tree
dT (n)(i)/dn(i) In-degree of vertex i in T (n)

hT (n)(i)/hn(i) Depth of vertex i in T (n)

`T (n)(i)/`n(i) Label of vertex i in T (n) after relabelling (as in (3.4))
Sn(i) Selection set of vertex i in T (n)

Sn(i) |Sn(i)|
Sn (Sn(i))i∈[k]

τk max∪1≤i<j≤k
(
Sn(i) ∩ Sn(j)

)
, the first coalescence of vertices 1, . . . , k

Sn,1(i) Truncated selection set of vertex i in T (n)

Sn,1 (Sn,1(i))i∈[k]

Rn,1 (Rn,1(i))i∈[k], where each element is an independent copy of Sn,1(1)

hn,1(i) Truncated depth of vertex i in T (n)

hn,2(i) hn(i)− hn,1(i), the remaining depth

2 Definitions and main results

The random recursive tree model is defined as follows:

Definition 2.1 (Random recursive tree model). Let (Tn)n∈N be a sequence of trees.
Initialise T1 by a root with label 1. For every n ∈ N, construct Tn+1 from Tn by adding
a vertex with label n+ 1 to Tn and connecting it by a directed edge to a vertex v ∈ [n]

which is selected uniformly at random.

Due to the temporal nature of the random recursive tree model, it is natural to think
of the edges as directed towards the root. Throughout, for any n ∈ N and u, v ∈ [n], we
write

dTn(u) := in-degree of vertex u in Tn,

distTn(u, v) := graph distance between vertices u, v in Tn,

hTn(u) := depth of vertex u in Tn = distTn(u, 1).

The graph distance between vertices u and v denotes the number of edge on the unique
path between vertices. Here we do not take the direction of the edges into account. This
only matters for the in-degree.

Addario-Berry and Eslava study behaviour of high-degree vertices in the RRT in [1]
and Eslava extends this to the joint convergence of the degree and depth of such high-
degree vertices in [12]. We further extend this joint convergence by including the
rescaled label of the vertices as well in the following result.

Theorem 2.2 (Degree, depth and label of high-degree vertices in the RRT). Consider
the random recursive tree (RRT) model as in Definition 2.1. Let v1, v2, . . . , vn be the
vertices in the RRT in decreasing order of their in-degree (where ties are split uniformly
at random) and let (dsn, h

s
n, `

s
n)s∈[n] denote their in-degree, depth, and label, respectively.
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Fix ε ∈ [0, 1], define εn := log2 n − blog2 nc, and let (nt)t∈N be a positive, diverging,
integer-valued sequence such that εnt → ε as t→∞. Finally, let (Ps)s∈N be the points of
the Poisson point process P on R with intensity measure λ(dx) = 2−x log 2 dx, ordered
in decreasing order, let (Ms, Ns)s∈N be two sequences of i.i.d. standard normal random
variables and define µ := 1− 1/(2 log 2) and σ2 := 1− 1/(4 log 2). Then, as t→∞,(

dsnt − blog2 ntc,
hsnt − µ log nt√

σ2 log nt
,

log(`snt)− µ log nt√
(1− σ2) log nt

, s ∈ [nt]
)

d−→
(
bPs + εc,Ms

√
1− µ

σ2
+Ns

√
µ

σ2
,Ms, s ∈ N

)
.

Remark 2.3. Theorem 2.2 extends both [23, Theorem 2.6] in the case of the random
recursive tree, as well as [12, Theorem 1.2] (since, for each s ∈ N, we have that
Ms

√
1− µ/σ2 +Ns

√
µ/σ2 ∼ N (0, 1)). Moreover, it provides the relation and dependence

between the depth of a high-degree vertex and its label, which only becomes apparent
in the second-order scaling and the limit.

Beyond studying the behaviour of vertices with ‘near-maximum’ degree, we are also
interested in a more general setting. Here, we select k ∈ N many vertices uniformly
at random from Tn and condition on their degree. We can then provide the following
detailed results on the joint behaviour of their depths, labels and the graph distances
between them. The following result is instrumental in proving Theorem 2.2 as well.

Theorem 2.4. Consider the random recursive tree model as in Definition 2.1. Fix k ∈ N,
(ai)i∈[k] ∈ [0, 2)k and let (vi)i∈[k] be k distinct vertices chosen uniformly at random from
[n]. Let (di)i∈[k] be k integer-valued sequences such that

lim
n→∞

di
log n

= ai,

for each i ∈ [k]. The tuple((hTn(vi)− (log n− di/2)√
log n− di/4

)
i∈[k]

,
(distTn(vi, vj)− (2 log n− (di + dj)/2)√

2 log n− (di + dj)/4

)
1≤i<j≤k

)
, (2.1)

conditionally on the event dTn(vi) ≥ di for all i ∈ [k], converges in distribution to(
(Hi)i∈[k],

(√
4− aiHi +

√
4− ajHj√

8− (ai + aj)

)
1≤i<j≤k

)
,

where the (Hi)i∈[k] are independent standard normal random variables. Additionally
assume that for all i ∈ [k], di diverges as n→∞. Then, the tuple((hTn(vi)− (log n− di/2)√

log n− di/4
,

log vi − (log n− di/2)√
di/4

)
i∈[k]

,

(distTn(vi, vj)− (2 log n− (di + dj)/2)√
2 log n− (di + dj)/4

)
1≤i<j≤k

)
,

(2.2)

conditionally on the event dTn(vi) ≥ di for all i ∈ [k], converges in distribution to((
Mi

√
ai

4− ai
+Ni

√
1− ai

4− ai
,Mi

)
i∈[k]

,

(Mi
√
ai +Ni

√
4− 2ai +Mj

√
aj +Nj

√
4− 2aj√

8− (ai + aj)

)
1≤i<j≤k

)
,

where the (Mi, Ni)i∈[k] are independent standard normal random variables.
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Remark 2.5. (i) With an almost identical proof, the same results can be obtained when
using the conditional event {dTn(vi) = di, i ∈ [k]} rather than {dTn(vi) ≥ di, i ∈ [k]}.

(ii) When ai = 0 for all i ∈ [k], we obtain the behaviour of the insertion depth of k
uniform vertices, as well as the graph distance between them.

(iii) The conditional convergence of the tuple in (2.1) recovers, improves, and extends
the result of Eslava in [12, Theorem 1.1]. When we omit the distance between the vertices
vi, vj and set di := bai log nc+ bi for some ai ∈ [0, 2), bi ∈ Z for all i ∈ [k], we obtain [12,
Theorem 1.1]. Our result allows for a greater freedom in the choice of the degrees di
rather than the parametrised setting used by Eslava. We extend Eslava’s result even
further by including the graph distance between any pair of vertices and, in (2.2), by also
including the label of the vertices v1, . . . , vk. The latter also allows for a more precise
description of the limiting distribution of the depth compared to [12, Theorem 1.1]. We
observe that the scaling of the graph distance suggests that the graph distance between
vertices vi and vj , for any distinct i, j ∈ [k], is the sum of their depths. Though this sum
is a trivial upper bound, we show that it is of the correct order by using the fact that
the largest common ancestor of vi and vj , LCAi,j , forms a tight sequence of random
variables (in n ∈ N).

Next to conditioning on the degree of vertices selected uniformly at random, we
also have the following result on the degree and depth of and graph distance between
vertices with a fixed label. Though the marginal convergence of the degree and depth of
a vertices and graph distance of a pair of vertices with a fixed label has been studied
previously (see [22, 7, 24, 9, 15]), we combine, extend, and improve these results by
considering the joint convergence and by allowing for any number of (pairs of) vertices.

Theorem 2.6. Consider the random recursive tree model as in Definition 2.1 Fix k ∈ N
and let (vi,n)i∈[k] ∈ [n]k be k distinct integer-valued sequences such that vi,n increases
with n, diverges as n→∞ and such that

ci,j := lim
n→∞

√
log vi,n

log vi,n + log vj,n

exists for all 1 ≤ i < j ≤ k. Let (Ni)i∈[k] be k independent standard normal random
variables. We also define for each i ∈ [k],

d∗Tn(vi,n) :=


dTn (vi,n)−log(n/vi,n)√

log(n/vi,n)
if vi,n = o(n),

dTn(vi,n), otherwise,
,

and let (Zi)i∈[k] be k independent random variables (also independent of (Ni)i∈[k]) such
that, for (ρi)i∈[k] ∈ (0, 1)k,

Zi ∼


N (0, 1) if vi,n = o(n),

Poi(log(1/ρi)) if vi,n = (1 + o(1))ρin,

0 if vi,n = n− o(n).

Then,((
d∗Tn(vi,n),

hTn(vi,n)− log vi,n√
log vi,n

)
i∈[k]

,
(distTn(i, j)− (log vi,n + log vj,n)√

log vi,n + log vj,n

)
1≤i<j≤k

)
d−→
(
(Zi, Ni)i∈[k], (ci,jNi + cj,iNj)1≤i<j≤k

)
.

Remark 2.7. (i) The theorem partially recovers a result from Feng, Lui, and Su [15,
Theorem 1], where the distance between vertices in and n for any integer sequence
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(in)n∈N such that in ∈ [n − 1] holds is covered. In our setting, we require the labels
vi,n to be increasing in n and to diverge with n, as we are unable to characterise the
limiting distributions of the depth and degree otherwise. We also recover the less general
results (compared to Feng et al.) of Dobrow [9, Theorems 3 and 4] on the graph distance
between vertices in and n with in = n− 1 or in = bλnc, λ ∈ (0, 1). Moreover, we are able
to provide a more detailed description of the scaling limit of the distance between the
vertices v1,n, . . . , vk,n in relation to their depth, which is not present in [15] or [9].

(ii) The theorem recovers the results of Devroye [7] and Mahmoud [24] on the
insertion depth.

(iii) The theorem recovers a result of Kuba and Panholzer [22, Theorem 2] regarding
the degree of a vertex with a prescribed label.

(iv) In all cases described in points (i), (ii) and (iii), we extend the results of Feng et
al., Devroye, Mahmoud, and Kuba and Panholzer to k vertices and

(
k
2

)
pairs of vertices

for any k ≥ 2.

(v) The constraint that all vi,n are increasing in n arises due a technicality, which we
illustrate with the following example. Suppose k = 2 and

v1,n = bn/2c1{n is even} + bn/3c1{n is odd}, v2,n = bn/3c1{n is even} + bn/2c1{n is odd}.

In this case, c1,2 = c2,1 = 1/
√

2 both exist, so that the limiting law of the graph distance
can be obtained, but the limiting laws of d∗Tn(v1,n) and d∗Tn(v2,n) do not exist. Indeed,

d∗T2n
(v1,2n)

d−→ Poi(log 2) and d∗T2n+1
(v1,2n+1)

d−→ Poi(log 3). Such cases are circumvented
when the vi,n are increasing with n. When omitting the degree, any diverging sequences
(vi,n)i∈[k] such that the (ci,j)1≤i<j≤k exist can be considered.

The main approach to proving Theorems 2.2, 2.4, and 2.6 is to use a ‘reversed-
time’ construction or coalescent construction of the random recursive tree, known as
the Kingman n-coalescent construction (see Section 3). This construction has several
advantages compared to the construction in Definition 2.1. First, the depth, degree, and
label of vertices in the Kingman n-coalescent are exchangeable, which simplifies the
analysis of their joint behaviour. Second, the coalescent construction simplifies dealing
with correlations that appear when considering the depth, degree, and label of multiple
vertices at once. In particular, it provides an elegant way to decouple the degree, depth,
and label of distinct vertices. Finally, the size of the depth, degree, and label of a vertex
can be understood in terms of sums of independent indicator random variables and
independent fair coin flips. As a result, standard central limit theorem results can be
applied to obtain the desired results.

Outline of the paper

The paper is organised as follows: We first provide some theoretical preparations,
necessary to prove the Theorems stated in Section 2. We provide a perspective for
Theorem 2.2 in terms of marked point processes, and provide a construction of the
random recursive tree, called the Kingman n-coalescent construction, that aids in the
analysis of the properties of interest here. In particular, we rephrase Theorems 2.4
and 2.6 in terms of the Kingman n-coalescent in Theorems 3.5 and 3.7, respectively.
Section 4 is then dedicated to developing some preliminary results based on the Kingman
n-coalescent construction. These preliminary results are used in Sections 5 and 6 to
obtain intermediate results on the behaviour of high-degree vertices and vertices with
a given label, respectively. Finally, these intermediate results are used in Section 7 to
prove Theorem 2.2 and in Section 8 to prove Theorems 2.4 and 2.6.
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3 The degree, depth, and label of high-degree vertices in the ran-
dom recursive tree: theoretical preparations

In this section we provide a new perspective of Theorem 2.2, alongside a different
construction of the random recursive tree compared to Definition 2.1. The latter will be
of aid in proving all results presented in Section 2.

To prove Theorem 2.2, we use the convergence of marked point processes. Recall
that dsn, h

s
n and `sn denote the degree, depth, and label of the vertex with the sth largest

degree in the random recursive tree, respectively, with s ∈ [n], where ties are split
uniformly at random. Let µ := 1− 1/(2 log 2) and σ2 := 1− 1/(4 log 2). We view the tuples(

dsn − blog2 nc,
hsn − µ log n√
(1− σ2) log n

,
log `sn − µ log n√

σ2 log n
, s ∈ [n]

)
,

as a marked point process, where the rescaled degrees form the points and the rescaled
depth and label form the marks of the points. Let Z∗ := Z ∪ {∞} and endow Z∗ with
the metric d(s, t) := |2−s − 2−t|, d(s,∞) = 2−s, s, t ∈ Z. We work with Z∗ rather than Z,
as sets [s,∞] for s ∈ Z are now compact. Let P be a Poisson point process on R with

intensity λ(dx) := 2−x log 2 dx and let (ξ
(1)
x , ξ

(2)
x )x∈P be independent standard normal

random variables. For ε ∈ [0, 1], we define the ground process Pε on Z∗ and the marked
processMPε on Z∗ ×R2 by

Pε :=
∑
x∈P

δbx+εc, MPε :=
∑
x∈P

δ
(bx+εc,

√
µ/σ2ξ

(1)
x +
√

1−µ/σ2ξ
(2)
x ,ξ

(2)
x )

, (3.1)

where δ is a Dirac measure. Similarly, we define

P(n) :=

n∑
v=1

δdTn (v)−blog2 nc,

MP(n) :=

n∑
v=1

δ
(dTn (v)−blog2 nc,(hTn (v)−µ logn)/

√
σ2 logn,(log v−µ logn)/

√
(1−σ2) logn)

.

(3.2)

We then let M#
Z∗ and M#

Z∗×R2 be the spaces of boundedly finite measures on Z∗ and

Z∗ ×R2, respectively, and observe that P(n),Pε andMP(n),MPε are elements ofM#
Z∗

andM#
Z∗×R2 , respectively. Theorem 2.2 is then equivalent to the weak convergence of

MP(nt) toMPε inM#
Z∗×R2 along suitable subsequences (nt)t∈N, as we can order the

points in the definition ofMP(n) (resp.MPε) in decreasing order of their degrees (resp.
of the points x ∈ P). We remark that the weak convergence of P(nt) to Pε inM#

Z∗ along
subsequences has been established by Addario-Berry and Eslava in [1] (later generalised
to weighted recursive trees by Eslava, the author, and Ortgiese in [14] and extended
to marked point processes by the author in [23]) and that Eslava established the weak

convergence of M̃P
(nt)

along subsequences, which isMP(nt) with each mark restricted
to the first element (i.e. not considering the label), in [12]. We extend these results here
to the tuple of degree, depth, and label, which also shows an interesting dependence in
the limit of the rescaled depth and rescaled labels.

Recall the Poisson point process P used in the definition of Pε in (3.1) and enumerate
its points in decreasing order. That is, Pv denotes the vth largest point of P (ties broken
uniformly at random). We observe that this is well-defined, since P([x,∞)) <∞ almost
surely for any x ∈ R. Also, let (Mv, Nv)v∈N be two sequences of i.i.d. standard normal
random variables. To prove the weak convergence of the marked point processMP(n),
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we define, for s ∈ Z, B ∈ B(R2), the counting measures

X(n)
s (B) :=

∣∣∣{v ∈ [n] : dTn(v) = blog2 nc+ s,
(hTn(v)− (log n− (blog2 nc+ s)/2)√

log n− (blog2 nc+ s)/4
,

log v − (log n− (blog2 nc+ s)/2)√
(blog2 nc+ s)/4

)
∈ B

}∣∣∣,
X

(n)
≥s (B) :=

∣∣∣{v ∈ [n] : dTn(v) ≥ blog2 nc+ s,
(hTn(v)− (log n− (blog2 nc+ s)/2)√

log n− (blog2 nc+ s)/4
,

log v − (log n− (blog2 nc+ s)/2)√
(blog2 nc+ s)/4

)
∈ B

}∣∣∣,
X̃(n)
s (B) :=

∣∣∣{v ∈ [n] : dTn(v) = blog2 nc+ s,
(hTn(v)− µ log n√

σ2 log n
,

log v − µ log n√
(1− σ2) log n

)
∈ B

}∣∣∣,
X̃

(n)
≥s (B) :=

∣∣∣{v ∈ [n] : dTn(v) ≥ blog2 nc+ s,
(hTn(v)− µ log n√

σ2 log n
,

log v − µ log n√
(1− σ2) log n

)
∈ B

}∣∣∣,
Xs(B) :=

∣∣∣{v ∈ N : bPv + εc = s,
(
Mv

√
1− µ

σ2
+Nv

√
µ

σ2
,Mv

)
∈ B

}∣∣∣,
X≥s(B) :=

∣∣∣{v ∈ N : bPv + εc ≥ s,
(
Mv

√
1− µ

σ2
+Nv

√
µ

σ2
,Mv

)
∈ B

}∣∣∣.
(3.3)

We note that, when s = o(
√

log n), X(n)
s (B) ≈ X̃

(n)
s (B) and X

(n)
≥s (B) ≈ X̃

(n)
≥s (B) for any

fixed B ⊆ R. For the result in Theorem 2.2 we are interested in the distributional
convergence of X̃(n)

s (B), X̃
(n)
≥s (B) to Xs(B), X≥s(B), which we obtain in a more general

setting for the random variables X(n)
s (B), X

(n)
≥s (B). The following intermediate result

related to these counting measures aids us in obtaining this distributional convergence.

Proposition 3.1 (Factorial moments of counting measures). Fix constants K ∈ N and
(am)m∈[K] ∈ [0, 2)K . Let (sm)m∈[K] be a non-decreasing integer-valued sequence with
0 ≤ K ′ := min{m : sm+1 = sK} such that s1 + log2 n = ω(1) and

lim
n→∞

sm + log2 n

log n
= am,

for all m ∈ [K]. Let (Bm)m∈[K] be a sequence of sets Bm ⊂ B(R2) such that Bm ∩B` = ∅
when sm = s` and m 6= `, let (cm)m∈[K] ∈ NK0 and let M and N be two independent

standard normal random variables. Recall the random variables X(n)
s (B), X

(n)
≥s (B) and

X̃
(n)
s (B), X̃

(n)
≥s (B) from (3.3), and define εn := log2 n− blog2 nc. Then,

E

[ K′∏
m=1

(
X(n)
sm (Bm)

)
cm

K∏
m=K′+1

(
X

(n)
≥sm(Bm)

)
cm

]

= (1 + o(1))

K′∏
m=1

(
2−(sm+1)+εnP

((
M

√
am

4− am
+N

√
1− am

4− am
,M
)
∈ Bm

))cm
×

K∏
m=K′+1

(
2−sK+εnP

((
M

√
am

4− am
+N

√
1− am

4− am
,M
)
∈ Bm

))cm
.
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Moreover, when s1, . . . , sK = o(
√

log n) and am = 1/ log 2 for all m ∈ [K],

E

[ K′∏
m=1

(
X̃(n)
sm (Bm)

)
cm

K∏
m=K′+1

(
X̃

(n)
≥sm(Bm)

)
cm

]

= (1 + o(1))

K′∏
m=1

(
2−(sm+1)+εnP

((
M

√
1− µ

σ2
+N

√
µ

σ2
,M
)
∈ Bm

))cm
×

K∏
m=K′+1

(
2−sK+εnP

((
M

√
1− µ

σ2
+N

√
µ

σ2
,M
)
∈ Bm

))cm
.

As the counting measures defined in (3.3) are sums of indicator random variables,
their factorial moments can be expressed in terms of probabilities

P(dTn(vi) ≥ di, (hTn(vi), log vi) ∈ Bi, i ∈ [k])

= P(dTn(vi) ≥ di, i ∈ [k])P((hTn(vi), log vi) ∈ Bi, i ∈ [k] |dTn(i) ≥ di, i ∈ [k]) .

Here, we let (di)i∈[k] ∈ Nk0 such that di < 2 log n, (Bi)i∈[k] ∈ B(R2)k, (vi)i∈[k] distinct
vertices selected uniformly at random, and k ∈ N. The first probability on the right-
hand side is studied by Addario-Berry and Eslava in [1], and the latter is the subject
of Theorem 2.4. This can in turn be used to prove Proposition 3.1, which finally leads
to Theorem 2.2. We provide more details alongside the proof of Proposition 3.1 and
Theorem 2.2 in Section 7.

3.1 The Kingman n-coalescent

We now provide an alternative construction of the random recursive tree (RRT),
which we use to prove Theorems 2.2, 2.4 and 2.6.

This alternative construction of the RRT, (a variant of) the Kingman n-coalescent
construction, was first discussed by Pittel in [32] and recovered and used by Addario-
Berry and Eslava to study high degrees in RRTs [1]. Later, Eslava extended this to the
joint convergence of the depth and degree of vertices with large degree [12] and also
provides a more general coupled recursive construction of a tree T and a permutation
σ on the labels of the vertices of T , coined Robin-Hood pruning [13]. Here, we further
extend Eslava’s results from [12] on the depth and degree of high-degree vertices to
also include the label of and graph distance between such high-degree vertices. We
also obtain results on the joint behaviour of the degree and depth of and graph distance
between vertices with a given label, which combine, extend and improve several known
results from the literature on the degree [22] and depth [7] of a vertex with a given label
and the graph distance between vertices n and in, for any sequence in [15].

The variant of the Kingman n-coalescent we use here is a process which starts with n
trees, each consisting of only a single root. At every step n through 2 (counting back-
wards), a pair of roots is selected uniformly at random and independently of this selection
a directed edge is formed between the two roots, each direction being equiprobable. This
reduces the number of trees by one and, after completing step 2, yields a directed tree.
It turns out that a particular relabelling of this directed tree yields a tree equal in law
to the random recursive tree. Moreover, using the Kingman n-coalescent construction
simplifies the analysis of degrees, depths, and labels in the RRT model, among other
reasons because the degree, depth, and label of the vertices are exchangeable random
variables in the Kingman n-coalescent.

We now formally introduce the Kingman n-coalescent construction of the random
recursive tree. Let CFn := {f : V (f) = [n]} denote the set of all forests with exactly n
vertices. An n-chain is a sequence (fn, . . . , f1) of elements of CFn, where for each integer

EJP 27 (2022), paper 149.
Page 10/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP877
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint properties of vertices with a given degree or label in the RRT

1 < j ≤ n, fj−1 is obtained from fj by adding a directed edge between the roots of two

trees in fj . We write fj = {t(j)1 , . . . , t
(j)
j }, ordering the trees in increasing order of their

smallest-labelled vertex. In particular, fn consists of n trees, each of which is a root with
no edges, and f1 consists of exactly one tree. Also, we let r(T ) denote the root of the

tree T and write Fj = {T (j)
1 , . . . , T

(j)
j } for a random element in CFn for any j ∈ [n].

Definition 3.2 (Kingman n-coalescent). For each 1 < j ≤ n, choose a pair

{aj , bj} ⊆ {{a, b} : 1 ≤ a < b ≤ j} independently and uniformly at random; also
let (ξj)1<j≤n be a sequence of independent Bernoulli(1/2) random variables. Initialise
the coalescent by Fn: a forest of n trees, each consisting of a root and no edges. For
1 < j ≤ n, Fj−1 is obtained from Fj as follows: Add an edge ej−1 between the roots

r(T
(j)
aj ) and r(T

(j)
bj

); direct ej−1 towards r(T (j)
aj ) if ξj = 1 and towards r(T (j)

bj
) if ξj = 0.

Then, Fj−1 consists of the new tree and the remaining j − 1 unaltered trees from Fj .

Finally, let T (n) := T
(1)
1 = F1 denote the final tree in the coalescent C = (Fn, . . . , F1).

See Figure 1 for an example of the process. When at step j the edge ej = vjuj
is directed towards uj , we say that the associated random variable ξj (which we can
interpret as flipping a fair coin) favours the root ui. Similarly, we might also say that ξj
favours w or that the associated coin flip at step j favours w, where w is any vertex in
the tree that contains uj .

The link between the final tree in the coalescent and the RRT is as follows. Let
us define the mapping σC : V (T (n)) → [n] by σC(r(T (n))) := 1 and for each edge
ej = vjuj ∈ E(T (n)), j ∈ [n− 1],

σC(vj) := j + 1. (3.4)

As all edges are directed towards the root, vj 6= vj′ for all j 6= j′ ∈ [n− 1], so that σC is
well-defined. σC is the relabelling of T (n) into an increasing tree. If we let In denote the
set of all increasing trees on n vertices, then it is clear that the RRT is a uniform element
in In. The most important attribute of the n-chain in the Kingman n-coalescent is that it
has a uniform distribution over all possible n-chains and that the relabelling of T (n) by
σC yields a uniform element of In, as outlined in the following proposition.

Proposition 3.3 (Lemma 7.1 and Proposition 7.2 in [12]). The Kingman n-coalescent C is
uniformly random in CFn, the set of n-chains. Moreover, for each C = (fn, . . . , f1) ∈ CFn,
relabel the vertices in f1 with σC to obtain a tree φ(C) ∈ In. Then the law of φ(C) is that
of a random recursive tree of size n.

Recall that dTn(u), hTn(u) and distTn(u, v) denote the in-degree and depth of vertex
u ∈ [n] and the graph distance between vertices u, v ∈ [n] in the random recursive
tree Tn, respectively. Similarly, for a realisation of the final tree T (n) in the coalescent
C, let dT (n)(i), hT (n)(i) and distT (n)(i, j) denote the in-degree and depth of vertex i and
the graph distance between i and j, respectively, and let `T (n)(i) := σC(i) denote the
relabelling of vertex i, i ∈ [n]. That is, `T (n)(i) denotes the label that vertex i in C obtains
in the random recursive tree φ(C). We can then formulate the following corollary.

Corollary 3.4. Let Tn be a random recursive tree and let T (n) be the resulting tree in
the Kingman n-coalescent. Let σ : [n] → [n] be a uniform random permutation on [n].
Then, (

(dT (n)(i), hT (n)(i), `T (n)(i))i∈[n], (distT (n)(i, j))1≤i<j≤n
)

d
=
(
(dTn(σ(i)), hTn(σ(i)), σ(i))i∈[n], (distTn(σ(i), σ(j)))1≤i<j≤n

)
.

Moreover, jointly for all i, j ∈ N and all sets B ⊆ [n], we have

|{v ∈ B : dT (n)(v) = i, hT (n)(v) = j}| d= |{v ∈ [n] : σ(v) ∈ B, dTn(σ(v)) = i, hTn(σ(v)) = j}|.
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Figure 1: An example of the Kingman n-coalescent C = (Fn, . . . , F1) for n = 6. For
2 ≤ j ≤ 6, we represent the edge in E(Fj−1)\E(Fj) with a dotted line in Fj . In this case,
ξ6 = ξ4 = ξ3 = 1, ξ5 = ξ2 = 0 and {a6, b6} = {2, 5}, {a5, b5} = {1, 5}, {a4, b4} = {1, 4},
{a3, b3} = {2, 3}, {a2, b2} = {1, 2}. From [12].
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In what follows, we replace the subscript T (n) with n for ease of writing, since
we work with the coalescent from now on instead of the RRT. As a direct result from
Corollary 3.4, Theorem 2.4 follows from the following result (which is a reformulation of
Theorem 2.4 in terms of the Kingman n-coalescent).

Theorem 3.5. Consider the Kingman n-coalescent as in Definition 3.2. Fix k ∈ N, and
(ai)i∈[k] ∈ [0, 2)k and let (di)i∈[k] be k integer-valued sequences such that

lim
n→∞

di
log n

= ai,

for each i ∈ [k]. The tuple

((hn(i)− (log n− di/2)√
log n− di/4

)
i∈[k]

(distn(i, j)− (2 log n− (di + dj)/2)√
2 log n− (di + dj)/4

)
1≤i<j≤k

)
,

conditionally on the event dn(i) ≥ di for all i ∈ [k], converges in distribution to

(
(Hi)i∈[k],

(√
4− aiHi +

√
4− ajHj√

8− (ai + aj)

)
1≤i<j≤k

)
, (3.5)

where the (Hi)i∈[k] are independent standard normal random variables. Additionally
assume that for all i ∈ [k], di diverges as n→∞. Then, the tuple

((hn(i)− (log n− di/2)√
log n− di/4

,
log(`n(i))− log n− di/4√

di/4

)
i∈[k]

,

(distn(i, j)− (2 log n− (di + dj)/2)√
2 log n− (di + dj)/4

)
1≤i<j≤k

)
,

conditionally on the event dn(i) ≥ di for all i ∈ [k], converges in distribution to

((
Mi

√
ai

4− ai
+Ni

√
1− ai

4− ai
,Mi

)
i∈[k]

,

(Mi
√
ai +Ni

√
4− 2ai +Mj

√
aj +Nj

√
4− 2aj√

8− (ai + aj)

)
1≤i<j≤k

)
,

(3.6)

where the (Mi, Ni)i∈[k] are independent standard normal random variables.

Remark 3.6. As is the case in Remark 2.5, the same results in Theorem 3.5 can be
obtained when working with the conditional event {dn(vi) = di, i ∈ [k]} rather than
{dn(vi) ≥ di, i ∈ [k]}, with an almost identical proof.

Moreover, Theorem 3.5 can be used to prove Proposition 3.1. By Corollary 3.4, we
can redefine the random variables X(n)

s (B), X
(n)
≥s (B) and X̃

(n)
s (B), X̃

(n)
≥s (B), as defined

EJP 27 (2022), paper 149.
Page 13/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP877
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint properties of vertices with a given degree or label in the RRT

in (3.3), in terms of the Kingman n-coalescent, by writing, for s ∈ Z, B ∈ B(R2),

X(n)
s (B) :=

∣∣∣{i ∈ [n] : dn(i) = blog2 nc+ s,
(hn(i)− (log n− (blog2 nc+ s)/2)√

log n− (blog2 nc+ s)/4
,

log `n(i)− (log n− (blog2 nc+ s)/2)√
(blog2 nc+ s)/4

)
∈ B

}∣∣∣,
X

(n)
≥s (B) :=

∣∣∣{i ∈ [n] : dn(i) ≥ blog2 nc+ s,
(hn(i)− (log n− (blog2 nc+ s)/2)√

log n− (blog2 nc+ s)/4
,

log `n(i)− (log n− (blog2 nc+ s)/2)√
(blog2 nc+ s)/4

)
∈ B

}∣∣∣,
X̃(n)
s (B) :=

∣∣∣{i ∈ [n] : dn(i) = blog2 nc+ s,
(hn(i)− µ log n√

σ2 log n
,

log `n(i)− µ log n√
(1− σ2) log n

)
∈ B

}∣∣∣,
X̃

(n)
≥s (B) :=

∣∣∣{i ∈ [n] : dn(i) ≥ blog2 nc+ s,
(hn(i)− µ log n√

σ2 log n
,

log `n(i)− µ log n√
(1− σ2) log n

)
∈ B

}∣∣∣.
(3.7)

We can also reformulate Theorem 2.6 in terms of the Kingman n-coalescent. As is the
case with Theorem 2.4, combining Corollary 3.4 with the following theorem immediately
implies Theorem 2.6.

Theorem 3.7. Consider the Kingman n-coalescent as in Definition 3.2. Fix k ∈ N and
let (`i)i∈[k] ∈ [n]k be k distinct integer-valued sequences such that `i increases with n,
diverges as n→∞ and such that

ci,j := lim
n→∞

√
log `i

log `i + log `j
(3.8)

exists for all 1 ≤ i < j ≤ k. Let (Ni)i∈[k] be k independent standard normal random
variables. We also define for (ρi)i∈[k] ∈ (0, 1)k and each i ∈ [k],

d∗n(i) :=


dn(i)−log(n/`i)√

log(n/`i)
, if `i = o(n),

dn(i), otherwise,

Zi ∼


N (0, 1) if `i = o(n),

Poi(log(1/ρi)) if `i = (1 + o(1))ρin,

0 if `i = n− o(n).

(3.9)

where the Zi are independent and also independent of the (Ni)i∈[k]. The tuple((
d∗n(i),

hn(i)− log `i√
`i

)
i∈[k]

,
(distn(i, j)− (log `i + log `j)√

log `i + log `j

)
1≤i<j≤k

)
,

conditionally on the event `n(i) = `i for all i ∈ [k], converges in distribution to(
(Zi, Ni)i∈[k], (ci,jNi + cj,iNj)1≤i<j≤k

)
.

Remark 3.8. It is necessary to work on the conditional event {`n(i) = `i, i ∈ [k]} in
Theorem 3.7, despite this not being the case in Theorem 2.6. Since vertices 1, . . . , k in
the Kingman n-coalescent obtain a random label in the relabelled tree φ(C) (which is
equal in law to the random recursive tree by Proposition 3.3), the need to condition on
their relabelling `n(i) = `i, i ∈ [k], arises.

In the next sections we analyse the Kingman n-coalescent construction to prove
Theorems 3.5 and 3.7 and Proposition 3.1.
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4 Preliminary results

In this section we provide some important intermediate results related to the Kingman
n-coalescent construction, provided in Section 3. We focus on two things in this section.
First, we study the evolution of the degree, depth, and label of vertices 1, . . . , k in
the Kingman n-coalescent, which is an important first step in proving the theorems in
Section 3. Second, we investigate the correlations between the steps j ∈ [2, n] at which
vertices 1, . . . , k are selected in the coalescent.

Though the theorems presented in Section 3 are concerned with the graph distance
between vertices 1, . . . , k as well as their degree, depth, and label, we do not include
this in our analysis yet. While the latter quantities are easier to explicitly understand in
terms of the Kingman n-coalescent, the graph distance does not lend itself to an equally
elegant analysis. As it turns out, though, there is a close relation between the depth
of and graph distance between the vertices 1, . . . , k which allows us to infer the scaling
limit of the graph distances from the results on the depth. We make use of this relation
in Section 8 when proving Theorems 3.5 and 3.7.

4.1 Analysis of the Kingman n-coalescent

We start by introducing some notation related to the Kingman n-coalescent. For an
n-chain C = (fn, . . . , f1) and some i, j ∈ [n], let T (j)(i) denote the tree in fj that contains

vertex i. For i ∈ [n], let si,j be the indicator that T (j)(i) ∈ {T (j)
aj , T

(j)
bj
} and let hi,j be the

indicator that the edge ej is directed outwards from r(T (j)(i)), 2 ≤ j ≤ n. That is, si,j
equals one if i is part of one of the two trees selected to merge at step j, and hi,j is
one if si,j is one and if the new edge ej causes vertex i to increase its depth by one, see
Figure 2.

Since the trees selected to be merged at every step are independent and uniformly
distributed, the variables (si,j)2≤j≤n are independent Bernoulli random variables for any
fixed i ∈ [n], with E [si,j ] = 2/j. Similarly, since the direction of the edge ej depends only
on ξj , the variables (hi,j)2≤j≤n are also independent Bernoulli random variables for any
fixed i ∈ [n], with E [hi,j ] = 1/j.

Let us define

Sn(i) := {2 ≤ j ≤ n : si,j = 1}, i ∈ [n],

and set Sn(i) := |Sn(i)|. We refer to Sn(i) as the selection set of vertex i. We can
express the quantities dn(i), hn(i) and `n(i) in terms of Sn(i) and the indicator variables
(hi,j)j∈Sn(i). Namely, if we write Sn(i) = {ji,1, . . . , ji,Sn(i)} with ji,1 > ji,2 > . . . > ji,Sn(i),

Figure 2: For i ∈ [n] and 2 ≤ j ≤ n, let rj := r(T (j)(i)) denote the root of the tree in fj

that contains vertex i, and suppose that T (j)(i) ∈ {T (j)
aj , T

(j)
bj
}. If ej is directed towards rj ,

then the degree of rj increases by one in Fj−1. If ei is directed outwards from rj , then
the depth of each v ∈ T (j)(i) increases by one in Fj−1. From [12].
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then
dn(i) = max{0 ≤ d ≤ Sn(i) : hi,ji,1 = . . . = hi,ji,d = 0},

hn(i) =
∑

j∈Sn(i)

hi,j =

n∑
j=2

hi,j ,

`n(i) = max{j ∈ Sn(i) : hi,j = 1} = max{i ∈ [n] : hi,j = 1},

(4.1)

where we set hi,1 = 1 for all i ∈ [n], so that max{j ∈ [n] : hi,j = 1} = 1 if there is no
2 ≤ j ≤ n such that hi,j = 1 (which corresponds to vertex i being the root of T (n), so
that its relabelling with σC as in (3.4) yields `n(i) = 1). Note that there is always a
unique vertex i for which hi,j = 0 for all 2 ≤ j ≤ n, so that `n(i) 6= `n(i′) whenever i 6= i′.
Explaining (4.1) in words, the degree of a vertex i is equal to the length of the first streak
of zeros of the indicators (hi,j`)`∈[Sn(i)], the relabelling of vertex i in the RRT is equal
to the first step directly after this streak when hi,j = 1, and the depth equals the total
number of steps j for which hi,j = 1.

We are interested in the behaviour of the degree, depth, and label of the vertices
1, . . . , k for any fixed k ∈ N. While these quantities are easily expressed in terms of the
selection sets (Sn(i))i∈[k] and the associated coin flips, as in (4.1), considering k vertices
provides some additional difficulties in terms of correlations between the selection sets
of these k vertices. The main issue is the following: whenever two distinct vertices
i, i′ ∈ [k] are both selected at the same step, say step λi,i′ , there is a dependence between
the outcome of the associated coin flip of vertices i and i′. Namely, hi,λi,i′ = 1− hj,λi,i′ .
Furthermore, for any step 2 ≤ j < λi,j , we know that hi,j = hi′,j . As these correlations
between the vertices 1, . . . , k are difficult to handle, we define

τk := max{2 ≤ j ≤ n : si,j = si′,j = 1 for distinct i, i′ ∈ [k]}. (4.2)

Since the trees in the Kingman n-coalescent are ordered based on their smallest-labelled
vertex, τk is the first step at which two vertices i, i′ ∈ [k] are both selected (in the
sense that the root of the tree they belong to is selected), and thus up to step τk the
vertices 1, . . . , k are contained in disjoint trees. As a result, this implies that the sets
[τk + 1, n] ∩ Sn(1), . . . , [τk + 1, n] ∩ Sn(k) are disjoint, and since the associated coin flips
of these disjoint sets are independent, the evolutions of the degree, depth, and label
of vertices 1, . . . , k, up to step τk are independent. This helps to avoid correlations
and simplifies the analysis. Eslava (implicitly) shows in the proof of [12, Lemma 3.2]
that the sequence (τk)n∈N is a tight sequence of random variables. As a result, for any
integer-valued sequence (tn)n∈N which diverges to infinity as n → ∞, we know that
P(τk < tn) = 1− o(1). This justifies, for tn ≤ n, the definition of the sets, for each i ∈ [n],

Ω1 := {tn, . . . , n}, Sn,1(i) := {j ∈ Ω1 : si,j = 1}, Hn,1(i) := {j ∈ Ω1 : hi,j = 1}, (4.3)

and we let Sn,1(i) := |Sn,1(i)| and hn,1(i) := |Hn,1(i)|, hn,2(i) := hn(i)− hn,1(i). We refer
to the sets (Sn,1(i))i∈[n] as the truncated selection sets, to hn,1(i) as the truncated depth
of vertex i, and to (tn)n∈N as the truncation sequence. Though Sn,1(i), hn,1(i), hn,2(i)

depend on tn, we omit this in their notation for ease of writing. The truncated depth
hn,1(i) and hn,2(i) can be described similar to hn(i) in (4.1), as

hn,1(i) =
∑

j∈Sn,1(i)

hi,j =

n∑
j=tn

hi,j , hn,2(i) =
∑

j∈Sn(i)\Sn,1

hi,j =

tn−1∑
j=2

hi,j = hn(i)− hn,1(i).

The following lemma uses (4.1) to provide a description of the relation between the
joint distribution of dn(1), hn,1(1) and `n(1) and the truncated selection set Sn,1(1). Since
the vertices are exchangeable, as follows from Corollary 3.4, the lemma also holds for
any vertex i ∈ [n].
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Lemma 4.1. Let G ∼ Geo(1/2) be independent from Sn(1). Then dn(1)
d
= min{G,Sn(1)}.

Moreover, fix h, d ∈ N0 and consider a truncation sequence (tn)n,∈N such that tn ≤ n for
all n ∈ N. Let ` ∈ Ω1, J ⊆ Ω1, and let Xn,`,1 ∼ Bin(|[`, n] ∩ J | − d, 1/2) and

Xn,`,2 ∼ Bin(|[tn, `−1]∩J |, 1/2) be two independent binomial random variables (where
we set Xn,`,1 = 0, Xn,`,2 = 0 when |[`, n] ∩ J | − d ≤ 0, |[tn, ` − 1] ∩ J | = 0, respectively).
Then,

P(hn,1(1) ≤ h, `n(1) ≥ `,dn(1) ≥ d | Sn,1(1) = J)

= 2−d1{|[`,n]∩J|≥d+1}P(Xn,`,1 +Xn,`,2 ≤ h,Xn,`,1 ≥ 1) .
(4.4)

Furthermore,

P(hn,1(1) ≤ h, `n(1) = `,dn(1) ≤ d | Sn,1(1) = J)

= 1{|[`+1,n]∩J|≤d}1{`∈J}2
−(|[`+1,n]∩J|+1)P(Xn,`,2 ≤ h− 1) .

(4.5)

Remark 4.2. In the case ` = 1, the result in (4.4) simplifies to

P(hn(1) ≤ h,dn(1) ≥ d | Sn,1(1) = J) = 2−d1{|J|≥d}P(Xn ≤ h) ,

where Xn ∼ Bin(|J | − d, 1/2) and we set Xn = 0 when |J | − d ≤ 0. The proof follows the
same approach as the proof of (4.4) and is hence omitted.

Remark 4.3. The constraint ` ≥ tn ensures that the events `n(1) ≥ ` and `n(1) = `, as
in (4.4) and (4.5), respectively, can be determined by step tn of the Kingman n-coalescent.
In what follows, we let tn grow sufficiently slow so that this constraint is satisfied for
any choice of ` that is of interest.

Proof. Let us start by proving (4.4). We define En := {hn,1(1) ≤ h, `n(1) ≥ `,dn(1) ≥ d}.
If we condition on the event {Sn,1(1) = J} for some set J ⊆ Ω1, then we can express the
occurrence and probability of the event En in terms of J :

(i) Conditionally on {Sn,1(1) = J}, En can only occur if |[`, n] ∩ J | ≥ d+ 1 by the first
and last line of (4.1):

(a) By the first line of (4.1), the degree of vertex i is at least d when a streak
h1,j1,1 = . . . = h1,j1,d = 0 occurs, where we recall that Sn(1)={j1,1, . . . , j1,Sn(1)}
(and, similarly, Sn,1(1) = {j1,1, . . . , j1,Sn,1(1)}). This can only happen when
vertex 1 is selected at at least d steps, so Sn(1) ≥ d, and the coin flips
associated with the first d of these steps need to be heads.

(b) After this streak, vertex 1 needs to be selected at least once more, but not
later than step `. Moreover, the associated coin flip at this step has to be tails
to ensure that the label of vertex 1 in the random recursive tree is at least
`, by the last line of (4.1). So, combined with (a), J needs to contain at least
d+ 1 elements that are at least `, i.e. |[`, n] ∩ J | ≥ d+ 1. Given this, we then
require the first d associated coin flips to favour vertex 1 and the remaining
|[`, n] ∩ J | − d coin flips to not favour vertex 1 at least once, i.e. Xn,`,1 ≥ 1, to
obtain a degree at least d and a label at least `.

(ii) The required streak of d coin flips favouring vertex 1 occurs with probability 2−d,
and is independent from everything else which occurs afterwards (in particular,
what occurs in steps (i)(b) and (iii)). Moreover, as the coin flips are independent of
the selection set, the degree of 1 is determined by the length of the first streak of

coin flips that favour 1. So, dn(1)
d
= min{G,Sn(1)}.

(iii) After the first streak of d coin flips that favour vertex 1, the number of remaining
coin flips which do not favour vertex 1, associated to the selection set J , should be
at most h. That is, Xn,`,1 +Xn,`,2 ≤ h.
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Combining all of the above, we can then write,

P(En | Sn,1(1) = J)

= 1{|[`,n]∩J|≥d+1}P(En | Sn,1(1) = J) (i)

= 2−d1{|[`,n]∩J|≥d+1}P(hn(1) ≤ h, `n(1) ≥ ` | Sn,1(1) = J, dn(1) ≥ d) (ii)

= 2−d1{|[`,n]∩J|≥d+1}P(Xn,`,1 +Xn,`,2 ≤ h,Xn,`,1 ≥ 1) , (i)(b) + (iii)

where we remark that we can omit the conditioning due to the fact that the coin flips are
independent of everything else.

We now prove (4.5). Let us set Ẽn := {hn(1) ≤ h, `n(1) = `,dn(1) ≤ d}. Again, we
express the occurrence and the probability of the event Ẽn in terms of J :

(i) `n(1) = ` and dn(1) ≤ d can only occur together if the following two things occur:

(a) Vertex 1 is selected at most d times in steps n through `+ 1, and all associated
coin flips favour vertex 1. The latter occurs with probability 2−|J∩[`+1,n]|.

(b) Vertex 1 is selected at step ` and is not favoured by the associated coin flip.
The latter occurs with probability 1/2.

Indeed, if (a) does not occur then either the degree or the label of vertex 1 (in the
random recursive tree) is too large. If (b) does not occur, then the label of vertex 1

(in the random recursive tree) is not equal to `.

(ii) In steps ` − 1 through 2, the number of coin flips which do not favour vertex 1,
associated to the selection set J , is at most h− 1 (since the height of 1 equals one
after step `). That is, Xn,`,2 ≤ h− 1.

Combining this, we can write

P(Ẽn | Sn,1(1) = J) =1{|[`+1,n]∩J|≤d}1{`∈J}P(Ẽn | Sn,1(1) = J) (i)(a) + (i)(b)

=1{|[`+1,n]∩J|≤d}1{`∈J}2
−(|[`+1,n]∩J|+1) (i)(a) + (i)(b)

× P(hn(1) ≤ h− 1 | `n(1) = `,Sn,1(1) = J)

=1{|[`+1,n]∩J|≤d}1{`∈J}2
−(|[`+1,n]∩J|+1)P(Xn,`,2 ≤ h− 1) . (ii)

We remark that in the last step, as in the proof of (4.4), we can omit the conditional event
{`n(1) = `,Sn(1) = J}, as the coin flips are independent of everything else. Moreover, in
the second step we can omit the event {dn(1) ≤ d}, as the occurrence of {hn(1) ≤ h− 1},
conditionally on {`n(1) = `} is independent of {dn(1) ≤ d}. This concludes the proof.

We now extend this result to multiple vertices, which we can do with relative ease
as long as the truncated selection sets of the vertices 1, . . . , k are disjoint. For ease of
writing, we let Sn,1 := (Sn,1(i))i∈[k] and J̄ := (Ji)i∈[k] (where Ji ⊆ Ω1 for each i ∈ [k]).

Lemma 4.4. Fix k ∈ N and consider a truncation sequence (tn)n∈N such that tn ≤ n for
all n ∈ N. Let hi, di ∈ N0, i ∈ [k], (Ji)i∈[k] ∈ Ωk1 such that the (Ji)i∈[k] are pairwise disjoint.
Then,

P(hn,1(i) ≤ hi,dn(i) ≥ di, i ∈ [k] | Sn,1 = J̄) =

k∏
i=1

P(hn,1(i) ≤ hi,dn(i) ≥ di | Sn,1(i) = Ji).

If, additionally, we let `i ∈ Ω1 for all i ∈ [k],

P(hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di, i ∈ [k] | Sn,1 = J̄)

=

k∏
i=1

P(hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di | Sn,1(i) = Ji),
(4.6)
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and
P(hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≥ di, i ∈ [k] | Sn,1 = J̄)

=

k∏
i=1

P((hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≥ di, i ∈ [k] | Sn,1(i) = Ji).

Proof. The first result follows from [12, Lemma 3.1]. We prove (4.6), the proof of the last
result follows an analogous approach.

The proof is similar to that of [12, Lemma 3.1]. Let us write Ji = {ji,1, . . . , ji,|Ji|} with
ji,1 > . . . > ji,Ji for each i ∈ [k]. Conditionally on {Sn,1 = J̄}, we have that for each
i ∈ [k],

hn,1(i) =

|Ji|∑
m=1

hi,ji,m .

Also, the event {dn(i) ≥ di} holds if and only if |Ji| ≥ di and hi,ji,m = 0 for all m ∈ [di],
and the event {`n(i) ≥ `i} holds if and only if max{m ∈ Ji : hi,m = 0} ≥ `i. As `i ≥ tn,
it follows that the event {hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di, i ∈ [k]}, conditionally on
Sn,1 = J̄ , depends solely on (hi,m)m∈Ji,i∈[k] and Ji. Since the sets (Ji)i∈[k] are pairwise
disjoint, the occurrence of the events {hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di}, for each i ∈ [k],
depend on disjoint sets of random variables. Moreover, since the random variables hi,m
for different values of m are determined by independent coin flips, we have that the
events {hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di}, for each i ∈ [k], depend on disjoint sets of
independent random variables, from which (4.6) follows. A similar reasoning proves the
final result.

To end the first part of this section, we recall a result from Addario-Berry and Eslava
on the degree of vertices 1, . . . , k in the Kingman n-coalescent.

Proposition 4.5 (Proposition 4.2, [1]). Fix k ∈ N, c ∈ (0, 2). There exists β = β(c, k) > 0

such that uniformly over integers (di)i∈[k] ∈ [0, c log n]k,

P(dn(i) ≥ di, i ∈ [k]) = 2−
∑k
i=1 di(1 + o(n−β)).

4.2 Truncated selection sets

As we have seen in the first part of this section, we can obtain explicit formulations
for the probability of events related to the size of the degree, depth, and label of vertices
1, . . . , k in the Kingman n-coalescent, under certain conditions on the truncated selection
sets Sn,1. In this part of the section, we formalize these conditions and show that they
are met with high probability. We also introduce some other properties of the truncated
selection sets that are useful in the analysis that follows in Sections 5 through 8.

Recall Ω1 from (4.3) and recall that we write Sn,1 = (Sn,1(i))i∈[k], J̄ = (Ji)i∈[k]. For
δ ∈ (0, 2) and d̄ = (di)i∈[k] ∈ Zk, define

Ad̄ := {J̄ ∈ Ωk1 : P
(
Sn,1 = J̄ , dn(i) ≥ di, i ∈ [k]

)
> 0},

Bn,δ := {J̄ ∈ Ωk1 : (J1, . . . , Jk) are pairwise disjoint and | |Ji| − 2 log n| ≤ δ log n, i ∈ [k]}.
(4.7)

Ad̄ consists of all possible outcomes of the truncated selection sets that enable the
event {dn(i) ≥ di, i ∈ [k]}, and Bn,δ consists of all truncated selection sets which enable
the decoupling of the depth, label and degree of the vertices 1, . . . , k, as follows from
Lemma 4.4.

We now present some results related to the sets Ad̄ and Bn,δ, which are based on
several results from [12]. Though we defined the truncated selection sets and the
truncated depth in terms of a general truncation sequence tn, it suffices to consider only
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the case tn = d(log n)2e in the following lemmas (as we will mostly use this choice for tn
in what follows).

Lemma 4.6 (Lemma 3.1, [12]). Let δ ∈ (0, 2) and let tn = d(log n)2e. If d̄ = (di)i∈[k] ∈ Nk0
satisfies di < (2− δ) log n for all i ∈ [k], then Bn,δ ⊆ Ad̄.

We have already discussed that τk < tn with high probability when the truncation
sequence tn diverges as n→∞ infinity. The concentration of the size of Sn,1(i) around
2 log n for any i ∈ [k] when tn = d(log n)2e (or, more generally, when tn = o(n), which
follows from a direct application of Bernstein’s inequality, see also [12, (32)] for a more
formal statement) yields the following result:

Lemma 4.7 (Lemma 3.2, [12]). Fix an integer k ∈ N and δ ∈ (0, 2) and let tn = d(log n)2e.
Then,

P
(
Sn,1 ∈ Bn,δ

)
= 1− o(1).

We also know that the elements of Sn,1 are asymptotically independent for any k ∈ N,
uniformly over the set Bn,δ. Let Rn,1 := (Rn,1(1), . . . ,Rn,1(k)) be k independent copies
of Sn,1(1). Then, we have the following result:

Lemma 4.8 (Lemma 3.2, [12]). Fix an integer k ∈ N and δ ∈ (0, 2) and let tn = d(log n)2e.
Uniformly over J̄ ∈ Bn,δ,

P
(
Sn,1 = J̄

)
= (1 + o(1))P

(
Rn,1 = J̄

)
.

The following lemma provides bounds for the decay of the tail distribution of τk,
conditionally on certain events.

Lemma 4.9. Fix k ∈ N and recall τk from (4.2). We have that (τk)n∈N is a tight sequence
of random variables. Furthermore, fix c ∈ (0, 2) and let (di)i∈[k] ∈ Nk0 such that di ≤ c log n

for all i ∈ [k]. Then,

P
(
τk < d(log n)2e

∣∣∣ dn(i) ≥ di, i ∈ [k]
)
≥ 1−O

( 1

log n

)
. (4.8)

Furthermore, let (`i)i∈[k] ∈ [n]k be distinct such that `i diverges as n→∞ for all i ∈ [k].
Then,

P

(
τk < min

i∈[k]
log `i

∣∣∣ `n(i) = `i, i ∈ [k]

)
≥ 1−O

( 1

mini∈[k] log `i

)
. (4.9)

Proof. We first prove the tightness of (τk)n∈N. Fix ε > 0 and set Kε := d2 + k2/εe. We
recall that in Definition 3.2, {aj , bj} denotes the two trees selected at step j in the
Kingman n-coalescent, for 2 ≤ j ≤ n. Also, the trees are ordered by their smallest-
labelled vertex, so that τk < Kε is implied by {aj , bj} 6⊆ [k] for all Kε ≤ j ≤ n. Since the
selection of these roots is independent at each step, we obtain

P(τk < Kε) ≥ P
( n⋂
j=Kε

{
{aj , bj} 6⊆ [k]

})
=

n∏
j=Kε

P({aj , bj} 6⊆ [k]) =

n∏
j=Kε

(
1− k(k − 1)

j(j − 1)

)
.

We then bound the product from below to obtain the lower bound

P(τk < Kε) ≥ 1−
n∑

j=Kε

k2

(j − 1)2
≥ 1− k2

∫ ∞
Kε−2

x−2 dx = 1− k2

Kε − 2
≥ 1− ε. (4.10)

As a result, P(τk ≥ Kε) ≤ ε for all n ∈ N, from which the tightness follows.
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We then prove (4.8) and set sn := d(log n)2e for ease of writing. Using Bayes’ theorem,

the bound in (4.10) and that P(dn(i) ≥ di, i ∈ [k]) = 2−
∑k
i=1 di(1+o(1)) by Proposition 4.5,

we obtain

P(τk < sn |dn(i) ≥ di, i ∈ [k]) =
P(τk < sn)

P(dn(i) ≥ di, i ∈ [k])
P(dn(i) ≥ di, i ∈ [k] | τk < sn)

=
(
1−O

(
s−1
n

))
2
∑k
i=1 diP(dn(i) ≥ di, i ∈ [k] | τk < sn) .

As in the proof of Lemma 4.4, the event {dn(i) ≥ di, i ∈ [k]} occurs when both
|Sn(i) ∩ [sn, n]| ≥ di holds and when the first di associated coin flips favour vertex

i, for all i ∈ [k]. Conditionally on {τk < sn}, we know that all these coin flips occurs at
different steps for all vertices 1, . . . , k, so that they are independent. Moreover, they are
independent of the selection sets, so that we obtain the lower bound

P(τk < sn |dn(i) ≥ di, i ∈ [k]) ≥
(
1−O

(
s−1
n

))
P(|Sn(i) ∩ [sn, n]| ≥ di, i ∈ [k] | τk < sn)

=
(
1−O

(
s−1
n

))
P

(∣∣∣ ∪ki=1 Sn(i) ∩ [sn, n]
∣∣∣ ≥ k∑

i=1

di

∣∣∣∣τk < sn

)
.

(4.11)
Again, the last step uses the conditional event, on which we have that all Sn(i) ∩ [sn, n]

are disjoint, so that |Sn(i)∩ [sn, n]| ≥ di for all i ∈ [k] is equivalent to the cardinality of the
union of all these sets being greater than the sum of the di. We also know, conditionally
on {τk < sn}, that for every j ∈ [sn, n], at most one si,j can equal one among all i ∈ [k].
So, for every j ∈ [sn, n],

P
(
∪ki=1{si,j = 1} | τk < sn

)
= kP(s1,j = 1 | τk < sn) = 2k

j − k
j(j − 1)− k(k − 1)

=
2k

j + k − 1
.

Hence, if we let (s̃j)
n
j=sn

be independent indicator random variables such that
P(s̃j = 1) = 2k/(j + k − 1), we can write, conditionally on {τk < sn}.∣∣∣( ∪ki=1 Sn(i)

)
∩ [sn, n]

∣∣∣ d= n∑
j=sn

s̃j .

Since log sn = o(log n), it is readily checked that

E

 n∑
j=sn

s̃j

 = 2k(1 + o(1)) log n, Var
( n∑
j=sn

s̃j

)
= 2k(1 + o(1)) log n.

Again using that di ≤ c log n for each i ∈ [k] and all n sufficiently large, where c < 2, we
obtain for some c̃ ∈ (0, 2− c) by using Chebychev’s inequality,

P

(∣∣∣( ∪ki=1 Sn(i)
)
∩ [sn, n]

∣∣∣ ≥ k∑
i=1

di

∣∣∣∣ τk < sn

)

≥ P

(
n∑

j=sn

s̃j ≥ ck log n

)

≥ 1− P

(( n∑
j=sn

s̃j − E
[ n∑
j=sn

s̃j

])2

≥ (c̃k log n)2

)

≥ 1− 1

(c̃k log n)2
Var
( n∑
j=sn

s̃j

)
= 1−O

( 1

log n

)
,
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which, combined with (4.11), completes the proof of (4.8).
We now prove (4.9) and we set tn = mini∈[k] log `i and note that tn diverges with n.

As in the proof of (4.8),

P
(
τk < tn

∣∣∣ `n(i) = `i, i ∈ [k]
)

≥ P
( n⋂
j=tn

{
{aj , bj} 6⊆ [k]

} ∣∣∣ `n(i) = `i, i ∈ [k]

)

=

n∏
j=tn

P({aj , bj} 6⊆ [k] | `n(i) = `i, i ∈ [k])

≥
n∏

j=tn
j 6=`i,i∈[k]

P({aj , bj} 6⊆ [k])

k∏
j=1

P
(
{a`j , b`j} 6⊆ [k] | `n(i) = `i, i ∈ [k]

)
.

Here, omitting the conditional event for j 6= `i for any i ∈ [k] yields a lower bound.
Indeed, for any two distinct i, i′ ∈ [k], if j > max{`i, `i′} then {aj , bj} = {i, i′} cannot
occur conditionally on `n(i) = `i. Furthermore, we isolate the steps `1, . . . , `k, since the
conditional event prescribes that vertex i is selected at step `i. For any j ∈ [k],

P
(
{a`j , b`j} 6⊆ [k] | `n(i) = `i, i ∈ [k]

)
= 1− P

(
{a`j , b`j} ⊆ [k] | {a`j = j} ∪ {b`j = j}

)
= 1− k − 1

`j − 1
.

As a result, we obtain

P
(
τk < tn

∣∣∣ `n(i) = `i, i ∈ [k]
)
≥

m∏
j=tn

j 6=`i,i∈[k]

(
1− k(k − 1)

j(j − 1)

) k∏
j=1

(
1− k − 1

`j − 1

)

≥
m∏

j=tn
j 6=`i,i∈[k]

(
1− k(k − 1)

(j − 1)2

)(
1− k − 1

tn

)k

=

n∏
j=tn

(
1− k(k − 1)

(j − 1)2

) k∏
j=1

(
1− k(k − 1)

(`j − 1)2

)−1(
1− k − 1

tn

)k
≥

n∏
j=tn

(
1− k(k − 1)

(j − 1)2

)(
1− k(k − 1)

(n− 1)2

)−k(
1− k − 1

tn

)k
≥ 1−O

(
t−1
n

)
,

where the last step follows from (4.10), and which concludes the proof.

Beyond the sets Ad̄ and Bn,δ and the random variable τk, we also want to control of
the probability of the events {`n(i) = `i, i ∈ [k]} and {dn(i) ≥ di, i ∈ [k]} conditionally on
the truncated selection sets Sn,1. To this end, we define, for ¯̀ := (`i)∈[k] ∈ Nk,

Ã` := {J̄ ∈ Ωk1 : P
(
`n(i) = `i, i ∈ [k],Sn,1 = J̄

)
> 0},

B̃n := {J̄ ∈ Ωk1 : (J1, . . . , Jk) are pairwise disjoint}.

We then have the following lemma, which is partially covered by [12, Lemma 3.1].

Lemma 4.10. Fix k ∈ N and let (`i)i∈[k] ∈ [n]k such that `i 6= `j when i 6= j. Then,

P(`n(i) = `i, i ∈ [k]) =
1

(n)k
. (4.12)
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Also, when the truncation sequence tn diverges with n,

P
(
`n(i) = `i, i ∈ [k],Sn,1 ∈ B̃cn

)
= o(n−k). (4.13)

Finally, let (di)i∈[k],N
k
0 and let tn = d(log n)2e. If J̄ ∈ Ad̄,

P
(
dn(i) ≥ di, i ∈ [k] | Sn,1 = J̄

)
= 2−

∑k
i=1 di . (4.14)

Proof. The first result in (4.12) follows from Corollary 3.4, as each vertex obtains a
uniform label from [n] after the relabelling of the final tree F1 in the Kingman n-coalescent
and all `i are distinct.

To prove (4.13), we write

P
(
`n(i) = `i, i ∈ [k],Sn,1 ∈ B̃cn

)
= P

(
Sn,1 ∈ B̃cn

∣∣∣ `n(i) = `i, i ∈ [k]
)
P(`n(i) = `i, i ∈ [k])

= P
(
Sn,1 ∈ B̃cn

∣∣∣ `n(i) = `i, i ∈ [k]
) 1

(n)k
,

where the last step follows from (4.12). It thus remains to argue to that probability on
the right-hand side is o(1). For Sn,1 ∈ B̃cn to hold, the truncated selection sets should
overlap at some step tn ≤ j ≤ n, i.e. τk ≥ tn should hold. Conditionally on the event
{`n(i) = `i, i ∈ [k]}, however, the truncated selection sets in Sn,1 cannot overlap at
certain steps. Namely, for j > maxi∈[k] `i, j ∈ Sn,1(i) can hold for at most one i ∈ [k].
Indeed, if the converse would be the case, i.e. j ∈ Sn,1(i) and j ∈ Sn,1(i′) for some
distinct i, i′ ∈ [k], then one of the vertices i, i′, let us assume this is vertex i, would lose
the associated coin flip at step j and hence its label in the random recursive tree would
be j > `i. This clearly contradicts the conditional event. As a result, on the conditional
event {`n(i) = `i, i ∈ [k]}, the event {Sn,1 ∈ B̃cn} implies that {tn ≤ τk ≤ maxi∈[k] `i} holds.
Hence, by Lemma 4.9 and since tn diverges with n,

P
(
Sn,1 ∈ B̃cn

∣∣∣ `n(i) = `i, i ∈ [k]
)
≤ P

(
tn ≤ τk ≤ max

i∈[k]
`i

)
≤ P(τk ≥ tn) = o(1),

as desired.
The final result in (4.14) is proved in [12, Lemma 3.2].

In Lemma 4.4 we saw that, as long as the truncated selection sets (Sn,1(i))i∈[k]

are pairwise disjoint, then the events {hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di}, i ∈ [k], are
independent, conditionally on Sn,1. Furthermore, when the truncation sequence tn
diverges as n → ∞, we already observed that the event {τk < tn} holds with high
probability by Lemma 4.9, which implies that the (Sn,1(i))i∈[k] are disjoint.

On the other hand, we use the truncated depths (hn,1(i))i∈[k] merely for technical
reasons, and are really interested in the depths (hn(i))i∈[k]. As a result, choosing a
truncation sequence (tn)n∈N that diverges with n ‘too quickly’, may lead to different
behaviour of hn,1(1) compared to hn(1). In other words, if tn grows ‘too quickly’, then
hn,2(1) = hn(1)− hn,1(1) might become ‘too large’. In the following lemma we make this
informal statement more precise and provide constraints on tn to avoid such discrepan-
cies between hn(1) and hn,1(1).

Lemma 4.11 (Partially from Lemma 2.7, [12]). Fix k ∈ N and c ∈ (0, 2). If di ≤ c log n for
all i ∈ [k] and tn = d(log n)2e, then for any j ∈ [k] and any ε > 0,

lim
n→∞

P
(
hn,2(j) ≥ ε

√
log n

∣∣∣dn(i) ≥ di, i ∈ [k]
)

= 0. (4.15)

Furthermore, let (`i)i∈[k] ∈ [n]k be k distinct integers that diverge as n → ∞. If
log tn = o(mini∈[k]

√
log `i), then for any j ∈ [k] and any ε > 0,

lim
n→∞

P
(
hn,2(j) ≥ ε

√
log `j

∣∣∣ `n(i) = `i, i ∈ [k]
)

= 0. (4.16)
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Remark 4.12. Assume the truncation sequence (tn)n∈N satisfies the assumptions of
Lemma 4.11. As a direct consequence of Lemma 4.11, the limiting distributions of

hn(j)− (log n− dj/2)√
log n− dj/4

and
hn,1(j)− (log n− dj/2)√

log n− dj/4

conditionally on the event dn(i) ≥ di for al i ∈ [k], with di ≤ c log n for all i ∈ [k],
are identical (assuming they both exist), for any j ∈ [k]. This follows from Slutsky’s
theorem [35, Lemma 2.8] and since

√
log n− dj/4 = Θ(

√
log n). Similarly, conditionally

on `n(i) = `i, i ∈ [k] (where the `i diverge as n→∞), the limiting distributions of

hn(j)− log `j√
log `j

and
hn,1(j)− log `j√

log `j

are identical (assuming they exist), for any j ∈ [k].

Proof. The result in (4.15) follows from [12, Lemma 2.7].
To prove (4.16), we consider j = 1 only by the exchangeability of the vertices. We

first note that tn ≤ mini∈[k] `i by the assumption on tn and since the `i diverge with n.
As a result, the event {`n(i) = `i, i ∈ [k]} is solely dependent on the truncated selection
sets Sn,1 and the associated coin flips of the truncated selection sets, whereas hn,2(1) is
determined by the set Sn(1) ∩ [2, tn − 1] and its associated coin flips. It thus follows that
hn,2(1) is independent of the event {`n(i) = `i, i ∈ [k]}. The result then follows from the
Markov inequality and by the assumption on tn, as

P(hn,2(1) ≥ ε
√

log `1) ≤ E [hn,2(1)]

ε
√

log `1
=

1

ε
√

log `1

tn−1∑
j=2

1

j
= O

( log tn√
log `1

)
= o(1),

by the assumptions on tn, which concludes the proof.

5 Joint properties of high-degree vertices

In this section we use the preliminary results proved in Section 4 to study the joint
behaviour of the depth and label of high-degree vertices.

We set

h := (log n− d/2) + y
√

log n− d/4, ` := n exp(−d/2 + x
√
d/4), tn := d(log n)2e, (5.1)

with x, y ∈ R. We then have the following result.

Proposition 5.1. Fix a ∈ [0, 2), let h, ` and tn be as in (5.1), with d ∈ N0, and let M and
N be two independent standard normal random variables. When lim supn→∞ d <∞,

lim
n→∞

P(hn,1(1) ≤ h |dn(1) ≥ d) = Φ(y). (5.2)

When, instead, d diverges as n→∞ such that limn→∞ d/ log n = a,

lim
n→∞

P(hn,1(1) ≤ h, `n(1) ≥ ` |dn(1) ≥ d) = P

(
M

√
a

4− a
+N

√
1− a

4− a
≤ y,M > x

)
.

(5.3)

Remark 5.2. (i) As M
√
a/(4− a)+N

√
1− a/(4− a) ∼ N (0, 1), the result in (5.3), when

omitting the event `n(1) ≥ ` (or, equivalently, letting x→ −∞ and setting a = 0), yields

lim
n→∞

P(hn,1(1) ≤ h |dn(1) ≥ d) = Φ(y),
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and hence complements the result in (5.2) in the case that d diverges with n such that
d ≤ c log n for some c ∈ (0, 2). Together, they are a generalisation of [12, Lemma 2.5],
where only a parametrised version with d = ba log nc+b and a ∈ [0, 2), b ∈ Z is considered.

(ii) Combined with Lemma 4.11 and Remark 4.12, we obtain that the results in
Proposition 5.1 hold when we substitute hn(1) for hn,1(1) as well.

Proof. We first prove (5.3) and briefly discuss how to prove (5.2) using [12, Lemma 2.5]
at the end. In the setting of (5.3), we recall that we assume that d diverges as n→∞
and h, ` and tn are as in (5.1).

Take c ∈ (a, 2). By Lemma 4.1,

P(hn,1 ≤ h, `n(1) ≥ ` |dn(1) ≥ d)

=
P(hn,1 ≤ h, `n(1) ≥ `,dn(1) ≥ d)

P(dn(1) ≥ d)

=
1

P(dn(1) ≥ d) 2d
E
[
1{|[`,n]∩Sn,1(1)|≥d+1}P(Xn,`,1 +Xn,`,2 ≤ h,Xn,`,1 ≥ 1 | Sn,1(1))

]
,

where we recall that, conditionally on Sn,1(1), Xn,`,1 ∼ Bin(|[`, n] ∩ Sn,1(1)| − d, 1/2)

and Xn,`,2 ∼ Bin(|[tn, ` − 1] ∩ Sn,1(1)|, 1/2) (where we set Xn,`,1 = 0, Xn,`,2 = 0 when
|[`, n]∩Sn,1(1)|−d ≤ 0 and |[tn, `−1]∩Sn,1(1)| = 0, respectively). We observe that, since d
diverges with n and d ≤ c log n (with c ∈ (a, 2)), ` = n exp(−d/2+x

√
d/4) > d(log n)2e = tn

for all n large. As a result, Xn,`,2 is non-zero with positive probability.
Since P(dn(1) ≥ d) 2d = 1 + o(1) by Proposition 4.5, we obtain

P(hn,1 ≤ h, `n(1) ≥ ` |dn(1) ≥ d)

= (1 + o(1))E
[
1{|[`,n]∩Sn,1(1)|≥d+1}P(Xn,`,1 +Xn,`,2 ≤ h,Xn,`,1 ≥ 1 | Sn,1(1))

]
.

To prove the expected value has the desired limit, we start by rewriting the binomial
random variables Xn,`,1 and Xn,`,2. Let (Inj )j∈[n],n∈N, (Ĩnj )j∈[n],n∈N be two i.i.d. sequences
of independent Bernoulli(1/2) random variables. Finally, let Qn := |[`, n] ∩ Sn,1(1)|,
Q̃n := |[tn, `− 1] ∩ Sn,1(1)| = Sn,1(1)−Qn, independent of the Inj , Ĩ

n
j . Then,

Xn,`,1 :=

Qn−d∑
j=1

IQn−dj , Xn,`,2 :=

Q̃n∑
j=1

ĨQ̃nj .

Here, we set Xn,`,1 = 0, Xn,`,2 = 0 if Qn − d ≤ 0, Q̃n = 0, respectively. Notice that Qn
and Q̃n are independent, that they can be determined from Sn,1(1) and that the values

of the Inj , Ĩ
n
j are independent of Sn,1(1), so that conditioning on Sn,1(1) is equivalent to

conditioning on Qn, Q̃n. We can then write the expected value in the statement of the
proposition as

E

1{Qn≥d+1}P

 Q̃n∑
j=1

ĨQ̃nj +

Qn−d∑
j=1

IQn−dj ≤ h,
Qn−d∑
j=1

IQn−di ≥ 1

∣∣∣∣Qn, Q̃n


= P

 Q̃n∑
j=1

ĨQ̃nj +

(Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj ≤ h,
(Qn−d)1{Qn−d≥1}∑

j=1

IQn−dj ≥ 1

 .

The second line follows from the fact that, by changing the upper limits of the second
and third sum in the probability on the first line from Qn − d to (Qn − d)1{Qn−d≥1}, we
can remove the indicator in the expected value. Indeed, if Qn ≤ d, then 1{Qn−d≥1} = 0,
and hence the second event in the probability cannot occur almost surely, so that the
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probability is zero. As a result, the indicator in the expected value is redundant. We thus
obtain

P

(
Q̃n∑
j=1

ĨQ̃nj +

(Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj ≤ h

)
− P

(
Q̃n∑
j=1

ĨQ̃nj ≤ h,
(Qn−d)1{Qn−d≥1}∑

j=1

IQn−dj = 0

)

= P

(
Q̃n∑
j=1

ĨQ̃nj +

(Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj ≤ h

)

− P

(
Q̃n∑
j=1

ĨQ̃nj ≤ h

)
P

( (Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj = 0

)
,

(5.4)
where the second step follows from the independence of the two sums in the second
probability on the first line. The event

{ (Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj = 0

}

occurs either when Qn ≤ d or when, given Qn ≥ d+ 1, IQn−d1 = . . . = IQn−dQn−d = 0. Hence,

P

( (Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj = 0

)
= P(Qn ≤ d) + E

[
1{Qn≥d+1}2

−(Qn−d)
]
.

Combining this with (5.4) yields

P

(
Q̃n∑
j=1

ĨQ̃nj +

(Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj ≤ h

)
− P

(
Q̃n∑
j=1

ĨQ̃nj ≤ h

)
P(Qn ≤ d)

+O
(
E
[
1{Qn≥d+1}2

−(Qn−d)
] )
.

(5.5)

What remains is to show that the first two terms yield the desired limit and that the last
term is negligible compared to the first two. Let us start with the former and tackle the
product of two probabilities on the first line. It follows from Lindeberg’s conditions [11,
Theorem 3.4.5] that

Qn − E [Qn]√
Var(Qn)

d−→ N,
Q̃n − E[Q̃n]√

Var(Q̃n)

d−→ Ñ , (5.6)

with N, Ñ ∼ N (0, 1) independent standard normal random variables, as we recall that
Qn and Q̃n are sums of independent Bernoulli random variables. It is readily checked
that by the choice of ` in (5.1) and since d diverges with n,

E [Qn] =

n∑
j=`

2

j
= 2 log(n/`) +O(1) = d− x

√
d(1 + o(1)),

Var(Qn) =

n∑
j=`

2

j

(
1− 2

j

)
= d− x

√
d(1 + o(1)),

(5.7)

EJP 27 (2022), paper 149.
Page 26/45

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP877
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint properties of vertices with a given degree or label in the RRT

and, by the choice of `, d and tn,

E[Q̃n] =

`−1∑
j=tn

2

j
= 2 log n− d+ x

√
d− (1 + o(1)) log log n,

Var(Q̃n) =

`−1∑
j=tn

2

j

(
1− 2

j

)
= 2 log n− d+ x

√
d− (1 + o(1)) log log n.

(5.8)

By (5.6) and (5.7) we thus obtain that

P(Qn ≤ d) = P

(
Qn − E [Qn]√

Var(Qn)
≤ d− E [Qn]√

Var(Qn)

)
= P

(
Qn − E [Qn]√

Var(Qn)
≤ x
√
d(1 + o(1))√
d(1 + o(1))

)
,

(5.9)
which converges to Φ(x), where we recall that Φ : R → (0, 1) denotes the cumulative
density function of a standard normal distribution. By Skorokhod’s representation theo-
rem [5, Theorem 6.7] there exists a probability space and a coupling of (Qn)n∈N, (Q̃n)n∈N
and (Inj )j∈[n],n∈N, (Ĩ

n
j )j∈[n],n∈N such that the collections (Inj )j∈N, (Ĩ

n
j )j∈N are independent

of Qn and Q̃n and the convergence in (5.6) is almost sure rather than in distribution.
In particular, Qn/d

a.s.−→ 1, Q̃n/(2 log n − d)
a.s.−→ 1 and Qn, Q̃n

a.s.−→ ∞. Moreover, it also
follows from this representation that

2
∑n
j=1 I

n
j − n√
n

a.s.−→ N ′,
2
∑n
j=1 Ĩ

n
j − n√
n

a.s.−→ N ′′,

as n → ∞ as well, where N ′, N ′′ are independent standard normal random variables,
also independent of N, Ñ in (5.6). We then rewrite

2
∑Q̃n
j=1 Ĩ

Q̃n
j − (2 log n− d)
√

4 log n− d
=

2
∑Q̃n
j=1 Ĩ

Q̃n
j − Q̃n√
Q̃n

√
Q̃n

2 log n− d

√
2 log n− d
4 log n− d

+
Q̃n − E[Q̃n]√

Var(Q̃n)

√
Var(Q̃n)

2 log n− d

√
2 log n− d
4 log n− d

+
E[Q̃n]− (2 log n− d)√

d

√
d

4 log n− d
.

(5.10)

Combining this with the Skorokhod representation, the fact that d/ log n→ a and (5.8),
yields

2
∑Q̃n
j=1 Ĩ

Q̃n
j − (2 log n− d)
√

4 log n− d
d−→ N1

√
2− a
4− a

+N2

√
2− a
4− a

+ x

√
a

4− a
,

where N1, N2 are independent standard normal random variables. Combining this
with (5.9) and using that h = log n− d/2 + y

√
log n− d/4, we obtain

lim
n→∞

P(Qn ≤ d)P

 Q̃n∑
j=1

ĨQ̃nj ≤ h

 = Φ(x)P

(
N1

√
2− a
4− a

+N2

√
2− a
4− a

+ x

√
a

4− a
≤ y

)

= Φ(x)P

(
N

√
1− a

4− a
+ x

√
a

4− a
≤ y
)
,

(5.11)
where N is again a standard normal random variable. This deals with the second term
of (5.5). For the first term, we observe that

P

(
(Qn − d)1{Qn−d≥1}√

d
= 0

)
= P(Qn ≤ d)→ Φ(x),
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as n→∞ by (5.9), and similarly for z ≥ 0,

P

(
(Qn − d)1{Qn−d≥1}√

d
> z

)
= P

(
Qn − E [Qn]√

Var(Qn)
>
d− E [Qn] + z

√
d√

Var(Qn)

)
→ 1− Φ(x+ z),

as n→∞. Hence, for x ∈ R fixed, let us define a random variable Mx := 1{M>x}(M −x),
where M is a standard normal random variable. It then follows that P(Mx = 0) = Φ(x),
P(Mx > z) = P(M > x+ z) = 1− Φ(x+ z), z > 0, so that

(Qn − d)1{Qn−d≥1}√
d

d−→Mx. (5.12)

By the independence of the Bernoulli random variables Inj , Ĩ
n
j , we can relabel them as

a sequence of i.i.d. random variables. If we set On := Q̃n + (Qn − d)1{Qn−d≥1}, then

we can write them as (ÎOnj )j∈[On], with ÎOnj := ĨQ̃nj if 1 ≤ j ≤ Q̃n and ÎOnj := IQn−d
j−Q̃n

if

Q̃n + 1 ≤ j ≤ Q̃n + (Qn − d)1{Qn−d≥1}. Again following Lindeberg’s conditions, we find
that

2
∑n
j=1 Î

n
j − n√
n

d−→ N ′,

where N ′ is a standard normal random variable. Moreover, On/(2 log n − d)
P−→ 1 by

combining (5.6), (5.8) and (5.12). We can then write

2
∑Q̃n
j=1 Ĩ

Q̃n
j + 2

∑(Qn−d)1{Qn−d≥1}
j=1 IQn−dj − (2 log n− d)
√

4 log n− d

=
2
∑On
j=1 Î

On
j −On√
On

√
On

2 log n− d

√
2 log n− d
4 log n− d

+
Q̃n − E[Q̃n]√

Var(Q̃n)

√
Var(Q̃n)

2 log n− d

√
2 log n− d
4 log n− d

+
(Qn − d)1{Qn−d≥1}√

d

√
d

4 log n− d
+
E[Q̃n]− (2 log n− d)√

d

√
d

4 log n− d
.

If we let N,N ′, N ′′ be i.i.d. standard normal random variables, independent of Mx, and
use similar steps as in (5.12) and (5.10) (in particular using the Skorokhod representation
for the random variables (Înj )j∈[n], On, (Qn − d)1{Qn−d≥1} and that d/ log n → a), this
converges in distribution to

N ′
√

2− a
4− a

+N ′′
√

2− a
4− a

+Mx

√
a

4− a
+ x

√
a

4− a
d
= N

√
1− a

4− a
+Mx

√
a

4− a
+ x

√
a

4− a
,

Combining this with (5.11) in (5.5) yields

lim
n→∞

[
P

 Q̃n∑
j=1

ĨQ̃nj +

(Qn−d)1{Qn−d≥1}∑
j=1

IQn−dj ≤ h

− P(Qn ≤ d)P

 Q̃n∑
j=1

ĨQ̃nj ≤ h

]

= P

(
Mx

√
a

4− a
+ x

√
a

4− a
+N

√
1− a

4− a
≤ y
)

− Φ(x)P

(
N

√
1− a

4− a
+ x

√
a

4− a
≤ y
)
.

(5.13)
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By intersecting the event in the first probability on the right-hand side with the events
{Mx = 0}, {Mx > 0}, and using that Mx is independent of N , we arrive at

P

(
Mx

√
a

4− a
+ x

√
a

4− a
+N

√
1− a

4− a
≤ y,Mx > 0

)
.

By the definition of Mx, it follows that the event {Mx > 0} is equivalent to {M > x},
where we recall that M is a standard normal random variable. Moreover, on the event
{Mx > 0} = {M > x}, Mx + x = 1{M>x}(M − x) + x = M . Thus, we obtain

P

(
M

√
a

4− a
+N

√
1− a

4− a
≤ y,M > x

)
, (5.14)

as desired. Finally, we show that

lim
n→∞

E
[
1{Qn≥d+1}2

−(Qn−d)
]

= 0. (5.15)

By splitting the expected value into the cases where Qn is at most d+ 1 + bd1/2−ηc and
at least d+ 1 + dd1/2−ηe, respectively, for some η ∈ (0, 1/2), we obtain

E
[
1{Qn≥d+1}2

−(Qn−d)
]

=

d+1+bd1/2−ηc∑
m=d+1

P(Qn = m) 2−(m−d) +
∑

m≥d+1+dd1/2−ηe

P(Qn = m) 2−(m−d)

≤
d+1+bd1/2−ηc∑

m=d+1

P(Qn = m) +
∑

m≥d+1+dd1/2−ηe

P(Qn = m) 2−d
1/2−η

≤ P
(
d+ 1 ≤ Qn ≤ d+ 1 + bd1/2−ηc

)
+ 2−d

1/2−η
.

Since d1/2−η = o
(√

Var(Qn)
)

(see (5.7)), it follows from (5.6) that the probability in the
last line converges to zero. This proves (5.15), and combining this with the limit (5.14)
of the left-hand side of (5.13) in (5.5) yields the desired result and concludes the proof
of (5.3).

We now discuss the the proof of (5.2). We recall that now L := lim supn→∞ d < ∞.
Also, conditionally on Sn,1(1), let Xn = Xn(d) ∼ Bin(|Sn,1(1)| − d, 1/2) (where we set
Xn = 0 when |Sn,1(1)| − d ≤ 0) and let us define h′ := log n + y

√
log n. Note that, since

L <∞, (h− h′)/
√

log n = o(1), so that using h′ instead of h yields the same result. Again
using Lemma 4.1 and Proposition 4.5, we obtain

P(hn,1(1) > h′ |dn(1) ≥ d) =
P(hn,1(1) > h′,dn(1) ≥ d)

P(dn(1) ≥ d)

= (1 + o(1))E
[
1{|Sn,1(1)|≥d}P(Xn > h′ |Sn,1(1))

]
.

Notice that, for any Sn,1(1) ⊆ Ω1, both the indicator as well as the probability are
decreasing functions of d. As a result, we can bound the expected value from above
by setting d = 0 in the indicator and using Xn(0) in the probability. The upper bound
has the desired limit by [12, Lemma 2.5] with a = b = 0. Similarly, we can bound the
expected value from below by setting d = L in the indicator and using Xn(L) in the
probability. The result then follows from [12, Lemma 2.5] with a = 0, b = L, which yields
a matching lower bound.

To finish this section, we use the results related to the truncated selection sets
developed in Section 4 to extend Proposition 5.1 to the case of multiple vertices.
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Proposition 5.3. Fix k ∈ N, (ai)i∈[k] ∈ [0, 2)k. Let (di)i∈[k] be k integer-valued sequences

such that, for all i ∈ [k], limn→∞ di/ log n = ai. Let `i := n exp(−di/2 + xi
√
di/4) and

hi := (log n− di/2) + yi
√

log n− di/4 with (xi)i∈[k], (yi)i∈[k] ∈ Rk, and set tn = d(log n)2e.
Then,

lim
n→∞

P(hn,1(i) ≤ hi, i ∈ [k] |dn(i) ≥ di, i ∈ [k]) =

k∏
i=1

Φ(yi). (5.16)

If, additionally, di diverges as n→∞ for all i ∈ [k], let M and N be independent standard
normal random variables. Then,

lim
n→∞

P(hn,1(i) ≤ hi, `n(i) ≥ `i, i ∈ [k] |dn(i) ≥ di, i ∈ [k])

=

k∏
i=1

P

(
M

√
ai

4− ai
+N

√
1− ai

4− ai
≤ yi,M > xi

)
.

(5.17)

Remark 5.4. As is the case in Remark 5.2, it follows from Lemma 4.11 and Remark 4.12
that the result in Proposition 5.3 holds when substituting hn(i) for hn,1(i) as well.

Proof. We provide a proof for (5.17), the proof of (5.16) uses the same steps.

It suffices to prove that

P(hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di, i ∈ [k])

= (1 + o(1))2−
∑k
i=1 di

k∏
i=1

P

(
M

√
ai

4− ai
+N

√
1− ai

4− ai
≤ yi,M > xi

)
,

since then, by Proposition 4.5,

lim
n→∞

P(hn,1(i) ≤ hi, `n(i) ≥ `i, i ∈ [k] |dn(i) ≥ di, i ∈ [k])

= lim
n→∞

(1 + o(1))2−
∑k
i=1 di

∏k
i=1P

(
M
√

ai
4−ai +N

√
1− ai

4−ai ≤ yi,M > xi

)
P(dn(i) ≥ di, i ∈ [k])

=
k∏
i=1

P

(
M

√
ai

4− ai
+N

√
1− ai

4− ai
≤ yi,M > xi

)
.

Let us define

fn(J̄) := P
(
hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di, i ∈ [k] | Sn,1 = J̄

)
,

gn(J̄) :=

k∏
i=1

P(hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di | Sn,1(i) = Ji) .

Then, take c ∈ (maxi∈[k] ai, 2) and set δ := 2 − c so that Bn,δ ⊆ Ad̄ by Lemma 4.6. We
write,

P(hn,1(i) ≤ hi, `n(i) ≥ `i, dn(i) ≥ di, i ∈ [k])

= E
[
fn(Sn,1)

]
= E

[
fn(Sn,1)1{Sn,1∈Bn,δ}

]
+ E

[
fn(Sn,1)1{Sn,1∈Ad̄\Bn,δ}

]
.

(5.18)

For the first term on the right-hand side, we use that the truncated selection sets are
pairwise disjoint by the definition of Bn,δ in (4.7) and that by Lemma 4.4, fn(J̄) = gn(J̄)

for all J̄ ∈ Bn,δ and n sufficiently large as a result. Together with Lemma 4.8, recalling
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that Rn,1 is a tuple of k independent copies of Sn,1(1), this yields

E
[
fn(Sn,1)1{Sn,1∈Bn,δ}

]
=

∑
J̄∈Bn,δ

fn(J̄)P
(
Sn,1 = J̄

)
=

∑
J̄∈Bn,δ

gn(J̄)P
(
Rn,1 = J̄

)
(1 + o(1))

= E
[
gn(Rn,1)1{Rn,1∈Bn,δ}

]
(1 + o(1)).

(5.19)

Moreover, since fn(J̄), gn(J̄) ≤ 2−
∑k
i=1 di when J̄ ∈ Ad̄ by (4.14) in Lemma 4.10, and

using Lemmas 4.7 and 4.8,∣∣∣E [fn(Sn,1)1{Sn,1∈Ad̄\Bn,δ}

]
− E

[
gn(Rn,1)1{Rn,1∈Ad̄\Bn,δ}

] ∣∣∣
≤ 2−

∑k
i=1 di(P

(
Sn,1 ∈ Ad̄\Bn,δ

)
+ P

(
Rn,1 ∈ Ad̄\Bn,δ

)
)

= o
(

2−
∑k
i=1 di

)
.

(5.20)

Thus, combining (5.18), (5.19) and (5.20), we arrive at

P(hn,1(i) ≤ hi, `n(i) ≥ `i, dn(i) ≥ di, i ∈ [k]) = E
[
gn(Rn,1)

]
(1 + o(1)) + o

(
2−

∑k
i=1 di

)
.

(5.21)
As the elements of Rn,1 are i.i.d., we obtain

E[gn(Rn,1)] =

k∏
i=1

P(hn,1(i) ≤ hi, `n(i) ≥ `i,dn(i) ≥ di)

=

k∏
i=1

P(hn,1(i) ≤ hi, `n(i) ≥ `i |dn(i) ≥ di)P(dn(i) ≥ di) .

By combining Proposition 4.5, Proposition 5.1 and (5.21), we thus have

P(hn,1(i) ≤ hi, `n(i) ≥ `i, dn(i) ≥ di, i ∈ [k])

= (1 + o(1))2−
∑k
i=1 di

k∏
i=1

P

(
M

√
ai

4− ai
+N

√
1− ai

4− ai
≤ yi,M > xi

)
,

as desired, which concludes the proof.

6 Joint properties of vertices with a given label

This section is devoted to studying the joint behaviour of the degree and depth of
vertices with a given label. We use the preliminary results proved in Section 4 to obtain
the required results. The section is structured in the same way as Section 5.

We let ` ∈ [n] be increasing in n such that ` diverges as n→∞, and set

h := log `+ x
√

log `,

{
d := log(n/`) + y

√
log(n/`) if ` = o(n),

d ∈ N0 fixed otherwise,
tn := dlog `e, (6.1)

with x, y ∈ R. Moreover, we define, for the same y ∈ R used in the definition of d,
ρ ∈ (0, 1) and with P (ρ) ∼ Poi(log(1/ρ)),

Pr = Pr(y, ρ, `) :=


Φ(y) if ` = o(n),

P(P (ρ) ≤ d) if ` = (1 + o(1))ρn,

1 if ` = n− o(n).

(6.2)

We then have the following result.
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Proposition 6.1. Let d, h, ` and tn be as in (6.1) with x, y ∈ R, and recall Pr from (6.2),
with y ∈ R, ρ ∈ (0, 1). Then,

lim
n→∞

P(hn,1(1) ≤ h,dn(1) ≤ d | `n(1) = `) = Φ(x)Pr.

Remark 6.2. As is the case in Remark 5.2, it follows from Lemma 4.11 and Remark 4.12
that the result in Proposition 6.1 holds when substituting hn(i) for hn,1(i) as well.

Proof. We start by using Lemmas 4.1 and 4.10 to obtain

P(hn,1(1) ≤ h,dn(1) ≤ d | `n(1) = `)

=
P(hn,1(1) ≤ h,dn(1) ≤ d, `n(1) = `)

P(`n(1) = `)

= nE
[
2−([`+1,n]∩Sn,1(1)|+1)1{|[`+1,n]∩Sn,1(1)|≤d}1{`∈Sn,1}P

(
Xn,`,2(1) ≤ h− 1

∣∣Sn,1(1)
)]
.

We observe that we can divide the terms in the expected value into three parts which
are pairwise independent. Namely, the exponent and the first indicator, the second
indicator, and finally the conditional probability, respectively. Indeed, the exponent and
first indicator only depend on [`+ 1, n] ∩ Sn,1(1), the second indicator only on the event
{` ∈ Sn,1(1)}, and the conditional probability depends only on [tn, `− 1] ∩ Sn,1(1). Since
` > dlog `e = tn for all n sufficiently large, these three parts depend on disjoint sets of
independent random variables and are hence independent. As a result, we obtain

E
[
2−([`+1,n]∩Sn,1(1)|+1)1{|[`+1,n]∩Sn,1(1)|≤d}1{`∈Sn,1}P(Xn,`,2(1) ≤ h− 1 | Sn,1(1))

]
=

1

2
P(` ∈ Sn,1(1))E

[
2−|[`+1,n]∩Sn,1(1)|1{|[`+1,n]∩Sn,1(1)|≤d}

]
P(Xn,`,2(1) ≤ h− 1) .

(6.3)

The first probability on the right-hand side equals 2/`. The expected value on the right-
hand side can be rewritten as follows. First, by summing over all possible truncated
selection sets Sn,1(1),

E
[
2−|[`+1,n]∩Sn,1(1)|1{|[`+1,n]∩Sn,1(1)|≤d}

]
=

d∑
m=0

∑
S⊆[`+1,n]
|S|=m

2−m
∏
j∈S

2

j

∏
j 6∈S

(
1− 2

j

)

=

d∑
m=0

∑
S⊆{`+1,...,n}
|S|=m

∏
j∈S

1

j

∏
j 6∈S

(
1− 1

j

)∏
j 6∈S

j − 2

j − 1

=
`− 1

n− 1

d∑
m=0

∑
S⊆{`+1,...,n}
|S|=m

∏
j∈S

j − 1

j − 2

∏
j∈S

1

j

∏
j 6∈S

(
1− 1

j

)
.

As ` diverges with n, (` − 1)/(n − 1) = (1 + o(1))`/n. Defining S̃n,1(1) as a random
subset of {`+ 1, . . . , n} which includes each integer j ∈ {`+ 1, . . . , n} independently with
probability 1/j, the double sum and triple product can be interpreted as

E

1{|S̃n,1(1)|≤d}

n∏
j=`+1

(
1 + 1{j∈S̃n,1(1)}

1

j − 2

) .
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Combining both observations we obtain

E
[
2−|[`+1,n]∩Sn,1(1)|1{|[`+1,n]∩Sn,1(1)|≤d}

]
= (1 + o(1))

`

n
E

1{|S̃n,1(1)|≤d}

n∏
j=`+1

(
1 + 1{j∈S̃n,1(1)}

1

j − 2

) . (6.4)

By bounding the product from below by one and using (6.3), we obtain the lower bound

nE
[
2−([`+1,n]∩Sn,1(1)|+1)1{|[`+1,n]∩Sn,1(1)|≤d}1{`∈Sn,1}P(Xn,`,2(1) ≤ h− 1 | Sn,1(1))

]
≥ (1 + o(1))P

(
|S̃n,1(1)| ≤ d

)
P(Xn,`,2(1) ≤ h− 1)

= Φ(x)Pr + o(1),

(6.5)

where the last step follows if we assume that the two probabilities in the first step are
asymptotically equal to Pr and Φ(x), respectively. For an upper bound, we first expand
the product in the expected value of (6.4) to obtain

E
[
2−|[`+1,n]∩Sn,1(1)|1{|[`+1,n]∩Sn,1(1)|≤d}

]
= (1 + o(1))

`

n

(
P
(
|S̃n,1(1)| ≤ d

)
+

n−∑̀
m=1

∑
`+1≤j1<...<jm≤n

( m∏
t=1

1

jt − 2

)
E

[
1{|S̃n,1(1)|≤d}

m∏
t=1

1{jt∈S̃n,1(1)}

])
.

(6.6)

We then use the Cauchy-Schwarz inequality to bound

n−∑̀
m=1

∑
`+1≤j1<...<jm≤n

( m∏
t=1

1

jt − 2

)
E

[
1{|S̃n,1(1)|≤d}

m∏
t=1

1{jt∈S̃n,1(1)}

]

≤ P
(
|S̃n,1(1)| ≤ d

)1/2 n−∑̀
m=1

∑
`+1≤j1<...<jm≤n

m∏
t=1

(
1

jt − 2
P
(
jt ∈ S̃n,1(1)

)1/2
)
.

As P(jt ∈ S̃n,1(1)) = 1/jt ≤ 1/(jt − 2), we arrive at the upper bound

P
(
|S̃n,1(1)| ≤ d

)1/2 n−∑̀
m=1

∑
`−1≤j1<...<jm≤n−2

m∏
t=1

1

j
3/2
t

≤ P
(
|S̃n,1(1)| ≤ d

)1/2 n−∑̀
m=1

(
2(`− 2)−1/2

)m
≤ P

(
|S̃n,1(1)| ≤ d

)1/2 2

(`− 2)1/2 − 2
.

Combining this with (6.6) and (6.3) and since ` diverges with n, we thus obtain the upper
bound

nE
[
2−([`+1,n]∩Sn,1(1)|+1)1{|[`+1,n]∩Sn,1(1)|≤d}1{`∈Sn,1}P(Xn,`,2(1) ≤ h− 1 | Sn,1(1))

]
≤ (1 + o(1))

(
P
(
|S̃n,1(1)| ≤ d

)
+ P

(
|S̃n,1(1)| ≤ d

)1/2 2

(`− 2)1/2 + 2

)
P(Xn,`,2(1) ≤ h− 1)

= Φ(x)Pr + o(1),

when we (again) assume that the first and last probability on the second line are
asymptotically equal to Pr and Φ(x), respectively. As this upper bound matches the lower
bound in (6.5), we arrive at the desired result.
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It remains to prove that

P
(
|S̃n,1(1)| ≤ d

)
= Pr + o(1), P(Xn,`,2(1) ≤ h− 1) = Φ(x) + o(1). (6.7)

For the first result, let us start by considering ` = o(n), so that d := log(n/`)+y
√

log(n/`)

for y ∈ R fixed. It then follows from Lindeberg’s conditions [11, Theorem 3.4.5] that

P
(
|S̃n,1(1)| ≤ d

)
= P

 |S̃n,1(1)| − E[|S̃n,1(1)|]√
Var(|S̃n,1(1)|)

≤
log(n/`) + y

√
log(n/`)− E[|S̃n,1(1)|]√

Var(|S̃n,1(1)|)


= Φ(y) + o(1),

since

E[|S̃n,1(1)|] =

n∑
j=`+1

1

j
= log(n/`) +O(1),

Var(|S̃n,1(1)|) =

n∑
j=`+1

1

j

(
1− 1

j

)
= log(n/`) +O(1),

when ` = o(n). When ` = (1 + o(1))ρn for some ρ ∈ (0, 1), we recall that d ∈ N0 is fixed,
and instead use that for any t ∈ R,

E
[
et|S̃n,1(1)|

]
=

n∏
j=`+1

(
1− 1

j
+ et

1

j

)
=

n∏
j=`+1

(
1 +

(
et − 1

)1

j

)
.

Using that x− x2 ≤ log(1 + x) ≤ x for all x > 0 and that

n∑
j=`+1

1

j
= (1 + o(1))

∫ 1

ρ

x−1 dx = (1 + o(1)) log(1/ρ),

yields

E
[
et|S̃n,1(1)|

]
= e(et−1) log(1/ρ) + o(1).

Since, for any t ∈ R, the moment generating function (MGF) of |S̃n,1(1)| converges to the
MGF of P (ρ),

P
(
|S̃n,1(1)| ≤ d

)
= P(P (ρ) ≤ d) + o(1).

Finally, when ` = n− o(n), using Markov’s inequality yields

P
(
|S̃n,1(1)| = 0

)
≥ 1− E[|S̃n,1(1)|] = 1−

n∑
j=`+1

1

j
= 1− (1 + o(1)) log(n/`) = 1− o(1),

as desired.
For the latter result in (6.7) we set Q̃n := |[tn, ` − 1] ∩ Sn,1(1)|, let (Inj )j∈[n] denote

independent Bernoulli random variables with success probability 1/2, also independent
of Q̃n, and write

2Xn,`,2(1)− 2 log `

2
√

log `
=

2
∑Q̃n
j=1 I

Q̃n
j − Q̃n√
Q̃n

√
Q̃n

4 log `
+
Q̃n − E[Q̃n]√

Var(Q̃n)

√
Var(Q̃n)

4 log `
+
E[Q̃n]− 2 log `

2
√

log `
.

We then use a similar approach as (5.10). In particular, we use the Skorokhod embedding
which provides us with a coupling of the random variables Q̃n and (Ini )i∈[n] such that

2
∑n
j=1 I

n
j − n√
n

a.s.−→ N1,
Q̃n − E[Q̃n]√

Var(Q̃n)

a.s.−→ N2,
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where N1, N2 are two independent standard normal random variables. Moreover, a
straightforward computation of E[Q̃n] and Var(Q̃n) shows that Q̃n/(2 log `)

a.s.−→ 1 (and
hence Q̃n

a.s.−→ ∞), that Var(Q̃n)/(2 log `) → 1 and that E[Q̃n] − 2 log ` = o(
√

log `) as
n→∞. As a result, it follows that

2Xn,`,2(1)− 2 log `

2
√

log `

d−→ 1√
2
N1 +

1√
2
N2

d
= N,

where N is a standard normal random variable. As a result, we obtain (recalling that
h := log `+ x

√
log `),

P(Xn,`,2(1) ≤ h− 1) = P

(
2Xn,`,2(1)− 2 log `

2
√

log `
≤ h− 1− log `√

log `

)
= Φ(x) + o(1),

as required, which concludes the proof.

To finish this section, we use the results related to the truncated selection sets
developed in Section 4 to extend Proposition 6.1 to the case of multiple vertices. The
choice of tn is imperative, and so we define, for some (`i)i∈[k] ∈ [n]k,

tn := min
i∈[k]
dlog `ie. (6.8)

We can then formulate the following result.

Proposition 6.3. Fix k ∈ N, let (`i)i∈[k] be k distinct integer-valued sequences such
that `i increases with n and `i diverges as n → ∞ for all i ∈ [k]. Let, for i ∈ [k],
hi := log `i + xi

√
log `i and di := log(n/`i) + yi

√
log(n/`i) if `i = o(n) and di ∈ N0 fixed

otherwise, where (xi)i∈[k], (yi)i∈[k] ∈ Rk and let tn as in (6.8). Furthermore, recall the
definition of Pr in (6.2). Then,

lim
n→∞

P(hn,1 ≤ hi,dn(i) ≤ di, i ∈ [k] | `n(i) = `i, i ∈ [k]) =

k∏
i=1

Φ(xi)Pr(yi, ρi, `i).

Remark 6.4. As is the case in Remark 5.2, it follows from Lemma 4.11 and Remark 4.12
that the result in Proposition 6.3 holds when substituting hn(i) for hn,1(i) as well.

Proof. The proof follows a similar approach as the proof of Proposition 5.3. We first
write

P(hn,1 ≤ hi,dn(i) ≤ di, i ∈ [k] | `n(i) = `i, i ∈ [k])

=
P(hn,1 ≤ hi, `n(i) = `i,dn(i) ≤ di, i ∈ [k])

P(`n(i) = `i, i ∈ [k])

= (n)kP(hn,1 ≤ hi, `n(i) = `i,dn(i) ≤ di, i ∈ [k]) ,

(6.9)

where the last step follows from Lemma 4.10. We then define

fn(J̄) := P
(
hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≤ di, i ∈ [k] | Sn,1 = J̄

)
,

gn(J̄) :=

k∏
i=1

P(hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≤ di, | Sn,1(i) = Ji) .

With similar steps as in (5.18) through (5.21), we then have

P(hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≤ di, i ∈ [k])

= E
[
fn(Sn,1)1{Sn,1∈B̃n}

]
+ E

[
fn(Sn,1)1{Sn,1∈B̃cn}

]
= E

[
gn(Rn,1)

]
(1 + o(1)) +

(
E
[
fn(Sn,1)1{Sn,1∈B̃cn}

]
− E

[
gn(Rn,1)1{Rn,1∈B̃cn}

] )
.

(6.10)
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It follows from (4.13) in Lemma 4.10 that

E
[
fn(Sn,1)1{Sn,1∈B̃cn}

]
= P

(
`n(i) = `i, i ∈ [k],Sn,1 ∈ B̃cn

)
= o(n−k).

A similar argument as in the proof of (4.13) can be used to show that

E
[
gn(Rn,1)1{Rn,1∈B̃c}

]
= o(n−k),

as well. As the elements of Rn,1 are i.i.d., we have

E[gn(Rn,1)] =

k∏
i=1

P(hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≤ di)

=

k∏
i=1

P(hn,1(i) ≤ hi,dn(i) ≤ di | `n(i) = `i)P(`n(i) = `i) .

The product on the right-hand side equals

(1 + o(1))n−k
k∏
i=1

Φ(yi) Pr(yi, ρi, `i)

by Proposition 6.1 and Lemma 4.10. Using this in (6.10) yields

P(hn,1(i) ≤ hi, `n(i) = `i,dn(i) ≤ di, i ∈ [k]) =
1 + o(1)

nk

k∏
i=1

Φ(yi) Pr(yi, ρi, `i).

Combining this with (6.9) then yields the desired result.

7 Proof of Theorem 2.2

This section is devoted to proving Theorem 2.2. We first provide some additional
theory on top of what is introduced in Section 3 prior to stating the proof.

7.1 Convergence of marked point processes via finite dimensional distribu-
tions

We recall that, as discussed in Section 3, Theorem 2.2 can be understood as the weak
convergence of the marked point processMP(nt) toMPε, as defined in (3.2) and (3.1),
respectively. The approach to prove this is via the convergence of its finite dimensional
distributions (FDDs) along suitable subsequences. The FDDs of a random measure
P on X are defined as the joint distributions, for all finite families of bounded Borel
sets (B1, . . . , Bk) ∈ B(X )k, of the random variables (P(B1), . . . ,P(Bk)), see [6, Definition
9.2.II]. Moreover, by [6, Proposition 9.2.III], the distribution of a random measure P on
X is completely determined by the FDDs for all finite families (B1, . . . , Bk) of disjoint
sets from a semiring A that generates B(X ). In our case, we consider the marked point
processMP(n) on X := Z∗ ×R2, see (3.1). Here, we let

A := {{s}× (a, b]× (c, d] : s ∈ Z, a, b, c, d ∈ R}∪{[s,∞]× (a, b]× (c, d] : s ∈ Z, a, b, c, d ∈ R}
(7.1)

be the semiring that generates B(Z∗ ×R2).

Recall the counting measures X(n)
s (B), X

(n)
≥s (B), X̃

(n)
s (B), X̃

(n)
≥s (B) defined in (3.7) (in

terms of the Kingman n-coalescent) and Xs(B), X≥s(B) defined in (3.3). We observe that

X̃
(n)
s (B) =MP(n)({s} ×B), X̃

(n)
≥s (B) =MP(n)([s,∞]×B), Xs(B) =MPε({s} ×B) and
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X≥s(B) =MPε([s,∞]×B). As a result, the convergence of the FDDs ofMP(nt) to
the FDDs ofMPε can be obtained via the convergence of any finite collection of these
counting measures.

For any K ∈ N, take any (fixed) increasing integer sequence (sm)m∈[K] and define
0 ≤ K ′ := min{m : sm+1 = sK}. Also fix any sequence (Bm)m∈[K] with Bm ∈ B(R2) such
that Bm ∩ B` = ∅ when sm = s` and m 6= `. The conditions on the sets Bm ensure
that the elements {s1} ×B1, . . . , {s′K} ×BK′ , {sK′+1, . . .} ×BK′+1, . . . , {sK , . . .} ×BK of
A are disjoint. We are thus required to prove the joint distributional convergence of the
random variables

(X̃(n)
s1 (B1), . . . , X̃(n)

sK′
(BK′), X̃

(n)
≥sK′+1

(BK′+1), . . . , X̃
(n)
≥sK (BK)),

to prove Theorem 2.2. We use the method of moments combined with Proposition 3.1 to
achieve this:

Proof of Theorem 2.2 subject to Proposition 3.1. As discussed, it suffices to prove the
weak convergence of MP(nt) to MPε along subsequences (nt)t∈N such that εnt → ε

(where ε ∈ [0, 1]) as t→∞. In turn, this is implied by the convergence of the FDDs, i.e.,

by the joint convergence of the counting measures X̃(n)
s (B), X̃

(n)
≥s (B) of finite collections

of disjoint subsets of A (see (7.1)).
We recall that the points Pi in the definition of the variables Xs(B), X≥s(B) in (3.3)

are the points of the Poisson point process P with intensity measure λ(dx) := 2−x log 2 dx

in decreasing order. As a result, as the random variables (Mi, Ni)i∈N are i.i.d. and also
independent of P, Xs(B) ∼ Poi(λs(B)), X≥s(B) ∼ Poi(2λs(B)), where

λs(B) = 2−(s+1)+εP

(
M1

√
1− µ

σ2
+N1

√
µ

σ2
∈ B

)
.

We also recall that (n`)`∈N is a subsequence such that εn` → ε as `→∞. We now take
c ∈ (1/ log 2, 2) and for any K ∈ N consider any fixed non-decreasing integer sequence
(sm)m∈[K]. It follows from the choice of c and the fact that the sm are fixed with respect
to n that s1 + log2 n = ω(1) and that sK + log2 n < c log n for all n ≥ 2. Moreover, let
K ′ := min{m : sm+1 = sK} and let (Bm)m∈[K] be a sequence of sets in B(R2) such that
Bm ∩ B` = ∅ when sm = s` and m 6= `. We can then, for any (cm)m∈[K] ∈ NK0 , obtain
from Proposition 3.1 and since s1, . . . , sK = o(

√
log n), that

lim
n→∞

E

[ K′∏
m=1

(
X̃(n`)
sm (Bm)

)
cm

K∏
m=K′+1

(
X̃

(n`)
≥sm(Bm)

)
cm

]

=

K′∏
m=1

λsm(Bm)cm
K∏

m=K′+1

(2λsm(Bm))cm

= E

[ K′∏
m=1

(
Xsm(Bm)

)
cm

K∏
m=K′+1

(
X≥sm(Bm)

)
cm

]
,

where the last step follows from the independence property of (marked) Poisson point
processes and the choice of the sequences (sm, Bm)m∈[K]. The method of moments [21,
Section 6.1] then concludes the proof.

It remains to prove Proposition 3.1.

Proof of Proposition 3.1. The proof essentially follows a similar approach as the proof
of [23, Proposition 5.4]. However, as certain estimations and definitions differ, we include
it here for completeness.
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Recall that µ = 1 − 1/(2 log 2), σ2 = 1 − 1/(4 log 2), and that we have fixed K ∈
N, (am)m∈[K] ∈ [0, 2)K . Moreover, we have a non-decreasing integer sequence (sm)m∈[K]

such that s1 + log2 n = ω(1) and

lim
n→∞

sm + log2 n

log n
= am,

for all m ∈ [K], and a sequence (Bm)m∈[K] such that Bm ∈ B(R2) for all m ∈ [K] and
Bm∩B` = ∅ when sm = s` and m 6= `. We also define K ′ := min{m : sm+1 = sK}. Finally,
we recall that M and N are two independent standard normal random variables. Then,

take an arbitrary sequence (cm)m∈[K] ∈ NK0 and set L :=
∑K
m=1 cm and L′ :=

∑K′

m=1 cm.

We define d̄ = (di)i∈[L] ∈ ZL, (a′i)i∈[L], and Ā = (Ai)i∈[L] ⊂ B(R2)L as follows: For

each i ∈ [L], find the unique m ∈ [K] such that
∑m−1
`=1 c` < i ≤

∑m
`=1 c` and define

di := blog2 nc+ sm, a
′
i := am, Ai := Bm. We note that this construction implies that the

first c1 many di, a′i and Ai equal blog2 nc + s1, a1 and B1, respectively, that the next c2
many di, a′i and Ai equal blog2 nc + s2, a2 and B2, respectively, etcetera. Furthermore,
limn→∞ di/ log n = a′i for all i ∈ [L]. We then define the events

HLĀ,d̄ :=
{(hn(i)− (log n− di/2)√

log n− di/4
,

log `n(i)− (log n− di/2)√
di/4

)
∈ Ai, i ∈ [L]

}
,

Dd̄(L′, L) := {dn(i′) = d′i, i
′ ∈ [L′],dn(i) ≥ di, L′ < i ≤ L},

Ed̄(S) := {dn(i) ≥ di + 1{i∈S}, i ∈ [L]}.

We know from [1, Lemma 5.1] that by the inclusion-exclusion principle,

P(Dd̄(L′, L)) =

L′∑
j=0

∑
S⊆[L′]:
|S|=j

(−1)jP(Ed̄(S)) ,

so that intersecting the event HLĀ,d̄ in the probabilities on both sides yields

P
(
Dd̄(L′,M) ∩HLĀ,d̄

)
=

L′∑
j=0

∑
S⊆[L′]:
|S|=j

(−1)jP
(
Ed̄(S) ∩HLĀ,d̄

)
. (7.2)

Let us then define

H̃LĀ,d̄(S) :=
{(hn(i)− (log n− (di + 1{i∈S})/2)√

log n− (di + 1{i∈S})/4
,

log `n(i)− (log n− (di + 1{i∈S})/2)√
(di + 1{i∈S})/4

)
∈ Ai, i ∈ [L]

}
.

We use Proposition 5.3 (combined with Remark 5.4) with a′i = limn→∞(di + 1{i∈S})/ log n

for all i ∈ [L] and Proposition 4.5 to then obtain

P
(
Ed̄(S) ∩ H̃LĀ,d̄(S)

)
= P

(
H̃LĀ,d̄(S)

∣∣∣ Ed̄(S)
)
P(Ed̄(S))

= (1 + o(1))2−
∑L
i=1(di+1{i∈S})

L∏
i=1

P

((
M

√
a′i

4− a′i
+N

√
1− a′i

4− a′i
,M

)
∈ Ai

)
.
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Since (hn(i)− (log n− (di + 1{i∈S})/2)√
log n− (di + 1{i∈S})/4

,
log `n(i)− (log n− (di + 1{i∈S})/2)√

(di + 1{i∈S})/4

)
= (1 + o(1))

(hn(i)− (log n− di/2)√
log n− di/4

,
log `n(i)− (log n− di/2)√

di/4

)
,

we also obtain from Slutsky’s theorem [35, Lemma 2.8] that

P(Ed̄(S) ∩HLĀ,d̄)

= (1 + o(1))2−
∑L
i=1(di+1{i∈S})

L∏
i=1

P

((
M

√
a′i

4− a′i
+N

√
1− a′i

4− a′i
,M

)
∈ Ai

)
.

The right-hand side of (7.2) then equals

L∏
i=1

[
P

((
M

√
a′i

4− a′i
+N

√
1− a′i

4− a′i
,M

)
∈ Ai

)] L∑
j=0

∑
S⊆[L′]:
|S|=j

(1 + o(1))(−1)j

2
∑L
i=1(di+1{i∈S})

, (7.3)

where the product is independent of S and j and can therefore be taken out of the double
sum. The double sum equals

(1 + o(1))

L∑
j=0

∑
S⊆[L′]:
|S|=j

(−1)j2−j−
∑L
i=1 di = (1 + o(1))2−L

′−
∑L
i=1 di . (7.4)

Now, recall the definition of the variables X(n)
s (B), X

(n)
≥s (B) as in (3.7). Combining (7.2),

(7.3) and (7.4) together with the exchangeability of the degree, depth, and label of
vertices 1, . . . ,K, we arrive at

E

[
K′∏
m=1

(
X(n)
sm (Bm)

)
cm

K∏
m=K′+1

(
X

(n)
≥sm(Bm)

)
cm

]
= (n)LP

(
Dd̄(L′, L) ∩HLĀ,d̄

)
= (1 + o(1))2L log2 n−L

′−
∑L
i=1 di

L∏
i=1

P

((
M

√
a′i

4− a′i
+N

√
1− a′i

4− a′i
,M

)
∈ Ai

)
,

(7.5)

since (n)L := n(n − 1) · · · (n − (L − 1)) = (1 + o(1))nL. We now recall that there are
exactly cm many di, a′i, and Ai that equal blog2 nc+ sm, am, and Bm, respectively, for each
m ∈ [K] and that sK′+1 = . . . = sK , so that

L∏
i=1

P

((
M

√
a′i

4− a′i
+N

√
1− a′i

4− a′i
,M

)
∈ Ai

)

=

K∏
m=1

P

((
M

√
am

4− am
+N

√
1− am

4− am
,M

)
∈ Bm

)cm
,

L log2 n− L′ −
L∑
i=1

di = −
K′∑
m=1

(sm + 1− εn)cm −
K∑

m=K′+1

(sK − εn)cm.
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Combined with (7.5), this finally yields

E

[
K′∏
m=1

(
X(n)
sm (Bm)

)
cm

K∏
m=K′+1

(
X

(n)
≥sm(Bm)

)
cm

]

= (1 + o(1))

K′∏
m=1

(
P

((
M

√
am

4− am
+N

√
1− am

4− am
,M

)
∈ Bm

)
2−(sm+1)+εn

)cm
×

K∏
m=K′+1

(
P

((
M

√
am

4− am
+N

√
1− am

4− am
,M

)
∈ Bm

)
2−sK+εn

)cm
.

To prove the second result in Proposition 3.1, we use that for s1, . . . , sK = o(
√

log n),(hn(i)− (log n− di/2)√
log n− di/4

,
log `n(i)− (log n− di/2)√

di/4

)
= (1 + o(1))

(hn(i)− µ log n√
σ2 log n

,
log `n(i)− µ log n√

(1− σ2) log n

)
,

and that in this case, am = limn→∞(sm + log2 n)/ log n = 1/ log 2 for all m ∈ [K]. As a
result, noting that

1/ log 2

4− 1/ log 2
= 1− µ/σ2,

a similar approach as the above proof for the random variables X̃(n)
s (B), X̃

(n)
≥s (B) yields

the desired result.

8 Proof of Theorems 3.5 and 3.7

In this section we provide the final steps that build on Propositions 5.1 and 6.1 to
prove Theorems 3.5 and 3.7. In particular, we show how to include the graph distance
between vertices 1, . . . , k in the Kingman n-coalescent. As mentioned at the end of
Section 3, combining Theorems 3.5 and 3.7 with Corollary 3.4 then immediately implies
Theorems 2.4 and 2.6, respectively.

Intuitively, the graph distance between vertices can be related to their (truncated)
depth. By the definition of τk, the largest common ancestor of any two distinct vertices
i, j ∈ [k] in the random recursive tree has label at most τk and hence the sum of the
depths and truncated depths of vertices i and j form an upper and lower bound for the
graph distance between these vertices in the Kingman n-coalescent, respectively. Since
the depth and the truncated depth are asymptotically equal under certain constraints
on the truncation sequence tn (see Lemma 4.11 and Remark 4.12), and since (τk)n∈N
forms a tight sequence of random variables by Lemma 4.9, these bounds on the graph
distance are sufficiently sharp. Using the largest common ancestor to provide a lower
bound on the graph distance has been used by Munsonius and Rüschendorf for b-are
recursive trees [29] and by Ryvkina for random split trees [33], previously.

We formalise the above intuition in the remainder of the section, in which we prove
Theorems 3.5 and 3.7.

Proof of Theorem 3.5. We prove (3.6). The proof of (3.5) uses an analogous approach
with (5.16) in Proposition 5.3, and hence the proof is omitted.

We set tn = d(log n)2e, Dk := {dn(i) ≥ di, i ∈ [k]} and, for ease of writing, let
fi := log n− di/2 and recall that di diverges with n such that ai := limn→∞ di/ log n exists
for all i ∈ [k]. From Proposition 5.3, we obtain that the tuple( hn,1(i)− fi√

log n− di/4
,

log `n(i)− fi√
di/4

)
i∈[k]

,
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conditionally on the event Dk, converges in distribution to(
Mi

√
ai

4− ai
+Ni

√
1− ai

4− ai
,Mi

)
i∈[k]

,

where we recall that ai := limn→∞ di/ log n. Moreover, by the choice of tn at the start
of the proof, combining the above result with Lemma 4.11 and Remark 4.12 yields the
same result when substituting hn(i) for hn,1(i). What remains is to include the graph
distance between the vertices 1, . . . , k to prove Theorem 3.5. We use the trivial upper
bound distn(i, j) ≤ hn(i) + hn(j) i, j ∈ [n] to obtain(( hn(i)− fi√

log n− di/4
,

log `n(i)− fi√
di/4

)
i∈[k]

,
( distn(i, j)− (fi + fj)√

2 log n− (di + dj)/4

)
1≤i<j≤k

)
≤
(( hn(i)− fi√

log n− di/4
,

log `n(i)− fi√
di/4

)
i∈[k]

,
(hn(i) + hn(j)− (fi + fj)√

2 log n− (di + dj)/4

)
1≤i<j≤k

)
,

(8.1)

where the inequality holds element-wise and almost surely. We now observe that

hn(i) + hn(j)− (fi + fj)√
2 log n− (di + dj)/4

=
hn(i)− (fi)√
log n− di/4

√
log n− di/4

2 log n− (di + dj)/4

+
hn(j)− fj√
log n− dj/4

√
log n− dj/4

2 log n− (di + dj)/4
.

(8.2)

Since di/ log n → ai, it follows that the two deterministic square root terms on the
right-hand side converge to

√
(4− ai)/(8− (ai + aj)) and

√
(4− aj)/(8− (ai + aj)), re-

spectively. Furthermore, by the joint convergence of the depth and label of vertices
1, . . . , k, conditionally on Dk, it thus follows from the continuous mapping theorem [5]
and Slutsky’s theorem [35, Lemma 2.8], that(( hn(i)− fi√

log n− di/4
,

log `n(i)− fi√
di/4

)
i∈[k]

,
(hn(i) + hn(j)− (fi + fj)√

2 log n− (di + dj)/4

)
1≤i<j≤k

)
d−→
((

Mi

√
ai

4− ai
+Ni

√
1− ai

4− ai
,Mi

)
i∈[k]

,

(Mi
√
ai +Ni

√
4− 2ai +Mj

√
aj +Nj

√
4− 2aj√

8− (ai + aj)

)
1≤i<j≤k

)
.

Combined with (8.1), and letting, for (xi, yi)i∈[k] ∈ (R2)k, and (zi,j)1≤i<j≤k ∈ Rk(k−1)/2

fixed,

hi := (log n− di/2) + xi
√

log n− di/4, ˜̀
i := (log n− di/2) + yi

√
di/4,

Li,j := (2 log n− (di + dj)/2) + zi,j

√
2 log n− (di + dj)/4,

(8.3)

this yields,

lim inf
n→∞

P(hn(i) ≤ hi, log `n(i) ≤ ˜̀i, i ∈ [k],distn(i, j) ≤ Li,j , 1 ≤ i < j ≤ k | Dk)

≥ P
(
Mi

√
ai

4− ai
+Ni

√
1− ai

4− ai
≤ xi,Mi ≤ yi, i ∈ [k],

Mi
√
ai +Ni

√
4− 2ai +Mj

√
aj +Nj

√
4− 2aj√

8− (ai + aj)
≤ zi,j , 1 ≤ i < j ≤ k

)
.

(8.4)

It remains to obtain a matching lower bound. We make use of the following observation:
In the Kingman n-coalescent process, assume two vertices i1, i2 are in distinct trees
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at step j of the coalescent. Then, the sum of their depths at step j is bounded from
above by the graph distance between i1 and i2 in the final tree of the coalescent. That
is, hFj (i1) + hFj (i2) ≤ distF1

(i1, i2) on the event that i1, i2 are in two distinct trees in the
forest Fj . See Figure 1 for an example, where the graph distance between vertices 1 and
3 in F1 is larger than the sum of the depths of 1 and 3 in F2.

This observation allows us to use the truncated depths hn,1(i) to bound the graph
distances between the vertices 1, . . . , k. Indeed, hn,1(i) = hFtn (i) denotes the depth of
vertex i in the tree at the truncation time tn. Recall that the event {τk < tn} denotes that
the vertices 1, . . . , k are in distinct trees at step tn, which holds with high probability by
Lemma 4.9. For hi, ˜̀i, Li,j as in (8.3), we thus have

P(hn(i) ≤ hi, log `n(i) ≤ ˜̀i, i ∈ [k],distn(i, j) ≤ Li,j , 1 ≤ i < j ≤ k | Dk)

≤ P(hn,1(i) ≤ hi, log `n(i) ≤ ˜̀i, i ∈ [k], hn,1(i) + hn,1(j) ≤ Li,j , 1 ≤ i < j ≤ k, τk < tn | Dk)

+ P(τk ≥ tn | Dk)

≤ P(hn,1(i) ≤ hi, log `n(i) ≤ ˜̀i, i ∈ [k], hn,1(i) + hn,1(j) ≤ Li,j , 1 ≤ i < j ≤ k | Dk)

+ P(τk ≥ tn | Dk).

The last term tends to zero with n by Lemma 4.9. With the same approach as in (8.2)
and (8.4), we thus obtain

lim sup
n→∞

P(hn(i) ≤ hi, log `n(i) ≤ ˜̀i, i ∈ [k],distn(i, j) ≤ Li,j , 1 ≤ i < j ≤ k | Dk)

≤ P
(
Mi

√
ai

4− ai
+Ni

√
1− ai

4− ai
≤ xi,Mi ≤ yi, i ∈ [k],

Mi
√
ai +Ni

√
4− 2ai +Mj

√
aj +Nj

√
4− 2aj√

8− (ai + aj)
≤ zi,j , 1 ≤ i < j ≤ k

)
.

Combined with the matching lower bound which follows from (8.4), this concludes the
proof.

In a similar spirit, we prove Theorem 3.7. Again, combined with Corollary 3.4, this
implies Theorem 2.6.

Proof of Theorem 3.7. The proof follows a similar approach to the proof of Theorem 3.5.
Recall the random variables (d∗n(i))i∈[k] and (Zi)i∈[k] from (3.9) and set tn = mini∈[k] log `i.
Proposition 6.1 provides that the tuple(

d∗n(i),
hn,1(i)− log `i√

log `i

)
i∈[k]

, (8.5)

conditionally on the event Lk := {`n(i) = `i, i ∈ [k]}, converges in distribution to
(Zi, Ni)i∈[k], where the Ni are i.i.d. standard normal random variables, also independent
of the Zi. By our choice of tn, Lemma 4.11 and Remark 4.12 yield that the result holds
when hn,1(i) is substituted by hn(i) as well. As in (8.1), we can use the trivial upper
bound distn(i, j) ≤ hn(i) + hn(i), i, j ∈ [n]. We can thus write, similar to (8.2),

distn(i, j)− (log `i + log `j)√
log `i + log `j

≤ hn(i)− log `i√
`i

√
log `i

log `i + log `j

+
hn(j)− log `j√

log `j

√
log `j

log `i + log `j
.

(8.6)
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Define, for (yi)i∈[k] ∈ Rk, (zi,j)1≤i<j≤k ∈ Rk(k−1)/2 fixed,

hi := log `i + yi
√

log `i, Li,j := (log `i + log `j) + zi,j
√

log `i + log `j , 1 ≤ i < j ≤ k.

Recall the limits ci,j , cj,i of the two square-root terms on the right-hand side of (8.6)
from (3.8). We thus obtain, for (xi)i∈[k] ∈ Rk fixed, by (8.6) and (8.5) (and the remark on
the hn(i) below (8.5)) together with the continuous mapping theorem [5],

lim inf
n→∞

P(d∗n(i) ≤ xi, hn(i) ≤ hi, i ∈ [k],distn(i, j) ≤ Li,j , 1 ≤ i < j ≤ k | Lk)

≥ P(Zi ≤ xi, Ni ≤ yi, i ∈ [k], ci,jNi + cj,iNj ≤ zi,j , 1 ≤ i < j ≤ k) .
(8.7)

We now use the same observation made after (8.4). That is, on the event {τk < tn},
distn(i, j) ≥ hn,1(i) + hn,1(j) holds for any two distinct vertices i, j ∈ [k]. We hence have

P(d∗n(i) ≤ xi, hn(i) ≤ hi, i ∈ [k],distn(i, j) ≤ Li,j , 1 ≤ i < j ≤ k | Lk)

≤ P(d∗n(i) ≤ xi, hn(i) ≤ hi, i ∈ [k], hn,1(i) + hn,1(j) ≤ Li,j , 1 ≤ i < j ≤ k, τk < tn | Lk)

+ P(τk ≥ tn | Lk)

≤ P(d∗n(i) ≤ xi, hn(i) ≤ hi, i ∈ [k], hn,1(i) + hn,1(j) ≤ Li,j , 1 ≤ i < j ≤ k | Lk)

+ P(τk ≥ tn | Lk) .

The last term on the right-hand side tends to zero by Lemma 4.10. Using the right-hand
side of (8.6) to rewrite the event {hn,1(i) + hn,1(j) ≤ Li,j}, we thus obtain

lim sup
n→∞

P(d∗n(i) ≤ xi, hn(i) ≤ hi, i ∈ [k],distn(i, j) ≤ Li,j , 1 ≤ i < j ≤ k | Lk)

≤ P(Zi ≤ xi, Ni ≤ yi, i ∈ [k], ci,jNi + cj,iNj ≤ zi,j , 1 ≤ i < j ≤ k) ,

which matches the lower bound in (8.7) and concludes the proof.
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