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Abstract

We prove the existence of a contraction rate for Vlasov-Fokker-Planck equation in
Wasserstein distance, provided the interaction potential is Lipschitz continuous and the
confining potential is both (locally) Lipschitz continuous and greater than a quadratic
function, thus requiring no convexity conditions. Our strategy relies on coupling
methods suggested by A. Eberle [22] adapted to the kinetic setting enabling also to
obtain uniform in time propagation of chaos in a non convex setting.
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1 Introduction

1.1 Framework

Let U and W be two functions in C1
(
Rd
)
. We consider the Vlasov-Fokker-Planck

equation:

∂tνt (x, v) = −∇x · (vνt (x, v)) +∇v · ((v +∇U (x) +∇W ∗ µt (x)) νt (x, v) +∇vνt (x, v)) ,

(1.1)
where νt(x, v) is a probability density in the space of positions x ∈ Rd and velocities
v ∈ Rd,

µt (x) =

∫
Rd

νt (x, dv)
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is the space marginal of νt and

∇W ∗ µt(x) =

∫
Rd

∇W (x− y)µt(dy).

It has the following probabilistic counterpart, the non linear stochastic differential
equation of McKean-Vlasov type, i.e. νt is the density of the law at time t of the R2d-
valued process (Xt, Vt)t≥0 evolving as the mean field SDE (diffusive Newton’s equations)

dXt = Vtdt

dVt =
√

2dBt − Vtdt−∇U (Xt) dt−∇W ∗ µt (Xt) dt

µt = Law (Xt) .

(1.2)

Here, (Xt, Vt) ∈ Rd ×Rd, (Bt)t≥0 is a Brownian motion in dimension d on a probability
space (Ω,A,P), and µt is the law of the position Xt. The symbol ∇ refers to the gradient
operator, and the symbol ∗ to the operation of convolution.

Both in the probability and in the partial differential equation community, existence
and uniqueness of McKean-Vlasov processes have been well studied. See [36, 25, 44] for
some historical milestones. In the specific case of (1.1) and (1.2), under the assumptions
on U and W introduced in the next section, existence and uniqueness follow from [37]
for square integrable initial data.

A related process is the N particles system in Rd in mean field interaction

∀i ∈ J1, NK ,


dXi

t = V it dt,

dV it =
√

2dBit − V it dt−∇U
(
Xi
t

)
dt− 1

N

N∑
j=1

∇W
(
Xi
t −X

j
t

)
dt,

(1.3)
where Xi

t and V it are respectively the position and the velocity of the i-th particle,
and

(
Bit, 1 ≤ i ≤ N

)
are independent Brownian motions in dimension d. One can see

equation (1.3) as an approximation of equation (1.2), where the law µt is replaced by the
empirical measure µNt = 1

N

∑N
i=1 δXi

t
.

It is well known, at least in a non kinetic setting [37, 44], that, under some weak
conditions on U and W , µNt converges in some sense toward the law µt of Xt solution
of (1.2). This phenomenon has been stated under the name propagation of chaos, an
idea motivated by M. Kac [32]), and greatly developed by A.S. Sznitman [44]. See the
recent reviews on propagation of chaos [16, 15] and references therein for an overview
on the subject.

In statistical physics, (1.3) is a Langevin equation that describes the motion of N
particles subject to damping, random collisions and a confining potential U and inter-
acting with one another through an interaction potential W , which can be polynomial
(granular media), Newtonian (interacting stellar) or Coulombian (charged matter). See
for instance [34] for an english translation of P. Langevin’s landmark paper on the physics
behind the standard underdamped Langevin dynamics. Therefore, Equation (1.1) has
the following natural interpretation: the solution νt is the density of the law at time t of
the process (Xt, Vt)t≥0 evolving according to (1.2), and thus describes the limit dynamic
of a cloud of (charged) particles. In particular, it holds importance in plasma physics,
see [47].

More recently, mean-field processes such as (1.3) have drawn much interest in the
analysis of neuron networks in machine learning [18, 17]. In this context of stochas-
tic algorithms, it is known that the underdamped Langevin dynamics (not necessarily
with mean-field interactions) can converge faster than the overdamped (i.e non kinetic)
Langevin dynamics [18, 28] toward its invariant measure. For example, the results
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on (1.2) could be applied to study the convergence of the Hamiltonian gradient de-
scent algorithm for the overparametrized optimization as done in [33] for Generative
Adversarial Network training.

The goal of the present work is twofold. We are interested, first, in the long-time
convergence of the solution of (1.2) toward an equilibrium and, second, to a uniform in
time convergence as N → +∞ of (1.3) toward (1.2). It is well known that such results
cannot hold in full generality, as the non-linear equation (1.1) may have several equilibria.
Here we will consider cases where the interaction is sufficiently small for the non-linear
equilibrium to be unique and globally attractive, and for the propagation of chaos to be
uniform in time.

There are various methods to study the long time behavior of kinetic type processes,
such as Lyapunov conditions or hypocoercivity, and we will discuss these approaches
and compare them with our results later on. We rely here on coupling methods following
the guidelines of A. Eberle et al. in [23] where the convergence to equilibrium is
established for (1.2) without interaction, and also extend the approach to handle only
locally Lipschitz coefficient. In a second part, we also use reflection couplings (see [21])
for the propagation of chaos property.

Let us briefly describe the coupling method. The basic idea is that an upper bound on
the Wasserstein distance between two probability distributions is given by the construc-
tion of any pair of random variables distributed respectively according to those. The
goal is thus to construct simultaneously two solutions of (1.2) that have a trend to get
closer with time. Have (Xt, Vt) be a solution of (1.2) driven by some Brownian motion
(Bt)t>0 and let (X ′t, V

′
t ) solves

dX ′t = V ′t dt

dV ′t =
√

2dB′t − V ′t dt−∇U (X ′t) dt−∇W ∗ µt (X ′t) dt

µ′t = Law (X ′t) .

with (B′t)t>0 a d-dimensional Brownian motion. A coupling of (X,V ) and (X ′, V ′) then
follows from a coupling of the Brownian motions B and B′. Choosing B = B′ yields
the so-called synchronous coupling, for which the Brownian noise cancels out in the
infinitesimal evolution of the difference (Zt,Wt) = (Xt −X ′t, Vt − V ′t ). In that case the
contraction of a distance between the processes can only be induced by the deterministic
drift, as in [8]. Such a deterministic contraction only holds under very restrictive
conditions, in particular U should be strongly convex. Nevertheless, in more general
cases, the calculation of the evolution of Zt and Wt (see Section 3.1 below) shows that
there is still some deterministic contraction when Zt +Wt = 0. We can therefore use a
synchronous coupling in the vicinity of this subspace.

Outside of {(z, w) ∈ R2d, z + w = 0}, it is necessary to make use of the noise to get
the processes closer together, at least in the direction orthogonal to this space. In order
to maximize the variance of this noise, we then use a so-called reflection coupling, which
consists in B and B′ being antithetic (i.e B′t = −Bt) in the direction of space given by
the difference of the processes, and synchronous in the orthogonal direction. In other
words, writing

et =

{
Zt+Wt

|Zt+Wt| if Zt +Wt 6= 0

0 otherwise

we consider dB′t =
(
Id− 2ete

T
t

)
dBt. Levy’s characterization then ensures that it is

indeed a Brownian motion.
Finally we construct a Lyapunov function H to take into account the trend of each

process to come back to some compact set of R2d. We are then led to the study
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of a suitable distance between the two processes, which will be of the form ρt :=

f(rt)(1 + εH(Xt, Vt) + εH(X ′t, V
′
t )), with rt = α|Zt| + |Zt + Wt|, where α, ε > 0 and the

function f are some parameters to choose. More precisely, we have to choose these
parameters carefully in order for Eρt to decay exponentially fast. This leads to several
constraints on α, ε and on the parameters involved in the definition of f , and we have to
prove that it is possible to meet all these conditions simultaneously. For the sake of clarity,
in fact, we present the proof in a different order, namely we start by introducing very
specific parameters and, throughout the proof, we check that our choice of parameters
implies the needed constraints.

The study of the limit N → +∞ is based on a similar coupling, except that we couple
a system of N interacting particles (1.3) with N independent non-linear processes (1.2).

The next subsections describe our main results and compare them to the few existing
ones in the literature. Section 2 presents the precise construction of the aforementioned
ad hoc Wasserstein distance. The proof of the long time behavior of the Vlasov-Fokker-
Planck equation when confinement and interaction coefficient are Lipschitz continuous
is done in Section 3, whereas the propagation of chaos property is proved in Section 4.
An appendix gathers technical lemmas and the modifications of the main proofs when
the confinement is only supposed locally Lipschitz continuous.

1.2 Main results

For µ and ν two probability measures on R2d, denote by Π (µ, ν) the set of couplings
of µ and ν, i.e. the set of probability measures Γ on R2d ×R2d with Γ(A×R2d) = µ(A)

and Γ(R2d ×A) = ν(A) for all Borel set A of R2d. We will define L1 and L2 Wasserstein
distances as

W1 (µ, ν) = inf
Γ∈Π(µ,ν)

∫
(|x− x̃|+ |v − ṽ|) Γ (dxdvdx̃dṽ) ,

W2 (µ, ν) =

(
inf

Γ∈Π(µ,ν)

∫ (
|x− x̃|2 + |v − ṽ|2

)
Γ (dxdvdx̃dṽ)

)1/2

.

Our main results will be stated in terms of these distances, even if we work and get
contraction in the Wasserstein distance defined with the aformentioned ρ. Let us detail
the assumptions on the potentials U and W .

Assumption 1.1. The potential U is non-negative and there exist λ > 0 and A ≥ 0 such
that

∀x ∈ Rd , 1

2
∇U (x) · x ≥ λ

(
U (x) +

|x|2

4

)
−A. (1.4)

The condition (1.4) implies that the force −∇U has a confining effect, bringing back
particles toward some compact set. It implies the following:

Lemma 1.2. If Assumption 1.1 holds, then there exists Ã ≥ 0 such that for all x ∈ Rd,

U (x) ≥ λ

6
|x|2 − Ã. (1.5)

The proof is postponed to Appendix A.1. In particular, it implies that U goes to infinity
at infinity and is bounded below. Since only the gradient of U is involved in the dynamics,
the condition U > 0 is thus not restrictive as it can be enforced without loss of generality
by adding a sufficient large constant to U . This condition is added in order to simplify
some calculations.

We will also assume that the potential U satisfies one of the two following conditions:

Assumption 1.3. There is a constant LU > 0 such that

∀x, y ∈ Rd ×Rd , |∇U (x)−∇U (y) | ≤ LU |x− y|.
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Assumption 1.4. There exist LU > 0 and a function ψ : Rd 7→ R such that

∀x, y ∈ Rd ×Rd, |∇U (x)−∇U (y) | ≤ (LU + ψ (x) + ψ (y)) |x− y|,

and
∀x ∈ Rd, 0 ≤ ψ(x) ≤ Lψ

√
λ|x|2 + 24U(x),

where Lψ > 0 is sufficiently small in the sense that

Lψ ≤ cψ(LU , λ, Ã, d, a),

where cψ is an explicit function given below in (5.9), LU is given in Assumption 1.3, λ by
Assumption 1.1, Ã by Lemma 1.2, d is the dimension and a is a parameter such that (5.1)
holds for some C0, namely is used to bound an initial moment.

Obviously, Assumption 1.4 implies Assumption 1.3. We distinguish it as it yields
simpler proofs. Actually, the proofs of our main results already rely on quite involved
computations under Assumption 1.3, and thus for the convenience of the reader we
present the proofs in this case with full details in a first step, and then in a second step
we explain how the more general situation of Assumption 1.4 is tackled.

Remark 1.5. In the literature, see for instance [40] or the recent [10], it is common to
find the assumption U twice continuously differentiable with an hessian matrix satisfying

||∇2
xU(x)|| ≤ C(1 + |∇xU(x)|), (1.6)

where ||∇2
xU(x)|| denotes the matrix norm of the hessian. Here, Assumption 1.4 together

with Assumption 1.1 yield a stronger version of (1.6). Indeed, in dimension one for
instance, we have

|U ′′(x)| = lim
y→x

|U ′(x)− U ′(y)|
|x− y|

≤LU + 2Lψ
√
λ|x|2 + 24U(x).

Using Assumption 1.1, we obtain the existence of a constant Â such that

|U ′(x)| ≥ λ

4
|x| − Â,

which implies, once again using Assumption 1.1, that

|U ′(x)|
(

4

λ
|U ′(x)|+ 4

λ
Â

)
≥ |U ′(x)||x| ≥ U ′(x)x ≥ 2λU(x) +

λ

2
|x|2 − 2A.

In particular, there are constants c1, c2, c3 and c4 such that

c1|U ′(x)|+ c2 ≥
√
c3U(x) + c4|x|2,

and therefore we obtain, for some constants C and η,

|U ′′(x)| ≤ C(1 + η|U ′(x)|),

where η has to be sufficiently small. This is no surprise as, in our work, we consider the
“local Lipschitz condition” to be a perturbation of the global Lipschitz Assumption 1.3.

Example 1.6. Assume d=1. The double-well potential given by

U (x) =

{ (
x2 − 1

)2
if |x| ≤ 1,

(|x| − 1)
2 otherwise.

satisfies Assumptions 1.1 and 1.3.
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Example 1.7. Likewise, we may consider U(x) = 1
2x

2 + 3
2 cos(x) in dimension 1, which is

neither strongly convex, nor strongly convex outside a ball, but satisfies Assumptions 1.1
and 1.3.

Example 1.8. Consider U(x) = 1
4x

2 + b
4x

4 in dimension 1. We have

∇U(x) · x =
x2

2
+ bx4 ≥

(
x2

4
+
x2

4
+
b

4
x4

)
=

(
U(x) +

x2

4

)
,

hence U satisfies Assumption 1.1. U is not Lipschitz continuous, however it satisfies

|∇U(x)−∇U(y)| =1

2
|x− y|+ b

∣∣x3 − y3
∣∣

=
1

2
|x− y|+ b |x− y|

∣∣x2 + xy + y2
∣∣

≤1

2
|x− y|+ 3b

2
|x− y|

∣∣x2 + y2
∣∣

=

(
1

2
+ ψ(x) + ψ(y)

)
|x− y| ,

where,

ψ(x) =
3b

2
x2 ≤

√
b

√
24
b

4
x4 ≤

√
b
√
λ|x|2 + 24U(x).

We then require b to be sufficiently small for Assumption 1.4 to hold.

Let us now give the assumption on the interaction potential.

Assumption 1.9. The potential W is even, i.e. W (x) = W (−x) for all x ∈ Rd, in partic-
ular ∇W (0) = 0. Moreover, there exists LW < λ/8 (where λ is given in Assumption 1.1)
such that

∀x, y ∈ Rd ×Rd, |∇W (x)−∇W (y) | ≤ LW |x− y|. (1.7)

In particular |∇W (x) | ≤ LW |x| for all x ∈ Rd.
Here we consider an interaction force that is the gradient of a potential W , as we

stick to the formalism of other related works (for instance [21]). Nevertheless, all the
results and proofs still hold if ∇W is replaced by some F : Rd 7→ Rd satisfying the
same conditions. The confinement potential may also be non gradient, however the fact
that the confinement force ∇U is a gradient simplifies the construction of a Lyapunov
function.

The condition LW ≤ λ/8 is related to the fact the interaction is considered as a
perturbation of the non-interacting process studied in [23]. Therefore, ∇W has to be
controlled by ∇U in some sense. Note that we immediately get the following bound on
the non-linear drift:

Lemma 1.10. Under Assumption 1.9, for all probability measures µ and ν on Rd and
x, x̃ ∈ Rd,

|∇W ∗ µ (x)−∇W ∗ ν (x̃) | ≤ LW |x− x̃|+ LWW1(µ, ν).

See Appendix A.2 for the proof.

Example 1.11. Assumption 1.9 is satisfied for an harmonic interactionW (x)=±LW |x|2/2,
or a mollified Coulomb interaction for a, b > 0 and k ∈ N∗

W (x) = ± a

(|x|k + bk)
1
k

, i.e ∇W (x) = ∓ ax|x|k−2

(|x|k + bk)
1+ 1

k

.

The first of our main results concern the long-time convergence of the non-linear
system (1.1).
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Theorem 1.12. Let U be continuously differentiable and satisfy Assumption 1.1 and
Assumption 1.4. There is an explicit cW > 0 such that, for all W continuously differ-
entiable satisfying Assumption 1.9 with LW < cW , there is an explicit τ > 0 such that
for all probability measures ν1

0 and ν2
0 on R2d with either a finite second moment (if

Assumption 1.3 holds) or a finite Gaussian moment (if only Assumption 1.4 holds), there
are explicit constants C1, C2 > 0 such that for all t > 0,

W1

(
ν1
t , ν

2
t

)
≤ e−τtC1 , W2

(
ν1
t , ν

2
t

)
≤ e−τtC2

where ν1
t and ν2

t are solutions of (1.1) with respective initial distributions ν1
0 and ν2

0 .
In particular, we have existence and uniqueness of, as well as convergence towards,

a stationary solution.

The second of our main results is a uniform in time convergence as N → +∞ of (1.3)
toward (1.2).

Theorem 1.13. Let C̃0 > 0 and ã > 0. Let U be continuously differentiable and satisfy
Assumptions 1.1 and 1.3. There is an explicit cW > 0 such that, for all W continuously
differentiable satisfying Assumption 1.9 with LW < cW , there exist explicit B1, B2 > 0,
such that for all probability measures ν0 on R2d satisfying Eν0

(
eã(|X|+|V |)) ≤ C̃0,

W1

(
νk,Nt , ν̄⊗kt

)
≤ kB1√

N
, W2

2

(
νk,Nt , ν̄⊗kt

)
≤ kB2√

N
,

for all k ∈ N, where νk,Nt is the marginal distribution at time t of the first k particles(
(X1

t , V
1
t ), ...., (Xk

t , V
k
t )
)

of an N particle system (1.3) with initial distribution (ν0)⊗N ,
while ν̄t is a solution of (1.1) with initial distribution ν0.

The organization of the article is as follows: in Section 2 we define the various
tools involved in the construction of a good semimetrics. In Section 3 we study the
long-time behavior of the Vlasov-Fokker-Planck equation (i.e Theorem 1.12) under the
global Lipschitz Assumption 1.3 on U . Then, in Section 4, we prove propagation of chaos
(i.e Theorem 1.13). Finally, in Section 5, we show how one may obtain the result of
Theorem 1.12 under the local Lipschitz Assumption 1.4 on U .

We choose to present these proofs in this order, starting with the case in which the
computations are the least cumbersome, in order to describe the method and motivate
the construction of the semimetrics. Then, we add the tools to deal with the propagation
of chaos. Finally, by combining the tools developed in Section 4 and the method of
Section 3, we observe that it is possible to handle a small perturbation of the Lipschitz
condition on U. In this way, we hope to gradually bring the difficulties and keep a form
of clarity despite the sometimes involved calculations.

1.3 Comparison to existing works

Space homogeneous (i.e non kinetic) models of diffusive and interacting granular
media, usually named McKean-Vlasov diffusions (see [5]), have attracted a lot of attention
in the last twenty years. They have been treated by means of a stochastic interpretation
and synchronous couplings as in [13] or in the recent [21] by reflection couplings
enabling to get rid of convexity conditions, but limited to small interactions. Remark
however that small interactions are natural to get uniform in time propagation of chaos as
for large interactions the non linear limit equation may have several stationary measures
(see [31] for example). The granular media equations were interpreted as gradient flows
in the space of probability measures in [12], leading to explicit exponential (or algebraic
for non uniformly convex cases) rates of convergence to equilibrium of the non linear
equation. Another approach relying on the dissipation of the Wasserstein distance and
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WJ inequalities was introduced in [7] handling small non convex cases. This approach
was implemented in [42] to get propagation of chaos, under roughly the same type of
assumptions. Mean-field limit using Γ-convergence tools has also been obtained in [11]
for λ-convex potentials in this non kinetic setting.

Results on the long time behavior of the non-linear equation (1.2), i.e. space inho-
mogeneous, are few, as they combine the difficulty of getting explicit contraction rates
for hypoelliptic diffusions as well as a non linear term. Recent works have tackled the
question of contraction rate for the underdamped Langevin diffusion when there are no
interaction (i.e W = 0). Results were obtained using hypocoercivity [19] and recently
functional inequalities [1, 10], all in an L2 setting that is not well adapted to the inter-
acting particle system. For singular potential U , still without interaction, convergence
rate in H1 were obtained in [4]. Concerning the uniform in time propagation of chaos,
there are no results except in the strictly convex case (with very small perturbation).
We however refer to [46] for a result on the torus with W bounded with continuous
derivative of all orders, see also [9]. Using functional inequalities (Poincaré or loga-
rithmic Sobolev inequalities) for mean field models obtained in [27], other results were
obtained provided the confining potential is a small perturbation of a quadratic function
as in [38, 26, 29] which combines the hypocoercivity approach with independent of the
number of particles constants appearing in the logarithmic Sobolev inequalities. The
convergence of the Vlasov-Fokker-Planck equation to equilibrium for specific non-convex
confining potentials and convex polynomial attractive interaction potentials using the
free-energy approach has also been obtained in [20]. Our results generalize [29]. Indeed,
we may consider non gradient interactions whereas it is crucial in their approach to know
explicitly the invariant measure of the particles system, and also we may handle only
locally Lipschitz confinement potential, whereas they impose at most quadratic growth
of the potentials, and non strictly convex at infinity potential. It is however difficult to
compare the smallness of the interaction potentials needed in both approaches. Note
however that they obtain convergence to equilibrium in entropy whereas we get it in
Wasserstein distance (controlled by entropy through a Talagrand inequality). Using
a coupling strategy, and more precisely synchronous couplings, results under strict
convexity assumption were obtained in [8] for contraction rates in Wasserstein distance,
see also [33] but only for the nonlinear system.

As we mentioned, we adapt a proof from [23], which tackles (1.2) without interaction
term. The article uses a Lyapunov condition that guarantees the recurrence of the
process on a compact set. This idea is common when proving similar results through a
probabilistic lens (see for instance [45] or [2]). Lyapunov conditions may also help to
implement hypocoercivity techniques à la Villani to handle entropic convergence for
non quadratic potentials, see [14]. Under the assumption U “greater than a quadratic
function” at infinity and ∇W Lipschitz continuous, we too consider a Lyapunov function
that allows us to construct a specific semimetric improving the convergence speed. But,
and this is to our knowledge something new, when proving propagation of chaos we add
a form of non linearity in the quantity we consider to tackle a part of the non linearity
appearing in the dynamic (see Section 4 below). Let us also mention the very recent
preprint by Schuh [43], posterior to our work, which also aims at proving long time
behavior for the second-order Langevin dynamics and its non linear limit as well as
uniform in time propagation of chaos, by constructing two separate metrics for small
and large distances and showing contraction for both these quantities.

2 Modified semimetrics

As mentioned in the introduction, the proofs rely on the construction of suitable
semimetrics on R2d and R2dN . They are introduced in this section, together with some
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useful properties. In all this section, λ,A, Ã, LU and LW are given by Assumptions 1.1, 1.3
and 1.9 and Lemma 1.2.

Before going into the details, let us highlight the main points of the construction of
the semimetrics. It relies on the superposition of three ideas. The first idea is that, in
order to deal with the kinetic process (1.2), the standard Euclidean norm |x|2 + |v|2 is not
suitable and one should consider a linear change of variables, like (x, v) 7→ (x, x+ βv) for
some β ∈ R. This is the case when using coupling methods as in [23, 8] but also when
using hypocoercive modified entropies involving mixed derivatives as in [46, 45, 3, 14],
the link being made in [39]. This motivates the definition of r below. The second idea is
a modification of this distance r by some concave function f , which is related to the fact
we are using, at least in some parts of the space, a reflection coupling. The concavity
is well adapted to Itô’s formula enabling the diffusion to provide a contraction effect
(in a compact). This method has been considered for elliptic diffusions in [22], see also
[24]. Intuitively, the contraction is produced by the fact that a random decrease in r has
more effect on f(r) than a random increase of the same amount. Finally, the third idea
is the multiplication of a distance by a Lyapunov function G, which has first been used
for Wasserstein distances in [30]. That way, on average, f(r)G tends to decay because,
when r is small, f(r) tends to decay and, when r is large, G tends to decay.

2.1 A Lyapunov function

Let

γ =
λ

2 (λ+ 1)
, B = 24

(
A+ (λ− γ) Ã+ d

)
(2.1)

and, for x, v ∈ Rd,

H (x, v) = 24U (x) + (6 (1− γ) + λ) |x|2 + 12x · v + 12|v|2 .

For µ a probability measure on Rd with finite first moment, ∇W being assumed Lipschitz
continuous, denote by Lµ the generator given by

Lµφ (x, v) = v · ∇xφ (x, v)− (v +∇U (x) +∇W ∗ µ (x)) · ∇vφ (x, v) + ∆vφ (x, v) .

The main properties of H are the following.

Lemma 2.1. Under Assumptions 1.1, 1.3 and 1.9, for all x, v ∈ Rd and µ,

H (x, v) ≥24U(x) + λ|x|2 + 12
∣∣∣v +

x

2

∣∣∣2 , (2.2)

LµH (x, v) ≤B + LW (6 + 8λ)

(∫
|y|dµ(y)

)2

−
(

3

4
λ+ λ2

)
|x|2 − γH (x, v) , (2.3)

LµH (x, v) ≤B +

((∫
|y|dµ(y)

)2

− |x|2
)(

3

4
λ+ λ2

)
− γH (x, v) . (2.4)

In particular H is non-negative and goes to +∞ at infinity.

The proof follows from elementary computations and is detailed in Appendix A.3.
Notice that the condition LW ≤ λ/8 is used here.

In the case of particular interest where µ = µt is given by (1.2), taking the expectation
in (2.4) and using Gronwall’s lemma, we immediately get the following.

Lemma 2.2. Under Assumptions 1.1, 1.3 and 1.9, let (Xt, Vt)t>0 be a solution of (1.2)
with finite second moment at initial time. For all t ≥ 0,

d

dt
EH (Xt, Vt) ≤ B − γEH (Xt, Vt) , (2.5)

EH (Xt, Vt)−
B

γ
≤
(
EH (X0, V0)− B

γ

)
e−γt. (2.6)
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2.2 Change of variable and concave modification

We start by fixing the values of some parameters. The somewhat intricate expressions
in this section are dictated by the computations arising in the proofs later on. Recall the
definition of γ and B in (2.1). Set

α = LU +
λ

4
, R0 =

√
24B

5γmin
(
3, λ3

) , R1 =

√
24 ((1 + α)2 + α2)

5γmin
(
3, λ3

) B.

For x, x̃, v, ṽ ∈ Rd, set

r(x, x̃, v, ṽ) = α|x− x̃|+ |x− x̃+ v − ṽ| .

Lemma 2.3. Under Assumptions 1.1, 1.3 and 1.9, for all x, x̃, v, ṽ ∈ Rd,

r(x, x̃, v, ṽ)2 ≤ 2
(1 + α)

2
+ α2

min
(

1
3λ, 3

) (H (x, v) +H (x̃, ṽ)) , (2.7)

so that, in particular,

r(x, x̃, v, ṽ) ≥ R1 ⇒ γH (x, v) + γH (x̃, ṽ) ≥ 12

5
B.

We refer to Appendix A.4 for the proof. Let

c = min

{
γ

36
,
B

3
,

1

7
min

(
1

2
− LU + LW

2α
, 2

√
LU + LW

2πα

)

× exp

(
−1

8

(
LU + LW

α
+ α+ 96 max

(
1

2α
, 1

))
R2

1

)}
. (2.8)

Set

ε =
3c

B
, C = c+ 2εB

and, for s ≥ 0,

φ (s) = exp

(
−1

8

(
1

α
(LU + LW ) + α+ 96εmax

(
1

2α
, 1

))
s2

)
, Φ (s) =

∫ s

0

φ (u) du

g (s) = 1− C

4

∫ s

0

Φ (u)

φ (u)
du , f (s) =

∫ min(s,R1)

0

φ (u) g (u) du.

Remark 2.4. The parameters above are far from being optimal. They are somewhat
roughly chosen as we only wish to convey the fact that every constant is explicit.

The next lemma, proved in Appendix B, gathers the intermediary bounds that will be
useful in the proofs of the main results.

Lemma 2.5. Under Assumptions 1.1, 1.3 and 1.9,

c ≤γ
6

(
1−

5γ
6

2εB + 5γ
6

)
, (2.9)

LU + LW <α, (2.10)

c+ 2εB ≤1

2

(
1− LU + LW

α

)
inf

r∈]0,R1]

rφ (r)

Φ (r)
, (2.11)

c+ 2εB ≤2

(∫ R1

0

Φ (s)φ (s)
−1
ds

)−1

, (2.12)

∀s ≥ 0, 0 =4φ′ (s) +

(
1

α
(LU + LW ) + α+ 96εmax

(
1

2α
, 1

))
sφ (s) . (2.13)
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The main properties of f are the following.

Lemma 2.6. The function f is twice continuously differentiable on (0, R1) with f ′+ (0) = 1

and f ′− (R1) > 0, and constant on [R1,∞). Moreover, it is non-negative, non-decreasing
and concave, and for all s ≥ 0,

min (s,R1) f ′− (R1) ≤ f (s) ≤ min (s, f (R1)) ≤ min (s,R1) .

Proof. First, notice that (2.12) ensures that g(s) ≥ 1
2 for all s ≥ 0. Then, all the

points immediately follow from the fact the functions φ and g are twice continuously
differentiable, positive and decreasing, with φ(0) = g(0) = 1.

2.3 The modified semimetrics

For x, x̃, v, ṽ ∈ Rd, set

G (x, v, x̃, ṽ) = 1 + εH (x, v) + εH (x̃, ṽ) ,

ρ (x, v, x̃, ṽ) = f (r (x, v, x̃, ṽ))G (x, v, x̃, ṽ) .

An immediate corollary of Lemmas 2.3 and 2.6 is that ρ is a semimetric on R2d which
controls the usual L1 and L2 distances:

Lemma 2.7. There are explicit constants C1, C2, Cr, Cz > 0 such that for all x, x′, v, v′ ∈
Rd,

|x− x′|+ |v − v′| ≤ C1ρ ((x, v) , (x′, v′))

|x− x′|2 + |v − v′|2 ≤ C2ρ ((x, v) , (x′, v′))

r(x, v, x′, v′) ≤ Crρ ((x, v) , (x′, v′))

|x− x′| ≤ Czf(r(x, v, x′, v′))
(

1 + ε
√
H(x, v) + ε

√
H(x′, v′)

)
.

We also mention a technical lemma, see Appendix A.6 for proof.

Lemma 2.8. For all x, v, x̃, ṽ ∈ Rd

|H (x, v)−H (x̃, ṽ) | ≤ CdH,1r(x, x̃, v, ṽ) + CdH,2r(x, x̃, v, ṽ)
(√

H (x, v) +
√
H (x̃, ṽ)

)
,

(2.14)
where

CdH,1 :=
24|∇U(0)|

α
and CdH,2 :=

24LU

α
√
λ

+
6(1− γ) + λ− 3

α
√
λ

+ 2
√

3 max

(
1,

1

2α

)
.

Finally, for µ and ν two probability measures on R2d and a measurable function
h : R2d ×R2d → R, we define

Wh (µ, ν) = inf
Γ∈Π(µ,ν)

∫
h (x, v, x̃, ṽ) Γ (d (x, v) d (x̃, ṽ)) .

3 Proof of Theorem 1.12

In this section, for the sake of clarity, we only assume the potential U satisfies
Assumption 1.1 and Assumption 1.3. We refer to Section 5 for the adjustment of the
proof in the case ∇U locally Lipschitz continuous.

Our goal is to prove the following result

Theorem 3.1. Let C0 > 0. Let U be continuously differentiable and satisfy Assump-
tion 1.1 and Assumption 1.3. Let

C̃K := C1
(

1 +
2εB

γ
+ 2εC0

)
+ 2ε

(
B

γ
+ C0

)
6 + 8λ

λ
.
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For all W twice continuously differentiable satisfying Assumption 1.9 with LW < c/C̃K ,
for all probability measures ν1

0 and ν2
0 on R2d satisfying Eν1

0
H ≤ C0 and Eν2

0
H ≤ C0

∀t ≥ 0, Wρ

(
ν1
t , ν

2
t

)
≤ e−(c−LW C̃K)tWρ

(
ν1

0 , ν
2
0

)
,

where ν1
t (resp. ν2

t ) is a solution of (1.1) with initial distribution ν1
0 (resp. ν2

0 ).

3.1 Step one: coupling and evolution of the coupling semimetric

Let ξ > 0, and let rc, sc : R2d 7→ [0, 1] be two Lipschitz continuous functions such that:

rc2 + sc2 = 1,

rc (z, w) = 0 if |z + w| ≤ ξ

2
or α|z|+ |z + w| ≥ R1 + ξ,

rc (z, w) = 1 if |z + w| ≥ ξ and α|z|+ |z + w| ≤ R1.

These two functions translate into mathematical terms the regions in which we use a
reflection coupling (represented by rc = 1) and the ones where we use a synchronous
coupling (represented by sc = 1). Finally, ξ is a parameter that will vanish to zero in the
end. We therefore consider the following coupling:

dXt = Vtdt

dVt = −Vtdt−∇U (Xt) dt−∇W ∗ µt (Xt) dt+
√

2rc (Zt,Wt) dB
rc
t

+
√

2sc (Zt,Wt) dB
sc
t

µt = Law (Xt)

dX̃t = Ṽtdt

dṼt = −Ṽtdt−∇U(X̃t)dt−∇W ∗ µ̃t(X̃t)dt+
√

2rc (Zt,Wt)
(
Id− 2ete

T
t

)
dBrct

+
√

2sc (Zt,Wt) dB
sc
t

µ̃t = Law(X̃t),

where Brc and Bsc are independent Brownian motions, and

Zt = Xt − X̃t, Wt = Vt − Ṽt, Qt = Zt +Wt, et =

{
Qt

|Qt| if Qt 6= 0,

0 otherwise,

and eTt is the transpose of et. Then

dZt
dt

= Wt = Qt − Zt. (3.1)

So d|Zt|
dt = Zt

|Zt| (Qt − Zt) for every t such that Zt 6= 0, and d|Zt|
dt ≤ |Qt| for every t such

that Zt = 0. In particular
d|Zt|
dt
≤ |Qt| − |Zt|.

We start by using Itô’s formula to compute the evolution of |Qt|. The following lemma is
Lemma 7 of A. Durmus et al. [21] of which, for the sake of completeness, we give the
proof.

Lemma 3.2. Under Assumption 1.1, Assumption 1.3 and Assumption 1.9, we have almost
surely for all t ≥ 0.

d|Qt| =− et ·
(
∇U (Xt)−∇U(X̃t)

)
dt− et ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt (3.2)

+ 2
√

2rc (Zt,Wt) et · dBrct
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Proof. Let t ≥ 0. We begin by considering the dynamics of Zt, Wt and Qt. We have

dZt = Wtdt

dWt = −Wtdt−
(
∇U (Xt)−∇U(X̃t)

)
dt−

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt

+ 2
√

2rc (Zt,Wt) etet · dBrct
dQt = −

(
∇U (Xt)−∇U(X̃t)

)
dt−

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt

+ 2
√

2rc (Zt,Wt) etet · dBrct .

Therefore

d|Qt|2 = −2Qt ·
(
∇U (Xt)−∇U(X̃t)

)
dt− 2Qt ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt

+ 4
√

2rc (Zt,Wt) (Qt · et) et · dBrct + 8rc2 (Zt,Wt) dt.

We consider, for η > 0, the function ψη (r) = (r + η)
1/2 which is C∞ on ]0,∞[ and satisfies

∀r ≥ 0, lim
η→0

ψη (r) = r1/2, lim
η→0

2ψ′η (r) = r−1/2, lim
η→0

4ψ′′η (r) = −r−3/2,

and thus lim
η→0

2rψ′′η (r) + ψ′η (r) = 0.

Then

dψη
(
|Qt|2

)
=− 2ψ′η

(
|Qt|2

)
Qt ·

(
∇U (Xt)−∇U(X̃t)

)
dt

− 2ψ′η
(
|Qt|2

)
Qt ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt

+ 4ψ′η
(
|Qt|2

)√
2rc (Zt,Wt) (Qt · et) et · dBrct + 8ψ′η

(
|Qt|2

)
rc2 (Zt,Wt) dt

+ 16ψ′′η
(
|Qt|2

)
rc2 (Zt,Wt) |Qt|2dt.

We make sure each individual term converges almost surely as η → 0. First, we notice
that

2|Qt|ψ′η
(
|Qt|2

)
=

|Qt|
(|Qt|2 + η)

1/2
≤ 1.

So

2ψ′η
(
|Qt|2

)
Qt ·

(
∇U (Xt)−∇U(X̃t)

)
≤ |∇U (Xt)−∇U(X̃t)| ≤ LU |Zt|.

Then, by dominated convergence, for all T ≥ 0 almost surely

lim
η→0

∫ T

0

2ψ′η
(
|Qt|2

)
Qt ·

(
∇U (Xt)−∇U(X̃t)

)
dt =

∫ T

0

Qt
|Qt|

·
(
∇U (Xt)−∇U(X̃t)

)
dt

=

∫ T

0

et ·
(
∇U (Xt)−∇U(X̃t)

)
dt.

Likewise for all T ≥ 0

2ψ′η
(
|Qt|2

)
Qt ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
≤
∣∣∣∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

∣∣∣
≤ LW |Zt|+ LWE|Zt|,

hence

lim
η→0

∫ T

0

2ψ′η
(
|Qt|2

)
Qt ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt

=

∫ T

0

et ·
(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt.
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Then, since rc (Zt,Wt) = 0 for |Qt| ≤ ξ
2 and

8ψ′η
(
|Qt|2

)
+ 16ψ′′η

(
|Qt|2

)
|Qt|2 = 4

(
1

(|Qt|2 + η)
1/2
− |Qt|2

(|Qt|2 + η)
3/2

)

= 4
η

(|Qt|2 + η)
3/2
≤ 4η

|Qt|3
,

we have by dominated convergence

lim
η→0

∫ T

0

(
8dψ′η

(
|Qt|2

)
rc2 (Zt,Wt) + 16ψ′′η

(
|Qt|2

)
rc2 (Zt,Wt) |Qt|2

)
dt = 0.

Finally, by Theorem 2.12 chapter 4 of [41]

lim
η→0

∫ T

0

4
√

2ψ′η
(
|Qt|2

)
rc (Zt,Wt) (Qt · et) et · dBrct =

∫ T

0

2
√

2rc (Zt,Wt) et · dBrc.

For any t, we obtain the desired result almost surely. The continuity of t 7→ |Qt| then
allows us to conclude that (3.2) is almost surely true for all t.

We denote

rt := α|Xt − X̃t|+ |Xt − X̃t + Vt − Ṽt| = α|Zt|+ |Qt|, (3.3)

ρt := f (rt)Gt where Gt = 1 + εH (Xt, Vt) + εH(X̃t, Ṽt). (3.4)

Since H (x, v) ≥ 0 we have Gt ≥ 1. We now state the main lemma of this section.

Lemma 3.3. Under Assumption 1.1, Assumption 1.3 and Assumption 1.9, let c ∈]0,∞[.
Then almost surely for all t ≥ 0

∀t ≥ 0, ectρt ≤ ρ0 +

∫ t

0

ecsKsds+Mt, (3.5)

where (Mt)t is a continuous local martingale and

Kt = 4f ′′ (rt) rc (Zt,Wt)
2
Gt + cf (rt)Gt + 96εmax

(
1,

1

2α

)
rtf
′ (rt) rc (Zt,Wt)

2

+

(
α
d|Zt|
dt

+ (LU + LW ) |Zt|+ LWE|Zt|
)
f ′ (rt)Gt

+ ε
(

2B − γH (Xt, Vt)− γH(X̃t, Ṽt)
)
f (rt)

+ εLW (6 + 8λ)
(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) .

Proof. Using (3.2)

|Qt| = |Q0|+AQt +MQ
t with

dAQt = −et ·
(
∇U (Xt)−∇U(X̃t)

)
dt− et ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
dt

dMQ
t = 2

√
2rc (Zt,Wt) et · dBrct .

Therefore rt = |Q0|+ α|Zt|+AQt +MQ
t . Let c > 0. By Itô’s formula

d
(
ectf (rt)

)
= cectf (rt) dt+ ectf ′ (rt) drt +

1

2
ectf ′′ (rt) 8rc2 (Zt,Wt) dt.
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Hence

ectf (rt) =f (r0) + Ât + M̂t with

dÂt =
(
cf (rt) + αf ′ (rt)

d|Zt|
dt
− f ′ (rt) et ·

(
∇U (Xt)−∇U(X̃t)

)
− f ′ (rt) et ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
+ 4f ′′ (rt) rc

2 (Zt,Wt)
)
ectdt

dM̂t =ect2
√

2f ′ (rt) rc (Zt,Wt) et · dBrct .

We now consider the evolution of Gt = 1 + εH (Xt, Vt) + εH(X̃t, Ṽt)

dGt =ε
(
Lµt

H (Xt, Vt) + Lµ̃t
H(X̃t, Ṽt)

)
dt

+ ε
√

2rc (Zt,Wt)
(
∇vH (Xt, Vt)−∇vH(X̃t, Ṽt)

)
· eteTt dBrct

+ ε
√

2rc (Zt,Wt)
(
∇vH (Xt, Vt) +∇vH(X̃t, Ṽt)

)
·
(
Id− eteTt

)
dBrct

+ ε
√

2sc (Zt,Wt)
(
∇vH (Xt, Vt) +∇vH(X̃t, Ṽt)

)
· dBsct .

Therefore ectρt = ectf (rt)Gt = ρ0 +At +Mt, where

dAt =GtdÂt + εectf (rt)
(
LµtH (Xt, Vt) + Lµ̃tH(X̃t, Ṽt)

)
dt

+ 4εectf ′ (rt) rc
2 (Zt,Wt)

(
∇vH (Xt, Vt)−∇vH(X̃t, Ṽt)

)
· etdt,

and Mt is a continuous local martingale. This last equality uses the fact that Brc and Bsc

are independent Brownian motion and that et ·
(
Id− eteTt

)
= 0. Furthermore

|∇vH (Xt, Vt)−∇vH(X̃t, Ṽt)| = 12|Xt + 2Vt − X̃t − 2Ṽt| = 12|2Qt − Zt|

≤ 24

(
1

2
|Zt|+ |Qt|

)
≤ 24 max

(
1,

1

2α

)
rt,

so that dAt ≤ ectK̃tdt, where

K̃t =
(
cf (rt) + αf ′ (rt)

d|Zt|
dt
− f ′ (rt) et ·

(
∇U (Xt)−∇U(X̃t)

)
− f ′ (rt) et ·

(
∇W ∗ µt (Xt)−∇W ∗ µ̃t(X̃t)

)
+ 4f ′′ (rt) rc

2 (Zt,Wt)
)
Gt

+ ε
(
LtH (Xt, Vt) + LtH(X̃t, Ṽt)

)
f (rt) + 96εmax

(
1,

1

2α

)
rtf
′ (rt) rc

2 (Zt,Wt) .

And we conclude using Lemma 1.10, and Lemma 2.1.

3.2 Step two : contractivity in various regions of space

At this point, we have

∀t ≥ 0, ectρt ≤ ρ0 +

∫ t

0

ecsKsds+Mt,
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where Mt is a continuous local martingale and, by regrouping the terms according to
how we will use them

Kt =

(
cf (rt) +

(
α
d|Zt|
dt

+ (LU + LW )|Zt|
)
f ′ (rt)

)
Gt (3.6)

+ 4

(
f ′′ (rt)Gt + 24εmax

(
1,

1

2α

)
rtf
′ (rt)

)
rc (Zt,Wt)

2 (3.7)

+ ε
(

2B − γH (Xt, Vt)− γH(X̃t, Ṽt)
)
f (rt) (3.8)

+ LW f
′ (rt)E (|Zt|)Gt + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) . (3.9)

Briefly,

• lines (3.6) and (3.7) will be non positive thanks to the construction of the function
f when using the reflection coupling,

• when only using the synchronous coupling, i.e when the deterministic drift is
contracting, line (3.6) alone will be sufficiently small,

• line (3.8) translates the effect the Lyapunov function has in bringing back processes
that would have ventured at infinity,

• finally, line (3.9) contains the non linearity and will be tackled by taking LW
sufficiently small.

In this section, we thus prove the following lemma

Lemma 3.4. Assume the confining potential U satisfies Assumption 1.1 and Assump-
tion 1.3. Then there is a constant cW > 0 such that for all interaction potential W
satisfying Assumption 1.9 with LW < cW , the following holds for Kt defined in (3.6)-(3.9)

EKt ≤ (1 + α) ξEGt + LW
(
CK + C0

Ke
−γt)Eρt,

with

CK = C1
(

1 +
2εB

γ

)
+

2εB

γλ
(6 + 8λ) , (3.10)

C0
K = ε

(
C1 +

6 + 8λ

λ

)(
EH (X0, V0) + EH(X̃0, Ṽ0)

)
.

The constant cW is explicit, as it will be shown in Appendix B.

To this end, we divide the space into three regions

Reg1 =
{

(Xt, Vt, X̃t, Ṽt) s.t. |Qt| ≥ ξ and rt ≤ R1

}
,

Reg2 =
{

(Xt, Vt, X̃t, Ṽt) s.t. |Qt| < ξ and rt ≤ R1

}
,

Reg3 =
{

(Xt, Vt, X̃t, Ṽt) s.t. rt > R1

}
,

and consider

EKt = E(Kt1Reg1
) + E(Kt1Reg2

) + E(Kt1Reg3
).

3.2.1 First region : |Qt| ≥ ξ and rt ≤ R1

In this region of space, we use the Brownian motion through the reflection coupling and
the construction of the function f to bring the processes closer together. Here we have
rc (Zt,Wt) = 1. Recall α|Zt|+ |Qt| = rt and Gt ≥ 1.
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• We have

α
d|Zt|
dt

+ (LU + LW ) |Zt| ≤ α|Qt| − α|Zt|+ (LU + LW ) |Zt|

= αrt − α2|Zt| − α|Zt|+ (LU + LW ) |Zt|

≤
(

1

α
(LU + LW ) + α

)
rt.

• Since Gt = 1 + εH (Xt, Vt) + εH(X̃t, Ṽt) ≥ 1,

cGt + ε
(

2B − γH (Xt, Vt)− γH(X̃t, Ṽt)
)
≤ cGt + 2εBGt = CGt. (3.11)

• We then have, by (2.13),

4φ′ (rt) +

(
1

α
(LU + LW ) + α+ 96εmax

(
1

2α
, 1

))
rtφ (rt) = 0.

Hence

4f ′′ (rt) +

(
1

α
(LU + LW ) + α+ 96εmax

(
1

2α
, 1

))
rtf
′ (rt)

=4φ′ (rt) g (rt) + 4φ (rt) g
′ (rt)

+

(
1

α
(LU + LW ) + α+ 96εmax

(
1

2α
, 1

))
rtφ (rt) g (rt)

=4φ (rt) g
′ (rt) ,

and

4φ (rt) g
′ (rt) + Cf (rt) ≤ −4

C

4
Φ (rt) + CΦ (rt) = 0.

• At this point, through this choice of function f , we are left with

Kt1Reg1
≤ LW f ′ (rt)E (|Zt|)Gt + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) .

Using Lemma 2.7, f ′ (rt) ≤ 1 and Gt ≥ 1,

E
(
Kt1Reg1

)
≤ LWC1E (ρt)E (Gt) + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
E (ρt) .

Recall (2.6)

E (Gt) =1 + εEH (Xt, Vt) + εEH(X̃t, Ṽt),

≤1 +
2εB

γ
+ ε
(
EH (X0, V0) + EH(X̃0, Ṽ0)

)
e−γt,

and, since H(x, v) ≥ λ|x|2,

E (|Xt|)2
+ E(|X̃t|)2 ≤ 1

λ
EH (Xt, Vt) +

1

λ
EH(X̃t, Ṽt),

≤2B

γλ
+

1

λ

(
EH (X0, V0) + EH(X̃0, Ṽ0)

)
e−γt.

Hence

E
(
Kt1Reg1

)
≤LW

(
C1
(

1 +
2εB

γ

)
+

2εB

γλ
(6 + 8λ)

)
E (ρt)

+ LW ε

(
C1 +

6 + 8λ

λ

)(
EH (X0, V0) + EH(X̃0, Ṽ0)

)
E (ρt) e

−γt.

We thus obtain E
(
Kt1Reg1

)
≤ LW

(
CK + C0

Ke
−γt)Eρt.
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3.2.2 Second region : |Qt| < ξ and rt ≤ R1

In this region of space, we use the naturally contracting deterministic drift thanks to a
synchronous coupling. Here R1 ≥ rt ≥ α|Zt| ≥ rt − ξ so that

Kt ≤ Cf (rt)Gt +

(
αξ − rt + ξ +

1

α
(LU + LW ) rt

)
f ′ (rt)Gt

+

(
4f ′′ (rt)Gt + 96εmax

(
1

2α
, 1

)
rtf
′ (rt)

)
rc (Zt,Wt)

2

+ LW f
′ (rt)E (|Zt|)Gt + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) ,

where we use (3.11). First

4f ′′ (rt)Gt + 96εmax

(
1

2α
, 1

)
rtf
′ (rt) ≤ 0.

We use (2.10) to obtain, since f (rt) ≤ Φ (rt) and 1
2φ (rt) ≤ f ′ (rt) = φ (rt) g (rt) ≤ φ (rt)

by (2.12),

Kt ≤ξ (1 + α)φ (rt) g (rt)Gt +Gt

(
CΦ (rt) +

1

2

(
1

α
(LU + LW )− 1

)
rtφ (rt)

)
+ LW f

′ (rt)E (|Zt|)Gt + εLW (6 + 8λ)
(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) .

Then, thanks to (2.11), like in the first region of space

Kt1Reg2
≤ξ (1 + α)φ (rt) g (rt)Gt + LW f

′ (rt)E (|Zt|)Gt

+ εLW (6 + 8λ)
(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) .

Hence, since φ (rt) g (rt) ≤ 1

EKt1Reg2
≤ ξ (1 + α)E (Gt) + LW

(
CK + C0

Ke
−γt)Eρt.

3.2.3 Third region : rt > R1

In this region, we use the Lyapunov function. Here f ′ (rt) = f ′′ (rt) = 0 so that

Kt1Reg3
=
(
cGt + ε

(
2B − γH (Xt, Vt)− γH(X̃t, Ṽt)

))
f (rt)1Reg3

+ εLW (6 + 8λ)
(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt)1Reg3

=
[
ε (c− γ)

(
H (Xt, Vt) +H(X̃t, Ṽt)

)
+ 2εB + c

+ εLW (6 + 8λ)
(
E (|Xt|)2

+ E(|X̃t|)2
) ]
f (rt)1Reg3

Since c− γ < 0 as a consequence of (2.9), and using Lemma 2.3

Kt ≤
(

(c− γ) ε
12

5

B

γ
+ 2εB + c

)
f (rt) + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt)

≤
(
c

(
12ε

5

B

γ
+ 1

)
− 2

5
εB

)
f (rt) + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) .

Then, using (2.9), EKt1Reg3
≤ LWCKEρt + LWC0

KEρte
−γt.

EJP 27 (2022), paper 124.
Page 18/44

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP853
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Vlasov-Fokker-Planck equation: convergence rates and propagation of chaos

3.3 Step three: convergence

Let Γ be a coupling of ν1
0 and ν2

0 such that EΓρ ((x, v), (x̃, ṽ))) < ∞. We consider
the coupling of (Xt, Vt) and (X̃t, Ṽt), with initial distribution ((X0, V0) , (X̃0, Ṽ0)) ∼ Γ,
previously introduced. Using Lemma 3.3 and Lemma 3.4, by taking the expectation
in (3.5) at stopping times τn increasingly converging to t, we have by Fatou’s lemma for
n→∞, ∀ξ > 0,∀t ≥ 0,

ectEρt ≤ Eρ0 + (1 + α) ξ

∫ t

0

ecsE (Gs) ds+ LWCK
∫ t

0

ecsEρsds+ LWC0
K

∫ t

0

e(c−γ)sEρsds.

(3.12)

Moreover, using Lemma 2.2 and the fact γ > c, for all t > 0,

E (Gt) ≤
(
1 + εC0

H + εC0
H̃

)
,

∫ t

0

e(c−γ)sEρsds ≤
f(R1)

(
1 + εC0

H + εC0
H̃

)
γ − c

,∫ t

0

ecsds =
c

c− LWCK
ect − 1

c
− LWCK
c− LWCK

∫ t

0

ecsds.

We get

ect
(
Eρt −

(1 + α) ξ

c− LWCK
(
1 + εC0

H + εC0
H̃

))

≤Eρ0 −
(1 + α) ξ

c− LWCK
(
1 + εC0

H + εC0
H̃

)
+ LWC0

K

f(R1)
(

1 + εC0
H + εC0

H̃

)
γ − c

+ LWCK
∫ t

0

ecs
(
Eρs −

(1 + α) ξ

c− LWCK
(
1 + εC0

H + εC0
H̃

))
ds.

Gronwall’s lemma yields, for all t ≥ 0

ect
(
E (ρt)−

(1 + α) ξ

c− LWCK
(
1 + εC0

H + εC0
H̃

))

≤

E (ρ0) + LWC0
K

f(R1)
(

1 + εC0
H + εC0

H̃

)
γ − c

 eLW CKt.

SinceWρ (µt, νt) ≤ E (ρt), we have thus obtained for all t ≥ 0

Wρ

(
ν1
t , ν

2
t

)
≤ (1 + α) ξ

c− LWCK
(
1 + εC0

H + εC0
H̃

)
+

E (ρ0) + LWC0
K

f(R1)
(

1 + εC0
H + εC0

H̃

)
γ − c

 e(LW CK−c)t

Taking the infimum over all couplings Γ of the initial conditions and using the fact that
the left hand side does not depend on ξ, so that we may take ξ = 0, we get finally that
for all t > 0,

Wρ

(
ν1
t , ν

2
t

)
≤

Wρ

(
ν1

0 , ν
2
0

)
+ LWC0

K

f(R1)
(

1 + εC0
H + εC0

H̃

)
γ − c

 e(LW CK−c)t, (3.13)

and since, by Lemma 2.7, C1Wρ

(
ν1
t , ν

2
t

)
≥ W1

(
ν1
t , ν

2
t

)
and C2Wρ

(
ν1
t , ν

2
t

)
≥ W2

2

(
ν1
t , ν

2
t

)
,

W1

(
ν1
t , ν

2
t

)
≤e−(c−LW CK)tC1

ν1
0 ,ν

2
0
,

W2
2

(
ν1
t , ν

2
t

)
≤e−(c−LW CK)tC2

ν1
0 ,ν

2
0
.
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Then, for all W such that LW < c/CK , there will be contraction at rate τ := c−LWCK > 0.
So, it only remains for LW to satisfy

LW ≤
c

C1
(

1 + 2εB
γ

)
+ 2εB

γλ (6 + 8λ)
, (3.14)

with

C1 = max

(
2

α
, 1

)
max

4
(

(1 + α)
2

+ α2
)

εmin
(

2
3λ, 6

)
f (1)

,
1

φ (R1) g (R1)

 .

Remark 3.5. We draw the reader’s attention to the fact that Theorem 3.1 is then
a consequence of everything we have done so far: if we have an upper bound on
EH (X0, V0) + EH(X̃0, Ṽ0), the constant C0

K in Lemma 3.4 can be chosen equal to 0
provided we modify CK .

Let us now show that there is existence and uniqueness of a stationary measure.
Let C0 > B

γ and µt a solution of (1.1) such that Eµ0H ≤ C0. Using (2.6), for all t ≥ 0,

Eµt
H ≤ C0. Thanks to Theorem 3.1, for LW sufficiently small, there is τ > 0 such that

for all t ≥ s ≥ 0

Wρ (µt, µs) ≤ e−τsWρ (µt−s, µ0) ≤ f(R1)
(
1 + 2εC0

)
e−τs,

and thus

W1 (µt, µs) ≤ C1f(R1)
(
1 + 2εC0

)
e−τs.

The space of probability measure with first moments, equipped with the W1 distance,
being a complete metric space (see for instance [6]), and µt being a Cauchy sequence,
there exists µ∞ such that

W1 (µt, µ∞)→ 0 as t→∞,

and µ∞ stationary. Theorem 1.12 then ensures uniqueness and convergence towards
this stationary measure.

4 Proof of Theorem 1.13

In this section, we show how we obtain similar results for the convergence of the
particle system to the non-linear kinetic Langevin diffusion using the same tools. We start
by introducing the coupling, the new Lyapunov function, we give a new definition for the
various quantities we consider, and then prove contraction of the coupling semimetric.

4.1 Coupling

We consider the following coupling

dX̄i
t = V̄ it dt

dV̄ it = −V̄ it dt−∇U
(
X̄i
t

)
dt−∇W ∗ µ̄t

(
X̄i
t

)
dt

+
√

2
(
rc
(
Zit ,W

i
t

)
dBrc,it + sc

(
Zit ,W

i
t

)
dBsc,it

)
µ̄t = L

(
X̄i
t

)
dXi,N

t = V i,Nt dt

dV i,Nt = −V i,Nt dt−∇U(Xi,N
t )dt− 1

N

∑N
j=1∇W (Xi,N

t −Xj,N
t )dt

+
√

2
(
rc
(
Zit ,W

i
t

) (
Id− 2eite

i,T
t

)
dBrc,it + sc

(
Zit ,W

i
t

)
dBsc,it

)
,
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with, similarly as before,

Zit = X̄i
t −X

i,N
t , W i

t = V̄ it − V
i,N
t , Qit = Zit +W i

t , eit =

{
Qi

t

|Qi
t|

if Qit 6= 0,

0 otherwise.

Let µNt := 1
N

∑N
i=1 δXi,N

t
be the empirical distribution of the particle system, with i.i.d

initial conditions Xi,N
0 ∼ ν0. We first notice that the particles are exchangeable. The

generator of the process given by the particle system (1.3) is, for a function φ of
(x1, ..., xN , v1, ..., vN )

LNφ =

N∑
i=1

Li,Nφ,

with

Li,Nφ = vi · ∇xi
φ− vi · ∇viφ−∇U (xi) · ∇viφ−

1

N

N∑
j=1

∇W (xi − xj) · ∇viφ+ ∆viφ.

We define

rit =α|Zit |+ |Qit|, (4.1)

H̃(x, v) =

∫ H(x,v)

0

exp
(
a
√
u
)
du, (4.2)

Git =1 + εH̃
(
X̄i
t , V̄

i
t

)
+ εH̃(Xi,N

t , V i,Nt ) +
ε

N

N∑
j=1

H̃
(
X̄j
t , V̄

j
t

)
+

ε

N

N∑
j=1

H̃(Xj,N
t , V j,Nt ),

(4.3)

ρt =
1

N

N∑
i=1

f
(
rit
)
Git. (4.4)

There are two ideas when constructing this new Git compared to the previous section.
First, we consider a modification of the Lyapunov function H̃, which we will describe in
the next subsection. Second, we add these empirical means of the form 1

N

∑
H̃. This

will allow us to deal with the non linearity appearing in the calculations. Recall the
expectation in (3.9): this term will become an empirical mean, see (4.23) and (4.24)
below. When taking the expectation of what we will denote Ki

t (similar to Kt given
in Lemma 3.3), we no longer have a product of expectations, which we were able to
deal with using the uniform in time bounds, but an expectation of the product. We will
therefore have to control a quantity on the particle i multiplied by a quantity on the
particle j, and we do not have independence within the particle system. Hence the
necessity, in the calculations, of adding this empirical mean of Lyapunov functions.

4.2 A modified Lyapunov function

Notice how in the expression of Gi above we did not consider the Lyapunov function

H, but instead H̃. Let us assume there exist C0, a > 0 such that Eν0

(
H̃(X,V )2

)
≤ (C0)

2

(which is equivalent to the existence of C̃0, ã > 0 such that Eν0
(
eã(|X|+|V |)) ≤ C̃0, as it

was stated in Theorem 1.13). First, notice

H̃(x, v) =

∫ H(x,v)

0

exp
(
a
√
u
)
du =

2

a2
exp

(
a
√
H(x, v)

)(
a
√
H(x, v)− 1

)
+

2

a2
.
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The idea of considering the exponential of the Lyapunov function is common when trying
to obtain a greater restoring force, see for instance [35].

Here, for technical reasons (more precisely when dealing with the last term of Ait
given below in (4.18)) we have to ensure, when writing H̃ = f(H), that f ′ is of order e

√
x

instead of ex.
Direct calculations yield the following technical lemma.

Lemma 4.1. We have, for all x, v ∈ Rd

H(x, v) exp
(
a
√
H(x, v)

)
≥ H̃(x, v) ≥ exp

(
a
√
H(x, v)

)
− 2

a2

(
exp

(
a2

2

)
− 1

)
,

(4.5)

2

a

√
H(x, v) exp

(
a
√
H(x, v)

)
≥ H̃(x, v) ≥1

a

√
H(x, v) exp

(
a
√
H(x, v)

)
− 1

a2
(e− 2) ,

(4.6)

H̃(x, v) ≥H(x, v) (4.7)

We may calculate, using (2.2) and (2.3)

Lµ
(
H̃
)

= exp
(
a
√
H
)
LµH +

a

2
√
H

exp
(
a
√
H
)
|∇vH|2

= exp
(
a
√
H
)
LµH + 242 a

2
√
H

exp
(
a
√
H
) ∣∣∣x

2
+ v
∣∣∣2

≤ exp
(
a
√
H
)(

B + LW (6 + 8λ)Eµ (|x|)2 −
(

3

4
λ+ λ2

)
|x|2 − γH

)
(4.8)

+ 24a
√
H exp

(
a
√
H
)

≤ exp
(
a
√
H
)(

B +
288a2

γ
+ LW (6 + 8λ)Eµ (|x|)2 − γ

2
H

)
, (4.9)

where for this last inequality we used Young’s inequality 24a
√
H ≤ γ

2H + 288a
2

γ .
Notice that (4.9) ensures that this new Lyapunov function also tends to bring back

particle which ventured at infinity, and at an even greater rate. This new rate H exp(
√
H)

however comes at a cost: the initial condition must have a finite exponential moment,
and not just a finite second moment as in Section 3.

First, by (2.6) and (4.7),

E(|X̄i
t |)2 ≤ 1

λ
E
(
H
(
X̄i
t , V̄

i
t

))
≤ 1

λ

(
B

γ
+ EH

(
X̄i

0, V̄
i
0

))
≤ 1

λ

(
B

γ
+ C0

)
.

Furthermore, the function h 7→ exp
(
a
√
h
)(

B̃ − γ
4h
)

is bounded from above for h ≥ 0

and B̃ ∈ R. We therefore obtain from (4.9) the existence of B̃ such that

Lµ̄⊗N
t
H̃ (xi, vi) ≤B̃ −

γ

4

(
H (xi, vi) exp

(
a
√
H (xi, vi)

))
(4.10)

d

dt
EH̃

(
X̄i
t , V̄

i
t

)
≤B̃ − γ

4
E

(
H
(
X̄i
t , V̄

i
t

)
exp

(
a
√
H
(
X̄i
t , V̄

i
t

)))
(4.11)

and
d

dt
EH̃

(
X̄i
t , V̄

i
t

)
≤B̃ − γ

4
EH̃

(
X̄i
t , V̄

i
t

)
, (4.12)

where for this last inequality, we used (4.5). While (4.10) and (4.11) will be useful in
ensuring a sufficient restoring force, Equation (4.12) give us a uniform in time bound on
EH̃

(
X̄i
t , V̄

i
t

)
, provided we have an initial bound.
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Now, for the system of particle, we have, using (4.9), ∀i ∈ {1, ..., N}, ∀xi, vi ∈ Rd,

Li,N H̃ (xi, vi)

≤ exp
(
a
√
H (xi, vi)

)B +
288a2

γ
+ LW (6 + 8λ)

(∑N
j=1 |xj |
N

)2

− γ

2
H (xi, vi)

 .

Summing over i ∈ {1, .., N}, we may calculate

LW (6 + 8λ)

N∑
j=1

(∑N
j=1 |xj |
N

)2 N∑
i=1

exp
(
a
√
H (xi, vi)

)
N

− γ

8

N∑
i=1

H (xi, vi) exp
(
a
√
H (xi, vi)

)
N

≤ γ

8

 N∑
i,j=1

H (xi, vi)

N

exp
(
a
√
H (xj , vj)

)
N

−
N∑
i=1

H (xi, vi) exp
(
a
√
H (xi, vi)

)
N


≤ 0. (4.13)

Here, we used (2.2), the fact that ∀x, y ≥ 0 xea
√
y + yea

√
x − xea

√
x − yea

√
y = (ea

√
x −

ea
√
y)(y − x) ≤ 0 and assumed

6
LW
λ

(
1 +

4

3
λ

)
≤ γ

8
i.e LW ≤

γλ

16(3 + 4λ)
.

Likewise, there is a constant, which for the sake of clarity we will also denote B̃ (as we
may take the maximum of the previous constants), such that we get

Li,N H̃(xi, vi) ≤B̃ + LW (6 + 8λ)

(∑N
j=1 |xi|
N

)2

exp
(
a
√
H (xi, vi)

)
− γ

4
H (xi, vi) exp

(
a
√
H (xi, vi)

)
, (4.14)

LN
(

1

N

N∑
i=1

H̃(xi, vi)

)
≤B̃ − γ

4

(
1

N

N∑
i=1

H(xi, vi) exp
(
a
√
H (xi, vi)

))
, (4.15)

and

LN
(

1

N

N∑
i=1

H̃(xi, vi)

)
≤ B̃ − γ

4

(
1

N

N∑
i=1

H̃(xi, vi)

)
. (4.16)

Once again, (4.14) and (4.15) will be ensure a sufficient restoring force, and (4.16) en-
sures a uniform in time bound on the expectation of H̃(Xi,N

t , V i,Nt ), since

E
(

1
N

∑N
j=1 H̃(Xj,N

t , V j,Nt )
)

= E
(
H̃(Xi,N

t , V i,Nt )
)

by exchangeability of the particles.

More precisely, we obtain from (4.12) and (4.16) the direct corollary

Lemma 4.2. Provided the initial expectations E
(
G1

0

)
and E

((
G1

0

)2)
are finite, there are

constants CG,1 and CG,2, depending on initial conditions, such that for all t ≥ 0, for all
N ≥ 0, and all i

E
(
Git
)
≤ CG,1 and E

((
Git
)2) ≤ CG,2.

Finally, since H̃(x, v) ≥ H(x, v), Lemma 2.7 still holds for our new semimetric.
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4.3 New parameters

For the sake of completeness, and since this is similar to Section 2.2, we quickly give
some explicit parameters that satisfy the various conditions arising from calculation. T
hese parameters are far from optimal, and are just given to show that every constant is
explicit. Let B̃ be given by (4.10)-(4.12), and (4.14)-(4.16). Define

α = LU +
λ

4
, R0 =

√
160B̃

γmin
(
λ
3 , 3
) and R1 =

√
(1 + α)2 + α2R0.

Recall the definition of CdH,1 and CdH,2 in (2.8). Denoting

Cf,1 = 8

((
96

a2
max

(
1,

1

2α

)
+

16
√

3

a
CdH,1

)(
exp

(
a2

2

)
− 1

)
+ 16
√

3(e− 2)CdH,2

)

Cf,2 = 8

(
24 max

(
1,

1

2α

)
+ 4
√

3CdH,1a+ 8
√

3CdH,2a
2

)
we set

c =

{
2B̃

5
,
γ

800
,

1

12
min

(
2

√
LU + LW

2παR2
1

,
1

2

(
1− LU + LW

α

))

× exp

(
−1

8

(
LU + LW

α
+ α+ Cf,1 + Cf,2

)
R2

1

)}
,

and ε = 5c
2B̃

. For s ≥ 0,

φ (s) = exp

(
−1

8

(
1

α
(LU + LW ) + α+ εCf,1 + Cf,2

)
s2

)
, Φ (s) =

∫ s

0

φ (u) du

g (s) = 1− c+ 2εB̃

2

∫ s

0

Φ (u)

φ (u)
du , f (s) =

∫ min(s,R1)

0

φ (u) g (u) du.

This way we satisfy the following conditions

c ≤ γ

160

(
1− γ

80εB̃ + γ

)
α >LU + LW

ε ≤1

2c+ 4εB̃ ≤2

(∫ R1

0

Φ(u)

φ(u)
du

)−1

2c+ 4εB̃ ≤1

2

(
1− LU + LW

α

)
inf

r∈]0,R1]

rφ(r)

Φ(r)

∀s ≥ 0, 0 =4φ′(s) +

(
1

α
(LU + LW ) + α+ εCf,1 + Cf,2

)
sφ(s)

4.4 Convergence

The goal of the section is to prove the following result

Theorem 4.3. Let U ∈ C1
(
Rd
)

satisfy Assumption 1.1 and Assumption 1.3. For all
W ∈ C1

(
Rd
)

satisfying Assumption 1.9 with

LW ≤ min

(
γλ

16(3 + 4λ)
,
c

C1
,
γ

64Cz
,

γa

256Czε

)
, (4.17)
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and for all probability measures ν̄0 on R2d such that Eν̄0H̃
2(X,V ) ≤ (C0)2, for all N ,

ξ > 0, and t ≥ 0,

ectE (ρt) ≤E (ρ0) + ξ (1 + α) CG,1
∫ t

0

ecsds+ LW
C0C1/2

G,2

λ

√
8

N

∫ t

0

ecsds.

4.4.1 Proof of Theorem 1.13 using Theorem 4.3

We first show how Theorem 1.13 is a consequence of Theorem 4.3. Let Γ be a coupling
of ν⊗N0 and ν̄⊗N0 , such that Eρ0 < ∞. We consider the coupling previously introduced.
For clarity, let us denote

A = LW
C0C1/2

G,2

λ

√
8, B = (1 + α)CG,1,

i.e

ectE (ρt) ≤E (ρ0) + ξB

∫ t

0

ecsds+
A√
N

∫ t

0

ecsds.

Let us consider

u(t) = ect
(
E (ρt)−

A

c

1√
N
− ξB

c

)
Then u(t) ≤ u(0) i.e

E (ρt) ≤E (ρ0) e−ct +
A

c

1√
N

(
1− e−ct

)
+ ξ

B

c

(
1− e−ct

)
.

We thus obtain the desired result, by taking the limit as ξ → 0 uniformly in time,

and by using the exchangeability of the particles to have E (ρt) = E
(

1
N

∑N
i=1 ρ

i
t

)
=

E
(

1
k

∑k
i=1 ρ

i
t

)
for all k ∈ N.

4.4.2 Evolution of the coupling semimetric for the particle system

We thus need to start by considering the dynamic of ρt. Like in Lemma 3.2, we have
almost surely for all t ≥ 0

d|Qit| = −e
i,T
t

(
∇U

(
X̄i
t

)
−∇U(Xi,N

t )
)
dt− ei,Tt

(
∇W ∗ µ̄t

(
X̄i
t

)
−∇W ∗ µ̄Nt (Xi,N

t )
)
dt

+ 2
√

2rc
(
Zit ,W

i
t

)
ei,Tt dBrc,it .

Hence ectf
(
rit
)

= f (r0) + Âit + M̂ i
t with

dÂit =

[
cf
(
rit
)

+ αf ′
(
rit
) d|Zit |

dt
− f ′

(
rit
)
eit
T
(
∇U

(
Xi
t

)
−∇U(Xi,N

t )
)

− f ′
(
rit
)
eit
T

∇W ∗ µt (Xi
t

)
− 1

N

N∑
j=1

∇W (Xi,N
t −Xj,N

t )


+ 4f ′′

(
rit
)
rc2
(
Zit ,W

i
t

) ]
ectdt,

dM̂ i
t =ect2

√
2f ′
(
rit
)
rc
(
Zit ,W

i
t

)
eit
T
dBrc,it .
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We now consider the evolution of

Git = 1 + εH̃
(
X̄i
t , V̄

i
t

)
+ εH̃(Xi,N

t , V i,Nt ) +
ε

N

N∑
j=1

H̃
(
X̄j
t , V̄

j
t

)
+

ε

N

N∑
j=1

H̃(Xj,N
t , V j,Nt ).

Notice how we have added new terms in Git. Those additional quantities will help us in
dealing with the non linearity, as will be shown later.

dGit = ε
(
Lµ̄⊗N

t
H̃
(
X̄i
t , V̄

i
t

)
+ LN H̃(Xi,N

t , V i,Nt )
)
dt

+ ε
√

2rc
(
Zit ,W

i
t

) (
∇vH̃

(
X̄i
t , V̄

i
t

)
−∇vH̃(Xi,N

t , V i,Nt )
)
· eiteit

T
dBrc,it

+ ε
√

2rc
(
Zit ,W

i
t

) (
∇vH̃

(
X̄i
t , V̄

i
t

)
+∇vH̃(Xi,N

t , V i,Nt )
)
·
(
Id− eiteit

T
)
dBrc,it

+ ε
√

2sc
(
Zit ,W

i
t

) (
∇vH̃

(
X̄i
t , V̄

i
t

)
+∇vH̃(Xi,N

t , V i,Nt )
)
· dBsc,it

+
ε

N

N∑
j=1

(
Lµ̄⊗N

t
H̃
(
X̄j
t , V̄

j
t

)
+ LN H̃(Xj,N

t , V j,Nt )
)
dt

+
ε
√

2

N

N∑
j=1

rc
(
Zjt ,W

j
t

)(
∇vH̃

(
X̄j
t , V̄

j
t

)
−∇vH̃(Xj,N

t , V j,Nt )
)
· ejte

j
t

T
dBrc,jt

+
ε
√

2

N

N∑
j=1

rc
(
Zjt ,W

j
t

)(
∇vH̃

(
X̄j
t , V̄

j
t

)
+∇vH̃(Xj,N

t , V j,Nt )
)
·
(
Id− ejte

j
t

T
)
dBrc,jt

+
ε
√

2

N

N∑
j=1

sc
(
Zjt ,W

j
t

)(
∇vH̃

(
X̄j
t , V̄

j
t

)
+∇vH̃(Xj,N

t , V j,Nt )
)
· dBsc,jt .

Therefore

ectρit = ectf
(
rit
)
Git = ρ0 +Ait +M i

t , (4.18)

with

dAit =GitdÂ
i
t + εectf

(
rit
) (
Lµ̄⊗N

t
H̃
(
X̄i
t , V̄

i
t

)
+ LN H̃(Xi,N

t , V i,Nt )

+
1

N

N∑
j=1

Lµ̄⊗N
t
H̃
(
X̄j
t , V̄

j
t

)
+

1

N
LN

N∑
j=1

H̃(Xj,N
t , V j,Nt )

)
dt

+ 4ε

(
1 +

1

N

)
ectf ′

(
rit
)
rc2
(
Zit ,W

i
t

) (
∇vH̃

(
X̄i
t , V̄

i
t

)
−∇vH̃(Xi,N

t , V i,Nt )
)
· eitdt

and M i
t is a continuous local martingale. Let us deal with this last line. For the sake of

conciseness, from now on we denote for all i

H̄i := H
(
X̄i
t , V̄

i
t

)
, and HN

i := H(Xi,N
t , V i,Nt )
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We have

|∇vH̃
(
X̄i
t , V̄

i
t

)
−∇vH̃(Xi,N

t , V i,Nt )|

=

∣∣∣∣∇vH̄i exp
(
a
√
H̄i

)
−∇vHN

i exp

(
a
√
HN
i

)∣∣∣∣
≤
∣∣∣12X̄i

t + 24V̄ it − 12Xi,N
t − 24V i,Nt

∣∣∣ (exp
(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
+ a

∣∣12X̄i
t + 24V̄ it

∣∣ ∣∣∣∣√H̄i −
√
HN
i

∣∣∣∣ (exp
(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
≤24 max

(
1,

1

2α

)
rit

(
exp

(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
+ 4a

√
3
∣∣H̄i −HN

i

∣∣ (exp
(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
.

Now, using Lemma 2.8, we get

|∇vH̃
(
X̄i
t , V̄

i
t

)
−∇vH̃(Xi,N

t , V i,Nt )|

≤
(

24 max

(
1,

1

2α

)
+ 4
√

3CdH,1a

)
rit

(
exp

(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
+ 4
√

3CdH,2ar
i
t

(√
H̄i +

√
HN
i

)(
exp

(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
≤
(

24 max

(
1,

1

2α

)
+ 4
√

3CdH,1a

)
rit

(
exp

(
a
√
H̄i

)
+ exp

(
a
√
HN
i

))
+ 8
√

3CdH,2ar
i
t

(√
H̄i exp

(
a
√
H̄i

)
+
√
HN
i exp

(
a
√
HN
i

))
.

Hence why, using (4.5) and (4.6), we get

|∇vH̃
(
X̄i
t , V̄

i
t

)
−∇vH̃(Xi,N

t , V i,Nt )|

≤
(

24 max

(
1,

1

2α

)
+ 4
√

3CdH,1a

)
rit

(
4

a2

(
e

a2

2 − 1
)

+ H̃
(
X̄i
t , V̄

i
t

)
+ H̃(Xi,N

t , V i,Nt )

)
+ 8
√

3CdH,2a
2rit

(
2

a2
(e− 2) + H̃

(
X̄i
t , V̄

i
t

)
+ H̃(Xi,N

t , V i,Nt )

)
,

and thus

4ε

(
1 +

1

N

)
ectf ′

(
rit
)
rc2
(
Zit ,W

i
t

) (
∇vH̃

(
X̄i
t , V̄

i
t

)
−∇vH̃(Xi,N

t , V i,Nt )
)
· eitdt

≤8εritf
′ (rit) ectrc2 (Zit ,W i

t

)
×

((
96

a2
max

(
1,

1

2α

)
+

16
√

3

a
CdH,1

)(
e

a2

2 − 1
)

+ 16
√

3(e− 2)CdH,2

)

+ 8ritf
′ (rit) ectrc2 (Zit ,W i

t

)(
24 max

(
1,

1

2α

)
+ 4
√

3CdH,1a+ 8
√

3CdH,2a
2

)
×
(
εH̃
(
X̄i
t , V̄

i
t

)
+ εH̃(Xi,N

t , V i,Nt )
)

≤ (εCf,1 + Cf,2) ritf
′ (rit) rc2 (Zit ,W i

t

)
Git.
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Then we use

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W (Xi,N
t −Xj,N

t )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)
− 1

N

N∑
j=1

∇W (Xi,N
t −Xj,N

t )

∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
+

1

N

N∑
j=1

∣∣∣∇W (
X̄i
t − X̄

j
t

)
−∇W (Xi,N

t −Xj,N
t )

∣∣∣ ,
≤

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣+
LW
N

N∑
j=1

(∣∣∣X̄i
t −X

i,N
t

∣∣∣+
∣∣∣X̄j

t −X
j,N
t

∣∣∣) .
Thus

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W (Xi,N
t −Xj,N

t )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣+ LW |Zit |+ LW

∑N
j=1 |Z

j
t |

N
.

And finally we use (4.10), (4.14) and (4.15) to have

Lµ̄⊗N
t
H̃
(
X̄i
t , V̄

i
t

)
+ LN H̃(Xi,N

t , V i,Nt )

+
1

N

N∑
j=1

Lµ̄⊗N
t
H̃
(
X̄j
t , V̄

j
t

)
+

1

N
LN

N∑
j=1

H̃(Xj,N
t , V j,Nt )

≤ 4B̃ + LW (6 + 8λ)

(∑N
j=1 |X

j,N
t |

N

)2

exp

(
a
√
HN
i

)
− γ

4
H̄i exp

(
a
√
H̄i

)
− γ

4
HN
i exp

(
a
√
HN
i

)
− γ

4N

N∑
j=1

(
H̄j exp

(
a
√
H̄j

)
+HN

j exp
(
a
√
HN
j

))
.

We thus obtain

dAit ≤ ectKi
tdt (4.19)
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with

Ki
t =f ′

(
rit
)
Git

(
α
d|Zit |
dt

+ (LU + LW ) |Zit |+ (εCf,1 + Cf,2) ritrc
2
(
Zit ,W

i
t

))
+ 2cf

(
rit
)
Git

(4.20)

+ 4f ′′
(
rit
)
Gitrc

2
(
Zit ,W

i
t

)
+

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i
t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣ f ′ (rit)Git
(4.21)

+ εf
(
rit
)4B̃ − γ

16
H̃
(
X̄i
t , V̄

i
t

)
− γ

16
H̃(Xi,N

t , V i,Nt )− γ

16N

N∑
j=1

H̃
(
X̄j
t , V̄

j
t

)

− γ

16N

N∑
j=1

H̃(Xj,N
t , V j,Nt )

 (4.22)

+ LW

∑N
j=1 |Z

j
t |

N
f ′
(
rit
)
Git − cf

(
rit
)
Git

− εf
(
rit
) [ γ

16
H̄i exp

(
a
√
H̄i

)
+

γ

16
HN
i exp

(
a
√
HN
i

)
+

γ

16N

N∑
j=1

H̄j exp

(
a
√
H̄j

)
+

γ

16N

N∑
j=1

HN
j exp

(
a
√
HN
j

) ]
(4.23)

+ εLW (6 + 8λ) f
(
rit
)(∑N

j=1 |X
j,N
t |

N

)2

exp

(
a
√
HN
i

)

− γε

8
f
(
rit
)HN

i exp

(
a
√
HN
i

)
+

1

N

N∑
j=1

HN
j exp

(
a
√
HN
j

) . (4.24)

This formulation of Ki
t might seem cumbersome (and to some degree it is...) but we have

actually grouped the various terms based on how we will have them compensate one
another. Thus,

• lines (4.20) and (4.21) will be managed thanks to the construction of the function
f like before, with a special care given to the last term of line (4.21), on which we
will use a law of large number,

• line (4.22) will come into play when considering the “last region of space” intro-
duced previously,

• line (4.23) will, under some conditions on LW , be nonpositive when summing up

all
(
Kj
t

)
j
,

• and finally, line (4.24) will be nonpositive thanks to Lemma 2.1, provided LW is
sufficiently small.

This highlights two important ideas in the construction of the function ρ: we both
added in Git the empirical mean of H(Xi,N

t , V i,Nt ) + H
(
X̄i
t , V̄

i
t

)
and constructed a Lya-

punov function with a greater restoring force. This is what allows us to tackle the

non linearity appearing in (4.23) and (4.24) respectively in the terms
∑N

j=1 |Z
j
t |

N Git and(∑N
j=1 |X

j,N
t |

N

)2

exp
(
a
√
HN
i

)
.
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4.4.3 Some calculations

Like previously, we now have to show contraction in all three regions of space. Recall
f ′
(
rit
)
≤ 1. The same calculations as before will be used, we only detail here the

differences.

• First, since LW

λ (6 + 8λ) ≤ γ
8 , by using Lemma 2.1 and since

HN
j exp

(
a
√
HN
i

)
≤ HN

i exp

(
a
√
HN
i

)
+HN

j exp
(
a
√
HN
j

)
we obtain

εLW (6 + 8λ) f
(
rit
)(∑N

j=1 |X
j,N
t |

N

)2

exp

(
a
√
HN
i

)

− γε

8N
f
(
rit
)NHN

i exp

(
a
√
HN
i

)
+

N∑
j=1

HN
j exp

(
a
√
HN
j

) ≤ 0.

This takes care of (4.24).

• We have, since f ′
(
rit
)
≤ 1: 1

N

∑N
i=1

∑N
j=1 |Z

j
t |

N f ′
(
rit
)
Git ≤

∑N
i,j=1 |Z

j
t |G

i
t

N2 . Then, using
Lemma 2.7

1

N2

N∑
i,j=1

|Zit |G
j
t

=
1

N

N∑
i=1

|Zit |+
2ε

N2

N∑
i,j=1

|Zit |H̃
(
X̄j
t , V̄

j
t

)
+

2ε

N2

N∑
i,j=1

|Zit |H̃(Xj,N
t , V j,Nt )

≤C1
N

N∑
i=1

ρit +
2Czε
N2

N∑
i,j=1

f(rit)
(
H̃
(
X̄j
t , V̄

j
t

)
+ H̃(Xj,N

t , V j,Nt )
)

+
4Czε2

aN2

N∑
i,j=1

f(rit)

(√
H̄i +

√
HN
i

)(√
H̄j exp

(
a
√
H̄j

)
+
√
HN
j exp

(
a
√
HN
j

))
.

First, using (4.5)

2Czε
N2

N∑
i,j=1

f(rit)
(
H̃
(
X̄j
t , V̄

j
t

)
+ H̃(Xj,N

t , V j,Nt )
)

≤ 2Czε
N2

N∑
i,j=1

f(rit)

(
H̄j exp

(
a
√
H̄j

)
+HN

j exp
(
a
√
HN
j

))
.

Since (√
H̄i +

√
HN
i

)(√
H̄j exp

(
a
√
H̄j

)
+
√
HN
j exp

(
a
√
HN
j

))
≤ 2
[
H̄i exp

(
a
√
H̄i

)
+ H̄j exp

(
a
√
H̄j

)
+HN

i exp

(
a
√
HN
i

)
+HN

j exp
(
a
√
HN
j

) ]
,
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we have

4Czε2

aN2

N∑
i,j=1

f(rit)

(√
H̄i +

√
HN
i

)(√
H̄j exp

(
a
√
H̄j

)
+
√
HN
j exp

(
a
√
HN
j

))

≤ 8Czε2

aN2

N∑
i,j=1

f(rit)
[
H̄i exp

(
a
√
H̄i

)
+ H̄j exp

(
a
√
H̄j

)

+HN
i exp

(
a
√
HN
i

)
+HN

j exp
(
a
√
HN
j

) ]
.

This way, since 2CzLW ≤ γ
32 , LW ε

8Cz
a ≤

γ
32 , and LWC1 ≤ c, we get

1

N

N∑
i=1

(
LW

∑N
j=1 |Z

j
t |

N
f ′
(
rit
)
Git − cf

(
rit
)
Git

−εf
(
rit
)( γ

16
H̄i exp

(
a
√
H̄i

)
+

γ

16
HN
i exp

(
a
√
HN
i

)

+
γ

16N

N∑
j=1

H̄j exp

(
a
√
H̄j

)
+

γ

16N

N∑
j=1

HN
j exp

(
a
√
HN
j

) ≤ 0

• Using Cauchy-Schwarz inequality

E

Git
∣∣∣∣∣∣∇W ∗ µ̄t (X̄i

t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣


≤ E
(
Git

2
)1/2

E


∣∣∣∣∣∣∇W ∗ µ̄t (X̄i

t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
2


1/2

,

≤ E
(
Git

2
)1/2

E

E

∣∣∣∣∣∣∇W ∗ µ̄t (X̄i

t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
2 ∣∣∣X̄i

t




1/2

.

Moreover, we notice that given X̄i
t , the random variables X̄j

t for j 6= i are i.i.d with
law µ̄t. Hence

E


∣∣∣∣∣∣∇W ∗ µ̄t (X̄i

t

)
− 1

N − 1

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
2 ∣∣∣X̄i

t


=

1

N − 1
Varµ̄t

(
∇W

(
X̄i
t − ·

))
≤ 4L2

W

N − 1
Eµ̄t

(
| · |2

)
,

so

E


∣∣∣∣∣∣∇W ∗ µ̄t (X̄i

t

)
− 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
2


≤ E


∣∣∣∣∣∣∇W ∗ µ̄t (X̄i

t

)
− 1

N − 1

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
2

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+ E


∣∣∣∣∣∣ 1

N

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)
− 1

N − 1

N∑
j=1

∇W
(
X̄i
t − X̄

j
t

)∣∣∣∣∣∣
2
 ,

≤ 4L2
W

N − 1
Eµ̄t

(
| · |2

)
+

(
1

N − 1
− 1

N

)2

N

N∑
j=1

L2
WE

(
|X̄i

t − X̄
j
t |2
)
,

≤ 4L2
W

(
1

N − 1
+

1

(N − 1)2

)
Eµ̄t

(
| · |2

)
.

We may then use Eµ̄t

(
| · |2

)
≤ C

0

λ .

Thus, by the same exact construction as before, we can obtain the existence of a function
f and a constant c > 0 such that in all regions of space, for LW sufficiently small,

E

(
1

N

∑
i

Ki
t

)
≤ξ (1 + α) CG,1 + LW

C0C1/2
G,2

λ

(
4

N − 1
+

4

(N − 1)2

)1/2

.

By taking the expectation in the dynamic of ρt given by (4.18) and (4.19) at stopping
times τn increasingly converging to t, we prove Theorem 4.3 by using Fatou’s lemma for
n→∞.

5 ∇U locally Lipschitz continuous

As previously mentioned, the new Lyapunov function H̃ given in the previous section
allows for a greater restoring force, recall (4.9). Let us now see how using this function
allows for a perturbation of the global Lipschitz Assumption.

In this section we replace Assumption 1.3 with Assumption 1.4. We assume, for ν1
0

and ν2
0 the initial conditions,

∀i ∈ {1, 2}, Eνi
0

(∫ H(X,V )

0

ea
√
udu

)2
 ≤ (C0)2 (5.1)

We show how the proof can be modified to still obtain contraction. As explained in
Assumption 1.4, the coefficient Lψ will be considered sufficiently small with respect to
the parameters of the problem. For now, let us simply assume Lψ is smaller than an a
priori bound, for instance Lψ ≤ 1. Some conditions on Lψ will appear in the calculations
below and we will deal with these later.

Like previously, we consider

Gt = 1 + εH̃ (Xt, Vt) + εH̃(X̃t, Ṽt).

Hence following the same method as previously we obtain

Kt ≤Gt
(
cf (rt) + αf ′ (rt)

d|Zt|
dt

+ (LU + LW )f ′ (rt) |Zt|+ LW f
′ (rt)E (|Zt|) (5.2)

+ 4f ′′ (rt) rc
2 (Zt,Wt)

)
+

1

2
(εCf,1 + Cf,2) rtf

′ (rt) rc (Zt,Wt)
2 (5.3)

+ ε
(

2B̃ − γ

8

(
H̃ (Xt, Vt) + H̃(X̃t, Ṽt)

))
f (rt) (5.4)

+
(
ψ (Xt) + ψ(X̃t)

)
|Zt|f ′ (rt)Gt

− γε

8

(
H (Xt, Vt) exp

(
a
√
H (Xt, Vt)

)
+H(X̃t, Ṽt) exp

(
a

√
H(X̃t, Ṽt)

))
(5.5)
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+ ε
LW
λ

(6 + 8λ)

×
(

exp
(
a
√
H (Xt, Vt)

)
EH (Xt, Vt) + exp

(
a

√
H(X̃t, Ṽt)

)
EH(X̃t, Ṽt)

)
f (rt) .

(5.6)

We describe briefly how the terms will compensate each other before writing the calcula-
tions that are different.

• Like previously, lines (5.2) and (5.3) will be dealt with through the choice of function
f , with the non linearity appearing at the end of (5.2) giving us a remaining
expectation (cf bullet 1 below),

• line (5.4) will intervene like before in the last region of space (where we use that
for all x in R, H̃ ≥ H to come back to calculations we’ve made in Section 3.2.3,
cf bullet 2 below) and in the first two region of space to compensate line (5.5) (cf
bullet 3 below),

• and line (5.6) will give us a remaining expectation (cf bullet 4 below).

Notice how we use the Lyapunov function to compensate ψ appearing when considering
∇U only locally Lipschitz continuous.

• 1. We can find a constant C1,e such that for all x, v, x̃, ṽ ∈ Rd,

|x− x̃|+ |v − ṽ| ≤ C1,eρ(x, v, x̃, ṽ),

and thus

E (E (|Zt|)Gtf ′ (rt)) ≤ C1,eE (ρt)E (Gt) .

• 2. In the last region of space, we use the fact that

Kt1R3
≤
((
c− γ

8

)
Gt + 2εB̃ +

γ

8

)
f(rt) (5.7)

We deal with (5.7) exactly like in Section 3.2.3.

• 3. Let us deal with the only locally Lipschitz continuous aspect. In the first two regions
of space we use f ′(rt)|Zt| ≤ f ′(rt)rt/α ≤ f(rt)/α and the upper bound in (4.6).

Gt

(
ψ (Xt) + ψ(X̃t)

)
f ′ (rt) |Zt|

− εγ
8

(
H (Xt, Vt) exp

(
a
√
H (Xt, Vt)

)
+H(X̃t, Ṽt) exp

(
a

√
H(X̃t, Ṽt)

))
f (rt)

≤
(
ψ (Xt) + ψ(X̃t)

)
f ′ (rt) |Zt|

+
2ε

aα
f (rt)

(
ψ (Xt) + ψ(X̃t)

)
×
(√

H (Xt, Vt) exp
(
a
√
H (Xt, Vt)

)
+

√
H(X̃t, Ṽt) exp

(
a

√
H(X̃t, Ṽt)

))
− εγ

8

(
H (Xt, Vt) exp

(
a
√
H (Xt, Vt)

)
+H(X̃t, Ṽt) exp

(
a

√
H(X̃t, Ṽt)

))
f (rt) ,

On one hand, since ψ(x) ≤ Lψ
√
H(x, v), we have

ψ(x) + ψ(x̃) ≤ Lψ
√
H(x, v) + Lψ

√
H(x̃, ṽ) ≤ Lψ

(
H(x, v) +H(x̃, ṽ)

2
+ 1

)
,
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and thus

(ψ(x) + ψ(x̃)) f ′(rt)|Zt|

≤ Lψ
2

(
H(x, v) exp

(
a
√
H(x, v)

)
+H(x̃, ṽ) exp

(
a
√
H(x̃, ṽ)

)) f(rt)

α

+ Lψf
′(rt)|Zt|

On the other hand

(ψ(x) + ψ(x̃))
(√

H(x, v) exp
(
a
√
H(x, v)

)
+
√
H(x̃, ṽ) exp

(
a
√
H(x̃, ṽ)

))
≤ Lψ

(√
H(x, v) +

√
H(x̃, ṽ)

)
×
(√

H(x, v) exp
(
a
√
H(x, v)

)
+
√
H(x̃, ṽ) exp

(
a
√
H(x̃, ṽ)

))
≤ 2Lψ

(
H(x, v) exp

(
a
√
H(x, v)

)
+H(x̃, ṽ) exp

(
a
√
H(x̃, ṽ)

))
.

This way, assuming in a first step that

Lψ
2α
≤ ε γ

16
and

4Lψε

aα
≤ ε γ

16
, (5.8)

we get, since in the third region of space f ′ (rt) = 0,

Gt

(
ψ (Xt) + ψ(X̃t)

)
f ′ (rt) |Zt|

− εγ
8

(
H (Xt, Vt) exp

(
a
√
H (Xt, Vt)

)
+H(X̃t, Ṽt) exp

(
a

√
H(X̃t, Ṽt)

))
f (rt)

≤ Lψ|Zt|f ′(rt)Gt.

At this stage, lines (5.2), (5.3) and (5.5) (without the non linearity dealt with in
bullet 1), can be bounded by the quantity

K̃t =Gt

(
cf (rt) + αf ′ (rt)

d|Zt|
dt

+ (LU + 1 +
λ

8
)f ′ (rt) |Zt|+ 4f ′′ (rt) rc

2 (Zt,Wt)
)

+
1

2
(εCf,1 + Cf,2) rtf

′ (rt) rc (Zt,Wt)
2
,

where we used the a priori bounds 0 ≤ Lψ ≤ 1 and 0 ≤ LW < λ
8 . The righthand

side is then dealt with through the choice of the concave function f like previously.

• 4. Likewise, we can bound

E

(
ε

(
exp

(
a
√
H (Xt, Vt)

)
EH (Xt, Vt) + exp

(
a

√
H(X̃t, Ṽt)

)
EH(X̃t, Ṽt)

)
f (rt)

)
≤ CH,H̃E (ρt) + C0

H,H̃
E (ρt) e

−γt,

with CH,H̃ a constant independent of initial conditions and C0
H,H̃

another constant,
possibly depending on initial conditions. Here, we used (2.6) and (4.5).

We can thus construct a function f and constants c and ε, through the same calculations
as before, such that there are C and C0 constants (resp. independent and dependent on
initial conditions) such that

∀t, ectE (ρt) ≤E (ρ0) + ξ(1 + α)E(Gt)e
ct + LWC

∫ t

0

ecsE (ρs) ds
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+ LWC
0

∫ t

0

e(c−γλ)sE (ρs) ds.

Since EGt is bounded uniformly in time, we may now conclude using Gronwall’s lemma.

We have used in the proof the assumption (5.8) on Lψ. Let us explain why it can
be enforced. Here, the parameter ε is independent of Lψ (as above we have bounded
it using the a priori bounds 0 ≤ Lψ ≤ 1) and is similar to the expression of ε given in
Section 4.3. Using the fact that α > LU , we assume

Lψ ≤ cψ(LU , λ, Ã, d, a) := min

(
LUγa

64
,
LUγε

8
, 1

)
(5.9)

with γ = λ
2(λ+1) .

A Various results

A.1 Proof of lemma 1.2

The property only depends on the distance to the the origin, not the direction. We
therefore only need to prove it in dimension 1, making sure the constant Ã is independent
of the direction. There is x0 > 0 such that λ

2x
2
0 = 2A. Therefore, for x ≥ 0, using (1.4):

U ′ (x0 + x) (x0 + x) ≥ 2λU (x0 + x) +
λ

2
(x0 + x)

2 − 2A = 2λU (x0 + x) +
λ

2
x2 + λxx0.

Then, for x ≥ 0:

U (x0 + x)− U (x0) =

∫ 1

0

U ′ (x0 + tx)xdt =

∫ 1

0

U ′ (x0 + tx) (x0 + tx)
x

x0 + tx
dt

≥ x

x0 + x

∫ 1

0

2λU (x0 + tx) +
λ

2
t2x2 + λtxx0dt

≥ x

x0 + x

(
λ

6
x2 +

λ

2
xx0

)
since U ≥ 0

=
λ

6

x3

x0 + x
+
λ

2

x2x0

x0 + x
.

We thus have for all x ≥ x0:

U (x)− U (x0) ≥ λ

6

(x− x0)
3

x
+
λ

2

(x− x0)
2
x0

x

=
λ

6
x2 − λ

2
xx0 +

λ

2
x2

0 −
λ

6

x3
0

x
+
λ

2
xx0 − λx2

0 +
λ

2

x3
0

x

=
λ

6
x2 − λ

2
x2

0 +
λ

3

x3
0

x
.

However, −λ2x
2
0 + λ

3
x3
0

x ≥ −
λ
2x

2
0 = −2A for x ≥ x0. We therefore have the desired result

for x ≥ x0. The same reasoning gives us the result for x ≤ −x0.

Hence, if |x| ≥ |x0| =
√

4A
λ , U (x)−U (x0) ≥ λ

6x
2− 2A. We then use the fact that U (x)

is continuous on the sphere of center 0 and radius
√

4A
λ , hence bounded on this set, to

give a lower bound on U (x0) independent of the direction. Finally, for |x| ∈ [−x0, x0], the
function x 7→ U (x)− λ

6x
2 is continuous, therefore bounded.
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A.2 Proof of lemma 1.10

We have

∇W ∗ µ (x)−∇W ∗ ν (x̃) = ∇W ∗ µ (x)−∇W ∗ µ (x̃) +∇W ∗ µ (x̃)−∇W ∗ ν (x̃)

Let (X, X̃) be a coupling of µ and ν. Then

|∇W ∗ µt (x)−∇W ∗ µ̃t (x̃) | =
∣∣∣E(∇W (x−X)−∇W (x̃− X̃)

)∣∣∣
≤LWE

(
|x−X − x̃+ X̃|

)
≤LWE

(
|x− x̃|+ |X − X̃|

)

This being true for all coupling, we obtain the desired result.

A.3 Proof of Lemma 2.1

Remark A.1. With γ given by (2.1), we have γ ≤ 1
2 .

We have

LµH (x, v) =v · ∇xH (x, v)− v · ∇vH (x, v)−∇U (x) · ∇vH (x, v)

−∇W ∗ µ (x) · ∇vH (x, v) + ∆vH (x, v)

=v · (24∇U (x) + 12 (1− γ)x+ 2λx+ 12v)− v · (12x+ 24v)

−∇U (x) · (12x+ 24v)−∇W ∗ µ (x) · (12x+ 24v) + 24d

=24d− 12∇U (x) · x+ x · v (12 (1− γ) + 2λ− 12)

−∇W ∗ µ (x) · (12x+ 24v)− 12|v|2,

with

−γH (x, v) =− 24γU (x)− 6γ (1− γ) |x|2 − γλ|x|2 − 12γx · v − 12γ|v|2

−12∇U (x) · x ≤− 24λU (x)− 6λ|x|2 + 24A,

and

−∇W ∗ µ (x) · (12x+ 24v)

≤ (LW |x|+ LWEµ (| · |)) (12|x|+ 24|v|)
≤12LW |x|2 + 24LW |x||v|

+ LWEµ (| · |)
(

6
|x|2

axEµ (| · |)
+ 6axEµ (| · |) + 12

|v|2

avEµ (| · |)
+ 12avEµ (| · |)

)
,

where this last inequality holds for any ax, av > 0. Therefore

LµH (x, v) ≤24A+ 24d+ 6LWEµ (| · |)2
(ax + 2av)− γH (x, v) + 24γU (x) + 6γ (1− γ) |x|2

+ γλ|x|2 + 12γx · v + 12γ|v|2 − 24λU (x)− 6λ|x|2 + 12LW |x|2 + 24LW |x||v|

+
6LW
ax
|x|2 +

12LW
av
|v|2 + x · v (12 (1− γ) + 2λ− 12)− 12|v|2,

and then

LµH (x, v) ≤24A+ 24d+ 6LWEµ (| · |)2
(ax + 2av)− γH (x, v) + 24U (x) (γ − λ)

+ |x||v| (|12γ + 12 (1− γ) + 2λ− 12|+ 24LW )
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+ |x|2
(

6γ (1− γ) + γλ− 6λ+ 12LW +
6LW
ax

)
+ |v|2

(
12γ − 12 +

12LW
av

)
.

We now use |x||v| ≤ λ
3 |x|

2 + 3
4λ |v|

2, and |12γλ+ 12 (1− γλ) + 2λ− 12| = 2λ.

We have (γ − λ) < 0. Hence 24U (x) (γ − λ) ≤ 4λ (γ − λ) |x|2 − 24 (γ − λ) Ã using
Lemma 1.2. Then

LµH (x, v) ≤ 24A− 24 (γ − λ) Ã+ 24d+ 6LWEµ (| · |)2
(ax + 2av)− γH (x, v)

+ |x|2
(

4λ (γ − λ) + 6γ (1− γ) + γλ− 6λ+
6LW
ax

+ 12LW +
2λ2

3
+

24LWλ

3

)
+ |v|2

(
12γ − 12 +

12LW
av

+
3

2
+

3

4λ
24LW

)
.

We now consider each term individually.

Coefficient of |x|2. We have, using 0 < γ < 1 and LW ≤ λ
8

4λ (γ − λ) +6γ (1− γ) + γλ− 6λ+
2λ2

3
+

24LWλ

3
+ 12LW

≤ γ (5λ+ 6)−
(

4λ2 + 6λ− 2λ2

3
− λ2 − 3λ

2

)
.

Therefore, it is sufficient that

γ ≤ λ
7
3λ+ 9

2

5λ+ 6
.

We check this holds for γ = λ
2λ+2 . Then

4λ (γ − λ) +6γ (1− γ) + γλ− 6λ+
2λ2

3
+

24LWλ

3
+ 12LW +

6LW
ax

≤ (5λ+ 6)

(
γ −

7
3λ

2 + 9
2λ

5λ+ 6

)
+

3λ

4ax
.

We therefore choose

3λ

4ax
≤ − (5λ+ 6)

(
γ −

7
3λ+ 9

2λ

5λ+ 6

)
=

7

3
λ2 +

9

2
λ− 5λ2 + 6λ

2λ+ 2
.

It is, for that, sufficient to take

3λ

4ax
=

3

4
λ, i.e ax = 1.

Furthermore

6λ (γ − λ) + 6γ (1− γ) + γλ− 6λ+
2λ2

3
+

24LWλ

3
+ 12LW +

6LW
ax

≤ 5λ2 + 6λ

2λ+ 2
− 7

3
λ2 − 9

2
λ+

3

4
λ =

5λ2 + 6λ

2λ+ 2
− 7

3
λ2 − 15

4
λ.

We then observe

6λ (γ − λ) + 6γ (1− γ) + γλ− 6λ+
6LW
ax

+
2λ2

3
+

24LWλ

3
+ 12LW ≤ −λ2 − 3

4
λ.
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And finally, for all λ > 0 and for all x

|x|2
(

6λ (γ − λ) + 6γ (1− γ) + γλ− 6λ+
6LW
ax

+
2λ2

3
+

48LWλ

3
+ 12LW

)
≤ −λ2|x|2 − 3

4
λ|x|2

Coefficient of |v|2. We have, using 0 < γ ≤ 1
2 and LW ≤ λ/8

12γ − 12 +
3

2
+

3

4λ
24LW ≤ −6 +

3

2
+

18

λ
· λ

8
= −6 +

3

2
+

9

4
= −9

4
.

We then choose

12λ

8av
=

9

4
, i.e av =

2

3
λ.

Therefore

∀λ > 0, ∀v, |v|2
(

12γ − 12 +
3

2
+

3

4λ
24LW +

12LW
av

)
≤ 0.

We thus obtain

LµH (x, v)

≤ 24
(
A− (γ − λ) Ã+ d

)
+ 6LWEµ (| · |)2

(
1 +

4

3
λ

)
− λ2|x|2 − 3

4
λ|x|2 − γH (x, v) ,

i.e

LµH (x, v) ≤ 24
(
A− (γ − λ) Ã+ d

)
+Eµ (| · |)2

(
3

4
λ+ λ2

)
− λ2|x|2 − 3

4
λ|x|2 − γH (x, v) .

(A.1)

A.4 Proof of Lemma 2.3

Using 1− γ ≥ 1
2 , we get

H (x, v) ≥ 24U(x) + (3 + λ) |x|2 + 12
∣∣∣v +

x

2

∣∣∣2 − 3|x|2,

which is (2.2). We then have

H (x, v) ≥ min

(
2

3
λ, 6

)(
|v|2 + |x+ v|2

)
.

Thus

r(x, x̃, v, ṽ)2 ≤ ((1 + α) |x− x̃+ v − ṽ|+ α|v − ṽ|)2

≤ 2 (1 + α)
2 |x− x̃+ v − ṽ|2 + 2α2|v − ṽ|2

≤ 4
(

(1 + α)
2

+ α2
) (
|x+ v|2 + |v|2 + |x̃+ ṽ|2 + |ṽ|2

)
.

Therefore we obtain the final point.

A.5 Proof of control of L1 and L2 Wasserstein distances

We prove Lemma 2.7. Using the definition of R1 and (2.1), and since B ≥ d ≥ 1 and
γ ≤ 1

2 , we have R1 ≥ 1.
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• First for the L1-Wasserstein distance

|x− x′|+ |v − v′| ≤ |v − v′ + x− x′|+ 2|x− x′| ≤ max

(
2

α
, 1

)
r ((x, v) , (x′, v′)) .

If r ((x, v) , (x′, v′)) ≤ 1 ≤ R1

r ((x, v) , (x′, v′)) ≤ f (r)

f ′− (R1)
≤ ρ ((x, v) , (x′, v′))

φ (R1) g (R1)
.

If r ((x, v) , (x′, v′)) ≥ 1, we have shown (2.7)

r ((x, v) , (x′, v′)) ≤ r2 ((x, v) , (x′, v′)) ≤ 4
(1 + α)

2
+ α2

min
(

2
3λ, 6

) (H (x, v) +H (x′, v′)) .

Thus

r ((x, v) , (x′, v′)) ≤ 4

ε

(1 + α)
2

+ α2

min
(

2
3λ, 6

) (εH (x, v) + εH (x′, v′))

≤ 4

ε

(1 + α)
2

+ α2

min
(

2
3λ, 6

) ρ ((x, v) , (x′, v′))

f (r)

≤ 4

ε

(1 + α)
2

+ α2

min
(

2
3λ, 6

) ρ ((x, v) , (x′, v′))

f (1)
.

Therefore

|x− x′|+ |v − v′|

≤ max

(
2

α
, 1

)
max

4
(

(1 + α)
2

+ α2
)

εmin
(

2
3λ, 6

)
f (1)

,
1

φ (R1) g (R1)

 ρ ((x, v) , (x′, v′)) .

• Then for the L2-Wasserstein distance

|v − v′|2 = |v − v′ + x− x′ − (x− x′) |2 ≤ 2|v − v′ + x− x′|2 + 2|x− x′|2.

Hence

|x− x′|2 + |v − v′|2 ≤ 3
(
|v − v′ + x− x′|2 + |x− x′|2

)
.

But

r2 ((x, v) , (x′, v′)) = (α|x− x′|+ |x− x′ + v − v′|)2

≥ α2|x− x′|2 + |x− x′ + v − v′|2

≥
(
1 + α2

) (
|x− x′|2 + |x− x′ + v − v′|2

)
≥ 1 + α2

3

(
|x− x′|2 + |v − v′|2

)
.

If r ((x, v) , (x′, v′)) ≤ 1 ≤ R1

r2 ((x, v) , (x′, v′)) ≤ r ((x, v) , (x′, v′)) ≤ f (r)

f ′− (R1)
≤ ρ ((x, v) , (x′, v′))

φ (R1) g (R1)
.

If r ((x, v) , (x′, v′)) ≥ 1, we have shown (2.7)

r2 ((x, v) , (x′, v′)) ≤ 4
(1 + α)

2
+ α2

min
(

2
3λ, 6

) (H (x, v) +H (x′, v′)) .
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Thus

r ((x, v) , (x′, v′)) ≤ 4

ε

(1 + α)
2

+ α2

min
(

2
3λ, 6

) (εH (x, v) + εH (x′, v′))

≤ 4

ε

(1 + α)
2

+ α2

min
(

2
3λ, 6

) ρ ((x, v) , (x′, v′))

f (r)

≤ 4

ε

(1 + α)
2

+ α2

min
(

2
3λ, 6

) ρ ((x, v) , (x′, v′))

f (1)
.

Therefore

|x− x′|2 + |v − v′|2

≤ 3

1 + α2
max

4
(

(1 + α)
2

+ α2
)

εmin
(

2
3λ, 6

)
f (1)

,
1

φ (R1) g (R1)

 ρ ((x, v) , (x′, v′)) .

A.6 Proof of Lemma 2.8

We have

H(x, v)−H(x̃, ṽ)

=24 (U(x)− U(x̃)) + (6(1− γ) + λ)
(
|x|2 − |x̃|2

)
+ 12 (x · v − x̃ · ṽ) + 12

(
|v|2 − |ṽ|2

)
=24 (U(x)− U(x̃)) + (6(1− γ) + λ− 3)

(
|x|2 − |x̃|2

)
+ 12

(∣∣∣v +
x

2

∣∣∣2 − ∣∣∣∣ṽ +
x̃

2

∣∣∣∣2
)
.

We first have

∣∣|x|2 − |x̃|2∣∣ ≤ |x− x̃| (|x|+ |x̃|) ≤ r(x, v, x̃, ṽ)

α
√
λ

(√
H(x, v) +

√
H(x̃, ṽ)

)
.

Then ∣∣∣∣∣∣∣∣v +
x

2

∣∣∣2 − ∣∣∣∣ṽ +
x̃

2

∣∣∣∣2
∣∣∣∣∣ ≤
∣∣∣∣v +

x

2
− ṽ − x̃

2

∣∣∣∣ (∣∣∣v +
x

2

∣∣∣+

∣∣∣∣ṽ +
x̃

2

∣∣∣∣)
≤ 1√

12
|v − ṽ +

1

2
(x− x̃)|

(√
H(x, v) +

√
H(x̃, ṽ)

)
≤ 1

2
√

3
max

(
1,

1

2α

)
r(x, v, x̃, ṽ)

(√
H(x, v) +

√
H(x̃, ṽ)

)
.

And finally

|U(x)− U(x̃)| =
∣∣∣∣∫ 1

0

∇U (x̃+ t(x− x̃)) · (x− x̃)dt

∣∣∣∣
≤ sup
t∈[0,1]

|∇U (x̃+ t(x− x̃)) ||x− x̃|

≤ (∇U(0) + LU (|x|+ |x̃|)) |x− x̃|

≤
(
∇U(0) +

LU√
λ

(√
H(x, v) +

√
H(x̃, ṽ)

)) r(x, v, x̃, ṽ)

α
.

These three inequalities yield the desired result.
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B Proof of Lemma 2.5

We first rewrite the various conditions on the parameters.

• Since for all u ≥ 0, 0 < φ (u) ≤ 1, we have 0 < Φ (s) =
∫ s

0
φ (u) du ≤ s, i.e s/Φ (s) ≥ 1.

Therefore

inf
r∈]0,R1]

rφ (r)

Φ (r)
≥ inf
r∈]0,R1]

φ (r) = φ (R1) .

It is thus sufficient for (2.11) that

c+ 2εB ≤ 1

2

(
1− 1

α
(LU + LW )

)
φ (R1) .

• We have

φ (r) ≤ exp

(
−LU + LW

8α
r2

)
.

So

Φ (r) ≤
∫ ∞

0

exp

(
−LU + LW

8α
s2

)
ds =

√
2πα

LU + LW
.

Then ∫ R1

0

Φ (r)

φ (r)
dr ≤

√
2πα

LU + LW
R1

1

φ (R1)
.

It is thus sufficient for (2.12) that

c+ 2εB ≤ 2

√
LU + LW

2πα

φ (R1)

R1
.

At this point, we have now proven that under Assumption 1.1, Assumption 1.3 and
Assumption 1.9, for the parameters to satisfy Lemma 2.5 it is sufficient for them to
satisfy

α > LU + LW , (B.1)

c ≤ γ

6

(
1−

5
6γ

2εB + 5
6γ

)
, (B.2)

c+ 2εB ≤ 1

2

(
1− 1

α
(LU + LW )

)
φ (R1) , (B.3)

c+ 2εB ≤ 2

√
LU + LW

2πα

φ (R1)

R1
, (B.4)

with, again

B = 24
(
A+ (λ− γ) Ã+ d

)
, R1 =

√
(1 + α)

2
+ α2

√
24

5γmin
(
3, 1

3λ
)B.

Let us show that there are positive parameters ε, α, LW and c satisfying those conditions.
For inequality (B.1) it is sufficient, as LW < λ

8 , to consider

α = LU +
λ

4
,
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while inequality (B.2) first invites us to consider 2εB of a comparable order to c

2εB = δc.

We have thus switched parameter ε for δ. First we translate (B.2) into our new parameter:

c ≤ γ

6

(
1−

5
6γ

2εB + 5
6γ

)
⇐⇒ c ≤ γ

6

δc

δc+ 5
6γ

⇐⇒ 1 ≤ γ

6

δ

δc+ 5
6γ

(since c ≥ 0)

⇐⇒ c ≤ γ

6

δ − 5

δ
.

The appearance of φ (R1) in (B.3) and (B.4) suggests we should try to minimize it. Let
us assume, for simplicity, that ε ≤ 1, which is equivalent to having c ≤ 2B

δ . We then have

φ (r) = exp

(
−1

8

(
1

α
(LU + LW ) + α+ 96εmax

(
1

2α
, 1

))
r2

)
≥ exp

(
−1

8

(
LU + LW

α
+ α+ 96 max

(
1

2α
, 1

))
r2

)
on [0, R1]. (B.5)

Now, using (B.5), we have for (B.3) and (B.4) that it is sufficient that

c ≤ 1

2(δ + 1)

(
1− 1

α
(LU + LW )

)
exp

(
−1

8

(
LU + LW

α
+ α+ 96 max

(
1

2α
, 1

))
R2

1

)
,

and

c ≤ 2

δ + 1

√
LU + LW

2πα
exp

(
−1

8

(
LU + LW

α
+ α+ 96 max

(
1

2α
, 1

))
R2

1

)
.

We could now optimize parameter δ, but for the sake of conciseness, we choose δ = 6.
Recall 0 ≤ LW < λ

8 . This way, both in (2.8) and (3.14), c and C1 can be bounded
independently of LW . Hence why LW , in (3.14) and (4.17), can be chosen last, and every
other quantities can be chosen independently of LW .
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