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Universal height and width bounds for random trees*
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Abstract

We prove non-asymptotic stretched exponential tail bounds on the height of a randomly
sampled node in a random combinatorial tree, which we use to prove bounds on the
heights and widths of random trees from a variety of models. Our results allow us
to prove a conjecture and settle an open problem of Janson [13], and nearly prove
another conjecture and settle another open problem from the same work (up to a
polylogarithmic factor).

The key tool for our work is an equivalence in law between the degrees along
the path to a random node in a random tree with given degree statistics, and a
random truncation of a size-biased ordering of the degrees of such a tree. We also
exploit a Poissonization trick introduced by Camarri and Pitman [9] in the context of
inhomogeneous continuum random trees, which we adapt to the setting of random
trees with fixed degrees.

Finally, we propose and justify a change to the conventions of branching process
nomenclature: the name “Galton–Watson trees” should be permanently retired by the
community, and replaced with the name “Bienaymé trees”.
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Universal height and width bounds for random trees

1 Introduction

This paper concerns the height and width of random plane trees, and applications of
bounds thereof to the study of random simply generated trees and to the family trees
of branching processes. Our results in particular allow us to settle two conjectures
from [13], and to nearly settle two others.

By a plane tree, we mean a finite rooted tree t = (v(t), e(t)) in which the set of
children of each node is endowed with a left-to-right order. The root of t is denoted r(t).
The degree of a node v ∈ v(t), denoted dt(v), is its number of children in t, so leaves
have degree 0 and all other nodes have strictly positive degree.

The degree statistics of t is the sequence nt = (nt(c), c ≥ 0), where nt(c) = |{v ∈ v(t) :

dt(v) = c}| is the number of nodes of t with c children. Note that

|v(t)| =
∑
c≥0

nt(c) = 1 +
∑
c≥0

cnt(c) = 1 + |e(t)| .

A sequence n = (n(c), c ≥ 0) is the degree statistics of some tree if and only if
∑
c≥0 n(c) =

1 +
∑
c≥0 cn(c). For such sequences, we write Tn for the set of plane trees with degree

statistics n, and write

T •n = {(t, v) : t ∈ Tn, v ∈ v(t)}.

A marked tree is a pair (t, v) where t is a plane tree and v ∈ v(t); so the elements of T •n
are precisely the marked trees with degree statistics n.

For a node v ∈ v(t), the height of v, denoted |v|, is the graph distance from v to r(t).
The height of t, denoted ht(t), is max(|v| : v ∈ v(t)). The width of t at level k, denoted
wid(t, k), is |{v ∈ t : |v| = k}|, and the width of t, denoted wid(t), is max(wid(t, k), k ≥ 0).

Given a a sequence n = (n(c), c ≥ 0) of non-negative real numbers, for p > 0, we write
|n|p = (

∑
c≥0 c

pn(c))1/p. Note that for a plane tree t, we have |nt|1 + 1 = |t|.
We prove the following non-asymptotic tail bounds on the height of a randomly

sampled node in a random plane tree with given degree statistics. For a finite set S we
write X ∈u S to mean that X is a uniformly random element of the set S.

Theorem 1.1. Fix degree statistics n = (n(c), c ≥ 0) and let (T, V ) ∈u T •n . Then for all
β > 173/2,

P

{
|V | > β

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−β

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−β

2/3

24

)
,

and if n(1) = 0 then for all ` ≥ 1,

P {|V | ≥ `} ≤ exp

(
− `2

2|n|1

)
.

A related bound, recently proved by Marzouk [16, Proposition 5], strengthens the
first of the two bounds stated in the preceding theorem, up to constant factors. The
bounds in Theorem 1.1, interesting in their own right, also have several consequences
for the family trees of branching processes, which are summarized in our other main
theorems, below. In order to state the theorems, we need a little more terminology.

Given a tree t, write t≤k for the subtree of t consisting of all nodes u ∈ v(t) with
|u| ≤ k.

Let µ be a probability distribution with support N (by which we mean that µ(N) = 1).
By a Bienaymé tree with offspring distribution µ, we mean the family tree T of a
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Universal height and width bounds for random trees

branching process with offspring distribution µ.1 The law of T is uniquely determined by
the property that for any plane tree t of height at most k,

P
{
T≤k = t

}
=

∏
v∈t≤k−1

µ(dt(v)) .

In the preceding formula and below, we write µ(k) = µ({k}) for readability.
For n ∈ N, if P {|v(T )| = n} > 0 then we define a Bienaymé tree conditioned to have

size n in the natural way: this is a random tree Tn such that for any plane tree t with n
vertices,

P {Tn = t} = P {T = t | |v(T )| = n} .

Finally, for a measure µ on R, for p > 0 we write |µ|p := (
∫
R
|x|pµ(dx))1/p. This agrees

with the above notation |n|p for sequences n = (n(c), c ≥ 0), by interpreting the sequence
as the discrete measure assigning mass n(c) to each non-negative integer c.

Theorem 1.2. Fix a probability distribution µ with supportN, with |µ|1 ≤ 1 and |µ|2 =∞.
For n ∈ N, let Tn be a Bienaymé tree with offspring distribution µ, conditioned to have
size n, and let Vn be a uniformly random node of Tn. Then wid(Tn)/n1/2 →∞, |Vn|/n1/2 →
0, and ht(Tn)/(n1/2 log3 n)→ 0. All convergence results hold both in probability and in
expectation, as n→∞.

Theorem 1.3. Fix a probability distribution µ with support N, with |µ|1 < 1 and with∑
c≥0 e

tcµ(c) =∞ for all t. For n ∈ N let Tn be a Bienaymé tree with offspring distribution
µ, conditioned to have size n, and let Vn be a uniformly random node of Tn. Then
wid(Tn)/n1/2 →∞, |Vn|/n1/2 → 0, and ht(Tn)/(n1/2 log3 n)→ 0. All convergence results
hold both in probability and in expectation, as n→∞.

The results of Theorems 1.2 and 1.3 are close analogues of Conjectures 21.5 and 21.6
and Problems 21.7 and 21.8 from [13], but those conjectures are stated for the slightly
more general model of simply generated trees. In Section 5 we define simply generated
trees, state the aforementioned conjectures and problems precisely, and explain how
to use Theorem 1.1 to prove Conjecture 21.6 and solve Problem 21.8 from [13], and
to nearly prove Conjecture 21.5 and nearly solve Problem 21.7 from the same paper.2

The key fact about simply generated trees is that, like conditioned Bienaymé trees, they
are uniformly random conditional on their degree statistics, which allows us to apply
Theorem 1.1 to them.

We also prove height and width bounds for conditioned Bienaymé trees which hold
without any assumptions on the offspring distribution at all, aside from the requirement
that the resulting family trees have both leaves and branch points.

Theorem 1.4. There exists a constant C > 0 such that the following holds. Fix a
probability distribution µ with support N with µ(0) + µ(1) < 1. For n ∈ N, let Tn be a
Bienaymé tree with offspring distribution µ, conditioned to have size n, and let Vn be a
uniformly random node of Tn. Then E|Vn| ≤ Cn1/2/(1− µ(0)− µ(1))1/2,

E [wid(Tn)] ≥ (1− µ(0)− µ(1))1/2

C
n1/2 and E [ht(Tn)] ≤ C n1/2 log3 n

(1− µ(0)− µ(1))1/2
.

1We propose this name as an alternative to the term “Galton–Watson tree” since (a) Bienaymé’s introduction
of such trees both predates that of Galton and Watson and is more mathematically correct - see [6] and [10,
Pages 83-86]; and (b) we prefer not to honour the founder of eugenics, Francis Galton, by continuing to attach
his name to these mathematical objects. (Galton wrote: “We greatly want a brief word to express the science
of improving stock, which is by no means confined to questions of judicious mating, but which, especially
in the case of man, takes cognisance of all influences that tend in however remote a degree to give to the
more suitable races or strains of blood a better chance of prevailing speedily over the less suitable than they
otherwise would have had. The word eugenics would sufficiently express the idea” [12, Page 25].)

2“Nearly prove” and “nearly solve” rather than “prove” and “solve” due to the presence of a log3 n factor in
two of our bounds.
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1.1 Discussion

There is a substantial amount of past work on the heights and widths of random
Bienaymé trees and random combinatorial trees [1–3, 14, 15], and bounds on these
quantities, particularly the height, often feature in scaling limit theorems for random
trees and associated objects [4,5,8,17,19]. The works [1–3] all bound the height via
the study of the depth-first exploration process of the tree. This technique gives bounds
which are frequently tight, up to constant factors, for trees whose offspring distributions
are sufficiently light tailed (e.g. with finite variance). However, it does not appear
well-suited to studying trees with heavy-tailed degrees (in which case the depth-first
queue length is a poor proxy for the height).

For critical conditioned Bienaymé trees with finite variance (|µ|1 = 1, |µ|2 < ∞),
sub-Gaussian tail bounds for n−1/2ht(Tn) and n−1/2wid(Tn) are known [3]. However, the
authors of that paper state that they “are not aware of any results [for the height and
width] that hold for arbitrary offspring distributions.” As far as the authors of the current
paper are aware, this is still the case, and this paper is the first work to provide such
results.

We do not expect that the stretched exponential tail bound of Theorem 1.1 is tight.
However, it is not completely clear what form an optimal bound ought to take. We now
record some observations which limit how quickly the optimal bounds can decay, to help
provide a sense of the potential complexities. These observations in particular show that
the exponents 1/3 and 2/3 in Theorem 1.1 can not be replaced by any values strictly
greater than 1, which means that one can not hope for sub-Gaussian tail bounds like
those we prove for degree statistics with n(1) = 0 to hold in general. (The computations
underlying the observations are not fully spelled out here but are not too complicated.)

First, fix α ∈ (1, 2), and suppose that |µ|1 = 1 and µ(k,∞) = (1 + o(1))ck−α as k →∞,
so µ is a critical offspring distribution in the domain of attraction of an α-stable law. In
this setting, it is known [11, Theorem 1.5] that

P
{

ht(Tn) ≥ cn1−1/α
}
� c1+α/2 exp(−(α− 1)1/(α−1)cα) (1.1)

as first n → ∞, then c → ∞. Such a tree Tn will typically have Θ(nk−α−1) nodes of
degree k for k ≤ n1/α and no nodes of degree much larger than n1/α, and so will satisfy
|nTn
|22 � n2/α. Since α can be taken arbitrarily close to 1, comparing the upper bound

from Theorem 1.1 with (1.1) shows that the exponent 2/3 in Theorem 1.1 can not be
replaced with anything strictly greater than one.

Second, consider degree statistics of the form n = (k, k, . . . , 0, 1, 0, . . .), corresponding
to a tree with n = 2k + 1 nodes, with a single node of degree k, and k nodes each of
degrees 0 and 1. For such degree statistics, |n|1/(|n|22 − n(1))1/2 = Θ(1). Moreover, it is
not hard to see that with high probability a random tree with these degree statistics has
height Θ(log n), so there is δ > 0 such that the probability that a randomly sampled node
has height at least δ log n is at least (δ log n)/n. Combining these observations shows that
neither the exponent 1/3 nor the exponent 2/3 in the first bound in Theorem 1.1 can in
general be replaced with anything greater than 1. (Marzouk’s result [16, Proposition
5] shows that one can essentially replace both constants 1/3 and 2/3 by 1; the above
observations show that this is then best possible.)

We conclude the discussion with a word about Theorem 1.4. The dependence on
µ(0) and µ(1) in that theorem is necessary; if µ(0) + µ(1) = 1 then with probability
one Tn is a path with n vertices, which has width 1 and height n − 1. Moreover, the
form of the dependence in the theorem is essentially optimal. To see this, suppose
that µ(1) = 1 − ε and µ(0) = µ(2) = ε/2. Then with high probability Tn will have
(1 + o(1))(1 − ε)n vertices with exactly one child. Let T̂n be the tree obtained from Tn
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by suppressing all vertices with exactly one child, so that T̂n has only nodes with 0

or 2 children, and Tn can be recovered from T̂n by subdividing edges. Then T̂n has
size (1 + o(1))εn with high probability, and is a uniform binary tree conditional on its
size, so has height Θ((εn)1/2) and width Θ((εn)1/2) in probability. Each edge of T̂n is
subdivided Θ(ε−1) times on average in Tn, from which it is easy to believe (and not too
hard to prove) that Tn has height Θ((n/ε)1/2) = Θ((n/(1 − µ(0) − µ(1)))1/2) and width
Θ((εn)1/2) = Θ(((1− µ(0)− µ(1))n)1/2) in probability and in expectation.

1.2 Notation

For a sequence (rn, n ≥ 1) of real numbers, we write rn = oe(1) if there exists c > 0

such that rn ≤ e−cn for all n sufficiently large. Given a sequence of events (En, n ≥ 1),
we say that En occurs with very low probability (and that Ecn occurs with very high
probability) if P {En} = oe(1).

2 An overview of the proofs

2.1 A sampler for the height of the marked node

Fix degree statistics n, and let (T, V ) ∈u T •n . The tool which unlocks all the results of
the paper is a sampling procedure which generates a random variable with the same law
as |V |. To describe the sampling procedure, some notation is needed.

Given degree statistics n = (n(c), c ≥ 0), we say a random vector D = (D1, . . . , Dn)

is a size-biasing of n if n =
∑
c≥0 n(c) and for any sequence d = (d1, . . . , dn) such that

|{i ∈ [n] : di = c}| = n(c) for all c, the following holds. For each 1 ≤ k ≤ n,

P {Dk = dk | (D1, . . . , Dk−1) = (d1, . . . , dk−1)} =
dk(n(dk)− w((d1, ..., dk−1), dk))

|n|1 − d1 − . . .− dk−1
, (2.1)

where w((d1, ..., dk−1), d) = |{i ∈ [k − 1] : di = d}| for d ≥ 0. The fraction is interpreted as
equal to 1 if d1+ . . .+dk−1 = |n|1. The definition implies that |{1 ≤ k ≤ n : Dk = c}| = n(c)

almost surely, for all c ≥ 0. It also implies that the final n(0) ≥ 1 entries of D all equal 0,
and in particular Dn = 0.

Proposition 2.1. Fix degree statistics n and write n = |n|1 + 1. Let (T, V ) ∈u T •n , and
let D = (D1, . . . , Dn) be a size-biasing of n. Next let (U1, . . . , Un) be independent Uniform
[0, 1] random variables, independent of D. For i ∈ [n] let

Ai =

{
1 if Ui ≤

1+
∑i−1

j=1(Dj−1)
n+1−i

0 otherwise.

Finally, let M = min(i : Ai = 1). Then |V | d
= M − 1.

In the above proposition, note that since Dn = 0, when i = n we have

1 +
∑i−1
j=1(Dj − 1)

n+ 1− i
= 1 +

n−1∑
j=1

(Dj − 1) = 1,

so An = 1 and thus M ≤ n.
Theorem 1.1 is an essentially immediate consequence of Proposition 2.1 together

with the next result.

Theorem 2.2. Fix degree statistics n, write n = |n|1 + 1, and let D = (D1, . . . , Dn) be a
size-biasing of n. Next let (U1, . . . , Un) be independent Uniform [0, 1] random variables,
independent of D. For i ∈ [n− 1] let

Bi =

{
1 if Ui ≤

∑i−1
j=1(Dj−1)
n−i

0 otherwise.
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Finally, let σ = inf(i : Bi = 1). If n(1) > 0 then for all β > 173/2,

P

{
σ > β

|n|1
(|n|22 − n(1))1/2

}
≤ exp

(
−β

1/3

3

|n|1
(|n|22 − n(1))1/2

)
+ 2 exp

(
−β

2/3

24

)
,

and if n(1) = 0 then for all ` ≥ 1,

P {σ ≥ `} ≤ e−(`−1)
2/(2|n|1) .

Note that in Theorem 2.2, we have Bi = 1 iff Ui ≤
∑i−1

j=1(Dj−1)
n−i , whereas in Proposi-

tion 2.1, we have Ai = 1 iff Ui ≤
1+

∑i−1
j=1(Dj−1)
n+1−i . Since a+1

b+1 ≥
a
b whenever a

b < 1, it follows
that the random variable σ = inf(i : Bi = 1) stochastically dominates the random variable
M = min(i : Ai = 1). Thus, upper tail bounds for σ automatically apply to M . Since

|V | d
= M − 1, in view of this observation, the bounds of Theorem 1.1 follow immediately

from those of Theorem 2.2.

2.2 Moving from random marked trees to Bienaymé trees

Once Theorem 1.1 is established, the primary work in proving the other results of
the paper is to understand the degree statistics of conditioned Bienaymé trees, under
various assumptions on their offspring distributions. We prove the following bounds.

Proposition 2.3. Fix a probability distribution µ with support N with |µ|1 ≤ 1 and
|µ|2 =∞. For n ∈ N let Tn be a Bienaymé tree with offspring distribution µ, conditioned
to have size n, and let nTn

be the degree statistics of Tn. Then for any C > 0, with very
high probability |nTn

|22 ≥ C|nTn
|1.

Proposition 2.4. Fix a probability distribution µ with support N, with |µ|1 < 1 and with∑
c≥0 e

tcµ(c) = ∞ for all t > 0. For n ∈ N let Tn be a Bienaymé tree with offspring
distribution µ, conditioned to have size n, and let nTn be the degree statistics of Tn. Then
for any C > 0, with very high probability |nTn |22 ≥ C|nTn |1.

Proposition 2.5. Fix a probability distribution µ with supportN and with µ(0)+µ(1) < 1.
For n ∈ N let Tn be a Bienaymé tree with offspring distribution µ, conditioned to have
size n, and let nTn

be the degree statistics of Tn. Then for any ε > 0, with very high
probability |nTn

|22 − nTn
(1) ≥ |nTn

|1 · 4(1− µ(0)− µ(1)− ε).
In the remainder of this section, we explain how Theorems 1.2, 1.3 and 1.4 follow

from Propositions 2.3, 2.4 and 2.5 together with the bound from Theorem 1.1.

Proof of Theorem 1.2. For n ≥ 1, let Vn be a uniformly random node of Tn. Next, fix
ε > 0 small, and let C = C(ε) = 1 + ε−4. Then let En be the event that |nTn

|22 ≥ C|nTn
|1.

Now fix any degree statistics n with P {nTn
= n} > 0. Conditionally given that nTn

= n,
then (Tn, Vn) ∈u T •n . Thus, if |n|22 ≥ C|n|1, then |n|22 − n(1) ≥ (C − 1)|n|1 = |n|1/ε4, so for
all β ≥ 173/2 we have

P
{
|Vn| ≥ βε2|n|1/21 | nTn

= n
}
≤ P

{
|Vn| ≥ β

|n|1
(|n|22 − n(1))1/2

| nTn
= n

}
≤ exp

(
−β

1/3

3

)
+ 2 exp

(
−β

2/3

24

)
, (2.2)

where for the second equality we have used the bound from Theorem 1.1 together with
the fact that |n|2 ≤ |n|1 so |n|1

(|n|22−n(1))1/2
≥ 1.

We now use the bound

E
[
|Vn|1[|Vn|≥βε2|n|1/21 ]

]
≤ nP {Ecn}+ sup

n:|n|22≥C|n|1
E
{
|Vn|1[|Vn|≥βε2|n|1/21 ]

| nTn
= n

}
. (2.3)
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The first term is o(1) since En occurs with very high probability by Proposition 2.3. To
bound the second term we use that for any non-negative integer random variable X and
any z > 0, we have

E
[
X1[X≥βz]

]
≤ bβzc+ z

∫ ∞
β

P {X ≥ xz}dx ≤ z
(
β +

∫ ∞
β

P {X ≥ xz} dx

)
.

Using the bound from (2.2), it follows that

sup
n:|n|22≥C|n|1

E
{
|Vn|1[|Vn|≥βε2|n|1/21 ]

| nTn
= n

}
≤ ε2|n|1/21

(
β +

∫ ∞
β

exp

(
−x

1/3

3

)
dx+

∫ ∞
β

2 exp

(
−x

2/3

24

)
dx

)
.

Taking β = 1/ε, for ε small the first integral isO(e−ε
−1/3/3) and the second isO(e−ε

−2/3/24),
so (2.3) gives that

E
[
|Vn|1[|Vn|≥ε|n|1/21 ]

]
≤ ε|n|1/21 +O(ε2e−ε

−1/3/3|n|1/21 ) +O(ε2e−ε
−2/3/24|n|1/21 ) .

Since ε2e−ε
−1/3/3 = O(ε) and ε2e−ε

−2/3/24 = O(ε) for ε > 0 small, this implies that

E|Vn| = O(ε|n|1/21 ),

and so E|Vn| = o(|n|1/21 ) as ε > 0 can be chosen arbitrarily small. Since |n|1 = (n− 1), it
follows that n−1/2|Vn| → 0 in probability and in expectation.

Next, for any ε > 0, with C = 1+ ε−4 as above, taking β = (6 log n)3 in (2.2), we obtain
that

P
{
|Vn| ≥ (6 log n)3ε2(n− 1)1/2

}
≤ oe(1) + sup

n:|n|22≥C|n|1
P
{
|Vn| ≥ (6 log n)3ε2(n− 1)1/2 | nTn = n

}
≤ oe(1) + exp (−2 log n) + 2 exp

(
−3 log2 n

2

)
= O

(
1

n2

)
.

On the other hand, since Vn is a uniformly random node of Tn, for any positive integer h
we have P {|Vn| ≥ h | ht(Tn) ≥ h} ≥ 1/n, so P {ht(Tn) ≥ h} ≤ nP {|Vn| ≥ h} and thus

P
{

ht(Tn) ≥ (6 log n)3ε2(n− 1)1/2
}

= O

(
1

n

)
.

Since this holds for any ε > 0, it follows that ht(Tn)/((n− 1)1/2 log3 n)→ 0 in probability,
and since

E [ht(Tn)] ≤ (6 log n)3ε2(n− 1)1/2 + nP
{

ht(Tn) ≥ (6 log n)3ε2(n− 1)1/2
}

≤ (6 log n)3ε2(n− 1)1/2 +O(1) ,

again for any ε > 0, also ht(Tn)/((n− 1)1/2 log3 n)→ 0 in expectation.
Finally, fix ε > 0. For all n large enough that E|Vn| ≤ ε2n1/2, by Markov’s inequality,

P
{
|Vn| ≥ εn1/2

}
≤ ε.
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On the other hand, since Vn is a uniformly random node of Tn,

P
{
|Vn| ≥ εn1/2

}
≥ 1

2
P
{
|{u ∈ Tn : |u| ≥ εn1/2}| ≥ n

2

}
,

so

P
{
|{u ∈ Tn : |u| ≥ εn1/2}| ≥ n

2

}
≤ 2ε.

Further, if {u ∈ Tn : |u| ≥ εn1/2}| < n/2 then there are more than n/2 nodes in the first
εn1/2 levels of the tree, so wid(Tn) ≥ n1/2/(2ε). It follows that

P

{
wid(Tn) ≥ n1/2

2ε

}
≥ 1− 2ε ;

since ε > 0 was arbitrary, it follows that n−1/2wid(Tn) → ∞ in probability and in
expectation.

Theorem 1.3 follows from Proposition 2.4 in exactly the same way as Theorem 1.2
follows from Proposition 2.3, so we omit the details. The proof of Theorem 1.4 from
Proposition 2.5 is quite similar but not identical, so we do provide a (somewhat terser)
explanation.

Proof of Theorem 1.4. Fix any degree statistics n and let (T, V ) ∈u T •n . Then integrating
the tail bound from Theorem 1.1 over β ≥ 173/2, in essentially the same way as in the
proof of Theorem 1.2, it follows that

E|V | ≤ C |n|1
(|n|22 − n(1))1/2

, (2.4)

where C > 0 is a universal constant.

Since (|n|22 − n(1))1/2 ≤ |n|2 ≤ |n|1 = n − 1, using the tail bound from Theorem 1.1
with β = (6 log n)3, we also obtain that

P

{
|V | ≥ (6 log n)3

|n|1
(|n|22 − n(1))1/2

}
≤ exp(−2 log n) + 2 exp

(
−3 log2 n

2

)
≤ 1

n
,

the last bound holding whenever |n|1 is sufficiently large. Since

P {ht(T ) ≥ h} ≤ nP {|V | ≥ h}

and ht(T ) ≤ n− 1, it follows that

E [ht(T )] ≤ C log3 n
|n|1

(|n|22 − n(1))1/2
, (2.5)

with C > 0 again a universal constant.

Now let Tn be a Bienaymé tree with offspring distribution µ as in the statement of
Theorem 1.4, and let Vn be a uniformly random node of Tn. Let ε = (1− µ(0)− µ(1))/2

and let En be the event that |nTn |22 − nTn(1) ≥ |nTn |1 · 4(1− µ(0)− µ(1)− ε) = 2|nTn |1(1−
µ(0)− µ(1)). By Proposition 2.5, En occurs with very high probability.

On the event En we have

|nTn |1
(|nTn

|22 − nTn
(1))1/2

≤ n1/2

21/2(1− µ(0)− µ(1))1/2
,
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so by (2.4) we have

E|Vn| ≤ nP {Ecn}+ sup
n:|n|1=n+1

|nTn |22−nTn (1)≥2|nTn |1(1−µ(0)−µ(1))

E {|Vn| | nTn = n}

≤ o(1) + C
n1/2

21/2(1− µ(0)− µ(1))1/2
,

where in the second inequality we have used that P {Ecn} = oe(1). The lower bound on
E [wid(Tn)] follows from this upper bound on E|Vn| just as in the proof of Theorem 1.2.
Finally,

E [ht(Tn)] ≤ nP {Ecn}+ sup
n:|n|1=n+1

|nTn |22−nTn (1)≥2|nTn |1(1−µ(0)−µ(1))

E {ht(Tn) | nTn = n}

≤ o(1) + C log3 n
n1/2

21/2(1− µ(0)− µ(1))1/2
,

the second bound holding by (2.5) and since P {Ecn} = oe(1). This establishes the
requisite bound on E [ht(Tn)], and completes the proof.

3 Proof of Proposition 2.1

We begin with some combinatorial definitions and facts which we will require for
the proof. A forest is an ordered sequence f = (t1, . . . , ta) of plane trees. The degree
statistics of f is the sequence nf = (nf (c), c ≥ 0) where nf (c) is the number of nodes of f
with c children.

Fix integers 1 ≤ a ≤ n and let n = (n(c), c ≥ 0) be a sequence of non-negative integers
with

∑
c≥0 n(c) = n and

∑
c≥0 cn(c) = n − a. Any forest with degree statistics n has n

nodes and is composed of a trees. We write Tn to denote the set of forests with degree
statistics n. A single tree t can be interpreted as a forest f = (t), which makes this
notation agree with and extend the previously introduced notation Tn for the set of trees
with given degree statistics (in which case a = 1, i.e., |n|1 = n − 1). By [18, Exercise
6.2.1], it holds that

|Tn| =
a

n

(
n

n(c), c ≥ 0

)
=
a

n

n!∏
c≥0 n(c)!

. (3.1)

Next write T •n for the set of forests with degree statistics n with a marked node, and

T
(1)
n for the subset of T •n where the mark is in the first tree:

T •n = {(f, v) : f = (t1, . . . , ta) ∈ Tn, v is a node of f},

T (1)
n = {(f, v) : f = (t1, . . . , ta) ∈ Tn, v ∈ t1} .

For any forest f ∈ Tn there are n ways to choose a node to mark, so |T •n | = n|Tn|.
Moreover, there is a natural a-to-1 correspondence between T •n and T

(1)
n : if (f, v) ∈ T •n

with f = (t1, . . . , ta) and v ∈ ti, then

((ti, ti+1, . . . , ta, t1, . . . , ti−1), v) ∈ T (1)
n .

It follows that

|T (1)
n | = n

a
|Tn| =

(
n

n(c), c ≥ 0

)
. (3.2)

Some of the definitions of the coming paragraph are illustrated in Figure 1. For nodes
x, y of a tree t, we write x ≺ y if x is an ancestor of y in t, and for a node z ∈ v(t) \ {r(t)},
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r(t)

Sk(t, v)

v

r(t)

S(t, v)

v

vk

Figure 1: A visualization of a spine S(t, v) and of a k-spine Sk(t, v), for k = 3.

we denote its parent by p(z). Given a marked tree (t, v), the spine S(t, v) of (t, v) is
the subtree of t with vertices {w : p(w) ≺ v} ∪ {r(t)}. For 0 ≤ k ≤ |v|, write vk for the
unique ancestor of v with |vk| = k; so v0 = r(t) and v|v| = v. If k ≤ |v| then the k-spine
Sk(t, v) of (t, v) is the subtree of t with vertices {w : p(w) ≺ vk} ∪ {r(t)}, and the marked
k-spine of (t, v) is the marked tree (Sk(t, v), vk). The spinal degree sequence of Sk(t, v) is
(dt(v

0), . . . , dt(v
k−1)). Given a sequence d = (d0, . . . , dk−1) of non-negative integers and

degree statistics n = (n(c), c ≥ 0) satisfying
∑
c≥0 cn(c) =

∑
c≥0 n(c)− 1, write

T •n (d) = {(t, v) ∈ T •n : |v| ≥ k, (dt(v0), . . . , dt(v
k−1)) = d} .

Using these definitions, we establish the following combinatorial result, whose proba-
bilistic corollary is then used to prove Proposition 2.1. (This result is closely related to
the backbone decomposition of trees given in [8, Proposition 4 (a)] in order to prove con-
vergence of large random trees with fixed degrees to the Brownian continuum random
tree after rescaling, under suitable assumptions on the degree sequences.)

Proposition 3.1. Fix degree statistics n = (n(c), c ≥ 0) with
∑
c≥0 n(c) = n and with∑

c≥0 cn(c) = n − 1. For any sequence d = (d0, . . . , dk−1) of non-negative integers, let
w(d) = (w(d, c), c ≥ 0) where w(d, c) = |{0 ≤ i ≤ k − 1 : di = c}| is as in (2.1). If
w(d, c) ≤ n(c) for all c ≥ 0, then

|T •n (d)| =

(
k−1∏
i=0

di

)
·
∣∣∣T (1)

n−w(d)

∣∣∣ =

k−1∏
i=0

di ·
(

n− k
n(c)− w(d, c), c ≥ 0

)
.

Proof. To describe an element (t, v) of T •n (d), it is necessary and sufficient to specify the
marked k-spine (Sk(t, v), vk), the subtrees of t rooted at the leaves of Sk(t, v), and the
identity of the mark v, which must lie within the subtree of Sk(t, v) rooted at vk.

The number of marked k-spines with spinal degree sequence d is
∏k−1
i=0 di, since to

specify such a tree it is necessary and sufficient to indicate which of the di children of vi

is vi+1 for each 0 ≤ i ≤ k − 1. The subtrees rooted at the leaves of Sk(t, v) form a rooted
forest with degree statistics n− w(d), with a marked vertex in a specific tree; by (3.2)
the number of such marked forests is(

n− k
n(c)− w(d, c), c ≥ 0

)
.

The result follows.

EJP 27 (2022), paper 118.
Page 10/24

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP842
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universal height and width bounds for random trees

For the next corollary we introduce the falling factorial notation (m)b = m(m− 1) ·
. . . · (m− b+ 1).

Corollary 3.2. Fix degree statistics n = (n(c), c ≥ 0) with
∑
c≥0 n(c) = n and with∑

c≥0 cn(c) = n − 1. For any sequence d = (d0, . . . , dk−1) of non-negative integers with
w(d, c) ≤ n(c) for all c ≥ 0, if (T, V ) ∈u T •n then we have

P
{(
dt(V

0), . . . , dt(V
k−1)

)
= d, |V | ≥ k

}
=

1

(n)k
·
k−1∏
i=0

di ·
∏
c≥0

(n(c))w(d,c) .

Proof. Since (T, V ) ∈u T •n , this probability is simply |T •n (d)|/|T •n |, and the result follows
from the formula for |T •n (d)| given in Proposition 3.1.

Proof of Proposition 2.1. Write n =
∑
c≥0 n(c). It suffices to show that for any sequence

of non-negative integers d = (d1, . . . , dk) with w(d, c) ≤ n(c) for all c ≥ 0,

P {(D1, . . . , Dk) = d,M ≥ k + 1} =
1

(n)k
·
k∏
i=1

di ·
∏
c≥0

(n(c))w(d,c) , (3.3)

since then by summing over d in this equation and in Corollary 3.2 (note the shift by
1 of the indices) it follows that P {|V | ≥ k} = P {M ≥ k + 1}, which establishes the
distributional identity.

By the defining equation (2.1) for the size-biased sequence (D1, . . . , Dn) and since
|n|1 = n− 1, we have

P {(D1, . . . , Dk) = d} =

k∏
i=1

P {Di = di | (D1, . . . , Di−1) = (d1, . . . , di−1)}

=

k∏
i=1

di(n(di)− w((d1, . . . , di−1), di))

n− 1− d1 − . . .− di−1
. (3.4)

On the event that (D1, . . . , Dk) = (d1, . . . , dk), we have M ≥ k + 1 if and only if

Ui >
1 +

∑i−1
j=1(dj − 1)

n+ 1− i
for each 1 ≤ i ≤ k. Since

n+ 1− i−
(

1 +

i−1∑
j=1

(dj − 1)
)

= n− 1− d1 − . . .− di−1 ,

it follows that

P {M ≥ k + 1 | (D1, . . . , Dk) = d} =

k∏
i=1

P

{
Ui >

1 +
∑i−1
j=1(dj − 1)

n+ 1− i

}

=

k∏
i=1

n− 1− d1 − . . .− di−1
n+ 1− i

,

so by (3.4),

P {(D1, . . . , Dk) = d,M ≥ k + 1} =

k∏
i=1

di(n(di)− w((d1, . . . , di−1), di)

n+ 1− i

=
1

(n)k

k∏
i=1

di(n(di)− w((d1, . . . , di−1), di).
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Equation (3.3) follows since

k∏
i=1

(n(di)− w((d1, . . . , di−1), di)) =
∏
c≥0

(n(c))w(d,c) .

4 Proof of Theorem 2.2

Fix degree statistics n = (n(c), c ≥ 0) with
∑
c≥0 n(c) = n and |n|1 =

∑
c≥0 cn(c) = n−1.

To prove the theorem, we construct a size-biasing of n using a Poissonization trick similar
to one introduced in [9] in the context of inhomogeneous continuum random trees.
Several of the definitions of the next two paragraphs are illustrated in Figure 2.

Let (d1, . . . , dn) be such that di = c if and only if
∑c−1
b=0 n(b) < i ≤

∑c
b=0 n(b), so that

(d1, . . . , dn) contains n(c) entries with value c for each c ≥ 0. Let l1 = 0 and for 1 ≤ i ≤ n,
let li+1 = li + di/(n− 1), and define Ii = [li, li+1). The intervals I1, . . . , In are disjoint and
partition [0, 1).

Next let N be a homogeneous Poisson process on [0,∞)× [0, 1), with atoms ((S`, U`),

` ≥ 1) listed in increasing order of arrival time (so 0 < S1 < S2 < . . .). Then (S`, ` ≥ 1) is a
rate-one Poisson process on [0,∞), and the random variables (U`, ` ≥ 1) are independent
Uniform [0, 1], independent of (S`, ` ≥ 1).

For each ` ≥ 1, let J(`) be the index of the interval containing the point U`, so
U` ∈ IJ(`). Let M(1) = 1, and for ` ≥ 1 let

M(`+ 1) = inf{k > M(`) : Uk 6∈ IJ(M(1)) ∪ . . . ∪ IJ(M(`))} ,

so i ∈ {M(`), ` ≥ 1} precisely if Ui 6∈ I1 ∪ . . . ∪ Ii−1. Then for any vector (j(1), . . . , j(`)) of
distinct elements of [n] and any increasing sequence of integers (m(1), . . . ,m(`)) with
m(1) = 1, we have

P {J(m(`)) = j(`),M(`) = m(`) | J(m(k)) = j(k) and M(k) = m(k) for all 1 ≤ k ≤ `− 1}

= P

{
Um(`) ∈ Ij(`) and Uj ∈

`−1⋃
k=1

Ij(k) for all j ∈ {m(`− 1) + 1, . . . ,m(`)− 1}

}

=
dj(`)

n− 1
·

(∑`−1
k=1 dj(k)

n− 1

)m(`)−m(`−1)−1

.

Summing over all possible values for (M(1), . . . ,M(`)), it follows that if
∑`−1
k=1 dj(k) < n−1

then

P {J(M(`)) = j(`) | J(M(k)) = j(k) for all 1 ≤ k ≤ `− 1} =
dj(`)

n− 1− dj(1) − . . .− dj(`−1)
.

This implies that, writing n′ = n− n(0), the sequence (D(1), . . . , D(n)) defined by

D(`) =

{
dJ(M(`)) if 1 ≤ ` ≤ n′

0 otherwise

is a size-biasing of n, since

P {D(l) = d | (D(1), ..., D(l − 1)) = (d1, ..., dl−1)}
= P

{
dJ(M(l)) = d | (D(1), ..., D(l − 1)) = (d1, ..., dl−1)

}
=
∑
i∈[n]

P {J(M(l)) = i, di = d | (D(1), ..., D(l − 1)) = (d1, ..., dl−1)}

=
d(n(d)− w((d1, ..., dl−1), d)

n− 1− d1 − ...− dl−1
,
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where we recall that w((d1, ..., dl−1), d) = |{i ∈ [l − 1] : di = d}|.
When parsing the definitions of the coming paragraph, Figure 2 will again be use-

ful. For each 1 ≤ i ≤ n, let ri = li + max(0, (di − 1)/(n − 1)) ≤ li+1. For ` ≥ 1 let
C` =

⋃`
k=1[rJ(k), lJ(k)+1), so for each interval Ii which contains at least one point from

U1, . . . , U`, the region C` contains a sub-interval of Ii of length 1/(n− 1). Let

τ = min

(
` ≥ 1 : U` ∈

`−1⋃
k=1

IJ(k) \ C`−1

)
= min

(
` ≥ 1 : U` ∈

`−1⋃
k=1

[lJ(k), rJ(k))

)
.

By the definition of the indices (M(`), ` ≥ 1), we have τ 6∈ {M(`), ` ≥ 1)}, since the
points (UM(`), ` ≥ 1) are precisely those which, on their arrival, land in a previously
empty interval, whereas Uτ falls in a subinterval of an interval which already contains
one of U1, . . . , Uτ−1.

t
0

1

S1 S2

U1

U2

UN

· · · SN

I6

I5

I4

I3

I2

I1

S4 · · ·

l2

l3

l4

l5

l6

SτS3

U3

r1 = l2 − 1/(n− 1)

Figure 2: The black dots represent the atoms ((Si, Ui), i ≥ 1) of the Poisson process N.
The union of the striped blue regions is the “forbidden” region up to the stopping time
Sτ ; the projection of the striped blue regions onto the y-axis is Cτ−1.

Fix any vector (j(1), . . . , j(`)) of distinct elements of [n] and any increasing sequence
of integers (m(1), . . . ,m(`− 1)) with m(1) = 1. Suppose that τ > M(`− 1), that M(k) =

m(k) and that J(m(k)) = j(k) for all 1 ≤ k < `. Then τ ≤ M(`) (and so τ < M(`))
precisely if the first point among (Um,m > m(`− 1)) which does not fall into Cm(`−1) =⋃`−1
k=1[rj(k), lj(k)+1), does belong to the set

`−1⋃
k=1

Ij(k) \ Cm(`−1) =

`−1⋃
k=1

[lj(k), rj(k)).

Since rj(k) − `j(k) = (dj(k) − 1)/(n− 1), writing U for a Uniform [0, 1] random variable, it
follows that

P {τ < M(`) | τ > M(`− 1),M(k) = m(k) and J(m(k)) = j(k) for all 1 ≤ k < `}

= P

{
U ∈

`−1⋃
k=1

[lj(k), rj(k))

∣∣∣∣∣ U 6∈
`−1⋃
k=1

[rj(k), lj(k)+1)

}

=

∑`−1
k=1(dj(k) − 1)/(n− 1)

1− ((`− 1)/(n− 1))
=

∑`−1
k=1(dj(k) − 1)

n− `
.

Since the final expression depends on (j(1), . . . , j(` − 1)) and (m(1), . . . ,m(` − 1)) only
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through the values (dj(1), . . . , dj(`−1)), we have

P {τ ≤M(`) | D(1), . . . , D(`− 1), τ > M(`− 1)}
= P {τ < M(`) | D(1), . . . , D(`− 1), τ > M(`− 1)}

=

∑`−1
k=1(D(k)− 1)

n− `
. (4.1)

Writing σ = sup(k ≥ 1 : τ > M(k)), the preceding identity implies that σ has the same
distribution as the random variable from Theorem 2.2 with the same name. Since
M(k) ≥ k, it follows that σ ≤ sup(k ≥ 1 : τ > k) = τ − 1, so for all ` ≥ 1,

P {σ ≥ `} = P {τ > M(`)} ≤ P {τ > `} . (4.2)

The second bound of Theorem 2.2 now follows quite straightforwardly: if n(1) = 0 then
[li, ri+1) = (di − 1)/(n − 1) ≥ 1/(n − 1) whenever di 6= 0. Therefore, for any ` ≥ 2, if
τ > M(`− 1) then D(k) ≥ 2 for all 1 ≤ k ≤ `− 1, so by (4.1),

P {τ ≤M(`) | τ > M(`− 1)} ≥ `− 1

n− `
.

It follows by induction that

P {σ ≥ `} = P {τ > M(`)} ≤
`−1∏
k=1

(
1− k

n− k

)
≤ e−(`−1)

2/(2(n−1)) ,

proving the second inequality in Theorem 2.2. We now turn to proving the first inequality
in Theorem 2.2; this bound is an immediate consequence of the next proposition.

Proposition 4.1. Write v =
∑
i:di≥2 d

2
i /(n− 1). Then for all β ≥ 173/2,

P

{
τ > β

(
n− 1

v

)1/2
}
≤ exp

(
−1

3

(
β2/3(n− 1)

v

)1/2
)

+ 2 exp

(
−β

2/3

24

)
.

The first bound of Theorem 2.2 follows from the proposition since
∑
i:di≥2 d

2
i =

|n|22 − n(1) and |n|1 = (n− 1), so n−1
v =

|n|21
|n|22−n(1)

.

The proposition’s proof is where the Poisson process setup comes into its own. Write
N(t) = N([0, t]× [0, 1]) for the number of points of N arriving by time t, and let Ni(t) =

N([0, t]×[li, ri)) be the number of points arriving in the interval [li, ri) by time t. Note that
for all i ∈ [n], if Ni(t) ≥ 2 then τ ≤ N(t). Thus, letting T = inf{t ≥ 0 : maxi∈[n] Ni(t) ≥ 2},
we have τ ≤ N(T ). It follows that for all h ∈ N, if N(t) ≤ h and T ≤ t then τ ≤ h, so

P {τ > h} ≤ inf
t≥0

(
P {N(t) > h}+ P {T > t}

)
. (4.3)

We control the first of these probabilities using standard Poisson tail estimates. The
second requires a little more work. The random variables (Ni(t), i ∈ [n]) are independent
and Ni(t) is Poisson (t(ri − li))-distributed. Note that ri − li = 0 when di ≤ 1. Writing
pi = di/(2(n− 1)), we have ri − li ≥ pi whenever di ≥ 2, so

P {T > t} =
∏
i:di≥2

P {Ni(t) ≤ 1} ≤
∏
i:di≥2

P {Poisson(pit) ≤ 1} =
∏
i:di≥2

(1+pit)e
−pit . (4.4)

Combining this with (4.3) and the tail bound P {Poisson(t) > h} = e−t((h/t) log(h/t)−h/t+1),
which holds for h ≥ t and can be found in, e.g., [7, Page 23], we obtain that

P {τ > h} ≤ inf
t≤h

e−t((h/t) log(h/t)−h/t+1) +
∏
i:di≥2

(1 + pit)e
−pit

 . (4.5)
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We next focus on proving bounds for the second term on the right-hand side of (4.5); our
approach is based on that of Lemma 9 in [9].

Lemma 4.2. Write d = (d1, . . . , dn) and let g(t,d) =
∏
i:di≥2(1 + pit)e

−pit, where pi =

di/(2(n − 1)). Also write pmax = maxi∈[n] pi and dmax = maxi∈[n] di. Then for all 0 ≤ t <

1/pmax = 2(n− 1)/dmax,

log g(t,d) =
∑
k≥2

(−1)k+1

k

∑
i:di≥2

(
dit

2(n− 1)

)k
,

and with v =
∑
i:di≥2 d

2
i /(n− 1), we have∣∣∣∣log g(t,d) +

vt2

8(n− 1)

∣∣∣∣ ≤ dmaxt

6(n− 1)− 3dmaxt
· vt2

4(n− 1)
.

Proof. First, note that ∑
k≥2

1

k

∑
i:di≥2

(pit)
k <∞

for 0 ≤ t < 1/pmax, since the inner sum has finitely many summands, each of which
decreases geometrically in k. By a Taylor expansion of log(1 + x) around x = 0 and
Tonelli’s theorem, it follows that

log g(t,d) =
∑
i:di≥2

(log(1 + pit)− pit)

=
∑
i:di≥2

∑
k≥1

(−1)k+1

k
(pit)

k −
∑
i:di≥2

pit

=
∑
k≥2

(−1)k+1

k

∑
i:di≥2

(pit)
k .

Next, note that ∑
i:di≥2

pki ≤ pk−2max

∑
i:di≥2

p2i ,

so

∑
k≥3

∑
i:di≥2

(pit)
k

k
≤

 ∑
i:di≥2

(pit)
2

∑
k≥3

(pmaxt)
k−2

k
≤

 ∑
i:di≥2

(pit)
2

 · pmaxt

3(1− pmaxt)

and thus ∣∣∣∣∣∣log g(t,d) +
∑
i:di≥2

(pit)
2

2

∣∣∣∣∣∣ ≤
 ∑
i:di≥2

(pit)
2

 · pmaxt

3(1− pmaxt)
.

Using that pi = di/(2(n− 1)) and pmax = dmax/(2(n− 1)) and v =
∑
i:di≥2 d

2
i /(n− 1), this

is precisely the bound claimed in the lemma; this completes the proof.

Corollary 4.3. Write v =
∑
i:di≥2 d

2
i /(n− 1). Then for all 0 ≤ t ≤ (n− 1)/dmax,

g(t,d) ≤ exp

(
−vt2

24(n− 1)

)
.

Proof. For t ≤ (n− 1)/dmax we have

dmaxt

6(n− 1)− 3dmaxt
· vt2

4(n− 1)
≤ vt2

12(n− 1)
,
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and the bound in the lemma then gives

log g(t,d) ≤ − vt2

8(n− 1)
+

vt2

12(n− 1)
= − vt2

24(n− 1)
.

Proof of Proposition 4.1. First, if dmax = 1 then v = 0 and the lemma asserts a non-
negative upper bound on P {τ >∞}, so clearly holds. We thus assume that dmax > 1 for
the rest of the proof.

Fix C > 2. If dmax ≤ (
∑
i:di≥2 d

2
i )

1/2/C = ((n−1)v)1/2
C , then taking t = C(n−1)1/2

v1/2 ≤ n−1
dmax

,
by Lemma 4.2 we have

g(t,d) ≤ exp

(
− vt2

24(n− 1)

)
= exp

(
−C

2

24

)
.

Taking h = 2t = 2C(n−1)1/2
v1/2 , and noting that

t

(
h

t
log

h

t
− h

t
+ 1

)
= t(2 log 2− 1) >

t

3
,

by (4.5) we obtain that

P

{
τ > 2C

(n− 1)1/2

v1/2

}
≤ exp

(
−C

3

(n− 1)1/2

v1/2

)
+ exp

(
−C

2

24

)
. (4.6)

Now suppose that dmax > (
∑
i:di≥2 d

2
i )

1/2/C = ((n−1)v)1/2
C . By construction the entries

of (d1, . . . , dn) are non-decreasing, so dn = dmax. For any positive real K ≥ 2, if at least
two of the points U1, . . . , UbKc lie in the interval [ln, rn) then τ ≤ K, so

P {τ > K} ≤ P {|{k ∈ [bKc] : Uk ∈ [ln, rn)}| ≤ 1}
= P {Bin(bKc, rn − ln) ∈ {0, 1}}

= (1− (rn − ln))bKc−1(1− (rn − ln) + bKc(rn − ln)) .

Since dmax ≥ 2 we have rn − ln = (dmax − 1)/(n − 1) ≥ dmax/(2(n − 1)), so using that
1− x ≤ e−x it follows that for K ≥ 2C(n−1v )1/2 ≥ 4,

P {τ > K} ≤
(

1 +
(bKc − 1)dmax

n− 1

)
· exp

(
− (bKc − 1)dmax

2(n− 1)

)
≤ 2Kdmax

n− 1
exp

(
− Kdmax

4(n− 1)

)
, (4.7)

where for the second inequality we have used the lower bound on K to deduce that
bKc − 1 > K/2 and that (bKc−1)dmax

n−1 > K
2
dmax

n−1 ≥ 2 and so 1 + (bKc−1)dmax

n−1 < 2Kdmax

n−1 .

Taking K = xC(n−1v )1/2 for x ≥ 4, the lower bound on dmax implies that Kdmax/(n−
1) ≥ x; since 2xe−x/4 is decreasing for x ≥ 4, the bound (4.7) then implies that

P

{
τ ≥ xC (n− 1)1/2

v1/2

}
≤ 2xe−x/4 . (4.8)

To finish the proof, we combine (4.6) and (4.8) to get a bound which does not depend
on the value of dmax. Take β ≥ 173/2, let C = β1/3 > 2 and x = β2/3 ≥ 4. Then 2C ≤ β

and xC = β. Whatever the value of dmax, one of (4.6) and (4.8) applies, so we obtain that

P

{
τ ≥ β (n− 1)1/2

v1/2

}
= P

{
τ ≥ xC (n− 1)1/2

v1/2

}
≤ exp

(
−C

3

(n− 1)1/2

v1/2

)
+ exp

(
−C

2

24

)
+ 2xe−x/4

= exp

(
−β

1/3

3

(n− 1)1/2

v1/2

)
+ exp

(
−β

2/3

24

)
+ 2β2/3 exp

(
−β

2/3

4

)
.
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Finally, it is straightforward to check that e−y/24 + 2ye−y/4 ≤ 2e−y/24 for y ≥ 17, which
combined with the previous inequality yields the first bound of the proposition.

5 Proofs of the conjectures from [13] and of Propositions 2.3, 2.4
and 2.5

The sort of random trees considered by Janson [13] are called simply generated trees;
they are defined as follows. Fix non-negative real weights w = (wk, k ≥ 0) with w0 > 0.
For a finite plane tree t, the weight of t is

w(t) =
∏
v∈v(t)

wdt(v) .

For positive integers n write

Zn = Zn(w) =
∑

plane trees t:|v(t)|=n

w(t) ,

and when Zn > 0 define a random tree Tn = Tn(w) by

P {Tn = t} =
w(t)

Zn

for plane trees t with |v(t)| = n. Then Tn is called a simply generated tree of size n with
weight sequence w. If

∑
k≥0 wk = 1 then Tn(w) is distributed as a Bienaymé tree with

offspring distribution w conditioned to have n vertices.
Write Φ(z) = Φw(z) =

∑
k≥0 wkz

k for the generating function of the sequence w, and
ρ = ρw for the radius of convergence of Φ. For t > 0 such that Φ(t) <∞, define

Ψ(t) = Ψw(t) =
tΦ′(t)

Φ(t)
=

∑
k≥0 kwkt

k∑
k≥0 wkt

k
.

If Φ(ρ) =∞ then also define

Ψ(ρ) = Ψw(ρ) = lim
t↑ρ

Ψ(t) ;

the function Ψ is strictly increasing on [0, ρ) by [13, Lemma 3.1(i)], so this limit exists. In
all cases, write ν = ν(w) = Ψw(ρ). Note that Ψ(t) ∈ (0,∞] for all t > 0, so ν = 0 if and
only if ρ = 0.

The questions from [13] that we address in this paper concern exclusively weight
sequences with ν ≤ 1, and we assume this is the case from now on. We define σ2 = ρΨ′(ρ);
this is a slight simplification of the definition from [13, Theorem 7.1], made possible by
the assumption that ν ≤ 1.

The following conjecture summarizes Conjectures 21.5 and 21.6 and Problems 21.7
and 21.8 from [13].

Conjecture 1 ( [13]). Let w = (wk, k ≥ 0) be a weight sequence with w0 > 0 and with
wk > 0 for some k ≥ 2, and for n ≥ 0 with Zn(w) > 0 let Tn be a simply generated tree of
size n with weight sequence w.

1. If ν = 1 and σ2 =∞ then ht(Tn)/n1/2 → 0 in probability.

2. If ν = 1 and σ2 =∞ then wid(Tn)/n1/2 →∞ in probability.

3. If ν < 1 then ht(Tn)/n1/2 → 0 in probability.

4. If ν < 1 then wid(Tn)/n1/2 →∞ in probability.
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In all four statements, the convergence is as n→∞ along integers n such that Zn(w) > 0.

The results of this work establish points (2) and (4) of this conjecture, and establish
(1) and (3) up to polylogarithmic factors. To make these deductions, we rely on the
following result from [13] about the typical degree statistics of simply generated trees.

Theorem 5.1 ( [13]). Let w = (wk, k ≥ 0) be a weight sequence with w0 > 0 and with
wk > 0 for some k ≥ 2. Whenever Zn(w) > 0 let Tn be a simply generated tree with
weight sequence w and size n. Assume that ν = ν(w) ∈ (0, 1]. Writing ρ = ρw ∈ (0,∞],
for k ≥ 0 let

π(k) :=
wkρ

k

Φ(ρ)
. (5.1)

Then π = (π(k), k ≥ 0) is a probability distribution, with expectation ν and variance
σ2 = ρΨ′(ρ), and the degree statistics nTn satisfy that for every integer k ≥ 0 and real
ε > 0,

P

{∣∣∣∣nTn(k)

n
− π(k)

∣∣∣∣ > ε

}
= oe(1) .

This theorem is essentially a special case of [13, Theorem 11.4]. The error bounds
stated above are not made explicit in the statement of that theorem, but are recorded in
the course of its proof (see [13, page 164]).

We also require a version of Theorem 5.1 which addresses the case that ν = ρ = 0.
Before stating this result, note that if ρw = 0 then the probability distribution π defined
by (5.1) has π(0) = 1 and π(k) = 0 for k > 0.

Theorem 5.2. Let w = (wk, k ≥ 0) be a weight sequence with w0 > 0 and with wk > 0

for some k ≥ 2. Whenever Zn(w) > 0 let Tn be a simply generated tree with weight
sequence w and size n. Suppose that ρw = 0. Then the degree statistics nTn satisfy that
for every real ε > 0,

P

{
nTn(0)

n
< 1− ε

}
= oe(1) .

This theorem asserts that when the radius of convergence of Φ is zero, with very high
probability Tn has n− o(n) leaves.

Proof. Fix δ > 0 and integer L > 2. We claim that

P
{∑

1≤c≤L nTn(c) ≥ 2δn
}

P
{∑

1≤c≤L nTn(c) ≤ δn
} = oe(1) . (5.2)

Since
∑
c≥1 cnTn(c) = n− 1, we deterministically have

∑
c>L nTn(c) ≤ (n− 1)/L, so the

bound (5.2) implies that

P

∑
c≥1

nTn(c) ≤ 2δn+
n− 1

L

 ≥ P

 ∑
1≤c≤L

nTn(c) ≤ 2δn

 = 1− oe(1).

Since δ > 0 and L > 2 are arbitrary, this proves the theorem. It thus remains to
prove (5.2).

It’s convenient in what follows to assume that w0 = 1. (We can achieve this by
multiplying all weights by w−10 ; this does not change the distribution of Tn.) Now fix
K large enough that Kδ > 2(L + 1). Note that if lim supk→∞(logwk)/k = r < ∞, then
ρw ≥ 1/r; since we assume ρw = 0, it follows that lim supk→∞(logwk)/k =∞, so we may
further choose an integer M > 2L such that

wM ≥ max
(

(Kwc)
M/c, 0 < c ≤ L

)
.

EJP 27 (2022), paper 118.
Page 18/24

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP842
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Universal height and width bounds for random trees

In what follows, given a sequence n which is the degree statistics of a tree (so∑
c≥0 n(c) = |n|1 +1), it’s useful to write w(n) :=

∏
c≥0 w

n(c)
c — so if t is a tree with degree

statistics n then w(t) = w(n). Now, for such a sequence n, form degree statistics n̂ as
follows. For c ∈ N let m(c) = bn(c)/Mc. Then for i ∈ N define

n̂(i) =


n(0) +

∑
0<c≤L(M − c)m(c) if i = 0

n(i)−Mm(i) if 0 < i ≤ L
n(i) +

∑
0<c≤L cm(c) if i = M

n(i) otherwise.

Then |n̂|1 = |n|1 and
∑
c≥0 cn̂(c) =

∑
c≥0 n(c), so n̂ is again the degree statistics of a tree

with |n|1 + 1 vertices. Since w0 = 1, we also have

w(n̂)

w(n)
= (wM )

∑
0<c≤L cm(c) ·

∏
0<c≤L

(wc)
−Mm(c) =

∏
0<c≤L

(
wcM
wMc

)m(c)

Since wM ≥ (Kwc)
M/c, this yields that

w(n̂)

w(n)
≥

∏
0<c≤L

KMm(c) = K
∑

0<c≤LMbn(c)/Mc .

Now write n =
∑
c≥0 n(c) =

∑
c≥0 n̂(c). Note that for all i ∈ N we have n(i)−Mm(i) ≤

M−1, so
∑

0<c≤L n̂(c) ≤ (M−1)L, and thus if n ≥ (M−1)L/δ then
∑

0<c≤L n̂(c) ≤ δn. For
such n, if

∑
0<c≤L n(c) ≥ 2δn, then we also have

∑
0<c≤LMbn(c)/Mc ≥ (

∑
0<c≤L n(c))−

(M − 1)L ≥ δn, so it follows from the previous lower bound on w(n̂)/w(n) that

w(n̂)

w(n)
≥ Kδn . (5.3)

To use this bound to complete the proof, it remains to control (a) the number of degree
statistics n that can give rise to a given degree statistics n̂, and (b), for a given pair of
degree statistics n and n̂, the relative numbers of trees with these degree statistics.

To control (a), fix a sequence n′ which is the degree statistics of a tree of size n.
Then for any degree statistics n with n̂ = n′, there are non-negative integers m1, . . . ,mL

with
∑

0<c≤L cmc < n such that n′(c) = n(c)−Mmc for 0 < c ≤ L. Moreover, n may be
reconstructed from n′ and the values m1, . . . ,mL. It follows that

|{Degree statistics n : n̂ = n′}| ≤
∣∣∣{(m1, . . . ,mL) ∈ NL :

∑
0<c<L

cmc < n
}∣∣∣ < nL .

To control (b), note that if n is the degree statistics of a tree of size n, then by the
formula (3.1) for the number of trees with given degree statistics, we have

|Tn|
|Tn̂|

=
∏
c≥0

n̂(c)!

n(c)!

=
(n(0) +

∑L
c=1(M − c)m(c))!

n(0)!
·

(n(M) +
∑L
c=1 cm(c))!

n(M)!
·
L∏
c=1

(n(c)−Mm(c))!

n(c)!
.

Since M > 2L > 2, we have n(0) > n(M) and
∑L
c=1(M − c)m(c) ≥

∑L
c=1 cm(c). Thus

(n(0) +
∑L
c=1(M − c)m(c))! > (n(M) +

∑L
c=1 cm(c))! and so writing x =

∑L
c=1 cm(c), we
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have

(n(0) +

L∑
c=1

(M − c)m(c))! · (n(M) +

L∑
c=1

cm(c))!

≤ (n(0) + x+

L∑
c=1

(M − c)m(c))! · (n(M)− x+

L∑
c=1

cm(c))!

= (n(0) +

L∑
c=1

Mm(c))! · n(M)! .

It follows that

(n(0) +
∑L
c=1(M − c)m(c))!

n(0)!
·

(n(M) +
∑L
c=1 cm(c))!

n(M)!

≤
(n(0) +

∑L
c=1Mm(c))!

n(0)!

n(M)!

n(M)!
=

(n(0) +
∑L
c=1Mm(c))!

n(0)!
,

so
|Tn|
|Tn̂|

≤
(n(0) +

∑L
c=1Mm(c))!

n(0)!
·
L∏
c=1

(n(c)−Mm(c))!

n(c)!
.

Since n(c)−Mm(c) ≤M − 1 and Mm(c) ≤ n(c) for all c ∈ N, this yields the bound

|Tn|
|Tn̂|

≤ ((M − 1)!)L
(
∑L
c=0 n(c))!∏L
c=0 n(c)!

≤ ((M − 1)!)L(L+ 1)n , (5.4)

where in the last inequality we have used the fact that the final fraction is a multinomial
coefficient and that

∑L
c=0 n(c) ≤

∑
c≥0 n(c) = n. To conclude, write Nn (resp. N̂n) for the

set of degree statistics n with
∑
c≥0 n(c) = n = |n|1 + 1 and such that

∑
1≤c≤L n(c) ≥ 2δn

(resp. such that
∑

1≤c≤L n(c) ≤ δn), and note that if n ∈ Nn then n̂ ∈ N̂n provided that
n ≥ (M − 1)L/δ. We have

P

 ∑
1≤c≤L

nTn(c) ≥ 2δn

 =
∑
n∈Nn

P {nTn = n}

=
∑
n∈Nn

∑
t∈Tn

P {Tn = t}

=
∑
n∈Nn

|Tn|
w(n)

Zn(w)

≤
∑
n∈Nn

((M − 1)!)L(L+ 1)n|Tn̂|
w(n̂)

Zn(w)

1

Kδn
,

where we have used (5.3) and (5.4) for the final bound. For each n′ ∈ N̂n, there are at
most nL sequences n ∈ Nn with n̂ = n′, so for n ≥ (M − 1)L/δ the above bound yields

P

 ∑
1≤c≤L

nTn(c) ≥ 2δn

 ≤ nL((M − 1)!)L((L+ 1)/Kδ)n
∑

n′∈N̂n

|Tn′ |
w(n′)

Zn(w)

= (n(M − 1)!)L((L+ 1)/Kδ)n P

 ∑
1≤c≤L

nTn(c) ≤ δn

 .

Since Kδ > 2(L+ 1), the term (n(M − 1)!)L((L+ 1)/Kδ)n tends to zero as n→∞, which
establishes (5.2) and completes the proof.
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The next corollary is the key takeaway from Theorems 5.1 and 5.2, for the purposes
of this work.

Corollary 5.3. In the setting of Theorems 5.1 and 5.2, if ν < 1, or if ν = 1 and σ2 =∞,
then for any C > 0, with very high probability

|nTn |22 ≥ C|nTn |1.

In the same way that Theorems 1.2 and 1.3 follow from Propositions 2.3 and 2.4,
Corollary 5.3 implies that if ν < 1, or if ν = 1 and σ2 =∞, then ht(Tn)/(n1/2 log3 n)→ 0

and wid(Tn)/n1/2 → ∞ in probability. This proves the second and fourth points of the
above conjecture and nearly proves the first and third points, up to the polylogarithmic
factors.

Proof of Corollary 5.3. We begin by noting that if the support of w is finite then ρ =∞
and thus ν = Ψ(∞) = max(k : wk > 0) > 1.

We now argue in three cases. First, suppose that 0 < ν < 1. In this case the support
of w is infinite, so for any fixed K ∈ N,

∑
k≤K kπ(k) <

∑
k≥0 kπ(k) = ν. It follows by

Theorem 5.1 that with very high probability
∑
k≤K knTn(k) ≤ νn− 1. Since∑

k>K

knTn(k) = |nTn |1 −
∑
k≤K

knTn(k) = n− 1−
∑
k≤K

knTn(k) ,

this implies that with very high probability∑
k>K

knTn(k) ≥ n(1− ν).

Now let C > 0 arbitrary and fix K ∈ N such that K(1 − ν) > C. Then since |nTn |22 ≥∑
k>K k

2nTn(k) > K
∑
k>K knTn(k), we have

P
{
|nTn |22 < C|nTn |1

}
≤ P

{
K
∑
k>K

knTn(k) < Cn

}

= P

{
K
∑
k>K

knTn(k) < Cn,
∑
k>K

knTn(k) < n(1− ν)

}
= oe(1) .

This establishes the corollary in the case that ν ∈ (0, 1).
Next, suppose ν = 1 and σ2 =∞. Let C > 0 arbitrary. Then since we have

lim
K→∞

K∑
k=0

k2π(k) =∞,

there exists K ∈ N such that
∑K
k=0 k

2π(k) ≥ 2C. Noting that |nTn |1 = n− 1, we can write

P
{
|nTn |22 < C|nTn |1

}
≤ P

{
|nTn |22 < Cn

}
≤ P

{
K∑
k=0

k2
nTn(k)

n
< C

}
.

Then, taking ε < 6C/(K(K + 1)(2K + 1)) and applying Theorem 5.1, we have

P
{
|nTn |22 < C|nTn |1

}
≤ P

{
K∑
k=0

k2
nTn(k)

n
< C,

K⋂
k=0

{∣∣∣∣nTn(k)

n
− π(k)

∣∣∣∣ ≤ ε}
}

+ oe(1) .
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However, if |nTn (k)
n − π(k)| ≤ ε for all 0 ≤ k ≤ K then

K∑
k=0

k2
nTn(k)

n
≥

K∑
k=0

k2(π(k)− ε) ≥ 2C − ε
K∑
k=0

k2 > C ,

so the intersection of events in the probability on the right-hand side is empty and thus
this probability is zero. Therefore P

{
|nTn |22 < C|nTn |1

}
= oe(1), as required.

Finally, suppose that ν = 0, and fix C ∈ N. By Theorem 5.2, we have

P

{
C∑
k=1

nTn(k) >
n

2C2

}
≤ P

{
nTn(0)

n
< 1− 1

2C2

}
= oe(1).

However, if
∑C
k=1 nTn(k) < n/(2C2) then

∑C
k=1 knTn(k) < n/(2C), so∑

k>C

knTn(k) = n− 1−
∑
k≤C

knTn(k) ≥ n− 1− n

2C
,

and thus∑
k≥1

k2nTn(k) ≥ (C + 1)
∑
k>C

knTn(k) ≥ (C + 1)(n− 1)− n(C + 1)

2C
> C(n− 1) = C|nTn |1 ,

the last inequality holding for n large provided C > 1. This shows that |nTn |22 > C|nTn |1
with very high probability, and completes the proof.

Proofs of Propositions 2.3 and 2.4. Define a weight sequence w by wk = µ(k). Then
Tn = Tn(w) is distributed as a Bienaymé tree with offspring distribution µ, conditioned
to have size n.

Now suppose that µ satisfies the assumptions of either Proposition 2.3 or Proposi-
tion 2.4. Then either |µ|22 = ∞ or

∑
k≥0 e

tkµ(k) = ∞ for all t > 0. In either case, w has
radius of convergence ρ equal to 1. Thus ν = Ψ(ρ) =

∑
k≥0 kwk = |µ|1, and either ν < 1

or else ν = 1 and σ2 = ρΨ′(ρ) = Ψ′(1) =
∑
k≥0 k

2wk − (
∑
k≥0 kwk)2 = |µ|22 − |µ|1 = ∞,

whence the (common) conclusion of the propositions follows from Corollary 5.3.

Proof of Proposition 2.5. Again define a weight sequence w by wk = µ(k). Then Tn =

Tn(w) is distributed as a Bienaymé tree with offspring distribution µ, conditioned to have
size n.

Fix ε > 0 and let En(k) be the event that nTn(k) ≥ n(µ(k) − ε/2k). By Theorem 5.1,
En(k) happens with very high probability. Now fix K ≥ 2 large enough that µ(K,∞) <

ε/2. If En(k) occurs for each 2 ≤ k ≤ K then

|nTn |22 ≥ nTn(1) +

K∑
k=2

k2n(µ(k)− ε/2k) ≥ nTn(1) + 4n
( K∑
k=2

µ(k)−
K∑
k=2

ε/2k
)
,

in which case, since |nTn |1 = n− 1, we have

|nTn |22− nTn(1) ≥ 4n
(

1−µ(0)−µ(1)−µ(K,∞)−
K∑
k=2

ε

2k

)
> |nTn |1 · 4(1−µ(0)−µ(1)− ε) .

Since
⋂K
k=2En(k) occurs with very high probability, the result follows.
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