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Abstract

We study the additive functional X, («) on conditioned Galton-Watson trees given,
for arbitrary complex «, by summing the ath power of all subtree sizes. Allowing
complex « is advantageous, even for the study of real «, since it allows us to use
powerful results from the theory of analytic functions in the proofs. For Rea < 0, we
prove that X, («), suitably normalized, has a complex normal limiting distribution;
moreover, as processes in «, the weak convergence holds in the space of analytic
functions in the left half-plane. We establish, and prove similar process-convergence
extensions of, limiting distribution results for « in various regions of the complex plane.
We focus mainly on the case where Re« > 0, for which X, («), suitably normalized,
has a limiting distribution that is not normal but does not depend on the offspring
distribution £ of the conditioned Galton-Watson tree, assuming only that E£ = 1 and
0 < Varé < oo. Under a weak extra moment assumption on &, we prove that the
convergence extends to moments, ordinary and absolute and mixed, of all orders. At
least when Rea > % the limit random variable Y («) can be expressed as a function
of a normalized Brownian excursion.
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1 Introduction and main results

In the study of random trees, one important part is the study of additive functionals.
These are functionals of rooted trees of the type

F(T):= ) f(To), (1.1)
veT
where v ranges over all nodes of the tree T, T, is the subtree consisting of v and
all its descendants, and f is a given functional of trees, often called the toll function.
Equivalently, additive functionals may be defined by the recursion

d
F(T) := f(T) + ), F(Ty), (1.2)

i=1
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where d is the degree of the root o of T"and v(1), ..., v(d) are the children of o. (All trees
in this paper are rooted.)

We are mainly interested in the case when T' = 7,, is some random tree of order
|7.] = n, and we study asymptotics of F(7,) as n — c0. Such problems have been studied
by many authors, for different classes of functionals f and different classes of random
trees 7,; some examples are [29, 21, 17, 22, 28, 61, 38, 11, 51, 39, 1, 9].

In the present paper we consider the case where the toll function is f,(7T") := |T|* for
some constant «, and 7, is a conditioned Galton-Watson tree, defined by some offspring
distribution £ with E¢ = 1 and 0 < Varé < oo; see Section 2.1 for definitions and note
that this includes for example uniformly random labelled trees, ordered trees, and binary
trees. (We use these standing assumptions on 7,, and £ throughout the paper, whether
said explictly or not.) Some previous papers dealing with this situation, in varying
generality, are [21, 17, 11, 1, 9]. We denote the corresponding additive functional (1.1)
by F,; thus F,, (T') is the sum of the ath power of all subtree sizes for 7'. We also introduce
the following notation:

Xn(a) i= Fa(Tn) i= D [Tanl® (1.3)
vET,H
Xo(0) = X, (0) — EX,(a). (1.4)

Note that for a = 0, we trivially have X, (0) = Fy(7,) = n. The case a = 1 yields, as is
well known, the total pathlength, see Example 1.25.

Previous papers have studied the case when « is real, but we consider these variables
for arbitrary complex «. This is advantageous, even for the study of real «, since it allows
us to use powerful results from the theory of analytic functions in the proofs. We also
find new phenomena for non-real « (for example Theorem 1.20). Note that X, («) and
)N(n(a) are random entire functions of «, for any given n. [The expectation in (1.4) exists
because, for a given n, the variable X, («) takes only a finite number of different values.]

We begin with the case Rea < 0, where X, (a) is asymptotically normal as an easy
consequence of [38, Theorem 1.5 and Remark 1.6]. More precisely, the following holds.
(Proofs of this and other theorems stated here are given later.) We say that a complex
random variable ¢ is normal if (Re(,Im () has a two-dimensional normal distribution.
(See [32, Section 1.4], and note that a real normal variable is a special case.)

Theorem 1.1. Let 7, be a conditioned Galton-Watson tree defined by an offspring
distribution ¢ with E¢ = 1 and 0 < o2 := Varé < . Then there exists a family of
centered complex normal random variables X («)), Rea < 0, such that, asn — oo,

X,L(a):/IﬁEXn(&)i>)?(a)’ Rea < 0. (1.5)

Moreover, )A((oz) is a (random) analytic function of o, and the convergence (1.5) holds
in the space H(H_) of analytic functions in the left half-plane H_ := {a : Rea < 0}.
Furthermore,

n 12X, (o) =

~ ~

(o) = X (@), ae H_. (1.6)

The covariance function E(X ()X (8)) is an analytic function of two variables o, f € H_,
and, as n — oo,

n~ Cov(Xn(a), Xn(8)) — E[X ()X (8)], «,B€H_. (1.7)

The convergence in H(H_) means uniform convergence on compact sets and implies
joint convergence for different « in (1.5); see Section 2.2.
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The distribution of the limit X (o) depends on the offspring distribution ¢ in a rather
complicated way. Since the variables X (o) are complex normal, and (1.6) holds, the
joint distribution of all X (a) is determined by the covariance function E()A( ()X (B)),
a,B € H_. We give a formula for this in (5.1), but we do not know any simple way to
evaluate it.

In most parts of the paper we assume Re o > (0. We introduce a normalization that

will turn out to be correct for Re o > 0 and define

Yo(a) == n "2 X, (a), (1.8)

Yo(a) == n"*"2X,(a) = Yy(a) — EY,(a). (1.9)

Then the following holds.

Theorem 1.2. There exists a family of complex random variables ?(a), Rea > 0, such
that if T,, is a conditioned Galton-Watson tree defined by an offspring distribution £ with
E¢=1and0 < o?:= Varé < oo, then, as n — o,

Un_"‘_%)?n(a) = oV, () 4, Y (), Rea > 0. (1.10)

Moreover, }N’(a) is a (random) analytic function of o, and the convergence (1.10) holds
in the space H(H ) of analytic functions in the right half-plane H, := {a : Rea > 0}.

Here 57(04) is not normal. [In fact, it follows from (1.20) and (1.21) below that if & > £,
then Y (a) is bounded below.] On the other hand, note that the family ¥ (o) does not
depend on the offspring distribution &; it is the same for all conditioned Galton-Watson
trees satisfying our conditions E¢ = 1 and 0 < 02 < oo, and thus the asymptotics of )Z'n
depends on ¢ only through the scaling factor o. Hence, we have universality of the limit
when Rea > 0, but not when Rea < 0.

We can add moment convergence to Theorem 1.2, at least provided we add a weak
extra moment assumption.

Theorem 1.3. Assume, in addition to the conditions on & in Theorem 1.2, that]E§2+5 <
for some 6 > 0. Then, the limit (1.10) holds with all moments, ordinary and absolute.
In other words, if Rea > 0, then E |Y (a)|" < oo for every r < oo; furthermore, for any
integer ¢ > 1,

ntets) E[X,(a)!] = E[Va(a)] - e “E[Y ()], Rea >0, (1.11)

and similarly for absolute moments and mixed moments of X,,(«) and X, ().
Moreover, for each fixed ¢, (1.11) and its analogues for absolute moments and mixed
moments hold uniformly for « in any fixed compact subset of H, ; the limit EY (a)’ is an
analytic function of « € H, while absolute moments and mixed moments of Y («) and

Y («) are continuous functions of « € H. .

The result extends to joint moments for several « € H, . The moments of ¥ (a) may
be computed by (1.20) and the recursion formula (1.25)-(1.26) below. Note that 17(04) is
centered: E?(a) = (; this follows, e.g., by the case £ = 1 of (1.11). See also Remark 1.15
and Example 1.16.

Remark 1.4. We conjecture that Theorem 1.3 holds also without the extra moment
condition. Note that even without that condition, (1.11) holds for « # % as a simple
consequence of Theorem 1.12 below. The case o = % is more complicated, but has been
treated directly in the special case £ ~ Bi(2, %) (binary trees) by [21]; that special case
satisfies E¢" < oo for every r, but it seems likely that the proof in [21] can be adapted
to the general case by arguments similar to those in Section 12. However, we have not
pursued this and leave it as an open problem. See also [9]. O
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Theorems 1.1 and 1.2 are stated for the centered variables )N(n(a). We obtain results
for X,,(«) by combining Theorems 1.1-1.2 with the asymptotics for the expectation
E X, («) given in the next theorem, but we first need more notation.

Let 7 be the Galton-Watson tree (without conditioning) defined by the offspring
distribution &; see Section 2.1. It follows from (2.6) that f,(7) = |7T|® has a finite
expectation if and only if Rea < % and we define

ple) =K fo(T) =E|T|* = Z n*P(|T|=n), Rea<3i. (1.12)

n=1

This is an analytic function in the half-plane Rea < %. Note that u(a) depends on the
offspring distribution &, although we do not show this in the notation. Note also that
u(a) has a singularity at « = %; in fact, it is easily seen from (2.6) that

2\—1/2
o)~ F T e S L (1.13)

5—04

Remark 1.5. In Section 10 (Theorem 10.7), we show by a rather complicated argument
that although pu(a) - o0 as o % (se (1.13)), u(«) has a continuous extension to all
other points on the line Rea = 1. O

It is shown by Aldous [2] that if we construct a random fringe tree 7,y by first
choosing a random conditioned Galton-Watson tree 7,, as above, and then a random node
V in the tree, then 7,y converges in distribution as n — oo to the random Galton-Watson
tree 7. This was sharpened in [37, Theorem 7.12] to the corresponding ‘quenched’ result:
the conditional distribution of 7,, v given 7,, converges in probability to the distribution
of 7. As a consequence (see Section 3), we obtain the following results, which show the
central role of y(«) in the study of X, («).

Theorem 1.6. (i) If Rea <0, then asn — o,
E X, (a) = pula)n + o(n). (1.14)

(ii) If Rea < 0, then X,,(a)/n - u(a).

The following theorem improves and extends the estimate (1.14); in particular, note
that [in parts (i) and (ii)] the error term in (1.14) is improved to o(n'/?) for Rea < 0 and
O(nl/Q) for Rea = 0.

Theorem 1.7. The following estimates hold as n — 0, in all cases uniformly for « in
compact subsets of the indicated domains.

(i) If Rea < 0, then

EX,(a) :u(a)n+0(n1/2). (1.15)
(i) If -4 < Rea < 3, then
1 F(Oé - l) 1 1
EX,(a) = pla)n + — ———2-n*"2 +0(n(Rea)++5). (1.16)
V2o T()
(iii) If Rea > 1, then
1 F(Ol - l) 1 1
EX,(a) = ———=—2n""2 + o(n*"2). (1.17)
(iv) If « = 3, then
1
EX,(1/2) = mn&ogn%—o(nlogn). (1.18)
o
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Remark 1.8. As shown in Theorem 10.8(i), the estimate (1.16) holds also for o« = % + iy,
y # 0, where p(«) is the continuous extension described in Remark 1.5. O

Theorems 1.1 and 1.7(i) together yield the following variant of (1.5).
Theorem 1.9. If Rea < 0, then, as n — o,

Xn(a) — S
M i>X(a). (1.19)
D
Moreover, this holds in the space H(H_).
Similarly, Theorems 1.2 and 1.7 [parts (iii) and (ii)] yield the following. We define, for
Rea > 0 and a # 3, the complex random variable

Y(a):=Y(a)+ \};(Iof(;)?) (1.20)

Theorem 1.10. (i) If Rea > 1, then, as n — oo,

1

Yo(a) :=n"""2X,(a) 4, oY (a). (1.21)
(ii) If 0 < Rea < %, then, asn — o,

n=3 [Xn (@) = np(a)] 4, o Y (a). (1.22)

Moreover, in both cases, this holds in the space H(D) for the indicated domain D.

Remark 1.11. As shown in Theorem 10.8(ii), the limit result (1.22) holds also for
o= % + 1y, y # 0, where pu(«) is the continuous extension of Remark 1.5. O

We can add moment convergence to Theorem 1.10, too.

Theorem 1.12. The limits (1.21) and (1.22) hold with all moments, for Rea > %, and
0 <Rea< % respectively. In other words, for any integer ¢ > 1, if Rea > % then

EX, (o) = U_ZEY(a)ZnZ(O‘J“%) + 0(7”/((”“%))7 (1.23)
and if 0 < Rea < 1, then
E[X, (o) — n,u(a)]e =0t EY(a)ena‘H%) + o(ne(‘”%)). (1.24)

Moreover, in both cases, the moments k; = k(o) := EY ()’ are given by the recursion

formula
I(a—3)
Kl = ——==, 1.25
1= 3T(a) (1.25)
1

and, for ¢ > 2, withao' := a + 5

Tl —1) 1 S\ TG — D —j)a’ — 1)
)/@4714- 4ﬁJZ:1(J) 2 2 KjKe—j. (1.26)

NG TN T(fo/ — 1)

The result extends to joint moments; see Section 12.6.

Remark 1.13. For the case of random binary trees [the case £ ~ Bi(2, %)] and real «,
Theorems 1.10 and 1.12 were shown already by Fill and Kapur [21], by the method used
here in Section 12 to show Theorem 1.12 (namely, singularity analysis of generating
functions and the method of moments). Recently (and independently), the case of
uniformly random ordered trees [£ ~ Ge(%), in connection with a study of Dyck paths]
has been shown (also by such methods) by Caracciolo, Erba and Sportiello [9], and they
have extended their result to general £, at least when £ has a finite exponential moment
[personal communication]. O
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Remark 1.14. Theorem 1.10(i) has also been shown by Delmas, Dhersin and Sciauveau
[11] (for a > 1, or for full binary trees) and Abraham, Delmas and Nassif [1] (in general).
(They consider only real «, but their results extend immediately to complex «.) The
results in these papers are more general and allow more general toll functions, and they
show how the result can be formulated in an interesting way as convergence of random
measures defined by the trees; moreover, they consider also more general conditioned
Galton-Watson trees, where Var(£) may be infinite provided £ belongs to the domain of
attraction of a stable distribution. We do not consider such extensions here. O

Remark 1.15. Centered moments ]E)N/(a)k can as always be found from the ordinary
moments given by the recursion above. Alternatively, [21, Proposition 3.9] gives a (more
complicated) recursion formula for the centered moments that yields them directly. [The
formula there is given for real «, but it extends to complex o with Re « > 0 by the same
proof or by analytic continuation. Note also the different normalizations: Y there is our
\/§Y(a).] Another formula for centered moments is given by [9, Proposition 7] [again
with a different normalization: x, there is our 271/2Y (p)]. O

Example 1.16. Consider for simplicity real a > 0. It follows from (1.25)—(1.26) that
EY(a)? = VarY(a) = ky — k7
L2a)(a — 1) la—1)2 I'a—

2)? ,
T TQa+ )l(0)  4VATQRa+3) ()

a# i (1.27)

Moreover, the moments of ?(a) (which do not depend on &) are continuous functions
of a by Theorem 1.3, and thus we can obtain the variance Var }7(%) by taking the limit
of (1.27) as a — % A simple calculation using Taylor and Laurent expansions of I'(z)
yields, cf. [21, Remark 3.6(c)(iv)],

EV(L)? = Var () = 21082 _ T (1.28)
us 4

Higher moments of }7(%) can be calculated in the same way. The moments of }N/(%)

were originally found in [21, Proposition 3.8 and Theorem 3.10(b)], and given by a

recursion there. [Note again that Y there is our \/iY(%).] See [9, Proposition 7 and

Table 3] for another formula and explicit expressions up to order 5 (again with a different

normalization). O

Theorems 1.1 and 1.2, or 1.9 and 1.10, show that the asymptotic distribution exhibits
a phase transition at Rea = 0.

Remark 1.17. We do not know how to bridge the gap between the two cases Rea < 0
and Rea > 0. Moreover, we do not know the asymptotic distribution, if any, when
Re a = 0 (excepting the trivial case oo = 0 when X,,(0) = n is deterministic), although we
note that Theorem 1.6(ii) yields a weaker result on convergence in probability. However,
we conjecture that (nlogn)~Y/2X,(it) converges in distribution to a symmetric complex
normal distribution, for any ¢ # 0. O

Problem 1.18. Does X, (it) have an asymptotic distribution, after suitable normalization,
for (fixed and real) ¢ # 0? If so, what is it?

Remark 1.19. Forreal o \ 0, (1.25)-(1.26) show that EY (a)? — 0, and thus Y (a) - 0.
[See also (1.27).] As remarked in [21, Remark 3.6(e)], one can use (1.25)-(1.26) and the
method of moments to show that

a2y (a) -5 N(0,2 — 210g2), o\, 0. (1.29)

If we consider complex a with Rea > 0, and let a — 0 from various different
directions, then a~/2Y () converges in distribution to various different limits, each of
which has a certain complex normal distribution; see Appendix C.
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If we instead let a — it with ¢ # 0 real, then (1.25)-(1.26) imply that the (complex)
moments E Y (a)’ converge. However, the absolute moment E |Y (a)|? — oo by a similar
calculation; see (12.80). It can be shown, again by the method of moments, that in this
case, (Re )Y () converges in distribution to a symmetric complex normal distribution;
see Appendix D. As a consequence, the imaginary axis is a.s. a natural boundary for
the random analytic functions Y () and Y (-) i.e., they have no analytic extension to any
larger domain; see again Appendix D for details. O
L
transition comes from the behavior of the mean E X,,(a), while the fluctuations X,, («/)
vary analytically by Theorem 1.2. To be precise, there is a singularity at a = % as

shown by (1.13) together with (1.16) or (1.22). For non-real a on the line Rea = %
the situation is more complicated. As said in Remarks 1.5, 1.8, and 1.11, the results

for Rea < 3 extend continuously to Rea = 3, o # ;. Moreover, the next theorem

(Theorem 1.20) shows that if we add a weak moment assumption on &, then we can
extend Theorems 1.7 and 1.10 analytically across the line Rea = % and also refine
the result at the exceptional case a = % [The results now depend on ¢ through more
than just o2, see (6.39).] Hence, assuming a higher moment, there is a singularity at
o = % but no other singularities at the line Rea = % However, in general (without
higher moments), u(a) cannot be extended analytically across the line Rea = % see
Theorem 11.1; hence, in general the entire line Rea = % is a singularity—in other words,

a phase transition.
Theorem 1.20. Suppose that E¢*+° < oo for some 6 € (0, 1]. Then:

Theorems 1.7 and 1.10 show another phase transition at Rea = this phase

(i) p(@) can be analytically continued to a meromorphic function in Re o < % + %, with
a single pole at o = § with residue —1/v/2n02.

(ii) Using this extension of u(«), (1.16) holds, uniformly on compact sets, for —% <
Rea<%—|—gw1'thoz7é %

(iii) For some constant c (depending on the offspring distribution),

EX,(3) =

2n10gn+cn+o(n). (1.30)

2o
Remark 1.21. If £ has higher moments, then p(«) can be continued even further: see
Theorem 6.5. In particular, if £ has finite moments of all orders, then pu(«) can be
continued to a meromorphic function in the entire complex plane C, with poles at j + 1,
7 =0,1,2,... (or possibly a subset thereof). O

Theorem 1.22. Suppose that IE ¢2*° < oo for some 6 € (0, 1]. Then:

(i) The limit in distribution (1.22) holds for all « € D := {a # % :0 < Rea < % + g};
moreover (1.22) holds in H(D).

(ii) For some constant c (depending on the offspring distribution),

nt [Xn(%) — nlogn] 4, 0_157(%) + c. (1.31)

1
\V2mo?

The constants c in (1.30) and (1.31) are equal. The proof yields the formula (6.39).

Remark 1.23. The phase transitions at Rea = 0 and Rea = % can be explained as
follows. Consider for simplicity real o, when all terms in (1.1) are positive. The expected
number of subtrees 7,, , of order k is roughly n P(|T| = k) = ©(nk~%?), by [37, Theorem
7.12] (see Section 3) and (2.6). Hence, if @ > 1, E X,,(«) is dominated by the rather few

large 7, of size ©(n); there are roughly ©(n!/?) such trees, which explains the order
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no+s of E X, (o). For a < % E X, («) is dominated by the small subtrees 7, ,, of size

O(1), and this yields the linear behavior of IE X,,(«) in Theorem 1.7.

For a < 0, the fluctuations, too, are dominated by the small subtrees (as shown in the
proof of [38, Theorem 1.5]); there are ~ n of these, and they are only weakly dependent
on each other, and as a result X,,(«) has an asymptotic normal distribution with the
usual scaling.

For 0 < a < % on the other hand, the mean E X,,(«) is dominated by the small
subtrees as just said, but fluctuations are dominated by the large subtrees of order
©(n). (To see this, note that for &« > 0 and ¢ > 0, the contribution to X, («) from
subtrees of order < en has variance O (£2*n?**!) by [38, Theorem 6.7].) Hence, we have
the same asymptotic behavior of )?n(a) as for larger a. The large subtrees are more
strongly dependent on each other, and lead to a non-normal limit; on the other hand,

asymptotically they do not depend on details in the offspring distribution. O

Atleast when Rea > 1, the limit random variable Y () can be expressed as a function
of a normalized Brownian excursion (e(t)). [Recall that (e(t)) is a random continuous
function on [0, 1]; see, e.g., [52] for a definition.] For a function f defined on an interval,
define

m(f;s,t) == inf f(u). (1.32)

u€[s,t]

The general representation formula for Re a > % is a little bit complicated, and we give
three closely related versions (1.33)-(1.35), where the first two are related by mirror
symmetry and the third, symmetric, formula is the average of the two preceding. (See
further the proof, which also gives a fourth formula (7.27). The representations (1.35)
and (1.36) were stated in [18, (4.2)-(4.3), see also Examples 4.6 and 4.7]; the present
paper gives, after a long delay, the proof promised there.) Note that the integrals
in (1.33)-(1.35) converge (absolutely) a.s. when Rea > % since e(t) is a.s. Holder(v)-
continuous for every vy < 3, and thus, e.g., |e(t) — m(e; s, t)| < C(t — s)? for some random
constant C. (This well-known fact follows e.g. from the corresponding fact for Brownian
motion together with the construction of e from the excursions of the Brownian motion,
see [52, Theorem 1.(2.2) and Chapter XII.2-3].)

We also give a simpler expression (1.36) valid for Rea > 1. [The integral in (1.36)
diverges for Rea < 1.]

Theorem 1.24. (i) If Rea > 3, then, jointly for all such «,

2 920 1 ale
V() L2 Lt (1) dt
—2a(a—1) (t —s)**[e(t) — m(e;s,t)] dsdt (1.33)
O<J<[<1

= 2aL(1 — )% e(t)dt

—2a(a—1) fj (t —s)**[e(s) — m(e;s,t)] dsdt (1.34)
O<s<t<1
1
= aJ [t + (1=t e®)dt

0

—a(a—1) Jf (t —5)*"?[e(s) + e(t) — 2m(e; s, t)] dsdt. (1.35)
O<s<t<l
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(ii) If Rea > 1, we have also the simpler representation

Y(a) 4 20(a — 1) Jf (t —5)* 2m(e;s,t) dsdt. (1.36)
O<s<t<1
Example 1.25. For a = 1, (1.33)-(1.35) reduce to

1
Y(1) = 2J e(t) dt, (1.37)
0
twice the Brownian excursion area. In fact, with d(v) denoting the depth of a given
node v, it is easy to see that

Xo(1) = > [Tonl = > (dw) +1) =n+ ) d(v), (1.38)

VET, VET, VET,

i.e., n plus the total pathlength. The convergence of the total pathlength, suitably
rescaled, to the Brownian excursion area was shown by Aldous [3, 4], see also [34]. The
Brownian excursion area has been studied by many authors in various contexts, for
example [43, 44, 57, 58, 59, 55, 25, 24, 33], see also [36] and the further references
there.

Furthermore, for o = 2, (1.36) reduces to

v(2) L4 U m(e; s, t)dsdt. (1.39)

O<s<t<l

This too was studied in [34], where Y (2) was denoted 7. Moreover, the random variable
P(T,) there equals X,,(1) — n, Q(7,) equals X,,(2) — n?, and the Wiener index W (7,,) =
nP(T,) — Q(T,) equals nX,, (1) — X,,(2). Hence, the limit theorem [34, Theorem 3.1]
follows from Theorems 1.10 and 1.24.

Moreover, as noted by [21], Theorem 1.12 yields for o = 1 a recursion formula for the
moments of the Brownian excursion area, which is equivalent to the formulas given by
[57, 58, 59, 25, 24], see also [36, Section 2]. Similarly, also noted by [21], Theorem 1.12
yields for a = 2 the recursion formula for moments of Y'(2) given in [34]. More generally,
the recursion in [34] for mixed moments of Y (1) and Y (2) follows from Theorem 12.9
below. O

Remark 1.26. For o > %, a different (but equivalent) representation of the limit Y («)
as a function of a Brownian excursion e is given by Delmas, Dhersin and Sciauveau [11,
(1.10) and (2.6)]. That representation can also be written as a functional of the Brownian
continuum random tree; see Abraham, Delmas and Nassif [1, Theorem 1.1]. O

Remark 1.27. As demonstrated in Section 8, it follows from the proof of Theorem 1.2
given in that section that there exists a representation of Y («) as a (measurable) func-
tional of e also for 0 < Rea < % with o # % However, this is only an existence statement,
and we do not know any explicit representation. More precisely, with H, := H+\{%},
there exists a measurable function ¥ : H/, x C[0,1] — C such that

Y(a) = ¥(a,e), «weH, (1.40)

where e as above is a Brownian excursion. Moreover, ¥(«, f) is an analytic function of
o € H, for every f € C[0,1]. For Rea > 3, ¥(a,e) is a.s. given by the formulas (1.33)-
(1.35), and for Re a > 1 also by (1.36). Hence, in principle, ¥(«, e) is given by an analytic
extension of (1.36) to all o € H’_, and such an extension (necessarily unique) exists a.s.
(Note that for Rea < 1, the double integrals in (1.33)-(1.35) do not converge for every
function e € C[0, 1], so we can only claim existence of the extension a.s.)
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~

Similarly, Y («) is a measurable functional of e also for a = % and there is a measur-
able function ¥ : H, x C[0,1] — C such that

~

Y(a) = ¥(a,e), acH,. (1.41)

We concede that the existence of an analytic extension ¥(«, e) gives a “representation”
of Y(«) only in a rather abstract sense. a

Problem 1.28. Find an explicit representation for Y («) as a function of e for 0 < Rea <

3, orevenfor0 <o < 3.

Finally, we consider real « and let a — o0. We show the following asymptotic result
yielding a limit of the limit in Theorem 1.10; this improves a result in [21] which shows
the existence of such a limit together with (1.44). Let B(t), t = 0, be a standard Brownian
motion, and let

S(t) := sup B(s) (1.42)
s€[0,t]
be the corresponding supremum process.

Theorem 1.29. As a — -+ along the real axis, we have a'/?Y (a) -4, V.., where Yy, is
a random variable with the representation

o0
Y, = J e tS(t) dt. (1.43)
0
and moments

EYF =27%2VEl, k>0, (1.44)

and more generally, for real or complex r,

EY) =27"2T(r+1), Rer> -1 (1.45)

Further representations of Y, are given in (9.24) and (9.26).

Remark 1.30. Since convergence in the space H(D) (for a domain D < C) of a sequence
of analytic functions implies convergence of their derivatives, the results above imply
corresponding results for X, («) and Y, («) (and also for higher derivatives). Note that
X/ («) is the additive functional given by the toll function L f,(T) = |T|*log|T|. In
particular, we have

X,00) = Y log|Tol =log [ | T, (1.46)
vET, veT,

which is known as the shape functional, see e.g. [16, 46]. Unfortunately, because of the
phase transition at Re a = 0, most of our results do not include 0 in their domains. The
exception is Theorem 1.7(ii), which implies

E X/, (0) = 1/ (0)n + o(n'/?logn), (1.47)

where the error term is obtained from (1.16) and Cauchy’s estimates using the circle
|z| = 1/logn. More precise estimates of E X/ (0) have been proved by [16, 21, 17]
[random binary trees, the case { ~ Bi(2, %)] and [46] (general ¢ with an exponential
moment); furthermore, these papers also give results for the variance (which is of order
nlogn). Moreover, asymptotic normality of X/ (0) has been shown in special cases by
Pittel [50] [random labelled trees, the case £ ~ Po(1)], Fill and Kapur [21] [random
binary trees, the case £ ~ Bi(2, %)] and Caracciolo, Erba and Sportiello [9] [random
ordered trees, the case £ ~ Ge(%)]. We have been able to extend this to general ¢,
assuming E¢2T° < oo for some § > 0, by suitable modifications of the arguments in
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Section 12 (we might provide details in future work). It seems to be an open problem to
show asymptotic normality of X/ (0) for arbitrary £ with 0 < Var{ < o (and E¢ =1, as
always).

Note that although the asymptotic normality of X7 (0) does not follow from the results
in the present paper, it fits well together with Theorem 1.1 which shows that X,,(«) is
asymptotically normal for every a < 0. O

The contents of the paper are as follows. Section 2 contains some preliminaries.
Section 3 gives the simple proof of Theorem 1.6. Section 4 shows two lemmas on
tightness, and Section 5 then gives a short proof of Theorem 1.1. Section 6 is a detailed
study of the expectation IE X,,(«). Section 7 treats convergence to Brownian excursion
and functions thereof. Section 8 gives some remaining proofs. Section 9 discusses the
limit as real @« — +o00. Sections 10 and 11 give proofs and a counterexample, respectively,
for the case Rea = % Section 12 studies moments and gives proofs of Theorems 1.3
and 1.12. This section uses a method different from that of the previous sections; the
two methods complement each other and combine in the proof of Theorem 1.3. Finally,
Appendix A discusses calculation of u(«) and gives some examples of it; Appendix B
gives a proof of a technical lemma in Section 12, together with some background on
polylogarithms used in the proof; Appendices C and D give proofs of the additional
results claimed in Remark 1.19.

2 Preliminaries and notation

2.1 Conditioned Galton-Watson trees

Given a non-negative integer-valued random variable £, with distribution £(£), the
Galton-Watson tree T with offspring distribution £(§) is constructed recursively by
starting with a root and giving each node a number of children that is a new copy
of £, independent of the numbers of children of the other nodes. Obviously, only the
distribution £(£) of ¢ matters; we abuse language and say also that 7 has offspring
distribution . Furthermore, let 7, be 7 conditioned on having exactly n nodes; this is
called a conditioned Galton-Watson tree. (We consider only n such that P(|7| = n) > 0.)

We assume that P(¢ = 0) > 0, since otherwise the tree 7 is a.s. infinite. In fact,
we consider here only the critical case E£ = 1; in this case 7 is a.s. finite (provided
P(¢ # 1) > 0). It is well known that in most cases, but not all, a conditioned Galton-
Watson tree with an offspring distribution £’ with an expectation E¢£’ # 1 is equivalent to
a conditioned Galton-Watson tree with another offspring distribution ¢ satisfying E& =1,
so this is only a minor restriction. See e.g. [37, Section 4] for details.

We also assume 0 < Var¢ < oo (but usually no higher moment assumptions).

Remark 2.1. More generally, a simply generated random tree 7, defined by a given
sequence of non-negative weights (¢x){ is a random ordered tree with n nodes such
that for every ordered tree T with |T'| = n, the probability P(7,, = T') is proportional
to [ [,er @5+ (v), Where §7 (v) denotes the outdegree of v, see e.g. [45] or [12, Section
1.2.7]. Every conditioned Galton-Watson tree is a simply generated random tree, and
the converse holds under a weak condition. In particular, if the generating function
®(z) = Y., ¢xz" has a positive radius of convergence R and there exists 7 with
0 <7< Rand 79'(r) = ®(r) (which is a common assumption in studies of simply
generated random trees), then the simply generated random tree 7, equals a conditioned
Galton-Watson tree defined by a suitable ¢ with ¢ = 1; furthermore, this £ has finite
moment generating function Ee's < co at some ¢ > 0, and thus finite moments of all
orders. Again, see e.g. [37, Section 4] for details. O
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Let &1,&5, ... be independent copies of £ and define
Sn= > & (2.1)
i=1

It is well known (see Otter [48], or [37, Theorem 15.5] and the further references given
there) that forany n > 1,

P(T| = n) = %]P(Sn S 2.2)

In particular, (1.12) can be written
0]
pla)= > n*'P(S, =n—1), Rea<}. (2.3)
n=1

For some examples where exact (and in one case rational) values of p(«) can be
computed when « is a negative integer, see Appendix A.

Recall that the span of an integer-valued random variable £, denoted span(§), is the
largest integer h such that £ € a + hZ a.s. for some a € Z; we consider only ¢ with
P(¢ = 0) > 0 and then the span is the largest integer h such that {/h € Z a.s., i.e., the
greatest common divisor of {n : P(¢ = n) > 0}. (Typically, h = 1, but we have for example
h = 2 in the case of full binary trees, when £ € {0,2}.) The local limit theorem for discrete
random variables can in our setting can be stated as follows; see, e.g., [41, Theorem
1.4.2] or [49, Theorem VII.1].

Lemma 2.2 (Local limit theorem). Suppose that ¢ is an integer-valued random variable
withP(6 =0) >0, E€¢ =1,0 < 0 := Var¢ < o0, and span h. Then, as n — oo, uniformly

inallme hZ,
h

V2mo2n

In particular, for any fixed ¢ € Z, as n — oo with n = ¢ (mod h),

P(S, =m) = [e—<m—”>2/(2””2) - 0(1)]. = (2.4)

h

Combining (2.2) and (2.5) we see that

N
P(|T]=mn) Norak (2.6)
asn — o with n =1 (mod h). [The probability is 0 when n # 1 (mod h).]

We will for simplicity assume in some proofs below that the span of £ equals 1;
then (2.6) is valid as n — oo without restriction. However, this is just for convenience,
and the results hold also for h > 1, using standard modifications of the arguments. (We
leave these to the reader, but give sometimes a hint.)

2.2 Random analytic functions

For a domain (non-empty open connected set) D < C, let (D) denote the space of
all analytic functions on D, equipped with the usual topology of uniform convergence on
compact sets; this is a topological vector space with the topology given by the seminorms
pi(f) :=sup,cx | f(2)|, with K ranging over all compact subsets of D. The space H(D)
is a Fréchet space, i.e., a locally convex space with a topology that can be defined by
a complete translation-invariant metric, and it has (by Montel’s theorem on normal
families) the property that every closed bounded subset is compact, see e.g. [53, §1.45]
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or [60, Example 10.II and Theorem 14.6]. Furthermore, (D) is separable. H(D) is
thus a Polish space (i.e., a complete separable metric space). We equip H(D) with
its Borel o-field, and note that this is generated by the point evaluations f — f(z),
z € D. [This can be seen by choosing an increasing sequence (K;) of compact sets
with D = | J, K;, and a countable dense subset (f;) of #(D), and noting that then the
sets Ui jn == {f : px,(f — fj) < 1/n} form a countable basis of the topology of H(D);
furthermore, each U, ; , belongs to the o-field generated by the point evaluations. We
omit the standard details.] It follows from this and the monotone class theorem that
the distribution of a random function f in H(D) is determined by its finite-dimensional
distributions (i.e., the distributions of finite sets of point evaluations).

We can use the general theory in e.g. Billingsley [5] or Kallenberg [40] for conver-
gence in distribution of random functions in H (D). In particular, recall that a sequence
(X,) of random variables in a metric space S is tight if for every € > 0, there exists a
compact subset K < S such that P(X,, € K) > 1 — ¢ for every n. Prohorov’s theorem
[5, Theorems 6.1-6.2], [40, Theorem 16.3] says that in a Polish space, a sequence X,
is tight if and only if the corresponding sequence of distributions £(X,,) is relatively
compact, i.e., each subsequence has a subsubsequence that converges in distribution.

It is easy to characterize tightness in #(D) in terms of tightness of real-valued
random variables.

Lemma 2.3. Let D be a domain in C, and let (X,,(z)) be a sequence of random analytic
functions on D. Then the following are equivalent.

(i) The sequence (X, (z)) is tight in H(D).
(ii) The sequence (sup,.x | X, (2)|) is tight for every compact K < D.
(iii) The sequence (sup,.p | X, (2)|) is tight for every closed disc B c D.

Proof. This proof is an easy exercise that we include for completeness.

(i) = (ii) = (iii) is trivial.

(iii) == (i). Assume that (iii) holds and choose a sequence of closed discs B; < D,
J = 1, such that the interiors B} cover D. Let ¢ > 0. Then, by (iii), for each j there exists
M; < oo such that P(sup,cp, | X, (2)] > M) < 277e. Let L:= {f € H(D) : sup.cp, | f(2)| <
M; for all j}. Each compact subset K of D is covered by a finite collection of open
discs B}, and it follows that there exists Mx < o such that if f € L, then pr(f) :=
sup,cx |f(2)| < Mg. In other words, sup ., pr (f) < o for each compact K = D, which
says that L is bounded in H (D), because the topology is defined by the seminorms px [60,
Proposition 14.5]. Moreover, L is a closed set in #(D), and thus L is compact in (D)
by the Montel property mentioned above. Furthermore, P(X,, ¢ L) < 220:1 27de=¢. O

This leads to the following simple sufficient condition.

Lemma 2.4. Let D be a domain in C and let (X,,(z)) be a sequence of random analytic
functions in H(D). Suppose that there exists a function v : D — (0, 00), bounded on each
compact subset of D, such that E|X,,(z)| < 7(z) for every z € D. Then the sequence
(X,) is tight in H(D).

Proof. Let B < D be a closed disc. There exists a circle I' = D such that B lies in the
interior of T'. If f € H(D), then the value f(z) at a point inside I" can be expressed by
a Poisson integral {. P(z,w) f(w)|dw| over the circle I, where P is the Poisson kernel.
(This is because analytic functions are harmonic. See e.g. [54, 11.4, 11.12, and 11.13].)
Furthermore, the Poisson kernel is continuous, and thus bounded by some constant C;
for all z € B and w € I". Consequently, for every f € H(D) we have

sup|£(2)] < Gy f | (w)] dul. 2.7)

zeB

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 14/77


https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Sum of powers of subtree sizes

Applying this to X,,(z) and taking the expectation, we obtain

Esup|X,(2)| < Cy IE)J | X (w)] |[dw| = C’lf E| X, (w)||dw]|
zeB I T

< le ~y(w) |[dw| < . (2.8)
r

Hence the sequence (X,,) satisfies Lemma 2.3(iii) (by Markov’s inequality), and the
conclusion follows by Lemma 2.3. O

We shall also use the following, which again uses properties of analytic functions.

Lemma 2.5. Let D be a domain in C and let E be a subset of D that has a limit point in
D. (I.e., there exists a sequence z, € E of distinct points and z,, € D such that z,, — z.)
Suppose that (X,,) is a tight sequence of random elements of H(D) and that there exists

a family of random variables {Y, : z € E} such that for each z € E, X, (2) -4, Y, and,
moreover, this holds jointly for any finite set of z € E. Then X, 4 vin ‘H(D), for some
random function Y (z) € H(D). Furthermore, Y (z) LY., jointly for any finite set of z € E.
That is, Y restricted to E and (Y,) have the same finite-dimensional distributions, and
thus have the same distribution as random elements of CF.

Proof. 1t suffices to consider the case when E = {z1, 25,...} with z, — 2, € D. The
result then is a special case of Bousquet-Mélou and Janson [8, Lemma 7.1]; in the
notation there we take §; = H(D), S; = CE and let ¢ be the obvious restriction map
f(z) = (f(z:))2; note that ¢ is injective by the standard uniqueness for analytic
functions. The assumption of joint convergence X, (z) 4, Y, for any finite subset of F is

equivalent to the convergence ¢(X,,) 4, (Y,,) in C?, since this space has the product

i

topology [5, p. 19]. The conclusion follows from [8, Lemma 7.1]. O

Remark 2.6. Lemma 2.5 may fail if we do not assume joint convergence; i.e., if only
Xn(2) N Y, for each z € F separately. For a counterexample, let D = C and E =
{z : |z| = 1}; further, let U be uniformly distributed on the unit circle {z : |z| = 1}, let
Xon(2) := U (a constant function) and Xo,+1(2) := Uz. Then X,,(z) -4, U for each fixed
z € E, and (X,,) is tight in H(D) by Lemma 2.4 with v(z) := max{1, |z|}, but X,, does not
converge in H(C); for example, X,,(0) does not converge in distribution.

We do not know whether it would be sufficient to assume X,,(z) 4, Y. foreachz e E
separately in the case when E contains a non-empty open set. O

2.3 Dominated convergence

To show uniformity in « of various estimates, we use the following simple, but perhaps
not so well known, version of Lebesgue’s dominated convergence theorem.

Lemma 2.7. Let A be an arbitrary index set. Suppose that, fora € Aandn = 1, fo n(x)
are measurable functions on a measure space (S, F,u), and that for a.e. fixed x € S,
we have f, ., (z) — go(r) as n — oo, uniformly in a € A. Suppose furthermore that h(x)
is an integrable function on S, such that |f, . (v)| < h(z) a.e. for each « and n. Then
Ss fam(x)du(z) — (g ga(z) du(z) as n — oo, uniformly in o € A.

Proof. Note first that the assumptions imply |g.(x)| < h(z) a.e. for each «; hence,
| fan(2) — ga(2)| < 2h(z) a.e. Let o, be an arbitrary sequence of elements of .A. Then
§s(fann(®) = ga, (x)) du(z) — 0 as n — o by the standard dominated convergence
theorem. The result follows. O
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Remark 2.8. Suppose that the assumptions of Lemma 2.7 hold, and furthermore that
A is an open set in the complex plane and that g,(x) is an analytic function of « for
every = € S, and jointly measurable in « and z. Then the limit G(a) := {5 go(z) dpu(z)
is an analytic function of o« € A. To see this, note again that the assumptions imply
|ga(z)] < h(z) a.e. for each «. It follows by dominated convergence that G(«) is a
continuous function of «, and by Fubini’s theorem that the line integral of G(«) around
the boundary of any closed triangle inside 4 is 0; hence G(«) is analytic by Morera’s
theorem. O

2.4 Further notation

We denote the distance between two nodes v and w in a tree by d(v, w). Furthermore,
we let d(v) := d(v, 0) denote the distance from v to the root o; this is usually called the
depth of v.

For two nodes v, w of a rooted tree T', v < w means that w is a descendant of v. Thus,
we T, < w > v. Furthermore, v A w denotes the last common ancestor of v and w.
Thus,

u<vAw < (u=<v)A(u=<w). (2.9)

For real numbers z and y, = A y is another notation for min(z,y). Furthermore, z, :=
max(z,0) and z_ := —min(z, 0).

Unspecified limits are as n — 0.

C,Cq,... and ¢, ¢y, ... denote positive constants (typically with large and small values,
respectively), not necessarily the same at different places. The constants may depend on
the offspring distribution &; they may also depend on other parameters that are indicated
as arguments.

3 The case Rea < 0, convergence in probability

Proof of Theorem 1.6. By (1.3), recalling that V' is a random node in 7,

1 1
B(fo(Tav) [ T) = — 33 [Taal® = ~Xu(a), (3.1)
veET,
and consequently
1
E fo(Tov) = -~ E X, (a). (3.2)

The random trees defined in Section 1 may be regarded as random elements of the
countable discrete set T of finite ordered rooted trees. As noted just before the statement
of Theorem 1.6 in Section 1, Aldous [2] shows that 7, v 4, T, as random elements of ¥.
If Rea <0, then f, is a bounded function on %, trivially continuous since ¥ is discrete.
Hence, it follows from (3.2) that

LB Xu(0) = B fu(Tay) = B fo(T) = u(a), (3.3)

showing (1.14).

Similarly, by [37, Theorem 7.12], the conditional distribution of 7,, v given 7,, con-
verges (as a random element of the space of probability distributions on %) in probability
to the distribution of 7, which by (3.1) yields part (ii) of Theorem 1.6. O

4 Tightness
Recall the notation at (1.3)-(1.4) and (1.8)—(1.9).
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Lemma 4.1. (i) For Rea < 0 and all n > 1, E|X,(a)]? < C(a)n, for some constant
C(a) = O(14|Rea|™?); thus C(a) is bounded on each proper half-space {o : Rea < —¢ <
0}. (ii) ForRea > 0 and alln > 1, B | X, (a)|? < C(a)n2Beo*1 and thus E |Y,(a)|? < C(a),
for some constant C(a) = O(1 + (Rea)™?); thus C(«) is bounded on each proper half-
space {a: Rea > e > 0}.

Proof. Recall the notation f,(T) := |T|*. We apply [38, Theorem 6.7] to (the real and
imaginary parts of) the functional f(T') := fo(T) - 1j7|<n- Since |f(Tx)| = |fa(Tk)| = |E¥| =
kRee for k < n, and f(7) = 0 for k > n, this yields

N n 1/2
(B X (a) )" < Cin2 (sup BRee + 3 o) < {02(0‘)” L, Jea<h

1
k<n = Cs(a)nfeot2 Rea >0,

with Ca(a) = O(1+ |Rea|™) and C3(a) = O(1 + |Rea| ™). O

Lemma 4.2. (i) The family of random functions n='/2X,,(«) is tight in the space H(H_).
(ii) The family of random functions Y, (a) := n~*"2 X, («) is tight in the space H(H.).

Proof. This is an immediate consequence of Lemmas 2.4 and 4.1 (and the Cauchy-
Schwarz inequality). O

5 The case Rea < 0

Proof of Theorem 1.1. For a fixed real o < 0, [38, Theorem 1.5] yields (1.5) with X (a) ~
N(0,~*(c)) for some v%(«) > 0. Furthermore, as remarked in [38], [38, Theorem 1.5]
extends, by the Cramér-Wold device, to joint convergence for several functionals. By
considering Re f, and Im f,, we thus obtain (1.5) for complex a € H_; furthermore, we
obtain joint convergence for any finite set of (real or complex) such a. The convergence
in H(H_) now follows from Lemmas 4.2(i) and 2.5, taking D = F = H_.

The symmetry (1.6) is now obvious, since the corresponding formula for X, («) follows
trivially from the definition (1.3). Finally, (1.7) follows from [38, (1.16)] and polarization
(i.e., considering linear combinations). O

Remark 5.1. Furthermore, [38, (1.17)] and polarization yield a formula for the covari-
ance function, for Rea, Re 8 < 0:

E(X()X(8)) = E(fa(T)(Fs(T) = [T16(8))) + E(f5(T) (Fa(T) — | Tlu(a)))
— pla+B) + (1= o ) u(e)u(B). (5.1)

O
6 The mean
Lemma 6.1. For any complex a,
EX (a)*ni P(Sns=n=k)PSe =k =1), 0 (6.1)
Ea P(S,=n-1) ' '
k=1
Proof. By [38, Lemma 5.1], summing over k,
= IP(Sn_k :n—k)
E X, =EF,(T,) = E f. 6.2
(o) (72) ,;” b5, —n 1) Elas(T) (6.2)
EJP 27 (2022), paper 114. https://www.imstat.org/ejp
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where fo 1 (T) := fo(T)17)=1 = k“1j7|=), and thus, using (2.2),
Efor(T)=k*P(T|=k) = k' P(Sp =k —1). (6.3)
The result follows. O

We now prove Theorem 1.7. We begin with part (i), which follows from [38], and
part (iii), which is rather easy.

Proof of Theorem 1.7(i). The estimate (1.15) is an instance of [38, (1.13)], and the proof
in [38] shows that the estimate holds uniformly in each half-space Rea < —¢ < 0. O

Proof of Theorem 1.7(iii). We write (6.1) as E X, (o) = n®~z >h_1 9n,a(k) where

P(Sup=n—K)P(Se=k=1) o1 0

k) = 6.4
gno(F) P(S, =n 1) ©.4)
Thus, converting the sum in (6.1) to an integral by letting k := [zn],
1
n=o"2 2 B X, ( -1 Z In.af f 9n.o([zn]) dz. (6.5)
0

Assume for simplicity span(§) = 1. [Otherwise, replace [zn] by zn rounded upwards to
the nearest integer ¥ = 1 (mod span(¢)), and make minor modifications.] For any fixed

€ (0,1), it then follows from (2.5) that as n — o, for any fixed « and uniformly for « in
a compact set,

(n — nz)~Y2(nx)~ 12 1 —a4d 1 _ _3
gnalfan]) ~ o T (1) T = o (L) T T (66)

Furthermore, (2.5) similarly also implies that, for n so large that P(S, =n—1) > 0,
|gn.a([zn])| < C(1 — 2)7/2g=(Rea=2)- (6.7)

for some constant C (depending on the offspring distribution, but not on «a). Since

we assume Rea > % the right-hand side of (6.7) is integrable, and thus dominated

convergence and (6.6) yield, evaluating a beta integral,

1
n.o([zn])de — A 3/2 124
J, matenh o | ~)
1 1 MNa-1/2)T'(1/2
= B(a—1/2,1/2) = (a = 1/2T(1/2)
V2mo? V2mo? INGY!
1 T(a—1/2)
_ (6.8)
" V2o T(a)
Moreover, using Lemma 2.7, this holds uniformly for o in each compact subset of
{a : Rea > 1}. The result follows by (6.5). O

Before completing the proof of Theorem 1.7, we give another lemma with a related
estimate for E X,,(«). We define, compare (1.12) and (2.3), for any complex «,

n n

fin(@) := B(|T]*L17<n) = Z P(|T| = k) = Z K P(SE =k —1). (6.9)

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
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Lemma 6.2. If Rea > —1, then, asn — w,

]. F(Oé_ %) 7T1/2:| 41 (R ) 1
+ — n®t2 4 o(nte)++3), (6.10)
= ( )

E Xn = n
() = njn(a) Fal ~aTI
Moreover, this holds uniformly for any compact set of o with Re a > —%.

2

Remark 6.3. For o = % the square bracket in (6.10) is interpreted by continuity. With
¥(z) :=T"(z)/I(z), the value at 1 is easily found to be 7= /2 (1(1) —4(3)) = (2log 2)7~1/2,
using [47, 5.4.12-13]. O

Proof. This time we use (6.1) and (6.9) to obtain, with g, (k) as in (6.4), cf. (6.5),

n

EX,(a) — npp(a) =n*"2 Z [gnta(k) _piage-l P(S, =k — 1)] — o3 hna(k),

-

=t =1
(6.11)
where, see (6.4),
hnva(k) = gw,a(k) - ngiakail ]P(Sk = k’ —_ 1)
f—apa—1 P(Snfk =n— k’)
- Py =k—1 ~1 12
nz" % (Sk =k )[ (5, —n 1) (6.12)

We use once more (2.5) and see that, assuming for simplicity that £ has span 1, for
any fixed z € (0,1), for any fixed o and uniformly for « in a compact set,

1 3
Bo([zn]) > ——2%72 [(1 —2) Y2 —1]. (6.13)
allen]) = —s—atH [(1-a) 7 1]
Furthermore, by (2.5), for all n, &k, and «,
3 k Rea—é
gapa-l =k—1)= =
nd kI P(S, = k — 1) 0<(n) ) (6.14)
If 1 < k < n/2, then by [38, Lemma 5.2(i)],
P(S,—r =n—k) k ~1/2
—1= = 1
P(S, —n—1) O<n)+o(n ), (6.15)
and if n/2 < k < n, then by [38, Lemma 5.2(ii)],
P(Sp—r =n—k) nl/?
—-1=0———-—+). 6.16
P(S, =n—-1) ((n—k+1)1/2 (6.16)

For k > n'/2, the bound in (6.15) is O(k/n). Let h¥ (k) := hp,a(k)1;sp12, and fix o
with Rea > —%. Then, combining (6.12) and (6.14)-(6.16), for all n and z € (0, 1),

hE o ([zn]) = Oz ®ea2)- 4 (1 —2)~12). (6.17)

This bound is integrable, and thus dominated convergence and (6.13) yield

! 1 ols
! hnak=Jh* d Hif =2 (1 —2)"Y? — 1] da.
i N et = | W) de > oo | a0 TE [0 1] de (6.18)

nl/2<k<n

The integral on the right-hand side of (6.18) converges for any o with Rea > —%, and
defines an analytic function in that region. If Rea > % we have

1 1

1
J 23 [(1 —x)"V2 = 1] dz = J xa_%(l — ) Y2 dx —J 2 % dz
0 0

0

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
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1
=Bla—31% 1) -
( 2 2) a—%
_Tle—3TG) 1
= e - a—%' (6.19)

The right-hand side in (6.19) is analytic for Rea > —% (with a removable singularity at
o= %), and thus by analytic continuation, (6.19) holds as soon as Rea > —%.

By combining (6.11), (6.18), and (6.19), we obtain the main terms in (6.10). However,
it remains to show that the terms with k& < n'/2 in (6.11) are negligible. For this we use
again (6.14) and (6.15) and obtain

ca-1 B (Rea)_—3
Z hn,a(k)éck;ﬁ(z>R +o(n 1/2) Z <§) (Rea)

k<y/n koo
< Cl(a)n%(RCOH'%)*'%—RCO& + O(nH—(Roa)_)

— ot o)), (6.20)
This shows that the contribution to (6.11) for k<n'/2is o(nReats+Rea)-) = p(pRea)s+3),
which completes the proof of (6.10).

Moreover, the estimates (6.13), (6.17), and (6.20) hold uniformly in any compact
subset of {a: Rea > —%}, which using Lemma 2.7 gives the uniformity in (6.10). O

Proof of Theorem 1.7(ii). Assume again for simplicity that £ has span 1. Then (2.5) yields

P(Sp=k—1) = k7 (1+ &), (6.21)

1
\V2mo?

with e, — 0 as £ — o0, and thus, using dominated convergence, for Re o < L

1

2 (@) = (@) =027 3T RTIR(Sg =k 1)

k=n+1
1 © [ [zn] o}
= 1 g
s L ( - ) (1 + €feny) dz
L Jw a=3 q L (6.22)
- —| 2z 2dr = ———+—. .
V2ra? )1 V2ro?(3 — a)

Moreover, by Lemma 2.7, (6.22) holds uniformly in every half-plane Rea < b < % The
result follows by combining (6.10) and (6.22). O

Proof of Theorem 1.7(iv). By (6.9) and (6.21), again assuming span(¢) = 1,

w 1 1
A1) = k11 +¢&,) = ———1logn + o(lo n), (6.23)
and the result follows from Lemma 6.2. O

6.1 Extensions assuming higher moments

We first prove Theorem 1.20 where we assume IE ¢2+ < oo for some 6 € (0, 1]. For an

example (without higher moments) where u(«) cannot be extended analytically across
1

the line o = 5, See Theorem 11.1 in Section 11.
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Proof of Theorem 1.20. Assume again for simplicity that span({) = 1. Then the assump-
tion E£21° < oo implies that (2.5) can be improved to

_ I SR
P(S,=n—-1)= Wﬂ +r(n), (6.24)
with
r(n) = O(n~37%), (6.25)

see [30, Theorem 6.11], [31, Theorem 4.5.3 and 4.5.4].
(i): Consequently, with ((-) denoting the Riemann zeta function, (2.3) yields

1 © , © 3_ 4 o
o) = s Y 3 o) - S S, (620

where the final sum by (6.25) converges and is analytic in a for Rea < % —+ %. It is well
known that the Riemann zeta function can be extended to a meromorphic function in the
complex plane, with a single pole at 1 with residue 1. The result follows. [If span(¢) > 1,
we use the Hurwitz zeta function [47, §25.11] instead of the Riemann zeta function.]
(ii): Let D° := {a # 2 : =3 < Rea < 3+ 4}, D’ = {a € D’ : Rea < 1}, and
DY :={a € D°:Rea > }}. Furthermore, fix a compact subset K of D°. Define, for k > 2

and for k = 1 and Rear > 3,

a(k,a) == k"2 — (a = D)7 kOE — (k- 1) 3], (6.27)
b(k,a) := \/;TTa(k,a) + ke (k). (6.28)
Note that for k¥ > 2 and a € K, by a Taylor expansion,
a(k,a) = O(kKRea~3), (6.29)
where the implied constant depends only on K, and thus, using also (6.25),
b(k,a) = O(KRea—5-%). (6.30)
By (6.24), (6.27), and (6.28),
EUP(S, =k —1) = M[w—% — (k= 1) 2] + b(k, ), (6.31)
V2ro?

where either k > 2 ork > 1 and a € DS.
It follows from (6.29) that >," , a(k, a) converges for a € D° and defines an analytic
function there. Furthermore, if @ € D?, then, summing the telescoping sum,

alk,a) =¢(3 —a) =14 (a—1)7", (6.32)

18

B
||

2

and consequently, by (6.26),

1 = 1\—1 = a—1
(o) = Wors (;2 alk,a) +1— (a — 5) > + kzzllk‘ r(k). (6.33)

Both sides of (6.33) are analytic in D?, so by analytic continuation, (6.33) holds for all
a € D° (and also for Rea < —1). In particular, for a € D?, where a(1, @) is defined,

1 0 0 o0
a) = a(k,a) + ke r(k) = b(k,a). (6.34)

() TmQé (k,a) ;;1 (k) k; (k,a)
EJP 27 (2022), paper 114. https://www.imstat.org/ejp
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We now analyze u,(«) further. First, forae K_ := K n D?, using (6.31) and (6.30),

pe) ~ (@) = 3 KOB(SE = k1)
k=n+1

0 _ 1y-1 1 1
(S TP
L 2mo?
c=n+1
_ l -1 1 1_46
_ _Mna_f + O(nRea—g—g). (6.35)
2mwo?

Next, consider o € Di. By (6.31) and (6.34), forae K. := K n Di,

o) — ula) = N Mka*%, E—1)2]+bk.a)) — chka
un()u()k;(m[ (k— 1) 1] <7>) 3 bk
G SR
- " k§+1b(k,a)
_ (O‘;é);na—é L O(nRea-i-4), (6.36)

We have obtained the same estimate for the two ranges in (6.35) and (6.36), and can
combine them to obtain, forae K_ u K.,

(a_ )_1 _1 Rea—L1_38
fin(@) — pla) = ——===—n""2 + O(n"***7272). (6.37)
2mo?

=

Furthermore, for each n, i, (a) — u(a) is a continuous function in D?, and thus (6.37)
holds for a« € K_ u K by continuity. If K is a closed disc, then K = K_ u K, and
thus (6.37) holds for a € K. In general, any compact X c D° can be covered by a finite
union of closed discs K; — D9, and it follows that (6.37) holds uniformly in a € K for
each compact K < D?.

Combining (6.10) and (6.37), we obtain (1.16), uniformly on each compact K < D?.

(iii): By (6.24)—(6.25), (6.21) holds with ¢, = O(k;_‘s/z). Consequently, (6.23) is im-
proved to

n

(%) = ;;1 \/;71(1(1 tep) = 2;2 logn + ¢ + o(1), (6.38)

with ¢; = (2m0?)~Y2(y + Y}, ex/k). The result (1.30) follows from (6.10). O

Remark 6.4. The proof shows, using Remark 6.3, that the constant ¢ in Theorem 1.20(iii)
is given by

©
c= k; %[kl/QIP(Sk —k—1)— \/2;7] = \/2;71#(%) (6.39)
where ¢(3) = —(2log2 + ) [47, 5.4.13]. O

We next show that Theorem 1.20(i) extends to the case § > 1, at least if J is an integer.

Theorem 6.5. If E¢¥ < oo for an integer k > 3, then u(a) can be continued as a

meromorphic function in Rea < *51 with simple poles at {1,2,2,...} (or possibly a

2
subset of these points) and no other poles.

Typically, all these points ¢ — % (with 1 < ¢ < k/2) are poles; however in special cases,
1(a) might be regular at some of these points, see Example 6.8.
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Proof. Assume for simplicity that span(¢) = 1. In this case, see [49, Theorem VII.13]
(with slightly different notation), (6.24) can be refined to

—x2/2

e

P(S, =n—1 1+ > G ”/2] +o(n~ k12 (6.40)
( )= V2mo?n [ Z 2 ( )

where z = —1/(04/n) and g, is a polynomial (independent of n) whose coefficients depend

on the cumulants of £ of order up to v + 2, see [49, VI.(1.14)] for details. The polynomial
q, is odd if v is odd, and is even if v is even; hence the term G, (z)n~"/? is a polynomial in

n~! for every v, and expanding e~*"/2 = ¢~1/(29°7) into its Taylor series and rearranging,
we obtain from (6.40)
[k/2]—1
P(S, =n—1) 2 a;n 77 +r(n) (6.41)

with r(n) = o(n~(¥=1/2), for some coefficients a;. Consequently (2.3) yields, cf. (6.26),

/2]— ©
Z +7— a) + Z no‘_lr(n)7 (6.42)
=0 n=1
where the final sum is analytic in Rea < (k — 1)/2, which proves the result. O

Remark 6.6. The proof of Theorem 6.5 shows that the residue of p(a) at o = j + %
(assumed to be less than % 5>1) is —a;, where a; is the coefficient in the expansion (6.41)
and can be calculated from the cumulants s = 02, 53. .., 542 of . For example, see
Theorem 1.20(i), the residue at % is —ap = —1/v/2wo2. As another example, a calculation
(which we omit) shows that if k > 4, the residue at 2 is

1 1 3 2y 5%§ )
= e (B . 6.43
“ oro2 (202 204 804 + 2406 ( )
O

Example 6.7. Consider the case of uniformly random labelled trees, which is given by
& ~ Po(1). In this case,

nn—l

me_ (644)

P(S, =n—1)=P(Po(n) =n—1) =

which by Stirling’s formula, see e.g. [47, 5.11.1], has a (divergent) asymptotic expansion
that can be written

[e¢]

Boy.

—1/2 2k
k=1

where By are the Bernoulli numbers. Expanding the exponential in (6.45) (as a formal
power series), we obtain coefficients a; such that for any integer J we have

J
RSy =n—1)= Y a4 oln ), (6.46)
j=0

which is the same as (6.41), and it follows by the argument above that u(«) has residue

—aj atj + %

For example, ag = (2r)~ /2, see (6.24) and (6.26), and a; = —%(270*1/2, showing
that x(a) has a pole with residue 1 (27)~'/? at 2. (This agrees with (6.43) since s, = 1
forevery k > 1.) O
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Example 6.8. We construct an example where £ is bounded, so Theorem 6.5 applies for

every k and p(«) is meromorphic in the entire complex plane, and furthermore pu(«) is
regular at a = 3.

We use three parameters m, s, and A, where m > 10 is a fixed integer (we may take
m = 10), s € [0,m), and A is a large integer. Let { = &, 5 4 take the values 0,1, A,mA

with the probabilities

S
1
P=A)=— A4
€=4)=57, (6.48)
1 s
PEl=1)=—-—— 4
€=1) 5 om’ (6.49)
PEl=0)=1-PE=1)—-P(E=A)— P =mA). (6.50)
Then E¢ = 1 and span(§) = 1. Keep m and s fixed, and let A — oo; then
2 o sA A 1+s
? ~EE ~ 4 D= A (6.51)
5 smAZ Af2 _1+sm o
sy ~ B E sty = A (6.52)
243 3 2
sy~ B ~ SmQA + A? - H%A? (6.53)

Denote the parenthesized factor in (6.43) by f(m,a, A). It follows from (6.51)-(6.53)
that as A — oo with fixed m and s,
1+ sm? N 5(1 + sm)?
4(1+ s)? 12(1 + s)3

f(m,s, A) = A+ 0(A) = (g(m,s) +o(1)) A, (6.54)

where

_ 14+sm®  5(1+sm)® 51+ sm)* —3(1+s)(1+sm?)
9ms) =~ Y gy 12(1 + 5) ' (6.55)

For s = 0, the final numerator in (6.55) is 2 > 0, and thus g(m,0) > 0. For s = 1, the final
numerator is 5(1 + m)2 — 6 — 6m? < 0, and thus g(m, 1) < 0. Hence, by (6.54), we may
choose a large A such that f(m,0, A) > 0 and f(m,1, A) < 0. Then, by continuity, these
exists s € (0,1) such that f(m,s, A) = 0, and (6.43) shows that for the corresponding &,
we have the residue 0 at % i.e., there is no pole there and p(«) is regular at % O

7 Brownian representations

We use the well-known result by Aldous [3, 4] that represents a conditioned Galton-
Watson tree asymptotically by a Brownian excursion (e(t)) in the following way (under
the conditions E€ = 1 and o2 = Var £ < oo that also we assume). (See also Le Gall [42]
and Drmota [12, Chapter 4.1].)

Consider the depth-first walk on the tree 7,; this is a walk v(1),...,v(2n — 1) on the
nodes of 7,,, where v(1) = v(2n — 1) is the root o, and each time we come to a node, we
proceed to the first unvisited child of the node, if there is any, and otherwise to the parent.
For convenience, we also define v(0) = v(2n) = o. We define W, (¢) := d(v(4)), and extend
W,, to the interval [0, 2n] by linear interpolation between the integers. Furthermore, we
scale W, to a function on [0, 1] by

—~

W, (t) := on~Y2W, (2nt). (7.1)
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Then Wn is a random continuous funtion on [0,1], and is thus a random element of the
Banach space C[0, 1]. One of the main results of Aldous [4, Theorem 23 with Remark 2]
is that, as random elements of C[0, 1],

(Wa(1)) -5 (2e(1)). (7.2)

We can think of W,,(t) as the position of a worm that crawls on the edges of the tree,
visiting each edge twice (once in each direction).

We define v(z) also for non-integer x € [0,2n] as either v(|z]) or v(Jx]), choosing
between these two the node more distant from the root. Thus,

d(v(z)) = [Wy(z)]. (7.3)

For a node v, let i/, := min{i > 1: v(i) = v} and ¢/ := max{i < 2n — 1: v(i) = v}, i.e,,
the first and last times that v is visited (with i’ =1 and ¢ = 2n — 1). Then the subtree
7o, is visited during the interval [i},4"], and i, — i, = 2(|T,,»| — 1). Let

Jy :={z € (0,2n) : v(z) > v}. (7.4)
Then J, = (i}, — 1,4, + 1), and thus J, is an interval of length
‘JU| :i;§7i2)+2:2|7;m)|- (7.5)

We can now prove Theorem 1.24. When Re« > 1, all four expressions (1.33)-(1.36)
are equivalent by elementary calculus, so part (ii) follows from part (i). Nevertheless, we
begin with a straightforward proof of the simpler part (ii), and then show how part (i)
can be proved by a similar, but more complicated, argument. Since we have not yet
proved convergence of Y, («), we state the result as the following two lemmas.

Lemma 7.1. Let Rea > 1. Then Y,(a) -5 o-'Y(a) as n — o, with Y(a) given

by (1.36). Similarly, Y, (a) N o~ 1Y (), with Y (o) then defined by (1.20). Moreover,
these hold jointly for any finite set of such a.

Proof. We assume Rea > 1, and then (7.5) implies

(2[Tnw)® ﬂ (a—1)(y — 2)* ?da dy. (7.6)
z,yed,
<y
Hence,
QO‘Xn(Oé) = Z <2‘7;L u| J\J\ OZ — 1 I)Q*Q Z ]-:c,yEJU dx dy (7.7)
v€Tn O<zr<y<2n veTn

Now, by (7.4) and (2.9), z,y € J, < v <v(x) A v(y), and thus

Z 1, 4ey, = #{v:v<v(x) Av(y)} =dv(z) Av(y)) + 1. (7.8)

VvET,
Furthermore, from the construction of the depth-first walk,
d(v(x) A v(y)) = [m(Wa; z,y)]- (7.9)

recalling the notation (1.32). [Actually, m(W,,; z,y) is an integer except when v(z) is an
ancestor of v(y) or conversely.] Combining (7.7)-(7.9) and (7.1) yields

2° X, ( JJ ala—1)(y —2)**[d(v(z) A v(y)) + 1] dzdy
O<zr<y<2n
EJP 27 (2022), paper 114. https://www.imstat.org/ejp
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H (a —1)(y—2)* ?[m(W,;z,y) + O(1)] dzdy

O<z<y<2n

= a(a —1)(2n)" Jf (t— 8)a_2[m(n1/20_1wn; s5,t) + O(1)]dsdt.  (7.10)

O<s<t<l

Since ﬁfn 4, 9einC [0,1] by (7.2), and the integral below defines a continuous functional
on C[0, 1] because {{(t — s)*~2 ds dt converges (absolutely), it follows that

on 72X, (a) = ala—1) ff (t— s)o‘_2m(ﬁ\/n; s,t)dsdt + O(n_l/z)

O<s<t<l

ala—1) JJ (t —5)*2m(2e;s,t)dsdt = Y (). (7.11)

O<s<t<l

In other words, recalling (1.8), oY, (o) == Y (av).

The corresponding result affn(a) 4, 17(04) follows from (1.9), (1.17), and (1.20).
Joint convergence for several a follows by the same argument. O

Lemma 7.2. If Rea > L, then Y,,(a) <% 67 'Y (a) as n — oo, with Y () given by (1.33)-
(1.35). Moreover, this holds jointly for any finite set of such a.

Proof. Fix a with Rea > % We begin with a calculus fact (assuming only that Re a > 0).
Forany 0 <a < b < o0,

b
(b—a)a:af o= 1dm—a a—1) Jf y—xz)*" 2dz dy. (7.12)

a
O<z<a<y<b

We apply this to the interval (a,b) = J, in (7.4) and obtain, using (7.5),

2[Tnw)® = ozf z*tdr — a(a—1) Jf (y —z)* 2dady
z€Jy

O<z<y,xz¢J,,yeJy

and thus, summing over all nodes v of 7,

2¢ Z [Tow|® = afhx“_l Z 1,ey, dz
v 0

veTy
—a(a—1) Jj (y —x)>2 Z 1a¢7,, yes, dzdy. (7.13)
O<z<y<2n v€Tn
Now, using (7.4) and (7.3),
Z lres, = #{v:v(z) = v} =d(v(z)) + 1 = [Wy(2)] + 1 (7.14)

VET,

and similarly, using also (2.9) and (7.9),
Z 1o¢s, yes, = #{v:v(z) * vandv(y) > v}

vET,
= #{v oY) = v} = 9H{v 0(@) Ao(y) = v}
= d(v(y)) —d(v(z) A v(y))
= [Way)] = [m(Wn; 2, y)]. (7.15)
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Consequently, recalling the definitions (1.3) and (1.8) of X,,(«) and Y, («),

2n
29X, (o) = CVL 2 ([Wi(2)] + 1) do

—a@-) [ e AW - Wiz ) dedy (7.16)

O<zr<y<2n
and thus

R —1/2
Yo (a) = ozL t* T2 ([W, (2nt)] + 1) dt

—ala—1) fj (t — )@ 2n~1/2 ([Wy(2nt)] — [m(Wy; 2ns, 2nt)]) dsdt.  (7.17)

O<s<t<l

The first integral in (7.17) is no problem; it converges (in distribution) by (7.1) and (7.2),
just as the integral at the end of the proof of Lemma 7.1, because Sto‘*l dt converges
(absolutely).

The second integral, however, is more difficult, since {{(¢ — s)*~?dsdt diverges if
Rea < 1. We therefore use a truncation argument. For 0 < ¢ < 1 we split Y, (a) =
Zne(a) + Z;, (o), where

(@) = a.[)lta_ln_l/g([Wn(Qnt)] +1)dt
—afa—1) Jf (t— s)a_Qn_l/z([Wn(Qnt)] — [m(Why; 2ns, 2nt)]) dsdt  (7.18)
and
Zy, () =

—ala—1) Jf (t —s)*"2n~1/2 ([Wy(2nt)] — [m(Wy; 2ns, 2nt)]) dsdt.  (7.19)

O<t—s<e

For each fixed o« with Rea > 0 and each fixed 0 < e < 1,

0Zn.c(0) = a L 1ta’1Wn(t) dt
—ala—1) ﬂ (t = 8)2 72 (Wi (t) — m(Why; s,1)) dsdt + O(n~Y2)  (7.20)

t—s>e

and thus, by (7.2) and the continuous mapping theorem,

o7 (0) 5 Z.() = 20 J:t"‘_le(t) at
—2a(a—1) JJ (t—s)**(e(t) —m(e;s, b)) dsdt. (7.21)

t—s>¢e

We now use the assumption Rea > % We define Y (a) by (1.33), noting that the
integrals converge, as said in Section 1, because e(¢) is Holder(y)-continuous for every
7 < %. This shows that as ¢ — 0,

Z.(a) > Y(a) (7.22)

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 27/77


https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Sum of powers of subtree sizes

a.s. (and thus in distribution). Furthermore, let 8 be real with % < B <(Reanl). It
follows from (7.19) that

ala—1 _
|25, (@)] < Msf‘“‘ $2,,(8). (7.23)
Furthermore, by (7.17), Z,, .(8) < Y,(), and by Theorem 1.7(iii) we have EY,,(8) = O(1).
Consequently, (7.23) implies
E[Yo(a) = Zne(a)| = B|Z), ()] = O(" 7). (7.24)

Consequently, Z,.(a) —> Y,(a) as ¢ — 0 uniformly in n, ie., for any § > 0,
sup,, P(|Yn () — Z,, ()| > §) — 0. This together with the facts (7.21) and (7.22) imply
the result ¢, («) 4, Y(«), see e.g. [5, Theorem 4.2] or [40, Theorem 4.28]. Joint
convergence for several a follows by the same argument.

It remains to show that (1.34)—(1.35) are equal to Y («). Let us temporarily denote
these expressions by Y (! (a) and Y?) ().

Note that, a.s.,

(a—1) ﬂ e(t)dsdt (al)Lle(t)Lts(ts)O‘stdt

t—s>e
1
= J e(t)(t‘x_1 — 5“_1) dt
€

1
= J e(t)(t* 1 —e* ) dt + O(e"*®) (7.25)
0
and hence
Z(a) = 227! J e(t)dt + 2a(a—1) ﬁ[ (t—s)* *m(e;s, t)dsdt + O(*°*). (7.26)
t—s>e

Consequently, (7.22) yields the formula

Y(a) = lim 2a5°‘71f e(t)dt + 2a(a —1) JJ (t—s)*"*ml(e;s, t)dsdt |. (7.27)

e—0
t—s>¢e

If we replace e(t) by the reflected e(1 — t), the right-hand side of (7.27) is unchanged,
while Y (a) defined by (1.33) becomes Y ()(«) defined by (1.34). Consequently, Y ") (a) =
Y (a) a.s. Furthermore, Y?(a) = [Y(a) + Y(V(a)]/2, and thus also Y®(a) = Y(a)
a.s. O

Remark 7.3. For a = k > 2 integer, an alternative argument uses the following identity,
obtained by extending (7.8) to several nodes:

Z ‘7;L,'U|k = Z 1U],...,Uk2’u

veTy V01, V6ETn

e kf( J(n(d(v(xl)/\-«-Av(xk))Jrl)dxl-udxk

=27Fk J J m(Wy; z1, zx) ]| day - - - dag +nk
O<z1<--<TR<2Nn
=nfk(k —1) H [m(W; 2nt1, 2nty)](te — t1)F 72 dty At + 0. (7.28)
O<ti<trp<l

This easily shows Lemma 7.1 with (1.36) in this case. A similar, but simpler, argument
yields (1.37) for k = 1, see (1.38). O
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8 Proofs of Theorem 1.2 and remaining limit theorems

Proof of Theorem 1.2. Theorem 1.2 now follows from Lemma 2.5, with D = H, and
= {a: Rea > 1}, using Lemmas 4.2(ii) and 7.1. O

Proof of Remark 1.27. This is implicit in the proof above, but we add some details. Let
D and F be as in the proof of Theorem 1.2. (Alternatively, take E := [2,3].) Let
¢ : H(D) — C(F) be the restriction mapping f — f|g, and let ¢ : C[0,1] — C(E) be the
mapping taking e € C[0,1] to the element of C'(F) that maps « € E to the right-hand
side of (1.36); both ¢ and @ are continuous and thus measurable. Let also Y denote

the random function Y (o) € H(D), let D’ := H', = D\{3}}, and let n € C(D') denote the

non-random function n(a) := Y (a) — ?(a) = \1[ [la=3)

, see (1.20). The proof above (in

T'(a)
particular, Lemma 2.5) shows that @(Y) 1¥(e) —n, and thus we may assume
e(Y)=1(e)—n as. (8.1)

(The skeptical reader might apply [40, Corollary 6.11] for the last step.) Furthermore, ¢
is injective, and both #(D) and C(F) are Polish spaces; thus the range R := p(H(D))
is a Borel set in C(E), and the inverse function ¢~! : R — H(D) is measurable, see e.g.
[10, Theorem 8.3.7 and Proposition 8.3.5]. By (8.1), we have ¥ = e ' (p(e) —n) as
Consequently, (1.41) holds with

Flaf) = {go—l(wm —n)(@, v(H)-nek ©.2)
0, otherwise.
The representation (1.40) of Y (a) follows with ¥(a, f) := ¥(a, f) + n(c). O

Proofs of Theorems 1.10 and 1.22. These results follow immediately from Theorem 1.2
and the estimates of E X,,(«) in Theorems 1.7 and 1.20. O

Proof of Theorem 1.24. Theorem 1.24 follows from Theorem 1.10(i) and Lemmas 7.1-
7.2, comparing the limits. More precisely, this yields equality in distribution jointly for
any finite number of o, which implies equality jointly for all « since the distribution of
Y («) in H(H ) is determined by the finite-dimensional distributions, see Section 2.2. O

9 The limit as o —» «©

We introduce more notation. As above, e(t), t € [0,1], is a normalized Brownian
excursion, and m(e; s, t) is defined by (1.32). We further define

m(s) := m(e;s; 7), m'(s) :=m ( 72,1— s) (9.1)

for0 < < 5; for convenience we extend m and m’ to continuous functions on [0, o) by

defining m(s ) m/(s) := m(3) = e(3) for s > 1. Furthermore,

B(t)) is a standard Brownian motion on [0, o).

S(t) =
) :=min{t : B(t) = a},a > 0) is the corresponding family of hitting times.

(a
R(t)) is a three-dimensional Bessel process on [0,00), i.e., (R(t)) 4 (|IBG) (1)),

where (B®)(t) = (Bi(t), B2(t), B3(t))) is a three-dimensional Brownian motion (so
B, Bs, Bj are three independent copies of B). It is well known that a.s. R(0) = 0,
R(s) > 0forall s > 0and R(s) — o as s — o [52, §VIL.3].

SUP,e[o,,] B(s)) is the corresponding supremum process.

3

(
(
(
* (

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 29/77


https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Sum of powers of subtree sizes

o J(t) := infs>¢ R(s), t = 0, is the future minimum of R. By Pitman’s theorem [52,
VI.(3.5)], as stochastic processes in C[0, ) we have

(J(t) < (S(t)). (9.2)

* (J'(t),t = 0) is an independent copy of the stochastic process (J(¢)). Similarly,
(S’(t)) is an independent copy of (S(¢)) and (7/(a)) is an independent copy of (7(a)).

For notational convenience, we also define, using (1.36), for r > —1,

W, = Jf (t—s)"m(e;s, t)dsdt = Y(r+2). (9.3)

O<s<t<l

WD +2)

The assertion a!/2Y (a) - Y, in Theorem 1.29 is thus equivalent to r%/21¥, - 1Y, as
7 — 00.

Lemma 9.1. As r — o0 we have jointly (i.e., bivariately for sequences of processes)
r2m(x/r) - J(x) and r'/2m/ (z/r) -2 J'(z) in C[0, T], for any T < oo.

Remark 9.2. Convergence in C[0, T for every fixed T is equivalent to convergence in

C[0, ), see e.g. [40, Proposition 16.6], so the conclusion may as well be stated as joint
convergence in distribution in C[0, o0). O

Proof. Let us first consider m. We use the representation, see e.g. [6, II.(1.5)],

e(t) (1 t)R(%_t) (9.4)

as processes on [0, 1). Hence, using Brownian scaling, for x € [0, ) we have, as processes,

e (1 22 ¢ (- D) s

and thus, for x € [0,r/2],

P2z fr) 4 mntlg/z)o - ;)R(l%(t/r)) (9.6)

Recall that a.s. R(t) — o as t — . Hence, given T, we can choose a (random) 77 > T
such that R(t) > 2sup,e[r,or) R(u) for all ¢t > 7. It follows that if 71 <t < r/2, then

(- Drl=mm) > 2 2 g m0> A=) o0

Hence, if x < T and r > 277, the minimum in (9.6) equals the minimum over = <t < Tj.
Furthermore, as » — o0, since R is continuous,

. t t . .
min (1- ;)R(m) —,Din, R() = min R(t) = J(z) 9.8)
uniformly for « € [0,T], i.e. in C[0,T]. Consequently,
in (1 t)R( ! ) =2 () (9.9)
min —_ = < | .
w<t<r/2 r 1—(t/r) *
in C[0,T], and (9.6) implies
r2m(z/r) -5 J(x)  in C[0,T], (9.10)
EJP 27 (2022), paper 114. https://www.imstat.org/ejp
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which proves the assertion about m. By symmetry also
P2/ (x/r) =2 J(2) £ J'(z)  inC[0,T], (9.11)

since (e(1 —t)) 4 (e(t)) and thus (m/(t)) 1 (m(t)) (as random functions in C[0, o0)).
It remains to prove joint convergence to independent limits. Let

my(s) := m(e;s,r—2/3), mh(s) == m(e;1 —r~ 231 —5s) (9.12)

(for r with s < r~2/% < 1). We may assume that the left and right sides of (9.5) are equal,
and then m(z/r) = my(z/r) whenever the minimum in (9.6) equals the minimum over
t € [z,7/3]; in particular, this holds if z < T and 7'/? > T defined above. (This implies
r > 2r'/3 > 27}.) Consequently,

P(m(x/r) = mi(z/r) forallz € [0,T]) = P(T1 <r'/3) -1 (9.13)
as r — 0. By symmetry, also
P (m/(z/r) = my(z/r) forall z € [0,T]) — 1. (9.14)

Next, we may assume R(t) = |B®)(t)| and that equality holds in (9.4). Define the
modification R(t) := |B®)(t) — B®)(1)| and the corresponding &(t) := (1 — t)R(t/(1 — t))
and ) (s) := m(&1 —r2/31—s). Then |R(t) — R(t)] < |B®(1)| for all ¢, and thus
|&(t)—e(t)| < (1—t)|BG)(1)| and |} (s) —m/ (s)| < r~#3|BG)(1)|. Consequently, assuming
P8 s

sup |rY2m) (x/r) — r2m) (z/r)| < r~ Y8 BO (1) 2 0. (9.15)

a<T
Let p denote the metric in C[0,T]. By (9.14) and (9.15),
p(r' 2wl (x/r), r2m! (x/r)) > 0 (9.16)
as r — 0. Thus by (9.11),
2w (z/r) -5 J(z)  in C[0,T], (9.17)

Now, for < T and large r, m}(z/r) depends only on é(t) for t > 1, and thus on
R(t) for t > 1. However, (R(t) = |[B®)(t) — BO)(1)|,t > 1) is i ndependent of (R(t) =
|B®)(t)|, t < 1), and thus of (e(t), t < 3) and of (m(s), s < 1). Consequently, we can
combine (9.10) and (9.17) to

(P 2m(a/r), P2 (x/r)) 2 (J(2),J'(2))  in C[0,T] x C[0,T],

with independent limits (J(x)) and (J'(z)). Finally, the result follows by using (9.16)
again. O

Lemma 9.3. Asr — o,
2w, L Wy, = ” eV (J(x) A J'(y)) de dy. (9.18)
z,y>0

Proof. Note first that for some constant ¢ (in fact, ¢ = E|[B®)(1)| = 1/8/7), ER(t) = ct!/?.
Hence, E J(z) < ER(z) = cx'/? and

JJ Y (J(2) A J'(y)) dedy < ff 2 Ve da dy < oo.

z,y>0 x,y>0
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Consequently, the double integral in (9.18) converges a.s.
If s < § <t then by (9.1), m(e;s,t) = m(s) A m/(1 — t). Noting this, we define a
truncated version of W,. by, for » > 2T and substituting s = 2/r and t = 1 —y/r,

Jf (t —s)"m(e;s,t)dsdt

0<s<T/r
1-T/r<t<1l

e LTLT@ -4 %)T(m(x/r) A (y/r)) da dy. (9.19)

Since (1—%—2)" — ¢~¥~% uniformly for z,y € [0,T] as r — 0, it follows from Lemma 9.1

and the continuous mapping theorem that for each fixed 7' < o0, as r — o0 we have
oWl f f T (I (@) A T (y)) de dy. (9.20)

Furthermore, W1 — W,, a.s. as T — oo.

Moreover, by (9.4), Ee(t) = ct'/?(1 — t)/? and thus Em(e;s,t) < Ee(s) < cs'/?.
Hence, for r > 2T > 0, and again with the substitutions s = z/r and t = 1 — (y/r), we
have

E(W, -WT) = (t—s)"Em(e;s,t)dsdt

{T/r<s<t<1l}u{0<s<t<1-T/r}

) e

[0,7)2\[0,T]?
< er o2 J e~ Y22 4z dy. (9.21)
[0,00)2\[0,T]2
Hence,
limsup E [r*2W, — *2WT| -0 (9.22)
r—00

as T'— oo. This shows, by [5, Theorem 4.2] or [40, Theorem 4.28] again, that we can let
T — oo inside (9.20) and obtain the conclusion (9.18). O

Proof of Theorem 1.29. By (9.3), Lemma 9.3 can be written
a2y (a) -5 Yy, 1= 2, (9.23)

as a — o0. We now give some equivalent expressions for the limit. First, by (9.2),

Yo = QJ J - y A S (y )) dz dy. (9.24)

Secondly, note that 7(a) < * < S(z) > a; thus 7 and S are inverses of each other.
Similarly, we may assume that 7’ is the inverse of S’. By Fubini’s theorem,

YOO—2J f ~eY(S(x) A §'(y)) de dy

=2 Jff e " Ydsdrdy

0<s<S(z)AS"(y

=2 fjf e " Ydrdyds

T(s)<e, 7 (5) <y
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w ’
= zf e T()=7(s) g, (9.25)
0

However, (7(s)) and (7/(s)) are independent processes with independent increments,
and thus (7(s) + 7'(s)) has independent increments. Furthermore, for each fixed s,
7(28) — 7(s) 4 7(s) and is independent of 7(s), and hence 7(s) + 7/(s) 4 7(2s). It follows
that the stochastic process (7(s) + 7/(s)) equals in distribution (7(2s)). Hence, we also
have the representation

o0 0
v, 4 QJ e~ 729 45 = J e~ ds. (9.26)
0 0

The same Fubini argument in the opposite direction now gives

- a0
v, & f e ™) ds = Jf e *dxrds = ff e *dsdx = f e "S5(x)d. (9.27)
0 0 .
)

z=7(s) 0<s<S(z

This shows (1.43).

It remains to calculate the moments of Y,,. For integer moments we use (9.26).
Recall, see e.g. [52, Proposition 11.3.7 and Sections II1.3-4], that 7(s) is a stable process
with stationary independent increments and

Eem® — ¢ V2 5430, (9.28)

Define A7(s,s’) := 7(s’) — 7(s). Then, by symmetry and the change of variables ¢; = s1,
to = 89 — $1, ..., tk = Sk — Sk—1, noting that the increments A7(s;_1, s;) are independent
and A7T(s;—1,5;) 4 T(t;) (with sg = 0), we have

EYF = k!f Ee ()= =7(0) dg) ... dsy,

0<s1<82<--<Sg

_ k'f E67kAT(0,81)7(k71)AT(51,52)7-~-7Ar(sk_1,sk) d81 . dSk
0<s1<82<--<Sg

= k! f Ee ¥t Ee=k-D7(t2) [ R e=7(t0) gy ... dty,
t1,...,tx>0

— k!f 67f1\/ﬂ7f21/2(’€71)7"'7tk\/§ dtl - dtk
t1,...,t>0
ko
=k [ —= =27 %212, (9.29)
L7

which is (1.44).
In order to extend this to non-integer moments, let

1
Z :=logYy + 3 log 2, (9.30)
and let Z’ be an independent copy of Z. Then, for integer k > 1,
E((e?7)") = B2 = (Bek2)? = (22 EYE)® = kY, (9.31)

and thus V := eZ+Z" ~ Exp(1), since an exponential distribution is determined by its
moments. Hence, for any real r > —1,
Q0

(Ee'?)? =Ee?7 —EV" = f e dr =T(r+1), (9.32)
0
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and thus Ee’? = /T(r + 1). Since e"? = 27/2Y7, (1.45) follows, for real . Finally, (1.45)
is extended to complex r by analytic continuation, or by (9.32) again, now knowing that
the expectations exist. O

Remark 9.4. The characteristic function ¢z (t) of the random variable Z in (9.30) is thus
I'(1 + it)'/2, which decreases exponentially as t — +o0; hence Z has by Fourier inversion
a continuous density

1 (™ ; 1 (™ ;
fz(z) = —f e, (t)dt = — e (1 4 it) Y2 dt, (9.33)
2 J_o 2r J_o
see e.g. [15, Theorem XV.3.3]; furthermore, by a standard argument, we may differentiate
repeatedly under the integral sign, and thus the density function fz(z) is infinitely
differentiable. (In fact, it follows from Stirling’s formula that () = I'(1 + it)*/? belongs
to the Schwartz class S(RR) of infinitely differentiable functions such that every derivative
decreases faster than |z|~* for any k < co; hence f € S(R), see [60, Theorem 25.1].)
Consequently, also Y;, is absolutely continuous, with a density fy (z) that is infinitely
differentiable on (0, c0). Results on the asymptotics of the density function fy () of Y,
as ¢ — 0 and x — oo are given in [21]. O

Remark 9.5. 2!/2Y,, has moments v/k!, and it follows that if Y, is an independent copy
of Yy, then 2Y, Y, has moments k! and 2Y, Y, ~ Exp(1l). Hence, the distribution of
212y, is a “square root” of Exp(1), in the sense of taking products of independent
variables.

Moreover, if we let (7(s)) be another stable subordinator, with Ee~*7(*) =
(0 < v < 1) instead of (9.28), then (9.26) defines by the same calculations a random
variable Y(,) with

s
ets

EYE) = (k)7 (9.34)

In particular, choosing v = 1—(1/m), we obtain an m*" root of the exponential distribution
Exp(1).

Recalling that V' ~ Exp(1) and taking logarithms, this shows that log V' is infinitely
divisible, and thus the same holds for —log V, which has a Gumbel distribution. This has
been known for a long time, and a calculation shows that —log V' has a Lévy measure
with a density Z;O:1 e 9% /x = x71(e* — 1)71, & > 0; see, e.g., [56, Examples 11.1 and

11.10]. See also [7, Example 7.2.3]. O
10 Extensions to Rea =1
In this section, we show the extensions to Rea = % claimed in Remarks 1.5, 1.8,

2
and 1.11. These require different methods from the ones used above.

Let ¢(t) =K el*€ be the characteristic function of the offspring distribution £. Fur-
thermore, let £ := ¢ —E¢ = ¢ — 1, and denote its characteristic function by

F(t) :=Ee = e7y(t), teR. (10.1)

Since E€ = 0 and E£? = 02, we have $(t) = 1 — %2152 + o(t?); hence

2
Ft)=1— %R [1+~(t)], teR, (10.2)
for some continuous function «(¢) on R such that v(0) = 0.
We also let )
~ g
p(t) :==1—3(t) = 7152[1 +7(8)]. (10.3)
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Since ¢ is integer-valued, ¢ and ¢ are 27-periodic. Note that ]P(§~ = —1) > 0 and thus
P(t) # 1if 0 < |[t| < 7 [also when span(§) > 1]; hence (10.2) and continuity imply

Rep(t) =1—Red(t) = c1t?, 0<[t| <, (10.4)

for some ¢; > 0. Furthermore, if span(¢) = h > 1, then o(+£27/h) = 1 but |¢(t)| < 1 for
0 < [t| < 27/h, and it follows similarly from (10.2) and continuity that

B(1)] = |(t)] < 1—eot®> <e =, 0<[t| <m/h. (10.5)

Lemma 10.1. If Rea < 3, then

ula) = 27TF 1 — o) J_ﬂf )dxdt (10.6)

where the double integral is absolutely convergent.
Proof. Let Rea < % Fourier inversion and (2.3) yield

o0 T 0 T
1 . 1 .
a) =] na_12—J e gt dt = ) na—l—J et E(t)" dt. (10.7)
T J_n = 2 J)_,

n=1
Let span(§) = h = 1. It follows from the estimate (10.5) that
T 7/h 0 )
J |P()|" dt = hJ |3(t)|™ dt < hf e~ dt = Oyn 2. (10.8)
—m —mx/h —0

Hence,

m\w

(10.9)

o0 T o0
Z J- n®— 1 1t ‘ dt < Z
n=1v-7 n=1

Thus we may interchange the order of summation and integration in (10.7) and obtain

1 (M -
—J et > ne () dt. (10.10)

wla) = o

n=1

The sum Y, n® !3(t)" is known as the polylogarithm Li;_,(3(t)) [47, §25.12(ii)]. It
can be expressed as an integral [47,25.12.11] by a standard argument, which we adapt
as follows: Since Rea < & < 1, we have n®~!T'(1 — «) So %™ dz and thus (10.10)
yields

1 T 0 Q0
Il —a)u(a) = Ef Z L %O (t) e da dt. (10.11)

Again, this expression is absolutely convergent as a consequence of (10.8) and (10.9),
and thus we may again interchange the order of summation and integration and obtain

1 i * < —na,~ n 1t
'l —oa)p(a) = Py 2 da dt

(t) it
f_ﬂJ 1 —e—fgp(t)e dx dt. (10.12)

This yields (10.6), with absolute convergence. O
We next modify (10.6) by ignoring terms that are analytic at Rea = % more precisely,
we ignore terms that are analytic in D := {a: 0 < Rea < 1}.
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Lemma 10.2. There exists a function h(a) € H(D,) such that if0 < Rea < 1, then

wla) = %:) fﬂ p(t)"dt + h(a). (10.13)

—T

Remark 10.3. Since p(t) # 0 for 0 < |¢| < 7, the integral {, _, . p(t)~*dt is an entire
function of « for any ¢y € (0, 7], and thus the integral in (10.13) can be replaced by the
integral over |¢| < ¢, for any such . O

Proof of Lemma 10.2. First, for z > 1 and Rea > 0, the integrand in (10.6) is O(e™*) so
the double integral over {z > 1, t € (—m, )} converges and defines an analytic function
hi € H(D1). We may thus consider the integral for 0 < = < 1 only.

Next, using (10.3) and (10.4), for z > 0 we have

le” — 3(t)| = Re(e” — §(t)) = " — 1+ Rep(t) =z + c1t>. (10.14)

Hence, using |p(t) — 1| < Cat (since E& < ),

J “*aw ’dxdt C3J J ~Rea I dz dt. (10.15)

Now, for0 <z < 1,
Jﬂtdt<Jﬁtdt+Jw idt*1+10 7w —logvz = O(1 + |log z|) (10.16)
o x+t2 T )y =w a2 & VT = & '

and thus (10.15) converges for Re a < 1. It follows that if we replace the numerator ¢(t)
by 1 in (10.6) (with x < 1 only), then the difference is in (D).
Similarly, for0 <z < 1land |t| <7

(10.17)

)

1 1 e
~ N = ’ < <
e —g(t) x+1—¢(t) (x + c1t?)?

and we may thus also replace the denominator e” — @(t) by x + 1 — §(¢) = = + p(t).
This yields

d dt+h 10.18
) = g [ [ vt -+ hofa). (10.18)
with he € H(D;). We now reintroduce = > 1, noting that Rep(t) > 0 and thus, for

Rea > 0,
T o] x—a o0
J f‘ildxdté%f aRea=lqy — o (10.19)
400 1

Hence, for a € Dy,

1 ™ 0 flfia

with h € H(D;), and (10.13) follows by a standard beta integral: for 0 < Rea < 1 and
p ¢ (—o0,0] we have

o0 xfoé o0 xfa
de = p~« de =p "Bl —a,a) =p *T(1 —a)l'(«a), 10.21
[l ar-e [ Zhar-peBa-aw - Ta-ar@, o2y
where the first equality holds for all p > 0 by a change of variables and therefore for all
p ¢ (—o0,0] by analytic continuation. O
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Recall the function v(«) defined by (10.2).
Lemma 10.4. For any a > 0 we have

J M dt < oo. (10.22)
0

Proof. By (10.2), recalling E¢ = 0 and E£2 = 02, we have

212 242 - - -
— %v(t) =3(t)—1+ % =Ee' — 1 - E(ité) — %E(itg)‘l. (10.23)
Define
Y1(z) = e — 1 — iz, (10.24)
Po(x) 1= e —1—ix— %(iaﬁ)Q. (10.25)

Then (10.23) implies

(1) = ——55 Ba(t) (10.26)
and thus
2 | -
Yat) = (1) = — B[ (1) — —5vs(atd)] (10.27)
Fix a > 0. Taylor’s formula yields the standard estimate |i2(z)| < |z|3, and thus
[1a () — a2 (ax)| < Clz|?. (10.28)

Furthermore, ¢ (x) — a= 219 (az) = ¥1(x) — a= 211 (az) by cancellation, and |¢; (z)| < 2|z]
and thus
|1 () — a2y (ax)| < Ol (10.29)

Consequently,
[ha(z) — a *a(az)| < C(|z| A |2?). (10.30)

Combining (10.27) and (10.30) we obtain, for ¢ # 0,
[y(at) —v(t)] < Ct2E(|t&| A [t€?). (10.31)

Hence,

ro Mdt < CLOO]E(|1€2£~| A [€%) dt

0 t
[ ® 5
=CIE<J |§|3dt+J t2|§|dt>
0 1€l

= OE(€] + [€]?) = 2C0? < . (10.32)
O

Remark 10.5. Lemma 10.4 and its proof hold with §~ replaced by any random variable
X withEX =0and E X? < w. O

Remark 10.6. Note, in contrast, that the integral Sé |y(t)|t~! dt may diverge; hence
some cancellation is essential in Lemma 10.4. In fact, it is not difficult to show, using
similar arguments, that Sé ly(t)|t~ ! dt < o if and only if E £2log |€| < o0. (Since ~(t) — —1
as t — oo, we cannot here integrate to c0.) O
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The function pu(«) is defined by (1.12) for Rea < % As noted at (1.13), pu(a) — o as
a /' % However, u(«) has a continuous extension to all other points on the line Rea =

1
2
Theorem 10.7. The function u(«) has a continuous extension to the set {a : Rea <

{5}
Proof. For 0 < s < mand Rea < 3, let
0'2 « s s 2 —«
fola) = (?) f (1)~ dt :f 7201 + (1)) * dt. (10.33)

Let a > 0 and let sg := 7/(1 v a). Then, for 0 < s < sy, we have

fas(a) = Jas t 21+ ()] dt =o' Jj 721 + y(at)]“ dt. (10.34)

—as

Fix B < o and let D? := {a : 0 < Rea < 3, [Ima| < B}. By (10.33) and (10.34),

uniformly for a € D®, noting that 1 + ~(¢) # 0 for 0 < |[t| < 7 by (10.2), we have
|a®* ! fas(a) — fo(@)] < f;!(l +y(at) ™ = (L+~(8) ||t 2| dt
< e e a
< cf I (at) — v()1 dt, (10.35)

which tends to 0 as s — 0 by Lemma 10.4.
Let

Fy(a) == a7 (fz(0) = fas(@)) = (fx(@) = fu(@)). (10.36)

We have just shown in (10.35) that as s — 0 we have
Fy(a) = (a®**7' = 1) fr(a) (10.37)

uniformly in DB. For s € (0,s0], Fs(a) is an entire function, see Remark 10.3, and
in particular continuous on DB. Hence, the sequence F} /n(c), which is uniformly
convergent on D? by (10.37), is a Cauchy sequence in C(ﬁ), and thus converges
uniformly on DB to some continuous limit. Together with (10.37) again, this shows that
(a®>*~' — 1) f,(a) has a continuous extension to DB.

This holds for any a > 0. We now choose a = ¢'/7; then a®*~! # 1 in DB\{1}, and
thus fr(«) has a continuous extension to ﬁ\{%}. Since B is arbitrary, this shows that
fx(c) has a continuous extension to {o: 0 < Rear < 3}\{1}.

Finally, the definition (10.33) shows that the same holds for S:T p(t)~*dt, and the
result follows by Lemma 10.2. O

In the sequel, u(«) is defined for Rea = % o # % as this continuous extension.
Theorem 10.8. (i) The estimate (1.16) in Theorem 1.7(ii) holds also for o« = %+iy, y # 0.
Moreover, (1.16) holds uniformly on compact subsets of {a : —1 < Rea < 3}\{3}.

(ii) The limit result (1.22) in Theorem 1.10(ii) holds also for a = % +iy, y # 0.
Moreover, (1.22) holds in the space C(ﬁ) of continuous functions on the set D := {a
0<Rea < $H\{3}

The topology in C (f)) is defined by uniform convergence on compact subsets of D.
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Proof. Part (ii) follows by Theorem 1.2 and (i), so it suffices to prove (i).
In this proof, let D := {a: 0 < Rea < ;;} D_:={a:0<Rea < 1}, and, for B > 0,
={aeD_:|Ima| < B}, DB {aeD: |Im | < B}.
By (2.3) and (6.9), for Rea < 2 we have

[ee]

pe) = pn(a) = >0 kTIP(S, =k —1). (10.38)

k=n+1

Imitating the proof of Lemma 10.1 we obtain, cf. (10.12), forae D_,

(1 —a)(pu(e) — f J Z e PGt kel da dt
- k=n+1
—(n+1)z ( )n+1 1t
- Jf = e—w(w dodt
_ J f (t) € Py dedt (10.39)
and thus, by the change of variables « — x/n, t — ¢/4/n, we have
fala) = n%—am — o) (@) — pn()) (10.40)
Rt/ )"
= t dz dt (10.41)
—‘ffff em/”—cp(t/\/ﬁ)]QD( /\/ﬁ) x

Denote the integrand in (10.41) by g, («, ,t), and let this define g, (o, x,t) for any a € D.
Note that for any fixed a« € D, x > 0, and ¢ € R, by (10.2),

2,2
—=t
_a€ 2

gn(a,z,t) > 27 ——— =: g(a, x, t). (10.42)
x+ Gt?

Furthermore, (10.42) trivially holds uniformly for o € D. Note also that, by (10.4),

In(e”™ — &(t/v/n))| = Re(n(e”™ — 3(t/v/n))) =z +nRe(l — §(t/v/n)) =z + c1t’.
(10.43)

Let h := span(§). If h > 1, consider first ¢t with m4/n/h < |t| < m/n. For such
t, (10.43) implies |e*/™ — 3(t/y/n)| = ¢, and thus |g, (o, z,t)| < Cn~ 'z~ Re@e~2. Hence,
the integral (10.41) restricted to |t| > my/n/h is O(n~'/?), uniformly in D.

Next (for any h), for a € D and [t| < w4/n/h, (10.5) and (10.43) yield

—z—ct? —.L'—Ct2
e
n t)| < g~ Reo < (1427 —0f 10.44
|gn (e 2, 1) < @ T + ct? ( e )x+ct2 ( )
The right-hand side is integrable over (z,t) € (0,00) x ((—o0,—1) U (1,90)); hence the

integral (10.41) restricted to 1 < [t| < m4/n/h converges by Lemma 2.7 uniformly on D
to the corresponding integral of g(«, z,t), which is an analytic function h;(a) € H(D) by
Remark 2.8.

Similarly, for > 1, using (10.43) again,

—x

lgn(a, z,t)| <™ Re“ﬁ <e™® (10.45)
1

and it follows by Lemma 2.7 and Remark 2.8 that the integral (10.41) restricted to
(x,t) € (1,00) x (—1,1) converges uniformly to an analytic function hs () € H(D).
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It remains to consider the integral in (10.41) over (z,t) € @ := (0,1) x (—1,1). We
modify this integral in several steps.

We first replace e~ ® by 1 in the numerator of g,(«, z,t); the absolute value of the
difference is bounded, using (10.43) again, by

pReal T€T o —Rea (g4 3/ (10.46)
T + cit?
and thus Lemma 2.7 and Remark 2.8 show that the integral of the difference over
(x,t) € @ converges uniformly to an analytic function h3(«) € H(D).
Similarly, we then replace @(t/4/n)™ by 1 in the resulting integral; the difference is
by (10.43) and (10.2), using |1 — §(¢t/y/n)"| < n|1 — @(t/+/n)],

—Rea Ot2
T — s X
T + c1t?

Ca~ R <01 + 273 (10.47)

and again the integral of the difference over () converges uniformly to an analytic
function hy(a) € H(D).

Next, we replace in the denominator e/ — $(t/y/n) by (z/n) + p(t/y/n). The resulting
error is by (10.17) bounded by 2z~ Re« 1 so the error in the integral over Q is O(n™1!),
uniformly in o € D.

Similarly, ¢(t/+/n) = 1+ O(t/+/n), so replacing the factor ¢(¢/4/n) by 1 yields an error
in the integral over () that is bounded, for a € D, by

WJ f —3/4 s dzdt =0(n"'?), (10.48)

since the integral converges by (10.16).
Summarizing the development so far, we have shown that

fu( =9 J f Py t/f) dzdt + hs(a) + o(1), (10.49)

uniformly in D_, for some hs(a) € H(D).
Define, fora >0and ave D_,

)= JJ e T

1 1 —«
_ j J 7 dz dt, (10.50)
“1Jo x4+ 21+ y(at//n)]
noting that the integrals converge by (10.4) and the fact that
1 ‘J?_Oé| 1 .
J f S dedt < f e~ Reom2 dy < o0, (10.51)
0

Thus, (10.49) can be written, uniformly in D_,

fula) = %le(a) + hs(a) + o(1). (10.52)

Fix ¢ > 1. Then, for « € D_ (and n > a2, say), using Lemma 10.4 we have

dzdt

Oy (at/ ) — At/
Py o) — f f |

’ (x + ct?)?
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<C | htaym =t | oS a
o' bl sl
" )10
=C
[

<
dt — 0, (10.53)

as n — o. Moreover, by the change of variables z — a2z, t — a ™ 't,

Foula =a2a—1f J R (10.54)
() Ny T

which differs from a>*~'F, ; () by an integral which, using Lemma 2.7 and Remark 2.8
again, converges uniformly to some function hs(a) € H(D).
It follows that, uniformly for o € D_,

(7 = 1) Faa (@) = Fra(@) = Fas(@) = (Faa(0) — a2~ Fus(@)) — ~ho(a). (10.55)

Consequently, (10.52) shows that (a?*~! — 1) f,,(a) converges uniformly in D_ to some
function h7(a) € H(D), which, recalling the definition (10.40) of f,(«), shows that

(a** ! — l)n%_o‘ (1(a) = pn (@) = hs(a) + o(1), (10.56)
uniformly in D, for some function hg(a) € H(D) and every B > 0. By (6.22),

1
Y V2ro?(3 — a)

for o € D_, and thus by analytic continuation for o € D\{3}.

hg(a) = (a®*7! — (10.57)

By Theorem 10.7, u(a) is continuous on D, and so are tn () (which is an entire
function) and hs(«). Hence, by continuity, (10.56) holds uniformly in every DB.

Finally, for any compact set K D, we can choose a > 1 such that ¢! 1 on K,
and then (10.56) and (10.57) show that, uniformly for o € K,

1
V2ro2(3 — a)

as n — o0. The result (1.16), uniformly on K, follows from (10.58) and Lemma 6.2.

This shows that (1.16) holds uniformly on any compact subset of lA), and in particular
on any compact subset of {« : 1 < Rea < F}\{i}. Since Theorem 1.7(ii) implies
that (1.16) holds uniformly on any compact subset of {a —5 <Rea < 4} it follows that
it holds uniformly on any compact subset of {o: —3 < Rea < 1}\{1}. O

n%_“[u(a) — ()] = +0o(1) (10.58)

11 An example where /(o) has no analytic extension

Theorem 10.7 shows that x(«) has a continuous extension to the line Rea = % except
at a = % However, in general, ;4 cannot be extended analytically across this line; in fact
the derivative p'(«) may diverge as « approaches this line. In particular, Theorem 1.20(i)
does not hold (in general) without the extra moment assumption there.

Theorem 11.1. There exists £ withE¢ = 1 and 0 < Var & < oo such that for any oy with
Reag = 1, lim SUDg ., Rea<d |1 ()| = 0. In particular, (o) has no analytic extension
in a neighborhood of any such «q. In other words, the line Rea = % is a natural boundary
for p(a).
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We shall first prove three lemmas. Instead of working with u(«) directly, we shall use
Lemma 10.2 (and, for convenience, Remark 10.3). We define, for any function p(t) and a
complex q,

1
F(p;a) = J lp(t)*o‘ dt. (11.1)

Note that if p(t) > ct? (as will be the case below), then this integral is finite for Rea < L
at least, and defines an analytic function there. If F(p; o) extends analytically to a larger
domain, we will use the same notation for the extension (even if the integral (11.1)
diverges). )

If p(t) = 1 — Ee'* as in (10.3), we also write F(; a).

By Lemma 10.2 and Remark 10.3, Theorem 11.1 follows if we prove the statement
with u(a) replaced by F(§; a).

We define in this section the domains Dy := {a : ¥ < Rea < 3}, D_ = {a: 1 <
Rea < 1} and D* := Do\{1}. (These choices are partly for convenience; we could take
Dy larger.)

If (gn) is a sequence of functions in a domain D, we write Oy (p)(gn(a)) for any
sequence of functions fn € H(D) such that fy(«)/gn(«) is bounded on each compact
K < D, uniformly in N. (Often, gy («) will not depend on «.) We extend the definition
to functions gy (o) and fn:(a) depending also on an additional parameter ¢, requiring
uniformity also in ¢.

It will be convenient to work with a restricted set of offspring distributions £. Let Py
be the set of all probability distributions (p;)F on {0,1,2,...} such that pg,p1,p2 > 0.1,
and if ¢ has the distribution (p;)¥, then E¢ = X, kpy, = 1, Varé = Y, (k — 1)%p, = 2
and E& = Dk k3p, < oo. (The set P; is clearly non-empty. A concrete example is
(0.52,0.2,0.2,0,0,0.08).) We write £ € P; for L(§) € P;.

If £ € Py, then 02 = 2 and E¢3 < o, and thus 3(t) = 1 — 2 + O(t?); hence p(t) =
t2 + O(t3). Moreover, since P(¢ = j) > 0.1 for j = +1, we have

Rep(t) = Re(1 — E€) = E(1 — costé) = 0.2(1 — cost) = et?, (11.2)

for |t| < m, uniformly for all £ € P;.
Lemma 11.2. If¢ € Py, then F(&; «) extends to a function in H(D*).

Proof. p(a) € H(D*) by Theorem 1.20(i) (or Theorem 6.5), and the result follows by
Lemma 10.2 and Remark 10.3. O

Lemma 11.3. Iféy € Py for N > 1 and £y - €, then F(Ey;a) — F(€;a) in H(D_).

Note that we do not assume & € P;. (In fact, it is easy to see that the lemma extends
to arbitrary & and £ with expectation 1 and finite, non-zero variance.)

Proof. Let p(t) := 1 — E€'€ and py(t) := 1 — E¢™~, where as usual ¢ := £ — 1 and
En =&y — 1. Since &n 4, &, pn(t) — p(t) for every t. Lemma 2.7 together with the
estimate (11.2) show that F({y;a) = F(pn;a) — F(&; «) uniformly on every compact
subset of D_. O

Lemma 11.4. If¢ € P; and y € R\{0}, then there exists a sequence {y € P, N > 1, such

that, as N — o, £y — € and | LF(¢nsa) — oo for any fixed real y # 0.

a= % +iy
Proof. Let ay := (log N)~'/2 and let £y have the distribution

N -1 ]

L(En) = £(E) + aN[%(aN S NG (N = 1)80) — St (- 20 48] (11.3)
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where §; is unit mass at j. Since axy — 0, and P({ = j) > 0.1 > 0 for j = 0,1, 2, this
is clearly a probability distribution if N is large enough. Furthermore, &y 4, ¢ as
N - w,and Eéy = E¢ E&% = E€% and E&3; < o, and thus &y € Py, provided N is
large enough. (We assume in the rest of this proof that N is large enough whenever
necessary, without further mention. We can define ¢y arbitrarily for small V.)
Let oy (t) := By and, recalling (10.24)-(10.25),
An(t) == on(t) = ot) = B — et
2 . ; N -1
e aNI:ﬁ(eth 7N€1t JFN* 1) _—
2 N-1, .
= ax | 573 (1 (NE) = N (1)) = == ((6)* + O(#")
= 2ay N2 (2 (Nt) — Nipo(t)) + O(ant?)
= 2an N "21py(Nt) + O(ant?), (11.4)

(62it — 2 + 1)]

since ¥ (z) = O(z3). We further define

~ it _ o9 __ 9 2
'l/)(t) — 2¢i§t) _ 2e 2t2 2it +t _ 211);515)

+ 1. (11.5)

Then ¢ is bounded and continuous on R, ¢(t) = O(t) and ¢(t) = 1 + O(t~!). Further-
more, (11.4) yields N
An(t) = ant®>P(Nt) + O(ant?). (11.6)

In particular, Ay (t) = O(ant?) for [t| < 7.
We further let $y (t) := Ee®~, px(t) := 1 — $n(t) and, using (11.6),
An(t) := pn(t) = p(t) = —e FAN(t) = —ant®>P(Nt) + O(ant®). (11.7)
In particular, .
An(t) = O(ant?), || <. (11.8)

Let po(t) := t2, and let 6(t) := p(t) — po(t). Then §(t) = O(t3), since Var¢ = 2 and
E &2 < oo. The general formula, for any twice continuously differentiable function f,

1,1
f(x+y+z)ff(x+y)ff(x+z)+f(:17)=yzLLf"(ersertz)dsdt

implies together with (11.2) and (11.8), for a € Dy,

[(p(t) + An(£))™* = p(t) = = ((po(t) + An ()™ = po(t)~*)]
< CIANO][8(0)] ol o + 1| [¢] 72 Reat?)
= O(an|al?t]' 72Re). (11.9)

Hence, integrating over ¢t and recalling (11.1),
F(p+An;a) — F(p;a) — (F(po + An;a) — F(po; @) = Ogy(py)(an). (11.10)

Next, let A% (t) := —ant2¢(Nt). Then Ay (t) — A% () = O(ant®) by (11.7), and thus,
by the mean value theorem and (11.8), for |t| < 7,

[(po(t) + An (1)~ — (po(t) + A% (1)~ < ClAN(E) — A% (1)] |a ¢ 72 FeatD)

= O(ax]al[f]'27e").
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Hence, by an integration,
F(p0+AN;a)—F(p0+A*N;a) = Oy(py)(an). (11.11)

Now consider F(po + A¥;a) — F(po; ). Let x(t) := 1>1. Then, considering first
t>0,foraaeD_,

1

f [(po(t) + AR ()™ = po(t)~*] dt = J t72[(1 — an(Nt)) ™™ — 1] dt

0 0

1
- | 70— an B V) " — (1 - ax (V)]

+[(1—an)™ —1] L/Nt—h dt

N ~
— N2a-1 L 2o [(1 —any(t)) = (1 - aNX(t))ia] dt

+[(1—an)™™ —1] (1—NZh). (11.12)

1 — 2«

Since §(t) — x(t) = O([t] A [t71]), and anx(t) = O(an) = o(1), with x(t) = 0for 0 < ¢t < 1,
a Taylor expansion yields, uniformly for ¢ € R,

(1= an ()™ = (1 - anx(t)) "

= aan ($(t) — X(1)) + Ow(py) (an | (t) — x(®)|(an|P(t)] + anx(t)))
= aan (D(t) — x(t)) + On(oy) (aZ (112 A 11]71)). (11.13)

Using (11.13) and a Taylor expansion of (1 —ay)~® in (11.12), we obtain fora € D_,

J [(po(t) + A% (1) — po(t) ] dt

0

N
= N2a—1f t—QOéaaN (¢(t) _ X(t)) dt — ﬂN2a—1
0 1 -2«
+ O?—L(D*) (G?VNZOC—l) + OH(D*)(CLN). (11.14)
Furthermore, using again J(t) —x(t) = O(|t—1 )
o0 ~
J 2 (W (1) = x(1)) dt = O(N72Few), (11.15)
N

so we may as well integrate to oo on the right-hand side of (11.14).
For a € D_, recalling (11.5),

Q0 o0 1
J t2 (Y(t) — x(b)) dt = QJ Py ()22 dt + f t2dt (11.16)
0 0 0
Furthermore, if « € D_ and Re( > 0, then
Q0
f (e =1+ ()t 22 2dt = (**H'T(—2a — 1); (11.17)
0

the case ¢ = 1 is well known [47, 5.9.5], the case { > 0 follows by a change of variables,
the case Re( > 0 follows by analytic continuation, and the case Re( > 0 follows by
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continuity. Recalling (10.24), we take ( = —i in (11.17), and obtain from (11.16), for
aeD_.

© a o a2a 1
JO 2 (W (t) = x(1)) dt = 2(=0)** T (=20 — 1) + 7. (11.18)

Combining (11.14)-(11.15) and (11.18), we obtain (for v € D_)

L [(po(t) + AK ()™ = po(t)~*] dt = 2a(—i)**T'T(—2a — 1)ay N**~*

+ On(p) (A N**71) + Ogypsy(an). (11.19)

The integral over (—1,0) yields the same result with (—i)?**! replaced by i***!, e.g. by
conjugating (11.19) and a. Consequently,

F(po + Aksa) — Fpo; @) = 2a(i2*H! + (—1)?* T I(—2a — 1)ay N>
+ O?—L(D*) (a?\,]\ﬂ“—l) + O?—[(D*)(aN)~ (11.20)

For convenience, we write
G(a) :=2a(i®F! + (=) [(—20 — 1) = 2a(ie'™™ —ie ™*)[(—20 — 1).  (11.21)
Combining (11.10), (11.11), and (11.20) yields, fora e D_,

F(pn;a) = F(p+ Anja) = F(p;a) + anG(a)N**7! + Ogypx) (aX N**71) + Oy pr(an).
(11.22)

By Lemma 11.2, all terms in (11.22) are analytic in D*, and thus (11.22) holds for a € D*.

Note that if fx and gy are functions such that fx(a) = Oy p#)(gn()), then fy(a) =
gn(a)hy () with hy(a) = Oy (p#)(1). By Cauchy’s estimate, h'y(a) = Oy p*)(1), and
it follows that fy(a) = Oy (p#)(gn(a)) + Oy p#)(9y(a)). Hence, taking derivatives
in (11.22) and then putting o = % + iy for a fixed y # 0 yields

F'(pn;a) = F'(p;a) + 2(log N)ayG(a)N?**~! + O(a} log N) + O(ay)
= 2G(a)(log N)ay N2 + O(1). (11.23)

Since G(a) = —4a(coshmy)['(—2 — 2yi) # 0, [N?¥| = 1 and anlogN = (logN)¥? —
o, (11.23) shows that |F'(¢n; 5 +iy)| = [F'(pn; 5 +iy)| — 0 as N — o0, O

Proof of Theorem 11.1. Let (y,){° be an enumeration of all non-zero rational numbers.
We shall construct sequences x,, € (%, %) and &, € P1, n = 1,2,..., such that, with
Zn t=Tp +iy, € D_,

|F' (&, 21)| > K, k=1,...,n, (11.24)

and, furthermore, the total variation distance

drv(€n,&n-1) <27 (11.25)

We construct the sequences inductively. Suppose that &, _; is constructed. (Forn =1,
we let ¢, be any element of P;.) By Lemma 11.4, there exists a sequence {,_; x € P; such
that, as N — o, {18 4, &,-1 and |F/(§n,1,N;% + iyn)| — 0. By Lemma 11.3, then
F(&n-1,n;0) = F(§—15a) in H(D-). This implies F'(§,—1,n; ) = F'(§n-1; ) in H(D-),
and in particular, F'(&,—1,n;2k) — F'(€n—1;2k) for 1 < k < n — 1. Since (11.24) holds for
n — 1 by the induction hypothesis, it follows that |F'(§,—1,n;2k)] > kfor 1 <k <n-—1
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for all large N. Furthermore, if we choose N large enough, |F’(&,—1 n; % +iy,)| > n and
drv(&n—1,n,&n—1) <27

We choose alarge N such that these properties hold and let ¢, := {,—1,~. Then (11.24)
holds for £k = 1,...,n — 1. Furthermore, since &, € P1, F(§,;a) € H(D*), and thus
F’(&,; ) is continuous in D*. Hence |F'(&n;2 + iyn)| — [F/ (€0 5 + iyn)| as 2 — %, and
we can choose z, € (1, 3) with 3 — z,, < 1 such that [F'(&,;z + iy, )| > n.

This completes the construction of z,, and &,. By (11.25), the distributions £(¢,,) form
a Cauchy sequence in total variation distance, so there exists a random variable ¢ with

&n 4, &. Clearly, € is non-negative and integer-valued. Moreover, since &, € P; we have
E&2 = Varg, + (E&,)? = 3, for every n, and thus the sequence &, is uniformly integrable,
so B¢ = lim,,_, E&, = 1. Furthermore, by Fatou’s lemma, E¢? < 3 < . Note that ¢
does not necessarily belong to P;; in fact, it is easily seen from (11.26) below that ¢ ¢ P;.
Nevertheless (11.2) holds for every &, (with the same ¢) and thus (11.2) holds for ¢ too.
In particular P(§ # 1) > 0 so Varé > 0.

Lemma 11.3 shows that F'({,;a) — F(&; ) in H(D_), and thus F'(§,;a) — F'(& )
for every o € D_. Hence, (11.24) implies

|F' (& 21)| = k (11.26)

for every k. Thus, |F'(; 2z,)| — 00 as n — oo.

Now take any y € R and let o := % + iy. There is an infinite number of points y, in
each neighborhood of y, so we can find a subsequence converging to y. Since z,, — %
it follows that there is a subsequence of z,, = z,, + iy, that converges to ag. Suppose
first that y # 0, so oy # % Then it follows from Lemma 10.2 (with Remark 10.3) and
Theorem 10.7 that, as n — oo along the subsequence,

1 () = %F(Zn)F’(f;zn) +0(1) (11.27)

and thus, by (11.26), |¢/(2,)] — 0.

This proves the claim in Theorem 11.1 for every ag with Reag = £ and aq # 4. The
case ag = % follows easily, either by noting that the set of g for which the claim holds is
closed, or simply by (1.13). O

12 Moments

In this section we prove Theorems 1.3 and 1.12 on moments of X,,(«) and of the
limits Y («). The section is largely based on Fill and Kapur [19] and [21], and uses the
methods of [17], also presented in [26, Section VI.10].

We assume for simplicity throughout this section that £ has span 1. The general case
follows by minor modifications of standard type.

12.1 More notation and preliminaries

Recall that 7 is the random Galton-Watson tree defined by the offspring distribution
. Let pi, := P(¢ = k) denote the values of the probability mass function for £, and let @
be its probability generating function:

0
D(z) = Ez¢ = Z pez”. (12.1)
k=0

Similarly, let ¢, := P(|7| = n), and let y denote the corresponding probability generating
function:

18

y(z) =BT = Z P(|T|=n)" =

n=1 n

gn2". (12.2)

1
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If 7 has root degree k, denote the subtrees rooted at the children of the root by 71, ..., Tx;
note that, conditioned on k, these are independent copies of 7. By conditioning on the
root degree, we thus obtain the standard formula

y(z) = Z D E[zl+|7—1\+“'+|71-,\] - Z pkz(E[le])k =z Z pky(z)k
k=0 k=0 k=0

= z@(y(z)) (12.3)
A A-domain is a complex domain of the type
{z:]z]| <R, z#1, |arg(z — 1)| > 6} (12.4)

where R > 1 and 0 < 6 < /2, see [26, Section VI.3]. A function is A-analytic if it is
analytic in some A-domain (or can be analytically continued to such a domain). Under
our standing assumptions E£ = 1 and 0 < Varé < o, the generating function y(z) is
A-analytic; moreover, as z — 1 in some A-domain,

y(2) =1 —V2071(1 - 2)Y2 + o(]1 — 2|*?), (12.5)

see [35, Lemma A.2]. This is perhaps more well-known if £ has some exponential moment,
and then (12.5) may be improved to a full asymptotic expansion, and in particular

y(z) =1=+v2071(1-2)"? + O(]1 - 2|), (12.6)

see e.g. [26, Theorem VI.6]. In fact, (12.6) holds provided only ]Ef?’ < o0. This follows
easily from (12.3), see Lemma 12.15.

In the present section, asymptotic estimates similar to (12.5) and (12.6) should always
be interpreted as holding when z — 1 in a suitable A-domain, even when not said so
explicitly; the domain may be different each time.

Remark 12.1. In most parts of the present section, we will only use the assumption
E¢? < o and the general (12.5). If we assume the E¢3 < oo, and thus (12.6) holds,
then the error estimates below can be improved, and explicit error estimates can be
obtained in Theorem 1.12; see [21] where this is done in detail for a special £ using
similar arguments. In fact, it can be checked that if ]E§3 < o0, then all o terms in the
proof below can be shown to be of (at most) the same order as the bounds given in
[21] for the corresponding terms. Further, when £ has an exponential moment, a full
asymptotic expansion of the mean is derived in [17, Section 5.2]; it seems possible that
this can be extended to higher moments, but we have not pursued this. O

In some formulas below, certain unspecified polynomials appear as “error terms”.
(These are best regarded as polynomials in 1 — z.) Let P be the set of all polynomials,
and, for any real a, let

Po:={P(z) € P:deg(P(z)) < a}. (12.7)

Note that if a < 0, then P, = {0}, and thus terms in P, vanish and can be ignored. In the
formulas below, a restriction of the type P(z) € P,, i.e., deg(P(z)) < a, will always be a
triviality, since higher powers of 1 — z can be absorbed in an O or o term.

Recall that the polylogarithm function is defined, for a € C, by

0
Liy(2) := n-“z", |z| < 1; (12.8)

n=1
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see [26, Section VI.8], [47, §25.12], or Appendix B. It is well known that Li,(z) is A-
analytic; in fact, it can be analytically continued to C\[1, ). Moreover, if « ¢ {1,2,...},
then, as z — 1,

Lig(z) =T(1 —a)(1 —2)* ' + P(2) + O(|1 — 2[R*®),  P(z) € Prea, (12.9)

see [26, Theorem VI.7] or [23], where a complete asymptotic expansion is given; see
also Appendix B. In particular, if Re @ < 0, then P(z) vanishes and so (12.9) simplifies.

Recall also that the Hadamard product A(z) ® B(z) of two power series A(z) =
> ,anz" and B(z) = Y. b,2" is defined by

A(z) © B(z) := Z anbpz". (12.10)
n=0

As a simple example, for any complex « and /3,
Lio(2) ®Lig(z) = Lig45(2). (12.11)

We will use some results on Hadamard products, essentially taken from [17]. In
the next lemma, Part (i) is [17, Propositions 9 and 10(i)], and (ii) follows by the same
arguments; the proof of A-analyticity of the Hadamard product given for [17, Proposition
9] holds for any A-analytic functions. (For the case a +b+ 1€ {0,1,2,...}, see [17] and
[26].)

Lemma 12.2 ([17]). If g(2) and h(z) are A-analytic, then g(z) ® h(z) is A-analytic.
Moreover, suppose that a and b are real witha +b+1¢{0,1,2,...}; then the following
holds, as z — 1 in a suitable A-domain.

(i) Ifg(z) = O(|]1 — 2|*) and h(z) = O(|1 — z|*), then
9(2) Oh(z) = P(2) + O(|1 — 2|*T**1),  P(2) € Pasps1. (12.12)
(i) Ifg(z) = O(|1 — 2|*) and h(z) = o(|1 — z|*), then

9(2) O h(z) = P(2) + o(|1 — 2|****Y), P(2) € Paspsa- (12.13)

The next lemma is a simplified version of [17, Proposition 8]; that proposition gives
(when «, 5,a + [ ¢ Z) a complete asymptotic expansion, and in particular a more explicit
error term for our (12.14).

Lemma 12.3 ([17]). Suppose that Rea + Ref + 1 ¢ {0,1,2,...}. Then, asz — lina
suitable A-domain,
F(—a—5-1)

—2)* —2) =
=20 =2" = T )

(1—2)tPH 4 P(2) 4 o(|1 — z|ReatRefHL)
P(Z) € PRea+ReB+1~ (1214)

Proof. The case when none of «, 3, a + 3 is an integer is part of [17, Proposition 8].
In general, we use arguments from [17]. If neither « nor 3 is a non-negative integer,
the result follows easily from (12.9), (12.11), and Lemma 12.2, which then imply that

[(—a)(1—2)*OT(-f)(1 - =2)’

= (Lia11(2) + Pi(2) +0(]1 = 277)) © (Ligsa (2) + Pa(2) + o(|1 = 2*7))

= Lia+5+2(z) + P3(2) + 0(|1 _ Z‘ReaJrReBJrl)

—T(—a— B—1)(1 = 2)+P+1 1 Py(z) + o(|1 — z[ReotRes+1), (12.15)
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where P;(z) are polynomials. [Note that P(z) ® f(z) is a polynomial for any polynomial
P and analytic f, and that we may assume deg(P,(z)) < Rea + Re§ + 1 by the comment
after (12.7).]

Finally, if « is a non-negative integer, then (1 — 2)® is a polynomial and thus the
left-hand side of (12.14) is a polynomial, so (12.14) holds trivially [with 1/T'(—«) = 0].
The same holds if 8 is a non-negative integer. O

12.2 Generating functions

Let (b,){" be a given sequence of constants and consider the toll function f(T') := byp|
and the corresponding additive functional F'(T') given by (1.1). We are mainly interested
in the case b, = n%, but will also consider b,, = n® — ¢ below for a suitable constant c.
In the present subsection, b,, can be arbitrary if we regard the generating functions as
formal power series; if we assume b,, = O(n’*) for some K, then the generating functions
below converge and are analytic at least in the unit disc.

We are interested in the random variable F(7,). We denote its moments by

m{? = E[F(T,)"] (12.16)

for integer ¢ > 0. Define the generating functions
0 [e¢]
My(z) = B[F(T)" 2T = 3 qu B[F(T) 2T [T = n] = ] gam{f2". (12.17)
n=1 n=1

Note that My(z) = y(z), see (12.2).
The generating functions M, can be calculated recursively as follows, using Hadamard
products and the generating function

B(z) = ). bp2". (12.18)

n=1

Lemma 12.4. For every { > 1,

/ z 4 *k
M) = 2 3 LS B0 M ) i (900 ()

(12.19)

where Z** is the sum over all (m+1)-tuples (¢, . .., {,,) of non-negative integers summing
tol such that1 < {1,...,¢,, <.

Proof. Condition on the root degree k of 7, and let 7Ty, ..., 7T; be the principal subtrees
as at the beginning of Section 12.1. Then (1.2) can be written

k k
F(T) = f(T)+ Y, F(T:) = bir + > F(Ty). (12.20)

i=1 i=1

Hence, the multinomial theorem yields the following, where for each k& we let > denote
the sum over all (k + 1)-tuples (¢, ...,¢;) summing to ¢ such that each ¢; > 0, and
furthermore 71, ..., 7; are independent copies of 7, and [T |is 1 + |T1| + -+ + |T]:

0 k ¢
Mi(z) = 3 B[ (b + Y F(TD)) |
k=0 =1
= 4
- SnB ()l r]
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We consider the terms where ¢; = ¢ for some 1 < ¢ < k separately. In this case, {; = 0
and ¢; = 0 for j # ¢, and thus the combined COIltI‘lbuthIl of these k terms is, recalling
My(z) = y(z) and (12.1),

0
Z prk[2Mo(2)y(2)" ] = 2 M (2 Z prky(2)" " = 2My(2)®' (y(2)). (12.22)
k=1

Let Z* denote the sum over the remaining terms, i.e., the terms with ¢y, ... ¢, < ¢, and

define

ZPkE (ﬁo,.. ) ()QZO@[ZﬁMzi(Z)]. (12.23)

i=1

Using (12.22)—(12.23), we can write (12.21) as
My(z) = 290 (y(2)) My(2) + Re(z). (12.24)

Moreover, differentiating (12.3) yields

y'(2) = @(y(2)) + 22 (y(2))y'(2) (12.25)
and thus, using (12.3) again,
(1—29"(y(2)))y (2) = ®(y(2)) = y(2)/=. (12.26)
Hence, (12.24) yields
Mz) = — @) @) g (12.27)

1— 29 (y(2)) y(2)

Finally, in each term in the sum Z in (12.23), let m > 0 be the number of /4, ...,/
that equal 0. By symmetry, we may assume that ¢1,..., ¢, > 1and {,,.1 = ... ¢ =0, and
multiply by the symmetry factor ( ) Thus,

- S ()2 ool =

-5, e o ([ Tane) (o]
_mi;oz**(fow%) %Q[(ﬁM@ )mi M) az2e

The result (12.19) follows from (12.27) and (12.28), noting that the sum Z** is empty if
m > /. O
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12.3 The mean

For / = 1, (12.19) contains only the term m = 0 and thus ¢, = ¢ = 1. Hence,
Lemma 12.4 yields, recalling (12.3),

My (z) = Z;’(S) (B0 [aw(=)]) = L2 . (B 0y(). (12.29)

Let us first consider the factor zy'(z)/y(z). It follows from (12.3) that y(z) = 0 implies
z = 0, and thus z/y(z) is analytic in any domain where y(z) is. Hence, 2y/(z)/y(z) is
A-analytic, since y(z) is. Moreover, by Cauchy’s estimates as in [17, Theorem 6], (12.5)
implies, as z — 1,

y'(2) =272 1 — 2) V2 + o1 — 2|7V3). (12.30)
Consequently,
/
Zy((j) = 2712711 — 2) V2 4 o(|L — 2| 7V3). (12.31)
Yz

We turn to the second factor B(z) ® y(z). We consider first the case
f(n) =b, =n, n=l1, (12.32)
for some « € C; then F' = F, and, by (1.3),
F(T,) = Xn(a). (12.33)

By (12.32) and (12.8), B(z) = Li_,(z), a polylogarithm function, and thus (12.9) yields,
at least for Rea > —1,

B(z) =T(1+a)(1—z)"* ! +o(]l — 2| Rea1). (12.34)

Furthermore, by the definitions,
0 0
B(2)Oy(2) = Y bugnz" = Y, qun®2" = B[|T]*2/71]. (12.35)
n=1 n=1

Lemma 12.5. Let Rea > % and let b,, := n®. Then, as z — 1 in some A-domain,

o2

——T
23/m

Proof. By (12.34) and (12.5) together with Lemmas 12.2 and 12.3, and the fact that
B(z)®1=0,

M (z) (=21 —2)" +o(|L — 2| Ree). (12.36)

B(z)Oy(z) = Tl +a)1 -2 OV2e (1 —2)/2 + o(l1 - Z|7Rea+%)

N 1
= 721/2071(a712)(1fz)_a+2 +o(|1 — 2| "Reats), (12.37)
I'(—3)
The result follows by (12.29) and (12.31). O

12.4 The mean when 0 < Rea < 3

Consider now the case Rea < % If we still take b,, = n® as in (12.32), then (12.35)
and (2.6) show that B(z) ® y(z) is continuous in the closed unit disc, and a comparison
with (1.12) yields

(BOy)(1) =E|T|* = ula). (12.38)
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Hence, (12.37) cannot hold, since the right-hand side tends to 0 as z — 1. Actually, it
follows from the arguments below that the leading term in B(z) ® y(z) is the constant
p(a), which by (12.29) and singularity analysis corresponds to the fact that the leading
term in (1.16) is pu(a)n. We recall from Section 1 that when Re a < % we want to subtract
this term. In the present setting, we achieve this by modifying (12.32) and instead taking

f(n) =0b, :=n" — ula). (12.39)
Then (12.33) is modified to
F(To) = . [ITanl® = n(a)] = Xn(a) — p(a)n, (12.40)
VET
and (12.35) is modified to
e}
B(2)Oy(z) = Y. gu[n® — p(e)]2" = E[|TI*21] — p(a)y(2). (12.41)
n=1
In particular,
(BoOy)(1) =E|T|* — ula) = 0. (12.42)

Lemma 12.6. Let 0 < Rea < § and let b, := n® — u(a). As z — 1 in some A-domain,

0.72

2Vm
Proof. We now have, by (12.39) and (12.9),
B(2) = Li_o(2) — p(a)z(1 — 2)~ !
=T(L+a)(l—2)"*+o(]l — 2| Reat), (12.44)

Ml(Z) =

(317 4 off1 — 2177, 1243)

just as in (12.34). Then, arguing as for (12.37) using (12.5) and Lemmas 12.2 and 12.3
now yields

B(z)Oy(z) = —T(1+a)(1—2) "1 0OV20 (1 - 2)Y? + Pi(2) + o(|1 - Z‘—Rea-‘r%)
(

r 1
= 212571 (1—2)7%%2 4 Py(2) + o1 — 2| Reats), (12.45)
where Pi(z), P2(2) € P1_geo and thus are constants. Letting z — 1 in (12.45) shows that
Py(z) = (BOy)(1) =0, by (12.42). Hence, the result in (12.37) holds in the present case
too, and the result follows again by (12.29) and (12.31). O

12.5 Higher moments

In the remainder of this Section 12, we assume that Rea > 0, and that we have
chosen b,, by (12.32) or (12.39) so that

by, = (12.46)

ne, Rea}%,
n® —p(e), 0<Rea< 3.

In the present subsection we also assume Re o # %

We need one more general lemma.
Lemma 12.7. Under our standing assumptions ¢ = 1 and 0 < Varé < oo, the function
®(m)(y(-)) is A-analytic for every m > 0, and as z — 1 in some A-domain,

m 0o(1), m < 2,
™ (y(2)) = {0(1 i), mes (12.47)
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Proof. As noted at the beginning of Section 12.1, y(z) is A-analytic. It follows from (12.5)
that for some A-domain Ay, if z € A; with |1 — z| small enough, then

ly(z)| <1 —c|1 — 2|2 (12.48)

Moreover, the definition (12.2) implies that |y(z)| < 1 for |z| = 1 with strict inequality
unless z = 1. Hence, by continuity, for some §,n > 0, |y(z)] < 1 —n when z € Ay,
|l — z| > ¢, and |z| < 1+ 4. It follows that (12.48) holds (with a new ¢ > 0) for all z in the
A-domain Ay := {z € Ay : |z| <1+ d}.

In particular, |y(z)| < 1in A, and thus ®(™)(y(2)) is analytic in A,.

The assumption E¢2? < oo implies that ®, &’ and ®” are bounded and continuous
functions on the closed unit disc. Hence, (12.47) holds for m < 2.

Now suppose m > 3. Since ®” is continuous, we have &”(z) — ®"(1) = o(1) as z — 1
with |z| < 1. Hence it folows from Cauchy’s estimates that

M (2) =o((1—|2))*™) asz— 1with|z] < 1. (12.49)
The result (12.47) for m > 3 follows from (12.49) and (12.48). O

Lemma 12.8. Assume Rea € (0,3) u (3,%) and that (12.46) holds. Then, for every
=1, My(z) is A-analytic, and as z — 1 in some A-domain,

My(2) = xeo 7 (1 = 2) 710t D+5 4 o(|1 — 5| HReats)+5) (12.50)

where the constants x, are given recursively by

1
X1 = Tﬁf(a— 3); (12.51)
-1 1
_ 14 _ F(E(onrf)fl)
xe =27%2 (.)xm-+2 12 2 Xe-1- (12.52)
j; j)Xaxe=s T(((—1)(a+ L) — ¥

The A-domain may depend on ¢. We write y, in (12.51)-(12.52) as x¢(«) when we
want to emphasize the dependence on a.

Proof. We use induction on /¢, based on Lemma 12.4. First, this shows that M, is
A-analytic, using the fact that B and, by Lemma 12.7, ®(™)(y(.)) are, together with
Lemma 12.2.

To show (12.50) by induction, we note that the base case ¢ = 1 is Lemmas 12.5
and 12.6.

Assume thus ¢ > 2, and let A := —{(a+ %) +% < —% be the exponent of 1 —z in (12.50).
Consider the summand in (12.19). By the induction hypothesis and Lemma 12.7, we
have

ZMy, (2) - M, (2)®™ (y(z)) _ O(|1 _ Z|—ZZ’;1@i(Rea+%)+%¢(m) (y(z)))

O(‘l_Z‘f(fffg)(Rea+%)+%)’ m <2,
= 1 (12.53)
0(|1 _ Z|—(€—€0)(Rea+§)+l>7 m > 3.
Since £ — £y = m, the exponent here is
2 2
_(6—60)(Rea+%)+m2/\ <—m(Rea+%)+m2/\ <-mRea<0.  (12.54)
Furthermore, (12.34) and (12.44) show that, for both Rea > 1 and Rea < 1,
B(z) = O(|1 — 2| Ree1) (12.55)
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and thus Lemma 12.2 applies ¢y times and yields

B(2)% © [2M, (2) -+~ My, (2)2 (y(2)) ]

(‘1 _ Z‘—(K—éo)(Rea+l) m—éoRea)’ m <2, 1256
- (|1 _ Z| (6—to)(Rea+3)+1— £0Rea) m > 3. (12.56)
The exponent here is
1 m A 2 1 lo+m~An2
— — X0 = — €0 = — = _— .
(€ —Llo)(Rear + 35) + 5 loRe ((Rear+ 5) + 5 (12.57)
For m > 3, this is at least —¢(Re« + ) +1=ReA+ % and thus the term is
0|1 — 2|ReA+3). (12.58)

We will see that this contributes only to the error term in (12.50), so such terms may be
ignored. Similarly, for every term with m 2 and ¢y + m > 2, the exponent considered
in (12.57) is strictly larger than Re A + 2, and thus such terms also satisfy (12.58) and
may be ignored.

If m =1, then ¢; < ¢, and thus ¢y > 1. Hence, the only remaining terms to consider
are (1) m=0and thus 4y =4, (2) m=1and {y = 1; (3) m =2 and ¢y, = 0.

Furthermore, also the term with m = 0 can be ignored, since it is

B(2)® 0 [2®(y(2))] = B()* ©y(2)
=B()®"©1+ B()® O (y(z) — 1), (12.59)

where B(z)®’ © 1 vanishes and y(z) — 1 = O(|1 — z[2) = o(|1 — 2|°) by (12.5); hence
Lemma 12.2(ii) yields

B(2)®* O [28(y(2))] = o(|1 — 2| *Fe®) = o1 — 2[Re4+3). (12.60)

Consequently, recalling (12.28), we have

1
Ry(2) =IB(2) ® [zMg_l(z)é’(y(z))] + % Z (j) 2M;i(2)My—j(2)D" (y(z))

+o(|1 — z[ReA+3). (12.61)

Since ¢’ is continuous in the unit disc with ®’(1) = 1, the induction hypothesis implies
that

My (2)® (y(2)) = xe—10 (1 — 2)EDEFDTS | o(|1 — 5|~ DReat)+3) - (12.62)
Hence, (12.34), (12.44), and Lemmas 12.2 and 12.3 yield
B(z) © [2My-1(2)®' (y(2))]
4 F(E(oz + %) - 1)
L((€—1Dla+3)—3)

Similarly, the induction hypothesis yields, using ®”(1) = o2,

= xt_10 (1—2)2% 4 o(]1 — 2|Re443). (12.63)

2 ( ) 2)Me—j(2)2" (y(2)) = Zi (j)xg*x@_ja—‘f(l —2)M3 o]l — z[ReA+s),

(12.64)
The result (12.50) now follows from (12.27), (12.31), and (12.61)-(12.64). O
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12.6 Mixed moments. Proof of Theorem 1.12

We may extend Theorem 1.12 to mixed moments of X, (a1),...,X,(am), for sev-
eral given aq, ..., a,,, using the same arguments with only notational differences. For
convenience, define

T X (), Rea > 3,
X,(a) = {" 2 Anla) PaTa (12.65)
n=*"2 (Xp(a) — pla)n), 0<Rea < 3.

We consider for simplicity only two different values of «; the general case is similar but
left to the reader.

Theorem 12.9. Let Reay, Reas € (0, 3) U (3,%), and write o := «; + 5. Then, for any
integers £1,05 = 0 with {1 + {5 > 1,

oghitte E[Xn(Ou)éan(aQ)Ez] - E[y(a1)€1y(a2)€z] = van 1)le,£27 (12.66)

F(€1O/1 + KQO/Q -3

where x1,0 = x1(oa) and xo,1 = x1(a2) are given by (12.51), and, for {1 + {3 > 2,

l L

—3/2 1 2

Xtrt2 =2 / Z ( ) ( )Xj17j2X£1j1,42j2
0<ji+j2<li+l2 J1 J2

F(Elo/l + laa, — 1)
F(Zla'l +lo0h, —1—
“1j2y, L (l10f + laaly — 1)

F(Zla’l +lo0h, — 1 — ag)

+ 2712y, )le—l,zz

+2

X1 ,05—1- (12.67)

Proof of Theorems 1.12 and 12.9. For a given o, we continue to use the choice (12.46)
of b,,. This yields (12.33) (Rea > 1) or (12.40) (Rea < 3), i.e., now writing F,, for F,

= Xn ) R 2 la
Fu(r) = 4 X PEE (12.68)
Xn(a) = pla)n, 0<Rea < 3.
Hence, in both cases, X, (a) = n ="z Py (T5), and Theorem 1.10 yields
X, (a) =n~ "2 Fp(Tn) -5 071V (a); (12.69)

moreover, this holds jointly for any number of a by the proof of Theorem 1.10.
The asymptotic formula (12.50) yields, by (12.17) and standard singularity analysis
[26, Chapter VI],

1 1y_3
Wl = [ My(2) ~ xeo T ——onflet) 12.70
Gnmy,” = [2"]M(2) ~ xe0 s =" ( )

Together with (2.6) (with A = 1) for g, this yields

m ~ —27”“07[ nt(e+s) (12.71)
» T T . .
F(E(Ck + 5) - 5)
Recall that m%) = ]E}v?a(ﬁl)f by (12.16). Hence, (12.71) can be written as
’ ’ V2T
c"EX,(a)" — Xe =: Kg, (12.72)
L(l(a+3)—3)
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where we thus denote the right-hand side by k. The recursion (1.25)-(1.26) then follows
from (12.51)-(12.52).

This shows most parts of Theorem 1.12, but it remains to show that the «,’s (the
limits of moments) are the moments of the limit (in distribution) Y («) of 0X,,(«). For
real «, this follows from (12.72) by a standard argument, but for general complex a we
want to consider absolute moments, so we postpone the proof of this, and first turn to
Theorem 12.9.

Define, in analogy with (12.16)-(12.17),

mi{10) = B[ Fy, (To)" Fo, (T2)"], (12.73)
My, 4,(2) i= B[ Fo, (T)" Fo (T)22171] = Z {2 (12.74)

It is straightforward to extend Lemma 12.4 to the following, valid for every ¢,r > 0 with
{+r>=1:

, l4r
T
My, (2) = § E B, (2)®%
¢ m' (fo,..., )(ro,...,rm> (%)

® Ba, (2)°7 © [2My, 4, (2) -+ M, 1, (2)@™) (y(2))],  (12.75)

where Z** is the sum over all pairs of (m + 1)-tuples (¢o,...,%4,) and (rg,...,7ry,) of
non-negative integers that sum to £ and r, respectively, such that 1 < /; + r; < ¢ + r for
every i.

Then, the inductive proof of Lemma 12.8 is easily extended to show that in some
A-domain (possibly depending on ¢; and /5)

Mfl,éz(z) _ Xéhézo_—h—éz—l(l o Z)—Elo/l—fzo/ﬁ—% + 0(‘1 _ Z|—Z1Reo¢’1—£2Reo/2+%)’ (12.76)

with x¢, ¢, given by (12.51) and (12.67). Singularity analysis yields, as for the special
case (12.71),

oL

(61041 + 62042 -3

ghitts E[Xn(al)elxn(OQ)&] - )thfz =Ryl (12.77)

In particular, for any « in the domain, we may take oy := o« and a5 := @. Then (12.77)
shows, in particular, that for any integer £ > 1, ]E|Xn(oz)|2Z = E[X,(2)*X,(@)*] converges
as n — oo.

By a standard argument, see e.g. [27, Theorems 5.4.2 and 5.5.9], this implies uni-
form integrability of each smaller power of X,,(«), which together with (12.69) implies
convergence of all lower moments to the moments of the limit 0 ~!Y («). This completes

the proof of (1.23)-(1.24) with
V2r
ke =EY(a) = ——————— 0. (12.78)
P(l(a+3)—13)

Similarly, using Hélder’s inequality, the sequence X, (a;)* X, (a2)? is uniformly
integrable for every fixed a1, as, 1, {5, and (12.66) follows from the joint convergence
in (12.69) and (12.77). O

Example 12.10. Taking /; = ¢, = 1 in (12.67), we obtain, with obvious notation and
using (12.51),

L Do+ B)

wala ) = 2 hat@n(e) + 2 \ T +9)

xi1(B)+272 @) X1 ()
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2R 23T+ BT(B-3) 27 T(a+ Bl (a—3)
= —Tla-3)B -3+ 7 07) 7 (o) . (12.79)
In particular, taking 8 = @ and using (12.66) and (12.77),
_ V2r _
2 _ -_—e—_——
EY(a)]® = k11(a, @) F(3Rea %)Xl,l(oéaa)
EACESs T'(2Re ) NG
= L/m(2Rea+ 1) | T(2Rea+ 1) ¢ T(a) (12.80)
O

Example 12.11. As mentioned in Example 1.25, for the case of joint moments of Y (1)
and Y (2), Theorem 12.9 yields the recursion formula given in [34]; the method used
there is related to the one used here, but seems to apply only for integer a. O

Remark 12.12. The mixed moments of Y («) and Y (a) = Y (@) determine the distribu-
tion of Y () uniquely, for any o # 1 with Rea > 0. In fact, there exists C(a) > 0 such
that for every ¢ > 1,

E|Y(a)* < C(a)', (12.81)

and thus (ReY («),ImY («)) has a finite moment generating function in a neighborhood
of the origin. The estimate (12.81) was shown for real a in [21, Lemma 3.4] (with proof
in [20]); the general case is similar, considering even ¢ and using induction and (12.67).

The constant C(«) in (12.81) can be taken uniformly bounded on compact subsets of
H\{3}. Moreover, (12.81) obviously implies the same estimate for Y(a) =Y(a)-EY(a)
[with C(«) replaced by 2C(«)], and then we can argue using analyticity as in the proof
of Lemma 12.21 below and conclude that (12.81) holds also for }7(%), which thus also is
determined by its moments, as noted in [21]. O

12.7 Uniform estimates

In this Section 12, we have so far estimated moments for a fixed o, or mixed moments
for a fixed set of different . We turn to uniform estimates for « in suitable sets. This
is rather straightforward if Re a stays away from % However, we want uniformity also
for Re a approaching (or equalling) % and this is more complicated. For our proofs, we
assume throughout the present subsection the weak moment condition

E&2H0 < oo, (12.82)
for some § > 0. Throughout this subsection, § is fixed; we assume without loss of

generality that § < 1.

Problem 12.13. Do Lemmas 12.18-12.21 and Theorem 1.3 hold without the extra
condition (12.82)? (Cf. Remark 1.4.)

We begin with some preliminaries. We start with a standard estimate, included for
completeness.

Lemma 12.14. If (12.82) holds with 0 < § < 1, then
D(z) = 2+ 202 (1 - 2> +O(|1 — 2[*™),  |z| <L (12.83)

Proof. Let z = 1 — w, with |z| < 1. Taylor’s theorem yields the two estimates, uniformly
for |z| <land k >0,

F=1-wk=1-kw+O0(K|w?) =1-kw+ <I;>w2 + O (k*|wl?), (12.84)
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k
=1 -—wF=1-kw+ <2>w2+0(k3|w|3)7 (12.85)
and thus, taking a geometric mean of the O terms in (12.84) and (12.85),
k
F=1—kw+ <2>w2 + O(K*T0w[*+9). (12.86)
Hence, (12.1) yields, using the assumption (12.82),
= k o?
B(z) = pk[l — kw + (2)11}2 + O(k;2+5|w\2+5)] =1-w+ Zw’ + O(|lwP*), (12.87)
k=1

which is (12.83). O

This enables us to improve (12.5).
Lemma 12.15. If (12.82) holds with 0 < § < 1, then, for z in some A-domain,

y(z) = 1=V (1= 2)" 2 + O(L 2|73, (12.88)

Proof. By [35, Lemma A.2], y(z) is analytic in some A-domain A such that |y(z)| < 1 for
z € A and (12.5) holds as z — 1 in A. To show the improvement (12.88), it suffices to
consider z € A close to 1, since the estimate is trivial when |1 — z| is bounded below.

Let w := 1 —y(2). By (12.5) we have |w| = ©(|1 — z|2). The functional equation (12.3)
and Lemma 12.14 yield

2 2
y(2)/z = ®(y(2)) = y(2) + %w2 +O(|w*™) = y(2) + %wQ[l +0(w’)]  (12.89)
and thus, for |1 — z| small,
o 5 1-2z 5 5/2
S = — y(z)[1+ O(jw|’)] = (1 —2)[1 + O(|1 — 2|°/?)]. (12.90)
The result (12.88) follows. O

We need also a uniform version of Lemma 12.2(i). We state it in a rather general
form.

Lemma 12.16. Let 7 be an arbitrary index set, and suppose that a,,b,, . € Z, are real
numbers such that sups |a,| < ©, supz|b,| < o and supz(a, + b, + 1) < 0. Suppose
that g,(z) and h,(z) are A-analytic functions such that, in some fixed A-domain A,
9.(2) = O(|1 — 2|™) and h,(z) = O(|]1 — z|*), uniformly in .. Then

9.(2) O hy(2) = O(|L — 2z|®+0H1), (12.91)
in some fixed A-domain A’, uniformly in .

Proof. This follows from the proof of [17, Proposition 9], taking there the same integra-
tion contour for all ¢. O

As a final preparation, we state a uniform version of a special case of the asymptotic
expansion of polylogarithms by Flajolet [23], cf. (12.9). A proof is given in Appendix B.

Lemma 12.17. For every A-domain A and every compact set K c C\{1,2,...} we have
Lig(2) =1 —a)(1—2)*""+ O(]1 — 2[*** +1) (12.92)

uniformly for z € A and a € K.
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We continue to assume (12.46). We now denote the generating function (12.18) by
B, (z); thus

’ (12.93)

Bu(z) = {Li_a(z)7 Rea >
“ Li_o(2) —p(a)z(1 —2)71, Rea<

N~ N~

The following lemma is the central step to establishing uniformity in the estimates
above. (Cf. Lemmas 12.5 and 12.6.) Note that the lemma does not hold for a = %; it is
easily seen from (2.6) that By 2(z) © y(z) = ©(]log |1 —z||) as z /1.

Lemma 12.18. Assume that E¢?? < 0. Let K be a compact subset of {o : Rea >
0}\{3}. Then,

Ba(2) ©y(z) = O(|1 — 2|2 Ree) (12.94)
in some fixed A-domain, uniformly for o € K.

Proof. We consider three different cases, and therefore define K; := {o¢ € K : Rea >
148 Kyi={aeK:J<Rea<3i+2} K3:={aeK:Rea< i} Estimates of the
type O(]1 — z|*) below are valid in some fixed A-domain, which may change from line to
line.

Case 1: Rea > 5 + g. In this range, we have by Lemma 12.17

1
2
Bo(2) = Li_a(2) = O(|1 — 2|7 Ree™1), (12.95)

uniformly in « € K;. Furthermore, y(z) = 1 + O(|1 — z|%) by (12.5) (or Lemma 12.15),
and % —Rea < —g for o« € K;. Hence, Lemma 12.16 yields

Ba(2) ©y(2) = Ba(2) © (y(z) — 1) = O(|1 — 2|77 Re®), (12.96)

uniformly in o € K.
Case 2and 3: 0 < Rea < % + g. We have, by (12.88) and (12.9),

y(z) =1—c1(1—2)2 + o(j1— z|%+%) =1+ caLigpn(z) + P(2) + O(]1 — z|%+%),
(12.97)

where P(z) is a polynomial that can be assumed to have degree less than % + g and thus
P(z) = (4, a constant. Let

h(z) i=y(2) — e Ligja(2) — 1= Cy = O(|1 — 2|37%). (12.98)

Let ¥ denote the differential operator z--. Note the identity J(g1(2) ® g2(z)) =
Y¥g1(2) ® g2(z) and that ¥ Li,(z) = Lis—1(2). Thus,

Y(Li—a(2) ©@ h(z)) = ¥ Li_a(2) © h(2) = Li—q—1(2) © h(z). (12.99)

We have Li_q_1(z) = O(]1 — 2|7 ®¢*~2) uniformly in o € K by Lemma 12.17, which
together with (12.98) and Lemma 12.16 yields

9(Li_o(2) @ h(z)) = O(|1 — 2| Rea—3+3), (12.100)

uniformly in o € Ky U K.
Furthermore, by Lemma 12.17,

O(Li-a(z) @ Ligj2(2)) = 9 Li_ay3/2(2) = Li_ay1/2(2)
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—T(a+ (1 =272 +O(|1 — 2| Reots 4 1) (12.101)

uniformly in a € K5 U Ks.
The exponent —Rea — 1 + £ in (12.100) lies in [—1 + 2,0), and thus (12.100) and
(12.101) yield, after division by z,

C(Lia(2) 0(2)) = e (Lia(2) OLiga(2)) + ~ (Lia(2) Oh(2)))
— l(a+ 1)1 =277 4 O(|1 — 2| Rea—3+3), (12.102)

again uniformly in a € K5 U K3.

We now consider Cases 2 and 3 separately.
Case 2: % < Rea < % + g. By integrating (12.102) along a suitable contour, for example
from 0 along the negative real axis to —|z| and then along the circle with radius |z| to z,

B, (2) ©y(z) = Li_a(2) O y(2) = col'(a — 1)(1 - z)_a+% +0(1), (12.103)

uniformly in o € K5, which implies (12.94).
Case 3: 0 < Rea < . Recall that now

Ba(2) ©y(2) = Li_a(2) Oy(2) — pla)y(2), (12.104)
see (12.93) and (12.41). The estimate (12.5) implies, in a smaller A-domain,
y'(z) = O(|1 — 2|72). (12.105)

Furthermore, u(a) = O(1) on K3, as a consequence of Theorem 10.7. Hence (12.104),
(12.102), and (12.105) imply
d —a—1 —((Reat+1—3)v1
Q(Ba(z)@y(z)) =col(a+ 1)1 —2)772 + O(|1 — 2|~ (Reatz=2)va))  (12.106)
We now have (B, ® y)(1) = 0 by (12.42), and thus (12.94) follows from (12.106) by
integration, noting that the exponents in (12.106) stay away from —1 for a € K3s. O

Lemma 12.19. Assume that E£2*% < o. Let K be a compact subset of {a : Rea >
O}\{%} Then, with notations as in (12.17) and (12.74), for every { > 1,

My(z) = O(|1 — 2| “Reatz)+3) (12.107)
in some fixed A-domain (depending on ¢) uniformly for all « € K. More generally,
My, 1,(2) = O(]1 — 2| O1Reai—taReazt3) (12.108)
in some fixed A-domain (depending on {1, {s), uniformly for all ay, a5 € K.

Proof. For (12.107), the case ¢ = 1 follows from (12.29), (12.31), and Lemma 12.18. We
then proceed by induction as in the proof of Lemma 12.8. [But the induction is now
simpler; it suffices to note that (12.57) is at least Re A + %.]

The proof of (12.108) is essentially the same, see the proof of Theorem 12.9. O

Lemma 12.20. Assume that E£?*% < . Let K be a compact subset of {o : Rea >
0}\{1}. Then, for every fixed r > 0,

E[| X, (a) = nu(a)|"] = O(nr(Re‘”%)), (12.109)
uniformly for all « € K with Rea < 3, and

E[| X, (0)]"] = O(nrReetd), (12.110)

1

uniformly for all « € K with Rea > 3.
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Proof. Using the notation (12.68), (12.109) and (12.110) can be combined as
E|Fo(T)|" = O(nReat)), (12.111)

uniformly in a € K. By Holder’s (or Lyapounov’s) inequality, it suffice to prove (12.111)
when r = 2/, an even integer. In this case, we let a; = o, as = @ and 1 = {5 = ¢;
then (12.73)-(12.74) show that, using also (2.6),

B Fo(To)|* = B[Fa(T2) Fa(T2)] = m{ = g, [2" 1Mo (2) < Cn®P[z" My (=),
(12.112)

and the desired result (12.111) (with r = 2¢) follows from (12.112) and (12.108) by
standard singularity analysis, see [26, Proof of Theorem VI.3, p. 390-392]. O

Lemma 12.21. Assume that E¢2+% < oo, Let K be a compact subset of {a : Rea > 0}.
Then, for every r > 0,

E[|X,(a) — EX,(a)]"] = O(n"Reat2)), (12.113)
uniformly for all « € K.

Proof. It suffices to show this for » > 1. Let L” be the Banach space of all complex
random variables X defined on our underlying probability space such that

1X] = (EIXIT)”T < . (12.114)

Case 1: % ¢ K. In this case, Lemma 12.20 applies and thus (12.109) and (12.110) hold,
uniformly for « in the specified sets. We may write these as | X,, (o) —nu(a)|, < CnReats
and | X, ()], < CnRee*z, respectively. As is well known, for any (complex) random
variable X,

IX —EX|, < [X], + | EX] <2[X],. (12.115)
Hence we obtain in both cases, and thus uniformly for all « € K,
| X () — E X, ()], < CrReots, (12.116)

which is equivalent to (12.113).
Case 2: 1 € K. Consider first the special case K; := {a € C : |a — 3| < 0.1} and let
Ky := 0K, = {a € C:|a— %] = 0.1}. Then Case 1 applies to K,. Moreover, recalling the

notation (1.9), we can write (12.113) and (12.116) as

|Yo(@)], < C, (12.117)

where V,,(a) = n=%2 (X, (a)—E X, (a)) is, for each n > 1, an L"-valued analytic function
of a.. [Recall that for a fixed n, there are only finitely many choices for the tree 7,,, and
for each choice, (1.3) is an entire function of a.] The maximum modulus principle holds
for Banach space valued analytic functions, see e.g. [13, p. 230], and thus, using (12.117)
for Ko,

sup |V ()|, = sup [V (a), < C. (12.118)
acK; acKsy
Hence, (12.117) holds uniformly for o € K7, and thus so does (12.113).
For a general compact set K, Case 1 applies to {a € K : o — 3| > 0.1}, which together
with the case K; just proved yields the result (12.113) uniformly for all o € K. O
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Proof of Theorem 1.3. We give the proof for ordinary moments, i.e., (1.11). The other
cases are similar, with mainly notational differences.

Let / > 1 and choose r := ¢ + 1. First, consider a fixed « with Rea > 0. Then
Lemma 12.21 shows that E|Y,,(a)|” = O(1), and thus the sequence Y, ()’ is uniformly
integrable, which together with (1.10) implies (1.11). (See again [27, Theorems 5.4.2
and 5.5.9].)

To show uniform convergence on compact sets of a, consider first a convergent
sequence («y) in Hy with o — ay € H; as k — oo, and a sequence ny — . By
Theorem 1.2, Y, (a) N o~1Y (a) in H(H, ), and by the Skorohod coupling theorem [40,
Theorem 4.30], we may assume that a.s. ¥, (o) — o~V () in H(H,), i.e., uniformly
on compact sets. It then follows that Y, (o) = 0~V (o) as k — 0. Furthermore,
Lemma 12.21 applies to the compact set {aj,aq,...} U {ayx}, and thus (12.117) holds
and shows that It |57,,Lk (ar)|" < C. Hence, similarly to the case of a fixed «, the sequence
Yy, () is uniformly integrable, and

EY,, () — o0 ‘EY(ay)’, ask— . (12.119)

This holds for any sequence n; — oo. In particular, we may for each k, using (1.11) which
we just have proved for each fixed «, choose n;, so large that |E Y, (ax)‘—c* EY (az)f| <
1/k for each k. Then (12.119) implies

EY (ap)! - EY (ay)’ ask— . (12.120)

Since this hold for any sequence aj — o, (12.120) shows that E ?(a)e is a continuous
function of « € H., .

Moreover, (12.119) and (12.120) show that for any convergent sequence («y) in H,
and any ny — o0,

~

EY,, () — o BY (ag) — 0. (12.121)

Let K — H, be compact. We claim that EY, (o)’ — ¢ ¢ EY ()¢ uniformly for o € K.
Suppose not. Then there exists € > 0, a subsequence n; — o0 and a sequence (ay) € K
such that [EY,, (a;)’ — 0 *EY (ay)¢| > ¢ for every k. Since K is compact, we may by
selecting a subsequence assume that oy — a4 for some oy € K. But then (12.121)
holds, which is a contradiction. This shows the claimed uniform convergence on K.

Finally ]ElN/(oz)l is an analytic function of a € H, since it is the uniform limit on
compact sets of the sequence of analytic functions E )N’n(a)é. O

12.8 Final remark

Remark 12.22, In this Section 12 we have only considered the case Rea > 0. It seems
likely that similar arguments can be used to show moment convergence in Theorem 1.1
for Re o < 0, but we have not pursued this, and we leave it as an open problem. O

A Some examples of ;o)

Although p(a) easily can be evaluated numerically for a given £ by (2.3) or per-
haps (10.6), neither formula seems to yield exact values for a given « in any simple form,
not even for, e.g., « = —1. We give here alternative formulas that can be used to find
exact values in some important examples when « is a negative integer.

Let U ~U(0,1) and E := —logU ~ Exp(1) be independent of 7. Define the random
variable

V= UYIT = =BT (A1)
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Then 0 < V < 1, and V has the distribution function, for 0 < z < 1,

0

P(V<z)=P(U < x‘Tl Z (IT] = n)a™ =: g(z), (A.2)

the probability generating function of |7|. Hence, the density function of V is, for
0<r<l,

] 0]
Z P(7T] =mn)a""' = Y P(Sp =n—1)z""". (A.3)
n=1 n=1
Since — , we have, for Rea < 3,
E(—logV) ™ =E(E/IT|) " =EE “E|T|* =T(1 — a)u(c) (A.4)
and thus .
1 w1 - .
wla) = mE(—log V)™ = i—a) L (—logx) “dg(z). (A.5)
This can also be written as
]‘ ! —a 1 * —a -y -y
ula) = mL (—logz) ¢ (z)dx = F(l—a)L y g (e ¥)e Y dy. (A.6)

Define the generating function

- S um a7
k=0

which converges absolutely for |z| < 1, since |u(—k)| = u(—k) = E|T|7% < 1. Then (A.5)
yields, for z € [0, 1) say, using an integration by parts in the final equality,

= L
Z kT —logV)kzk = Be?l8V — BV~ (A.8)

1 1
= f ¢ (x)de =1+ zf r™* g(x) da. (A.9)
0 0
Note that both integrals in (A.9) converge for all z with Re z < 1; hence, (A.9) shows that
H(z) extends analytically to this halfplane.

We will see below several examples where H(z) can be found explicitly; then u(—k)
can be found by extracting Taylor coefficients. In particular, by (A.7) and (A.9),

1

p(—1) = H'(0) = J 9@) 4, (A.10)

0 X

which also follows directly from (1.12) and (A.2).

Example A.1 (labelled trees; Po(1)). Consider uniformly random labelled trees; this is
the case £ ~ Po(1). Then S,, ~ Po(n), and thus (A.2) and (2.2) give

0 1 [s¢) ~1lo—n %) nn—1
— =n—1)x (z/e xz/e), (A.11
; n g (n—1)! 7;1 n! fe)" = Tx/e), ( )
where T is the well-known tree function, satisfying
T(x)e 7@ = g, lz] <e . (A.12)
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Since V has the distribution function g,

UL g(V)=T(V/e) (A.13)
and thus, using (A.12),
V/e="T(V/e)e TV/e) d e V. (A.14)
Hence,
logV L1 +1logU — U (A.15)
and .
E(—logV) ¢ =EU —logU —1)"% = L (u—logu — 1) du. (A.16)
Consequently, by (A.5), for Rea < 3,
1 ! 1 * —a
pula) = mJo (u—logu—1)"%du = mfo (e =142) e *da. (A17)

In particular, when « is a negative integer, p(«) can be evaluated as a finite combina-
tion of gamma integrals, yielding a rational value. For example, x(0) = 1 (as always!),
p(=1) =1/2, u(-2) = 5/12, p(—3) = 7/18. p(—4) = 1631/4320, u(—5) = 96547/259200.

In this example, by (A.8) and (A.15),

1
H(Z) _ Ee—z(1+logU—U) = e ? E(U—zer) _ e—zf uw e du
0

=e T(1 —2)7*(1 — 2, —2) = e *(—2)" " 'y(1 — 2, —2), (A.18)

where v is an incomplete gamma function and ~* is closely related, see [47, §8.2(i)] for
both. O

Example A.2 (Ordered trees; Ge(1/2)). For uniformly random ordered trees we have
& ~ Ge(1/2), with P(¢ = k) = 27%=1, k > 0. Thus S,, has a Negative Binomial distribution,
and, using (2.2),

1 1 2n — 2 2n — 2)!
P(|T|=n) = ~ P(S,=n—1)= n21—2”<n . ) = 21—2"7751 e 1))!
1
= (- (;) (A.19)
Hence, the distribution function g(x) of V' is by (A.2)
2 1
o(0) = R (2)an <1 (1 (.20)
and the density function is
g@)= 51— (a21)

Thus, V has a Beta distribution: V ~ B(1, 1).
By (A.9) and (A.21),

He) lf v (1 — 2)"V2dg = 13(1 )= L -2r@) (A.22)

2 Jo 2 I3 -z

By repeated differentiations we obtain for example, assisted by [47, §5.15] and Maple,
and using again ¢(x) :=I"(z)/T(x),

pw(=1) = H'(0) = ¢(3) — (1) =2 —2log2 = 0.6137, (A.23)
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u(=2) = 1(0) = 5 (0 (3) — v ()’ - (¥ (3) - v (V)

=2log?2 —4log2 — 7% + 4 = 0.5434, (A.24)
1(—3) = +(log2 — 1)7* — 41log® 2 + 4log” 2 — 8log 2 — 2((3) + 8

= 0.5190, (A.25)

w(—4) = —ﬁﬂ‘l + (—% log? 2 + %logQ — %)WQ + %log42
— 81og®2 + 8log”2 — 161log 2 + (41og 2 — 4)¢(3) + 16
= 0.5088. (A.26)

O

Example A.3 (Binary trees; Bi(2, %)). Uniformly random binary trees is an example with
¢ ~Bi(2,1), Thus S,, ~ Bi(2n, 1) and, using (2.2),

P(|T| =n) = %IP(Sn —n—1)= 122”< 2n > _ g () 2(1)”( 2 )

n n—1 n!(n+1)! n+1
(A.27)

1
2

Hence,

n+1 —x T

a i — X — — T
g(z) =), 2(—1‘)"( 2 ) = l((l —x)? 14 i2) = 2oao 2o (A.28)

and (A.9) yields, first for z < —1 and then for Re z < 1 by analytic continuation,

1

H(z)=1+zJ

<2x7272 —x* 22 (1 — x)l/Q) dx
0

—1+

|
I
—
—~
rol—
N

(A.29)

Taking Taylor coefficients at 0 yields, for example, again using [47, §5.15] and Maple,

p(—1) = H'(0) = =1+ (1) —(3) = 2log2 — 1 = 0.3863, (A.30)
p(—2) = $n? —2log” 2 — 2log 2 + 1 = 0.2977. (A.31)
O

Example A.4 (Full binary trees; 2Bi(1, %)). Uniformly random full binary trees is an
example with /2 ~ Bi(1, 1), i.e., P(¢ = 0) = P({ = 2) = 5. Thus S,/2 ~ Bi(n, §) and,
using (2.2), if n = 2m + 1 is odd,

P(|T|=n) = %IP(S,L =n—1)= 12”(") = 2*2’”*1% = (—1)m( 2 )

n m I(m+ 1)! m+1
(A.32)
Hence,
o0 1
z 1—41—a?
_ —1)™ 2m+1 2 — A.33
ole) = 2 (L2 - (A.33)
and (A.9) yields, similarly to (A.29), omitting some details,
1 142 3
1 I'(— I'(s
H(z)=1+zfx_z_Q(l—\/l—xQ)dx= + C0G) (A.34)
0 142z r'-3)
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This yields, for example,

p(—1) = g —1 = 0.5708, (A.35)
p(~2) = 1—1(1—log2)m = 0.5180. (A.36)
O

B Polylogarithms
As said in (12.8), the polylogarithm function is defined, for a € C, by

0
Lig(2) :== >, n7%z",  |z] <1 (B.1)
n=1

the function is then extended analytically to z € C\[0, ), for example by the integral
formula [26, (VI.48)]. As a bivariate function, Li,(z) is analytic in both variables («, z) €
C x (C\[0,0)).

Let U := {z € C\(—0,0] : | log z| < 27} (where log z denotes the principal value), and
note that U is a neighborhood of 1. In particular, U contains, for example, the disc
Upi={z:|z—1] < 3}. fa ¢ {1,2,...}, z ¢ [1,0), and furthermore z € U’ := U\[0, ),
then, see [47, 25.12.2] and [14, (1.11.8)],

Lia(2) =T(1 — a)(—log Z)afl + Z Ca—n) (log z)™

n=0

. (B.2)
n!

We denote the infinite sum in (B.2) by h,(z), and note that it converges absolutely for
z € U, and thus is analytic there, since the reflection formula for the Riemann zeta
function [47, 25.4.2] easily implies

[¢(a=n)| _ O((?W)_"F(n-&-l—a)C(n—i— 1 —a)) _ O<n_Rea(2W)-n). (B.3)

n! n!

for each fixed complex o and n > Rea + 1.
Moreover, we define the analytic function

—1
G(z) := —oes z e Uy, (B.4)

1—2z"
where by continuity G(1) = 1. Since G(z) # 0in Uy,
g(z) :==log(G(z)), z e Uy, (B.5)
also defines an analytic function in U;, with g(1) = 0. Then, for z € U] := U;\[1, ),
(~log2)* ™ = ((1-2)G(2))"

Consequently, (B.2) yields

-1 1

= ((1—2)e9)* " = (1 —2)> teleD9=  (B.6)

Lig(z) = D(1 —a)(1 — ) tel@ 9B L p (),  zeU]. (B.7)

The functions e(>~19(*) and h,(z) are analytic functions of z € U;, and can thus
be expanded as Taylor series in 1 — z. Hence, (B.7) yields, for z € Uj, an absolutely
convergent expansion

a0 ) 0
Lia(2) = Y] aj(@)(1 = 2)* 7 + Y bi(a)(1 — 2)F (B.8)
j k=0

j=0
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for some coefficients a;(«) and by (). This is the asymptotic expansion given in Flajolet
[23] and [26, Theorem VI.7]; we see now that the expansion actually converges for
z e Uj.

The coefficients a;(a) and b (a) can be found from the formulas above by repeated
differentiations at z = 1, or (as in [23] and [26]) by substitution in (B.7) of

0 _ )k 0 _ )k
log z = log(1— (1 —2)) :—2 u:—(l—z)z A=z (B.9)

k=1 m=1 k=1 k+1

followed by rearrangements into single power series. Note that a;(«) and by(«) are
analytic functions of « € C\{1,2,...}.

In particular, ag(a) = I'(1 — &), and thus by keeping only the first term in the first
sum in (B.8), we obtain (12.9).

Proof of Lemma 12.17. It is easily checked that the estimate (B.3) holds uniformly for
a € K and large enough n. Hence, uniformly for a« € K and z € Uy,

ha(2)] = O(1), (B.11)
Similarly, since g(1) = 0, we have g(z) = O(|1 — z|) in U3, and
ela=Dg(z) — 1 4 O(|1 — z|), (B.12)

again uniformly for « € K and z € U;. Hence, for z € Uj, (12.92) follows from (B.7), with
the O term uniform for o € K. The case z € A\Uj is trivial, since |1 — z| is bounded
above and below in that set, and Li, () is uniformly bounded in the compact set A\U; by
continuity. O

In the same way we see that we may expand the two sums in (B.8) to any number of
finite terms, and the resulting expansion will have error terms that are uniform in o € K,
for any compact K < C\{1,2,...}.

C Thelimitasa — 0

We show here the claim in Remark 1.19 about limits (in distribution) of Y («) as
a — 0 (with Rea > 0; recall that Y(«) is defined only for such «). It turns out that
the limit depends on how « appoaches 0. We consider for simplicity only the case
when «a approaches on a straight line, i.e., with constant argument (necessarily with
|arg a| < m/2). In this case, o~ 1Y () has a complex normal limiting distribution, but the
limit depends on arg a.

Theorem C.1. Let o = re!? with |0| < /2, and let r — 0 with 6 fixed. Then
a1y (a) -5 ¢, (C.1)

where ( is a centered complex normal variable, which is characterized by the covariance
matrix

Re¢\ 1—log2 (1+ cosd 0
COV(Im() cosf ( 0 1—0059)' (€.2)
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In other words, Re ( and Im ( are independent centered normal variables with respective
variances (1 —log2)[(1/cos 8) + 1]; equivalently, with

E¢?>=2(1—-1log2) and E|¢|*>=2(1—1og2)/cosb. (C.3)

The case a real, i.e., 8 = 0, was noted in [21, Remark 3.6(e)]. As stated in (1.29), then
( is a real normal variable N (0,2(1 — log2)).

We prove Theorem C.1 by the method of moments, using Theorem 12.9. We procced
via a series of lemmas that are stated for somewhat more general situations.

Lemma C.2. As a, 3 — 0, with Rea,Re 8 > 0, we have

xi(a) ~ —V2ma, (C.4)

E[Y ()Y (8)] = k11(a, B) ~ V2x1.1(e, B) ~ 4(1 — log Q)QLfﬁ'

Proof. All asymptotic notions in the proof are as «, 3 — 0. We assume throughout that
|| and | 3] are small.
Recall again the standard notation

(C.5)

I'(x)
T(a)’

P(x) = 4 logT(x) = (C.6)

dz
First, by (12.51) and (C.6),
_F(a—%)_ F(_%+0‘)_ 1 2

In particular, y;(«) ~ —1 and thus (C.4) follows by (12.72) [or (1.25)].
For the second moment (C.5), we first note that by (12.66) and (12.77),

E[Y(a)Y(8)] = k1.1(a, B) = F(éjrﬁizlﬂ)m,l(a,ﬁ) ~V2x1.1(a, B). (C.8)
Finally, by (12.67), as in (12.79),
Vaxia(a,8) = aha(8) + e a0+ HE v )
_ Fla+p)  T(a+p)
- X1(a)xl(ﬁ)[1 e Tha xl(ﬂ)]' (C.9)
We have, using (C.6),
lNa+p) o T+a+ph) «
I'(a) a+p ' I'l+a) a+ﬁ[1+¢(1+a)5+0(‘6|2)]
- [t vms + otasl+152)]. (C.10)
which together with (C.7) yields
Ia+p) o« o N 5
Moo = aallt GO0+ 0las +I5P)]. €

Using (C.11), and the same with a and 3 interchanged, in (C.9) we obtain, recalling
xi(a) ~xa1(8) ~ -1,

I'a+ B) N o+ p)

L(B)xa(e)  T'(a)xi(B)

\/§X1,1(a56) ~1+
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af

= -2
a+pf

[6(1) = 6(=4) + O(1al + 18]) | (C.12)
The result (C.5) now follows because (1) = —v and

Y(—3) =v(3)+2=—y—2log2+2, (C.13)
see [47, 5.4.12-13 and 5.5.2]. O

Lemma C.3. Let a = rel?t and 8 = re'’? with 61,0, € (—%, %), and let r — 0 with 6y, 6,
fixed. Then, for every fixed {1, /> > 0 with {1 + {5 > 2,

pm G2y (a0, B) — w4, (C.14)
where wy, ¢, is given recursively by
wo,0 = 0, (C.15)
w0, =0,  whenty +0 =1, (C.16)
wa0 = V2(1 — log 2)el, (C.17)
wo2 = V2(1 — log 2)e?2, (C.18)
61(91+92)
w11 = 2v2(1 — log 2) o (C.19)
_ 4 14
Wy 0y = 2 3/2 Z (1> (.2>le’j2wzlj1752j2, when {1 + {5 = 3. (C.20)
drge M1/ N2
Moreover,
w0, =0, when {1 + {5 is odd. (C.21)

Proof. We define for convenience wy, ¢, := 0 for ¢{; + {5 < 1, and note that then (C.15)-
(C.16) hold, but not (C.14).

For ¢1 + {5 = 2, (C.17)—(C.19) hold by Lemma C.2.

It remains to treat the case ¢; + {5 > 3, where we use induction on ¢; + /. We
use (12.67). In the double sum there, the two terms with (j1,72) = (1,0) and (j1, j2) =
(61 — 1, 45) are equal, and together, using (C.7), sum to

2720 x1 (@) Xty 1,0 (0, B) = =274 [1 4+ O(r) | xe, 1,0, (ev, B). (C.22)
On the other hand, the second of the three terms on the right in (12.67) is

D((61 + Ly —2)/2 + L1 + £o3)
F((fl + by — 2)/2 + (61 — 1)0( + EQﬂ)

= 27201+ O(r) | xer—1,0 (e, B). (C.23)

2_1/261 XEI*I,EZ(QJ/B)

Hence the main terms of the contributions (C.22) and (C.23) cancel, and together, using
the induction hypothesis, (C.22) and (C.23) sum to

O(r) - Xey—1,0 (v, B) = O (P T =1H0)12) — o (p(rH£2)/2) (C.24)

Similarly, the terms in the double sum with (j1, j2) = (0,1) and (¢4, ¢2 — 1) together cancel
the last term in (12.67) up to another error o(r(f1+¢2)/2).
This shows that (12.67) yields

Xy 0o (a0, B) = 273/ 3 (El

2<1+jasly+bp—2 N1

l
) (jz>Xj1~,j2XZ1j1,sz2 + O(T‘(€1+€2)/2), (C25)
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and (C.14) together with (C.20) follows by the induction hypothesis, noting that the
terms in (C.20) with j; + j2 < 1or j; + j2 > ¢; + ¢ — 1 vanish by (C.15)-(C.16).

The conclusion (C.21) follows from (C.16) and (C.20) by induction, since each of the
terms in (C.20) vanishes. O

Recall that if ¢/ = 2k is an even integer, then

(2K le“(k + %>.

(=1 =2k —1):=1-3----. (2k—1) =y = e (C.26)

Lemma C.4. Let o = re'?* and 8 = rel® with 6,,0, € (—%, %), and let r — 0 with 61,0,

fixed. Let t and u be fixed complex numbers. Then, for every ¢ > 1,

—0/2 ¢ 0, ¢ is odd,
r E(tY(a) + uY — C.27
(@) () {(Z— DNIX2 ¢ s even, (€27
where
2 40 2 i0 el t02)

Remark C.5. If ¥ > 0, then the limits in (C.27) are the moments of a normal distribution
N(0,%). Hence, if tY (a) + uY () is a real random variable (and ¥ # 0), then Lemma C.4
implies asymptotic normality by the method of moments. However, in general, tY («) +
uY (B) is a complex random variable and ¥ is complex. Nevertheless, the right-hand
side can be interpreted as the moments of a complex normal random variable, since the
relation I ¢2¢ = (2¢ — 1)!! (IE ¢2)* holds for arbitrary centered complex normal variables,
see e.g. [32, Theorem 1.28 and Section 1.4]. O

Proof. Theorem 12.9 and Lemma C.3 imply that, if /; + ¢, = £ > 2, then

V2r

r P E[Y (@)Y (8)%2] = 12k, 0, (0, B) > =00, 4, - (C.29)
For /1 + /5 = 1, (C.14) does not hold, but a direct appeal to (1.25) yields
Ia— l)
EY =—_2/_0 =0(r), C.30
@ =5 = Olab =0() (€30)

and similarly EY(8) = O(r); hence, (C.29) holds in the case ¢ = 1 too, with the limit 0.
(Recall that 1/T'(0) = 0.)
By the binomial formula,

E(tY (o) + uY (8)) = Z (g)télu&whgz(a,ﬁ) (C.31)
b= N1

which together with (C.29) yields, for every ¢ > 1,

rTPEEY (a) +uY () - ) (12)#1“%((\/ﬂ

Wiy, o
nin-e \1 t=1)/2)

V2r

= - (€32

where we define

14
To(t, u) := Z < )tflubwehg?. (C.33)
O +lp=¢ N1
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We have 74(t,u) = 0 when £ is odd or ¢ = 0, by (C.33) together with (C.21) and (C.15).
Hence (C.27) for odd / follows from (C.32).
Moreover, if £ > 3, then (C.33) (thrice) and the recursion (C.20) imply

IAWA4 12
23/27@(t7u) = Z Z <g1> <]1> <]z> t£1u£2wj17j2wgl_j17¢2_j2

Li+La=L j1.,j2 1

/ j l—3j
Z Z 2 (j) <J> <f1 _;1>t61uezwj1,j2wllj1752j2

T j1tja=j b1+la=t J1

-y (f) (b )5 (1), (€30)

Since 74(t,u) = 0 when ¢ is odd or ¢ = 0, (C.34) yields

{—1
20
23/27'25(t,u) = Z . ng(t,u)TQ(g_j)(t,u). (C35)
i1\

The recursion (C.35) is easily solved, by defining

dy = 273 2 (t,u) /(20)!, (C.36)
eo = dydy. (C.37)
Then (C.35) yields
—1 -1
dg =) didy and eri= Y, ejerj, (=2 (C.38)
j=1 j=1

This is a version of the Catalan recursion, and since e; = 1, it is solved by

(20 — 2)!

er=Cpq1 =

and thus, by (C.36) and (C.37),

_ 2012 =2) ,

Tae(t, ) G (C.40)
Hence, (C.32) yields
r ' EB(tY (a) + uY (8)* — %Tze(t,u) = F(Lzﬁ%) (22!(23!_&2)!6[{
= 224%% = (20— 1)) (8dy)". (C.41)
This proves (C.27) for even ¢ with, recalling (C.36) and (C.33),
Y :=8d; = \/§Tg(t,u) = \/§(t2w10 + quO}Q + 2tuw1,1). (C.42)
Finally, (C.28) follows from (C.17)-(C.19). O

Proof of Theorem C.1. We apply Lemma C.4 with § := @ and thus 6; = 6 and 6, = —6.
Let ¢ € C and take u := t. Then tY (@) + uY (8) = 2Re(tY (a)) is a real random variable,
and thus (C.27) shows by the method of moments that

212 Re(tY (a)) 5 N(0,%), (C.43)
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with ¥ = X(¢) (now real) given by (C.28). Since ¢ € C is arbitrary and Re(tY (a)) can be
regarded as the (real) scalar product of £ and Y («) if we identify C and R?, (C.43) and
the Cramér-Wold device show that

212y (o) =5 ¢, (C.44)
for some centered complex normal variable ¢’. Consequently,

e—16/2

2

a_l/ZY(a) = e_iQ/QT_l/zY(a) 4, (= ¢, (C.45)

which proves (C.1). Moreover, the argument above shows that (C.44) holds with all
moments (including mixed moments with the complex conjugate), and thus so does (C.45).
Taking ¢t =1, u = 0 and ¢ = 2 in (C.27)-(C.28) yields

E(a Y () = e r T EY (a)? — 2(1 - log 2). (C.46)

Similarly, by extracting the tu terms in (C.27) and (C.28),

B _ 2 2(1 —log2)
Ela=2Y (0)]? = 7 L E|Y (a)]® = 2(1 — log 2)— _ = . 47
}Oé (Oé)| r | (Oé)| ( 0g )610 + e—if cos 6 (C )
This shows (C.3), and (C.2) follows by elementary calculations. O

D The limit towards the imaginary axis

Let @ = a + ib — it in the right half-plane, i.e., with a = Rea > 0. The case t = 0 is
treated in Appendix C; recall that then, if say « is real for simplicity, ¥ (o) =~ 0 and
that a—'/2Y () converges in distribution to a normal limit; see also Remark 1.19 and [21,
Remark 3.6(e)].

Assume in the sequel ¢ # 0. In this case, we have instead |Y (a)| - o, and we obtain
a complex normal limit by the following normalization. (Note that, unlike the case ¢t =0
in Theorem C.1, here « can approach its limit it in any way, as long as Rea > 0.)

Theorem D.1. Leta \, 0 and b — t # 0. Then
a'?Y (a +ib) -% ¢, (D.1)

where ( is a symmetric complex normal variable with
1 D(it — 1)

2 _
ElF =gz Re v

That ¢ is symmetric complex normal means that ¢ 4 w( for every complex constant w
with |w| = 1; equivalently, IE ¢ = 0 and the real and imaginary parts are independent and
have the same variance. (See e.g. [32, Proposition 1.31].)

> 0. (D.2)

Proof. We use the method of moments, and argue similarly as for the related Theorem C.1.
Take oy := a + ib and oy := @7 = a — ib in Theorem 12.9. We claim that, for any ¢1, /5 > 0,

altH2 2y (o, a2) = ey e (D.3)
where
Pey e = 0 if gl # 627 (D4)
1 I(it — 1)
= Re —— 22| (D.5)
P = s TG — 1)
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\%

2. (D.6)

(=1 /N2
pey =252 2 <]> P, Pt—j.t—j> l

j=1

We prove this using induction on ¢; + ¢5. First, if £; + ¢5 = 1, so (¢1,42) = (1,0) or (0, 1),
then (12.51) shows that xy, ¢, is bounded (and converges) as o — it, so (D.3) holds with
pe, 0, = 0 as stated in (D.4).

If¢1 + /3 =2, we use (12.67). We have

bol + b —1 > 4y (it+ 3) + bo(—it+3) = 1= (01 + £2)/2 = 1+ (6 — L)it.  (D.7)

If 61 + 05 = 3, or if ¢; # {5, the limit is not a pole of I'(z), and thus the factor F(Elo/l +
lyady — 1) = O(1); hence, (12.67) together with the induction hypothesis yields (D.3)
with (D.4) and (D.6).

In the remaining case {1 = l, = 1, I'({10] + {204, — 1) = T'(2a) ~ (2a)~*, and (12.67)
yields, using (12.51),
(it — 3)

2 /ml(it)’

/2 =
2T (—it)
which verifies (D.3) with (D.5).
This proves (D.3)—(D.6). The recursion (D.6) is similar to (C.35) and can be solved in
the same way. We now define, instead of (C.36),

1/2 X1,0 +0(1) — 271/2 Re

axi,1 = 2" Xo0,1 + 27 (D.8)

1
2 (it)

dy == 2732, /012 (D.9)

With (C.37) as above, we again have (C.38)-(C.39), Hence, using (C.37) and (D.9),

) (20 — 2)!
oo = 2202ty — 932D e (D.10)
’ (=1
Finally, (12.66) and (D.3) yield, using the duplication formula for the Gamma function,
\/ 2w 2AT(2¢0-1)
Ela‘|Y 20 o Y= =4/m—— 2 gt = 22qty = (4d éé!, D.11
and, whenever /; # {5,
E[a+2)/2Y ()4 ¥ (a) *] — 0. (D.12)

These moment limits are the moments of a symmetric complex normal variable with
E[¢* = 4di, (D.13)

(See e.g. [32, Theorem 1.28].) Hence, (D.1) follows by the method of moments, with (D.2)
following by (D.13), (D.9), and (D.5).

It remains to prove that the expression in (D.2) in non-zero. (It can obviously not be
negative by the case ¢ = 1 in the argument above.) In other words, we must show that
I'(it — 1)/I'(it — 1) cannot be imaginary when ¢ # 0. To see this, we first use the reflection
formula for the Gamma function [47, 5.5.3] to obtain

D@t —1)  D(2—it)sin((it —1)7) isinh(nt) DT(2 —it)

= = S . (D.14)

D@t —1) T(2 —it)sin((it — 1)m)  cosh(mt) T'(3 —it)

Hence, it is enough to show that I'(2—it)/T'(2 —it) is not real for ¢ # 0. Since (logT'(2))’ =
I(2)/T(z) = ¥(z), we have

r@—i) _ Pe=it) P
) = Imlog NE ) = Im P(s —it) ds. (D.15)

2 g1t 3/2
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Moreover, see [47, 5.7.6],

o0
1 1
it) — — ( _ ) D.16
(s +1t) 7+1;o [ (D.16)
and thus
e} 0
I t) ) D.17
mi(s +if) g k+s+1t = ( k+s + 12 (B17)

Hence, if s > 1 and t > 0, then

* t “ t T
0 <Im(s +it) <L_1mdméfo mdx: 5 (D.18)
Consequently, if ¢ < 0, then (D.15) yields 0 < arg(I'(2 — it)/T'(3 — it)) < 7/4, and thus
I'(2 —it)/T(2 —it) is not real. The case ¢ > 0 follows by conjugation. As said above,
using (D.14), this completes the proof that E [¢|? > 0. O

Remark D.2. A similar argument shows that if also o/ = a'+ib’ — it/, for some t’ ¢ {0, +t},
then the covariances Cov (Y (a),Y (/) and Cov(Y(a),Y(e/)) = Cov(Y(a),Y(@)) are
O(1), and thus after normalization as in (D.1), the covariances tend to 0. It follows that
we have joint convergence in (D.1) with independent complex normal limits, for any
number of ay = ay + iby — ity with t; > 0. We thus find as limits an uncountable family
of independent complex normal variables. O

As a corollary to Theorem D.1 we see that |Y (a)| == o as o — it, with ¢ # 0.
Problem D.3. For ¢ # 0, does |Y (a)| 2> o as a — it?
Nevertheless, the divergence in probability is enough to show the following.

Corollary D.4. Almost surely, the imaginary axis is a natural boundary for the analytic
functions Y (-) and Y (+).

Proof. Lett # 0. Then Theorem D.1 implies that |Y (s +it)| == 0 as s \, 0. Hence, there
exists a sequence s, — 0 such that |Y (s,, + it)| — o a.s. In particular, a.s. Y («) cannot
be extended analytically to a neighbourhood of it.

Almost surely, this holds for every rational ¢ # 0, and thus Y (-) cannot be extended
analytically across the imaginary axis at any point. The same holds for 37() by (1.20). O

References

[1] Romain Abraham, Jean-Frangois Delmas & Michel Nassif. Global regime for general additive
functionals of conditioned Bienaymé-Galton-Watson trees. Probab. Theory Related Fields
182 (2022), no. 1-2, 277-351. MR4367949

[2] David Aldous. Asymptotic fringe distributions for general families of random trees. Ann. Appl.
Probab. 1 (1991), no. 2, 228-266. MR1102319

[3] David Aldous. The continuum random tree II: an overview. Stochastic Analysis (Durham,
1990), 23-70, London Math. Soc. Lecture Note Ser. 167, Cambridge Univ. Press, Cambridge,
1991. MR1166406

[4] David Aldous. The continuum random tree III. Ann. Probab. 21 (1993), no. 1, 248-289.
MR1207226

[5] Patrick Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. MR0233396

[6] Robert M. Blumenthal. Excursions of Markov processes. Birkhauser, Boston, 1992.
MR1138461

[7] Lennart Bondesson. Generalized Gamma Convolutions and Related Classes of Distributions
and Densities. Lect. Notes Statist. 76, Springer-Verlag, New York, 1992. MR1224674

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 74/77


https://mathscinet.ams.org/mathscinet-getitem?mr=4367949
https://mathscinet.ams.org/mathscinet-getitem?mr=1102319
https://mathscinet.ams.org/mathscinet-getitem?mr=1166406
https://mathscinet.ams.org/mathscinet-getitem?mr=1207226
https://mathscinet.ams.org/mathscinet-getitem?mr=0233396
https://mathscinet.ams.org/mathscinet-getitem?mr=1138461
https://mathscinet.ams.org/mathscinet-getitem?mr=1224674
https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Sum of powers of subtree sizes

[8] Mireille Bousquet-Mélou & Svante Janson. The density of the ISE and local limit laws for
embedded trees. Ann. Appl. Probab., 16(2006), no. 3, 1597-1632. MR2260075
[9] Sergio Caracciolo, Vittorio Erba & Andrea Sportiello. The p-Airy distribution. Preprint, 2020.

arXiv:2010.14468v1

[10] Donald L. Cohn. Measure Theory, Birkhauser, Boston, 1980. MR0578344

[11] Jean-Francois Delmas, Jean-Stéphane Dhersin & Marion Sciauveau. Cost functionals for large
(uniform and simply generated) random trees. Electron. J. Probab. 23 (2018), Paper No. 87,
36 pp. MR3858915

[12] Michael Drmota. Random Trees, Springer, Vienna, 2009. MR2484382

[13] Nelson Dunford and Jacob T. Schwartz. Linear Operators. I. General Theory. Interscience
Publishers, New York, 1958. MR0117523

[14] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger & Francesco G. Tricomi. Higher Tran-
scendental Functions, vol. I. McGraw-Hill, New York, 1953. MR0058756

[15] William Feller. An Introduction to Probability Theory and its Applications, Volume II. 2nd ed.,
Wiley, New York, 1971. MR0270403

[16] James Allen Fill. On the distribution of binary search trees under the random permutation
model. Random Structures Algorithms 8 (1996), no. 1, 1-25. MR1368848

[17] James Allen Fill, Philippe Flajolet & Nevin Kapur. Singularity analysis, Hadamard products,
and tree recurrences. J. Comput. Appl. Math. 174 (2005), no. 2, 271-313. MR2106441

[18] James Allen Fill & Svante Janson. Precise logarithmic asymptotics for the right tails of some
limit random variables for random trees. Ann. Comb. 12 (2009), no. 4, 403-416. MR2496125

[19] James Allen Fill & Nevin Kapur. An invariance principle for simply generated families of trees.
Unpublished manuscript, 2003.

[20] James Allen Fill & Nevin Kapur. Limiting distributions for additive functionals on Catalan
trees. Preliminary version of [21]. arXiv:math/0306226v1 [math.PR] MR2094243

[21] James Allen Fill & Nevin Kapur. Limiting distributions for additive functionals on Catalan
trees. Theoret. Comput. Sci. 326 (2004), no. 1-3, 69-102. MR2094243

[22] James Allen Fill & Nevin Kapur. Transfer theorems and asymptotic distributional results for
m-ary search trees. Random Structures Algorithms 26 (2005), no. 4, 359-391. MR2139868

[23] Philippe Flajolet. Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput.
Sci. 215 (1999), no. 1-2, 371-381. MR1678788

[24] Philippe Flajolet & Guy Louchard. Analytic variations on the Airy distribution. Algorithmica
31 (2001), 361-377. MR1855255

[25] Philippe Flajolet, Patricio Poblete & Alfredo Viola. On the analysis of linear probing hashing.
Algorithmica 22(1998), no. 4, 490-515. MR1701625

[26] Philippe Flajolet & Robert Sedgewick. Analytic Combinatorics. Cambridge Univ. Press,
Cambridge, UK, 2009. MR2483235

[27] Allan Gut. Probability: A Graduate Course. 2nd ed., Springer, New York, 2013. MR2977961

[28] Cecilia Holmgren & Svante Janson. Limit laws for functions of fringe trees for binary search
trees and random recursive trees. Electron. J. Probab. 20 (2015), no. 4, 51 pp. MR3311217

[29] Hsien-Kuei Hwang & Ralph Neininger. Phase change of limit laws in the quicksort recurrence
under varying toll functions. SIAM J. Comput. 31 (2002), no. 6, 1687-1722. MR1954876

[30] II'dar Abdullovich Ibragimov. On the accuracy of Gaussian approximation to the distribution
functions of sums of independent variables. (Russian.) Teor. Verojatnost. i Primenen 11
(1966), 632-655. English transl.: Theor. Probability Appl. 11 (1966), 559-579. MR0212853

[31] I'dar Abdullovich Ibragimov & Yurii Vladimirovich Linnik. Independent and Stationary
Sequences of Random Variables. (Russian.) Nauka, Moscow, 1965. English transl.: Wolters-
Noordhoff Publishing, Groningen, 1971. MR0322926

[32] Svante Janson. Gaussian Hilbert Spaces. Cambridge Univ. Press, Cambridge, UK, 1997.
MR1474726

[33] Svante Janson. Asymptotic distribution for the cost of linear probing hashing. Random Struct.
Alg. 19 (2001), no. 3-4, 438-471. MR1871562

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 75/77


https://mathscinet.ams.org/mathscinet-getitem?mr=2260075
https://arXiv.org/abs/2010.14468v1
https://mathscinet.ams.org/mathscinet-getitem?mr=0578344
https://mathscinet.ams.org/mathscinet-getitem?mr=3858915
https://mathscinet.ams.org/mathscinet-getitem?mr=2484382
https://mathscinet.ams.org/mathscinet-getitem?mr=0117523
https://mathscinet.ams.org/mathscinet-getitem?mr=0058756
https://mathscinet.ams.org/mathscinet-getitem?mr=0270403
https://mathscinet.ams.org/mathscinet-getitem?mr=1368848
https://mathscinet.ams.org/mathscinet-getitem?mr=2106441
https://mathscinet.ams.org/mathscinet-getitem?mr=2496125
https://mathscinet.ams.org/mathscinet-getitem?mr=2094243
https://mathscinet.ams.org/mathscinet-getitem?mr=2094243
https://mathscinet.ams.org/mathscinet-getitem?mr=2139868
https://mathscinet.ams.org/mathscinet-getitem?mr=1678788
https://mathscinet.ams.org/mathscinet-getitem?mr=1855255
https://mathscinet.ams.org/mathscinet-getitem?mr=1701625
https://mathscinet.ams.org/mathscinet-getitem?mr=2483235
https://mathscinet.ams.org/mathscinet-getitem?mr=2977961
https://mathscinet.ams.org/mathscinet-getitem?mr=3311217
https://mathscinet.ams.org/mathscinet-getitem?mr=1954876
https://mathscinet.ams.org/mathscinet-getitem?mr=0212853
https://mathscinet.ams.org/mathscinet-getitem?mr=0322926
https://mathscinet.ams.org/mathscinet-getitem?mr=1474726
https://mathscinet.ams.org/mathscinet-getitem?mr=1871562
https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Sum of powers of subtree sizes

[34] Svante Janson. The Wiener index of simply generated random trees. Random Struct. Alg.
22(2003), no. 4, 337-358. MR1980963

[35] Svante Janson. Random cutting and records in deterministic and random trees. Random
Structures Algorithms 29 (2006), no. 2, 139-179. MR2245498

[36] Svante Janson. Brownian excursion area, Wright’s constants in graph enumeration, and other
Brownian areas. Probability Surveys 3 (2007), 80-145. MR2318402

[37] Svante Janson. Simply generated trees, conditioned Galton-Watson trees, random allocations
and condensation. Probability Surveys 9 (2012), 103-252. MR2908619

[38] Svante Janson. Asymptotic normality of fringe subtrees and additive functionals in conditioned
Galton-Watson trees. Random Struct. Alg. 48 (2016), no. 1, 57-101. MR3432572

[39] Svante Janson. Central limit theorems for additive functionals and fringe trees in tries.
Electron. J. Probab. 27, paper no. 47, 1-63. MR4408126

[40] Olav Kallenberg. Foundations of Modern Probability. 2nd ed., Springer, New York, 2002.
MR1876169

[41] Valentin F. Kolchin. Random Mappings. Nauka, Moscow, 1984 (Russian). English transl.:
Optimization Software, New York, 1986. MR0865130

[42] Jean-Francois Le Gall. Random trees and applications. Probab. Surveys 2 (2005), 245-311.
MR2203728

[43] Guy Louchard. Kac’s formula, Lévy’s local time and Brownian excursion. J. Appl. Probab.
21(1984), no. 3, 479-499. MR0752014

[44] Guy Louchard. The Brownian excursion area: a numerical analysis. Comput. Math. Appl.
10(1984), no. 6, 413-417. Erratum: Comput. Math. Appl. Part A 12(1986), no. 3, 375.
MRO0783514

[45] A. Meir & J.W. Moon. On the altitude of nodes in random trees. Canad. J. Math. 30 (1978),
997-1015. MR0506256

[46] A. Meir & J. W. Moon. On the log-product of the subtree-sizes of random trees. Random
Structures Algorithms 12 (1998), no. 2, 197-212. MR1637411

[47] NIST Handbook of Mathematical Functions. Edited by Frank W. J. Olver, Daniel W. Lozier,
Ronald F. Boisvert & Charles W. Clark. Cambridge Univ. Press, 2010.
Also available as NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/

MR2723248

[48] Richard Otter. The multiplicative process. Ann. Math. Statistics 20 (1949), 206-224.
MRO0030716

[49] Valentin V. Petrov. Sums of Independent Random Variables. Springer-Verlag, Berlin, 1975.
MR0388499

[50] Boris Pittel. Normal convergence problem? Two moments and a recurrence may be the clues.
Ann. Appl. Probab. 9 (1999), no. 4, 1260-1302. MR1728562

[51] Dimbinaina Ralaivaosaona & Stephan Wagner. A central limit theorem for additive functionals
of increasing trees. Combin. Probab. Comput. 28 (2019), no. 4, 618-637. MR3984050

[52] Daniel Revuz & Marc Yor. Continuous Martingales and Brownian Motion. 3"¢ edition, Springer-
Verlag, Berlin, 1999. MR1725357

[53] Walter Rudin. Functional Analysis. 2nd ed., McGraw-Hill, New York, 1991. MR0365062

[54] Walter Rudin. Real and Complex Analysis. McGraw-Hill, New York, 1970. MR0344043

[55] Joel Spencer. Enumerating graphs and Brownian motion. Comm. Pure Appl. Math. 50(1997),
no. 3, 291-294. MR1431811

[56] Fred W. Steutel & Klaas van Harn. Infinite Divisibility of Probability Distributions on the Real
Line. Marcel Dekker, New York, 2004. MR2011862

[57] Lajos Takacs. A Bernoulli excursion and its various applications. Adv. in Appl. Probab.
23(1991), no. 3, 557-585. MR1122875

[58] Lajos Takéacs. On the total heights of random rooted trees. J. Appl. Probab. 29 (1992), no. 3,
543-556. MR1174430

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 76/77


https://mathscinet.ams.org/mathscinet-getitem?mr=1980963
https://mathscinet.ams.org/mathscinet-getitem?mr=2245498
https://mathscinet.ams.org/mathscinet-getitem?mr=2318402
https://mathscinet.ams.org/mathscinet-getitem?mr=2908619
https://mathscinet.ams.org/mathscinet-getitem?mr=3432572
https://mathscinet.ams.org/mathscinet-getitem?mr=4408126
https://mathscinet.ams.org/mathscinet-getitem?mr=1876169
https://mathscinet.ams.org/mathscinet-getitem?mr=0865130
https://mathscinet.ams.org/mathscinet-getitem?mr=2203728
https://mathscinet.ams.org/mathscinet-getitem?mr=0752014
https://mathscinet.ams.org/mathscinet-getitem?mr=0783514
https://mathscinet.ams.org/mathscinet-getitem?mr=0506256
https://mathscinet.ams.org/mathscinet-getitem?mr=1637411
http://dlmf.nist.gov/
https://mathscinet.ams.org/mathscinet-getitem?mr=2723248
https://mathscinet.ams.org/mathscinet-getitem?mr=0030716
https://mathscinet.ams.org/mathscinet-getitem?mr=0388499
https://mathscinet.ams.org/mathscinet-getitem?mr=1728562
https://mathscinet.ams.org/mathscinet-getitem?mr=3984050
https://mathscinet.ams.org/mathscinet-getitem?mr=1725357
https://mathscinet.ams.org/mathscinet-getitem?mr=0365062
https://mathscinet.ams.org/mathscinet-getitem?mr=0344043
https://mathscinet.ams.org/mathscinet-getitem?mr=1431811
https://mathscinet.ams.org/mathscinet-getitem?mr=2011862
https://mathscinet.ams.org/mathscinet-getitem?mr=1122875
https://mathscinet.ams.org/mathscinet-getitem?mr=1174430
https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Sum of powers of subtree sizes

[59] Lajos Takacs. On the total heights of random rooted binary trees. J. Combin. Theory Ser. B
61(1994), no. 2, 155-166. MR1280604

[60] Francois Treves. Topological Vector Spaces, Distributions and Kernels. Academic Press, New
York, 1967. MR0225131

[61] Stephan Wagner. Central limit theorems for additive tree parameters with small toll functions.
Combin. Probab. Comput. 24 (2015), no. 1, 329-353. MR3318048

Acknowledgments. We are grateful to Nevin Kapur for his contributions to Section 12;
Kapur also coauthored the related unpublished manuscript [19]. The present paper was
originally conceived as a joint work including him.

We are also grateful to Lennart Bondeson for helpful comments on the topic of Re-
mark 9.5.

EJP 27 (2022), paper 114. https://www.imstat.org/ejp
Page 77/77


https://mathscinet.ams.org/mathscinet-getitem?mr=1280604
https://mathscinet.ams.org/mathscinet-getitem?mr=0225131
https://mathscinet.ams.org/mathscinet-getitem?mr=3318048
https://doi.org/10.1214/22-EJP831
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Electronic Journal of Probability
Electronic Communications in Probability

e Very high standards

e Free for authors, free for readers
e Quick publication (no backlog)
e Secure publication (LOCKSS!)
Easy interface (EJMS?)

Non profit, sponsored by IMS3, BS* | ProjectEuclid®

Purely electronic

Donate to the IMS open access fund® (click here to donate!)

Submit your best articles to EJP-ECP

Choose EJP-ECP over for-profit journals

'LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/

4BS: Bernoulli Society http://www.bernoulli-society.org/

5Project Euclid: https://projecteuclid.org/

6IMS Open Access Fund: https://imstat.org/shop/donation/


http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction and main results
	Preliminaries and notation
	Conditioned Galton–Watson trees
	Random analytic functions
	Dominated convergence
	Further notation

	The case Re0, convergence in probability
	Tightness
	The case Re<0
	The mean
	Extensions assuming higher moments

	Brownian representations
	Proofs of Theorem 1.2 and remaining limit theorems
	The limit as 
	Extensions to Re=12
	An example where () has no analytic extension
	Moments
	More notation and preliminaries
	Generating functions
	The mean
	The mean when 0<Re<12
	Higher moments
	Mixed moments. Proof of Theorem 1.12
	Uniform estimates
	Final remark

	Some examples of ()
	Polylogarithms
	The limit as 0
	The limit towards the imaginary axis

