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Distorted Brownian motions on space with varying
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Abstract

In this paper we introduce and study distorted Brownian motion on state spaces with
varying dimension (dBMV in abbreviation). Roughly speaking, the state space of
dBMV is embedded in R4 and consists of two components: a 3-dimensional component
and a 1-dimensional component. These two parts are joined together at the origin.
3-dimensional dBMV models homopolymer with attractive potential at the origin and
has been studied in [9], [8], [7]. dBMV restricted on the 1-dimensional component
can be viewed as a Brownian motion with drift of Kato-class type. Such a process
with varying dimensional can be concisely characterized in terms of Dirichlet forms.
Using the method of radial process developed in [5] combined with some calculation
specifically for dBMV, we get its short-time heat kernel estimates.
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1 Introduction

To give a brief background on the studies for processes with varying dimension, in [5],
Brownian motion with varying dimension (BMVD) is studied as an example of Brownian
motion on state spaces with singularities. The state space of BMVD can be visualized as
a 2-dimensional plane with a 1-dimensional pole installed on it. Since a 2-dimensional
Brownian motion does not hit a singleton, the construction of BMVD relies on the method
of “darning”: Setting the resistance on a 2-dimensional disc equal to zero. The disc is
centered at the intersection of the plane and the pole. From there we are motivated

*The first named author is partially supported by NSFC (No. 11688101 and No. 11801546) and Key
Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences (No. 2008DP173182).

†RCSDS, HCMS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
100190, China. E-mail: liliping@amss.ac.cn

‡Loyola University Chicago, United States of America.
E-mail: slou1@luc.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP796
https://ams.org/mathscinet/msc/msc2020.html
mailto:liliping@amss.ac.cn
mailto:slou1@luc.edu


DBM with varying dimension

to consider other more natural models with varying dimension. Three-dimensional
distorted Brownian motion arises in statistical physics by providing a continuum model
for homopolyer with attractive potential at the origin. Unlike a 3-dimensional standard
Brownian motion which does not hit any singleton, a 3-dimensional distorted Brownian
motion has positive capacity at the origin, which allows us to “extend” such a process
onto a state space with varying dimension. Many of the properties of 3-dimensional
distorted Brownian motion have been investigated in [9], [8], and [7], including its
explicit transition densities and behaviors near the origin. Later in [11], Fitzsimmons
and the first named author give a description to dBMV in terms of Dirichlet forms.

The state space of dBMV is embedded in R4. We let R4 ⊃ R3 := {(x, 01) : x ∈ R3} ∼=
R3 and R4 ⊃ R+ := {(03, x) : x ∈ R+} ∼= R+. Set

E := R3 ∪R+.

Clearly, R3 ∩ R+ = (03, 01) =: 0 ∈ R4. The restriction of dBMV on R3 behaves like
3-dimensional distorted Brownian motion studied in [9], [8], [7]. Roughly speaking, a
distorted Brownian motion subjects to a strong push towards the origin. The restriction
of dBMV on the R is equivalent to a 1-dimensional Brownian motion with drift function b
satisfying Kato-class condition. The rigorous definition for 3-dimensional dBM and dBM
with varying dimension is given in Section 3.2. Similar to [11], dBMV can be similarly
characterized by means of Dirichlet forms.

The main result of this paper is the short-time heat kernel estimates for this process.
We use the method of radial process developed in [5]. The major difficulty is that, unlike
standard Brownian motion, the existing results on heat kernels of distorted Brownian is
very limited. We derive such results by recognizing that the Dirichlet form of distorted
Brownian motion can be viewed as that for standard Brownian motion via an h-transform.

Before we state the main results, we introduce underlying measure and the metric
equipped on the state space. The measure m on E is given by the Lebesgue measures
on R3 and R+, i.e.,

m|R3 := d3x|R3 , m|R+
:= d1x|R+

. (1.1)

Here d3x means the Lebesgue measure on a three-dimensional Euclidean space and d1x

is that on a one-dimensional space. m is well-defined because 0 is of zero-Lebesgue-
measure for both 1-dimensional and 3-dimensional spaces. For the sake of brevity, we
ignore these superscripts if no confusions arises.

Throughout this paper, we use | · | to denote the Euclidean distance. To be more exact,
|x − y| is the Euclidean distance between x and y if either x, y ∈ R3 or x, y ∈ R+. By
slightly abusing the notation,

|x− y| := |x− 0|+ |y − 0|, x ∈ R3, y ∈ R+. (1.2)

The rest of this paper is organized as follows. Section 3.3 gives a Dirichlet form
construction and characterization of dBM with varying dimension (denoted byM ), as well
as its infinitesimal generator. Some important properties of M are given in Section 3.4,
including the fact that the “origin” of the state space of M has positive capacity, as well
as the SDE characterization for M . In section 5 we give the proof to the short-time heat
kernel estimates for M .

We follow the convention that in the statements of the theorems or propositions
C,C1, · · · denote positive constants, whereas in their proofs c, c1, · · · denote positive
constants whose exact value is unimportant and may change from line to line.

EJP 27 (2022), paper 72.
Page 2/32

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP796
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


DBM with varying dimension

2 Distorted BMs on R3

In this section, we give a brief overview for a special family of 3-dimensional dBMs,
which will be used as building blocks to construct dBMs on space with varying dimension
in §3. The name of dBMs, to our knowledge, is due to [2]. They are introduced by
so-called energy forms that are special Dirichlet forms thereof. What we are concerned
with are those induced by a family of concrete density functions on R3. More precisely,
fix a constant γ ∈ R and set

ψγ(x) :=
e−γ|x|

2π|x|
, x ∈ R3. (2.1)

Further set a measure mγ(dx) := ψγ(x)2dx on R3. It is easy to verify that mγ is a positive
Radon measure with full support. Note that mγ is finite, i.e. ψγ ∈ L2(R3), if and only if
γ > 0. Define an energy form on L2(R3,mγ) as follows:

F3 :=
{
f ∈ L2(R3,mγ) : ∇f ∈ L2(R3,mγ)

}
,

E3(f, g) :=
1

2

∫
R3

∇f(x) · ∇g(x)mγ(dx), f, g ∈ F3,

where ∇f stands for the weak derivative of f . We shall write (E3,γ ,F 3,γ) for (E3,F 3)

when there is a risk of ambiguity.

2.1 Associated dBM

Some basic facts about (E3,F3) are collected in the following theorem. Since (E3,F3)

is indicated to be a regular Dirichlet form, we denote its associated dBM by X3 =

{(X3
t )t≥0,

(
P3
x

)
x∈R3} henceforth. Note that the case γ > 0 has been considered in [11]

but we present a different (and simpler) proof as below.

Theorem 2.1. The following statements hold:

(i) (E3,F3) is a regular and irreducible Dirichlet form on L2(R3,mγ) with C∞c (R3)

being its special standard core.

(ii) When γ ≥ 0, (E3,F3) is recurrent. When γ < 0, it is transient.

Proof. Recall that (E3,γ ,F3,γ) also denotes the Dirichlet form (E3,F3). It is straightfor-
ward to verify that (E3,γ ,F3,γ) is a Dirichlet form on L2(R3,mγ) and C∞c (R3) ⊂ F3,γ . The
irreducibility of (E3,γ ,F3,γ) for the case γ > 0 has been proved in [11, Proposition 2.4].
The case γ ≤ 0 can be concluded by the comparison of irreduciblity presented in [14,
Corollary 4.6.4]. To show C∞c (R3) is E3,γ

1 -dense in F3,γ , we first note that this is true
for the case γ = 0 since ψ0 belongs to the so-called Muckenhoupt’s class; see e.g. [16].
Then it suffices to consider the case γ 6= 0. Let F3,γ

c (resp. F3,0
c ) be the family of all

bounded functions with compact support in F3,γ (resp. F3,0). We first assert that F3,γ
c is

E3,γ
1 -dense in F3,γ . To do this, fix f ∈ F3,γ and assume without loss of generality that f

is bounded (see [14, Theorem 1.4.2]). Take η ∈ C∞c (R3) such that 0 ≤ η ≤ 1 and η ≡ 1 on
{x : |x| ≤ 1}. Set ηn(x) := η(x/n) and fn := f · ηn ∈ F3,γ

c for all n ∈ N. Since 0 ≤ ηn ≤ 1

and ηn → 1 pointwisely, it follows from the dominated convergence theorem that∫
|f − fn|2dmγ =

∫
|f |2 · |1− ηn|2dmγ → 0

as n ↑ ∞. On the other hand,

∇f −∇fn = (1− ηn)∇f − f

n
∇η
(x
n

)
.
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Since ∇f, f ∈ L2(R3,mγ) and ∇η is bounded, one can obtain that∫
|∇f −∇fn|2dmγ → 0.

Hence E3,γ
1 (fn − f, fn − f) → 0 as n → ∞. Next fix g ∈ F3,γ

c and take L > 0 such that
supp[g] ⊂ {x : |x| < L}. Clearly, there exist two appropriate positive constants c1 and c2
(depending on L and γ) such that for all x with |x| < L,

c1ψ0(x) ≤ ψγ(x) ≤ c2ψ0(x). (2.2)

This implies g ∈ F3,0
c . Then there exists a sequence of functions gn ∈ C∞c (R3) with

supp[gn] ⊂ {x : |x| < L} converging to g relative to the E3,0
1 -norm. By using (2.2)

again, we can conclude that gn also converges to g relative to the E3,γ
1 -norm. Therefore,

(E3,γ ,F3,γ) is regular and C∞c (R3) is a special standard core of it.
The recurrence of (E3,γ ,F3,γ) for the case γ > 0 has been also illustrated in [11,

Proposition 2.4]. For the case γ = 0, let ηn be as above. Then ηn ∈ F3,0 and ηn → 1

pointwisely. To attain the recurrence of (E3,0,F3,0), it suffices to show E3,0(ηn, ηn)→ 0

as n→∞. Indeed,

E3,0(ηn, ηn) =
1

2n2

∫
|(∇η) (x/n)|2 dx

|x|2
=

1

2n

∫
|∇η(x)|2 dx

|x|2
→ 0.

Finally consider the case γ < 0. Since ψγ(x) ≥ |γ| for all x, it follows that for all
f ∈ C∞c (R3),

E3,γ(f, f) ≥ γ2

2

∫
|∇f |2dx =: γ2D(f, f),

where D is the Dirichlet integral that induces the associated Dirichlet form of 3-
dimensional Brownian motion. Clearly, 3-dimensional Brownian motion is transient.
By virtue of [14, Theorem 1.6.4], we can conclude the transience of (E3,γ ,F3,γ). That
completes the proof.

When γ ≥ 0, (E3,F3) is not only recurrent but also ergodic in the following sense:
For γ > 0 and any x ∈ R3,

1

t

∫ t

0

P3
x(X3

s ∈ ·)ds→
mγ(·)
mγ(R3)

= 2πγmγ(·), weakly as t ↑ ∞; (2.3)

For γ = 0, the probability measure on the left hand side is vaguely convergent to 0 as
t ↑ ∞. See e.g. [14, Theorem 4.7.3].

2.2 Generator and motivated polymer model

The dBM X3 is motivated by a singular polymer model explored in e.g. [7, 8, 9]. Let
us use a few lines to explain it. Fix T > 0 and let ΩT := C([0, T ],Rd), i.e. the family of
all continuous paths of size T in Rd, be the configuration space of the system. Then the
polymer model is described by a Gibbs ensemble at each inverse temperature β (≥ 0),
realized as a probability measure Qβ,T on ΩT , which is also called a Gibbs measure.
More precisely, the underlying probability measure Q0,T is identified with the Wiener
measure on ΩT in this model, and we also denote it by QT in abbreviation. For β > 0,
Qβ,T is determined by the so-called Hamiltonian HT , which is given by a certain potential
function v on Rd in the following manner:

HT (ω) = −
∫ T

0

v(ω(t))dt, ω ∈ ΩT . (2.4)
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In other words,

Qβ,T (dω) =
exp{−βHT (ω)}

Zβ,T
QT (dω) =

exp{β
∫ T

0
v(ω(t))dt}

Zβ,T
QT (dω), (2.5)

where Zβ,T := ET exp{−βHT } is the so-called partition function. The motivated model is
on dimension 3, i.e. d = 3, and given by a singular potential function v = δ0, i.e. the delta
function at the origin. In this case, the Hamiltonian HT is understood as a limitation
− limε↓0

∫ T
0
Aε · 1(−ε,ε)(ωt)dt in a certain manner, where Aε (↑ ∞ as ε ↓ 0) is a constant

depending on a crucial parameter γ ∈ R, and meanwhile at the heuristic level the
inverse temperature β in (2.5) is also retaken to be a function of γ, i.e. β := βγ > 0 (and
β−∞ := 0); see e.g. [8]. There are at least three ways to manifest the phase transition
parametrized by γ and the critical value is γcr = 0 — The first two are already mentioned
in [8] and the last one is due to the Dirichlet form description of X3:

(1) The first way is to observe the thermodynamic limit of Qβγ ,T as T ↑ ∞. It can be
shown that (see e.g. [8])

(i) When γ > γcr = 0, the limiting measure of Qβγ ,T under suitable scaling as
T ↑ ∞ exists and induces a diffusion process on R3. In fact, this process
is nothing but X3 obtained in Theorem 2.1, which possesses an ergodic
distribution 2πγmγ(dx) = 2πγψγ(x)2dx (see (2.3)). In this case, the ensemble
is called in the globular state;

(ii) When γ = γcr = 0, the limiting process is mixed Gaussian;
(iii) When γ < γcr = 0, the scaling is taken to be a different one, and the limiting

process is nothing but 3-dimensional Brownian motion. In this case, the
ensemble is called in the diffusive state.

(2) The second way is to analyse the spectrum of the informal Schrödinger operator

1

2
∆ + βγ · δ0 : L2(R3)→ L2(R3), (2.6)

where ∆ is the Laplacian operator. Note that all self-adjoint extensions on L2(R3)

of 1
2∆ restricting to C∞c (R3 \{0}) can be parametrized by a constant γ ∈ {−∞}∪R;

see e.g. [8, Theorem 2.1]. Denote the family of all these extensions by {Lγ : γ =

−∞ or γ ∈ R} and particularly L−∞ = 1
2∆ corresponds to the underlying case

(Recall that β−∞ = 0). Then (2.6) should be understood as Lγ . Denote the spectrum
set of Lγ by σ(Lγ). It is well known that

(i) When γ > γcr = 0, σ(Lγ) = (−∞, 0]∪ {γ2/2}. Moreover, ψγ is the ground state
of Lγ , i.e.

Lγψγ =
γ2

2
ψγ ,

and γ2/2 is exactly the free energy of the ensemble, i.e.

lim
T↑∞

logZβγ ,T

T
=
γ2

2
;

(ii) When γ ≤ γcr = 0, σ(Lγ) = (−∞, 0] and no eigenvalues exist.

The third way is based on the relation between Lγ and the generator of (E3,F3).
Define an operator Aγ on L3(R3,mγ) by informal h-transform as follows:

D(Aγ) = {f ∈ L2(R3,mγ) : fψγ ∈ D(Lγ)},

Aγf =
Lγ(ψγf)

ψγ
− γ2

2
f, f ∈ D(Aγ).

(2.7)
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It is not hard to verify that C∞c (R3 \ {0}) ⊂ D(Aγ) and for f ∈ C∞c (R3 \ {0}) (see e.g. [11,
(2.3)]),

Aγf =
1

2
∆f +

∇ψγ
ψγ
· ∇f.

The lemma below links (E3,F3) with Lγ .

Lemma 2.2. The operator Aγ defined by (2.7) is the generator of (E3,F3).

Proof. The case γ > 0 has been shown in [11]. For the case γ ≤ 0, see [1, Appendix
F].

Remark 2.3. Since the semigroup associated with Lγ admits a symmetric transition
density with respect to the Lebesgue measure, i.e. there exists a suitable function rγt (x, y)

such that rγt (x, y) = rγt (y, x) and Rγt f(x) :=
∫
R3 r

γ
t (x, y)f(y)dy forms this semigroup (see

e.g. [8]), this lemma tells us the semigroup associated with Aγ admits a symmetric
transition density with respect to mγ :

pγt (x, y) :=
e−

γ2

2 t · rγt (x, y)

ψγ(x)ψγ(y)
.

In other words,

P γt f(x) :=

∫
R3

pγt (x, y)f(y)mγ(dy) =

∫
R3

e−
γ2

2 tψγ(y)rγt (x, y)

ψγ(x)
f(y)dy, f ∈ L2(R3,mγ),

is the semigroup associated with Aγ .

Then Theorem 2.1 leads to the third reflection of the same phase transition:

(3) Under the h-transform (2.7), Lγ corresponds to the dBM X3. The global property
of X3 depending on γ manifests the same phase transition as the two mentioned
above: When γ ≥ γcr = 0, X3 is recurrent; otherwise it is transient. The difference
between the diffusive state γ > 0 and the critical state γ = 0 has already illustrated
by the ergodicity of X3 after the proof of Theorem 2.1.

Remark 2.4. A similar discussion about the critical phenomenon of certain Markovian
Schrödinger forms appeared in [23], where h-transform and the global property of
Dirichlet forms are employed as well. However in the current paper, the Schrödinger
form induced by Lγ (or informally by (2.6)) is not Markovian. In other words, Lγ can not
be the generator of a certain Markov process.

2.3 Characterization via h-transform

This subsection is devoted to illustrating some connections between X3 and three-
dimensional Brownian motion. We use the notationRt := R−∞t to stand for the probability
transition semigroup of 3-dimensional Brownian motion W = (Wt)t≥0 as well as its L2-
semigroup if no confusions caused. Note that ψγ is finite out of {0}. Consider the
following h-transform with h := ψγ :

hR
γ
t (x, dy) :=

e−
γ2

2 t
ψγ(y)

ψγ(x)
Rt(x, dy), x ∈ R3 \ {0},

0, x = 0.

(2.8)

It is not hard to verify that ψγ is γ2

2 -excessive relative toRt in the sense that e−γ
2t/2Rtψγ ≤

ψγ and hR
γ
t is a sub-Markovian semigroup on R3 \ {0}. Denote the induced Markov

process of hR
γ
t on R3 \ {0} by hW

γ = {(hW γ
t )t≥0, (hP

γ
x)x∈R3 , ζh}, where hP

γ
x is the law

of hW γ starting from x and ζh is its life time.
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Remark 2.5. When γ ≥ 0, ψγ is nothing but the γ2/2-resolvent kernel of W . More

precisely, let r(t, x) be the Gaussian kernel, i.e. r(t, x) = 1
(2πt)3/2

e−
|x|2
2t . Then

ψγ(x) =

∫ ∞
0

e−
γ2t
2 r(t, x)dt.

Particularly ψ0 coincides with the 3-dimensional Newtonian potential kernel.

To phrase an alternative characterization of X3, we prepare two notions. Let E be a
locally compact separable metric space and m be a positive Radon measure on it. The
first one is the so-called part process; see [14, §4.4]. Let (E ,F) be a Dirichlet form on
L2(E,m) associated with a Markov process X and F ⊂ E be a closed set of positive
capacity relative to (E ,F). Then the part process XG of X on G := E \ F is obtained by
killing X once upon leaving G. In other words,

XG
t =

{
Xt, t < σF := {s > 0 : Xs ∈ F},
∂, t ≥ σF ,

where ∂ is the trap of XG. Note that XG is associated with the part Dirichlet form
(EG,FG) of (E ,F) on G:

FG = {f ∈ F : f̃ = 0, E-q.e. on F},
EG(f, g) = E(f, g), f, g ∈ FG,

(2.9)

where f̃ stands for the quasi-continuous version of f . The second is the one-point
reflection of a Markov process studied in [4]; see also [3, §7.5]. Let a ∈ E be a non-
isolated point with m({a}) = 0 and X0 be an m-symmetric Borel standard process on
E0 := E \ {a} with no killing inside. Then a right process X on E is called a one-point
reflection of X0 (at a) if X is m-symmetric and of no killing on {a}, and the part process
of X on E0 is X0.

Theorem 2.6. Fix γ ∈ R and let X3 and (E3,F3) be in Theorem 2.1. Then {0} is of
positive 1-capacity relative to E3. Furthermore, the following hold:

(1) hW
γ is identified with the part process of X3 on R3 \ {0};

(2) X3 is the unique (in law) one-point reflection of hW γ at 0.

Proof. To show the 1-capacity of {0} is positive, the case γ > 0 has been considered in [11,
Proposition 3.1]. Denote the 1-capacity relative to E3,1 by Cap1, and then Cap1({0}) > 0.
For the case γ ≤ 0, denote the 1-capacity relative to E3,γ by Capγ . It suffices to note
that Capγ(A) ≥ Cap1(A) for any Borel set A ⊂ R3 due to F3,γ ⊂ F3,1 and E3,1(f, f) ≤
E3,γ(f, f) for all f ∈ F3,γ . Particularly, Capγ({0}) ≥ Cap1({0}) > 0.

Denote the associated Dirichlet form of 3-dimensional BM by ( 1
2D, H1(R3)), i.e.

H1(R3) is the 1-Sobolev space and D is the Dirichlet integral. To prove the first assertion,
it is straightforward to verify that (hR

γ
t ) is symmetric with respect to mγ(dx) = ψγ(x)2dx

and then associated with the Dirichlet form (see [14, (1.3.17)])

hF = {f ∈ L2(R3,mγ) : hE(f, f) <∞},

hE(f, g) = lim
t↓0

1

t

∫
R3

(f(x)− hR
γ
t f(x)) g(x)mγ(dx), f, g ∈ hF .
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One can easily deduce that for any f ∈ L2(R3,mγ),

hE(f, f) = lim
t↓0

1

t

∫
R3

(
f(x)ψγ(x)− e−

γ2

2 tRt(fψγ)(x)

)
(fψγ)(x)dx

=
1

2

∫
R3

|∇(fψγ)|2(x)dx+
γ2

2

∫
R3

|(fψγ)|2(x)dx

=
1

2
Dγ2(fψγ , fψγ),

whenever the limit exists. This leads to

hF = {f : fψγ ∈ H1(R3)}, hE(f, f) =
1

2
Dγ2(fψγ , fψγ), f ∈ hF . (2.10)

Since C∞c (R3 \ {0}) is a core of ( 1
2D, H1(R3)) and ψγ ∈ C∞(R3 \ {0}) is positive, we can

conclude that C∞c (R3 \{0}) is also a core of (hE , hF). On the other hand, the part process
X3,R3\{0} of X3 on R3 \ {0} is associated with the Dirichlet form (E3,R3\{0},F3,R3\{0})

given by (2.9) with (E ,F) = (E3,F3) and G = R3 \ {0}. Particularly, C∞c (R3 \ {0}) is also
a core of (E3,R3\{0},F3,R3\{0}) by [14, Theorem 4.4.3]. It follows from Lemma 2.2 and
Lγ = 1

2∆ on C∞c (R3) that for any f ∈ C∞c (R3 \ {0}) ⊂ D(Aγ),

E3,R3\{0}(f, f) = E3(f, f) = (−Aγf, f)mγ

= −
∫
R3

Lγ(ψγf)(x) (ψγf) (x)dx+
γ2

2

∫
R3

|(fψγ)|2(x)dx

=
1

2
Dγ2(fψγ , fψγ).

Applying (2.10), one can obtain that

E3,R3\{0}(f, f) = hE(f, f), ∀f ∈ C∞c (R3 \ {0}).

As a result, (E3,R3\{0},F3,R3\{0}) = (hE , hF). Therefore, hW γ is identified with the part
process of X3 on R3 \ {0}.

Finally we prove the second assertion. Clearly, X(γ) is a one-point reflection of hW γ

by the first assertion. To show the uniqueness, we shall apply [3, Theorem 7.5.4]. It
suffices to note that for every x 6= 0,

hP
γ
x(ζh <∞, hW γ

ζh− = 0) = hP
γ
x(ζh <∞) = P3

x(σ0 <∞) > 0, (2.11)

where σ0 := inf{t > 0 : X3
t = 0}. The second equality is due to the conservativeness of

X3 (see Corollary 2.10), and the first one is the consequence of that hW γ has no killing
inside (on R3 \ {0}) and the quasi-left continuity of X3. The last equality holds because
{0} is positive capacity (or by virtue of Lemma 2.8 (2)). That completes the proof.

Remark 2.7. The second assertion in Theorem 2.6 leads to that 0 is regular for itself
with respect to X3, i.e. P3

0(σ0 = 0) = 1.

2.4 Characterization via skew product decomposition

Due to the fact that ψγ is a radial function, the part process hW
γ of X3 on R3 \

{0} is rotationally invariant in the following sense: Let T be an arbitrary orthogonal
transformation from R3 to R3, then

hŴ
γ :=

{
hŴ

γ
t := T (hW

γ
t ), hP̂

γ
x := hP

γ
T−1x

}
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defines an equivalent Markov process to hW
γ . Hence we can characterize hW

γ by
obtaining its skew product decomposition. Unsurprisingly, X3 is also rotation invariant
(Cf. [11, pp.11]) and it is not hard to figure out its radial process. The following lemma
is an extension of [11, Proposition 3.7], and the proof can be completed by the same
argument (So we omit it).

Lemma 2.8. (1) The process hW
γ admits a skew-product representation

hW
γ
t = %0

tϑA0
t
, t ≥ 0, (2.12)

where %0 := (%0
t )t≥0 = (|hW γ

t |)t≥0 is a symmetric diffusion on (0,∞), killed at {0},
whose speed measure `0γ and scale function s0

γ are

`0γ(dr) =
e−2γr

π
dr, s0

γ(r) =


π

2γ
e2γr, when γ 6= 0,

πr, when γ = 0,
r ∈ (0,∞);

A0 := (A0
t )t≥0 is the PCAF of %0 with the Revuz measure

µA0(dr) :=
`0γ(dr)

r2

and ϑ is a spherical Brownian motion on S2 := {x ∈ R3 : |x| = 1}, which is
independent of %0.

(2) The radial process % = (%t)t≥0 := (|X3
t |)t≥0 is a symmetric diffusion on [0,∞),

reflected at {0}, whose speed measure `γ and scale function sγ are

`γ(dr) =
e−2γr

π
dr, sγ(r) =


π

2γ
e2γr, when γ 6= 0,

πr, when γ = 0,
r ∈ [0,∞). (2.13)

Remark 2.9. When γ = 0, %0 is nothing but the absorbing Brownian motion on (0,∞)

(killed at 0), and % is the reflecting Brownian motion on [0,∞). It is not expected that
X3 admits an analogical representation of (2.12), because `γ(dr)/r2 is not Radon on
[0,∞) and hence not smooth (by e.g. [17, Theorem A.3.(4)]) relative to %; see further
explanation below [11, Corollary 3.11].

It is worth noting two facts about the radial processes %0 and %. The first one is to
derive the global properties of %, which lead to those of X3, by employing the scale
function and the speed measure.

Corollary 2.10. Let % = (%t)t≥0 be the radial process of X3. Then

(1) % is irreducible and conservative. Particularly, X3 is conservative.

(2) % is recurrent, if and only if γ ≥ 0. Otherwise it is transient.

Proof. The irreducibility of % is clear. Note that % is conservative, if and only if (see e.g.
[3, Example 3.5.7]) ∫ ∞

1

`γ((1, r))dsγ(r) =∞. (2.14)

This is true by a straightforward computation.
By [3, Theorem 2.2.11], % is transient, if and only if sγ(∞) := limr↑∞ sγ(r) <∞ and

`γ((1,∞)) =∞ (Otherwise it is recurrent). This amounts to γ < 0. That completes the
proof.

Remark 2.11. The recurrence/transience of % coincides with that of X3, as stated in
Theorem 2.1.
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The second is concerned with their pathwise decompositions as below. The proof is
analogical to that of [11, (3.6)] and we omit it.

Corollary 2.12. The radial processes %0 and % admit the following pathwise decomposi-
tions:

%0
t − %0

0 = βt − γt, 0 ≤ t < ζ0(= σ0),

%t − %0 = βt − γt+ πγ · l0t , t ≥ 0,

where ζ0 is the lift time of %0, (βt)t≥0 is a certain one-dimensional standard Brownian
motion, and l0 := (l0t )t≥0 is the local time of % at 0, i.e. the PCAF associated with the
smooth measure δ0 relative to %.

2.5 Pathwise representation

This short subsection is devoted to the pathwise representation of X3 by virtue of
so-called Fukushima’s decomposition. Let fi be the ith coordinate function for i = 1, 2, 3,
i.e. fi(x) := xi for x = (x1, x2, x3) ∈ R3. Obviously fi ∈ F3

loc. Then we can write the
Fukushima’s decomposition of X3 relative to fi:

fi(X
3
t )− fi(X3

0 ) = Mfi
t +Nfi

t , t ≥ 0, P3
x-a.s., q.e. x, (2.15)

where Mfi := (Mfi
t )t≥0 is an MAF locally of finite energy and Nfi := (Nfi

t )t≥0 is a CAF
locally of zero energy. Note that Mfi and Nfi in this decomposition are unique in law.
Set Mt := (Mf1

t ,M
f2
t ,M

f3
t ) and Nt := (Nf1

t , N
f2
t , N

f3
t ). Recall that an additive functional

A = (At)t≥0 is called of bounded variation if At(ω) is of bounded variation in t on each
compact subinterval of [0, ζ(ω)) for every fixed ω in the defining set of A, where ζ (=∞
for X3 due to its conservativeness) is the life time of the underlying Markov process. We
say N := (Nt)t≥0 is of bounded variation if Nfi is of bounded variation for i = 1, 2, 3.

By repeating the arguments in [11, §4], we can conclude the following characteriza-
tions of M and N .

Theorem 2.13. Let X3 be in Theorem 2.1 and M = (Mt)t≥0, N = (Nt)t≥0 be in the
Fukushima’s decomposition (2.15). Then the following hold:

(1) For q.e. x ∈ R3, M is equivalent to a 3-dimensional Brownian motion under P3
x.

(2) For t < σ0,

Nt = −
∫ t

0

γ|X3
s |+ 1

|X3
s |2

·X3
sds.

However, N is not of bounded variation.

Comparing to the final property of N , the radial process % of X is a semi-martingale
as presented in Corollary 2.12. At a heuristic level, this behavior of X is a consequence
of the following fact: As noted by Erickson [10], the excursions of X away from 0 oscillate
so violently that each neighborhood of each point of the unit sphere is visited infinitely
often by the angular part of X.

3 Distorted Brownian motion on space with varying dimension

Let

E := R+ ∪R3,

where R+ := {(x1, x2, x3, x4) ∈ R4 : x1 = x2 = x3 = 0, x4 ≥ 0}(' R+ := [0,∞)) and
R3 := {(x1, x2, x3, x4) ∈ R4 : x4 = 0}(' R3), be the state space. For convenience, set the
following maps:

ι+ : R+ → R+, r 7→ (0, 0, 0, r),
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and

ι3 : R3 → R3, (x1, x2, x3) 7→ (x1, x2, x3, 0). (3.1)

This section is devoted to the study of so-called distorted Brownian motions with varying
dimension (dBMV in abbreviation) on E.

3.1 One-dimensional part

Let ρ be a function on R+ such that

ρ > 0, a.e., ρ and
1

ρ
∈ L1

loc(R+), (3.2)

and ∫ ∞
0

dr

ρ(r)

∫ r

0

ρ(s)ds =∞. (3.3)

Consider the Dirichlet form (E+,F+) on L2(R+,m+) := L2(R+, ρ(r)dr):

F+ :=
{
f ∈ L2(R+,m+) : f ′ ∈ L2(R+,m+)

}
,

E+(f, g) :=
1

2

∫
R+

f ′(r)g′(r)m+(dr), f, g ∈ F+.

The following lemma summarizes the basic facts about (E+,F+).

Lemma 3.1. The following hold:

(i) (E+,F+) is a regular strongly local Dirichlet form on L2(R+,m+) with a special
standard core C∞c (R+). It is also irreducible and conservative. For all r ∈ R+, the
singleton {r} is of positive capacity relative to E+.

(ii) The associated diffusion X+ of (E+,F+) is an irreducible conservative diffusion on
R+ reflecting at 0, whose speed measure is m+ and scale function is

s+(r) =

∫ r

0

1

ρ(s)
ds, r ≥ 0.

Furthermore, X+ is transient (resp. recurrent), if and only if 1/ρ ∈ L1(R+) (resp.
1/ρ /∈ L1(R+).

The diffusion X+ is usually called a distorted Brownian motion on R+; see e.g. [17].
The proof of Lemma 3.1 is referred to [19, §3.4]. We should point out that 1/ρ ∈ L1

loc(R+)

implies the irreducibility of (E+,F+) and the conservativeness is a consequence of (3.3).
The recurrence or transience of X+ is indicated by [3, Theorem 2.2.11].

Example 3.2. An interesting example is the radial process % = (%t)t≥0 of X3 appearing
in Lemma 2.8. In this case, ρ(r) = e−2γr/π satisfies (3.2) and (3.3).

Let %̂ be the diffusion on R obtained by the symmetrization of %. In other words, %̂ is
associated with the energy form induced by the symmetric measure

ˆ̀
γ(dr) :=

e−2γ|r|

π
dr, r ∈ R.

With φ̂γ(r) = e−γ|r|/
√
π (r ∈ R) in place of ψγ , %̂ plays the same role as X3 in the analogi-

cal one-dimensional model (parametrized by γ) of that explained in §2.2. Particularly,
under a similar h-transform to (2.7), the generator of %̂ corresponds to a self-adjoint
extension of 1

2∆ restricting to C∞c (R \ {0}). See e.g. [1, Appendix F].
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3.2 Definition

Fix γ ∈ R and a function ρ satisfying (3.2) and (3.3) as above. Take a positive constant
p > 0. In this subsection, we rigorously give the definition for the so-called (ρ, γ)-dBMV
with the parameter p on E.

Recall that E consists of two components R+ and R3. Roughly speaking, the dis-
tribution of such a dBMV on R+ (resp. R3) is induced by the dBM X+ (resp. X3) in
§3.1 (resp. Theorem 2.1). To be more precise, set M+ = (M+

t )t≥0 := (ι+(X+
t ))t≥0 and

M3 = (M3
t )t≥0 := (ι3(X3

t ))t≥0. Then M+ is symmetric with respect to m+ := m+ ◦ ι−1
+

and associated with the Dirichlet form on L2(R+,m+):

F+ := {f : f ◦ ι+ ∈ F+},
E +(f, g) := E+(f ◦ ι+, g ◦ ι+), f, g ∈ F+.

Accordingly, M3 is symmetric with respect to m3 := mγ ◦ ι−1
+ and associated with the

Dirichlet form on L2(R3,m3):

F 3 := {f : f ◦ ι3 ∈ F3},
E 3(f, g) := E3(f ◦ ι3, g ◦ ι3), f, g ∈ F 3.

Define a measure m(p) on E by m(p)|R+
:= p ·m+ and m(p)|R3 := m3. Denote the density

function by

h(p)
ρ,γ(x) :=

{√
p · ρ(r), x = (0, 0, 0, r) ∈ R+,

ψγ((x1, x2, x3)), x = (x1, x2, x3, 0) ∈ R3.
(3.4)

In other words, m(p)(dx) = h
(p)
ρ,γ(x)2l(dx), where l|R+

is the one-dimensional Lebesgue
measure and l|R3 is the three-dimensional Lebesgue measure. Then we introduce the
following definition.

Definition 3.3 (Distorted Brownian motion with varying dimension). Fix γ ∈ R and ρ

satisfying (3.2) and (3.3), p > 0 and denote the zero element of R4 by 0. A (ρ, γ)-distorted
Brownian motion with varying dimension ((ρ, γ)-dBMV in abbreviation) with parameter p
on E is an m(p)-symmetric irreducible diffusion M = {(Mt)t≥0, (Px)x∈E} of no killing on
{0} such that

(i) The part process of M on R+ \ {0} is equivalent to that of M+;

(ii) The part process of M on R3 \ {0} is equivalent to that of M3.

Hereafter m(p) and h
(p)
ρ,γ will be written as m and hρ,γ respectively and this notion

(ρ, γ)-dBMV with parameter p will be called dBMV for short if no confusions caused. The
uniqueness of dBMV in law can be concluded by the following argument. Let M+,0 (resp.
M3,0) be the part process of M+ (resp. M3) on R+ \ {0} (resp. R3 \ {0}). Define a new
Markov process M0 on E \ {0} by M0|R+\{0} := M+,0 and M0|R3\{0} := M3,0. Then the
dBMV M is nothing but the one-point reflection of M0 at 0 by definition. The uniqueness
of dBMV in law is a consequence of [3, Theorem 7.5.4], Theorem 2.6 and Corollary 2.10.

Remark 3.4. It is worth noting that the parameter p plays a role only in the symmetric
measure m (see the notes before Corollary 4.4). For different p, the dBMVs are different
as will be shown in Remark 4.2, but their motions out of the origin 0 are exactly the
same according to the definition.

3.3 Dirichlet form characterization of dBMV

The main result of this section as below gives the associated Dirichlet form of dBMV.
Recall that the Dirichlet forms (E +,F+) and (E 3,F 3) are given in §3.2. Usually every
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function in a Dirichlet space is taken to be its quasi-continuous version tacitly. For
f ∈ F+ (resp. f ∈ F 3), the E +-quasi-continuous (resp. E 3-quasi-continuous) version
of f will be denoted by +f̃ (resp. 3f̃ ) when there is a risk of ambiguity. Since 0 is of
positive capacity relative to E + or E 3 due to Lemma 3.1 or Theorem 2.6, +f̃ or 3f̃ is well
defined at 0.

Theorem 3.5. Let (E +,F+) and (E 3,F 3) be given in §3.2. Then the quadratic form

F :=
{
f ∈ L2(E,m) : f |R+ ∈ F+, f |R3 ∈ F 3,+f̃ |R+

(0) = 3f̃ |R3(0)
}
,

E (f, g) := p · E +(f |R+ , g|R+) + E 3(f |R3 , g|R3), f, g ∈ F

is a regular, strongly local and irreducible Dirichlet form on L2(E,m), whose associated
Markov process is identified with the unique (ρ, γ)-dBMV M .

Proof. Clearly, (E ,F ) is a symmetric bilinear form satisfying the Markovian property.
The strong locality of (E ,F ) is led by that of (E +,F+) and (E 3,F 3). To show its
closeness, take an E1-Cauchy sequence {fn : n ≥ 1} ⊂ F . Then fn|R+ is E +

1 -Cauchy and
fn|R3 is E 3

1 -Cauchy. It follows from [14, Theorem 2.1.4] that there exists a subsequence
{fnk : k ≥ 1} of {fn} and +f ∈ F+, 3f ∈ F 3 such that

+f̃nk |R+
→ +f, E +-q.e.,

3f̃nk |R3 → 3f, E 3-q.e.

and

p · E +
1 (fn|R+

− +f, fn|R+
− +f) + E 3

1 (fn|R3 − 3f, fn|R3 − 3f)→ 0, n ↑ ∞.

Note that {0} is of positive capacity relative to E + or E 3. This implies

+f(0) = lim
k↑∞

+f̃nk |R+
(0) = lim

k↑∞
3f̃nk |R3(0) = 3f(0).

Hence the function f is well defined on E by f |R+ := +f and f |R3 := 3f . In addition,
f ∈ F and

E1(fn − f, fn − f) = p · E +
1 (fn|R+

− +f, fn|R+
− +f) + E 3

1 (fn|R3 − 3f, fn|R3 − 3f)→ 0.

Therefore the closeness of (E ,F ) is verified.
Next, let us prove the regularity of (E ,F ). Take a special standard core C + of

(E +,F+) and a special standard core C 3 of (E 3,F 3); for example, C + := C∞c (R+) ◦ ι−1
+

and C 3 := C∞c (R3) ◦ ι−1
3 . Set

C := {f ∈ F : f |R+ ∈ C +, f |R3 ∈ C 3}. (3.5)

It suffices to show C is dense in Cc(E) relative to the uniform norm and dense in F
relative to the E1-norm. On one hand, C is clearly an algebra, i.e. f, g ∈ C implies
c1 · f + c2 · g, f · g ∈ C for any constants c1, c2. In addition, C can separate the points in
E by the following argument: Without loss of generality, consider x ∈ R+, y ∈ R3 \ {0}.
Since C + is a special standard core of (E +,F+), there exists a function +f ∈ C + such
that +f(0) = +f(x) = 1. Another function 3f ∈ C 3 can be taken to separate 0 and y, i.e.
3f(0) 6= 3f(y). Define a function f on E by

f |R+ := 3f(0) · +f, f |R3 := 3f.

Then f ∈ C and f(x) = 3f(0) 6= 3f(y) = f(y). Thus by the Stone-Weierstrass theorem,
C is dense in Cc(E) relative to the uniform norm. On the other hand, fix f ∈ F and
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a small constant ε > 0. Take +g ∈ C + with +g(0) = 1 and 3g ∈ C 3 with 3g(0) = 1.
Let C+ := ‖+g‖E +

1
and C3 := ‖3g‖E 3

1
. By [14, Theorem 2.1.4], there exist two functions

+hε ∈ C + and 3hε ∈ C 3 such that

‖+hε − f |R+‖E +
1
<

ε

4
√
p
, |+hε(0)− f(0)| < ε

4C+
√
p

;

‖3hε − f |R3‖E 3
1
< ε/4, |3hε(0)− f(0)| < ε

4C3
.

Define a function fε on E by

fε|R+
:= +hε +

(
f(0)− +hε(0)

)
· +g,

fε|R3 := 3hε +
(
f(0)− 3hε(0)

)
· 3g.

Then fε ∈ C and

‖fε − f‖E1
≤ √p · ‖fε|R+

− f |R+
‖E +

1
+ ‖fε|R3 − f |R3‖E 3

1

≤ √p · ‖+hε − f |R+‖E +
1

+
√
p · |+hε(0)− f(0)| · ‖+g‖E +

1

+ ‖3hε − f |R3‖E 3
1

+ |3hε(0)− f(0)| · ‖3g‖E 3
1

< ε.

This tells us C is dense in F relative to the E1-norm.
Furthermore, we derive the irreducibility of (E ,F ). Take an m-invariant set A ⊂

E, and we need to show m(A) = 0 or m(Ac) = 0. Firstly, let (A +,G +) be the part
Dirichlet form of (E ,F ) on R+ \ {0} and consider f, g ∈ G + ⊂ F . It follows from [14,
Theorem 1.6.1] that f · 1A, g · 1A ∈ F and

E (f, g) = E (f1A, g1A) + E (f1Ac , g1Ac).

SetA+ := A∩(R+\{0}). Since f |R3 = g|R3 ≡ 0, the expression of F yields f ·1A+
, g·1A+

∈
G + and

A +(f, g) = A +(f1A+
, g1A+

) + A +(f1Ac+ , g1Ac+).

Using [14, Theorem 1.6.1] again, we have A+ is an m+-invariant set relative to A +. Note
that (A +,G +) is clearly irreducible and thus m+(A+) = 0 or m+(Ac+) = 0. Analogically
set A3 := A∩ (R3 \ {0}) and we can also obtain that m3(A3) = 0 or m3(Ac3) = 0. Secondly,
it suffices to show that m+(A+) = m3(Ac3) = 0 or m+(Ac+) = m3(A3) = 0 is impossible.
Take a function f ∈ C such that f(x) = 1 for |x| ≤ 1. These two cases both contradict to
f · 1A ∈ F . Eventually we can conclude the irreducibility of (E ,F ).

Finally, the part Dirichlet form of (E ,F ) on R+ \ {0} (resp. R3 \ {0}) is clearly
associated with the same Markov process as that of (E +,F+) (resp. (E 3,F 3)) on
R+ \ {0} (resp. R3 \ {0}). Therefore, the associated Markov process of (E ,F ) is nothing
but the dBMV by definition. That completes the proof.

It is worth noting that M as well as (E ,F ) is always conservative as will be shown in
Remark 4.2.

Remark 3.6. A motivated model named Brownian motion on space with varying di-
mension (DBV in abbreviation) appears in a recent paper [5]. Its building blocks are
two-dimensional Brownian motion and one-dimensional Brownian motion. The crucial
point is that two-dimensional Brownian motion cannot hit the origin. To obtain BMV,
the so-called darning method was employed in [5] to collapse a small ball to an abstract
“point”, so that the two-dimensional Brownian motion can reach it. However in our
current argument, thanks to that the origin is of positive capacity relative to E 3 (see
Theorem 2.6), the darning method is not necessary to the construction of dBMV.
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In addition, a number of irreducible Markov processes on E can be analogically
obtained by using other processes on R+ and R3, relative to which the origin is of
positive capacity. Every irreducible and symmetric diffusion on R+ (reflecting at 0) is
such an example on R+, see e.g. [19]. An example of pure-jump process on R3 appears
in a recent work [18].

3.4 Basics of (E ,F ) and M

Denote the capacities with respect to E , E + and E 3 by Cap, +Cap and 3Cap respec-
tively. The following proposition characterizes the sets of capacity zero with respect to
E .

Proposition 3.7. The set A ⊂ E is of capacity zero with respect to E , if and only if
A ⊂ R3 \ {0} and A is of capacity zero relative to E 3. Particularly for any x ∈ R+,
Cap({x}) > 0 but for any x ∈ R3 \ {0}, Cap({x}) = 0.

Proof. Let (A +,G +) (resp. (A 3,G 3)) be the part Dirichlet form of (E +,F+) (resp.
(E 3,F 3)) on R+ \ {0} (resp. R3 \ {0}). Then (A +,G +) and (A 3,G 3) are also the part
Dirichlet forms of (E ,F ) on R+ \ {0} and R3 \ {0} respectively. Since every singleton of
R+ is of positive capacity with respect to E +, it is of positive capacity with respect to
A + as well as E by applying [14, Theorem 4.4.3]. Hence any set of capacity zero with
respect to E must be a subset of R3 \ {0}. By using [14, Theorem 4.4.3] again, a set
B ⊂ R3 \ {0} is of capacity zero with respect to E , if and only if B is of capacity zero
with respect to A 3 as well as E 3. That completes the proof.

The behaviour ofM near the origin 0 is crucial to the understanding of it. As indicated
in Proposition 3.7, 0 is of positive capacity with respect to E . This leads to

Px(σ{0} <∞) > 0 (3.6)

for E -q.e. x ∈ E, where σ{0} := inf{t > 0 : Mt = 0} is the hitting time of {0}, by applying
[14, Theorem 4.7.1 (i)]. Furthermore, the origin 0 is called regular for a set B ⊂ E with
respect to M if P0(σB = 0) = 1 where σB := inf{t > 0 : Mt ∈ B}. Then we have the
following.

Corollary 3.8. 0 is regular for R+ \{0}, {0} and R3 \{0} with respect to M respectively.

Proof. If P0(σ{0} = 0) = 0, then {0} is a thin set. Thin set is always semipolar and thus
m-polar. This contradicts Proposition 3.7. Hence P0(σ{0} = 0) = 1 by the 0-1 law.

LetB := R+\{0} or R3\{0}. SinceB is open, it is also finely open. ThusB ⊂ Br ⊂ R+

or R3, where Br stands for its regular set. If 0 /∈ Br, then B would be finely open and
finely closed simultaneously. By [14, Corollary 4.6.3], we would have B is invariant.
Hence the irreducibility of (E ,F ) would imply m(B) = 0. This is impossible. Eventually
we can conclude that 0 ∈ Br, i.e. 0 is regular for R+ \ {0} or R3 \ {0}. That completes
the proof.

Remark 3.9. At a heuristic level, this fact tells us that starting from 0, M enters R+\{0},
{0}, and R3 \ {0} immediately.

Denote the extended Dirichlet spaces of (E +,F+) and (E 3,F 3) by F+
e and F 3

e

respectively. Note that F+
e = {f : f ◦ ι+ ∈ F+

e } where

F+
e = F+

ρ := {g : g is absolutely continuous on R+,

∫
R+

g′(r)2m+(dr) <∞}

when X+ is recurrent, i.e. 1/ρ /∈ L1(R+), and

F+
e = {g ∈ F+

ρ : lim
r↑∞

g(r) = 0}
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when X+ is transient, i.e. 1/ρ ∈ L1(R+); see e.g. [3, Theorem 2.2.11]. The expression of
F 3

e is stated in [11, Corollary 3.5]. The extended Dirichlet space Fe of (E ,F ) is given
as follows.

Proposition 3.10. It holds

Fe =
{
f : f <∞,m-a.e., f |R+ ∈ F+

e , f |R3 ∈ F 3
e , f̃ |R+(0) = f̃ |R3(0)

}
.

Proof. Denote the family on the right hand side by G . Take an arbitrary function f ∈ Fe.
Let C given by (3.5) be a special standard core of (E ,F ). By [14, Theorem 2.1.7],
there exist fn ∈ C which are E -Cauchy and converge to f , E -q.e. as n → ∞. Then
it follows from Proposition 3.7 that +fn := fn|R+ (resp. 3fn := fn|R3) is E +-Cauchy
(resp. E 3-Cauchy) and +fn → f |R+ , E +-q.e. (resp. 3fn → f |R3 , E 3-q.e.). Particularly,

f |R+ ∈ F+
e , f |R3 ∈ F 3

e and f̃ |R+
(0) = limn→∞

+fn(0) = limn→∞
3fn(0) = f̃ |R3(0). This

yields Fe ⊂ G .
To the contrary, take f ∈ G . Then +f := f |R+

admits an approximation sequence
+fn ∈ C + with +fn → +f pointwisely and 3f := f |R3 admits an approximation sequence
3fn ∈ C 3 with +fn → 3f , E 3-q.e., where C + and C 3 are given in (3.5). It follows that

lim
n→∞

+fn(0) = +̃f(0) = 3̃f(0) = lim
n→∞

3fn(0).

In the case that a subsequence {nk : k ≥ 1} of {n : n ≥ 1} exists such that +fnk(0) 6= 0

for all k (resp. 3fnk(0) 6= 0 for all k),

fk(x) :=


3fnk(0)
+fnk(0)

+fnk(x), x ∈ R+,

3fnk(x), x ∈ R3,

resp. fk(x) :=


+fnk(x), x ∈ R+,
+fnk(0)
3fnk(0)

3fnk(x), x ∈ R3,


defines a function in C , which is an approximation sequence of f . This leads to f ∈ Fe.
Otherwise we can assume without loss of generality that +fn(0) = 3fn(0) = 0 for all n.
Then fn := +fn on R+ and fn := 3fn on R3 gives an approximation sequence of f and it
yields f ∈ Fe as well. That completes the proof.

The following corollary is a straightforward consequence of Proposition 3.10.

Corollary 3.11. (E ,F ) is recurrent if and only if both (E +,F+) and (E 3,F 3) are recur-
rent. Otherwise (E ,F ) is transient.

Proof. It suffices to note that (E ,F ) is recurrent, if and only if 1 ∈ Fe and E (1, 1) = 0.

3.5 Generator of (E ,F )

The generator of (E+,F+) is A+ := 1
2

d2

dm+ds+
with the domain (see e.g. [13])

D(A+) :=

{
f ∈ F+ :

df

ds+
� m+,

d2f

dm+ds+
∈ L2(R+,m+)

}
.

Particularly, C∞c (R+) ⊂ D(A+). Then the generator of (E +,F+) is A + := ι∗+A+, where
(ι∗+A+)f := A+(f ◦ ι+) for f ∈ D(A +) := {g : g ◦ ι+ ∈ D(A+)}. On the other hand, the
generator A3 := Aγ of (E3,F3) is given by (2.7). Analogically the generator of (E 3,F 3)

is A 3 := ι∗3A3, where (ι∗3A3)f := A3(f ◦ ι3) for f ∈ D(A 3) := {g : g ◦ ι3 ∈ D(A+)}.
Denote the generator of (E ,F ) by A with the domain D(A ). Set C∞c (E) := C defined

by (3.5) with C + := C∞c (R+) ◦ ι−1
+ and C 3 := C∞c (R3) ◦ ι−1

3 . It is straightforward to verify
that C∞c (E) ⊂ D(A ) and for all f ∈ C∞c (E),

A f |R+
= p ·A +(f |R+

), A f |R3 = A 3(f |R3).
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Define another operator on L2(E,m) as follows:

D(G ) :=
{
f ∈ F : f |R+

∈ D(A +), f |R3 ∈ D(A 3)
}
,

G f |R+ := p ·A +(f |R+), G f |R3 := A 3(f |R3), ∀f ∈ D(G ).

Clearly C∞c (E) ⊂ D(G ) and G |C∞c (E) = A |C∞c (E). Note that G is not self-adjoint on
L2(E,m), since D(G ) $ {f ∈ L2(E,m) : f |R+ ∈ D(A +), f |R3 ∈ D(A 3)} ⊂ D(G ∗) where
G ∗ is the adjoint operator of G . Particularly, A 6= G . Furthermore, we have the following.

Proposition 3.12. The following hold for A and G :

(1) A is a self-adjoint extension of G on L2(E,m).

(2) When ρ + 1/ρ ∈ L1(R+) and γ > 0, f ∈ D(G ) if and only if f ∈ D(A ) and
m+(A f |R+) = m3(A f |R3) = 0.

Proof. (1) Take f ∈ D(G ). Then f ∈ F and for any g ∈ F ,

E (f, g) = p · E +(f |R+
, g|R+

) + E 3(f |R3 , g|R3)

= (−p ·A +(f |R+), g|R+)L2(E,m) + (−A 3(f |R3), g|R3)L2(E,m)

= (−G f, g)L2(E,m),

where the second equality is due to f |R+
∈ D(A +) and f |R3 ∈ D(A 3). Hence we

can conclude that f ∈ D(A ) and A f = G f .

(2) When ρ + 1/ρ ∈ L1(R+) and γ > 0, the constant functions belong to both F+

and F 3. Take f ∈ D(G ). It follows from the first assertion that A f = G f , which
yields A f |R+

= G f |R+
= p ·A +(f |R+

). Thus m+(A f |R+
) = p · m+

(
A +(f |R+

)
)

=

−p · E +(f |R+
, 1) = 0. Analogically we can obtain m3(A f |R3) = 0. To the contrary,

let f ∈ D(A ) such that m+(A f |R+
) = m3(A f |R3) = 0. Take arbitrary g+ ∈ F+,

define a function g on E by letting g|R+
:= g+ and g|R3 ≡ g+(0). Clearly g ∈ F and

it follows that

E (f, g) = (−A f, g)L2(E,m)

= (−A f |R+ , g
+)L2(R+,m+) + g+(0) ·m3(A f |R3)

= (−A f |R+
, g+)L2(R+,m+).

On the other hand, E (f, g) = p ·E +(f |R+ , g
+)+g+(0) ·E 3(f |R3 , 1) = p ·E +(f |R+ , g

+).
These yield for all g+ ∈ F+,

E +(f |R+
, g+) =

(
−1

p
·
(
A f |R+

)
, g+

)
L2(R+,m+)

.

Consequently, f |R+
∈ D(A +) and A +(f |R+

) = 1
p
·
(
A f |R+

)
. Analogically we can

obtain that f |R3 ∈ D(A 3) and A 3(f |R3) = A f |R3 . Eventually f ∈ D(G ). That
completes the proof.

Remark 3.13. Consider the recurrent case ρ + 1/ρ ∈ L1(R+) and γ > 0. For any f ∈
D(A ), m(A f) = −E (f, 1) = 0. This yields m+(A f |R+

) + m3(A f |R3) = 0. Consequently,
f ∈ D(G ) is also equivalent to f ∈ D(A ) and m+(A f |R+

) = 0 (or m3(A f |R3) = 0).

Let L2(E) be the L2-space on E endowed with the Lebesgue measures on R+ and
R3 respectively. The notation ∆ denotes the Laplacian operator acting on C∞c (E \ {0}),
i.e. for any f ∈ C∞c (E \ {0}), ∆f(x) := ∆f(x) for x ∈ R3 \ {0} and ∆f(r) := f ′′(r) for
r ∈ R+ \ {0}. Recall that hρ,γ is defined by (3.4). The following result is obvious by
Lemma 2.2 and Example 3.2.
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Proposition 3.14. Take a constant α ∈ R and let ρ(r) := e−2αr/π. Set hα,γ := hρ,γ . Then
the following operator

D(Lα,γ) := {f ∈ L2(E) : f/hα,γ ∈ D(A )},

Lα,γf := hα,γ ·A
(

f

hα,γ

)
+

(
α2

2
· f |R+ +

γ2

2
f |R3

)
, f ∈ D(Lα,γ),

is a self-adjoint extension of ∆ (acting on C∞c (E \ {0})) on L2(E). Furthermore, if
(α1, γ1) 6= (α2, γ2), then Lα1,γ1 6= Lα2,γ2 .

3.6 Existence of transition density

The following proposition states the existence of the transition density of M , which is
the foundation of the study in §5.

Proposition 3.15. The dBMV M satisfies the absolute continuity condition in the fol-
lowing sense: For any x ∈ E and t > 0, it holds Pt(x, ·)� m, where {Pt(x, ·) = Px(Mt ∈
·) : t ≥ 0} denotes the semigroup of M . Particularly there exists a density function
{p(t, x, y) : t > 0, x, y ∈ E} such that Pt(x, dy) = p(t, x, y)m(dy).

Proof. By [14, Theorem 4.2.4], it suffices to show that any m-polar set is polar (with
respect to M ). Let B be such a nearly Borel m-polar set and set

ϕ(x) := Ex
(
e−σB ;σB <∞

)
, ∀x ∈ E,

where σB := inf{t > 0 : Mt ∈ B}. Proposition 3.7 indicates B ⊂ R3 \ {0} and the
definition of m-polar set tells us ϕ = 0, m-a.e. We need to show ϕ(x) = 0 for every
x ∈ E to conclude that B is polar. Clearly ϕ is q.e. finely continuous (see e.g. [14,
Theorem 4.2.5]) and hence ϕ(x) = 0 for q.e x ∈ E by applying [14, Lemma 4.1.5].
Particularly ϕ(x) = 0 for all x ∈ R+ due to Proposition 3.7. Let M3,0 be the part process
of M on R3 \ {0}. Note that M3 satisfies the absolute continuity condition as mentioned
in Remark 2.3, and thus so does M3,0. Fix x ∈ R3 \ {0}. Then

ϕ(x) = Ex
(
e−σB ;σB < σ{0}

)
+ Ex

(
e−σB ;σB ≥ σ{0}

)
.

Since M3,0 satisfies the absolute continuity condition, it follows that B is polar with
respect to M3,0 and Ex

(
e−σB ;σB < σ{0}

)
= 0. On {σB ≥ σ{0}}, σB = σB ◦ θσ{0} + σ{0}.

By denoting the filtration of M by (Ft)t≥0 and using the strong Markovian property, we
have

Ex
(
e−σB ;σB ≥ σ{0}

)
= Ex

(
e
−σB◦θσ{0} · e−σ{0} ;σB ≥ σ{0}

)
≤ Ex

(
e−σB ◦ θσ{0} ;σB ≥ σ{0}

)
≤ Ex

(
Ex
(
e−σB ◦ θσ{0} |Fσ{0}

))
= Ex

(
EMσ{0}

(
e−σB

))
= Ex

(
E0

(
e−σB

))
= Ex (ϕ(0)) = 0.

Consequently ϕ(x) = 0, which eventually yields that B is polar with respect to M . That
completes the proof.

4 Signed radial process of dBMV

Let (E ,F ) be in Theorem 3.5 and M be its associated dBMV. This section is devoted
to obtaining the expression of the signed radial process induced by M . Define a map
u : E 7→ R as follows:

u(x) :=

{
|x|, x = (x1, x2, x3, 0) ∈ R3,

−r, x = (0, 0, 0, r) ∈ R+,
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and let Yt := u(Mt) for any t ≥ 0. Then Y := (Yt)t≥0 is the so-called signed radial process

of M . Set `(p)ρ,γ := m ◦ u−1, which is a fully supported Radon measure on R. In practise,
one can easily obtain

`(p)ρ,γ(dr) =
e−2γ|r|

π
dr|(0,∞) + p · ρ(−r)dr|(−∞,0). (4.1)

Hereafter we will write `(p)ρ,γ as ` for short if no confusions caused.

Proposition 4.1. Y = (Yt)t≥0 is an `-symmetric diffusion process on R. It is associated
with the regular Dirichlet form on L2(R, `):

FY = {f ∈ L2(R, `) : f ′ ∈ L2(R, `)},

E Y (f, g) =
1

2

∫
R

f ′(x)g′(x)`(dx), f, g ∈ FY ,
(4.2)

where f ′ stand for the weak derivative of f for all f ∈ FY .

Proof. To prove Y is a Markov process, we apply [22, Theorem (13.5)]. It suffices to
show that for any bounded f ∈ Eu(R), there exists g ∈ Eu(R) such that

Pt(f ◦ u) = g ◦ u, (4.3)

where Eu(R) is the family of all universally measurable functions on R and Pt is the
semigroup of M . By the rotational invariance of M3, it is not hard to find that for any
x, y ∈ E with u(x) = u(y) =: r,∫

E

f(u(·))Px(Mt ∈ ·) =

∫
E

f(u(·))Py(Mt ∈ ·).

This implies Pt(f ◦ u)(x) = Pt(f ◦ u)(y). Set g(r) := Pt(f ◦ u)(x), which is a well-defined
function on R since u is surjective. The universal measurability of g is derived as follows.
Since u is continuous, it follows that f ◦ u ∈ Eu(E) and thus Pt(f ◦ u) ∈ Eu(E). For any
set A ∈ B(R), let B+ := g−1(A) ∩ (0,∞) and B− := g−1(A) ∩ (−∞, 0]. We have

ι3(B+ × S2) ∪ ι+(−B−) = (Pt(f ◦ u))−1(A) ∈ Eu(E).

Hence ι3(B+ × S2) = (Pt(f ◦ u))−1(A) ∩ (R3 \ {0}) ∈ Eu(E) and ι+(−B−) = (Pt(f ◦
u))−1(A) ∩R+ ∈ Eu(E). This leads to B+, B− ∈ Eu(R) by the continuity of ι+, ι3. There-
fore, g−1(A) = B+ ∪B− ∈ Eu(R).

By applying [22, Theorem (13.5)], we can conclude that Y is a Markov process and
its transition semigroup is

PYt f := g,

where f, g are in (4.3). Moreover, for any two functions f1, f2, we have

(PYt f1, f2)`

= ((PYt f1) ◦ u, f2 ◦ u)m = (Pt(f1 ◦ u), f2 ◦ u)m = (f1 ◦ u, Pt(f2 ◦ u))m = (f1, P
Y
t f2)`.

This leads to the symmetry of Y . By means of Yosida approximation, we can easily obtain
that Y is associated with the Dirichlet form on L2(R, `):

FY = {f : f ◦ u ∈ F},
E Y (f, f) = E (f ◦ u, f ◦ u), f ∈ FY .

A simple computation gives the expression (4.2) of (E Y ,FY ). The regularity of (E Y ,FY )

is also clear by virtue of [19, Corollary 3.11]. That completes the proof.
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Remark 4.2. By the expression of (E Y ,FY ), one can easily figure out (see e.g. [19])
that Y is an irreducible diffusion on R, whose speed measure is ` and scale function sY

is as follows: For r ≥ 0,

sY (r) =


πe2γr − π

2γ
, when γ 6= 0,

πr, when γ = 0;

and for r < 0,

sY (r) = −
∫ 0

r

1

p · ρ(−s)
ds.

Not surprisingly, Y is recurrent if and only if 1/ρ /∈ L1(R+) and γ ≥ 0. Otherwise
Y is transient. A straightforward computation yields that the infinities ±∞ are not
approachable in finite time (cf. (2.14)) and hence Y is conservative. This leads to the
conservativeness of M .

On the other hand, the symmetrizing measures of Y are unique up to a constant
in the sense that if a non-trivial measure µ is a symmetric measure of Y then µ = c · `
for some constant c (see e.g. [24]). This yields that for different p, Y is different and
therefore so is M .

From now on we impose the following condition on ρ:

(ACP) ρ is absolutely continuous and ρ(r) > 0 for all r ∈ R+.

Note that (ACP) indicates (3.2). Denote the family of probability measures for Y by
{PYr : r ∈ R}. We next prove that Y is a semi-martingale with the quadratic variation
process 〈Y 〉t = t and figure out the associated SDE for Y . The symmetric semi-martingale
local time of Y at 0 is denoted by L0

t (Y ), that is,

L0
t (Y ) := lim

ε↓0

1

2ε

∫ t

0

1(−ε,ε)(Ys)d〈Y 〉s = lim
ε↓0

1

2ε

∫ t

0

1(−ε,ε)(Ys)ds, ∀t ≥ 0.

The main result of this section is as follows, and in its proof the celebrated Fukushima’s
decomposition is employed.

Theorem 4.3. Assume that (ACP) holds. The signed radial process Y is a semi-
martingale whose quadratic variation process is 〈Y 〉t = t. Furthermore for any r ∈ R,
Y = (Yt)t≥0 under the probability measure PYr is the unique solution to the following
well-posed SDE (that is, this SDE has weak solutions and the pathwise uniqueness holds
for it.):

dYt = dWt + b(Yt)dt+
1− πpρ(0)

1 + πpρ(0)
· dL0

t (Y ),

Y0 = r,

(4.4)

where W = (Wt)t≥0 is a standard Brownian motion, b is defined by

b(r) :=


−γ, r ≥ 0,

−ρ′(−r)
2ρ(−r)

, r < 0,
(4.5)

and L0(Y ) = (L0
t (Y ))t≥0 is the symmetric semi-martingale local time of Y at 0.

Proof. We first show that Y is a semi-martingale. Take f(r) := r ∈ FY
loc and consider the

Fukushima’s decomposition for f :

f(Yt)− f(Y0) = Mf
t +Nf

t .
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The martingale part Mf is determined by its energy measure µ〈f〉 and for any g ∈ C∞c (R)

(see [14, Theorem 5.5.2]),∫
gdµ〈f〉 = 2E Y (fg, f)− E Y (f2, g) =

∫
gd`.

It follows that µ〈f〉 = ` and hence Mf has the same distribution as standard Brownian
motion. For the zero-energy part Nf , we note

−E Y (f, g) = −1

2

∫
R

g′(r)`(dr) =
1− πpρ(0)

2π
·g(0)−

∫ 0

−∞
g(r)

ρ′(−r)
2ρ(r)

`(dr)−γ
∫ ∞

0

g(r)`(dr).

Thus [14, Corollary 5.5.1] yields that Nf is of bounded variation, and its associated
signed smooth measure is

µNu =
1− πpρ(0)

2π
· δ0 + b(r)`(dr).

Eventually, we can conclude

Yt − Y0 = Wt +

∫ t

0

b(Ys)ds+
1− πpρ(0)

2π
· l0t , t ≥ 0, (4.6)

where (Wt) is a certain standard Brownian motion and l0 := (l0t )t≥0 is the the local time
of Y at 0, i.e. is the positive continuous additive functional of M having Revuz measure
δ0. Particularly, Y is a semi-martingale and 〈Y 〉t = t.

Since ρ(r) > 0 for all r ≥ 0, it is straightforward to verify that b ∈ L1
loc(R). The

well-posedness of (4.4) is concluded by e.g. [17, Theorem 7.1]. It suffices to note that
[17, Lemma 4.3] yields

L0
t (Y ) =

1 + πpρ(0)

2π
· l0t .

Therefore (4.6) implies that Y is a weak solution to (4.4). That completes the proof.

The weight parameter p appearing in the symmetric measure m(p) plays a role of
so-called “skew” constant. When ρ ≡ 1 and γ = 0, Y is noting but the well-known
skew Brownian motion with the skew constant 1

1+πp , which behaves like a Brownian
motion except for the sign of each excursion is chosen by using an independent Bernoulli
random variable of the parameter 1

1+πp . For general ρ and γ, Y is called a general skew
Brownian motion in a recent work [17]. The non-skew case means that the last term
in (4.4) disappears, i.e. p = 1

πρ(0) , and clearly the following corollary holds.

Corollary 4.4. When p = 1
πρ(0) , Y is the unique solution to the SDE

dYt = dWt + b(Yt)dt,

where W is a standard Brownian motion and b is defined by (4.5).

We end this section with a remark for the condition (ACP). Firstly, ρ > 0 is only
employed to conclude the well-posedness of (4.4). In fact when ρ(0) = 0 (for example
ρ(r) := |r|α for a constant 0 < α < 1), the other derivation still works and Y is a weak
solution to

dYt = dWt + b(Yt)dt+ dL0
t (Y ). (4.7)

Note that b is independent of p and for different p, Y is different as we explained in
Remark 4.2. These yield that (4.7) has infinite weak solutions. The point 0 where L0(Y )

locates is usually called a barrier for (4.7), as in the reduced case b ≡ 0 (though this
will not happen in (4.4) because b ≡ 0 implies that ρ is constant, which contradicts to
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ρ(0) = 0), the solution to (4.7) is nothing but the reflecting Brownian motion on R+.
At this time, Y runs on R+ and cannot go across the barrier 0 to reach the left axis.
However the presence of b in (4.7) leads to infinite solutions Y , which are all irreducible
as stated in Remark 4.2. That means Y starting from everywhere can reach every point
of R, and the barrier 0 is definitely fake for it. In [17, §7.2], this kind of barriers are
called pseudo barriers and we also refer more discussions about the equations (4.4)
and (4.7) to [17]. Secondly, the condition (ACP) can be weaken to

(BV) ρ is cadlag locally of bounded variation on R+.

Under (BV), let νρ be the signed Radon measure on (0,∞) induced by ρ and set µρ :=

µ̂ρ ◦ u−1 on (−∞, 0) with

µ̂ρ(dr) :=
νρ(dr)

ρ(r) + ρ(r−)
, r > 0,

where ρ(r−) is the left limit of ρ at r > 0. As stated in [17, Lemma 5.2], Y is still a
semi-martingale with 〈Y 〉t = t and a weak solution to the SDE:

dYt = dWt − γ1(0,∞)(Yt)dt+
1− πpρ(0)

1 + πpρ(0)
· dL0

t (Y ) +

∫
r∈(−∞,0)

µρ(dr)dL
r
t (Y ), (4.8)

where (Lrt )t≥0 is the symmetric local time of Y at r < 0. It is worth noting that (BV) is
the weakest assumption for the derivation of (4.8), whose well-posedness holds under
the following assumption with the convention ρ(0−) := ρ(0) (see e.g. [17, Lemma 6.3]):

(P) ρ(r), ρ(r−) > 0 for all r ∈ R+.

Clearly (ACP) implies (BV) and (P). If we denote the absolute continuous part and
singular part of µρ by bρ(r)dr and κρ respectively, i.e. µρ(dr) = bρ(r)dr + κρ(dr), then the
last term on the right hand side of (4.8) is equal to∫
r∈(−∞,0)

bρ(r)drdL
r
t (Y ) +

∫
r∈(−∞,0)

κρ(dr)dL
r
t (Y ) = bρ(Yt)dt+

∫
r∈(−∞,0)

κρ(dr)dL
r
t (Y )

by applying the occupation times formula. The condition (ACP) indicates κρ = 0 and
meanwhile (4.8) reduces to (4.4).

5 Short-time heat kernel estimate for dBMVs

In this section, utilizing the SDE characterization for the radial process of M derived
in Theorem 4.3, we establish the two-sided short-time heat kernel estimate for M , i.e.,
for t ≤ T with an arbitrary 0 < T < ∞. As in Proposition 3.15, p(t, x, y) denotes the
transition density of M with respect to m. Recall that | · | denotes the Euclidean distance
on R+ as well as on R3, and by slightly abusing the notation,

|x− y| := |x− 0|+ |y − 0|, x ∈ R3, y ∈ R+. (5.1)

Before we introduce the main result of this section, we restate the following definition
for Kato class functions (see, for instance, [6]):

Definition 5.1 (Kato class Kn,d). Given d ∈ N, we say a function f : Rn → R is in Kato
class Kn,d if

lim
r↓0

sup
x∈Rn

∫
|x−y|<r

|f(y)|
|x− y|d−2

dy = 0, for d ≥ 3,

lim
r↓0

sup
x∈Rn

∫
|x−y|<r

log
(
|x− y|−1

)
|f(y)| dy = 0, for d = 2,
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and

sup
x∈Rn

∫
|x−y|≤1

|f(y)| dy <∞, for d = 1.

Remark 5.2. We point out that in Definition 5.1, it is not necessary that n = d. Also,
Lq(Rd) ⊂

{
f : |f |2 ∈ Kd,d

}
) for all q ∈ (d,+∞].

Recall that Proposition 3.15 states the existence of the transition density p(t, x, y) of
M but in the sense of almost everywhere. The main result of this section below claims
its continuity and obtains its short time estimates. Note that every function g defined on
R+ is regarded as the one on R by imposing g|(−∞,0) = 0 if no confusions caused.

Theorem 5.3. Assume (3.3), (ACP) and that

ρ′

ρ
∈ {f : |f |2 ∈ K1,1}. (5.2)

Then the transition density p(t, x, y) of the distorted Brownian motion with varying
dimension M with respect to m is jointly continuous on (0,∞)×E ×E. Furthermore, for
any fixed 0 < T <∞, there exist positive constants Ci, 1 ≤ i ≤ 12, depending on ρ, γ, p, T
such that p(t, x, y) satisfies the following estimates: When t ∈ (0, T ],

(i) For x, y ∈ R+,

C1√
tρ(|y|)

e−
C2|x−y|

2

t ≤ p(t, x, y) ≤ C3√
tρ(|y|)

e−
C4|x−y|

2

t ; (5.3)

(ii) For x ∈ R+ and y ∈ R3,

C5√
t
e2γ|y|−C6|x−y|

2

t ≤ p(t, x, y) ≤ C7√
t
e2γ|y|−C8|x−y|

2

t ; (5.4)

(iii) For x, y ∈ R3,

C9√
t
e2γ|y|−C10(|x|+|y|)2

t + q(t, x, y) ≤ p(t, x, y) ≤ C11√
t

e2γ|y|−C12(|x|+|y|)2
t + q(t, x, y), (5.5)

where

q(t, x, y) =

√
2π

t3
|x||y|e−

γ2

2 t+γ(|x|+|y|)− |x−y|
2

2t , t > 0, x, y ∈ R3, (5.6)

is the transition density of killed distorted Brownian motion M3,0 (see the statement
after Definition 3.3) with respect to m3.

Remark 5.4. Remark 5.2 yields that if ρ′/ρ ∈ Lq(R+) for some q ∈ (1,+∞], then (5.2)
holds. An example satisfying all these assumptions is given in Example 3.2, i.e. ρ(r) :=

e−2αr/π for a constant α ∈ R. In this case, ρ′/ρ ≡ −2α ∈ L∞(R+).

The proof will be divided into several steps. To accomplish it, we prepare a lemma
concerning the short-time heat kernel estimate for the signed radial process Y .

Lemma 5.5. Assume the same assumptions as Theorem 5.3 hold. Set a measure on R

̂̀(dr) :=
2

1 + κ
dr|(−∞,0) +

2

1− κ
dr|(0,∞)

with κ := (1− πpρ(0)) / (1 + πpρ(0)). Then the signed radial process Y has a jointly
continuous transition density function p̂Y (t, r1, r2) with respect to ̂̀, i.e. PYr1(Yt ∈ dr2) =

p̂Y (t, r1, r2)̂̀(dr2) for all t > 0 and r1, r2 ∈ R, and p̂Y is jointly continuous on (0,∞)×R×R.
Furthermore, for every T ≥ 0, there exist constants Ci > 0, 13 ≤ i ≤ 16, such that the
following estimate holds:

C13√
t

e−
C14|r1−r2|

2

t ≤ p̂Y (t, r1, r2) ≤ C15√
t

e−
C16|r1−r2|

2

t , 0 < t ≤ T, r1, r2 ∈ R. (5.7)
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Proof. The idea of the proof to the estimate (5.7) is refereed to, for instance, [25,
Theorem A]. Note that −1 < κ < 1. Let Z be the skew Brownian motion

dZt = dWt + κ · dL0
t (Z),

where W is a certain one-dimensional standard Brownian motion and L0
t (Z) is the

symmetric semimartingale local time of Z at 0. Clearly Z is symmetric with respect to ̂̀
(see e.g. [15]) and the transition density function pZ(t, r1, r2) of Z with respect to ̂̀ is
explicitly known as follows: (see e.g. [21, III.(1.16)]):

pZ(t, r1, r2)

=
1− κ

2
[gt(r2 − r1) + κgt(r2 + r1)] 1{r1>0,r2>0} +

1− κ2

2
gt(r2 − r1)1{r1≥0,r2≤0}

+
1 + κ

2
[gt(r2 − r1)− κgt(r2 + r1)] 1{r1<0,r2<0} +

1− κ2

2
gt(r2 − r1)1{r1≤0,r2≥0},

(5.8)

where gt(r) = e−r
2/2t/

√
2πt. Clearly pZ is jointly continuous on (0,∞)×R×R and smooth

at r1, r2 6= 0. One can verify directly that for t > 0 and r1 6= 0,

R 3 r2 7→ ∇r1pZ(t, r1, r2) (5.9)

is continuous, and for some constants c > 0 and 0 < α < β the following inequalities hold
for t ∈ (0, T ]:

pZ(t, r1, r2) ≤ ct−1/2 exp(−α|r1 − r2|2/t), r1, r2 ∈ R, (5.10)

and
|∇r1pZ(t, r1, r2)| ≤ ct−1 exp(−β|r1 − r2|2/t), r1 6= 0, r2 ∈ R. (5.11)

The diffusion process Y can be obtained from Z through a drift perturbation (i.e.
Girsanov transform) induce by b given by (4.5). Note that (5.2) leads to |b|2 ∈ K1,1. We
now set k0(t, r1, r2) = pZ(t, r1, r2), and then inductively define

kn(t, r1, r2) :=

∫ t

0

∫
R

kn−1(t− s, r1, r3) · b(r3) · ∇r3pZ(s, r3, r2)dr3ds, for n ≥ 1. (5.12)

Before we proceed with our proof, we first record the following computation: Since
|b|2 ∈ K1,1, it holds (∫

R

|b(r3)|2e−2(β−α)|r2−r3|2/T dr3

)1/2

=

( ∞∑
i=0

∫
i≤|r3−r2|≤i+1

|b(r3)|2e−2(β−α)|r2−r3|2/T dr3

)1/2

≤

( ∞∑
i=0

e−2(β−α)i2/T

∫
i≤|r3−r2|≤i+1

|b(r3)|2 dr3

)1/2
(5.2)
< ∞.

Thus we set that for some 0 < c1 <∞,(∫
R

|b(r3)|2e−2(β−α)|r2−r3|2/T dr3

)1/2

< c1. (5.13)

Assuming that for some n ≥ 1, for all j = 0, · · · , n− 1, there exist c2 > 0 and 0 < c3 < 1/2

such that

|kj(t, r1, r2)| ≤ c2 · cj3 · t−1/2 exp(−α|r1 − r2|2/t), 0 < t ≤ T, r1, r2 ∈ R.
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Clearly (5.10) tells us that this holds for n = 1. In view of (5.10) and (5.11), by induction
we have on 0 < s < t ≤ T ,

|kn(t, r1, r2)|

=

∣∣∣∣∫ t

0

∫
06=r3∈R

kn−1(t− s, r1, r3) · b(r3) · ∇r3pZ(s, r3, r2)dr3ds

∣∣∣∣
≤ c · c2 · cn−1

3 ·
∫ t

0

∫
R

1√
t− s

e−
α|r1−r3|

2

t−s · |b(r3)| · 1

s
e−

β|r3−r2|
2

s dr3ds

= c · c2 · cn−1
3

∫ t

0

1

s3/4

1

(t− s)1/4

∫
R

1

(t− s)1/4
e−

α|r1−r3|
2

t−s |b(r3)| 1

s1/4
e−

β|r3−r2|
2

s dr3ds

≤ c · c2 · cn−1
3

∫ t

0

1

s3/4

1

(t− s)1/4
ds ·

(∫
R

1√
t− s

e−
2α|r1−r3|

2

t−s · 1√
s

e−
2α|r3−r2|

2

s dr3

)1/2

×
(∫

R

|b(r3)|2e−
2(β−α)|r2−r3|

2

T dr3

)1/2

.

A straightforward computation yields that
∫ t

0
1/
(
s3/4(t− s)1/4

)
ds is bounded by a con-

stant independent of t. It follows from the Chapman-Kolmogorov equation for Gaussian
densities and (5.13) that for some constant c4 > 0,

|kn(t, r1, r2)| ≤ c4 · cn−1
3

1

t1/4
e−

α|r1−r2|
2

t .

Therefore, by choosing t0 ∈ (0, T ] small enough such that t1/40 < (c2c3)/c4, it holds for all
n ∈ N:

|kn(t, r1, r2)| ≤ c2 · cn3 · t−1/2 exp(−α|r1 − r2|2/t), 0 < t ≤ t0, r1, r2 ∈ R. (5.14)

It then follows that
∑∞
n=0 kn(t, r1, r2) converges locally uniformly on (t, r1, r2) ∈ (0, t0]×

R×R. From here using the exact same argument in [20, Lemma 3.17], one can see that∑∞
n=0 kn(t, r1, r2) is absolutely convergent for (t, r1, r2) ∈ (0, T ]×R×R and indeed the

transition density of Y with respect to ̂̀, i.e.

p̂Y (t, r1, r2) =

∞∑
n=0

kn(t, r1, r2), 0 < t ≤ T, r1, r2 ∈ R.

Furthermore, it holds for some constant c6 > 0 such that

p̂Y (t, r1, r2) ≤ c6t−1/2 exp
(
−α|r1 − r2|2/t

)
, 0 < t ≤ T, r1, r2 ∈ R. (5.15)

By a standard chain argument (see, e.g., [20, pp. 36-37]), it is not hard to see that the
same Gaussian type lower bound holds.

Finally let us prove the joint continuity of p̂Y on (0,∞)×R×R. We first show it for
t ∈ (0, t0]. When t ≤ 0, we write kn(t, r1, r2) = 0 for all n ≥ 0 for convenience and (5.12)
becomes

kn(t, r1, r2) :=

∫ t0

0

∫
R

kn−1(t− s, r1, r3) · b(r3) · ∇r3pZ(s, r3, r2)dr3ds. (5.16)

For the sake of the local uniform convergence of
∑∞
n=0 kn(t, r1, r2), it suffices to show

the joint continuity of kn. To accomplish this, we utilize induction and clearly k0 = pZ

is jointly continuous on (0, t0]×R×R. Assume this holds for kn−1. Take two arbitrary
constants R > 0 and δ < t0/2 and we turn to derive the joint continuity of kn for
δ ≤ t ≤ t0 and 0 ≤ |r1|, |r2| ≤ R. To do this, fix a small constant ε < δ/2 and split the
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integrand on the right hand side of (5.16) into three parts by multiplying I+(s) := 1(0,ε](s),
Iε(s) := 1(ε,t−ε)(s) and I−(s) := 1[t−ε,t](s) respectively. Denote

J±,ε(t, r1, r2) :=

∫ t0

0

∫
R

I±,ε(s)kn−1(t− s, r1, r3) · b(r3) · ∇r3pZ(s, r3, r2)dr3ds. (5.17)

Then kn(t, r1, r2) = J+(t, r1, r2) + Jε(t, r1, r2) + J−(t, r1, r2). Due to the joint continuity
of kn−1 and the continuity of (5.9), the integrands on the right hand side of (5.17) are
jointly continuous at (t, r1, r2) for almost every (s, r3) (except for s = ε, t − ε or t, and
r3 = 0). Now we show the joint continuity of J±,ε for δ ≤ t ≤ t0 and 0 ≤ |r1|, |r2| ≤ R by
utilizing dominated convergence theorem respectively. We derive the upper bound for
the integrand in Jε firstly. Note that for s ∈ (ε, t− ε), (5.11) and (5.14) yield

|kn−1(t− s, r1, r3)| . 1√
ε

and ∣∣∇r3pZ(s, r3, r2)
∣∣ . 1

ε
exp(−β|r3 − r2|2/t0)

≤ 1

ε

(
1{r:|r|≤2R}(r3) + 1{r:|r|>2R}(r3) · exp(−β|r3|2

4t0
)

)
,

where the last inequality holds since for |r3| > 2R > R ≥ |r2|, |r3− r2| ≥ |r3|/2. Obviously

1

ε3/2
b(r3)

(
1{r:|r|≤2R}(r3) + 1{r:|r|>2R}(r3) · exp(−β|r3|2

4t0
)

)
∈ L1([0, t0]×R)

due to |b|2 ∈ K1,1. This yields the joint continuity of Jε. To treat J−, we utilize substitution
as follows

J−(t, r1, r2) =

∫ t

t−ε

∫
R

kn−1(t− s, r1, r3) · b(r3) · ∇r3pZ(s, r3, r2)dr3ds

=

∫ ε

0

∫
R

kn−1(s, r1, r3) · b(r3) · ∇r3pZ(t− s, r3, r2)dr3ds.

Analogically |kn−1(s, r1, r3)| . s−1/2 ∈ L1([0, t0]) and∣∣∇r3pZ(t− s, r3, r2)
∣∣ . 2

δ
exp(−β|r3 − r2|2/t0)

≤ 2

δ

(
1{r:|r|≤2R}(r3) + 1{r:|r|>2R}(r3) · exp(−β|r3|2

4t0
)

)
.

Hence J− is jointly continuous. Finally, in the following we use generalized dominated
convergence theorem (see, e.g., [12, §2.3, Exercise 20]) to establish the continuity of J+.
Since s ≤ ε < δ/2 and δ ≤ t ≤ t0, it follows from (5.14) that

|kn−1(t− s, r1, r3)| .
√

2

δ
exp

(
−α|r1 − r3|2/t0

)
≤
√

2

δ

(
1{r:|r|≤2R}(r3) + 1{r:|r|>2R}(r3) · exp(−α|r3|2

4t0
)

)
=: g(r3).

Then for s ≤ ε,∣∣kn−1(t− s, r1, r3) · b(r3) · ∇r3pZ(s, r3, r2)
∣∣ . g(r3)|b(r3)| · |∇r3pZ(s, r3, r2)|. (5.18)

For notation convenience, in this proof we denote by

hr2(s, r3) := g(r3)b(r3)∇r3pZ(s, r3, r2),
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and
ft,r2(s, r3) := kn−1(t− s, r1, r3)b(r3)∇r3pZ(s, r3, r2).

In addition, we set

hr2(s, r3) := 0, ft,r2(s, r3) := 0 when r2 = 0, or r3 = 0, or r3 = ±r2. (5.19)

For an arbitrary pair of fixed (t∗, r∗2) with δ ≤ t∗ ≤ t0 and r∗2 ∈ R, the joint continuity of
ft,r2(s, r3) at t = t∗, r2 = r∗2 is equivalent to:

lim
t→t∗
r2→r∗2

∫
R

∫ ε

0

ft,r2(s, r3) dsdr3 =

∫
R

∫ ε

0

ft∗,r∗2 (s, r3) dsdr3. (5.20)

Next we show (5.20) using generalized dominated convergence theorem. Towards this,
we need to verify the following conditions (i)-(iv):

(i). |ft,r2(s, r3)| ≤ |ht,r2(s, r3)|, for all 0 < s ≤ ε, and all r3 ∈ R.
(ii).

lim
t→t∗
r2→r∗2

ft,r2(s, r3) = ft∗,r∗2 (s, r3), for all 0 < s ≤ ε and all r3 6= 0,±r∗2 . (5.21)

(iii).

lim
r2→r∗2

hr2(s, r3) = hr∗2 (s, r3), for all 0 < s ≤ ε and all r3 6= 0,±r∗2 . (5.22)

(iv).

lim
r2→r∗2

∫
R

∫ ε

0

hr2(s, r3) dsdr3 =

∫
R

∫ ε

0

hr∗2 (s, r3) dsdr3. (5.23)

(i) obviously holds in view of (5.18). (5.21) and (5.22) are also both obviously true. Finally,
to verify (iv), i.e.,

lim
r2→r∗2

∫
R

g(r3)b(r3)

∫ ε

0

∇r3pZ(s, r3, r2) dsdr3 =

∫
R

g(r3)b(r3)

∫ ε

0

∇r3pZ(s, r3, r
∗
2) dsdr3.

We first observe that for a.e. r3 (in fact, except at r3 = ±r2 or 0), the mapping

r2 7→
∫ ε

0

|∇r3pZ(s, r3, r2)|ds (5.24)

is continuous. Furthermore, for r3 6= 0 with r2 + r3 6= 0 and r2 6= r3, it follows from (5.8)
that

|∇r3pZ(s, r3, r2)| ≤ 4

(∣∣∣∣−r2 − r3

s
gs(r2 − r3)

∣∣∣∣+

∣∣∣∣r2 + r3

s
gs(r2 + r3)

∣∣∣∣) . (5.25)

By computation we have

|r2 − r3|
∫ ε

0

gs(r2 − r3)

s
ds =

1√
2π

∫ ∞
|r2−r3|2

ε

e−s̃/2√
s̃
ds̃ ≤ 1,

where for the “ = ” we use the substitution s̃ := |r2 − r3|2/s. Similarly,

|r2 + r3|
∫ ε

0

gs(r2 + r3)

s
ds =

1√
2π

∫ ∞
|r2+r3|2

ε

e−s̃/2√
s̃
ds̃ ≤ 1,

with the substitution s̃ := |r2 + r3|2/s. Plugging the above upper bounds back into (5.25),
we get

|∇r3pZ(s, r3, r2)| ≤ 8, for all (r2, r3) with r3 6= 0, or ± r2.
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Finally, in order to claim (5.23) using dominated convergence theorem, we observe
that g(r3)b(r3) ∈ L1(R). This fact together with (5.19) establishes (5.23). Now with all
(i)-(iv) having been verified, the joint continuity of J+ is the consequence of generalized
dominated convergence theorem (see, e.g., [12, §2.3, Exercise 20]). By letting δ ↓ 0 and
R ↑ ∞, we eventually conclude the joint continuity of kn on (0, t0]×R×R. This leads to
the joint continuity of p̂Y on (0, t0]×R×R. For t0 ≤ t ≤ 2t0, note that

p̂Y (t, r1, r2) =

∫
R

p̂Y (t0, r1, r3)p̂Y (t− t0, r3, r2)̂̀(dr3)

and p̂Y is bounded by (5.15). Then the dominated convergence theorem indicates the
joint continuity of p̂Y for t ∈ [t0, 2t0]. By repeating this argument, one can eventually
conclude the joint continuity of p̂Y on (0,∞)×R×R. This completes the proof.

Remark 5.6. Clearly,

p̃Y (t, r1, r2) :=
2

1 + κ
p̂Y (t, r1, r2) · 1{r2<0} +

2

1− κ
p̂Y (t, r1, r2) · 1{r2>0}

is the transition density function of Y with respect to the Lebesgue measure. Note that
p̃Y is not continuous at r1 = 0 or r2 = 0, unless κ = 0, i.e. πpρ(0) = 1. It is easy to figure
out that p̃Y satisfies the same Gaussian type estimate as (5.7) for r1, r2 6= 0.

The following corollary shows the joint continuity of the transition density function of
Y with respect to its symmetric measure `.

Corollary 5.7. Let ` be the symmetric measure (4.1) of Y . Then Y has a jointly con-
tinuous transition density function pY (t, r1, r2) with respect to `, i.e. PYr1(Yt ∈ dr2) =

pY (t, r1, r2)`(dr2) for all t > 0 and r1, r2 ∈ R, and pY is jointly continuous on (0,∞)×R×R.

Proof. It suffices to note that

pY (t, r1, r2) :=
2

(1 + κ)pρ(−r2)
p̂Y (t, r1, r2) · 1{r2<0} +

2πe2γ|r2|

1− κ
p̂Y (t, r1, r2) · 1{r2≥0},

which is continuous at r2 = 0. This completes the proof.

Now we turn to the proof of Theorem 5.3. Lemma 5.5 yields the two-sided estimates
on p̂(t, x, y) when x, y ∈ R+ since i+(Mt) = −Yt when Mt ∈ R+, and hence (5.3) can be
concluded.

Proof of (5.3). Fix x, y ∈ R+. Take arbitrary 0 ≤ a < b, we have∫
y∈R+,a≤|y|≤b

p(t, x, y)m(dy) = Px(Mt ∈ R+, a ≤ |Mt| ≤ b) = PY−|x|(a ≤ −Yt ≤ b)

=
2

1 + κ

∫ −a
−b

p̂Y (t,−|x|, r)dr =
2

1 + κ

∫ b

a

p̂Y (t,−|x|,−r)dr.

It follows from p(t, x, y) = p(t, x, ι+(|y|)) and m(dy)|R+
= p ·m+ ◦ ι−1

+ (dy) = pρ(|y|)d|y| that∫
y∈R+,a≤|y|≤b

p(t, x, y)m(dy) = p

∫
a≤|y|≤b

p(t, x, ι+(|y|))ρ(|y|)d|y|

and thus

p(t, x, y) =
2

(1 + κ)pρ(|y|)
p̂Y (t,−|x|,−|y|). (5.26)

Since ||x| − |y|| = |x− y|, Lemma 5.5 immediately yields that

c1√
t
e−c2|x−y|

2/t ≤ p̂Y (t,−|x|,−|y|) ≤ c3√
t
e−c4|x−y|

2/t, t ∈ (0, T ] and x, y ∈ R+.

Therefore the desired result (5.3) follows from (5.26).
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To prove (5.4), the crucial fact is that starting from x ∈ R+ (resp. y ∈ R3), M
must pass through the origin 0 before reaching y ∈ R3 (resp. x ∈ R+). As usual
σ{0} := inf{t > 0 : Mt = 0} denotes the first hitting time of {0} relative to M .

Proof of (5.4). Consider x ∈ R+ and y ∈ R3. We first note that in this case by the
symmetry of p(t, x, y) in x and y,

p(t, x, y) = p(t, y, x) =

∫ t

0

Py(σ{0} ∈ ds)p(t− s,0, x).

By the rotational invariance of 3-dimensional distorted Brownian motion X3, Py(σ{0} ∈
ds) only depends on |y|, therefore so does y 7→ p(t, x, y). For all 0 ≤ a < b and x ∈ R+,
using polar coordinates we have

2

1− κ

∫ b

a

p̂Y (t,−|x|, r)dr = P−|x|(a ≤ Yt ≤ b)

= Px(Mt ∈ R3 with a ≤ |Mt| ≤ b)

=

∫
y∈R3:a≤|y|≤b

p(t, x, y)m(dy).

(5.27)

Note that m(dy)|R3 =
(
hρ,γ(y)2|y|2d|y|dσ

)
◦ ι−1

3 , where σ is the surface measure on the

sphere S2, and the density function hρ,γ(y)2 = e−2γ|y|

4π2|y|2 only depends on |y| as well. Thus
the last term in (5.27) is equal to∫

a≤|y|≤b
p(t, x, y)hρ,γ(y)2|y|2d|y|

∫
S2

dσ =

∫
a≤|y|≤b

4π · p(t, x, y)hρ,γ(y)2|y|2d|y|.

This yields
2

1− κ
p̂Y (t,−|x|, |y|) = 4π|y|2p(t, x, y)hρ,γ(y)2. (5.28)

By Lemma 5.5 we can obtain that

c1√
t
e−c2(|x|+|y|)2/t ≤ p̂Y (t,−|x|, |y|) ≤ c3√

t
e−c4(|x|+|y|)2/t. (5.29)

In view of (5.1), |x − y| = |x| + |y| since x ∈ R+ and y ∈ R3. Eventually (5.4) can be
concluded from (5.28) and (5.29).

Next we study the case that both x and y are in R3. To continue, we first establish the
explicit density function (5.6) for 3-dimensional distorted Brownian motion M3,0 killed
upon hitting 0, for any time t > 0. Denote this transition density function by q(t, x, y). In
other words, for any non-negative function f ≥ 0 on R3 \ {0},∫

R3\{0}
q(t, x, y)f(y)m(dy) = Ex

(
f(Mt); t < σ{0}

)
.

For x = 0 or y = 0, we make the convention q(t, x, y) := 0. The following result is the
key ingredient of (5.5).

Lemma 5.8. It holds that for x, y ∈ R3 \ {0} and t > 0,

q(t, x, y) = e−
γ2

2 t · e−
|x−y|2

2t

(2πt)
3
2

· 1

hρ,γ(x)hρ,γ(y)
.

Proof. Theorem 2.6 tells us that M3,0 is identified with ι3(hW
γ), and it suffices to note

that the transition semigroup of hW γ is defined by (2.8).
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Now we have a position to complete the proof of (5.5).

Proof of (5.5). Consider x, y ∈ R3. Note that starting from x, before hitting 0, M has
the same distribution as that for ι3(X3), where X3 is the 3-dimensional dBM appearing
in §2. Thus q(t, x, y) gives the probability density that M starting from x hits y at time t
without hitting 0. As a consequence,

q̄(t, x, y) := p(t, x, y)− q(t, x, y), x, y ∈ R3. (5.30)

is the probability density for M starting from x hits 0 before ending up at y at time t,
and this yields

q̄(t, x, y) =

∫ t

0

p(t− s,0, y)Px(σ{0} ∈ ds).

As mentioned in the proof of (5.4), p(t− s,0, y) is a function in y depending only on |y|.
Therefore so is y 7→ q̄(t, x, y). Since q̄(t, x, y) = q̄(t, y, x), x 7→ q̄(t, x, y) also depends only
on |x|. For any b > a ≥ 0, it follows that

Px
(
σ{0} < t, Mt ∈ R3 with a ≤ |Mt| ≤ b

)
=

∫
a≤|y|≤b

q̄(t, x, y)m(dy)

= 4π

∫
a≤|y|≤b

q̄(t, x, y)hρ,γ(y)2|y|2d|y|.

On the other hand, Px
(
σ{0} < t, Mt ∈ R3 with a ≤ |Mt| ≤ b

)
is also equal to

PY|x|
(
σ{0} < t, a ≤ |Yt| ≤ b

)
=

2

1− κ

∫ t

0

(∫ b

a

p̂Y (t− s, 0, r)dr

)
PY|x|

(
σ{0} ∈ ds

)
.

This yields 4π|y|2q̄(t, x, y)hρ,γ(y)2 = 2
1−κ

∫ t
0
p̂Y (t − s, 0, |y|)PY|x|

(
σ{0} ∈ ds

)
and it follows

from Lemma 5.5 that

4π|y|2q̄(t, x, y)hρ,γ(y)2 ≤
∫ t

0

c̄1√
t− s

e−c̄2|y|
2/(t−s)PY|x|

(
σ{0} ∈ ds

)
≤ c̄3

∫ t

0

p̂Y (t− s, 0,−c4|y|)PY|x|
(
σ{0} ∈ ds

)
= c̄3 p̂

Y (t, |x|,−c̄4|y|)

≤ c̄5√
t
e−c̄6(|x|+|y|)2/t.

By a piece of similar argument, one can show that

4π|y|2q̄(t, x, y)hρ,γ(y)2 ≥ c̄7√
t
e−c̄8(|x|+|y|)2/t.

In other words, we have

c̄7

4π|y|2
√
t
e−c̄8(|x|+|y|)2/t ≤ q̄(t, x, y)hρ,γ(y)2 ≤ c̄5

4π|y|2
√
t
e−c̄6(|x|+|y|)2/t.

Since hρ,γ(y)2 = e−2γ|y|

4π2|y|2 , this yields

πc̄7√
t

e2γ|y|−[c̄8(|x|+|y|)2/t] ≤ q̄(t, x, y) ≤ πc̄5√
t

e2γ|y|−[c̄6(|x|+|y|)2/t]. (5.31)

Combining (5.31) with Lemma 5.8, also in view of (5.30), we get for x, y ∈ R3 that

πc̄7√
t

e2γ|y|−[c̄8(|x|+|y|)2/t] + q(t, x, y) ≤ p(t, x, y) ≤ πc̄5√
t

e2γ|y|−[c̄6(|x|+|y|)2/t] + q(t, x, y).

This completes the proof of (5.5).
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Finally we prove the joint continuity of p(t, x, y).

Proof of joint continuity. Clearly, (5.26) and (5.28) tell us

p(t, x, y) =


2

(1 + κ)pρ(|y|)
p̂Y (t,−|x|,−|y|), x, y ∈ R+,

2π

1− κ
e2γ|y|p̂Y (t,−|x|, |y|), x ∈ R+, y ∈ R3.

Since p(t, x, y) = p(t, y, x), it is straightforward to verify the joint continuity for x ∈
R+, y ∈ E and x ∈ E, y ∈ R3. Now consider the case x, y ∈ R3. Note that q is jointly
continuous by its explicit expression (5.6). It suffices to obtain the joint continuity of
q̄(t, x, y) = p(t, x, y)− q(t, x, y). To accomplish this, take 0 ≤ a < b and we have

Px(Mt ∈ R3, a ≤ |Mt| ≤ b) =

∫
a≤|y|≤b

q(t, x, y)m(dy) +

∫
a≤|y|≤b

q̄(t, x, y)m(dy).

The left hand side is also equal to

PY|x|(a ≤ Yt ≤ b) =
2

1− κ

∫ b

a

p̂Y (t, |x|, r)dr.

A straightforward computation yields∫
a≤|y|≤b

q(t, x, y)m(dy) =
e−

γ2t
2

(2πt)3/2
|x|eγ|x|−

|x|2
2t

∫ b

a

|y|e−γ|y|−
|y|2
2t χ

(
|x||y|
t

)
d|y|,

where χ(a) :=
∫ π

0
ea cos θ sin θdθ is clearly a continuous function in a ∈ R. Hence we can

obtain for x, y ∈ R3,

q̄(t, x, y) =
2π

1− κ
e2γ|y|p̂Y (t, |x|, |y|)− πe−

γ2t
2

(2πt)3/2
|x|eγ|x|−

|x|2
2t |y|eγ|y|−

|y|2
2t χ

(
|x||y|
t

)
. (5.32)

The joint continuity of q̄ is obvious by this explicit expression. This completes the
proof.

Remark 5.9. Note that q̄(t, x, y) in (5.32) depends only on |x| and |y|. It is worth pointing
out that for x, y ∈ R3, p(t, x, y) does not depend on |x| or |y| only, since neither does
q(t, x, y).
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