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Abstract

We propose a definition of directional multivariate subexponential and convolution
equivalent densities and find a useful characterization of these notions for a class of
integrable and almost radial decreasing functions. We apply this result to show that
the density of the absolutely continuous part of the compound Poisson measure built
on a given density f is directionally convolution equivalent and inherits its asymptotic
behaviour from f if and only if f is directionally convolution equivalent. We also extend
this characterization to the densities of more general infinitely divisible distributions
on Rd, d ≥ 1, which are not pure compound Poisson.
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1 Introduction and statement of results

1.1 Motivation, basic definition and related previous results

In the recent paper [28] the spatial asymptotics at infinity for the heat kernels of
non-local pseudo-differential operators (or transition densities of jump Lévy processes)
have been investigated. The key step in that paper was based on the observation, which
can be summarized as follows. Let f be a density of the finite measure on Rd, d ≥ 1,
which is uniformly comparable to the radial decreasing function (see the definition
below) and satisfies

f(tθ − y)

f(tθ)

t→∞−→ eγ(θ·y), y ∈ Rd,
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On directional convolution equivalent densities

for a given θ ∈ Sd−1 (the unit sphere in Rd) and γ ≥ 0, and let the map Kf : (0,∞) →
(0,∞] be defined by

Kf (r) := sup
|x|≥1

∫
|x−y|>r
|y|>r

f(x− y)f(y)

f(x)
dy.

Then the following implication holds: if

lim
r→∞

Kf (r) = 0, (1.1)

then

h(θ) :=

∫
Rd

eγ(θ·y)f(y)dy <∞ and lim
t→∞

fn∗(tθ)

f(tθ)
= nh(θ)n−1, n ∈ N, (1.2)

where fn? denotes the n-fold convolution of f . In [28] this implication was used to
derive the asymptotics for densities of compound Poisson measures and more general
convolution semigroups of measures on Rd. Although the condition (1.1) is very effective
in applications, the question about its optimality remains open. This was a primary
motivation for our present considerations.

The main goal of this paper is to show that (1.2) also implies (1.1), i.e. the condition
(1.1) in fact fully characterizes the convergence in (1.2) (Theorem 1.3 and Corollary 1.4).
We also want to look at (1.2) from a slightly different perspective – this condition can be
seen as a multivariate directional variant of the convergence known from the theory of
subexponential and convolution equivalent densities on (0,∞), see Klüppelberg [30] and
references therein. We define formally the class of directional convolution equivalent
densities Sd(θ, γ) on Rd, d ≥ 1, and analyse some of its properties. Our second main
result says that the density f which is uniformly comparable to a radial decreasing
function is in Sd(θ, γ) if and only if the density of the corresponding compound Poisson
measure belongs to Sd(θ, γ) and inherits its asymptotic behaviour from f (see Theorem
1.6 for precise statement). We also extend this characterization to the densities of fairly
general infinitely divisible distributions on Rd, d ≥ 1, which are not pure compound
Poisson, including those built on infinite Lévy measures (Theorem 1.7). The argument is
based on (1.1). Our new Theorem 1.3 is completely critical for the proof of these results.

Throughout we consider non-negative, non-zero functions f ∈ L1(Rd) (taken with
respect to the Lebesgue measure) that we call densities. We propose the following
definition.

Definition 1.1 (Directional subexponential and convolution equivalent densities).
Let f ∈ L1(Rd), f ≥ 0 and let θ ∈ Sd−1 and t0 > 0 be such that f(tθ) > 0, for t ≥ t0. We
say that f belongs to the class Sd(θ, γ) with γ ≥ 0 if

f(tθ − y)

f(tθ)

t→∞−→ eγ(θ·y), for every y ∈ Rd; (1.3)

h(θ) :=

∫
Rd

eγ(θ·y)f(y)dy <∞ and
f2?(tθ)

f(tθ)

t→∞−→ 2h(θ). (1.4)

The class Sd(θ, 0) will be called the class of subexponential densities in the direction
θ ∈ Sd−1. More generally, Sd(θ, γ), γ ≥ 0, will be called the class of convolution
equivalent densities with parameter γ in the direction θ ∈ Sd−1.

The study of the subexponential and convolution equivalent distributions on half-line
dates back to papers by Chistyakov [6], Athreya and Ney [1], Chover, Ney and Wainger
[7, 8] (see also the monographs [14] by Embrechts, Klüppelberg and Mikosch, and [18]
by Foss, Korshunov and Zachary, and further references therein). They were mainly
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investigated in connection with branching processes, renewal and queueing theory,
random walks, and infinitely divisible distributions. The key applications were based on
an analysis of the asymptotic behaviour of distributions of the so-called random sums
which were constructed for given initial distributions. A key example of such a random
sum is that of Poissonian type (the compound Poisson measure). A basic result obtained
for this example states that the compound Poisson distribution inherits its asymptotics
at infinity from the initial distribution if and only if this distribution is convolution
equivalent, see Embrechts, Goldie and Veraverbeke [12] for the subexponential case,
Embrechts and Goldie [13] for general convolution equivalent distributions, and Cline
[9] for an extension to more general random sums. More recently, similar asymptotic
results have been obtained for general one-dimensional infinitely divisible laws by
Sgibnev [45], Pakes [40, 41], Shimura and Watanabe [46], Watanabe [49] and Watanabe
and Yamamuro [51, 52] (see also Yakymiv [53]). The papers which are most closely
related to our present contributions are works by Klüppelberg [30], Finkelshtein and
Tkachov [15] and Watanabe [50] which develop the theory of convolution equivalent and
subexponential densities on the half-line and the line. Note, however, that the densities
have been considered much earlier by Chover, Ney and Wainger [7, 8]. See also Foss
and Zachary [19], Korshunov [34] and Wang and Wang [47] for applications.

Interestingly, there is no canonical definition of subexponential and convolution
equivalent distributions in Rd, d > 1. Depending on applications, one can find at least
three different definitions in the literature, see Cline and Resnick [10], Omey [38] (see
also Omey, Mallor and Santos [39]) and recent paper by Samorodnitsky and Sun [42].
We refer the reader to an excellent overview of the existing multivariate theory given in
[42]. Recently, the results from [38, 39] have been used by Knopova [31] to prove the
so-called ‘bell-like estimates’ for the densities of Lévy processes in Rd, and by Knopova
and Palmowski [33] to establish the asymptotics of the potential of some killed Markov
proceses (with applications to insurance models). The authors of [42] also applied
their approach to compute the asymptotic behaviour of the ruin probability in a certain
insurance model.

We are not aware of any previous papers dealing directly with convolution equivalent
densities in Rd, d > 1. Finkelshtein and Tkachov introduced in [15] the class of regular
subexponential densities on the line and used it to find an analogue of Kesten’s bound for
radial functions on Rd, d ≥ 1. The authors of that paper remark that even in the radial
case the study of the asymptotic behaviour of convolutions of multivariate densities is a
rather difficult and open problem (see discussion on p. 375 in [15]; see also comments
preceding Theorem 3 in [31]). It seems to be due to the fact that although the convolution
of two multivariate radial functions is still radial, its analysis cannot be directly reduced
to the study of univariate functions. In this paper, we propose a directional approach.
The results in [28] and our present contributions can be seen as a first attempt to this
problem.

Observe that the above definition allows one to consider the convolution equivalence
in any generalized cone in Rd centered at 0. Let E be an arbitrary non-empty subset of
the unit sphere Sd−1. By ΓE we denote the generalized cone in Rd centered at 0 and
based on E, i.e.

ΓE =

{
x ∈ Rd \ {0} :

x

|x|
∈ E

}
.

If f ∈ Sd(θ, γ) for every θ ∈ E, then it can be seen as a convolution equivalent density in
cone ΓE . Specifically, the choice ΓE = (0,∞)d links our framework with that of [38]. We
expect that such a flexibility will allow one to find various applications for directional
convolution equivalence, similar to those in [33] and [42]. Let us also remark that
Definition 1.1 naturally generalizes the definition for the densities on the real line (cf. e.g.
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[30, Definition 3]). The set (0,∞) is an example of a generalized cone in R. In general,
in this case one can consider E ⊂ S0 = {−1, 1}.

1.2 Presentation of our results and further discussion

In this paper we develop the concept of directional convolution equivalence for a class
of multivariate densities which are uniformly comparable to radial decreasing functions.
We say that the density f is almost radial decreasing if there exists a decreasing function
g : (0,∞) → (0,∞) such that f(x) � g(|x|), x ∈ Rd \ {0} (we say that g : (0,∞) → R

is decreasing if g(s) ≥ g(t) for all s, t > 0 such that s ≤ t; we never require strict
monotonicity). The function g is then called a profile of the density f . The notation
f(x) � h(x), x ∈ D, means that there exists a constant c ≥ 1 such that

1

c
h(x) 6 f(x) 6 ch(x), x ∈ D.

As we mentioned above, a sufficient condition for directional convolution equivalence,
given in terms of Kf , follows from results in [28].

Proposition 1.2. [28, Corollary 4 and Lemma 6(a)] Let f be an almost radial decreasing
density and let (1.3) holds with some θ ∈ Sd−1 and γ ≥ 0. Then the condition

lim
r→∞

Kf (r) = 0 (1.5)

implies that h(θ) <∞ and the convergence

lim
t→∞

fn∗(tθ − y)

f(tθ)
= eγ(θ·y)nh(θ)n−1, y ∈ Rd, n ∈ N, (1.6)

holds. In particular, f ∈ Sd(θ, γ).

Our first main result in this paper states that also the converse implication is true.
We need here some additional notation:

KA
f (r) := sup

|x|≥A

∫
|x−y|>r
|y|>r

f(x− y)f(y)

f(x)
dy, r ≥ A.

Clearly, K1
f (r) = Kf (r), r ≥ 1.

Theorem 1.3. Let the density f be such that there exist A ≥ 1 and a decreasing function
g : [A,∞) → (0,∞) satisfying f(x) � g(|x|), |x| ≥ A. Then the conjunction of (1.3) and
(1.4) implies

lim
r→∞

KA
f (r) = 0. (1.7)

In particular, if f is almost radial decreasing, then the conjunction of (1.3) and (1.4)
implies (1.5).

The following corollaries, which give the full characterization, are a direct conse-
quence of Proposition 1.2 and Theorem 1.3.

Corollary 1.4. Let f be an almost radial decreasing density and let (1.3) holds with
some θ ∈ Sd−1 and γ ≥ 0. Then f ∈ Sd(θ, γ) if and only if limr→∞Kf (r) = 0.

We illustrate this result by examples in Section 3.3. In Example 3.3 we prove that
if the density f satisfying (1.3) (with γ = 0) has a doubling property, then we always
have limr→∞Kf (r) = 0 and, in consequence, f ∈ Sd(θ, 0). In Example 3.4 we analyse
the density f on Rd, d ≥ 1, with the profile

g(r) = e−mr(1 ∨ r)−β , m > 0, β ≥ 0,
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which fulfils (1.3). We show that f ∈ Sd(θ,m) if and only if β > (d + 1)/2 (Proposition
3.5), cf. [30, Example to Corollary 2.2]. These examples demonstrate well the utility
of (1.7). The main advantage of the approach based on the map Kf (r) is that instead
of proving directly the difficult convergence in (1.4) we can just try to establish the
estimate which leads to (1.7).

The next corollary should be compared with analogous one-dimensional results in
[30, Lemma 3.1 (c)] and [15, Theorem 1.1].

Corollary 1.5. Let f be an almost radial decreasing density satisfying (1.3) with some
θ ∈ Sd−1 and γ ≥ 0. Then f ∈ Sd(θ, γ) if and only if h(θ) <∞ and the convergence (1.6)
holds.

We now present our theorems for densities of compound Poisson and more general
infinitely divisible distributions. Their proofs are based on an application of Theorem
1.3.

Let f ∈ L1(Rd) and let Pλ(dx), λ > 0, be the corresponding compound Poisson
measure on Rd which is given by

Pλ(dx) = e−λ‖f‖1δ0(dx) + pλ(x)dx,

where δ0(dx) is the Dirac delta measure and

pλ(x) = e−λ‖f‖1
∞∑
n=1

λn

n!
fn?(x). (1.8)

The following theorem is our second main result. It can be seen as a multivariate
Poissonian variant of the one-dimensional result in [30, Theorem 3.2].

Theorem 1.6. Let f ∈ L1(Rd, dx), f ≥ 0, be an almost radial decreasing density such
that (1.3) holds with some θ ∈ Sd−1 and γ ≥ 0. Then the following statements are
equivalent.

(a) f ∈ Sd(θ, γ);

(b) We have ∫
Rd
eγ(θ·y)f(y)dy <∞ (1.9)

and for every λ > 0,

lim
t→∞

pλ(tθ − y)

λf(tθ)
= exp

(
γ(θ · y) + λ

∫ (
eγ(θ·z) − 1

)
f(z)dz

)
, y ∈ Rd; (1.10)

(c) For some (every) λ > 0, pλ ∈ Sd(θ, γ) and lim sup|x|→∞
pλ(x)
f(x) <∞.

We also give a similar result for the densities of more general infinitely divisible
distributions on Rd, d ≥ 1, which are not pure compound Poisson. Let Pλ(dx), λ > 0, be
a measure on Rd which is (uniquely) determined by its Fourier transform

F(Pλ)(ξ) =

∫
Rd
eiξ·yPλ(dy) = exp(−λψ(ξ)), ξ ∈ Rd, (1.11)

where the exponent ψ is given by the Lévy–Khintchine formula

ψ(ξ) = −iξ · b+ ξ ·Aξ +

∫
Rd\{0}

(
1− eiξ·y + iξ · y1B(0,1)(y)

)
ν(dy), ξ ∈ Rd.
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Here b ∈ Rd, A is a symmetric non-negative definite d× d matrix and ν is a measure on
Rd \ {0} such that

∫
Rd\{0}(1 ∧ |x|

2)ν(dx) <∞ [43]. We also denote

φ(ξ) =

∫
Rd\{0}

(
1− eiξ·y + iξ · y1B(0,1)(y)

)
ν(dy), ξ ∈ Rd

for shorthand.
We have to impose some mild regularity assumptions on A and ν. We are able to

proceed in three general, disjoint cases:

(1) inf
|ξ|=1

ξ ·Aξ > 0 and ν is a finite measure;

(2) inf
|ξ|=1

ξ ·Aξ > 0, ν(Rd \ {0}) =∞ and there is λ0 > 0 such that
∫
Rd
e−λ0 Reφ(ξ)|ξ|dξ <∞;

(3) A ≡ 0, ν(Rd \ {0}) =∞ and there is λ0 > 0 such that
∫
Rd
e−λ0 Reφ(ξ)|ξ|dξ <∞.

To shorten the notation below, it is convenient to define Λ = (0,∞) in case (1), and
Λ = [λ0,∞) in cases (2) and (3) above. Under each of these three conditions, for every
λ ∈ Λ, the measures Pλ are absolutely continuous with respect to Lebesgue measure and
the corresponding densities pλ are bounded and continuous on Rd. Indeed, we always
have

∫
Rd
e−λReψ(ξ)dξ < ∞ for λ ∈ Λ and pλ can be expressed by the Fourier inversion

formula. In case (2) the same is true for every λ > 0, but due to singularity of the Lévy
measure ν near zero, we analyse the asymptotic behaviour of pλ for λ ∈ Λ = [λ0,∞) only.
Observe also that we do not need to consider separately the case when A ≡ 0, b 6= 0 and
ν is a non-zero finite measure (the compound Poisson distribution with drift). The result
for this case follows directly from Theorem 1.6 as we only need to shift the argument of
the density pλ defined in (1.8).

The next theorem for densities on Rd, d ≥ 1, can be seen as a directional variant of
the result known from the theory of infinitely divisible distributions on the real line, see
Sgibnev [45], Pakes [40, 41], Shimura and Watanabe [46], Watanabe [49], and Watanabe
and Yamamuro [51, 52]. A similar result has been obtained recently by Watanabe [50]
for densities of infinitely divisible distributions on the half-line. Denote: f1 := f ∧ 1.

Theorem 1.7. Let ν(dx) = f(x)dx, where f is an almost radial decreasing function such
that (1.3) holds with some θ ∈ Sd−1 and γ ≥ 0. Then, under each of the above three
conditions (1)–(3), the following statements are equivalent.

(a) f1 ∈ Sd(θ, γ);

(b) We have ∫
Rd
eγ(θ·y)f1(y)dy <∞, (1.12)

the expression

ψ(−iγθ) = −γ(θ · b)− γθ ·Aγθ +

∫
Rd\{0}

(
1− eγ(θ·y) + γ(θ · y)1B(0,1)(y)

)
f(y) dy

makes sense and for every λ ∈ Λ and y ∈ Rd,

lim
t→∞

pλ(tθ − y)

λf(tθ)
= exp (γ(θ · y)− λψ(−iγθ)) and lim sup

|x|→∞

pλ(x)

f(x)
<∞; (1.13)

(c) For some (every) λ ∈ Λ, pλ ∈ Sd(θ, γ) and lim sup|x|→∞
pλ(x)
f(x) <∞.

In the theorem above we consider absolutely continuous Lévy measures with almost
radial decreasing densities. We refer the reader to [50, Remark 3(iii)] for an interesting
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example of semistable infinitely divisible distribution on [0,∞) with absolutely contin-
uous Lévy measure. That distribution has subexponential density, while the density of
the corresponding Lévy measure – restricted to (1,∞) and normalized – is less regu-
lar. Moreover, it is proved in [50] that there are infinitely divisible distributions with
subexponential densities on [0,∞) whose Lévy measures are not absolutely continuous.

Our results cover the densities of the so-called isotropic unimodal distributions and
integrable functions that are uniformly comparable to such densities. Recall that a
probability measure µ on Rd, d ≥ 1, is called isotropic unimodal if µ(dx) = g(|x|)dx on
Rd \ {0} and (0,∞) 3 r 7→ g(r) is a decreasing function [48, Definition 1.1]. This class
of probability measures is commonly used in various applications. Just recently, it has
received much attention due to the remarkable progress in the potential theory of the
isotropic unimodal Lévy procesess, see Grzywny [20], Bogdan, Grzywny and Ryznar
[4, 5], Kulczycki and Ryznar [35, 36], Grzywny and Kwaśnicki [21] and references in
these papers.

Remark 1.8. Under the assumption that the measures Pλ, λ > 0, are isotropic (in
particular, the densities pλ are radial functions) the condition lim sup|x|→∞

pλ(x)
f(x) < ∞

can be removed from part (b) of Theorem 1.7. Indeed, in such a case this condition is
an easy consequence of the convergence in the direction θ of (1.13). This observation
essentially simplifies and shortens the proof of the implication (a)⇒ (b) in Theorem 1.7
for isotropic measures.

Radial decreasing and almost radial decreasing functions often appear in the litera-
ture concerning jump processes and related non-local operators, and their applications
to partial differential equations, models of mathematical physics and spectral theory.
Typically, they play the role of profiles and majorants for Lévy kernels and related objects.
The most recent progress includes equations involving convolution operators [16, 17],
heat kernels of unbounded pseudodifferential operators [3, 11, 27, 28, 29, 31, 32] and
the corresponding Schrödinger operators [2, 23, 26], structure of the spectrum and prop-
erties of eigenfunctions of non-local Schrödinger operators [22, 24, 25, 37]. Of course,
this list of references is far from being complete. Note in passing that the condition (1.5)
appeared first in [24], where it turned out to be a very useful tool in proving the fall-off
rates for eigenfunctions of non-local Schrödinger operators. We expect that due to an
increasing interest in models based on exponential functions, the classes Sd(θ, γ) and
our present results also will find applications in some of these areas.

2 Proof of our main results

For given f ∈ L1(Rd) and θ ∈ Sd−1 we denote

Gfθ (t, r) :=

∫
|tθ−y|>r
|y|>r

f(tθ − y)f(y)dy, t > 0, r > 0. (2.1)

We will need the following lemma.

Lemma 2.1. Let f ∈ L1(Rd), f ≥ 0, be such that there exist A ≥ 1 and a decreasing
function g : [A,∞)→ (0,∞) satisfying f(x) � g(|x|), |x| ≥ A, and let (1.3) and (1.4) hold
with some θ ∈ Sd−1 and γ ≥ 0. Then we have the following statements.

(a) For every fixed r ≥ A,

lim
t→∞

Gfθ (t, r)

f(tθ)
= 2

∫
|y|>r

eγ(θ·y)f(y)dy.

(b) For every fixed t0 > 1,
lim
r→∞

sup
t∈[1,t0]

Gfθ (t, r) = 0.
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Proof. We first show (a). Fix r ≥ A and suppose that t > 2r. We have

Gfθ (t, r)

f(tθ)
=

(∫
Rd

f(tθ − y)

f(tθ)
f(y)dy − 2

∫
Rd
eγ(θ·y)f(y)dy

)
+ 2

∫
|y|6r

eγ(θ·y)f(y)dy −

(∫
|tθ−y|6r

f(tθ − y)

f(tθ)
f(y)dy +

∫
|y|6r

f(tθ − y)

f(tθ)
f(y)dy

)

+ 2

∫
|y|>r

eγ(θ·y)f(y)dy,

which leads to

Gfθ (t, r)

f(tθ)
− 2

∫
|y|>r

eγ(θ·y)f(y)dy

=
f2?(tθ)

f(tθ)
− 2h(θ)

+ 2

∫
|y|6r

eγ(θ·y)f(y)dy −

(∫
|tθ−y|6r

f(tθ − y)

f(tθ)
f(y)dy +

∫
|y|6r

f(tθ − y)

f(tθ)
f(y)dy

)
.

By changing variables y = tθ − z in the second integral in the last line, we get

Gfθ (t, r)

f(tθ)
− 2

∫
|y|>r

eγ(θ·y)f(y)dy

=

(
f2?(tθ)

f(tθ)
− 2h(θ)

)
+ 2

∫
|y|6r

(
eγ(θ·y) − f(tθ − y)

f(tθ)

)
f(y)dy.

Due to assumption (1.4) the expression inside the first bracket on the right hand side
above converges to zero as t→∞. The last integral also goes to zero as t→∞. This is a
consequence of (1.3) and the Lebesgue dominated convergence theorem. As f ∈ L1(Rd),
it is enough to show that the function

eγ(θ·y) − f(tθ − y)

f(θt)

is uniformly bounded for |y| < r and sufficiently large t’s. Recall that there exist a
constant c ≥ 1 and a decreasing function g : [A,∞)→ (0,∞) such that

1

c
g(|x|) ≤ f(x) ≤ cg(|x|), |x| ≥ A. (2.2)

Since t > 2r and |y| < r (in particular, |tθ| = t ≥ A and |tθ − y| ≥ t− r ≥ A), we have∣∣∣∣eγ(θ·y) − f(tθ − y)

f(tθ)

∣∣∣∣ ≤ eγr + c2
g(t− r)
g(t)

.

Let xs = sθ, s > 0. Then |xt − xr| = t− r, |xt| = t and, in consequence,

g(t− r)
g(t)

=
g(|xt − xr|)
g(|xt|)

≤ c2 f(xt − xr)
f(xt)

.

By (1.3), there exists t0 > 2r such that for t > t0

f(xt − xr)
f(xt)

≤ 2eγr.
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Hence ∣∣∣∣eγ(θ·y) − f(tθ − y)

f(tθ)

∣∣∣∣ ≤ (1 + 2c4)eγr, |y| < r, t > t0.

This completes the proof of (a).
We now show (b). Fix t0 > 1 and observe that for every fixed r ≥ A the function

[1, t0] 3 t 7−→ Gfθ (t, r) is continuous. This is a consequence of the fact that

Gfθ (t, r) = f2?
r (tθ), with fr ∈ L1(Rd) ∩ L∞(Rd),

where fr := f1{|y|>r}, see [44, Theorem 14.8 (ii)] (the boundedness of fr follows from

the fact that f(x) has a profile g(|x|) for |x| ≥ A). Moreover, the function r 7−→ Gfθ (t, r)

is decreasing and Gfθ (t, r)
r→∞−→ 0, for every fixed t ∈ [1, t0]. It then follows from Dini’s

theorem that limr→∞ supt∈[1,t0]G
f
θ (t, r) = 0, which completes the proof.

We are now in a position to give a proof of our first main result.

Proof of Theorem 1.3. Let |x|, r ≥ A. Recall that there exists a decreasing profile g such
that (2.2) holds. With this we may write∫

|x−y|>r
|y|>r

f(x− y)

f(x)
f(y)dy 6 c3

∫
|x−y|>r
|y|>r

g(|x− y|)
g(|x|)

g(|y|)dy

= c3
∫∣∣|x|θ−y∣∣>r

|y|>r

g
(∣∣|x|θ − y∣∣)
g(|x|θ)

g(|y|)dy.

The last equality follows from the fact that the convolution of two radial functions is
again a radial function. By using the comparability of f and g once again, we obtain∫

|x−y|>r
|y|>r

f(x− y)

f(x)
f(y)dy 6 c6

∫∣∣|x|θ−y∣∣>r
|y|>r

f(|x|θ − y)

f(|x|θ)
f(y)dy.

The function on the right hand side of the above inequality depends on x only via |x|.
Hence

KA
f (r) 6 c6 sup

t≥A

∫
|tθ−y|>r
|y|>r

f(tθ − y)

f(tθ)
f(y)dy = c6 sup

t≥A

Gfθ (t, r)

f(tθ)
. (2.3)

Fix ε > 0. By the first part of (1.4), there exists r0 ≥ A such that

0 6
∫
|y|>r

eγ(θ·y)f(y)dy 6
ε

4c6
, for r > r0.

Moreover, by Lemma 2.1(a) we can find t0 > A such that for every t ≥ t0∣∣∣∣∣Gfθ (t, r0)

f(tθ)
− 2

∫
|y|>r0

eγ(θ·y)f(y)dy

∣∣∣∣∣ ≤ ε

2c6
.

Using the monotonicity of the function r 7−→ G(t, r) and these estimates, we get

0 6
Gfθ (t, r)

f(tθ)
6
Gfθ (t, r0)

f(tθ)

=
Gfθ (t, r0)

f(tθ)
− 2

∫
|y|>r0

eγ(θ·y)f(y)dy + 2

∫
|y|>r0

eγ(θ·y)f(y)dy

6
ε

c6
,
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for every t ≥ t0 and r ≥ r0. This means that

sup
t>t0

Gfθ (t, r)

f(tθ)
6

ε

c6
, for r > r0.

On the other hand, it follows from Lemma 2.1(b) and (2.2) that

0 ≤ sup
t∈[A,t0]

Gfθ (t, r)

f(tθ)
≤ c

g(t0)
sup

t∈[1,t0]

Gfθ (t, r)
r→∞−→ 0.

By (2.3) we may then conclude that

lim sup
r→∞

KA
f (r) ≤ c6

(
lim sup
r→∞

sup
t∈[A,t0]

Gfθ (t, r)

f(tθ)
+ lim sup

r→∞
sup
t≥t0

Gfθ (t, r)

f(tθ)

)
≤ ε.

This completes the proof.

3 Applications

3.1 Direct applications

We now give the comparability result which is a multivariate directional version of
[30, Lemma 1.2]. We first prove a lemma which is important for our further applications.

Lemma 3.1. Let f1, f2 ∈ L1(Rd) be such that f1, f2 ≥ 0 and satisfy the following condi-
tions:

(a) f1 is almost radial decreasing density;

(b) there exist A ≥ 1 and a decreasing function g2 : [A,∞)→ (0,∞) such that f2(x) �
g2(|x|), |x| ≥ A;

(c) both densities f1 and f2 satisfy the condition (1.3) with some θ ∈ Sd−1 and γ ≥ 0

and

0 < lim inf
|x|→∞

f1(x)

f2(x)
≤ lim sup
|x|→∞

f1(x)

f2(x)
<∞. (3.1)

If f2 ∈ Sd(θ, γ), then f1 ∈ Sd(θ, γ).

Proof. By the second part of (c), there exists a constant c ≥ 1 and r ≥ A such that

1

c
≤ f1(x)

f2(x)
≤ c, |x| ≥ r,

As the densities f1 and f2 have the profiles g1 and g2 which are positive and decreasing,
this means that there exists a constant c1 ≥ c such that

1

c1
≤ f1(x)

f2(x)
≤ c1, |x| ≥ A,

which implies the comparability KA
f1

(r) � KA
f2

(r), r ≥ A. Consequently, limr→∞KA
f1

(r) =

0 if and only if limr→∞KA
f2

(r) = 0.

Since f2 ∈ Sd(θ, γ), we get limr→∞KA
f2

(r) = 0, by Theorem 1.3. The above ob-

servation immediately gives limr→∞KA
f1

(r) = 0. Moreover, for 1 ≤ |x| ≤ A ≤ r we
have ∫

|x−y|>r
|y|>r

f1(x− y)f1(y)

f1(x)
dy ≤ c2

∫
|x−y|>r
|y|>r

g1(|x− y|)g1(|y|)
g1(|x|)

dy ≤ c2
∫
|y|>r

g1(|y|)dy,

which yields limr→∞Kf1(r) = 0. The assertion follows now directly from Proposition
1.2.

EJP 27 (2022), paper 65.
Page 10/19

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP790
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On directional convolution equivalent densities

The next proposition is a corollary from Lemma 3.1

Proposition 3.2. Let f1, f2 ∈ L1(Rd), f1, f2 ≥ 0, be the almost radial decreasing densi-
ties such that (3.1) holds. Assume, in addition, that both f1 and f2 satisfy condition (1.3)
with some θ ∈ Sd−1 and γ ≥ 0. Then f1 ∈ Sd(θ, γ) if and only if f2 ∈ Sd(θ, γ).

3.2 Compound Poisson and more general infinitely divisible distributions

We are now ready to prove our next theorems.

Proof of Theorem 1.6. (a)⇒ (b): First note that (1.9) holds by definition of Sd(θ, γ). By
Theorem 1.3 we have that Kf (r) → 0 as r → ∞. The convergence in (b) follows then
directly from [28, Lemma 7(a)]. The assumptions (B), (C) in [28] are satisfied as we
know that our density f is almost radial decreasing. We use this opportunity to correct
the typo in the condition (3) of the assumption (B). One should have ν({x : |x| > r/2})
instead of ν({x : |x| > r}) there.

(b)⇒ (c): Fix λ > 0. By (1.10), we have

lim
t→∞

pλ(tθ − y)

pλ(tθ)
= lim
t→∞

pλ(tθ − y)

λf(tθ)

λf(tθ)

pλ(tθ)
= eγ(θ·y), y ∈ Rd,

which shows that pλ satisfies (1.3). Since f is almost radial decreasing, there exist a
decreasing profile function g : (0,∞)→ (0,∞) and a constant c ≥ 1 such that

1

c
g(|x|) ≤ f(x) ≤ cg(|x|), x ∈ Rd \ {0} . (3.2)

In particular, for n ∈ N,

fn?(x) ≤ c2nfn?(|x|θ), x ∈ Rd \ {0} ,

which leads to estimate

pλ(x) = e−λ‖f‖1
∞∑
n=1

λn

n!
fn?(x)

≤ e(c2−1)λ‖f‖1e−c
2λ‖f‖1

∞∑
n=1

(c2λ)n

n!
fn?(|x|θ)

≤ e(c2−1)λ‖f‖1pc2λ(|x|θ).

Now, by (1.10) with y = 0 and (3.2), there is a constant c̃ > 0 such that for sufficiently
large |x|, we get

pc2λ(|x|θ) ≤ c̃f(|x|θ) ≤ c2c̃f(x).

This shows that lim sup|x|→∞
pλ(x)
f(x) < ∞ and we are left to show that pλ satisfies

(1.4). The first part of this condition follows from Tonelli’s theorem and the fact that∫
eγ(θ·y)fn?(y)dy =

(∫
eγ(θ·y)f(y)dy

)n
, n ∈ N. Indeed, we have∫

Rd
eγ(θ·y)pλ(y)dy = e−λ‖f‖1

∞∑
n=1

λn

n!

∫
Rd
eγ(θ·y)fn?(y)dy

= e−λ‖f‖1
∞∑
n=1

1

n!

(
λ

∫
Rd
eγ(θ·y)f(y)dy

)n
(3.3)

= e−λ‖f‖1
(
eλ

∫
eγ(θ·y)f(y)dy − 1

)
<∞.
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To see the second part of (1.4), we first notice that by direct calculation we get p2?
λ (x) =

p2λ(x)− 2e−λ‖f‖1pλ(x). Hence,

p2?
λ (tθ)

pλ(tθ)
= 2 · p

2?
λ (tθ)

2λf(tθ)

λf(tθ)

pλ(tθ)
= 2 ·

(
p2λ(tθ)

2λf(tθ)

λf(tθ)

pλ(tθ)
− e−λ‖f‖1

)
.

It then follows from (1.10) with y = 0 that

lim
t→∞

p2?
λ (tθ)

pλ(tθ)
= 2

(
exp

(
λ

∫ (
eγ(θ·y) − 1

)
f(y)dy

)
− exp (−λ ‖f‖1)

)
.

Using (3.3), we conclude that

lim
t→∞

p2?
λ (tθ)

pλ(tθ)
= 2

∫
Rd
eγ(θ·y)pλ(y)dy,

which completes the proof of part (c).

(c)⇒ (a): By definition of pλ and the second part of (c), there exist A ≥ 1 and a constant
c1 > 0 such that

λe−λ‖f‖1f(x) ≤ pλ(x) ≤ c1f(x), |x| ≥ A.

Since f is almost radial decreasing, this means that

pλ(x) � g(|x|), |x| ≥ A.

Thus it follows from Lemma 3.1 that f ∈ Sd(θ, γ), giving (a). This completes the proof.

Proof of Theorem 1.7. (a) ⇒ (b): As before, (1.12) holds by definition of Sd(θ, γ), and
we have Kf1(r)→ 0 as r →∞, by Theorem 1.3. Moreover, for sufficiently large r > 0,∫

|x−y|>r
|y|>r

f(x− y)f(y)

f(x)
dy =

∫
|x−y|>r
|y|>r

f1(x− y)f1(y)

f(x)
dy ≤

∫
|x−y|>r
|y|>r

f1(x− y)f1(y)

f1(x)
dy,

which means that limr→∞Kf (r)→ 0 as well. The convergence part in (1.13) follows then
from [28, Theorem 2(a)] in case (1), and from [28, Theorem 1(a)] in cases (2)–(3) (the rest
of the proof of this implication is mainly based on [28] – in order to avoid repetitions, we
just refer precisely to various parts of that paper). As we already explained in the previous
proof, assumptions (B) and (C) in the quoted paper are satisfied, and assumption (A) is
assumed here a priori. Moreover, the second cited result can be applied to T = {λ}, for
an arbitrary λ ∈ Λ. Indeed, under the condition

∫
Rd
e−λ0 Reφ(ξ)|ξ|dξ <∞ the assumption

(D) in that paper holds true for all such sets T , see [28, Remark 1(e)]. Moreover, the
expression ψ(−iγθ) makes sense by [43, Theorem 25.17] – this is a consequence of
(1.12). We only have to show that lim sup|x|→∞

pλ(x)
f(x) <∞ for every fixed λ ∈ Λ. This is

the most technical part of this proof. Recall that if the measures Pλ are isotropic, it can
be omitted, see Remark 1.8.

Consider the cases (2) and (3). We fix λ ∈ Λ and first introduce a necessary notation.
Let

◦
P rλ and P̄ rλ , λ, r > 0, be the probability measures given by

F(
◦
P rλ)(ξ) = exp

(
−λ
∫
Br(0)\{0}

(
1− eiξ·y + iξ · y

)
f(y)dy

)
, ξ ∈ Rd,

F(P̄ rλ)(ξ) = exp

(
−λ
∫
Br(0)c

(
1− eiξ·y

)
f(y)dy

)
, ξ ∈ Rd.
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Here Br(x) :=
{
y ∈ Rd : |y − x| < r

}
. For any r > 0 we have

◦
P rλ(dx) =

◦
prλ(x)dx with

◦
prλ ∈ C1

b (Rd)

and

P̄ rλ(dx) = e−λ‖f̄r‖1δ0(dx) + p̄rλ(x)dx with p̄rλ(x) := e−λ‖f̄r‖1
∞∑
n=1

λnf̄r
n∗(x)

n!
,

where f̄r(y) = 1Br(0)c(y) f(y). Also, whenever A 6= 0, we denote by Gλ(dx) the Gaussian
measure which is determined by its Fourier transform F(Gλ)(ξ) = exp (−λξ ·Aξ), ξ ∈ Rd.

We now choose r = r(λ) = h(λ), where h is a scale function defined by [28, (13)] and

put
◦
pλ :=

◦
p
r(λ)
λ , p̄λ := p̄

r(λ)
λ . With this preparation, we can now use the decomposition

[28, (14)–(15)] to get the following representation for the kernel pλ (recall that λ ∈ Λ is
fixed): there exists a constant c = c(λ) and a vector z = z(b, λ) such that

pλ(x) = cσλ(x− z) +

∫
Rd
p̄λ(x− z − y)σλ(y)dy,

where

σλ(x) =

{ ◦
pλ(x) if A ≡ 0,
◦
pλ ∗Gλ(x) otherwise .

By [28, Lemma 1(f) and Lemma 3(b)] and the fact that f is almost radial decreasing, we
find R = R(λ) > 1 large enough and c1 = c1(λ), c2 = c2(λ) such that

p̄λ(w) ≤ c1f(w) and σλ(w) ≤ c2f(w), |w| > R.

Moreover, by (1.3) and the comparability f(w) � g(|w|), w 6= 0, there is c3 > 0 such that

f(w − y) ≤ c3f(w), |w| > 2R, |y| ≤ R.

Consequently, for every |x| > 2R+ |z|,

pλ(x) = cσλ(x− z) +

(∫
|y|≤R

+

∫
|x−z−y|>R
|y|>R

+

∫
|x−z−y|≤R

)
p̄λ(x− z − y)σλ(y)dy

≤ cc2f(x− z) +

(
c1c3

∫
|y|≤R

σλ(y)dy + c2c3

∫
|x−z−y|≤R

p̄λ(x− z − y)dy

)
f(x− z)

+ c1c2

∫
|x−z−y|>R
|y|>R

f(x− z − y)f(y)dy.

Finally, since Kf (R) <∞, we get

pλ(x) ≤ c4f(x− z),

and one more use of (1.3) and the comparability with the profile g leads us to the
conclusion

pλ(x) ≤ c5f(x).

This completes the proof of (b) in cases (2)–(3). We omit the proof of lim sup|x|→∞
pλ(x)
f(x) <

∞ for the case (1) as it is only a modification of the above argument and in fact it is
much easier. It combines the decomposition [28, (16)] with estimates in [28, Corollary
3(f) and Lemma 3(a)].
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(b)⇒ (c): Fix λ ∈ Λ. First note that by [43, Theorem 25.17], the integrability condition
(1.12) gives∫

Rd
eγ(θ·y)pλ(y)dy <∞ and exp (−λψ(−iγθ)) =

∫
Rd
eγ(θ·y)pλ(y)dy. (3.4)

Therefore, by (1.13) and (3.4),

lim
t→∞

pλ(tθ − y)

pλ(tθ)
= lim
t→∞

pλ(tθ − y)

λf(tθ)

λf(tθ)

pλ(tθ)
= eγ(θ·y), y ∈ Rd,

and
p2?
λ (tθ)

pλ(tθ)
= 2 · p2λ(tθ)

2λf(tθ)

λf(tθ)

pλ(tθ)
= 2 exp (−λψ(−iγθ)) = 2

∫
Rd
eγ(θ·y)pλ(y)dy,

which finally implies that pλ ∈ Sd(θ, γ). The first equality in the last line follows from
the fact that Pλ, λ > 0, form a convolution semigroup of measures. This completes the
proof of (c).

(c)⇒ (a): Suppose (c) is true for some λ ∈ Λ. We need to show that lim inf |x|→∞
pλ(x)
f(x) > 0.

To this end, we apply a version of the decomposition that was used in the proof of the
first implication, by choosing e.g. r = 1/2. We can just follow the argument from the
proof of [26, Lemma 2.6] and easily show that in any case (1)–(3) there exist c6 > 0 such
that

pλ(x) ≥ c6
∫
|y|<1/2

f(x− z − y)µλ(dy), |x| > 1,

where z = z(λ, b) ∈ Rd is fixed and µλ is a probability measure supported by full Rd.
Now, by using (1.3) and the comparability f(w) � g(|w|), w 6= 0, we can find c7 > 0 and
R > 1 large enough such that f(x− z − y) ≥ c7f(x), |y| < 1/2, |x| > R. This implies that

pλ(x) ≥ c5f(x), |x| > R,

because µλ(B(0, 1/2)) > 0. Since we already know from (c) that lim sup|x|→∞
pλ(x)
f(x) <∞,

it gives that there exists A > 1 such that

pλ(x) � g(|x|), |x| ≥ A.

In consequence, we can apply Lemma 3.1 to show that f ∈ Sd(θ, γ). This yields (a) and
completes the proof of the lemma.

3.3 Examples

We now illustrate our results by discussing several specific examples of densities. We
give positive and negative ones.

Typical examples of almost decreasing densities are functions f ∈ L1(Rd) which can
be represented as

f(x) = η

(
x

|x|

)
g(|x|), x 6= 0, (3.5)

where η : Sd−1 → [c1, c2], for some 0 < c1 ≤ c2 < ∞, and g : (0,∞) → (0,∞) is a
decreasing function. Clearly, in this case the function g is a profile of the density f . If η
is continuous in θ ∈ Sd−1, then

η

(
tθ − y
|tθ − y|

)
→ η(θ) as t→∞, for every y ∈ Rd. (3.6)
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Moreover, when η ≡ const., then the density f is radial. Throughout this section, we
assume that (3.5) and (3.6) hold.

The profile g may have a fairly general shape. Here we consider only two specific
cases which are common in applications.

Example 3.3. Let
g(r) = (1 ∨ r)−β , β ≥ 0.

Clearly, f ∈ L1(Rd) if and only if β > d. For every fixed θ ∈ Sd−1 and y ∈ Rd, we have

lim
t→∞

g(|tθ − y|)
g(|tθ|)

= lim
t→∞

|tθ − y|−β

t−β
= lim
t→∞

1

|θ − y/t|β
= 1. (3.7)

Therefore, if (3.6) is true for a given θ ∈ Sd−1, then

lim
t→∞

f(tθ − y)

f(tθ)
= 1, for every y ∈ Rd,

i.e., the condition (1.3) holds for such θ with γ = 0. It then makes sense to ask about
the sub-exponentiality of the density f in the direction θ. We have to verify (1.4) (with
h ≡ ‖f‖1).

As shown in Section 2, we are left to check the convergence limr→∞Kf (r) = 0. Let
r > 1 and |x| ≥ 1. We have∫

|y−x|>r
|y|>r

f(x− y)

f(x)
f(y)dy ≤ c22

c1

∫
|y−x|>r
|y|>r

(
|x|

|x− y||y|

)β
dy

and, since y and x− y play a symmetric role, the integral on the right hand side is equal
to

2

∫
|y−x|>r, |y|>r
|y|<|y−x|

(
|x|

|x− y||y|

)β
dy ≤ 2

∫
|y−x|>r, |y|>r
|y|<|y−x|

(
|x|

(|x|/2)|y|

)β
dy ≤ 21+β

∫
|y|>r

|y|−βdy

(clearly, this extends to every profile g having the doubling property g(2r) ≤ cg(r), r > 0).
This shows that Kf (r) ≤ 21+β(c22/c1)

∫
|y|>r |y|

−βdy. In particular, limr→∞Kf (r) = 0 for

the whole range of β > d. Consequently, f ∈ Sd(θ, 0) and all assertions of our Theorem
1.6 apply.

Example 3.4. Let

g(r) = e−mr(1 ∨ r)−β , with m > 0, β ≥ 0. (3.8)

Clearly, due to exponential tempering, we now have f ∈ L1(Rd) for the whole range of
parameters above.

We first show that if (3.6) is true for a given θ ∈ Sd−1, then (1.3) holds for such θ with
γ = m. Let θ ∈ Sd−1 and y ∈ Rd. For t > 0,

|tθ| − |tθ − y| =
∑d
i=1(tθi)

2 −
∑d
i=1(tθi − yi)2√∑d

i=1(tθi)2 +
√∑d

i=1(tθi − yi)2

=
2(θ · y)− 1

t

∑d
i=1 y

2
i

|θ|+
√∑d

i=1(θi − yi
t )2

. (3.9)

It then follows from this calculation and (3.7) that if (3.6) is true for some θ ∈ Sd−1, then

lim
t→∞

f(tθ − y)

f(tθ)
= lim
t→∞

η
(
tθ−y
|tθ−y|

)
|tθ − y|−β

η(θ)t−β
em(|tθ|−|tθ−y|) = em(θ·y), for every y ∈ Rd.

This means that the condition (1.3) holds for such θ with γ = m, for all β ≥ 0.
We conclude this example by proving the following result.
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Proposition 3.5. One has:

f ∈ Sd(θ,m) ⇐⇒ β >
d+ 1

2
.

Proof. We only need to show that (1.4) holds if and only if β > (d + 1)/2. By Corollary
1.4, this can be reduced to proving the equivalence:

Kf (r)↘ 0 ⇐⇒ β >
d+ 1

2
.

In fact, we can see more – a conclusion follows from Lemma 3.6 proven below.

Lemma 3.6. Let f be as in (3.5) with g given by (3.8). Then for every r > 1 we have

Kf (r)

{
� r d+1

2 −β if β > d+1
2 ,

=∞ if 0 ≤ β ≤ d+1
2 .

(3.10)

Proof. We first establish the upper bound for β > (d+ 1)/2. We have∫
|y−x|>r
|y|>r

f(x− y)

f(x)
f(y)dy ≤ c22

c1

∫
|y−x|>r
|y|>r

g(|x− y|)
g(|x|)

g(|y|)dy.

Denote the integral on the right hand side of the above inequality by I := I(x, r). Clearly,
we only need to find the upper bound for I. Suppose first that 1 ≤ |x| ≤ r. Then, by
monotonicity of g,

I ≤ g(r)

g(|x|)

∫
|y−x|>r
|y|>r

g(|y|)dy ≤
∫
|y|>r

g(|y|)dy.

Let now |x| > r. Since y and x− y play a symmetric role, we can observe that

I ≤
∫
r<|y−x|<|x|
r<|y|<|x|

g(|x− y|)
g(|x|)

g(|y|)dy + 2

∫
|y−x|≥|x|
|y|>r

g(|x− y|)
g(|x|)

g(|y|)dy

≤ 2

∫
r<|y−x|<|x|, r<|y|<|x|

|y|<|x−y|

g(|x− y|)
g(|x|)

g(|y|)dy + 2

∫
|y|>r

g(|y|)dy.

Denote by J := J(x, r) the first integral on the right hand side. For d = 1 the exponential
terms under this integral cancels and we can follow the estimates from the second part
of Example 3.3, getting the desired bound. Therefore, we are left to consider d ≥ 2 only.
We see that the function J(·, r) is rotation invariant, i.e. J = J(|x|, r). In order to simplify
our further calculations, we may then assume that x = (x1, 0, . . . , 0) with x1 > r. By
direct calculation, we can check that 0 ≤ |x| − |x− y| ≤ y1 on the domain of integration
of J . Hence

J =

∫
r<|y−x|<|x|, r<|y|<|x|

|y|<|x−y|

em(|x|−|x−y|)
(
|x|
|x− y|

)β
g(|y|)dy

≤
∫
r<|y−x|<|x|
r<|y|<|x|

(
|x|

(|x|/2)

)β
em(y1−|y|)|y|−βdy ≤ 2β

∫
|y|>r
y1>0

em(y1−|y|)|y|−βdy

Now, by using the hyper-spherical coordinates or a modification of the argument from
[26, p. 61], we can show that

J ≤ c3
∫ ∞
r

y
d−1
2 −β

1 dy1 = c4r
d+1
2 −β .
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By collecting all the estimates above and by comparing
∫
|y|>r g(|y|)dy =

∫∞
r
e−mssd−1−βds

with r
d+1
2 −β , we conclude that the upper bound in (3.10) holds true.

We now give the lower bound. Let xn = (2n, 0, . . . , 0), n > r. By following directly the
estimates in [27, pages 382–383], we can show that∫

|y−xn|>r
|y|>r

f(xn − y)

f(xn)
f(y)dy ≥ c21

c2

∫
|y−xn|>r
|y|>r

g(|xn − y|)
g(|xn|)

g(|y|)dy

≥ c21
c2

∫
r<y1<n

g(|xn − y|)
g(|xn|)

g(|y|)dy ≥ c5
∫ n

r

y
d−1
2 −β

1 dy1.

Consequently,

Kf (r) ≥ c5
∫ n

r

y
d−1
2 −β

1 dy1, n > r,

which implies thatKf (r) ≥ c6r
d+1
2 −β for β > (d+1)/2, andKf (r) =∞ for β ∈ [0, (d+1)/2].

This completes the proof of the lemma.
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