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Contact processes on general spaces. Models on
graphs and on manifolds
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Abstract

The contact process is a particular case of birth-and-death processes on infinite parti-
cle configurations. We consider the contact processes on locally compact separable
metric spaces. We prove the existence of a one-parameter set of invariant measures
in the critical regime under the condition imposed on the associated Markov jump
process. This condition means that any pair of independent trajectories of this jump
process run away from each other. The general scheme can be applied to the contact
process on the lattice in a heterogeneous and random environments as well as to the
contact process on graphs and on manifolds.
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1 Introduction

Starting from the pioneer papers of Harris [5], Holley and Liggett [6] the contact
process has become one of the most widely used population dynamics model, see also
the monographs of Liggett [15, 16]. Notice that the contact model on Zd considered in
this work is not the same as the basic contact process on Zd with the state space {0, 1}Zd

,
see e.g. [16]. While in most of the works the contact processes were considered on the
lattice Zd, much of the interest in the recent years has focused on studying the contact
processes in continuous spaces, see e.g. [4, 7, 11]. Contact processes are a particular
case of continuous time birth and death processes on infinite particle configurations,
and one of the basic problems concerning a contact process is to determine a stationary
regime and to prove the existence of stationary measures. In the mathematical literature,
the birth and death rates of the contact processes are usually taken to be homogeneous
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Contact processes on general spaces

(in space); therefore, the corresponding stationary measures on configurations are
translation invariant. Since homogeneous models do not quite accurately reflect reality
due to heterogeneity in biological or social populations, contact processes in general
spaces as well as in heterogeneous and random environments are of great importance
for a better understanding of real-world networks.

One of the main features of the contact process is the clustering of the system,
i.e. particles are grouped into large clouds of high density, which are located at large
distances from each other. It is worth noting that the appearance of a limiting invariant
state is only possible in the so-called critical regime, i.e. there is a certain balance
between birth and death. As shown in [7], in the case of dimensions d ≥ 3, there is a
continuum of invariant measures parameterized by density values. For small dimensions
d = 1, 2, the family of invariant measures was constructed under a condition that the
dispersal kernel has a heavy tail, see [8]. These invariant measures are described by
a simple recurrent relation between their correlation functions and create a concrete
(and up to our knowledge, completely new) class of random point fields. For all other
regimes, the density of the system tends either to∞ or to 0 as time grows. The existence
of invariant measures in the marked contact model in Rd, d ≥ 3, with a compact spin
space describing dynamics of a population with mutations was proved in [10].

The goal of this work is to construct a family of invariant measures of critical contact
processes on general spaces. Our approach is based on the analysis of the infinite system
of hierarchical equations for correlation functions, that has been studied earlier for
the contact process in Rd, see e.g. [4, 7]. We discuss these constructions and present
the main result in Section 3. In Section 2, we formulate assumptions on the model
that imply the existence of invariant measures for the contact processes on general
state spaces. In particular, our approach can be applied to the contact processes on a
hyperbolic (Lobachevsky) space, on a Cayley tree as well as to the contact process on
Zd in inhomogeneous and random environments, see Section 4. In Section 4 we also
present all known results concerning invariant measures of the contact process in Rd,
d ≥ 1. Finally, Section 5 contains the proof of the main results.

2 The model

Let X be a locally compact separable metric space, B(X) its Borel σ-algebra, and m
is a locally finite Borel measure on B(X), i.e. m is finite on compact sets. We denote by
M(X) the space of locally finite Borel measures on B(X). The system of all compact sets
from B(X) is designated by Bb(X).

A configuration γ ∈ Γ(X) on X is a finite or countably infinite locally finite unordered
set of points in X, and some of them can be multiple, i.e. repetitions are permitted. If the
measure m is atomic then any configuration γ can have multiple points. Such situation
will be on graphs were the measure m is a counting measure. As the phase space Γ of
the continuous contact models, when m is non-atomic (see e.g. [7, 8, 11]), one can take
the set of locally finite configurations in X with distinct elements:

Γc = Γc
(
X
)

:=
{
γ ⊂ X

∣∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(X)
}
, (2.1)

where | · | denotes the number of elements of a set.
In the case of general position, we can identify each γ ∈ Γ with an integer-valued

measure
∑
x∈γ δx ∈M(X), where δx is the Dirac measure with unit mass, and the sum is

taken considering the multiplicity of elements in the configuration γ. For any Λ ∈ Bb(X)

we denote by |γ ∩ Λ| the value γ(Λ) of the measure γ on Λ.
The contact model is a continuous time Markov process on Γ(X) which is a particular

case of a general birth-and-death process. The contact model is given by a heuristic
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Contact processes on general spaces

generator defined on a proper class of functions F : Γ→ R as follows:

(LF )(γ) =
∑
x∈γ

[F (γ\x)− F (γ)]

+

∫
X

∑
x∈γ

a(y, x)(F (γ ∪ y)− F (γ))m(dy).
(2.2)

Notations γ\x and γ ∪ x in (2.2) stand for removing and adding one particle at position
x ∈ X. The first term in (2.2) corresponds to the death of one particle at position x: each
element of the configuration γ ∈ Γ dies with the death rate 1. The second term of (2.2)
describes the birth of a new particle in a neighborhood dy of the point y with the birth
rate density b(y, γ) :=

∑
x∈γ a(y, x). Function a(x, y) is called the dispersal kernel.

We assume that a : X× X→ [0,∞) is a non-negative bounded measurable function
satisfying the following conditions:

1. Regularity condition: there exists a constant C > 0, such that

sup
x∈X

∫
X

a(y, x)m(dy) < C; (2.3)

2. Critical regime condition:∫
X

a(x, y)m(dy) = 1 for all x ∈ X; (2.4)

3. Transience condition. Let us consider the jump Markov process (random walk in
continuum) with generator

Lf(x) =

∫
X

a(x, y)
(
f(y)− f(x)

)
m(dy). (2.5)

Then we assume that for any two independent copies X(t) and Y (t) of this process
starting with X(0) = x and Y (0) = y the following condition holds

sup
x,y

∫ ∞
0

Ex,ya(X(t), Y (t))dt < Q (2.6)

with a constant Q > 0. Moreover, we assume that the integral in (2.6) converges
uniformly in x, y.

Remark 2.1. Condition (2.4) implies that the average density of configurations is
preserved in time. Namely, if we start with a random configuration γ(0) such that
E|γ(0)∩V | = %m(V ) for any compact V with some % > 0, then this relation E|γ(t)∩V | =
%m(V ) will be valid for any t ≥ 0. It is worth noting that in the case when a(x, y) = a(y, x)

or a(x, y) = a(x− y) and X = Rd with the Lebesgue measure m(dx) or X = Zd with the
counting measure m, the critical regime condition (2.4) implies that the branching rate
I(x) =

∫
a(y, x)m(dy) is equal to 1 for any x ∈ γ.

Remark 2.2. The sufficient condition for (2.6) together with required uniform conver-
gence reads ∫ ∞

0

sup
x,y

Exa(X(t), y)dt < Q. (2.7)

Proof. Denote by p(x, dy, t) the transition function of the Markov jump process with
generator (2.5) at time t. Then we get

sup
x,y

∫ ∞
0

Ex,ya(X(t), Y (t))dt = sup
x,y

∫ ∞
0

∫
X

∫
X

a(x′, y′)p(x, dx′, t)p(y, dy′, t)dt ≤
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Contact processes on general spaces

sup
y

∫ ∞
0

∫
X

(
sup
x

∫
X

a(x′, y′)p(x, dx′, t)
)
p(y, dy′, t)dt =

sup
y

∫ ∞
0

∫
X

(
sup
x
Exa(X(t), y′)

)
p(y, dy′, t)dt ≤∫ ∞

0

sup
y

∫
X

(
sup
y′

sup
x
Exa(X(t), y′)

)
p(y, dy′, t)dt =

∫ ∞
0

sup
x,y′

Exa(X(t), y′)dt.

Therefore, condition (2.7) implies the uniform convergence in (2.6).

3 Time evolution of correlation functions. Main results

The study of evolution of the infinite-particle system generated by the operator (2.2)
may be realized through the forward Kolmogorov (or Fokker–Planck ) equation with the
evolution operator L for probability measures (states) on the configuration space Γ, i.e.

d

dt
µt(F ) = µt(LF ), t > 0, µt

∣∣
t=0

= µ0, (3.1)

where

µ(F ) :=

∫
Γ

F (γ) dµ(γ)

.
Denote by Mfm(Γ) the set of all probability measures µ which have finite local

moments of all orders, i.e. ∫
Γ

|γ ∩ Λ|n µ(dγ) < ∞

for all Λ ∈ Bb(X) and n ∈ N , and letMcorr(Γ) be the subclass ofMfm(Γ) consisting of
those probability measures on Γ for which correlation functions exist. The terminology
originates in statistical mechanics, where the densities of correlation measures with
respect to the finite products of the measure m are called correlation functions, see, for
instance, [19, Ch. 4] for the case X = Rd, or [13, 14], for the general space X.

The evolution equation for the system of n-point correlation functions corresponding
to the continuous contact model inRd has been derived previously in [7, 8]. This equation
for the general contact model in X can be considered in the same way. The equation has
the following recurrent forms:

∂k
(n)
t

∂t
= L̂∗nk

(n)
t + f

(n)
t , n ≥ 1; k

(0)
t ≡ 1, (3.2)

where

L̂∗nk
(n)(x1, . . . , xn) = −nk(n)(x1, . . . , xn)

+

n∑
i=1

∫
X

a(xi, y)k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)m(dy).
(3.3)

Here f (n)
t are functions on Xn defined for n ≥ 2 by

f
(n)
t (x1, . . . , xn) =

n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j 6=i

a(xi, xj), (3.4)

and f (1)
t ≡ 0. The notation x̌i means that the i-th coordinate is excluded.

We consider here the initial data k0 = {k(n)
0 } corresponding to the Poisson measure

π% with intensity %:

k
(0)
0 = 1, k

(n)
0 (x1, . . . , xn) = %n, n ≥ 1. (3.5)
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LetXn = B(Xn) be the Banach space of all measurable real-valued bounded functions
on Xn with the sup-norm. Consider the operator L̂∗n as an operator on the Banach space
Xn for any n ≥ 1. Then it is a bounded linear operator in Xn, and the arguments based
on the variation of parameters formula yields that

k
(n)
t = etL̂

∗
nk

(n)
0 +

∫ t

0

e(t−s)L̂∗nf (n)
s ds, (3.6)

where f (n)
s is expressed through k(n−1)

s by (3.4). Thus, the solution to the Cauchy problem
(3.2) in Xn with arbitrary initial values k(n)

0 ∈ Xn exists and is unique provided f (n)
t is

constructed recurrently via the solution to the same Cauchy problem (3.2) for n− 1.
The goal of this paper is to construct a family of invariant measures on Γ for the

critical regime contact processes on general spaces. These measures are described in
terms of their correlation functions {k(n)}n≥0 as solutions to the following system:

L̂∗nk
(n) + f (n) = 0, n ≥ 1, k(0) ≡ 1, (3.7)

where L̂∗n, f
(n) were defined by (3.3)-(3.4), but with the replacement of k(n)

t by k(n). In
the sequel, we say that k : Γ0 → R solves the system (3.7) in the Banach spaces (Xn)n≥1

if the corresponding k(n) ∈ Xn, n ≥ 1 solve (3.7).
The main result of the paper is the following theorem.

Theorem 3.1. Assume that the contact process satisfies conditions (2.3), (2.4) and (2.6).
Then the following assertions hold.

(i) For any positive constant % > 0 there exists a probability measure µ% ∈Mcorr(Γ)

on Γ such that its correlation function k% : Γ0 → R+ solves (3.7) in the Banach spaces

(Xn)n≥1, and the corresponding system {k(n)
% }n≥1 satisfies k(1)

% ≡ %. Moreover, there
exists a positive constant D such that

k(n)
% (x1, . . . , xn) ≤ DQn(n!)2 for all (x1, . . . , xn) ∈ Xn, (3.8)

where Q is the same constant as in (2.6).
(ii) Let {k(n)

t }n≥1 be the solution to the Cauchy problem (3.2) with initial value (3.5).
Then

‖k(n)
t − k(n)

% ‖Xn → 0, t→∞, ∀n ≥ 1. (3.9)

It is worth noting that Theorem 3.1 states the existence of a family of invariant
measures µ% ∈Mcorr(Γ) for the contact process in the critical regime. These measures
are indexed by a positive parameter % > 0. Each measure from this family is uniquely
determined by its own system of correlation functions. These correlation functions are
constructed as the limit as t→∞ of solutions of the evolution equation for the correlation
functions with initial data corresponding to the Poisson measure with intensity % > 0.
We do not discuss the uniqueness problem of the invariant measure in this paper.

The main strategy of the proof follows the same line as the proof in the case X = Rd,
see [7, 8]. However, in the present paper we should modify some of steps of the previous
proof for the general models. These modifications include using the condition (2.6)
instead of the Fourier transform for homogeneous models in Rd.

Remark 3.2. We can include in our model a possibility to jump. The analogous model in
Rd has been considered earlier in [8, 9]. More precisely, let us consider the following
heuristic generator L + LJ , where L was defined by (2.2),

LJF (γ) =

∫
X

∑
x∈γ

J(y, x)
(
F ((γ \ x) ∪ y)− F (γ)

)
m(dy). (3.10)
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Suppose that the total jump rate
∫
J(y, x)m(dy) is uniformly bounded in x:

sup
x

∫
X

J(y, x)m(dy) < C. (3.11)

Then the criticality condition is∫
X

(
a(x, y) + J(x, y)− J(y, x)

)
m(dy) = 1 (3.12)

(“birth”+“immigration”-“emigration”=“mortality”). The operator LJ analogous to (2.5)
then takes the form

LJf(x) =

∫
X

(
a(x, y) + J(x, y)

)(
f(y)− f(x)

)
m(dy), (3.13)

and “transience” condition (2.6) can be written as

sup
x,y

∫ ∞
0

Ex,ya(X̃(t), Ỹ (t))dt < Q, (3.14)

where a(x, y) is the same dispersal kernel as above satisfying (2.3), (2.4), (2.6), while
X̃(t) and Ỹ (t) are two independent copies of the Markov process with generator LJ
given by (3.13).

4 Particular models

We start this section with the homogeneous contact model in Rd that has been studied
in [7, 8, 10]. Other examples are new.

1. The homogeneous contact model in X = Rd generated by dispersal kernel
a(x− y). The homogeneous contact model in Rd has been studied in papers [7, 8, 10],
where we have formulated the condition on a(x − y) guaranteeing the existence of a
family of invariant measures of the contact model in the critical regime in any dimension
d ≥ 1. Namely, we assume that a(·) possesses the following properties:

- Boundedness and Normalization

a(x) ≥ 0; a(x) ∈ L∞(Rd) ∩ L1(Rd),

∫
Rd

a(x)dx = 1 (4.1)

- Regularity condition

â(p) :=

∫
Rd

e−i(p,u)a(u)du ∈ L1(Rd), (4.2)

- Existence of the second moment in dimensions d ≥ 3∫
Rd

|x|2a(x)dx <∞; (4.3)

- Heavy tail conditions in dimensions d = 1, 2:

a(x) ∼ 1

|x|α+2
as |x| → ∞, 0 < α < 2, (d = 2), (4.4)

a(x) ∼ 1

|x|α+1
as |x| → ∞, 0 < α < 1, (d = 1). (4.5)

Then the statements of Theorem 3.1 are true, see [7, 8]. In these cases, the fulfillment of
the transience condition (2.6) is verified using the Fourier transform.
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We consider in [10] a marked continuous contact model on X = Rd × S, d ≥ 3, where
S is a compact metric space. The dispersal kernel a(x, y) were defined as

a(x, y) = α(τ(x)− τ(y))Q(σ(x), σ(y)), (4.6)

where τ and σ are projections of X on Rd and S respectively, α(·) ≥ 0 is a function on Rd

satisfying conditions (4.1) – (4.3) (the case d ≥ 3). We suppose that the function Q on
S × S is continuous (and so bounded) and strictly positive. Moreover we assume that the
corresponding integral operator with kernel Q(·, ·) has the maximal in absolute value
eigenvalue equal to 1. Then the statements of Theorem 3.1 are true, see [10].

2. The symmetric contact model on the hyperbolic (Lobachevsky) plane: X =

L. Let ρ(x, y) be the hyperbolic distance and m(dx) be the corresponding measure on X.
Consider a continuous time random walk on X with the generator (2.5), where a(x, y)

depends only on ρ(x, y):

a(x, y) = a(ρ(x, y)) = a(y, x), and a(x, y) = 0 if ρ(x, y) > h, (4.7)

for some h. We assume also that∫
X

a(x, y)m(dy) = 1 for all x ∈ X. (4.8)

Then (4.8) is the same as the critical regime condition (2.4), and it remains to check the
fulfillment of the transience condition (2.6), or equivalently condition (2.7).

Denote by D(y, h) a disc centered at y of radius h:

D(y, h) = {y′ ∈ X : ρ(y, y′) ≤ h},

and let P (x,D(y, h), t) be the probability for the Markov jump process X(t) with genera-
tor L given by (2.5) starting at x ∈ X to be in D(y, h) at time t:

P (x,D(y, h), t) = Pr
(
X(t) ∈ D(y, h)| X(0) = x

)
.

Lemma 4.1. There exist κ > 0 and C(h) such that the probability P (x,D(y, h), t) satisfies
the following estimate

P (x,D(y, h), t) ≤ C(h)e−κ t for all x, y ∈ X and t ≥ 0. (4.9)

Proof. Using the estimates from [20] (in the proof of [20, Lemma 1]) we conclude that
there exist α > 0 and γ > 0 such that

P (x,D(x, αt), t) ≤ C1(h)e−γt for all t ≥ 0. (4.10)

Fix a large t > 0. If D(y, h) ⊂ D(x, αt), then we get

P (x,D(y, h), t) ≤ C1(h)e−γt. (4.11)

Let us consider the case when ρ(x, y) > αt − h for a given t, where α > 0 is the same
constant as in (4.10). In this case, using that the length of the circle of a radius r is
exponentially large in r we conclude that “the visible angular size from x”, i.e. the angle
ϕ(y, h) of a sector centered at x and resting on disk D(y, h) admits the following upper
bound

ϕ(y, h) ≤ C̃2(h)e−αt.

Then isotropy condition (4.7) implies that

P (x,D(y, h), t) ≤ C2(h)e−αt if ρ(x, y) > αt− h. (4.12)

Taking
κ = min{α, γ}, C(h) = max{C1(h), C2(h)},

we obtain desired estimate (4.9) from (4.11) – (4.12).
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This Lemma immediately implies the convergence of the integral in (2.7), since

sup
x,y
Exa(X(t), y) ≤ A sup

x,y
P (x,D(y, h), t) ≤ AC(h)e−κ t,

where A = sup a(x, y).
The symmetric contact model on the hyperbolic space (d ≥ 3) can be considered in

the similar way.
Further we will consider several contact models on discrete spaces X, where m is the

counting measure.
3. The homogeneous contact model on the Cayley tree: X = Tk.
Consider the Cayley tree Tk, i.e. infinite regular tree with vertex degree k ≥ 3. The

continuous time symmetric random walk X(t) on Tk is given by the generator L defined
in (2.5), where a(x, y) = a(y, x) = 1

k for d(x, y) = 1 and a(x, y) = 0 otherwise. Here d(x, y)

is the distance on Tk, which is the same as the distance between two vertices in a graph.
The measure m on Tk is the counting measure.

It is easy to see that for the trajectory of random walk X(t) starting at X(0) = x

and any vertex y ∈ Tk the distance dx,y(t) = d(X(t), y) is a random walk Zx,y(t) on
Z+ = {0, 1, 2, . . .} with rates r(0, 1) = 1 and r(n, n+1) = k−1

k , r(n, n−1) = 1
k , n = 1, 2, . . ..

Thus, the random walk Zx,y(t) for any x and y has a positive drift, and the following
lemma holds.

Lemma 4.2. There exist κ > 0 and C such that the transition probability P (x, y, t) =

Pr(X(t) = y|X(0) = x) meets the following estimate:

P (x, y, t) ≤ Ce−κ t for all x, y ∈ Tk and t ≥ 0. (4.13)

Proof. The proof of this lemma is completely analogous to the proof of Lemma 4.1. As
above, it is a combination of two estimates. The first bound follows from the fact that
the random walk Zx,y(t) for any x and y has a positive drift. Namely, there exist α > 0

and γ > 0 such that

P (x,D(x, αt), t) = Pr(Zx,x(t) < αt) ≤ C1e
−γt for all t ≥ 0, (4.14)

where D(x,R) is the ball centered at x of radius R. The second estimate is valid for
y ∈ Tk with d(x, y) > αt:

P (x, y, t) ≤ C2e
−αt for some α > 0. (4.15)

Estimate (4.15) follows from the observation that the number of y ∈ Tk such that
d(x, y) = n is exponential in n. Finally, (4.13) follows from (4.14) – (4.15).

Thus, as above we conclude that all required conditions on a(x, y) are fulfilled.
Let us note that the analogous result holds for any tree T with uniformly bounded

vertex degrees ki ≥ 3, i ∈ T .
4. Inhomogeneous contact models generated by inhomogeneous random

walks on a lattice: X = Zd. Let us consider a random walk on Zd with transition
probabilities P (x, y) = Pr(x→ y) that differ from those of the homogeneous irreducible
symmetric walk π(y−x) = π(x− y) only locally, i.e. in a finite neighborhood of the origin:

P (x, y) = π(y − x) + V (y, x),
∑
y

P (x, y) = 1 ∀ x ∈ Zd, (4.16)

with
V (y, x) = 0 if max{|y|, |x|} > R, and π(u) = 0, if |u| > R1
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for some R,R1 > 0. Thus we can not write the transition probability P (x, y) = Pr(x→ y)

in the form P (x− y). We also assume that the perturbed random walk is irreducible in
Zd.

In the paper [18], the probability p(x, y, t) = Pr(X(t) = y|X(0) = x) has been written
as the sum of the probability p0(x, y, t) for the homogeneous random walk with transition
probabilities π(y − x) and the correction term:

p(x, y, t) = p0(x, y, t) + δt(y|x).

The probability p0(x, y, t) is bounded from above uniformly in x and y by C
td/2

, see e.g.
[12]. It follows from the results of [18] that the correction term δt(y|x) admits the same
bound for d ≥ 3. This yields the following uniform in x and y estimate

p(x, y, t) ≤ 1 ∧ C

td/2
, t ≥ 0. (4.17)

Taking into account critical regime condition (2.4) one can conclude that estimate
(4.17) also holds for the continuous time random walk on Zd with jump intensities
a(x, y) = P (x, y). Thus, estimate (4.17) implies that in the case d ≥ 3 the transience
condition (2.6) is fulfilled. Consequently, all statements of Theorem 3.1 are valid for
the inhomogeneous contact process on Zd with the dispersal kernel given by a(x, y) =

P (x, y).

5. Contact models on X = Zd generated by random conductance models. Let
Ed be the set of non-oriented nearest neighbour bonds of the lattice Zd:

Ed = {(x, y) ∈ Zd ×Zd, x ∼ y}, x ∼ y means x, y are neighbors,

and µe, e ∈ Ed, are taken as nonnegative i.i.d.r.v defined on a probability space (Ω,P).
Moreover, assume that

c−1 ≤ µe ≤ c for some c ≥ 1. (4.18)

Thus, µxy = µyx, x ∼ y, are i.i.d. random variables satisfying (4.18), and µxy = 0 if x 6∼ y.
Set

µx =
∑
y

µxy, a(x, y) =
µxy
µx

,

and consider a continuous time random walk on Zd with transition rates a(x, y). The
generator of this random walk is given by

LCf(x) = µ−1
x

∑
y

µxy(f(y)− f(x)).

In this case, see e.g. [1], [3], the following upper bound holds P-a.s. for all t ≥ 0

sup
x,y

Prω(X(t) = y|X(0) = x) ≤ 1 ∧ C

td/2
.

Moreover, the same result holds for the simple random walk on the infinite Bernoulli
(bond) percolation cluster in Zd, see e.g. [2, 17].

Thus, in both models the transience condition (2.7) (and (2.6)) guaranteeing the
existence of the invariant measure of the corresponding contact model is fulfilled in the
case d ≥ 3.
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5 The proof of Theorem 3.1

In the proof of the first part of Theorem 3.1 we use the induction in n ∈ N. For n = 1

in (3.7) we have

− k(1)(x) +

∫
X

a(x, y)k(1)(y)m(dy) = 0. (5.1)

It follows immediately that k(1)(x) ≡ % is an element of X1 and it solves (5.1). We notice
that % can be interpreted as the spatial density of particles.

Now let us turn to the general case. If for any n > 1 we succeed to solve equation
(3.7) and express k(n) through f (n), then knowing the expression of f (n) through k(n−1)

(see (3.4)), we get the solution {k(n)}n≥1 to the full system (3.7) recurrently.

Lemma 5.1. The operator etL̂
∗
n , where L̂∗n was defined in (3.3), is positive, i.e. it maps

non-negative functions to non-negative functions.

Proof. The operator

Aik(n)(x1, . . . , xn) :=

∫
X

a(xi, y)k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)m(dy).

is positive and bounded on Xn for any 1 ≤ i ≤ n. Taking into account

etL̂
∗
n = ⊗ni=1 e

−tetA
i

, (5.2)

we get the desired conclusion.

Next we will construct a solution to the system (3.7) satisfying (3.8). As follows from
(3.4), the function f (n) is the sum of functions of the form

fi,j(x1, . . . , xn) = k(n−1)(x1, . . . , x̌i, . . . , xn)a(xi, xj), i 6= j. (5.3)

We suppose by induction that

k(n−1)(x1, . . . , xn−1) ≤ Kn−1, for all (x1, . . . , xn−1) ∈ Xn−1, n ≥ 2,

where Kn = DCn(n!)2, and D,C are some constants. Consequently,

fi,j(x1, . . . , xn) ≤ Kn−1a(xi, xj), (x1, . . . , xn) ∈ Xn. (5.4)

Using the positivity of the operator etL̂
∗
n and (5.4) we have(

etL̂
∗
nfi,j

)
(x1, . . . , xn) ≤ Kn−1

(
etL̂
∗
na(·i, ·j)

)
(x1, . . . , xn). (5.5)

Set

Lik(n)(x1, . . . , xn) =

∫
X

a(xi, y)k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)m(dy)

− k(n)(x1, . . . , xn).

(5.6)

An easy observation etL
i

11 = 11, ∀i = 1, . . . , n, where 11(x) ≡ 1, shows(
etL̂
∗
na(·i, ·j)

)
(x1, . . . , xn) =

(
et(L

i+Lj)a(·i, ·j)
)

(x1, . . . , xn). (5.7)

Note that the latter function depends only on variables xi and xj .

Notice that etL̂
∗
nfi,j is integrable with respect to t on R+. Indeed, it follows from (5.5),

(5.7), condition (2.6) and the identity

etL̂
∗
na(x, y) = Ex,ya(X(t), Y (t)), (5.8)
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that

v
(n)
i,j =

∫ ∞
0

etL̂
∗
nfi,j dt ≤ Kn−1Q, (5.9)

where Q is the same constant as in (2.6).
Our next goal is to show that

v(n) =
∑
i 6=j

v
(n)
i,j =

∫ ∞
0

etL̂
∗
nf (n)dt (5.10)

is a solution to (3.7) in Xn. It is easily seen from (5.9) and induction procedure that
v(n) ∈ Xn. Since etL̂

∗
n is a strongly continuous semigroup we have

etL̂
∗
nf (n) − f (n) = L̂∗n

∫ t

0

esL̂
∗
nf (n)ds. (5.11)

Rewrite (5.11) as

etL̂
∗
nf (n) = f (n) + L̂∗n

∫ t

0

esL̂
∗
nf (n)ds. (5.12)

Then using condition (2.6), inequality (5.4), Lemma 5.1 and the fact that L̂∗n is a bounded
operator we conclude that the right hand side of (5.12) has a uniform in x1, . . . , xn
limit as t → ∞, therefore, the left hand side of (5.12), i.e. etL̂

∗
nf (n), also converges in

Xn. Moreover the limit is a nonnegative function in Xn. However, if this function is
somewhere strictly positive, then we get a contradiction with (5.9). Thus, we conclude
that the following limit holds in Xn:

etL̂
∗
nf (n) → 0, t→∞. (5.13)

A passage to the limit in (5.11) as t→∞ together with (5.13) shows that v(n) defined in
(5.10) is a solution to (3.7) in Xn.

Since the function f (n) is the sum of functions fi,j , i 6= j we deduce from (5.9) that
v(n) is bounded by n2Kn−1Q. Thus we get the recurrence inequality

Kn ≤ n2Kn−1Q, (5.14)

and by induction it follows that
Kn ≤ Qn (n!)2. (5.15)

Thus
v(n)(x1, . . . , xn) ≤ Qn (n!)2. (5.16)

Thus, we have constructed {v(n)}n≥1 satisfying estimate (5.16). Of course, any
functions of the form

k(1) ≡ %, k(n) = v(n) +An =

∫ ∞
0

etL̂
∗
nf (n) dt+An, n ≥ 2,

where An are arbitrary constants and f (n) is defined by (3.4) are solution to the system
(3.7). Taking An = %n we conclude that

k(1)
% ≡ %, k(n)

% = v(n) + %n =

∫ ∞
0

etL̂
∗
nf (n)dt+ %n, n ≥ 2, (5.17)

is the desired solution to (3.7) in the Banach spaces (Xn)n≥1. To emphasize the depen-

dence of f (n) on %, we will use notation f (n)
% for f (n). For the solutions {k(n)

% }n≥1 of (5.17)
instead of (5.14) we have the recurrence

Kn ≤ n2Kn−1Q + %n, (5.18)
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which yields
Kn ≤ DQn(n!)2. (5.19)

To be certain that the constructed system {k(n)
% }n≥1 is a system of correlation func-

tions, i.e., it corresponds to a probability measure µ% on the configuration space Γ, we
will prove below that {k(n)

% }n≥1 can be constructed as the limit when t→∞ of the system

of correlation functions {k(n)
t }n≥1 associated with the solution to the Cauchy problem

(3.2) with the initial data (3.5).
By the variation of parameters formula we have

k
(n)
t = etL̂

∗
nk

(n)
0 +

∫ t

0

e(t−s)L̂∗nf (n)
s ds, (5.20)

where f (n)
s is expressed through k(n−1)

s by (3.4). On the other hand, we proved above the
existence of the solution {k(n)

% }n≥1 of the stationary problem:

L̂∗nk
(n)
% = −f (n)

% ,

where
f (n)
% (x1, . . . , xn) =

∑
i,j: i 6=j

k(n−1)
% (x1, . . . , x̌i, . . . , xn) a(xi, xj).

This solution meets the following equation(
etL̂
∗
n − 1

)
k(n)
% = −

∫ t

0

d

ds
e(t−s)L̂∗nk(n)

% ds = −
∫ t

0

e(t−s)L̂∗nf (n)
% ds,

and therefore

k
(n)
t − k(n)

% = etL̂
∗
n(k

(n)
0 − k(n)

% ) +

∫ t

0

e(t−s)L̂∗n(f (n)
s − f (n)

% ) ds. (5.21)

We will prove now that both terms in the right-hand side of (5.21) converge to 0 in the
norm of Xn as t→∞.

Formula (5.17) yields

etL̂
∗
n
(
k

(n)
0 − k(n)

%

)
= −etL̂

∗
nv(n), (5.22)

where

v(n) =

∫ ∞
0

esL̂
∗
nf (n)
% ds. (5.23)

Consequently, the first term in the r.h.s. of (5.21) can be rewritten using (5.22) as follows

etL̂
∗
n v(n) =

∫ ∞
0

e(t+s)L̂∗nf (n)
% ds =

∫ ∞
t

erL̂
∗
nf (n)
% dr.

Due to the uniform convergence of the integral in (2.6) we conclude that

||etL̂
∗
n v(n)||Xn

→ 0, t→∞. (5.24)

The second term in the r.h.s. of (5.21) can be estimated in the same way as in our
previous works [8, 10].

Thus we proved the strong convergence (3.9), and the proof of the second part of
Theorem 3.1 is completed.

The final step of the proof is to show that the system of correlation functions {k(n)
% }

corresponds to a probability measure µ% on the configuration space Γ. For this we have
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constructed above {k(n)
% } as the limit when t→∞ of the solution {k(n)

t } of the Cauchy
problem (3.2) with initial data (3.5)

k(n)
% = lim

t→∞
k

(n)
t . (5.25)

We will use next the following Proposition summarizing results of two papers [13] and
[14] of A. Lenard.

Proposition 5.2. (see [13], [14]) If the system of correlation functions {k(n)} satisfies
Lenard positivity and moment growth conditions then there exists a unique probability
measure µ ∈Mfm(Γ), whose correlation functions are exactly {k(n)}.

It is easy to see that this measure is locally absolutely continuous w.r.t. the Poisson
measure. For the convenience of the reader we formulate Lenard positivity and moment
growth conditions below.

Lenard positivity. KG ≥ 0 for any G ∈ Bbs(Γ0) implies

∞∑
n=0

1

n!

∫
X

. . .

∫
X

G(n)(x1, . . . , xn)k(n)(x1, . . . , xn)m(dx1) . . .m(dxn) ≥ 0. (5.26)

Moment growth. For any compact set Λ ⊂ X and j ≥ 0

∞∑
n=0

(mΛ
n+j)

− 1
n = ∞, (5.27)

where

mΛ
n = (n!)−1

∫
Λ

. . .

∫
Λ

k(n)(x1, . . . , xn)m(dx1) . . .m(dxn).

In our case the inequality
(
mΛ
n

)− 1
n ≥ C̃

n follows from bound (5.19). Thus condition
(5.27) of the uniqueness holds. To obtain the Lenard positivity condition (5.26) we use
(5.25). It follows from results of [7] (Proposition 4.4 and Corollary 4.1) that for any
t > 0 the solution {k(n)

t } of the Cauchy problem (3.2) satisfies condition (5.26) of Lenard
positivity, see Appendix in [8] for the detailed proof of this statement. Consequently, the
limit system of correlation functions k(n)

% also satisfies the Lenard positivity condition
(5.26).

Thus Proposition 5.2 implies that for any % > 0 there exists a unique probability
measure µ% ∈Mcorr(Γ), whose correlation functions are {k(n)

% }. This completed the proof
of Theorem 3.1.
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