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Abstract

We introduce an algorithm that constructs a random graph with prescribed degree
sequence together with a depth first exploration of it. In the so-called supercritical
regime where the graph contains a giant component, we prove that the renormalized
contour process of the Depth First Search Tree has a deterministic limiting profile
that we identify. The proof goes through a detailed analysis of the evolution of the
empirical degree distribution of unexplored vertices. This evolution is driven by an
infinite system of differential equations which has a unique and explicit solution. As
a byproduct, we deduce the existence of a macroscopic simple path and get a lower
bound on its length.
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1 Introduction

Historically, the configuration model was introduced by Bender and Canfield [4],
Bollobás [5] and Wormald [20] as a random multigraph with N vertices and prescribed
degree sequence d1, . . . , dN . It turns out that this model shares a lot of features with the
Erdős-Rényi random graph. In particular it exhibits a phase transition for the existence
of a unique macroscopic connected component. This phase transition, as well as the size
of this so-called giant component, was studied in detail in [15, 16, 13]. The proof of these
results relies on the analysis of a construction algorithm which takes as input a collection
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of N vertices having respectively d1, . . . , dN half-edges coming out of them, and returns
as output a random multigraph with degree sequence d1, . . . , dN , by connecting step by
step the half-edges. The way [15, 16, 13, 7] connect these half-edges is as follows: at a
given step in this algorithm, a uniform half-edge of the growing cluster is connected to a
uniform not yet connected half-edge.

In this paper, we introduce a construction algorithm which, in addition to constructing
the configuration model, provides an exploration of it. This exploration corresponds
to the Depth First Search algorithm which is roughly a nearest neighbor walk on the
vertices that greedily tries to go as deep as possible in the graph. The output of the Depth
First Search Algorithm is a spanning rooted plane tree for each connected component of
the graph, whose height provides a lower bound on the length of the largest simple path
in the corresponding component.

A similar exploration (namely, a breadth-first exploration) has been successfuly used
by Aldous [2] for the Erdős-Rényi model in the critical window where the connected
componenents are of polynomial size. The structure of the graph in this window was
further studied in [1]. For the configuration model, a similar critical window was also
identified and studied. See [12, 17, 7, 9].

The purpose of this article is to study this algorithm on a supercritical configuration
model and in particular the limiting shape of the contour process of the tree associated to
the Depth First exploration of the giant component. Unlike in the previous construction of
[15, 16, 13, 7], where the authors only studied the evolution of the empirical distribution
of the degree of the unexplored vertices, we have to deal with the empirical distribution
of the degree of the unexplored vertices in the graph that they induce inside the final
graph. The analysis of this evolution is much more delicate and is in fact the heart of our
work, this is the content of Proposition 2.4.

It turns out that a step by step analysis of the construction does not work. Still, it is
possible to track, at some ladder times, the evolution of the degrees of the unexplored
vertices in the graph they induce. In this time scale, using a generalization of the
celebrated differential equations method of Wormald [21] provided in the appendix (see
also [19] for a recent article on this method), we are able to show that the evolution of
the empirical degree distribution of the unexplored vertices has a fluid limit which is
driven by an infinite system of differential equations. This system as such cannot be
handled. We have to introduce a time change which, surprisingly, corresponds to the
proportion of explored vertices, in term of the construction algorithm. Another surprise
is that the resulting new system of differential equations admits an explicit solution
through the generating series they form. In order to apply Wormald’s method, we need
to establish the uniqueness of this solution. This task, presented in Section 6.2, is also
intricate and is based on the knowledge of the explicit solution mentioned above.

Combining Proposition 2.4 with an analysis of the ladder times, we prove that the
renormalized contour process of the spanning tree of the Depth First Search algorithm
converges to a deterministic profile for which we give an explicit parametric represen-
tation. This is the object of Theorem 2.6. A direct consequence is a lower bound on
the length of the longest simple path in a supercritical model, see Corollary 2.7. To the
best of our knowledge, this lower bound seems to be the best available for a generic
initial degree distribution. The only other generic bound for configuration models that
we could find is due to Frieze and Jackson [11] in the setting where the graphs have
bounded degrees. They establish a lower bound on the longest induced path. However,
this bound vanishes as the largest degree tends to infinity.

We do not believe that our bound is sharp. The question of the length of the longest
simple path in a configuration model is actually still open in generic cases. To the best of
our knowledge, the only solved cases are d-regular random graphs that are known to
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be (almost) Hamiltonian [6]. However, a main advantage of our bound is that it is given
by an explicit construction in linear time, which is not the case for the regular graphs
setting. For additional details and references on the Erdős-Rényi setting, we refer to the
survey [14] and to the article [3].

Let us mention that the ingredient of ladder times, used in the proof of Theorem 2.6,
was already present in the context of Erdős-Rényi graphs in [10]. The novelty and core of
the present article is the analysis of the empirical degree distribution of the unexplored
vertices at the ladder times, which was straightforward in the case of Erdős-Rényi graphs
as it is in that case, along the construction, a Binomial distribution with decreasing
parameter.

In order to illustrate our results, we provide explicit computations together with
simulations in the setting where the initial degree distribution follows respectively a
Poisson law (recovering results of [10] in the Erdős-Rényi setting), a Dirac mass at d ≥ 3

(corresponding to d-regular random graphs) and a Geometric law. We also discuss briefly
the heavy tailed case which also falls into the scope of our results.

2 Definition of the DFS exploration and main results

2.1 The depth first search algorithm

Consider a multigraph G = (V,E) whit vertex set V = {1, . . . , N}. The DFS explo-
ration of G is the following algorithm.

For every step n we consider the following objects, defined by induction.

• An, the active vertices, is an ordered list of elements of V.

• Sn, the sleeping vertices, is a subset of V. This subset will never contain a vertex
of An.

• Rn, the retired vertices, is another subset of V composed of all the vertices that
are neither in An nor Sn.

At time n = 0, choose a vertex v uniformly at random. Set:
A0 = (v),

S0 = VN \ {v},
R0 = ∅.

Suppose that An, Sn and Rn are constructed. Three cases are possible.

1. If An = ∅, the algorithm has just finished exploring a connected component of G.
In that case, we pick a vertex vn+1 uniformly at random inside Sn and set:

An+1 = (vn+1) ,

Sn+1 = Sn \ {vn+1},
Rn+1 = Rn.

2. If An 6= ∅ and if its last element u has no neighbor in Sn, the DFS backtracks and
we set: 

An+1 = An − u,
Sn+1 = Sn,

Rn+1 = Rn ∪ {u}.
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3. If An 6= ∅ and if its last element u has a neighbor in Sn, the DFS goes to the smallest
neighbor of u, say v, and we set:

An+1 = An + v

Sn+1 = Sn \ {v},
Rn+1 = Rn.

This algorithm explores the whole graph and provides a spanning tree of each
connected component. In Section 4, we will provide an algorithm that constructs
simultaneously a random graph and a DFS on it.

The algorithm finishes after 2N steps. For every 0 ≤ n ≤ 2N , we set Xn := |An|.
This walk is called the contour process associated to the spanning forest of the DFS.
In words, it is a ±1 walk that starts at X0 = 0, stays nonnegative and ends at X2N = 0,
which increases by 1 each time the DFS moves on (corresponding to point 1. or 2.) and
decreases by one each time the DFS backtracks (corresponding to point 3.). Notice
that Xn = 0 when the process starts the exploration of a new connected component.
Therefore, each excursion of (Xn) corresponds to a connected component of G.

2.2 The configuration model

We now turn to the definition of the configuration model.

Definition 2.1. Let d = (d1, . . . , dN ) ∈ ZN+ be such that d1 + · · · + dN is even. We
interpret di as a number of half-edges attached to vertex i. Then, the configuration model
C (d) associated with the degree sequence d is the random multigraph with vertex set
{1, . . . , N} obtained by a uniform matching of these half-edges. If d1 + · · ·+ dN is odd,
we change dN into dN + 1 and do the same construction.

We will study sequences of configuration models whose associated sequence of
empirical degree distribution converges to a given probability measure.

Definition 2.2. Let π be a probability distribution on Z+. For every N ≥ 1, let d(N) =

(d
(N)
1 , . . . , d

(N)
N ) ∈ ZN+ . We say that (C (d(N)))N≥1 has asymptotic degree distribution π if

∀k ≥ 0,
1

N

N∑
i=1

1{d(N)
i =k} −→N→+∞

π({k}).

As observed in [15], the configuration model exhibits a phase transition for the
existence of a unique macroscopic connected component. In this article, we will restrict
our attention to supercritical configuration models, that is where this giant component
exists.

Definition 2.3. Let π be a probability distribution on Z+ such that
∑
k≥0 π({k})k2 <∞

and denote by fπ its generating function. Let π̂ be the probability distribution having
generating function

f̂π(s) := fπ̂(s) =
f ′π(s)

f ′π(1)
.

We say that π is supercritical if f̂π
′
(1) > 1. Notice that, denoting by Dπ a random

variable with law π, it is equivalent to

E[Dπ(Dπ − 1)]

E[Dπ]
> 1.

In that case we define ρπ to be the smallest positive solution of the equation

1− ρπ = f̂π(1− ρπ).
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Finally, we set
ξπ := 1− fπ(1− ρπ).

The number ρπ is the probability that a Galton-Watson tree with distribution π̂ is
infinite, whereas the number ξπ is the survival probability of a tree where the root has
degree distribution π and individuals of the next generations have a number of children
distributed according to π̂. In this article, we study sequence of configuration models
C (d(N)) whose asymptotic degree distribution is a supercritical probability measure π.

Denoting by C
(N)
1 ,C

(N)
2 , . . . the sequence of connected components of C(d(N)) ordered

by decreasing number of vertices, one has

|C(N)
1 |
N

P−→
N→+∞

ρπ,

and the other connected components are microscopic, see for example [15, 16, 13, 7].
We finally make the two following technical assumptions:

• The following convergence holds:

lim
N→+∞

d
(N)
1

2
+ · · ·+ d

(N)
N

2

N
=
∑
k≥0

k2π({k}). (A1)

• There exists γ > 2 and C > 0 such that

max
{
d
(N)
1 , . . . , d

(N)
N

}
≤ C N1/γ . (A2)

Assumption (A1) is a classical assumption and is needed to get estimates on the size
of the giant component, see [18]. Assumption (A2) is a (weak) technical assumption
needed for our approach and may not be optimal.

2.3 Main results

We now state our first result. Define α ≥ 0 and consider the graph induced by
the sleeping vertices after having explored bαNc vertices when performing the DFS
algorithm on a configuration model. It is clear that this induced graph is also a configu-
ration model. The purpose of the following theorem is to identify its asymptotic degree
distribution. It turns out this distribution only depends on α and on the initial degree
distribution π.

Proposition 2.4. Let π be a supercritical probability measure on Z+ with generating
series f and let (C (d(N)))N≥1 be a configuration model with supercritical asymptotic
degree distribution π. Assume (A1) and (A2).

Let αc be the smallest positive solution of the equation

f ′′π
(
f−1π (1− α)

)
f ′π(1)

= 1.

For every α ∈ [0, αc], let πα be the probability distribution on Z+ with generating series

g(α, s) =
1

1− α
fπ

(
f−1π (1− α)− (1− s)f

′
π(f

−1
π (1− α))
f ′π(1)

)
,

and write τ (N)(α) = inf{k ≥ 1 : |S(N)
k | ≤ (1− α)N}. Then, conditionally on their degree

sequence, the graphs induced by the vertices of S(N)

τ(N)(α)
inside C (d(N)) have the law of

configuration models with asymptotic degree distribution πα.
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Remark 2.5. We consider α up to some constant αc, which corresponds to the time
when so many vertices have been visited that the remaining graph of sleeping vertices is
subcritical.

Our main result describes the asymptotic behavior of the contour process Xn = |An|
of the plane forest constructed by the DFS on a configuration model.

Theorem 2.6. Under the assumptions of Proposition 2.4, the following limit holds in
probability for the topology of uniform convergence:

∀t ∈ [0, 2], lim
N→∞

XdtNe

N
= h(t),

where the function h is continuous on [0, 2], null on the interval [2ξπ, 2] and defined below
on the interval [0, 2ξπ].

There exists a unique implicit function α(ρ) defined on [0, ρπ] such that 1 − ρ =

ĝ(α(ρ), 1− ρ) where, for any α ∈ [0, αc], the function s 7→ ĝ(α, s) is the size-biased version
of s 7→ g(α, s) defined in Proposition 2.4, namely ĝ(α, s) = ∂sg(α, s)/∂sg(α, 1). The graph
(t, h(t))t∈[0,2ξπ ] can be divided into a first increasing part and a second decreasing part.
These parts are respectively parametrized for ρ ∈ [0, ρπ] by:{

x↑(ρ) := (2− ρ)α(ρ)−
∫ ρπ
ρ

α(u)du,

y↑(ρ) := ρα(ρ) +
∫ ρπ
ρ

α(u)du,

for the increasing part andx↓(ρ) := x↑(ρ) + 2 (1− α(ρ))
(
1− g

(
α(ρ), 1− ρ

))
,

y↓(ρ) := y↑(ρ),

for the decreasing part.

A direct consequence of this result is the following.

Corollary 2.7. Let HN be the length of the longest simple path in a configuration model
of size N with asymptotic distribution π satisfying hypothesis of Proposition 2.4. Then,
with the notation of Theorem 2.6,

∀ε > 0, P

(
HN
N
≥ y↑(0)− ε =

∫ ρπ

0

α(u)du− ε
)
−→

N→+∞
1.

Remark 2.8. Note that the formulas in Proposition 2.4 and Theorem 2.6 have a meaning
when π has a first moment. Therefore, it is natural to expect that the restriction on the
tail of π is only technical.

Remark 2.9. Theorem 2.6 and Corollary 2.7 are still valid when we condition the graphs
to be simple, in which case the configuration model is the uniform random graph with a
given degree sequence. This is a classical consequence of the fact that the probability
to be simple for a configuration model with a given asymptotic degree distribution is
uniformly bounded away from zero under our assumptions. See for instance van der
Hofstad’s book [18].

3 Examples

In this section we provide explicit formulations of Proposition 2.4 and Theorem 2.6
for particular choices of the initial probability distribution π.
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3.1 Poisson distribution

Since the Erdős-Rényi model on N vertices with probability of connection c/N is con-

tiguous to the configuration model on N vertices with sequence of degree D(N)
1 , . . . , D

(N)
N

that are i.i.d. with Poisson law of parameter c, we can recover the result of Enriquez,
Faraud and Ménard [10]. Indeed, in the Erdős-Rényi case, after having explored a
proportion α of vertices, the graph induced by the unexplored vertices is an Erdős-Rényi
random graph with (1− α)N vertices and parameter c/N , hence its asymptotic degree
distribution is Poisson with parameter (1−α)c. This is in accordance with our Proposition
2.4 since in that case, denoting f(s) = exp(c(s− 1)) the generating series of the Poisson
law with parameter c,

g(α, s) =
1

1− α
f

(
f−1(1− α)− (1− s)f

′(f−1(1− α))
f ′(1)

)
=

1

1− α
exp

(
c

(
f−1(1− α)− (1− s)f

′(f−1(1− α))
f ′(1)

− 1

))
=

1

1− α
exp

(
c

(
1 +

log(1− α)
c

− (1− s)cf(f
−1(1− α))
c

− 1

))
=

1

1− α
exp

(
c

(
1 +

log(1− α)
c

− (1− s)(1− α)− 1

))
= exp (c(1− α)(s− 1)) .

Using the formulas of Theorem 2.6, we obtain the same equations as in [10] for the
limiting profile of the DFS spanning tree.

0.0 0.5 1.0 1.5 2.0
0.000

0.002

0.004

0.006

0.008

N=100001 and c=1.1

0.0 0.5 1.0 1.5 2.0
0.00
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0.08

0.10

0.12

N=100001 and c=1.5

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N=10000 and c=5

Figure 1: Simulations of (XdtNe/N)t∈[0,2] (blue) and the limiting shape (red) for various
values of N and c. Notice that when c is close to 1, we have to take N very large for the
walk to be close to its limit.

3.2 d-Regular and Binomials distributions

Let d ≥ 3. Since the results of Proposition 2.4 and Theorem 2.6 hold with probability
tending to 1, we can obtain results on d-regular uniform random graphs by applying them
to the contiguous model which consists in choosing π = δd and conditioning the graphs
to be simple. By Proposition 2.4, the degree distribution πα has generating function

g(α, s) =
1

1− α

(
(1− α)1/d − (1− s)d(1− α)

(d−1)/d

d

)d
=
(
1 + (s− 1)(1− α)

d−2
d

)d
. (3.1)
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Hence, πα is a binomial distribution Bin
(
d, (1− α) d−2

d

)
. From (3.1), we get ĝ(α, s) =

(1 + (s− 1)(1− α)(d−2)/d)d−1. Solving the equation 1− ρ = ĝ(α, 1− ρ) in α gives:

α(ρ) = 1−

(
1− (1− ρ)

1
d−1

ρ

) d
d−2

.

From this, we deduce a parametrization of the limiting profile in terms of hypergeometric
functions. In particular, the height of the limiting DFS spanning tree is given by

Hmax(d) = 1−
∫ 1

0

(
1− x

1
d−1

1− x

) d
d−2

dx.

When π has a binomial distribution with parameters d and p, πα is also a binomial
distribution.

πα = Bin
(
d, p(1− α)

d−2
d

)
.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4
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0.8

N=100 and d=5

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

N=1000 and d=5

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

N=10000 and d=5

Figure 2: Simulations of (XdtNe/N)t∈[0,2] (blue) and the limiting shape (red) for 5-regular
graphs of various sizes.

3.3 Geometric distribution

Let p > 0 and suppose that the initial distribution π is a geometric distribution
starting at 0 with parameter p. The generating series of π is f(s) = p

1−(1−p)s . We assume

p < 2/3 so that the configuration model with asymptotic degree distribution π has a
giant component. Then, by Proposition 2.4, the distribution πα has generating series

g(α, s) =
p(α)

1− (1− p(α))s
,

where p(α) = p
p+(1−p)(1−α)3 . Hence, πα is a geometric distribution that starts at 0 with

parameter p(α). The generating series of π̂α is ĝ(α, s) =
(

p(α)
1−(1−p(α))s

)2
. Therefore, the

solution in α of 1− ρ = ĝ(α, 1− ρ) is

α(ρ) = 1−
(

p

1− p

)1/3(
1

1− ρ+
√
1− ρ

)1/3

.

In particular, the height of the limiting DFS spanning tree is given by:

Hmax(p) = ρπ −
(

p

1− p

)1/3 ∫ ρπ

0

(
1

x+
√
x

)1/3

dx,

where ρπ is given by:

ρπ =
1

2

(
1− 3p

1− p
+

√
1 + 3p

1− p

)
.
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Figure 3: Simulations of (XdtNe/N)t∈[0,2] (blue) and the limiting shape (red) for random
graphs with geometric degrees with various perimeters.

3.4 Heavy tailed distribution

When π is a power law distribution of parameter γ > 2, that is when π({k, k+1, . . .}) ∼
C/kγ for a constant C, only the first bγc moments of π are finite. Let α ∈ (0, αc). Then,
for all n ≥ 0, the n-th factorial moment of πα is equal to

πα(x
n) =

∂n

∂sn

∣∣∣∣∣
s=1

g(α, s)

=

(
f ′π
(
f−1π (1− α)

)
f ′π(1)

)n
f (n)

(
f−1(1− α)

)
1− α

.

Therefore, after visiting a proportion εN of the vertices in the DFS, the asymptotic
distribution of the degrees of the graph induced by the unexplored vertices is not a
power law and has moments of all orders. This remarkable phenomenon could be
explained by the fact that vertices of high degree are visited in a microscopic time. We
believe that a precise study of this case could be of independent interest.

4 Constructing while exploring

Let (d(N))N≥1 be a sequence of degree sequences of increasing length satisfy-
ing the assumptions of Proposition 2.4. For a fixed N ≥ 1, we use the sequence
d(N) = (d

(N)
1 , . . . , d

(N)
N ) to construct a configuration model C (d(N)) with vertex set

VN = {1, . . . , N}. More precisely, we simultaneously build the graph and its DFS
exploration. This will be done in a similar way as for the DFS defined in Section 2.1,
while revealing as little information about the unexplored part of the graph as possible.
For every step n we consider the following objects, defined by induction.

• An, the active vertices, is an ordered list of pairs (v,mv) where v is a vertex of VN
and mv is the list of vertices corresponding to the vertices that will be matched to
v during the rest of the exploration.

• Sn, the sleeping vertices, is a subset of VN . This subset will never contain a vertex
of An.

• Rn, the retired vertices, is another subset of VN composed of all the vertices that
are neither in An nor Sn.

At time n = 0, choose a vertex v uniformly at random and pair each of its d(N)
v half edges

to a half edge of the graph. This gives an unordered set of vertices that will be matched
to v at some point of the exploration. We denote by mv this set with a uniform order. Set:

A0 = ((v,mv)) ,

S0 = VN \ {v},
R0 = ∅.
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Suppose that An, Sn and Rn have already been constructed. Three cases are possible.

1. If An = ∅, the algorithm has just finished exploring and building a connected
component of C (d(N)). In that case, we pick a vertex vn+1 uniformly at random

from Sn and we pair each of its d(N)
vn+1 half edges to a uniform half edge belonging

to a vertex of Sn. We denote by mvn+1
the set of these paired vertices which are

different from vn+1 (corresponding to loops in the graph), ordered uniformly and
set: 

An+1 =
(
vn+1,mvn+1

)
,

Sn+1 = Sn \ {vn+1},
Rn+1 = Rn.

2. If An 6= ∅ and if its last element (u,mu) is such that mu = ∅, the DFS backtracks
and we set: 

An+1 = An − (u,mu),

Sn+1 = Sn,

Rn+1 = Rn ∪ {u}.

3. If An 6= ∅ and if its last element (u,mu) is such that mu 6= ∅, the algorithm goes
to the first vertex of mu, say vn+1. By construction, this vertex always belongs to
Sn. We first update An into A′n by removing each occurrence of vn+1 in the lists
mx for x ∈ An. The half edges of vn+1 that have not been matched up to now are
uniformly matched with half edges of Sn that have not yet been matched. We order
the set of corresponding vertices and denote mvn+1

this list. We finally set
An+1 = A′n + (vn+1,mvn+1

)

Sn+1 = Sn \ {vn+1},
Rn+1 = Rn.

Since each matching of half-edges in the algorithm is uniform, it indeed constructs a
random graph C (d(N)). Moreover, as advertised at the end of Section 2.1, this algorithm
simultaneously constructs the DFS on this random graph as each of the three cases are
in correspondence to the same three cases in the definition of the DFS given in Section
2.1.

From this construction, it is clear that for every n, the graph induced by Sn in the
whole graph is a configuration model conditionally on the induced degree sequence.
Moreover, for each vertex v of Sn, its degree in this induced graph is given by its initial
degree d(N)

v minus the number of times that v appears in the lists mx for x ∈ An.
In order to prove Theorem 1, we will first analyse the part of the algorithm corre-

sponding to the increasing part of the limiting profile. This has the same law as the
increasing part of the process (Xn)0≤n≤2N = (|An|)0≤n≤2N . During this first phase, at
each time, the graph induced by the sleeping vertices, which we will call the remaining
graph, is a supercritical configuration model. We will see in Section 4.1 that there is a
sequence of random times where the DFS discovers a vertex belonging to what will turn
out to be the giant component of the remaining graph. We will call these times ladder
times and study in detail the law of the remaining graph at these times in Section 4.2.

4.1 Ladder times

Fix δ ∈ (0, 1). Let T0 = 0 and define, for k ∈ {0, . . . ,K},

Tk+1 := min
{
i > Tk, Xi = k + 1 and ∀i ≤ j ≤ i+Nδ, Xj ≥ k + 1

}
,
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where K is the last index for which this definition makes sense (i.e. the set for which
the min is taken is not empty). Of course, this sequence of times will only be useful to
analyze the DFS on C (d(N)) when K is of macroscopic order, which is indeed the case
with high probability under the assumptions of Proposition 2.4.

For all k ∈ {0, . . . ,K}, let Sk be the graph induced by the vertices of STk−1 in the
graph constructed by the algorithm of the previous section, with the convention that
S−1 = ∅. We also denote by vk the last vertex of ATk . The graphs Sk and STk have the
same vertex set except for vk which belongs to Sk but not to STk . See Figure 4 for
an illustration of these definitions. We chose to emphasize Sk because the structural
changes between two such consecutive graphs will be easier to track.

vk
Sk = STk−1

STk

vk+1

1
2

3

4

Sk+1

Figure 4: Structure of the remaining graph at a ladder time. The first half edges of vk
are numbered according to their matching order during the construction. Here, the last
matched half edge is in bold and connects vk to vk+1. The remaing half edges of vk are
represented by dotted lines and matched to unexplored vertices.

Fix k < K. From the definition of the times Tk and Tk+1, we can deduce that vk+1 and
vk are neighbors in Sk. Between the times n = Tk and n = Tk+1 the process Xn = |An|
stays above k and is equal to k at time Tk+1 − 1. Each excursion of Xn strictly above
k between Tk and Tk+1 − 1 corresponds to the exploration of a different connected
component of Sk \ {vk} and we have

Tk+1 − Tk = 1 + 2× ( number of vertices in Sk \Sk+1 − 1).

In addition, the definition of the ladder times implies that these connected components
have sizes smaller than Nδ.

For every n ∈ {0, . . . , 2N}, let D(N)
n be the degree of a uniform vertex in the graph

induced by Sn. For every ε > 0, we define

nε = n(N)
ε = sup

{
n ∈ J0, 2NK : ∀m ∈ J0, nK,

E[D
(N)
n (D

(N)
n − 1)]

E[D
(N)
n ]

> 1 + ε

}
.

For n < nε, the subgraphs induced by Sn are all supercritical. For 0 < δ < 1/2, let

Gε = G
(N)
ε (δ) be the event that, for all n < nε,

• there is at least one connected component with size greater than N1−δ in the graph
induced by Sn;
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• there is no connected component of size betweenNδ andN1−δ in the graph induced
by Sn.

Under the assumptions of Proposition 2.4 we have, for every λ > 0,

P
(
Gε

)
= 1−O(N−λ). (4.1)

See for example the last bound page 82 of Bordenave [8].
The event Gε will be instrumental in the analysis of the DFS and the times Tk because,

on this event, if Tk < nε, then the graph STk = Sk \ {vk} has a connected component of
size larger than N1−δ and, in Sk, the vertex vk has a neighbor in this giant component.
Indeed, if every neighbor of vk in STk belonged to a small component, the size of the
connected component of vk in Sk would be at most N1/γ Nδ � N1−δ. On the other hand,
we know that this component has size larger than Nδ meaning that, on Gε, it is in fact
larger than N1−δ leading to a contradiction. By induction, this means that on Gε and if
Tk < nε, then k < K.

Let us finally set
Kε := sup{k ∈ J0,KK, Tk < nε},

and note that, thanks to (4.1), Kε < K with probability 1−O(N−λ).

4.2 Analysis of the graphs Sk

Let Ni(k) be the number of vertices of degree i in Sk. The graph Sk has the law of a
configuration model with vertex degrees given by the sequence (Ni(k))i≥0. Denote by
Vi(S) the number of vertices with degree i in the graph S. Moreover if H is a subgraph
of S, S \H stands for the subgraph of S induced by its vertices that do not belong to H.
Recalling that mvk denotes the list of neighbors of vk in Sk (self-loops not included), the
evolution of Ni is given by:

Ni(k + 1)−Ni(k) =− Vi(Sk \Sk+1) (4.2)

+
∑

v ∈mvk
∩Sk+1

(
−1degSk

(v)=i + 1degSk
(v)=i+ov

)
, (4.3)

where ov is the number of occurrences of v in mvk . Indeed, the first contribution
corresponds to the complete removal of vertices belonging to Sk but not to Sk+1. The
second contribution corresponds to edges of Sk connecting vk to vertices of Sk+1, taking
into account eventual multiple edges. Figure 4 gives an illustration of this situation. In
this figure, the contribution (4.2) comes from the connected components of the vertices
attaches to the half edges of vk numbered 1, 2 and 3. The contribution (4.3) comes from
vk+1 and the vertices matched to dotted half edges.

A fundamental step in understanding the behaviour of the exploration process is to
identify the asymptotic behaviour of the variables Tk and Ni(k) for large N . This is the
object of Theorem 4.3. To state this, we first introduce some technical notation.

Let (zi)i≥0 ∈ RZ+ be such that
∑
i≥0 zi ≤ 1 and

∑
k≥0 izi < ∞. For any i ≥ 0 let

ẑi = (i+ 1)zi/
∑
j jzj and define:

g(zi)i≥0
(s) =

∑
i≥0

zi∑
l≥0 zl

si

ĝ(zi)i≥0
(s) =

∑
i≥0

ẑis
i =

g′(zi)i≥0
(s)

g′
(zi)i≥0

(1)

(4.4)

respectively the generating series associated to (zk)k≥0 and its sized-biased version. Let
also ρ(zi)i≥0

be the largest solution in [0, 1] of

1− s = ĝ(zi)i≥0
(1− s). (4.5)
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Remark 4.1. Since ĝ is the generating function of a probability distribution on the
integers, it is convex on [0, 1]. Therefore, Equation (4.5) has a positive solution in (0, 1] if

and only if ĝ′(1) > 1, which is equivalent to
∑
l≥1(l−1)lzl∑
l≥1 lzl

> 1.

We also define the following functions:

f(z0, z1, . . .) =
2− ρ(zi)i≥0

ρ(zi)i≥0

(4.6)

fi(z0, z1, . . .) = −
1

ρ(zj)j≥0

izi∑
j≥0 jzj

+
1

ρ(zj)j≥0

(
1−

∑
j≥0(j − 1)jzj∑

n≥0 jzj

)(
izi∑
j≥0 jzj

− (i+ 1)zi+1∑
j≥0 jzj

)
. (4.7)

The asymptotic behaviour of the variables Tk and Ni(k) will be driven by the solution
of an infinite system of differential equations whose existence is provided by the following
lemma, whose proof is postponed to Section 6.2. Actually, we exhibit an explicit solution
of another infinite system of differential equations (S′) which is related to the following
system (S) by some time change.

Lemma 4.2. Let π = (πi)i≥0 ∈ [0, 1]N such that
∑
i≥0 πi = 1. Then, the following system

of differential equations: {
dzi
dt = fi(z0, z1, . . .);

zi(0) = πi.
(S)

admits a solution (z∗i )i≥0 which is well defined on [0, tmax) for some tmax > 0 and whose
derivatives dz∗i /dt are all Lipschitz.

We are now ready to state the main result of this section.

Theorem 4.3. For all t ∈ [0, 1] such that btNc ≤ Kε, the following convergences in
probability hold:

∀i ≥ 1,
Ni(btNc)

N

P−→
N→+∞

z∗i (t) ,

Moreover,

TbtNc

N

P−→
N→+∞

z∗ (t) .

Remark 4.4. By Theorem 4.3, we deduce that the system (S) has a unique solution
among sequences of functions with Lipschitz derivatives.

The proof of Theorem 4.3 is crucially based on the following Lemma which identifies
the trends of the quantities Tk and Ni(k).

Lemma 4.5. 1. There exists 0 < β < 1/2 such that with high probability for all
k ≤ Kε,

|Tk+1 − Tk| ≤ Nβ and for all k ≥ 0, |Ni(k + 1)−Ni(k)| ≤ Nβ .

2. We denote by (Fk)k≥0 the canonical filtration associated to the sequence ((Ni
(k))i≥0)k≥0. There exists λ > 0 such that for every k ≤ Kε,

E[Tk+1 − Tk | Fk] = f

(
N0(k)

N
,
N1(k)

N
, . . .

)
+O

(
N−λ

)
,

E[Ni(k + 1)−Ni(k) | Fk] = fi

(
N0(k)

N
,
N1(k)

N
, . . .

)
+O

(
N−λ

)
.
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In the following, we first focus on the proof of Lemma 4.5 and postpone the proof of
Theorem 4.3 at the end of the section.

Proof of Lemma 4.5. The first point is a consequence of Equation (4.1) with δ < 1/2−1/γ.
Indeed on the event Gε the vertices vk have degree at most N1/γ and therefore Tk+1 −
Tk ≤ 1+ 2N1/γNδ � Nβ for some β < 1/2. Since |Ni(k + 1)−Ni(k)| ≤ (Tk+1−Tk)/2 the
second inequality is trivial.

In order to establish the second point, we need to analyse the structure of Sk and
the contributions (4.2) and (4.3). To this end, we will study the random variable ek that
counts the number of excursions strictly above k of the walker (Xn) coding the DFS
between the times Tk and Tk+1 − 1 (in Figure 4, ek = 3). In particular, the expectation of
ek conditionally on Fk is well defined on the event Gε.

If we disconnect the edges joining the ek first children of vk in the tree constructed by
the DFS, the remaining connected components in Sk of these children have size smaller
than Nδ. This motivates the following notation:

• for every i ≥ 0, let Extki (resp. Survki ) be the set of half-edges e ∈ Sk connected
to a vertex w of degree i (in Sk) such that the connected component of w after
removing this half-edge has size smaller than Nδ (resp. larger than Nδ);

• let Extk (resp. Survk) be the set of half-edges e ∈ Sk connected to a vertex
w such that the connected component of w after removing this half-edge has
size smaller than Nδ (resp. larger than Nδ). Note that Extk = tj≥0Extkj and

Survk = tj≥0Survkj .

Recall that on Gε, for all k ≤ Kε, vk has a neighbor in Sk that belongs to a connected
component of Sk with more than Nδ vertices. This means that for every such k, with
probability 1−O(N−1−λ), the random variable ek is the number of half edges of Extk

attached to vk before attaching a half edge of Survk during the DFS. In order to compute
its expectation, we first condition on {degSk

(vk) = d}, with d > 0 fixed.
Notice that, conditional on the event {degSk

(vk) = d} ∩ {ek < degSk
(vk)}, the law of

(Sk, vk) is the law of a rooted configuration model Cd
N(k) with root degree d and degree

sequence N(k) := (Ni(k))i≥0, conditioned on the root having one of its half edge paired
to an element of Surv(Cd

N(k)). We define the new random variable ẽk as the number of

half edges of the root paired to an element of Ext(Cd
N(k)) before pairing a half edge to an

element of Surv(Cd
N(k)) when doing successive uniform matchings in the configuration

model (with the convention ẽk = d if the root has no half-edged paired to an element of
Surv(Cd

N(k))). We have the following equality for all j:

P
(
ek = j

∣∣Fk and degSk
(vk) = d

)
= P

(
ẽk = j

∣∣ ẽk < d
)
+O(N−1−λ).

Let

ρ̃k :=
|Surv(Cd

N(k))|
2|E(Cd

N(k))|
= 1−

|Ext(Cd
N(k))|

2|E(Cd
N(k))|

,

the proportion of half-edges in Surv(Cd
N(k)) (resp. Ext(Cd

N(k))). This proportion is close
to a constant ρk that we now define with the help of additional notation. Recalling (4.4),
let

pi = pi(k) =
Ni(k)∑
j≥0Nj(k)

, gk = g(pj)j≥0
,

p̂i = p̂i(k) =
(i+1)pi+1(k)∑
j≥0 jpj(k)

, ĝk = ĝ(pj)j≥0
= g(p̂j)j≥0

,

and let ρk = ρ(pj(k))j≥0
be the largest solution in [0, 1] of 1− s = ĝk(1− s). We have the

following lemma, whose proof is postponed to Section 6.1.
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Lemma 4.6. For all 0 ≤ k ≤ Kε, there exists λ > 0 and η > 0 such that, conditionally on
Fk, uniformly in k,

P

(∣∣∣∣ |Exti(C
d
N(k))|

2|E(Cd
N(k)

)| −
ipi
g′k(1)

(1− ρk)i−1
∣∣∣∣ ≥ N−λ) = O

(
N−1−λ

)
,

P

(∣∣∣∣ |Survi(CdN(k))|
2|E(Cd

N(k)
)| −

ipi
g′k(1)

(1− (1− ρk)i−1)
∣∣∣∣ ≥ N−λ) = O

(
N−1−λ

)
,

P

(∣∣∣∣ |Ext(CdN(k))|
2|E(Cd

N(k)
)| − (1− ρk)

∣∣∣∣ ≥ N−λ) = O
(
N−1−λ

)
,

P

(∣∣∣∣ |Surv(CdN(k))|
2|E(Cd

N(k)
)| − ρk

∣∣∣∣ ≥ N−λ) = O
(
N−1−λ

)
.

Using this lemma, we obtain:

P
(
ek = j

∣∣Fk and degSk
(vk) = d

)
=
P
(
{ẽk = j} ∩ {ẽk < d}} ∩ {|ρ̃k − ρk| ≤ O(N−λ)}

)
P
(
ẽk < d ∩ {|ρ̃k − ρk| ≤ O(N−λ)}

) +O
(
N−1−λ

)
. (4.8)

Fix j < d. To estimate the probabilities in (4.8), we successively match the half edges
c1, . . . , cj+1 of the root uniformly among the half edges of Cd

N(k). Notice that if none
of these half edges are matched together, this is equivalent to an urn model without
replacement. At each of these steps, the proportion of available half edges of Ext(Cd

N(k))

diminishes and is therefore between 1 − ρ̃k − d
2|E(Cd

N(k)
)| and 1 − ρ̃k. Recalling that

|E(Cd
N(k))| is uniformly of order N , we can write for every j < d

(
1− ρk − C d

N +O
(
N−λ

))j (
ρk +O

(
N−λ

))
1−

(
1− ρk − C d

N +O (N−λ)
)d +O

(
N−1−λ

)
≤ P

(
ek = j

∣∣Fk and degSk
(vk) = d

)
≤
(
1− ρk +O

(
N−λ

))j (
ρk + C d

N +O
(
N−λ

))
1− (1− ρk +O (N−λ))

d
+O

(
N−1−λ

)
where C is a constant and the error terms O(N−λ) are the same everywhere and uniform
in d. This easily translates into

P
(
ek = j

∣∣Fk and deg(vk) = d
)

=
(1− ρk)j ρk
1− (1− ρk)d

(
1 +O

(
d2N−1 + dN−λ

))
1{j<d} +O

(
N−1−λ

)
where, once again, the error terms are uniform. We can now compute the conditional
expectation of ek:

E
[
ek
∣∣Fk,degSk

(vk) = d
]

=
1− ρk

ρk

(
1− (1− ρk)d

) (−dρk (1− ρk)d−1 + 1− (1− ρk)d
) (

1 +O
(
d2N−1 + dN−λ

))
+O(N−λ),

where the last error term comes from the fact the ek is smaller that O(N) by definition.
To finally compute the expectation of ek, we want to sum the above equality with

respect to the law of degSk
(vk). By construction, in Sk−1, the vertex vk is attached to

EJP 27 (2022), paper 53.
Page 15/27

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP762
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Depth first exploration of a configuration model

vk−1 by a half edge of Survk−1 chosen uniformly. Therefore, by Lemma 4.6, the law of
the degree of vk in Sk is given by

P(degSk
(vk) = d | Fk) =

(d+ 1)pd+1(k − 1)

ρk−1g′k−1(1)

(
1− (1− ρk−1)d

)
(1 +O(N−λ)),

where the error term is uniform in d and k. We can replace k − 1 by k in the above
probabilities at the cost of a factor 1 + O(N−λ) which is uniform in k and d. Indeed,
on Gε, the difference between Sk−1 and Sk consists of at most N1/γ components of
size at most Nδ and we have pd(k − 1) = pd(k)

(
1 +O(N1/γ+δ−1)

)
uniformly in k and d.

The difference between ρk−1 and ρk is then of the same order by a Taylor expansion.
Therefore

P(degSk
(vk) = d | Fk) =

(d+ 1)pd+1(k)

ρkg′k(1)

(
1− (1− ρk)d

)
(1 +O(N−λ)), (4.9)

and we get:

E [ek|Fk]

=
(1− ρk)
g′k(1)ρ

2
k

∑
d≥0

(d+ 1)pd+1(k)
(
−dρk (1− ρk)d−1+1− (1− ρk)d

) (
1+O

(
d2N−1 + dN−λ

))
+O(N−λ)

=
(1− ρk)
g′k(1)ρ

2
k

(g′k(1)− ρkg′′k (1− ρk)− g′k(1− ρk)) +O(N
1
γ−1) · O

∑
d≥0

d2pd(k)

+O(N−λ).

Notice that the error O(N−λ) is uniform in k and d. Let us prove that
∑
d≥0 d

2pd(k) is of

order 1. First note that it is of the same order as 1
N

∑
d≥0 d

2Nd(k), where we recall that
Nd(k) is the number of vertices of degree d in Sk. Indeed the number of vertices of Sk

is of order N . Denoting by N≥d(k) the number of vertices of degree larger than d in Sk,
it holds that N≥d(k) ≥ N≥d(k+1) from the definition of the algorithm. This monotonicity
implies that

1

N

∑
d≥0

d2Nd(k) ≤
∑
d≥0

d2
Nd(0)

N
,

where the right-hand side converges to a finite limit by assumption (A1). Therefore

E [ek|Fk] =
(1− ρk)
g′k(1)ρ

2
k

(g′k(1)− ρkg′′n(1− ρk)− g′k(1− ρk)) +O(N−λ)

=
1− ρk
ρk

(1− ĝ′k(1− ρk)) +O(N−λ), (4.10)

where we used 1− ρk = ĝk(1− ρk) = g′k(1− ρk)/g′k(1).
Now that we know more about the random variable ek, we can study in more depth

the time difference between two consecutive ladder times.
With high probability, the first ek neighbours of vk in the tree constructed by the DFS

all belong to distinct connected components of Sk \ {vk}. We denote these components
by W (1), . . . ,W (ek). Notice that by Lemma 4.6, for all i ≥ 0, the ratio |Extki |/|Extk| con-
centrates around ipi(k)(1− ρk)i−1/g′k(1). Therefore, conditionally on ek, with probability
1−O(N−λ), the size of these components can be coupled with the size of ek i.i.d. Galton-
Watson trees independent of ek and whose reproduction laws have generating series
given by g̃k(s) := ĝk((1− ρk)s)/(1− ρk). Therefore, the expected size of a component is
given by:

E
[∣∣∣W (1)

∣∣∣ ∣∣∣Fk] = 1

1− g̃′k(1)
+O(N−λ) = 1

1− ĝ′k(1− ρk)
+O(N−λ),
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and we obtain, using Equation (4.10):

E
[
Tk+1 − Tk

∣∣∣Fk] = 1 + 2× E

[
ek∑
p=1

∣∣∣W (i)
∣∣∣ ∣∣∣Fk]

= 1 + 2

(
1− ρk
ρk

(1− ĝ′k(1− ρk))+O(N−λ)
)(

1

1− ĝ′k(1−ρk)
+O(N−λ)

)
=

2− ρk
ρk

+O
(
N−λ

)
= f

(
N0(k)

N
,
N1(k)

N
, . . .

)
+O(N−λ) (4.11)

which is the desired result for the evolution of (Tk).

We now turn to the evolution of the (Ni(k)) which follows from the analysis of the
expectation of the terms (4.2) and (4.3). The term (4.2) accounts for the vertices of
degree i in the graph Sk \Sk+1. Among these vertices, the vertex vk has a special role
because it is conditioned to be matched to an element of Survk. Therefore, we write

Vi(Sk \Sk+1) = 1{degSk
(vk)=i} +

ek∑
j=1

∑
v∈W (j)

1{degSk
(v)=i}.

We first compute the expectation of the sum in the right hand side of the previous equa-
tion. The connected components W (1), . . . ,W (ek) are well approximated by independent
Galton-Watson trees with offspring distribution given by ĝn, conditioned on extinction.
Let Ci be the number of individuals that have i − 1 children in such a tree. These
individuals all have degree i in Sk and contribute to the sum. The quantity Ci satisfies
the following recursion established by summing over the possible number of children of
the root:

E[Ci] = E

∑
l≥0

p̂l(1− ρk)l (lCi + δl=i−1)

 = E[Ci]ĝ
′
k(1− ρk) + p̂i−1(1− ρk)i−1,

which leads to

E[Ci] =
p̂i−1(1− ρk)i−1

1− ĝ′k(1− ρk)
. (4.12)

Therefore, multiplying (4.10) and (4.12), we obtain

E
[
Vi(Sk \Sk+1)

∣∣∣Fk] = P(degSk
(vk) = i

∣∣∣Fk)+ p̂i−1
ρk

(1− ρk)i−1 +O
(
N−λ

)
. (4.13)

Note that the sum over i of these terms gives the total number of vertices in the
connected components associated to the first ek children of vk: (1− ρk)/ρk + o(1). This is
in agreement with Equation (4.11).

For the last term (4.3), we use the fact that, with probability 1−O(N−λ), the elements
of mvk that belong to Sk+1 are distinct. One of these elements is vk+1 and has a special
role, while all the others correspond to a uniform matching to a half edge of a vertex
of Sk+1 \ {vk+1} and therefore have degree i with probability p̂i−1. Note that there are
degSk

(vk) − ek − 1 terms in the sum (4.3) when excluding vk+1. We have, taking into
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account that ov = 1 up to a negligible term:

E

 ∑
v ∈mvk

∩Sk+1

(
−1degSk

(v)=i + 1degSk
(v)=i+ov

)
= −P

(
degSk

(vk+1) = i
∣∣∣Fk)+ P(degSk

(vk+1) = i+ 1
∣∣∣Fk)

+ E
[
deg(vk)− ek − 1

∣∣∣Fk] (−p̂i−1 + p̂i) +O(N−λ)

= −P
(
degSk

(vk+1) = i
∣∣∣Fk)+ P(degSk

(vk+1) = i+ 1
∣∣∣Fk)

+
1

ρk

[(
ĝ′k(1)− (1− ρk)ĝ′k(1− ρk)− (1− ρk)(1− ĝ′k(1− ρk))− ρk

)
× (−p̂i−1 + p̂i)

]
+O(N−λ)

= −P
(
degSk

(vk+1) = i
∣∣∣Fk)+ P(degSk

(vk+1) = i+ 1
∣∣∣Fk)

+
1

ρk
(1− ĝ′k(1)) (p̂i−1 − p̂i) +O(N−λ). (4.14)

Hence, summing (4.13) and (4.14), we obtain the total contribution of (4.2) and (4.3):

E
[
Ni(k + 1)−Ni(k)

∣∣∣Fk] = −P(degSk
(vk) = i

∣∣∣Fk)− P(degSk
(vk+1) = i

∣∣∣Fk)
+ P

(
degSk

(vk+1) = i+ 1
∣∣∣Fk)

− p̂i−1
ρk

(1− ρk)i−1 +
1

ρk
(1− ĝ′k(1)) (p̂i−1 − p̂i) +O(N−λ).

Recall that the conditional law of degSk
(vk) is given by equation (4.9). Similar arguments

to those used to compute it lead to

P
(
degSk

(vk+1) = i
∣∣∣Fk) = P

(
degSk

(vk) = i− 1
∣∣∣Fk)+O(N−λ).

Therefore, we have

E
[
Ni(k + 1)−Ni(k)

∣∣∣Fk] = − p̂i−1
ρk

(
1− (1− ρk)i−1

)
− p̂i−1

ρk
(1− ρk)i−1

+
1

ρk
(1− ĝ′k(1)) (p̂i−1 − p̂i) +O(N−λ)

= − p̂i−1
ρk

+
1

ρk
(1− ĝ′k(1)) (p̂i−1 − p̂i) +O(N−λ)

= fi

(
N0(k)

N
,
N1(k)

N
, . . .

)
+O

(
N−λ

)
.

This ends the proof of lemma 4.5.

We no turn to the proof of our main Theorem.

Proof of Theorem 4.3. Let tε = sup{t ∈ [0, 1], btNc ≤ Kε}. Let β ∈ (0, 1/2) be as in

Lemma 4.5. Let ν ∈
(
1, 1−ββ

)
and w = N (1+ε)β. Fix η > 0 and Iη ≥ 1 such that for all

t ∈ [0, 1):

max

∑
i≥Iη

z∗i (t),
∑
i≥Iη

iz∗i (t),
∑
i≥Iη

i(i− 1)z∗i (t)

 ≤ η
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and such that w.h.p.

max

∑
i≥Iη

Ni(btNc),
∑
i≥Iη

iNi(btNc),
∑
i≥Iη

i(i− 1)Ni(btNc)

 ≤ ηN.
Observe that such a Iη exists since, by monotonicity, it is enough to check the inequalities
at t = 0. We prove by induction on k that there exists a nondecreasing sequence
(Bk)0≤k≤N/w and δ > 0 such that lim supN BN/w/N ≤ Cη for some constant C > 0 and
such that

∀0 ≤ i ≤ Iη, ∀0 ≤ k ≤ N/w, P (|Ni(kw)− z∗i (kw/N)N | ≥ Bk) ≤ exp(−Nδ). (4.15)

Since the sequence of configuration models has asymptotic degree distribution π and
since z∗i (0) = πi, there exists Nη ≥ 1 such that |Ni(0)/N − z∗i (0)| ≤ η for all N ≥ Nη. This
proves the initialization step.

Suppose that the property is verified for 0 ≤ k ≤ N/w − 1. Rewrite

Ni ((k + 1)w)− z∗i ((k + 1)w/N)N

= Ni ((k + 1)w)−Ni(kw)− wfi ((Nj(kw)/N)j) (4.16)

+Ni(kw)− z∗i (kw/N)N (4.17)

+ z∗i (kw/N)N − z∗i ((k + 1)w/N)N + wfi
(
(z∗j (kw/N))j

)
(4.18)

+ wfi ((Nj(kw)/N)j)− wfi
(
(z∗j (kw/N))j

)
(4.19)

We analyse each term separately.
The term (4.16). Let α ∈

(
1+ν
2 β, νβ

)
. Then, there exists λ′ > 0 such that with high

probability,
|(4.16)| ≤ Nα+β +N (1+ν)β−λ′ . (4.20)

Indeed, by the trend assumption, there exists a function g(N) such that g(N) = O(N−λ)

and such that the process

{Ni (kw + l)− Y (kw)− lfi (Nj(kw)/N)j)− lg(N)}1≤l≤w

is a supermartingale with increments bounded by Nβ . Using Azuma-Hoeffding inequality
with l = w, this implies that:

P

((
Ni ((k + 1)w)−Ni(kw)− wfi (Nj(kw)/N)j)

)
>
(
Nα+β + wg(N)

))

≤ exp

(
− 1

2w

N2α+2β

N2β

)
.

Since λ′ < λ and since wg(N) = O(N (1+ν)β)−λ), we have proved that:

P

((
Ni ((k + 1)w)−Ni(kw)− wfi (Nj(kw)/N)j)

)
>
(
Nα+β+N (1+ν)β−λ′))

≤ exp

(
−N

2α−(1+ν)β

2

)
.

Using a similar argument, one can obtain the same bound on the probability that(
Ni ((k + 1)w) − Ni(kw) − wfi (Nj(kw)/N)j)

)
<
(
Nα+β +N (1+ν)β−λ′

)
and thus obtain

inequality (4.20).
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The term (4.17). By our induction hypothesis, it can be bounded by Bk with high
probability.
The term (4.18). Using that z∗i is a solution of z′i(t) = fi ((zj(t))j) and the mean value
Theorem, there exists θ ∈ [kw/N, (k + 1)w/N ] such that

|(4.18)| = w|fi
(
(z∗j (θ))j

)
− fi

(
(z∗j (kw/N))j

)
|. (4.21)

Since t 7→ fi((z
∗
j (t))j) is smooth, we get that there exists a constant C > 0 such that for

every i ≤ Iη:

|(4.17)| ≤ Cw
2

N
. (4.22)

The term (4.19). By our induction hypothesis and by our choice of Iη, there exists a
constant C > 0 such that w.h.p.∣∣∣∣∣∣

∑
j≥0

jNj(kw)/N −
∑
j≥0

jz∗j (kw/N)

∣∣∣∣∣∣ ≤ CI2ηBk/N +
∑
j>Iη

jz∗j (kw/N) +
∑
j>Iη

jNj(kw)/N

≤ CI2ηBk/N + 2η.

Similarly: ∣∣∣∣∣∣
∑
j≥1

j(j − 1)Nj(kw)/N −
∑
j≥1

j(j − 1)z∗j (kw/N)

∣∣∣∣∣∣ ≤ CI3ηBk/N + 2η.

and ∣∣∣ρ(Nj(kw)/N)j − ρ(z∗j (kw/N))j

∣∣∣ ≤ CI3ηBk/N + 2η.

Moreover, the quantities ρ(z∗j (t))j and
∑
j≥0 jz

∗
j (t), which appear in the denominator of

fi, are bounded away from 0 for all t ∈ (0, tε) by our choice of Kε. Therefore, it can be
checked that with high probability, there exists a constant C such that

|(4.19)| =
∣∣wfi ((Nj(kw)/N)j)− wfi

(
(z∗j (kw/N))j

)∣∣
≤ Cw

[(∣∣∣∣Ni(kw)N
− z∗i (kw/N)

∣∣∣∣+ ∣∣∣∣Ni+1(kw)

N
− z∗i+1(kw/N)

∣∣∣∣)+ I3ηBk/N + η

]
≤
{
Cw(2Bk/N + I3ηBk/N + η) if i ≤ Iη − 1,

Cw(Bk/N + I3ηBk/N + 3η) otherwise,

the case i ≤ Iη − 1 resulting from our induction hypothesis, and the case i = Iη from the
definition of the truncation index Iη.
Conclusion. Putting all previous arguments together, we deduce that there exists a
constant C > 0 such that, by taking

Bk+1 = Bk

(
1 + CI3η

w

N

)
+Nα+β +N (1+ν)β−λ′ + CN2(1+ν)β−1 + Cwη, (4.23)

the following inequality holds:

∀0 ≤ i ≤ I, P (|Ni((k + 1)w)− z∗i ((k + 1)w/N)N | ≥ Bk+1) ≤ exp(−Nδ).,

which concludes the heredity argument of the induction.
Finally, notice that from our calibration of the constants α, β, the main additive term

in (4.23) is the last one of order w. On the other hand, the multiplicative term gives a
contribution of order 1 after N/w steps. Therefore, lim supN BN/w/N ≤ Cη, ending the
proof of Theorem 4.3.
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5 Proofs of the main results

We now turn to the proofs of Proposition 2.4 and Theorem 2.6. We will use the
following general fact about contour processes of trees, which can be easily proved by
induction on n.

∀n ≥ 0, number of vertices explored by the DFS by time n =
n+Xn

2
. (5.1)

5.1 Proof of Proposition 2.4

The time variable in Proposition 2.4 is the proportion of vertices explored by the
DFS whereas in Theorem 4.3 it is the index of the ladder times Tk. Therefore, to prove
Proposition 2.4, a first step is to study the asymptotic proportion of vertices explored by
time Tk. By Equation (5.1), for all N ≥ 1 and all 1 ≤ k ≤ Kε, this proportion is given by
ω(Tk) :=

k+Tk
2N . Therefore, by Theorem 4.3, this proportion satisfies

ω(Tk) = z̃

(
k

N

)
+ o(1), with z̃(t) =

1

2
(t+ z (t)) . (5.2)

Fix 0 ≤ α < αc and recall the definition of τ (N)(α) given in Proposition 2.4. At time
TNz̃−1(α), by Equation (5.2), the number of explored vertices is αN + o(N). Therefore
τ (N)(α) = TNz̃−1(α) + o(1). Hence, for all i ≥ 0,

Ni(τ
(N)(α)) = Ni

(
TNz̃−1(α) + o(1)

)
= Nzi

(
z̃−1(α)

)
+ o(N).

It is easy to check that the sequence of functions (zi ◦ z̃−1)i≥0 is solution of the system
(S’) of Lemma 6.3 below. The generating function g(α, s) of Proposition 2.4 is given by

g(α, s) =
1

1− α
∑
i≥0

zi ◦ z̃−1(α)si,

which is the desired result by Equation (6.9) and Proposition 6.4.

5.2 Proof of Theorem 2.6

Let N ≥ 1. By definition, for all 1 ≤ k ≤ Kε, the contour process of the tree
constructed by the DFS algorithm at time Tk is located at point (Tk, k). Furthermore, by
Theorem 4.3,

(Tk, k) = N

(
z

(
k

N

)
+ o(1),

k

N

)
.

Note that |Tk+1 − Tk| = o(N) and that, between two consecutive Tk’s, the contour
process cannot fluctuate by more than o(N). Hence, after normalization by N , the
limiting contour process converges to the curve (z(t), t) where t ranges from 0 to tmax =

sup{t > 0, z′(t) < +∞}. Recall that by the definition of z in Theorem 4.3 and Equation
(4.6), z′(t) = (2 − ρ(zi(t))i≥0

)/ρ(zi(t))i≥0
. Hence, if we parametrize (z(t), t) in terms of

ρ = ρ(zi(t))i≥0
, the curve can be written (x(ρ), y(ρ)) where the functions x and y satisfy

x′(ρ)

y′(ρ)
=

2− ρ
ρ

.

Note that when t ranges from 0 to tmax, the parameter ρ decreases from ρπ to 0. In order
to get a second equation connecting x′ and y′, we go back to the discrete process and
observe that, by Equation (5.1), the number of explored vertices at time Tk is equal to
(k + Tk)/2. Using the notation of Proposition 2.4, let ĝ(α, ·) be the size-biased version of
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g(α, ·). For all ρ ∈ (0, ρπ], let α(ρ) be the unique solution of 1− ρ = ĝ(α(ρ), 1− ρ). After
renormalizing by N , we get that:

x(ρ) + y(ρ)

2
= α(ρ).

This yields the following system of equations:{
x′(ρ)
y′(ρ) = 2−ρ

ρ
x′(ρ)+y′(ρ)

2 = α′(ρ).

Therefore, {
x′(ρ) = (2− ρ)α′(ρ)
y′(ρ) = ρα′(ρ).

Integrating by parts, this gives the formulas for x↑ and y↑ in Theorem 2.6. Fix ρ ∈ (0, ρπ].
Then, the asymptotic profile of the decreasing phase of the DFS is obtained by translating
horizontally each point (x↑(ρ), y↑(ρ)) of the ascending phase to the right by twice the
asymptotic proportion of the giant component of the remaining graph of parameter ρ,
which is 2(1− g(α(ρ), 1− ρ)). Indeed, the time it takes to the DFS to return at a given
height k attained during the ascending phase corresponds to the time of exploration of
the giant component of the unexplored graph at time Tk. The latter is given by twice the
number of vertices of the giant component which is equal to 2(1− gk(1− ρk)).

6 Technical lemmas

6.1 Asymptotic densities in a configuration model

In this section we establish Lemma 4.6. The proofs of each of the four estimates
follow the same scheme, therefore we only focus on the proof the last one, namely that
there exists λ > 0 such that:

P

(∣∣∣∣∣ |Surv(C
d
N(k))|

2|E(Cd
N(k))|

− ρk

∣∣∣∣∣ ≥ N−λ
)

= O
(
N−1−λ

)
.

First, notice that for the values of k that we consider and under our assumptions (A1)
and (A2), the number of edges and vertices of the graphs Cd

N(k) are all of order N .
Therefore, it is enough to prove the following bound:

P

(∣∣∣∣∣ |Surv(C
d
N(k))|

2|E(Cd
N(k))|

− ρk

∣∣∣∣∣ ≥ |E(Cd
N(k))|

−λ

)
= O

(
|E(Cd

N(k))|
−1−λ

)
.

This is a direct consequence of the two following Lemmas. The first one is a general
concentration result for the configuration model.

Lemma 6.1. Fix γ > 2 and n ≥ 1. Let d = (d1, . . . , dn) be such that max{d1, . . . , dn} ≤
n1/γ . Fix also δ ∈ (0, 1/2) and recall that, for a graph G, Surv(G) denotes the set of
half edges of G attached to a vertex v such that the connected component of v after
removing this half edge has at least nδ vertices. Let m =

∑
i di the number of half edges

of a configuration graph C(d), then, for any δ′ ≥ δ one has

P

(∣∣∣∣ |Surv(C(d))|m
− E (|Surv(C(d))) |

m

∣∣∣∣ ≥ nδ
′+ 1

γ

2
√
m

)
≤ C exp

(
−Cn2(δ

′−δ)
)
.

The second Lemma consists in an estimation of the expectation of |Surv(C(d(n)))| for
a sequence of configuration models that satisfy the assumptions of Proposition 2.4.
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Lemma 6.2. Let (C(d(n)))n≥1 be a sequence of configuration models with asymptotic
degree distribution π. We suppose that π is supercritical in the sense of Definition 2.3
and that the sequence d(n) satisfies assumption (A1) and (A2).

For all n ≥ 1, let gn be the generating series associated to the empirical distribution
of the degree sequence d(n). Let ρn be the smallest positive solution of the equation
ĝn(1− x) = 1− x. Then, for n sufficiently large:

E
[
|Surv(C(d(n)))|

]
2g′n(1)

= ρn +O
(
n2δ+

1
γ−1

)
.

Proof of Lemma 6.1. In order to prove Lemma 6.1, it is sufficient to check that the
function Surv(·) is Lipschitz in the following sense. We say that two configuration
models are related by a switching if they differ by exactly two pairs of matched half-
edges (see Figure 5). Then, we claim that Surv(·) is such that, for any two graphs G1

and G2 differing by a switching:

||Surv(G1)| − |Surv(G2)|| ≤ 8nδ+
1
γ . (6.1)

Using a result of Bollobás and Riordan [7, Lemma 8], this regularity implies the following
concentration inequality:

P
(∣∣∣|Surv(Cd

N(k))| − E[|Surv(C
d
N(k))|]

∣∣∣ ≥ t) ≤ 2 exp

(
−t2

Cn2δ+
2
γm

)
, (6.2)

Figure 5: Switching two edges in a graph.

By taking t = nδ
′+ 1

γm
1
2 in (6.2), we obtain Lemma 6.1.

It remains to prove inequality (6.1). To pass from G1 to G2, one has to delete two
edges in G1 and then add two other edges. Therefore, it suffices to study the effect
of adding an edge e on a graph G having maximal degree n1/γ . Indeed, the effect of
deleting an edge f of a graph H is equal to the effect of adding the edge f to the graph
H \ {f}.

Let u and v be the extremities of e. Let us define two partial orders associated
respectively to u and v among the half-edges of Ext(G) = Surv(G)c. We say that:

• e1 �u e2 if all the paths connecting e2 to u contain e1,

• e1 �v e2 if all the paths connecting e2 to v contain e1.

Let fu (resp. fv) be a maximal element for the partial order �u (resp. �v), and denote
by Cfu (resp. Cfv ) the connected component of the extremity of fu (resp. fv) after the
removal of fu (resp. fv) in G. Then, by maximality, the set of extremities of half-edges
that change their status from Ext(G) to Surv(G) after adding e is included in Cfu ∪ Cfv .
See Figure 6 for an illustration. Since fu (resp. fv) was in Ext(G), the number of vertices
in Cfu (resp. Cfv ) is at most nδ. Since the maximal degree of a vertex in G is n1/γ , we
deduce that:

||Survn(G)| − |Survn(G ∪ e)|| ≤ 2nδ+
1
γ .

This implies (6.1) and Lemma 6.1.
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fu

fv

Cfu

Cfv

u v

e

Figure 6: Effect of the edge e.

Proof of Lemma 6.2. Fix n ≥ 1. Let e be a uniformly chosen half-edge in C(d(n)) and
let v be the extremity of e. We denote Cv the connected component of v inside C(d(n)))

after removing e. Then, since E
[
|Surv(C(d(n)))|

]
= 2g′n(1)P

(
e ∈ Surv(C(d(n)))

)
, it is

sufficient to prove that

P
(
|Cv| ≥ nδ

)
= ρn +O

(
n2δ+

2
γ−1

)
. (6.3)

Let (d↑i )1≤i≤n and (d↓i )1≤i≤n respectively denote the increasing and decreasing re-
ordering of the degree sequence (di)1≤i≤n:

d↑1 ≤ · · · ≤ d↑n and d↓1 ≥ · · · ≥ d↓n.

In order to prove (6.3), we will use a coupling argument. More precisely, we first
introduce two Galton-Watson trees:

• T − with reproduction law: q−i :=
(i+1)|{j≥dnδe, d↓j=i+1}|∑

j≥dnδe(j+1)d↓j
,

• T + with reproduction law: q+i :=
(i+1)|{j≥dnδe, d↑j=i+1}|∑

j≥dnδe(j+1)d↑j
.

We also let E be the event where, in the bnδc first steps of the exploration of Cv, a loop is
discovered. Then, the following inequalities hold:

(1− P(E))P(|T −| ≥ nδ) ≤ P
(
|Cv| ≥ nδ

)
≤ P(|T +| ≥ nδ). (6.4)

Now, we prove that: {
P(|T −| ≥ nδ) = ρn +O(nδ+

1
γ−1),

P(|T +| ≥ nδ) = ρn +O(nδ+
1
γ−1).

(6.5)

Since the proofs of these two bounds are similar, we only focus on the second one. Let
g+n (s) =

∑
k≥0 q

+
k s

k be the generating series of (q+k )k≥0. Let ρ+n be the smallest positive
solution of g+n (1− x) = 1− x. Then:

P(|T +| ≥ nδ) = P(|T +| = +∞) + P(nδ ≤ |T +| < +∞)

= ρ+n + o

(
1

n

)
. (6.6)

The difference between ρ+n and ρn can be written as follows:

ρ+n − ρn = g+n (1− ρ+n )− gn(1− ρn)
= gn(1− ρ+n )− gn(1− ρn) + g+n (1− ρ+n )− gn(1− ρ+n )
= g′n(1− ρn)(ρn − ρ+n ) + o

(
ρ+n − ρn

)
+ g+n (1− ρ+n )− gn(1− ρ+n ), (6.7)
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where in the last equality, we used a Taylor expansion. From the definition of (q+k )k≥0,
for all k ≥ 0, it holds that:

q+k = pk +O

(
nδ+

1
γ

n

)
,

where the error term is uniform in k. In particular, this implies that g+n (1−ρ+n )−gn(1−ρ+n )
is of order nδ+

1
γ−1. Inserting this into (6.7), we get

(1− g′n(1− ρn) + o(1))
(
ρ+n − ρn

)
= O

(
nδ+

1
γ−1

)
.

By the assumptions of Lemma 6.2, ρn converges to the fixed point of gπ, which is bounded
away from 0. Therefore, for large enough n, g′n(1− ρn) is bounded away from 1. Hence

|ρ+n − ρn| = O
(
nδ+

1
γ−1

)
.

Together with (6.6), this implies (6.5).
It remains to estimate the probability of the event E. During the first bnδc steps

of the exploration of Cv, the number of half-edges of the explored cluster is at most
nδ × n1/γ . Hence, the probability of creating a loop at each of these steps is of order
nδ+

1
γ−1. Therefore, by the union bound:

P(E) = O
(
n2δ+

1
γ−1

)
. (6.8)

Gathering (6.4), (6.5) and (6.8), we get (6.3) and therefore Lemma 6.2.

6.2 An infinite system of differential equations

The aim of this section is to prove Lemma 4.2. In the following, we fix a probability
distribution π = (πi)i≥0 which is supercritical in the sense of Definition 2.3.

First, we prove that the problem can be reduced to the study of another system of
differential equations. Recall that, given a sequence (ζi)i≥0 ∈ RZ+ such that

∑
i≥0 ζi ≤ 1,

the implicit quantity ρ(ζi)i≥0
is defined through Equations (4.4) and (4.5).

Lemma 6.3. If the following system has a unique solution well defined on some maximal
interval [0, t′max) for some t′max > 0:{

dζi
dt = − iζi∑

j≥0 jζj
+ 1∑

j≥0 jζj

(
1−

∑
j≥0(j−1)jζj∑
n≥0 jζj

)
(iζi − (i+ 1)ζi+1)

ζi(0) = πi,
(S’)

then the system (S) has a unique solution well defined on a maximal interval [0, tmax) for
some tmax > 0.

Proof. Suppose that (S’) has a unique solution (ζi)i≥0. Let φ be the unique function
defined by {

φ′(t)ρ(ζi(t))i≥0
= 1,

φ(0) = 0.

Then, for all i ≥ 0, (ζi ◦φ)′(t) = 1
ρ(ζi(t))i≥0

× ρ(ζi(t))i≥0
fi(ζ0(t), ζ1(t), . . .) = fi(ζ0(t), ζ1(t), . . .)

which proves that (ζi ◦ φ)i≥0 is a solution of the system (S).
Let (zi)i≥0 be a solution of (S). Then, for all t ≥ 0 where it is well defined,

∑
i≥0

zi(t) = 1−
∫ t

0

1

ρ(zi(t))i≥0

du =: 1− ψ(t).
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Then, (zi◦ψ−1)i≥0 is a solution of (S’). Therefore, since (ζi)i≥0 is unique, (zi◦ψ−1◦φ)i≥0 =

(ζi ◦ φ)i≥0 is also solution of (S). In particular, this implies that

−1
ρ(zi◦ψ−1◦φ(t))i≥0

=
d

dt

∑
i≥0

zi ◦ ψ−1 ◦ φ

 (t) =
(
ψ−1 ◦ φ

)′
(t)× −1

ρ(zi◦ψ−1◦φ(t))i≥0

.

Therefore, ψ = φ only depends on (ζi)i≥0, yielding the uniqueness of the solution.

We now exhibit a solution of (S’). Let fπ(s) =
∑
i≥0 πis

i be the generating series
associated to π. Define t′max to be the unique root between 0 and 1− π0 of the equation

f ′′π
(
f−1π (1− t)

)
f ′π(1)

= 1.

For all 0 ≤ t ≤ t′max and 0 ≤ s ≤ 1, let

f(t, s) := fπ

(
f−1π (1− t)− (1− s)f

′
π(f

−1
π (1− t))
f ′π(1)

)
. (6.9)

Note that this restriction to the interval [0, t′max) will play a crucial role in the analytic
proof of the uniqueness of the solution. Moreover, from a probabilistic point of view,
it corresponds to the range of times where 1

1−tfπ(t, s) is the generating series of a
supercritical probability law.

Proposition 6.4. For all 0 ≤ t ≤ t′max and i ≥ 0, let ζi(t) := [si]f(t, s) be the coefficient
of si in f(t, s). Then (ζi)i≥0 is a solution of (S’).

Proof. It can be easily verified that f(t, s) satisfies the following equation:

∂f

∂t
(t, s) =

∂f
∂s (t, s)
∂f
∂s (t, 1)

(
(1− s)

∂2f
∂s2 (t, 1)
∂f
∂s (t, 1)

− 1

)
.

By extracting the coefficient of si we get that

dζi
dt

= − iζi∑
j≥0 jζj

+
1∑

j≥0 jζj

(
1−

∑
j≥0(j − 1)jζj∑

n≥0 jζj

)
(iζi − (i+ 1)ζi+1) ,

which ends the proof the proposition.
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