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Spin distributions for generic spherical spin glasses

Arka Adhikari*

Abstract

This paper investigates spin distributions for a generic spherical p-spin model; we
give a representation of spin distributions in terms of a stochastic process. In order
to do this, we find a series of invariance principles analogous to the cavity equations
used for the hypercube. The construction of these equations is a multistep process;
we first change coordinates to write the sphere as a product space SN−R2 × [−C,C]

for some cutoff parameters R and C. We then construct an auxiliary Hamiltonian
that writes the effect of the final spin as an independent Gaussian process, e.g.,
HN ≈ HN−1 + YN + ZN with YN and ZN decoupled from HN−1. The error rate
in this approximation decays as O(C

4

R2 ). The final step is to justify the double limit
limC→∞ limR→∞ to derive exact results; this double limit can be interpreted as a
novel renormalization procedure.
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1 Introduction

Spin glasses are used as models for understanding the properties of disordered
magnets, where, unlike ferromagnetic and paramagnetic models, the directions of the
magnetic fields are oriented arbitrarily. In 1975, Sherrington and Kirkpatrick proposed a
mean field model in order to gain a foothold on some of the more computational aspects
of the problem. The SK Hamiltonian [15] is

HN (σ) =
1√
N

N∑
1≤i<j≤N

Jijσiσj , (1.1)

where σ = (σ1, . . . , σN ) ∈ {−1, 1}N , and Jij are i.i.d. N(0, 1).

*Harvard University, United States of America. E-mail: adhikari@math.harvard.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP755
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/1907.03847
mailto:adhikari@math.harvard.edu


Spin distributions for spherical spin glasses

Through this Hamiltonian, we can define a probability measure on the hypercube; for
a given configuration of the random couplings Jij , one can define the Gibbs measure,
GN , which is given via the following formula.

GN (σ) =
eβHN (σ)

ZN
, (1.2)

where the partition function ZN is a normalization factor

ZN :=
∑

σ∈{−1,1}N
eβHN (σ). (1.3)

The study of the Sherrington-Kirkpatrick model revealed multiple physically novel
aspects of spin glasses that are not present in other magnetic models. Even the limiting
free energy, defined as f := limN→∞

1
N logZN is a highly non-trivial computation at

low temperatures. The limiting formula for the free energy is given by the Parisi
formula [13,14], which can be represented as a minimization question over the set of
all probability measures on [0, 1]. To each probability measure µ in the set M of all
probability measures supported on [0, 1], we can associate the following PDE:

∂tΨµ(t, x) = −β
2

2

(
∂xxΨµ(t, x) + µ([0, s])(∂xΨµ(t, x))2

)
,

Ψµ(1, x) = log coshx.

(1.4)

The limiting free energy is then given by the expression:

f = inf
µ∈M

(
log 2 + Ψµ(0, 0)− 1

2

∫ 1

0

β2sµ([0, s])ds

)
. (1.5)

The variational parameter introduced in the Parisi formula is supposed to represent
the limiting overlap distribution, ζ, which is given by the following formula.

ζ(· ∈ [a, b]) := lim
N→∞

E[GN (〈σ1, σ2〉 ∈ [a, b])]. (1.6)

Here, 〈·, ·〉 is the standard inner product in RN normalized by 1
N and σ1, σ2 are spin

configurations chosen independently with respect to the Gibbs measure GN . Observe
that in the above expression, we take the expectation over the randomness of the Gibbs
measures. In general, the overlap is highly non-trivial for spin glasses. This is in
contrast to either a ferromagnetic or paramagnetic model, where all the spins are either
oriented in the same direction or oriented randomly. In these models with a more regular
magnetization structure, one would expect the overlap distribution to concentrate either
at 1 or at 0.

An interpretation of the Parisi formula by Mezard, et al. [7–9], led to a complex
picture for the geometry of the Gibbs measure. Under this interpretation, the Gibbs
measure is organized in a hierarchical way like a tree. The tree starts to branch when
the overlap structure changes; one can determine the overlap of two ‘leaves’ of the tree
by the value associated with their most recent common ancestor. The Gibbs measure
satisfies ultrametricity, which means that the following relation holds:

lim
N→∞

E[GN (〈σ1, σ2〉 ≥ min(〈σ1, σ3〉, 〈σ2, σ3〉))] = 1. (1.7)

The Parisi formula was proved by Talagrand in [20]; ultrametricity is not yet established
for the SK model itself, though Panchenko showed that generic models, those whose
Hamiltonian includes all higher order spins, satisfy ultrametricity.
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Spin distributions for spherical spin glasses

Though the study of the free energy gave many insights into the physical nature of
the Gibbs measure, the free energy to highest order by itself is not able to give very fine
details about the Gibbs distribution. In this paper, we would like to consider the question
of spin distributions; this means we will look at the behavior of individual coordinates σli
of our spin glass on the sphere.

Such information may be gleaned if one has access to higher order corrections to the
free energy formula. In general, this is a difficult problem and requires a very precise
analysis of explicit formulas as in [17,18]. For the question of spin distributions on the
hypercube, Panchenko found a series of invariance principles called the cavity equations
[10] that allows one to compute individual spin distributions under the assumption of
finite replica symmetry breaking. Auffinger and Jagannath [4] used the cavity equations
for the hypercube to derive the invariance principle. They then took a limit procedure
to study the spin distributions of models that satisfy full replica symmetry breaking.
They found a representation of the p-spin distributions on the hypercube in terms of a
stochastic process defined on the support of the limiting Gibbs measure.

1.1 Setting and related notation

In this paper, we investigate the asymptotic spin distributions of a generic Hamilto-
nian on the sphere SN := {(x1, . . . , xN ) :

∑N
i=1 x

2
i = N}. We will use the more general

notation Sk(r) to denote the k-dimensional sphere of radius
√
r. Writing the Hamiltonian

in terms of its p-spin components, we have

HN (σ) =

∞∑
p=2

βp
1

N (p−1)/2

∑
i1,...,ip

gi1,...,ipσi1σi2 . . . σip . (1.8)

We can alternatively define the Hamiltonian in terms of its covariance structure. For
two points σ = (σ1, σ2, . . . , σN ) and ρ = (ρ1, ρ2, . . . , ρN ) we have the following Hamiltonian
HN

Cov(HN (σ), HN (ρ)) = Nξ(R12), (1.9)

where the overlap R12 between σ and ρ is given by

R12 =
1

N

N∑
i=1

σiρi.

and ξ is given by

ξ(x) =

∞∑
p=2

β2
px

p. (1.10)

We remark here that the right hand side is the normalized inner product of (σ1, . . . , σN )

and (ρ1, . . . , ρN ) as vectors in RN . We may interchangeably use the notation 〈σ, ρ〉 to
represent this normalized inner product.

We have the following assumptions on the Hamiltonian HN .

Assumption 1.1. • We assume the Hamiltonian HN is a generic model. This means
that the span of the polynomials xp corresponding to those terms in the Hamil-
tonian (1.9) whose coefficients βp 6= 0 would be dense in C([−1, 1], || · ||∞), the
space of all continuous functions on [−1, 1] under the L∞ norm. We usually take
βp ≥ 0. The importance of this assumption is that it allows us to apply Panchenko’s
Ultrametricity Theorem [12][Col 3.2,Thm 2.14]and establish the uniqueness of the
overlap distribution.

• We have sufficient decay on the coefficients βp; namely, we will assume that there
exists some ε > 0 and some constant K such that βp ≤ K

p
3
2
+ε

. This is not necessarily
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Spin distributions for spherical spin glasses

the most general constraint, but this will allow one to perform perturbation theory
more carefully.

For the spherical model, we no longer have the cavity equation. In this paper, we
invent a new series of invariance principles and an appropriate limiting procedure
using a renormalization argument to get a representation of the spin distributions. The
representation produced here is parallel to the method of Lagrange multipliers used
in papers like [19] and, notably, captures information about the joint distribution of
the spins, such as tail probabilities, that are not clearly determined by the Lagrange
multiplier representation.

1.2 Notions from the theory of spin distributions

Our main result will involve associating the limiting spin distributions σli to an
associated PDE process. To begin to describe this process, we need to start by describing
some basic notation from the theory of spin distributions, as in [12][Chapter4].

For a fixed choice of the random couplings gi1,i2,...,ip , let GN be the Gibbs measure
on SN corresponding to the spherical Hamiltonian HN . We let (σl), l ∈ Z+ be a series of
replicas i.i.d. distributed according to GN . From this, we can construct both the spin
matrix (sN ) from the individual coordinates of the spins σl as well as the overlap matrix
RN .

The first few coordinates of the matrix are given by the entries (sN )l,i = σli, l ∈
Z+, 1 ≤ i ≤ N . It can be extended to an∞ by∞ matrix by setting (sN )l,i = 0 for i > N .
The overlap matrix is given by the L2 inner products of the replicas as vectors in RN ;
(RN )l,l′ = 〈σl, σl′〉. We let µN be the law of sN and ηN be the law of RN when distributed
according to E[G⊗∞N ]. We will say that µ (respectively η) is a limiting spin (respectively
overlap) distribution if it is a subsequential limit of some µN (respectively ηN ) in the
sense of the convergence of finite dimensional distributions.

Notice that η is a weakly exchangeable distribution of positive semidefinite matrices.
We can use the Dobvysh-Sudakov theorem [6] in order to say there is a random measure
ν on L2[0, 1]×R satisfying the following property. The distribution of the overlap matrix
(Rl,l′) from η is the same as the distribution of (alδl,l′+ 〈hl, h′l〉) where (hl, al) are sampled
i.i.d from ν conditionally on the realization of the random measure ν. The measure ν
restricted to the space L2[0, 1] is called an asymptotic Gibbs measure.

For generic p-spin models, we can say more about the distribution η. Because of the
Ghirlanda-Guerra Identities, it is known that the law of the distribution of the entire
overlap matrix is a function of the law of the overlap distribution R1,2 [12][Thm 2.13]. In
addition, for generic p-spin models, the limiting distribution of R1,2 is unique.

1.3 The SDE representation

It turns out that the asymptotic measures µ and ν can be expressed via a process
associated with the solution of a corresponding Parisi partial differential equation. The
limiting ‘local magnetic field’ of a spin glass is given by a stochastic process driven
by a Brownian motion whose drift and diffusion coefficients depend on the Parisi PDE.
Knowing the ‘local field’ will allow one to determine the spin distribution via a cavity-type
computation. To determine the joint distribution of many spins, one computes the ‘local
field’ for multiple particles driven by a Brownian field with an appropriate covariance
structure. Proving the existence of this process is not difficult; it was shown for the
hypercube in [4] and we can adapt the construction for the sphere.

Consider q∗ > 0 and let U be a positive ultrametric subset of the sphere of radius√
q∗ in the space L2[0, 1]. An ultrametric set {u1, . . . , un, . . .}, is a subset that satisfies the

inner product relations 〈ui, uj〉 ≥ min(〈ui, uk〉, 〈uk, uj〉) for all triples i, j, k. We define a
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Brownian motion on U ; consider the Gaussian process Bt(σ) indexed by (t, σ) ∈ [0, q∗]×U
which is centered, a.s. continuous in time and in space with covariance

Cov(Bt1(σ1), Bt2(σ2)) = (t1 ∧ t2) ∧ (σ1, σ2), (1.11)

where 〈σ1, σ2〉 is the inner product between two states in L2[0, 1].
Using this Brownian motion, we can define the cavity field Zt(σ) on U as the solution

of the following SDE
dZt(σ) =

√
ξ′′(t)dBt(σ),

Z0(σ) = 0.
(1.12)

Let ζ be the Parisi measure for the generic spherical p-spin model. Consider the
following Parisi initial value problem on (0, 1)×R

uζt +
ξ′′(t)

2
(uζxx + ζ([0, t])(uζx)2) = 0,

uζ(1, x) =
x2

2(1 + bζ)
,

(1.13)

where bζ is defined in terms of ξ and ζ as

bζ =

∫ 1

0

ζ([0, l])(lξ′′(l) + ξ′(l))dl. (1.14)

We can now define the local field Xt(σ) on [0, q∗]× U by an SDE

dXt(σ) = ξ′′(t)ζ([0, t])uζx(t,Xt(σ))dt+ dZt(σ),

X0(σ) = 0.
(1.15)

Many basic properties of these stochastic processes are covered in section A.1 of [4].
The Parisi formula for the sphere was proved in Theorem 1.1 of [19]. We have also
constructed solutions to this Parisi initial value problem in section A.2 of the Appendix in
this paper. We will explain how these concepts are used on an intuitive level, without
trying to be too rigorous.

If we describe the organization of a spin glass as a tree according to the RPC structure,
then uζ(t, x) represents the free energy of the subtree containing a node at height t
and all of its children under an external magnetic field of value x. For example, on
the hypercube, u(1, x) = log coshx, which is exactly the energy of a single particle at
external field value x. If we knew the distribution of the magnetic field once it reached
the final level u(1, .), then we could relate the free energy u(0, x) to the expected value
EX [u(1, X)] for some proposed magnetic field distribution X at time 1. The proposed
distribution for X is exactly the solution X1 to the equation (1.15); this is why we call
X the ‘local field’. For more details on this representation, one can refer to Theorem 3
of [3].

On the sphere, we can describe the spin as being distributed according to a Gaussian
with variance given by some constant 1

1+b and exponentially tilted given by the magnetic
field. Informally speaking, if we let P (s) denote the probability distribution of a single
spin, then we expect

P (s) ∝ e−
1+b
2 s2esX1 .

Apart from justifying the above representation for a single spin distribution, the problem
of determining a spin distribution additionally involves determining the correlation
structure of the ‘local field’ X1 between different replicas as well as the constant b used
in rescaling the variance of a single spin. The ultrametric subset U represents the
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Spin distributions for spherical spin glasses

different replicas that we may consider; our spatial Brownian motion defined in (1.12)
captures the correlation in X1 between these different replicas. The constant b is usually
phrased in terms of an optimization problem; the fact that we can derive the value
directly from properties of the Hamiltonian and the overlap distribution is a significant
novelty of the argument and illustrates the power of the renormalization approach taken.

We now return to the discussion of the main result. Using these stochastic processes
that we have defined previously, we are now able to explicitly write out the spin distribu-
tions that we are considering. We define the measure ρfζ,σ where σ is a state in U , our
ultrametric subset, and f is a fixed measurable function on L2[0, 1], as follows. Let g be
a bounded function on R with compact support. Then ρfζ,σ is given by

ρfζ,σ(g) =

∫∞
−∞

∫∞
−∞ g(s)e−

[1+bζ ]

2 s2e
− (y−f(σ))2

2[ξ′(1)−ξ′(q∗)] esydyds∫∞
−∞

∫∞
−∞ e−

[1+bζ ]

2 s2e
− (y−f(σ))2

2[ξ′(1)−ξ′(q∗)] esydyds
. (1.16)

This differs slightly from the notation in [4] to denote the point where we are evaluating f .
When we consider spin glasses whose overlap distributions ζ have support restricted to
the interval [0, q∗] with q∗ < 1, we see that we will consider magnetizations Xq∗ evaluated
at time q∗ instead of 1. On a heuristic level, the purpose of ρfζ,σ is to determine the spin
distribution at time 1 based on information of the magnetization at time q∗. Informally
speaking, X1 −Xq∗ is a Gaussian of variance ξ′(1)− ξ′(q∗).

From this point on, we will use 〈·〉HN (with only a single element) to denote Gibbs’
expectations with respect to some Hamiltonian and some set(in the example above, the
Hamiltonian is HN and, when there is no further specification, the set is SN ). This is in
contrast to the two element inner product 〈·, ·〉. From this point on Gibbs expectations
will appear far more frequently. We will establish the following theorem.

Theorem 1.2. Consider a spherical Hamiltonian HN satisfying the assumptions of
Assumption 1.1. Let ζ∗(·) = limN→∞E〈I(R1,2 ∈ ·)〉HN be the limiting overlap distribution
and let q∗ = sup supp(ζ∗). Let µ be an asymptotic spin distribution and ν be an asymptotic
Gibbs measure corresponding to HN . Since HN is generic, ν is unique.

We define the following measure on ∞×∞ matrices: choose {σl} i.i.d from ν⊗∞.
Independently construct X it (σ) distributed according to (1.15) on U = supp(ν). Distribute

sli according to the measure ρ
X iq∗
ζ∗,σl

.

Let (s̃li) be spins distributed according to µ. Then (sil) and (s̃il) are equal in distribution.
As a consequence, this shows µ is also unique.

Remark 1.3. Here, we discuss the relationship between the constants bζ given here with
some other relevant constants in the literature, namely the constant b that Talagrand
uses in [19] as a parameter to describe the free energy as in his equation (3.35). It was
observed that this parameter b determines the effective variance of the spins if they were
to be treated as Gaussian variables. There are a number of relations used in Section 4 of
the same paper that relate this constant b to our constant bζ .

In equation (4.12) of Lemma 4.1, he derives the following relationship between the
quantities A(q, b) and B(q). These quantities become equal at the Parisi minimizer. He
derives, for a model with finite replica symmetry breaking, the following relation at the
Parisi minimizer

0 = A(q, b)−B(q) = b− 1−
∑

1≤l≤k

ml(ql+1ξ
′(ql+1)− qlξ′(ql)) + ∆1ξ

′(q1)− q1

∆1
.

Later in the work, he derives for a model with no magnetization, which we are dealing
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with here, the relation (4.14), which we reproduce here as

0 =
dB(q)

dq1
= −m1ξ

′(q1)−m1h
2 +

m1q1

∆2
1

+
1

∆1
− 1

∆1
.

Simplifying this at magnetization h = 0 gives the relation ∆1ξ
′(q1)− q1

∆1
= 0. Substituting

this into the earlier expression gives

b = 1 +
∑

1≤l≤k

ml(ql+1ξ
′(ql+1)− qlξ′(ql)).

This is a discrete version of our constant bζ + 1 for models satisfying finite replica
symmetry breaking.

1.4 Overview of the strategy

A set of invariance principles called the cavity equations [10] gives a way to un-
derstand the behavior of some individual spins. In the paper [4], the cavity equations
resulting from the product structure of the hypercube was used to derive these invari-
ance principles. To understand the sphere, a critical step is to establish an analog of
these cavity equations.

The key point here is that, in order to understand the distribution of a single spin σN ,
one can separate the Hamiltonian HN into two parts

HN (σ1, . . . , σN ) = HN−1(σ1, . . . , σN−1) + hN (σ1, . . . , σN−1, σN ),

where both HN−1 and hN are Gaussian processes. hN consists of all terms in the
Hamiltonian that involve the extra spin σN . We remark that on the hypercube, the
process hN (σ1, . . . , σN ) can be represented as hN (σ1, . . . , σN ) = zN (σ1, . . . , σN−1)σN .
Here, zN (σ1, . . . , σN−1) acts like a magnetic field on the final spin.

The success of the cavity method depends on two properties.

Definition 1.4. [Properties for the Cavity Equation]

1. The covariance structure of the Hamiltonian HN−1

Cov(HN−1(σ1, . . . , σN−1), HN−1(ρ1, . . . , ρN−1)),

does not depend on the value of σN or ρN .

2. As Gaussian processes, HN−1 and hN are independent.

Computations in the cavity method depend on modified Bolthausen-Sznitman invari-
ance principles, [12][Section 4.4, Pg 131]. The specific definition of spin glasses on the
hypercube allows a decomposition where both of these properties hold simultaneously.

On the sphere, one can immediately see that the value of σN will, in turn, affect the
value of σ2

1 + . . . + σ2
N−1. A naive decomposition, like what is done for the hypercube,

would not satisfy item one of Definition 1.4. To deal with item one of Definition 1.4, we
will first define a change of coordinates so that it would ‘look’ like a product space. We
illustrate the process when one particle is removed.

We first choose a renormalization scale R and a new reference sphere for the first
N − 1 coordinates. We also introduce a cutoff C for the last spin, σN . Namely, we
consider

σ̂2
1 + . . .+ σ̂2

N−1 = N −R2, with σ̂i =

√
N −R2

N − σ2
N

σi, and |σN | ≤ C.
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We can now consider the original Hamiltonian on the N dimensional sphere as a Hamil-
tonian of the product of an N − 1 dimensional sphere and the interval [−C,C] for the
last coordinate σN . Before we proceed, it is important to remark that the scale R is a
free parameter. The introduction of the cutoff C is important to regularize estimates; it
has to be taken to∞ in some limit to get the exact spin distribution.

These coordinates allows us to decompose the Hamiltonian up to leading order as

HN (σ1, . . . , σN ) = ĤN−1(σ̂1, . . . , σ̂N−1) + hN (σ̂1, . . . , σ̂N−1, σN ),

ĤN−1(σ̂1, . . . , σ̂N−1) =

∞∑
p=2

βp
N (p−1)/2

∑
1≤i1,...,ip≤N−1

gi1,...,ip σ̂i1 . . . σ̂ip ,

hN (σ̂1, . . . , σ̂N−1, σN ) =

∞∑
p=2

βp
N (p−1)/2

∑
1≤i1,...,ip≤N−1

(Sp − 1)gi1,...,ip σ̂i1 . . . σ̂ip

+

∞∑
p=2

βp
N (p−1)/2

∑
1≤i1,...,ip−1≤N−1

gi1,...,ip−1,N σ̂i1 . . . σ̂ip−1σN .

Here, S is the factor
√

N−σ2
N

N−R2 . (Note that we dropped some factors of S from the the
second line of hN as these will be of lower order.)

At this point, the decomposition above dealt with item one of Definition 1.4. However,
one observes from the first line in the definition of hN that hN is strongly coupled to the
Hamiltonian ĤN−1. We remark here that this coupled term in hN cannot be ignored; as
one will see from Lemma 3.4, the coupled term is essential for changing the ‘variance’
associated with the ‘Gaussian’ distributions for a single spin. To deal with item two of
Definition 1.4, we introduce a Gaussian process as follows.

First, define

H̃N (σ̂1, . . . , σ̂N−1, σN ) : = ĤN−1(σ̂1, . . . , σ̂N−1) + YN (σ̂1, . . . , σ̂N−1, σN )

+

∞∑
p=2

βp
N (p−1)/2

∑
1≤i1,...,ip−1≤N−1

gi1,...,ip−1,N σ̂i1 . . . σ̂ip−1σN .

YN should satisfy the following properties:

• We desire that the following relation holds

Cov(HN (σ), HN (ρ)) ≈ Cov(H̃N (σ̂1, . . . , σ̂N−1, σN ), H̃N (ρ̂1, . . . , ρ̂N−1, ρN )).

• We want ĤN−1 to be independent of YN .

• We finally want YN to be independent of

∞∑
p=2

βp
N (p−1)/2

∑
1≤i1,...,ip−1≤N−1

gi1,...,ip−1,N σ̂i1 . . . σ̂ip−1
σN .

Broadly speaking, YN is constructed via a perturbation expansion of the term con-
taining Sp − 1 in hN . This is the content of Section 2 of this paper. One then tries to
compute spin distributions according to the Hamiltonian H̃N rather than HN .

It is crucial to note that spin distributions according to H̃N and HN will only match if
the approximation is exact

lim
N→∞

|Cov(H̃N (σ), H̃N (ρ))− Cov(HN (σ), HN (ρ))| = 0.
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Unfortunately, there is no choice of YN that does not give an error in the covariance
structure of order O(1). The content of Theorem 2.7 shows that the error rate of the spin

distributions is of size O(C
D

R2 ), where the power D appearing depends on the polynomial
moment considered.

The way that this problem is circumvented is to use the fact that we can vary R and
C as free parameters. The key observation here is that if we take R far greater than any
power of C, then the error rate in Theorem 2.7 becomes exact as R goes to∞. Specifi-
cally, the introduction of a finite cutoff C is necessary to ensure a vanishing error rate.
The crucial novelty here is the introduction of the limit process limC→∞ limR→∞ limN→∞
in that order to make sure our approximation will give the exact spin distribution. In
particular, we will observe that the process YN introduced in (2.14) contains a factor that
grows as

√
R2 + 1. Far from causing this term to explode, there is a crucial cancellation

demonstrated in Lemma 3.4.

The effect of the R → ∞ limit results in a rescaling for the variance of the spin
distribution. This rescaling step is what allows us to get the exact value of the constant
bζ directly from the spin glass parameters. Usually, the value of bζ comes from solving
some implicit optimization question. The cavity equations here provide a new and natural
way to directly find the value of this variance. The justification of this limit for spin
glasses with finite replica symmetry breaking is the main content of Section 3, which is
the key novelty of this work. Together, Sections 2 and 3 form the majority of the work.

Another possible method used to study the spherical spin glass is the introduction
of a Lagrange multiplier, such as in [19], in order to treat the sphere as a product
space. These works applied large deviation estimates to relate probabilities on the
sphere to probabilities using a Lagrange multiplier; on the level of the free energy,
which would take the logarithm of such probabilities, these would anyway not be too
much of a problem. However, these are extremely inexact if one wants the precise spin
distribution. In particular, the limit procedure was proposed to exactly characterize
the tail behavior of spin σN . Though the method proposed here is involved, it seems
superior to the introduction of a Lagrange multiplier. Any presumable method involving
a Lagrange multiplier would still require some cutoff and limit arguments to relate
the tail probabilities of large values of σN on the sphere to that of the model with the
Lagrange multiplier.

The final section is dedicated to proving the stochastic process version of these
results as detailed in Theorem 1.2 for models with general replica symmetry breaking.
From the results of Section 3, we take limits of finite replica symmetry models to derive
results for full replica symmetry breaking models. The method innovated in this paper is
a pioneering way to understand the Hamiltonian of spherical spin glasses. For example,
it finds a direct meaning to the constant b from [19] in terms of a renormalization of the
Hamiltonian instead of as a maximization procedure. We expect it has a great potential
of leading to great new understanding in the future parallel to that of the Lagrange
multiplier.

2 The cavity equation for the sphere

As we have described in the introduction, the first step to proving Theorem 1.2 is to
first prove a version of the cavity equation. To this end, we need to create an auxiliary
space so that the auxiliary space is represented as a product space, and so we have a
natural notion of a cavity equation.
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2.1 The construction of cavity coordinate

Our first step in constructing the auxiliary space is to restrict the sphere so that the
final n coordinates lie in a compact interval. We define the restricted sphere

SC,nN+n ={(σ1, . . . , σN , σN+1, . . . , σN+n) :

σ2
1 + . . .+ σ2

N + σ2
N+1 + . . . σ2

N+n = N + n, |σN+1|, . . . |σN+n| ≤ C},

with Hamiltonian HN+n.

We begin with the following lemma. We use the notation 〈·〉HN (A) to denote the
expectation with respect to a Gibbs measure of the function HN distributed on the set A.
When the context is obvious, we will drop mention of the Hamiltonian and simply use
〈·〉A to denote the Gibbs measure on the set A.

Lemma 2.1. We can replace the expectation of polynomial expressions on the last n
coordinates as N → ∞ under the Gibbs measure on SN+n with the expectation of the
Gibbs measure over the restricted sets SC,nN+n as we take the double limit N →∞ followed
by C →∞,

lim
N→∞

E

[
k∏
l=1

〈(σlN+1)el,1 . . . (σlN+n)el,n〉HN+n(SN+n)

]

= lim
C→∞

lim
N→∞

E

[
k∏
l=1

〈(σlN+1)el,1 . . . (σlN+n)el,n〉HN+n(SC,nN+n)

]
.

(2.1)

Here, the l is a superscript designating the replica index while el,i is the exponent
computed. The exponents el,i are restricted to take non-negative integer values.

Proof. The result is due to the fact that each of the spins σN+1, . . . , σN+n has subgaussian
tails. We will sketch a proof in the case when k = 1. We will let f(σ) denote the polynomial
function (σ1

N+1)e1,1 . . . (σ1
N+n)e1,n . The difference between the quantities inside the limit

on the left and right hand sides can be written as

− E

∫
(SC,nN+n)c

f(σ)eHN+n(σ)dσ∫
SN+n

eHN+n(σ)dσ
+ E

∫
SC,nN+n

f(σ)eHN+n(σ)dσ
∫

(SC,nN+n)c
eHN+n(σ)dσ∫

SN+n
eHN+n(σ)dσ

∫
SC,nN+n

eHN+n(σ)dσ
. (2.2)

The methods used to bound both quantities are similar. We will bound the latter by two
applications of the Cauchy-Schwarz inequality.

For convenience of notation, we let χ be the indicator function for the set (SC,nN+n)c in
SN+n. First of all, we see that the second quantity in (2.2) can be written and bounded
as

E[〈f(σ)〉HN+n(SC,nN+n)〈χ〉HN+n(SN+n)] ≤ (E[(〈f(σ)〉HN+n(SC,nN+n))
2]E[(〈χ〉HN+n(SN+n))

2])1/2

≤ (E[〈f(σ)2〉HN+n(SC,nN+n)]E[〈χ〉HN+n(SN+n)])
1/2.

(2.3)
The first application of the Cauchy-Schwarz inequality splits the outer expectation. The
second application of the Cauchy-Schwarz inequality applies to the Gibbs measures
inside the expectation. Observe that since χ is an indicator function, we have χ2 = χ.

To bound E[〈f(σ)2〉HN+n(SC,nN+n)], the only thing that has to be remarked is the following.

Since, in SC,nN+n, all spins are bounded by C, this expectation can be bounded by a

polynomial function of C, say |C|2
∑n
i=1 e1,i that is independent of N .
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We let χi be the indicator function of the set on which |σN+i| ≥ C. We also see that
there exists some k, not depending on C, such that, for N sufficiently large, we have

E[〈χ〉HN+n(SN+n)] ≤
n∑
i=1

E[〈χi〉HN+n(SN+n)
] ≤ ne−kC

2

. (2.4)

This is due to the fact that the spins σN+i are subgaussian. (The distribution of a single
spin is uniform on the sphere due to the rotational invariance of the Hamiltonian.)

Together, we can bound the product appearing in the last line of (2.3) by

(ne−kC
2

|C|2
∑n
i=1 e1,i)1/2,

for N sufficiently large. This will also be a bound on the difference as we take the interior
limit, N →∞, on both sides. Finally, taking the exterior limit, C →∞, will bound this
difference by 0. This establishes the lemma.

In order to construct the auxiliary Hamiltonian, we would like to consider SC,nN+n as a

product set. We define the set SC,R,nN+n as

SC,R,nN+n = {(σ̂1, . . . , σ̂N ) : σ̂2
1 + . . .+ σ̂2

N = N − nR2} × {|σ̂N+1|, . . . , |σ̂N+n| ≤ C}.

The map between SC,nN+n and SC,R,nN+n is as follows:

σ̂i :=
σi
√
N − nR2√

N + n− σ2
N+1 − . . .− σ2

N+n

, 1 ≤ i ≤ N,

and σ̂N+i := σN+i for 1 ≤ i ≤ n. We will denote the factor
√
N+n−σ2

N+1−...−σ2
N+n√

N−nR2
as S.

(This will allow us to write the fundamental expression σi = Sσ̂i for 1 ≤ i ≤ N .) Notice
that the first part of the decomposition of SC,R,nN+n is the sphere SN (N − nR2).

When defined in terms of the new variables σ̂i, we will be able to write the Hamiltonian
HN+n on the set SC,nN+n as the following Hamiltonian on the set SC,R,nN+n

HN+n(σ̂1, . . . , σ̂N+n) =

∞∑
p=2

βp
1

(N + n)(p−1)/2

n∑
k=0

∑
Ik

gi1,i2,...,ipSp−kσ̂i1 . . . σ̂ip , (2.5)

where Ik := {(i1, . . . , ip) : |{i1, . . . , ip} ∩ {N + 1, . . . , N + n}| = k}.
Remark 2.2. We remark here that the cardinality is counted with multiplicity. For
example, the choice (i1, i2, i3, . . . , ip) = (N + 1, N + 1, 1, 1, . . . , 1) with the last p−2 entries
being 1 would be in the set I2. Additionally, I0 would only involve the coordinates
σ̂1, . . . , σ̂N and none of the cavity coordinates.

The change of variables makes us consider slightly different test functions.

Lemma 2.3. The following equality holds for fixed C and {el,n} a collection of non-
negative integers. R can be freely chosen,

lim
N→∞

E

 k∏
l=1

〈
n∏
j=1

(σlN+j)
el,j

〉
HN+n(SC,nN+n)



= lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
j=1(σ̂lN+j)

el.je
−(σ̂lN+j)

2

2 eHN+n(σ̂)dσ̂∫
SC,R,nN+n

∏n
j=1 e

−
(σ̂l
N+j

)2

2 eHN+n(σ̂)dσ̂

 .
(2.6)
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Proof. The proof will follow when we investigate the change in coordinates. We will
illustrate the details when k = 1. The general proof is similar.

Applying the change of coordinates σk → σ̂k for k between 1 and N + n to the right
hand side of (2.6), we see that

lim
N→∞

E

∫SC,nN+n

∏n
j=1 σ

e1,j
N+je

HN+n(σ)dσ∫
SC,nN+n

eHN+n(σ)dσ


= lim
N→∞

E

∫SC,R,nN+n

∏n
j=1 σ̂

e1,j
N+je

HN+n(σ̂)SNdσ̂∫
SC,R,nN+n

eHN+n(σ̂)SNdσ̂

 .
(2.7)

The main difference is that we have introduced the Jacobian factor SN on the numerator
and the denominator.

We notice that

lim
N→∞

SN = lim
N→∞

(
1 +

nR2 + n− σ̂2
N+1 − . . .− σ̂2

N+n

N − nR2

)N
2

= e
nR2+n−

∑n
i=1 σ̂

2
N+i

2 ,

and this approach is uniform when we restrict |σ̂N+i| ≤ C.
We can now apply the Exchange Lemma 2.4 in order to justify

lim
N→∞

E

∫SC,R,nN+n

∏n
j=1 σ̂

e1,j
N+je

HN+n(σ̂)SNdσ̂∫
SC,R,nN+n

eHN+n(σ̂)SNdσ̂



= lim
N→∞

E


∫
SC,R,nN+n

enR
2+n

∏n
j=1 σ̂

e1,j
N+je

−
σ̂2N+j

2 eHN+n(σ̂)dσ̂∫
SC,R,nN+n

enR2+n
∏n
j=1 e

−
σ̂2
N+j
2 eHN+n(σ̂)dσ̂

 .
(2.8)

We can cancel the factor of enR
2+n appearing in both the numerator and denominator.

Lemma 2.4 (Exchange Lemma). Consider a random Hamiltonian HN on some domain
D. Assume there exists some constant K such that all of |fN |, |gN |, |f̂N | and |ĝN | are
bounded by K on the domain D and that gN and ĝN are positive and bounded from below
by K−1. Assume in addition that limN→∞ |f̂N − fN |, |ĝN − gN | = 0 uniformly on D.

Then, the following equality holds provided at least one of the sides is known to exist.

lim
N→∞

E

[∫
D
fNe

HNdσ∫
D
gNeHNdσ

]
= lim
N→∞

E

[∫
D
f̂Ne

HNdσ∫
D
ĝNeHNdσ

]
(2.9)

Proof. We can write the difference of the expressions at finite N as,∣∣∣∣∣E
[∫

D
(fN − f̂N )eHNdσ

∫
D
ĝNe

HNdσ∫
D
gNeHNdσ

∫
D
ĝNeHNdσ

]
− E

[∫
D

(gN − ĝN )eHNdσ
∫
D
f̂Ne

HNdσ∫
D
gNeHNdσ

∫
D
ĝNeHNdσ

]∣∣∣∣∣
≤ E

[∫
D
|fN − f̂N |eHNdσ

∫
D
|ĝN |eHNdσ∫

D
gNeHNdσ

∫
D
ĝNeHNdσ

]
+ E

[∫
D
|gN − ĝN |eHNdσ

∫
D
|f̂N |eHNdσ∫

D
gNeHNdσ

∫
D
ĝNeHNdσ

]

≤ E

[∫
D
|fN − f̂N |eHNdσ

∫
D
KeHNdσ∫

D
K−1eHNdσ

∫
D
K−1eHNdσ

]
+ E

[∫
D
|gN − ĝN |eHNdσ

∫
D
KeHNdσ∫

D
K−1eHNdσ

∫
D
K−1eHNdσ

]

≤ K3E

[∫
D
|fN − f̂N |eHNdσ∫

D
eHNdσ

]
+K3E

[∫
D
|gN − ĝN |eHNdσ∫

D
eHNdσ

]
.

(2.10)
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Noting our limiting condition on the differences |fN− f̂N | and |gN− ĝN |, we can show that
as we take N to∞, the difference on the last line of (2.10) will go to 0. This establishes
the existence of the limit on both sides as long as one of them exists as well as their
equality.

2.2 Construction of the cavity Hamiltonian

Recall the Hamiltonian (2.5) on SC,R,nN+n .
Ideally, we would like to write the Hamiltonian as a Hamiltonian on the sphere

SN (N − nR2) plus a perturbation term. Namely, we have

HN+n(σ̂1, . . . , σ̂N+n) =

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
I0

gi1,i2,...,ip σ̂i1 . . . σ̂ip

+

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
I0

gi1,i2,...,ip σ̂i1 . . . σ̂ip(Sp − 1)

+

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
I1

gi1,i2,...,ip σ̂i1 . . . σ̂ip(Sp−1)

+

∞∑
p=2

βp
1

(N + n)(p−1)/2

n∑
k=2

∑
Ik

gi1,i2,...,ip σ̂i1 . . . σ̂ip(Sp−k).

(2.11)

We make some remarks about the above decomposition. The term on the first line is
a function only of the spins σ̂1, . . . , σ̂N . We may be able to interpret this as a Hamiltonian
defined on the sphere SN (N − nR2). We remark also that it is of the highest order N
in variance. The term on the second line will be a term of order 1 in variance, but it is
coupled to the term on the first line.

The terms on the third line are additionally of order 1 in variance and independent of
the terms on the first two; notice that each of these terms will only involve exactly 1 of
the cavity coordinates σ̂N+1, . . . , σ̂N+n.

The terms on the fourth line are independent of those that have come before and
have variance of order 1/N . We will be able to treat these terms as errors.

The issues that arise in computing distributional equivalences come from the second
term in the above expression; it is coupled with the main Hamiltonian on the sphere
SN (N − nR2). In order to perform computations in the future, what we would like to do
is instead replace this term with one that is independent of the main Hamiltonian on the
first line. Namely, we would like to consider

H̃N+n(σ̂1, . . . , σ̂N+n) =

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
I0

gi1,i2,...,ip σ̂i1 . . . σ̂ip

+

∞∑
p=2

√
pβp

1

(N + n)(p−1)/2

∑
I0

n∑
i=1

gN+i
i1,i2,...,ip

√
R2 + 1− σ̂2

N+i

2
√
R2+1√

N + n
σ̂i1 . . . σ̂ip

+

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
I1

gi1,i2,...,ip σ̂i1 . . . σ̂ip ,

(2.12)

where the gN+i
i1,...,ip

are N(0, 1) Gaussian random variables independent of all other ran-
domness. Notice also that in the local field(magnetization) term on the last line, we have
dropped the rescaling term Sp−1. We will eventually be able to show, provided sufficient
decay of the βp, that Sp−1 − 1 will lead to a term that is of smaller order. Along the
same line, we have removed the fourth line of error terms, anticipating that they will
eventually be shown to be insignificant.
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For simplicity of notation, we will denote

ĤN (σ̂) :=

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
1≤i1...ip≤N

gi1,i2,...,ip σ̂i1 . . . σ̂ip , (2.13)

Y i(σ̂) :=

∞∑
p=2

√
pβp

1

(N + n)p/2

∑
1≤i1,...,ip≤N

gN+i
i1,...,ip

σ̂i1 . . . σ̂ip , (2.14)

Zi(σ̂) :=

∞∑
p=2

βp
1

(N + n)(p−1)/2

∑
Ii1

gi1,...,ip
∏

k:ik 6=N+i

σ̂ik . (2.15)

where we define Ii1 := I1 ∩ {i1, . . . , ip : {i1, . . . , ip} ∩ {N + 1, . . . , N + n} = {N + i}}. We
remark here that exactly one of the {i1, . . . , ip} belongs to the set {N + 1, . . . , N + n},
and this entry must be N + i. This is a shorthand for the three lines in the decomposition
of (2.12).

In order to justify the replacement of the Gaussian process HN+n with H̃N+n, we
compare the variances for the two processes.

2.3 A perturbative expression for the correlation structure of HN+n

Our goal in this subsection is to find a perturbative expression for the covariance
structure of HN+n in terms of the newly introduced coordinates σ̂ and ρ̂.

Remark 2.5. We remark that, for our later computation, it is only necessary to know
the covariance structure up to the leading order in N .

In addition, our limiting procedure will first take the N → ∞ limit before any
operations are taken on C or R. In the computations that follow, any term of subleading
order in N may have coefficients that depend on C or R. These can be safely ignored as
we take N →∞ first. Such prefactors for subleading terms will not be explicitly written.
Only leading order terms involving R or C will have to be written out.

The covariance structure of HN+n is given as follows,

Cov(HN+n(σ), HN+n(ρ)) = (N + n)

bNαc∑
p=2

β2
pR

p
σ,ρ + (N + n)

∞∑
p=bNαc+1

β2
pR

p
σ,ρ, (2.16)

where, as a reminder, Rσ,ρ = 1
N+n

∑N+n
i=1 σiρi.

We have split the summation in such a way because we will apply a first order
perturbation argument to the sum over the smaller p while we apply a trivial bound to
the larger p. In the calculations that follow, K will be a constant that may differ from
line to line.

For the sum over the larger p, we apply our Assumption 1.1 to bound each βp ≤
Kp−3/2−ε. We see that we obtain,

(N + n)

∞∑
p=bNαc+1

β2
pR

p
σ,ρ ≤ (N + n)

∞∑
p=bNαc+1

K

p3+2ε
≤ (N + n)

K

N (2+2ε)α
≤ KN1−(2+2ε)α.

(2.17)
For the smaller powers of p, we have to perform a perturbation expansion. By an

exercise in calculus, we see that if x is an order 1
N positive quantity and p ≤ Nα � N ,

then we have the inequality

(1 + x)p ≤ 1 + px+ 2p2x2 ≤ 1 + px+O
(
N2α−2

)
.
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Using this identity, we can first separate the terms involving the spins σN+iρN+i for i
between 1 and n. Notice that we have, for p ≤ Nα � N ,(

1

N + n

N+n∑
i=1

σiρi

)p
=

(
1

N + n

N∑
i=1

σiρi

)p

+ p

(
1

N + n

N∑
i=1

σiρi

)p−1(
1

N + n

n∑
i=1

σN+iρN+i

)
+O(N2α−2).

(2.18)
Now we replace the spins σi, ρi with the rescaled coordinates σ̂i, ρ̂i. As mentioned

previously, this would require a perturbation analysis of Sp.
Applying this expansion to the pth power of the overlaps for p ≤ Nα � N , we have

β2
p

(
1

N + n

N∑
i=1

σiρi

)p

= β2
p

(
1

N + n

N∑
i=1

σ̂iρ̂i

)p(
1 +

nR2 + n− σ̂2
N+1 − . . . σ̂2

N+n

N − nR2

)p/2
(

1 +
nR2 + n− ρ̂2

N+1 − . . . ρ̂2
N+n

N − nR2

)p/2
= β2

pR
p
σ̂,ρ̂ +

pβ2
p

2
Rpσ̂,ρ̂

nR2 + n− σ̂2
N+1 − . . . σ̂2

N+n

N + n

+
pβ2

p

2
Rpσ̂,ρ̂

nR2 + n− ρ̂2
N+1 − . . . ρ̂2

N+n

N + n
+O

(
β2
pN

2α−2
)
,

where we define the terms

Rσ̂,ρ̂ =
1

N + n

N∑
i=1

σ̂iρ̂i.

We also have the similar inequality (1 + x)p ≤ 1 + 2px ≤ 1 +O(Nα−1) for x = O(N−1)

and p ≤ Nα � N . Thus, we observe that, for p ≤ Nα � N , we have

pβ2
p

(
1

N + n

N∑
i=1

σiρi

)p−1(
1

N + n

n∑
i=1

σN+iρN+i

)

= pβ2
p

(
1

N + n

N∑
i=1

σ̂iρ̂i

)p−1(
1

N + n

n∑
i=1

σ̂N+iρ̂N+i

)
+O(pβ2

pN
α−2).

(2.19)

Combining the previous perturbation estimates, we derive the following expression
for the covariance.

Cov(HN+n(σ), HN+n(ρ)) =

(N + n)

bNαc∑
p=2

β2
pR

p
σ̂,ρ̂ +

bNαc∑
p=2

p

2
β2
p(nR2 + n− σ̂2

N+1 − . . .− σ̂2
N+n)Rpσ̂,ρ̂

+

bNαc∑
p=2

p

2
β2
p(nR2 + n− ρ̂2

N+1 − . . .− ρ̂2
N+n)Rpσ̂,ρ̂ +

bNαc∑
p=2

pβ2
pR

p−1
σ̂,ρ̂

(
n∑
i=1

σ̂N+iρ̂N+i

)

+

bNαc∑
p=2

[
O(β2

pN
2α−1) +O(pβ2

pN
α−1)

]
+O(N1−(2+2ε)α).

(2.20)
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We see that if we choose any value of α between 1
2+2ε and 1

2 and apply the summability
of the series β2

p and pβ2
p , we will be able to show that the error is o(1), which will be good

enough for later purposes.

Now, we have to replace the restricted summation up to the value of p = bNαc with
the sum to∞. We will apply trivial bounds to these terms using Rσ̂,ρ̂ ≤ 1. Observe that
we have

(N + n)

∞∑
p=bNαc

β2
pR

p
σ̂,ρ̂ +

∞∑
p=bNαc

p

2
β2
p(nR2 + n− σ̂2

N+1 − . . .− σ̂2
N+n)Rpσ̂,ρ̂

+

∞∑
p=bNαc

p

2
β2
p(nR2 + n− ρ̂2

N+1 − . . .− ρ̂2
N+n)Rpσ̂,ρ̂

+

∞∑
p=bNαc

pβ2
pR

p−1
σ̂,ρ̂

(
n∑
i=1

σ̂N+iρ̂N+i

)

≤ (N + n)

∞∑
p=bNαc

K

p3+2ε
+

∞∑
p=bNαc

K

p2+2ε
≤ O(N1−(2+2ε)α) +O(N−(1+2ε)α).

(2.21)

For a choice of α ≤ 1
2 and ≥ 1

2+2ε , as before, this will be an error term.

Finally, we derive the expression,

Cov(HN+n(σ), HN+n(ρ)) =

(N + n)

∞∑
p=2

β2
pR

p
σ̂,ρ̂ +

∞∑
p=2

p

2
β2
p(nR2 + n− σ̂2

N+1 − . . .− σ̂2
N+n)Rpσ̂,ρ̂

+

∞∑
p=2

p

2
β2
p(nR2 + n− ρ̂2

N+1 − . . .− ρ̂2
N+n)Rpσ̂,ρ̂

+

∞∑
p=2

pβ2
pR

p−1
σ̂,ρ̂

(
n∑
i=1

σ̂N+iρ̂N+i

)
+ o(1).

(2.22)

2.4 The Covariance structure of H̃N

Recall that in the expression (2.12), we have separated the Hamiltonian H̃N into
three independent parts. Namely, we have the decomposition,

H̃N (σ̂1, . . . , σ̂N+n) = ĤN (σ̂1, . . . , σ̂N ) +

n∑
i=1

Y i(σ̂1, . . . , σ̂N )

(√
R2 + 1−

σ̂2
N+i

2
√
R2 + 1

)

+

n∑
i=1

Zi(σ̂1, . . . , σ̂N )σ̂N+i.

The three parts ĤN , Y i, and Zi are independent of each other. We compute the
covariance of each part separately.

Observe,

Cov(ĤN (σ̂1, . . . , σ̂N ), ĤN (ρ̂1, . . . , ρ̂N )) = (N + n)

∞∑
p=2

β2
pR

p
σ̂,ρ̂. (2.23)
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Also,

Cov

(
Y i(σ̂)

(√
R2 + 1−

σ̂2
N+i

2
√
R2 + 1

)
, Y j(ρ̂)

(√
R2 + 1−

ρ̂2
N+j

2
√
R2 + 1

))

= δi,j

(√
R2 + 1−

σ̂2
N+i

2
√
R2 + 1

)(√
R2 + 1−

ρ̂2
N+j

2
√
R2 + 1

) ∞∑
p=2

pβ2
pR

p
σ̂,ρ̂

= δi,j

(
R2 + 1− 1

2
σ̂2
N+i −

1

2
ρ̂2
N+j +

σ̂2
N+iρ̂

2
N+j

4(R2 + 1)

) ∞∑
p=2

pβ2
pR

p
σ̂,ρ̂.

(2.24)

Finally,

Cov(Zi(σ̂1, . . . , σ̂N )σ̂N+i, Z
j(ρ̂1, . . . , ρ̂N )ρ̂N+j) = δi,j σ̂N+iρ̂N+j

∞∑
p=2

pβ2
pR

p−1
σ̂,ρ̂ . (2.25)

We can combine all of these terms to compute the covariance of H̃N+n.

Cov(H̃N+n(σ̂), H̃N+n(ρ̂)) = (N + n)

∞∑
p=2

β2
pR

p
σ̂,ρ̂ +

∞∑
p=2

pβ2
pR

p−1
σ̂,ρ̂ (

n∑
i=1

σ̂N+iρ̂N+i)

+

∞∑
p=2

p

2
β2
pR

p
σ̂,ρ̂(nR

2 + n− σ̂2
N+i − . . .− σ̂2

N+n)

+

∞∑
p=2

p

2
β2
pR

p
σ̂,ρ̂(nR

2 + n− ρ̂2
N+i − . . .− ρ̂2

N+n)

+

∞∑
p=2

pβ2
pR

p
σ̂,ρ̂

4(R2 + 1)
(

n∑
i=1

σ̂2
N+iρ̂

2
N+i).

(2.26)

We now compute the differences in the respective covariances. We see that

|Cov(HN+n(σ̂), HN+n(ρ̂))− Cov(H̃N+n(σ̂), H̃N+n(ρ̂))| =
∞∑
p=2

p

2
β2
p

n∑
i=1

σ̂2
N+iρ̂

2
N+i

4(R2 + 1)
+ o(1) ≤

∞∑
p=2

p

2
β2
p

nC4

4(R2 + 1)
+ o(1) = O

(
C4

R2

)
+ o(1),

(2.27)

holds on the domain SC,R,nN+n . The following remark gives some motivation on the choice
of Y i.

Remark 2.6. In order to proceed with any future cavity computation, it was necessary
to treat the Gaussian components of the Hamiltonian HN+n that involve any of the extra
spins σ̂N+i as independent from the Hamiltonian ĤN . Y i was created to approximate
the second line of (2.11).

However, the Gaussian components of the second line of (2.11) are coupled to those
of the first line (ĤN ). Any choice of independent Y i to approximate the second line in
the covariance structure will necessarily create some error as |σ̂N+i| is allowed to vary
between 0 and C. The choice of Y i here assures the approximation is exact at |σ̂i| = 0.

As we shall see in the next subsection, the difference in the covariance structure
quantifies the difference in the spin distributions according to the Hamiltonians H̃ and
H. The spin distributions will match only if the covariance is 0. To justify comparing the
spin distributions of H̃ and H, we see that we will have to take a double limit procedure
limC→∞ limR→∞ limN→∞ in that order.
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2.5 Comparison of the modified Cavity Hamiltonian

What we will show now is that the expectation of quantities computed with respect to
the Hamiltonian H̃N+n over the restricted sphere SC,R,nN+n will have a small difference from
the same quantity computed with respect to the Hamiltonian HN+n via an interpolation
procedure. We can then proceed to compute spin distributions with respect to the
Hamiltonian H̃N+n that specifically uses the independence of the parts that we have
constructed. Recall we have to study quantities like those inside the limit on the right
hand side of equation (2.6).

Theorem 2.7. Let f be a function of the form
∏n
l=1(σ̂N+l)

el from Rn → R where each of
the el is a non-negative integer. We have the following comparison estimate

lim
N→∞

∣∣∣∣∣E

∫
SC,R,nN+n

f(σ̂N+1, . . . , σ̂N+n)
∏n
i=1 e

−
σ̂2N+i

2 eHN+n(σ̂1,...,σ̂N+n)dσ̂∫
SC,R,nN+n

eHN+n(σ̂1,...,σ̂N+n)
∏n
i=1 e

−
σ̂2
N+i
2 dσ̂



− E


∫
SC,R,nN+n

f(σ̂N+1, . . . , σ̂N+n)
∏n
i=1 e

−
σ̂2N+i

2 eH̃N+n(σ̂1,...,σ̂N+n)dσ̂∫
SC,R,nN+n

eH̃N+n(σ̂1,...,σ̂N+n)
∏n
i=1 e

−
σ̂2
N+i
2 dσ̂

 ∣∣∣∣∣ ≤ O

(
C4+

∑n
l=1 el

R2

)
,

(2.28)
where the constant in the error bound does not depend on C or R. In the integrals that
have appeared beforehand, dσ̂ is the product measure

∏N+n
i=1 dσ̂i.

Proof. For some simplicity of notation, we will denote

f̃(σ̂N+1, . . . , σ̂N+n) := f(σ̂N+1, . . . , σ̂N+n)

n∏
i=1

e−
σ̂2N+i

2 ,

g̃(σ̂N+1, . . . , σ̂N+n) :=

n∏
i=1

e−
σ̂2N+i

2 .

In order to compare the two quantities, we will perform a Gaussian interpolation.
We may drop the subscript N + n in some following computations. Let HN+n, H̃N+n

be independent Gaussian processes with the appropriate covariance structure defined
earlier, and let

Ht(σ̂1, . . . , σ̂N+n) :=
√
tHN+n +

√
1− tH̃N+n.

We now consider the quantity

F (t) = E

∫SC,R,nN+n
f̃(σ̂N+1, . . . , σ̂N+n)eHt(σ̂1,...,σ̂N+n)dσ̂∫

SC,R,nN+n
g̃(σ̂N+1, . . . , σ̂N+n)eHt(σ̂1,...,σ̂N+n)dσ̂

 ,
and remark that the quantity (2.28) is |F (1) − F (0)|. As is standard, we will derive
a bound on the above quantity by bounding the derivative. To simplify notation, we
will denote the quantity Zt :=

∫
SC,R,nN+n

g̃(σ̂N+1, . . . , σ̂N+n)eHt(σ̂1,...,σ̂N+n)dσ̂. Since we will

always integrate over the set SC,R,nN+n we avoid here any specific mention of this set. We
see that F ′(t) is equal to

E

[
1

2
√
t

(
Z−1
t

∫
f̃(σ̂)H(σ̂)eHt(σ̂)dσ̂ − Z−2

t

∫
f̃(σ̂)g̃(ρ̂)H(ρ̂)eHt(σ̂)+Ht(ρ̂)dσ̂dρ̂

)
− 1

2
√

1− t

(
Z−1
t

∫
f̃(σ̂)H̃(σ̂)eHt(σ̂)dσ̂ − Z−2

t

∫
f̃(σ̂)g̃(ρ̂)H̃(ρ̂)eHt(σ̂)+Ht(ρ̂)dσ̂dρ̂

)]
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= E

[ ∫
f̃(σ̂)[Cov(H(σ̂), H(σ̂))− Cov(H̃(σ̂), H̃(σ̂))]

eHt(σ̂)

2Zt
dσ̂

− 2

∫
f̃(σ̂)g̃(ρ̂)[Cov(H(σ̂), H(ρ̂))− Cov(H̃(σ̂), H̃(ρ̂))]

eHt(σ̂)+Ht(ρ̂)

2Z2
t

dσ̂dρ̂

−
∫
f̃(σ̂)g̃(ρ̂)[Cov(H(ρ̂), H(ρ̂))− Cov(H̃(ρ̂), H̃(ρ̂))]

eHt(σ̂)+Ht(ρ̂)

2Z2
t

dσ̂dρ̂

+

∫
f̃(σ̂)g̃(ρ̂)g̃(η̂)[Cov(H(ρ̂), H(η̂))− Cov(H̃(ρ̂), H̃(η̂))]

eHt(σ̂)+Ht(ρ̂)+Ht(η̂)

Z3
t

dσ̂dρ̂dη̂

]
.

(2.29)

The first equality merely computed the derivative of the quantities. In order to derive
the last expression, we performed an integration by parts.

We bound the quantity on the right hand side of the quality by taking absolute values
everywhere. Every appearance of the differences of |Cov(H,H) − Cov(H̃, H̃)| can be

bounded by C4

R2 + o(1). Applying this bound will decouple the integration variables.

We can thus bound the right hand side of the previous equation in absolute value by(
C4

R2
+ o(1)

)
E

[
1

2

∫
|f̃(σ̂)|eHt(σ̂)dσ̂

Zt
+

3

2

∫
|f̃(σ̂)|eHt(σ̂)dσ̂

Zt

∫
g̃(ρ̂)eHt(ρ̂)dρ̂

Zt

]

+

(
C4

R2
+ o(1)

)
E

[∫
|f̃(σ̂)|eHt(σ̂)dσ̂

Zt

∫
g̃(ρ̂)eHt(ρ̂)dρ̂

Zt

∫
g̃(η̂)eHt(η̂)dη̂

Zt

]

Notice that we may bound |f̃(σ̂)| ≤ C
∑n
l=1 el |g̃(σ̂)| and that g̃(σ̂) is a positive quantity.

Additionally,
∫
g̃(ρ̂)eHt(ρ̂)dρ̂

Zt
= 1. This suggests that we have

∫
|f̃(σ̂)|eHt(σ̂)dσ̂

Zt
≤ C

∑n
i=1 el .

Combining the previous inequalities give us the desired result.

The main consequence of this Theorem is the following Corollary, which allows us to
express the spin distributions from the Hamiltonian HN in terms of expectations with
respect to H̃N .

Corollary 2.8. Let el,n be non-negative integers. We have the following limiting rela-
tions.

lim
N→∞

E

[
k∏
l=1

〈(σlN+1)el,1 . . . (σlN+n)el,n〉HN+n(SN+n)

]

= lim
C→∞

lim
R→∞

lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
i=1(σ̂lN+i)

el,ie−
(σ̂lN+i)

2

2 eH̃N+n(σ̂l1,...,σ̂
l
N+n)dσ̂l∫

SC,R,nN+n
eH̃N+n(σ̂l1,...,σ̂

l
N+n)∏n

i=1 e
−

(σ̂l
N+i

)2

2 dσ̂l

 .
(2.30)

Proof. From Lemma 2.1 and Lemma 2.3, we introduce the C cutoff and introduce the
renormalization with respect to R. For fixed R, we see we have the limiting relation

lim
N→∞

E

[
k∏
l=1

〈(σlN+1)el,1 . . . (σlN+n)el,n〉HN+n(SN+n)

]

= lim
C→∞

lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
i=1(σ̂lN+i)

el,ie−
(σ̂lN+i)

2

2 eHN+n(σ̂l1,...,σ̂
l
N+n)dσ̂l∫

SC,R,nN+n
eHN+n(σ̂l1,...,σ̂

l
N+n)∏n

i=1 e
−

(σ̂l
N+i

)2

2 dσ̂l

 .
(2.31)
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We remark that R is a free parameter here and

lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
i=1(σ̂lN+i)

el,ie−
(σ̂lN+i)

2

2 eHN+n(σ̂l1,...,σ̂
l
N+n)dσ̂l∫

SC,R,nN+n
eHN+n(σ̂l1,...,σ̂

l
N+n)∏n

i=1 e
−

(σ̂l
N+i

)2

2 dσ̂l

 ,
is a constant in R. We can freely take the limit of R→∞. We have,

lim
N→∞

E

[
k∏
l=1

〈(σlN+1)el,1 . . . (σlN+n)el,n〉HN+n(SN+n)

]

= lim
C→∞

lim
R→∞

lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
i=1(σ̂lN+i)

el,ie−
(σ̂lN+i)

2

2 eHN+n(σ̂l1,...,σ̂
l
N+n)dσ̂l∫

SC,R,nN+n
eHN+n(σ̂l1,...,σ̂

l
N+n)∏n

i=1 e
−

(σ̂l
N+i

)2

2 dσ̂l

 .
(2.32)

Finally, Theorem 2.7 allows us to replace the expectation over Hamiltonian HN+n

with Hamiltonian H̃N+n if we take limC→∞ limR→∞ in that order. We derive the equation,

lim
N→∞

E

[
k∏
l=1

〈(σlN+1)el,1 . . . (σlN+n)el,n〉HN+n(SN+n)

]

= lim
C→∞

lim
R→∞

lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
i=1(σ̂lN+i)

el,ie−
(σ̂lN+i)

2

2 eH̃N+n(σ̂l1,...,σ̂
l
N+n)dσ̂l∫

SC,R,nN+n
eH̃N+n(σ̂l1,...,σ̂

l
N+n)∏n

i=1 e
−

(σ̂l
N+i

)2

2 dσ̂l

 .
(2.33)

This completes the proof.

From this point on, we will now attempt to compute quantities with respect to
the distribution using the Hamiltonian H̃; namely, we study quantities such as those
appearing on the right hand side of equation (2.30). Applying our cavity decomposition
of the Hamiltonian H̃, as detailed in equations (2.13), (2.14) and (2.15), we see that we
need to study quantities expressed in the following manner,

E

 k∏
l=1

∫
SC,R,nN+n

∏n
i=1(σ̂lN+i)

el,ie−
(σ̂lN+i)

2

2 eH̃N+n(σ̂l1,...,σ̂
l
N+n)dσ̂l∫

SC,R,nN+n

∏n
i=1 e

−
(σ̂l
N+i

)2

2 eH̃N+n(σ̂l1,...,σ̂
l
N+n)dσ̂l



=E

k∏
l=1

〈
∏n
i=1

∫
[−C,C]

s
el,i
i e

− s
2
i
2 +Zi(σ̂l)si+

[√
R2+1− s2i

2
√
R2+1

]
Y i(σ̂l)

dsi〉ĤN

〈
∏n
i=1

∫
[−C,C]

e
−
s2
i
2 +Zi(σ̂l)si+

[√
R2+1−

s2
i

2
√
R2+1

]
Y i(σ̂l)

dsi〉ĤN

.

(2.34)

3 Reduction to finite replica symmetry breaking

We will show that due to ultrametricity,

lim
N→∞

E

k∏
l=1

〈
∏n
i=1

∫
[−C,C]

s
el,i
i e

− s
2
i
2 +Zi(σ̂l)si+

[√
R2+1− s2i

2
√
R2+1

]
Y i(σ̂l)

dsi〉ĤN (SN−R2 )

〈
∏n
i=1

∫
[−C,C]

e
−
s2
i
2 +Zi(σ̂l)si+

[√
R2+1−

s2
i

2
√
R2+1

]
Y i(σ̂l)

dsi〉ĤN (SN−R2 )

, (3.1)

only depends on the Hamiltonian ĤN through its limiting overlap distribution ζ∗ (Recall
that the notation ζ∗ first appeared in Theorem 1.2). The expression inside the limit
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of (3.1) can be understood as a continuous function FR,C,E(ζ) of ζ in the space of
probability measures on [0, 1] with the weak∗ topology, where E is the set of all values
el,i, evaluated at ζ∗. (As before, we restrict the values of el,i to be non-negative integers.)

Using the results of Corollary 2.8, we are able to derive the fact that

lim
N→∞

E

k∏
l=1

〈(σl1)el,1 . . . (σln)el,n〉HN (SN ) = lim
C→∞

lim
R→∞

FR,C,E(ζ∗). (3.2)

What we would like to do is to reduce the computation to when ζ∗ satisfies finite
replica symmetry breaking. Let ζi be a sequence of probability measures approaching ζ∗

in the weak∗ topology.
We have that

lim
N→∞

E

k∏
l=1

〈(σl1)el,1 . . . (σln)el,n〉 = lim
C→∞

lim
R→∞

lim
i→∞

FR,C,E(ζi). (3.3)

We would like to exchange the limits so that we can write the limit as

lim
i→∞

lim
C→∞

lim
R→∞

FR,C,E(ζi). (3.4)

This would involve showing the uniform approach of FR,C,E(ζi) to its limit in ζ. We
will proceed to justify this exchange of limits in the following sections.

3.1 Computation of FR,C,E(ζ) under finite replica symmetry breaking

Lemma 3.1. There is some function FR,C,E(ζ) continuous on the weak∗ topology of
probability measures on [0, 1] with

lim
N→∞

E

 k∏
l=1

∫
SC,R,nN+n

∏n
j=1(σ̂lN+j)

el,je−
(σ̂lN+j)

2

2 eH̃N+n(σ̂l)dσ̂l∫
SC,R,nN+n

∏n
j=1 e

−
(σ̂l
N+j

)2

2 eH̃N+n(σ̂l)dσ̂l

 = FR,C,E(ζ∗),

and for measures ζ satisfying finite replica symmetry breaking with support at points
0 = q0 ≤ q1 ≤ . . . ≤ qr = q∗, we have

FC,R,E(ζ) = E

k∏
l=1

∑
αl
wαl

∏n
i=1

∫ C
−C s

el,i
i e−

1
2 [1+b̂in]s2i+Mi(hαl)dsi∑

αl
wαl

∏n
i=1

∫ C
−C e

− 1
2 [1+b̂in]s2i+Mi(hαl)dsi

, (3.5)

where the quantities on the right hand side of the above expression are computed with
respect to an RPC [12][Ch 2.3] whose overlap distribution is given by ζ. Yi and Zi are
independent Gaussian processes with covariance given by

Cov(Yi(hα),Yi(hβ)) = 〈hα, hβ〉ξ′(〈hα, hβ〉),
Cov(Zi(hα),Zi(hβ)) = ξ′(〈hα, hβ〉),

(3.6)

where l is a replica index for αl, el,i is an exponent, and 〈·, ·〉 is the inner product.
In the expression (3.5), we use b̂in := ξ′(q∗)(1− q∗) and

Mi (hα) = Zi (hαl) si + Yi (hαl)

[√
R2 + 1− s2

i

2
√
R2 + 1

]
+

(ξ′(1)− q∗ξ′(q∗))s4
i

4(R2 + 1)
. (3.7)

We will use this shorthand when useful and replace it with more explicit representations
when it is more germane to the proof.
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Proof. Part 1: The weak continuity of FR,C,E as a function of ζ
For simplicity, we will write out the proof in the one replica case and a one particle

cavity e1,1 = 1. We will show the expression inside the limit of (3.1) can be shown to be a
bounded continuous function of the overlap distribution. The logic will broadly follow
that of [12][Thm 1.3], this time applying the approximation and cutoff procedures to the
function 1

x .
For some convenience of notation, we use the notation

EN :=

〈∫
[−C,C]

e
− s22 +Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

〉
ĤN (σ̂)

,

FN :=

〈∫
[−C,C]

se
− s22 +Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

〉
ĤN (σ̂)

.

First, fix some small ε > 0. We let Fε be the function defined by

Fε(x) := ε1(x ≤ ε) + x1(ε < x < ε−1) + ε−11(x ≥ ε−1), (3.8)

and Gε be defined as

Gε(x) := sign(x)Cε−11(|x| ≥ Cε−1) + x1(|x| < Cε−1). (3.9)

These functions are introduced to regularize the numerator and denominator.
We see that since |FN | ≤ CEN , we also have the relation |Gε(FN )| ≤ CFε(EN ). We

first establish,

E

∣∣∣∣FNEN − Gε(FN )

Fε(EN )

∣∣∣∣ ≤ 2CP(ε ≥ EN , EN ≥ ε−1). (3.10)

The results of Lemma 3.2 show that the probability in the previous line is bounded by a
constant K times ε.

Now, we regularize the quantities EN and FN as follows. We define,

Ereg
N :=

〈∫
[−C,C]

e
− s22 +G−k log ε(Z

1(σ̂))s+

[√
R2+1− s2

2
√
R2+1

]
G−k log ε(Y

1(σ̂))
ds

〉
ĤN (σ̂)

F reg
N :=

〈∫
[−C,C]

se
− s22 +G−k log ε(Z

1(σ̂))s+

[√
R2+1− s2

2
√
R2+1

]
G−k log ε(Y

1(σ̂))
ds

〉
ĤN (σ̂)

.

The constant k is chosen small enough so that Fε(Ereg
N ) = Ereg

N and Gε(F reg
N ) = F reg

N for all
ε.

Let χ be the indicator function for the event
〈∫

[−C,C]

e
−s2+2Z1(σ̂)s+2

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

〉
ĤN (σ̂)

≤ ε−1

 ∩ {ε ≤ EN ≤ ε−1}.

(3.11)
We see that we now have,

E

∣∣∣∣Gε(FN )

Fε(EN )
−
Gε(F reg

N )

Fε(Ereg
N )

∣∣∣∣ ≤ E [∣∣∣∣FNEN − F
reg
N

Ereg
N

∣∣∣∣χ]+ 2CE(1− χ)

≤ E
∣∣∣∣FN (Ereg

N − EN )

ENEreg
N

∣∣∣∣χ+ E

∣∣∣∣ (F reg
N −FN )

Ereg
N

∣∣∣∣χ+ 2CE(1− χ)

≤ Cε−1E|EN − Ereg
N |χ+ ε−1E|FN −F reg

N |χ+ 2CE(1− χ).
(3.12)
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To get from the second to the third line, we used the following facts: FNEN ≤ C and
Ereg
N ≥ ε. We remark again that the estimates of Lemma 3.2 along with a union bound

control E(1− χ).
We now control the difference E|EN − Ereg

N |χ. Controlling the other term is similar.
We have, by using the definition of EN and Ereg

N ,

E|EN − Ereg
N |χ

≤ E

〈
1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)

∫ C

−C
e
−s2/2+Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

〉
χ

+ E

〈
1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)

×
∫ C

−C
e
−s2/2+G−k log ε(Z

1(σ̂))s+

[√
R2+1− s2

2
√
R2+1

]
G−k log ε(Y

1(σ̂))
ds

〉
χ.

(3.13)
We now bound the quantity in the second line of the above expression. Bounding the
other quantity is similar,

E

〈
1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)

∫ C

−C
e
−s2/2+Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

〉
χ

≤ E〈1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)〉1/2

×

〈(∫ C

−C
e
−s2/2+Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

)2〉1/2

χ

≤ (E〈1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)〉)1/2

×

E〈(∫ C

−C
e
−s2/2+Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

)2〉
χ

1/2

≤ (E〈1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)〉)1/2

×

(
2CE

〈∫ C

−C
e
−s2+2Z1(σ̂)s+2

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

ds

〉
χ

)1/2

≤ (2C)1/2ε−1/2(E〈1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)〉)1/2.
(3.14)

We used the Cauchy-Schwartz inequality to derive the first inequality (in 〈〉), the

second inequality (in E), and the third inequality (in the integral
∫ C
−C). To get the final

inequality, we used the definition of χ.
Since Z1(σ̂) and Y 1(σ̂) are Gaussians, we have that

(E〈1(|Z1(σ̂)| or |Y 1(σ̂)| ≥ −k log ε)〉)1/2 ≤ e−K(log ε)2 ,

for some constant K. As ε goes to 0, we find that ε−3/2e−K(log ε)2 = e−3/2 log ε−K(log ε)2

goes to 0.

This argument shows that up to an error that vanishes in ε, we have EFNEN = E
F reg
N

Ereg
N

.

The function 1
x can be approximated uniformly by a polynomial on the domain [ε, ε−1].

This says that to an arbitrarily small error, we can find a polynomial, P , such that E
F reg
N

Ereg
N

=

EF reg
N P (Ereg

N ). By expanding the polynomial, we obtain replicas of the σ̂. Integrating
first over the randomness of the Gaussians Z1 and Y 1 will show that EF reg

N P (Ereg
N ) is

some weakly continuous function of the law of a finite component of the infinite replica

EJP 27 (2022), paper 27.
Page 23/43

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP755
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spin distributions for spherical spin glasses

overlap matrix. We now see that the function FC,R,E is arbitrarily close to a function
that is weakly continuous in the law of infinite replica overlap matrix and will thus be
weakly continuous itself.

Panchenko’s ultrametricity theorem [12][Thm 2.14] says that the law of the infinite
overlap matrix is a continuous function of the law of the limiting overlap distribution.
This shows that FC,R,E is weakly continuous in the law of the limiting overlap distribution
of ĤN .

We finally have to show that the limiting overlap distribution of ĤN would be the
same as the limiting overlap distribution of HN . Observe that both ĤN and HN are both
generic spin-glasses. [12][Thm 3.7] says that if these models have the same limiting free
energy, then they would have the same limiting overlap distributions.

Showing that these two spin glasses have the same limiting free energy is an exercise
in interpolation. The covariance structure of ĤN is given by Cov(ĤN (σ̂), ĤN (ρ̂)) =

(N + n)
∑∞
p=2 β

2
p

(
1

N+n

∑N
i=1 σ̂iρ̂i

)p
, while the covariance structure of HN is given by

Cov(HN (σ̂), HN (ρ̂)) = N
∑∞
p=2 β

2
p

(
1
N

∑N
i=1 σ̂iρ̂i

)p
.

Calculations similar to those appearing in Theorem 2.7 will show that as long as
limN→∞

1
N [Cov(ĤN (σ̂), ĤN (ρ̂))−Cov(HN (σ̂), HN (ρ̂))] = 0, then the limiting free energies

will be the same. The two covariance structures considered satisfy this condition. This
completes the proof.

Step 2: The Finite Replica Symmetry Breaking Formula
We have already shown that the function FC,R,E is a weakly continuous function of

the overlap distribution of ĤN . When this overlap distribution satisfies finite symmetry
breaking, it can be approximated by that of a Ruelle Probability Cascade.

Assume the overlap distribution has support given by

0 = q0 ≤ q1 ≤ q2 ≤ . . . ≤ qr = q∗ < 1. (3.15)

Denote the leaves of the Ruelle probability cascade by hα.
We now have to adapt the Gaussian processes Z1 and Y 1 to this RPC structure. As

one might expect, we would have the covariance structure

Cov(Y1(hα),Y1(hβ)) = 〈hα, hβ〉ξ′(〈hα, hβ〉),
Cov(Z1(hα),Z1(hβ)) = ξ′(〈hα, hβ〉).

(3.16)

This is analogous to the covariance structure

Cov(Y 1(σ̂), Y 1(ρ̂)) = Rσ̂,ρ̂ξ
′(Rσ̂,ρ̂),

Cov(Z1(σ̂), Z1(ρ̂) = ξ′(Rσ̂,ρ̂),
(3.17)

at all overlaps except when σ̂ = ρ̂. (Recall that Rσ̂,ρ̂ is just an inner product in RN .)
To match the self-covariance, we see that the quantity corresponding to (3.1) in the

RPC would be written as,

E


∑
α wαEZ̃,Ỹ

∫
[−C,C]

se
− s22 +(Z1(hα)+Z̃)s+(Y1(hα)+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds∑

α wαEZ̃,Ỹ

∫
[−C,C]

e
− s22 +(Z1(hα)+Z̃)s+(Y1(hα)+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds

 , (3.18)

where Z̃ and Ỹ are independent Gaussians with variances ξ′(1)−ξ′(q∗) and ξ′(1)−q∗ξ′(q∗),
respectively. Intuitively speaking, the introduction of these expectations ensures that we
have the correct covariance structure at the diagonal. A more formal proof to show that
this is the correct expression follows the strategy of approximating the denominator by a
polynomial as in Part 1 of this proof. We informally illustrate the gist of the computation.
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Denote the denominator by E and let P be the polynomial such that |P (x)− x−1| ≤ δ
on [ε, ε−1] as in the previous part. Roughly speaking, the ratio in (3.18) would be similar
to

E

[
P (E)

∑
α

wαEZ̃,Ỹ

∫
[−C,C]

se
− s22 +(Z1(hα)+Z̃)s+(Y1(hα)+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds

]
. (3.19)

The polynomial can be expanded, so it looks like we are considering an expectation
of a multi-replica quantity. We evaluate this multi-replica expectation by first taking the
expectation of all the Y and Z Gaussians and afterwards taking the expectation over the
Dirichlet-Process variables wα. For example, if the polynomial P (x) =

∑
k akx

k, we see
that we can write the expression (3.19) as

E
∑
k

ak
∑

β,α1,...,αk

wβwα1
. . . wαk

EZ,Z̃,Y,ỸN (Z1(hβ) + Z̃β ,Y1(hβ) + Ỹβ)

k∏
i=1

D(Z1(hαk) + Z̃αk ,Y1(hαk) + Ỹαk).

(3.20)

where N is a shorthand for the function
∫

[−C,C]
se
− s22 +(Z+Z̃)s+(Y+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds as

a function of the random variables Z,Y, Z̃, Ỹ. D will be a shorthand for the function∫
[−C,C]

e
− s22 +(Z+Z̃)s+(Y+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds. Z̃αk , Ỹαk are independent copies of Z̃ and

Ỹ associated with each new node αk, β.
The expectation,

EZ,Z̃,Y,ỸN (Z1(hβ), Z̃β ,Y1(hβ), Ỹβ)

k∏
i=1

D(Z1(hαk), Z̃αk ,Y1(hαk), Ỹαk),

will be some function of the covariance matrix of the Gaussian random variables
{Z1(hαk) + Z̃αk} ∪ {Y1(hαk) + Ỹαk}. The introduction of the variables Ỹ and Z̃ ensures
this covariance matrix will be correct along the diagonal.

We obtain our final expresson by integrating over the variables Z̃ and Ỹ.

E


∑
α wαEZ̃,Ỹ

∫
[−C,C]

se
− s22 +(Z1(hα)+Z̃)s+(Y1(hα)+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds∑

α wαEZ̃,Ỹ

∫
[−C,C]

e
− s22 +(Z1(hα)+Z̃)s+(Y1(hα)+Ỹ)

[√
R2+1− s2

2
√
R2+1

]
ds


= E

∑α wα
∫

[−C,C]
se−

s2

2 [1+b̂in]+Mi(hα)ds∑
α wα

∫
[−C,C]

e−
s2

2 [1+b̂in]+Mi(hα)ds

 .
(3.21)

This is the desired result.

We have the following lemma to bound the denominator. We introduce the notation
dvRN to be the Gibbs measure associated with ĤN .

Lemma 3.2. For any k, we have the following estimate.

P

(∫
SN (N−R2)

∫ C

−C
e
− s22 +Z1(σ̂)s+

[√
R2+1− s2

2
√
R2+1

]
Y 1(σ̂)

dsdνRN ≤
1

L

)
≤ K(k)

Lk
, (3.22)
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for some constant K(k) that does not depend on L. We introduce the parameter k to
show that the left hand side of the above inequality decays faster than any polynomial
power.

Proof. We have the following∫ C

−C
exp

{
−s

2

2
+ sZ1(σ̂) +

[√
R2 + 1− s2

2
√
R2 + 1

]
Y 1(σ̂)

}
ds

=

∫ C

0

exp

{
−s

2

2
+

[√
R2 + 1− s2

2
√
R2 + 1

]
Y 1(σ̂)

}
2 cosh sZ1(σ̂)ds

≥ e−C
2/2

∫ C

0

exp

{[√
R2 + 1− s2

2
√
R2 + 1

]
Y 1(σ̂)

}
ds.

(3.23)

For later convenience in the course of this proof, we will now define

Ỹ 1(σ̂) :=

[√
R2 + 1− s2

2
√
R2 + 1

]
Y 1(σ̂).

We get

P

(∫
SN (N−R2)

∫ C

−C
e−

s2

2 +Z1(σ̂)s+Ỹ 1(σ̂)dsdνRN ≤
1

L

)

≤ P

(∫
SN (N−R2)

∫ C

0

eỸ
1(σ̂)dsdνRN ≤

eC
2/2

L

)
.

(3.24)

Now, by the Cauchy-Schwarz inequality, we derive(∫
SN (N−R2)

∫ C

0

eỸ
1(σ̂)dsdνRN

)(∫
SN (N−R2)

∫ C

0

e−Ỹ
1(σ̂)dsdνRN

)
≥ C2.

Then, we see

P

(∫
SN (N−R2)

∫ C

0

eỸ
1(σ̂)dsdνRN ≤

eC
2/2

L

)

≤ P

(∫
SN (N−R2)

∫ C

0

e−Ỹ
1(σ̂)dsdνRN ≥

LC2

eC2/2

)
.

(3.25)

Notice that −Y 1(σ̂) and Y 1(σ̂) have the same distribution. We will bound the right hand
side of the above equation by Markov’s inequality.

Let us find the kth moment; it is

E

∫
SN (N−R2)⊗k

∫ C

0

. . .

∫ C

0

e−
∑k
j=1 Ỹ

1(σ̂j)ds1 . . . dsk(dνRN )⊗k. (3.26)

We can perform the integration in the Ỹ 1(σ̂j) Gaussian random variables first. Since R
and si ∈ [0, C] are bounded, this is certainly some finite quantity. Thus, we can apply
Markov’s inequality in order to get the bound that

P

(∫
SN (N−R2)

∫ C

0

e−Ỹ
1(σ̂)dsdνRN ≥

LC2

eC2/2

)
≤ K(k)

Lk
,

where the constant K(k) that appears depends only on C,R and k in some manner. This
establishes the lemma.
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Remark 3.3. Implicit in the proof of the lower bound of probability is a proof of a
corresponding upper bound. In equation (3.26), we took a moment bound of the variable
eỸ

1(σ̂) to derive probability bounds.
One can apply the same strategy in order to bound the probability of being too

large. The only minor difference is that one also needs to take moment bounds of the Z
variables. However, these are also Gaussians, so the process is similar.

3.2 The uniform limit in R

Here, we will compute limR→∞ FR,C,E(ζ) for those ζ that satisfy finite replica sym-
metry breaking. If we then show that if we can bound the difference |FR,C,E(ζ) −
limR→∞ FR,C,E(ζ)| uniformly along the sequence ζi approaching ζ∗, we will be able to
exchange the limit limi→∞ limR→∞ FC,R,E(ζi) = limR→∞ limi→∞ FC,R,E(ζi).

We can compute the limit R→∞ by applying the Bolthausen-Sznitman invariance for
RPCs with respect to the Gaussian tilt

∏n
i=1 Yi(hα)

√
R2 + 1 in formulas (3.5) and (3.7).

For simplicity of presentation, we will only present the computation in the case that
n = 1, which contains the main idea of the proof. The computation for general n is very
similar.

Lemma 3.4. Assume we are evaluating FR,C,E(ζ) so that the overlap distribution ζ

satisfies finite replica symmetry breaking. Let the support of the measure ζ be 0 = q0 ≤
q1 ≤ . . . ≤ qr = q∗. We then have the following result

lim
R→∞

E

k∏
l=1

∑
αl
wαl

∏n
i=1 e

√
R2+1Yi(hαl)

∫ C
−C s

el,i
i e−

1
2 [1+b̂in]s2i+M̃i(hαl )dsi∑

αl
wαl

∏n
i=1 e

√
R2+1Yi(hαl)

∫ C
−C e

− 1
2 [1+b̂in]s2i+M̃i(hαl)dsi

= E

k∏
l=1

∑
αl
wαl

∏n
i=1

∫ C
−C s

el,i
i e−

1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi∑

αl
wαl

∏n
i=1

∫ C
−C e

− 1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi

,

(3.27)

where we use M̃i(hαl) as a shorthand for the expression

Zi(hαl)si −Yi(hαl)
s2
i

2
√
R2 + 1

+
(ξ′(1)− q∗ξ′(q∗))s4

i

4(R2 + 1)

and b̂ζ := ξ′(q∗)(1− q∗) +
∑r
i=1(qiξ

′(qi)− qi−1ξ
′(qi−1))ζ([0, qi−1]).

Moreover, the limit in R is uniform in ζ for ζi a sequence of probability measures with
finite replica symmetry breaking that approach ζ∗.

Proof. We will illustrate the computation in the single replica, single cavity case with
e1,1 = 1. The proof in all other cases will be similar, with marginally more involved
computations. Let N denote the numerator of the expression in the first line of (3.27)
under these conditions, and let D denote the denominator of said expression. We define
S to be

∑
α wαe

√
R2+1Y1(hα). Clearly, we can rewrite the expression in the first line

of (3.27) as ENS−1

DS−1 . Clearly, we will now be able to compute the quantity better if we

understand the tilted Gibbs weight wαe
√
R2+1Y1(hα)∑

α wαe
√
R2+1Y1(hα)

.

Since we are just tilting by the exponential of independent Gaussians associated
with each α, at each level of the Ruelle probability cascade, we apply the standard
Bolthausen-Sznitman invariance [5] level by level. This states that if gα are i.i.d. N(0, 1)

random variables independent of the uα, which are the weights of a Poisson-Dirichlet
process with parameter m, then

(e−mt
2/2uαe

tgα , gα −mt)
d
= (uα, gα). (3.28)
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If one applies the above procedure for our RPC, we shift the Gaussian Y1(hα) by
mean equal to

√
R2 + 1

∑r
i=1(qiξ

′(qi)− qi−1ξ
′(qi−1))ζ([0, qi−1]).

Let me describe this in a bit more detail. The weight wα is the normalized product
of r Poisson Dirichlet processes, v1

α1v2
α2 . . . vrαr . v

k
αk is a Poisson-Dirichlet Process with

parameter ζ[0, qk−1], and αk denotes the ancestor of α at height k (αr will just be α

itself).
The Gaussian variable Y1(hα) can be decomposed as the sum of r independent Gaus-

sians, Y1(hα) =
∑r
i=1 Y

i
1(αi) where Cov(Yi

1(αi),Y1(βi))) = δαi,βi(qiξ
′(qi)− qi−1ξ

′(qi−1)).
We remark here that Yi is associated with αi (the nodes that are of depth i on the tree).

We can shift the distribution of each

(vkαke
√
R2+1Yk

1 (αk),Yk
1(αk)−

√
R2 + 1ζ([0, qk−1])(qkξ

′(qk)− qk−1ξ
′(qk−1)))

d
=

(vkαke
ζ([0,qk−1])(qkξ

′(qk)−qk−1ξ
′(qk−1))(R2+1)

2 ,Yk
1(αk)).

This translates into the replacement,

vkαke
√
R2+1Yk

1 e
− s2

2
√
R2+1

Yk
1 d

= vkαke
− s2

2
√
R2+1

(Yk
1+
√
R2+1ζ([0,qk−1])(qkξ

′(qk)−qk−1ξ
′(qk−1)))

× e
ζ([0,qk−1])(qkξ

′(qk)−qk−1ξ
′(qk−1))(R2+1)

2

(3.29)

We note that the constant rescaling factor e
ζ([0,qk])(qkξ

′(qk)−qk−1ξ
′(qk−1))(R2+1)

2 will cancel
in both the numerator and the denominator. The only remaining effect is the shift in the
mean. Notice, in particular, that we are able to cancel out the prefactors of

√
R2 + 1 that

appear; this is what allows all computations to take a finite value as R goes to ∞. To
simplify notation, recall b̂ζ := ξ′(q∗)(1− q∗) +

∑r
i=1(qrξ

′(qr)− qr−1ξ
′(qr−1))ζ([0, qr−1]).

As a result of applying our distributional equivalence to all the variables Yk
1 , we see

that the top line of (3.27) is given as

lim
R→∞

E

∑
α wα

∫ C
−C se

− 1
2 s

2[1+b̂ζ ]+Z1(hα)s−Y1(hα) s2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))s4

4(R2+1) ds∑
α wα

∫ C
−C e

− 1
2 s

2[1+b̂ζ ]+Z1(hα)s−Y1(hα) s2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))s4

4(R2+1) ds

. (3.30)

We did not replace the quantity inside the exponential with M̃ in order to clearly illustrate
the limit procedure. We will show that the above limit is

E

[∑
α wα

∫ C
−C se

− 1
2 [1+b̂ζ ]s2+Z1(hα)sds∑

α wα
∫ C
−C e

− 1
2 [1+b̂ζ ]s2+Z1(hα)sds

]
, (3.31)

and that the above limit can be taken uniformly in ζ.
We denote the numerator of (3.30) as NR and the denominator as DR, while we

denote the numerator of (3.31) as N∞ and the denominator as D∞.
We will bound the difference

E

[∣∣∣∣NRDR
− N∞
D∞

∣∣∣∣] ≤ E [∣∣∣∣NR(D∞ −DR)

DRD∞

∣∣∣∣+

∣∣∣∣NR −N∞D∞

∣∣∣∣] . (3.32)

We will first bound E
∣∣∣NR(D∞−DR)

DRD∞

∣∣∣; the bound on the other part will be similar.

We first remark that NR
DR
≤ C as this is an upper bound on every individual ratio∫ C

−C se
− 1

2
[1+b̂ζ ]s

2+Z1(hα)sds∫ C
−C e

− 1
2
[1+b̂ζ ]s

2+Z1(hα)sds
and each individual term in the denominator is positive. It will

now suffice to uniformly bound the quantity E
∣∣∣D∞−DRD∞

∣∣∣.
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First, notice that we are able to bound

|D∞ −DR|

=

∣∣∣∣∣∑
α

wα

∫ C

−C
e−

1
2 s

2[1+b̂ζ ]+M̃(hα)ds−
∑
α

wα

∫ C

−C
e−

1
2 [1+b̂ζ ]s2+Z1(hα)sds

∣∣∣∣∣
=

∣∣∣∣∣∑
α

wα

∫ C

−C
e−

1
2 s

2[1+b̂ζ ]+Z1(hα)s

[
e
−Y1(hα) s2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗)))s4

4(R2+1) − 1

]
ds

∣∣∣∣∣
≤
∑
α

wα

∫ C

−C
e−

1
2 [1+b̂ζ ]s2+Z1(hα)sds

[
e
|Y1(hα)| C2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))C4

4(R2+1) − 1

]
.

(3.33)

To get from the third line to the fourth line, we took the absolute value inside to the
quantity in brackets. Then, we could upper bound this quantity in brackets by setting all
terms in the exponential as large as possible(each s to C, and bounding Y by its absolute
value). The quantity in the exponential is positive, so the exponential is greater than 1.
Therefore, the quantity in brackets on the fourth line is positive.

Thus, it suffices to uniformly control

E

∑
α wα

∫ C
−C e

− 1
2 [1+b̂ζ ]s2+Z1(hα)sds

[
e
|Y1(hα)| C2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))C4

4(R2+1) − 1

]
∑
α wα

∫ C
−C e

− 1
2 [1+b̂ζ ]s2+Z1(hα)sds

. (3.34)

Since the Y1 variables are independent of anything else that appears in the denomi-
nator or numerator, we can take the expectation of these first. The expression above will
then factor as a product like

EY1

[
e
|Y1| C2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))C4

4(R2+1) − 1

]
E

∑
α wα

∫ C
−C e

− 1
2 [1+b̂ζ ]s2+Z1(hα)sds∑

α wα
∫ C
−C e

− 1
2 [1+b̂ζ ]s2+Z1(hα)sds

. (3.35)

Clearly, the second expectation considered in the expression above is 1. We can

bound the above expression by the L1 norm of the function e
|y| C2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))C4

4(R2+1) − 1

where y is a Gaussian with variance q∗ξ′(q∗). This clearly goes to 0 as R goes to∞, and
we have derived the infinite limit. We remark here that the rate of convergence only
depends on C and the covariance function ξ; it does not depend on the specific finite
replica symmetry breaking model chosen.

Now, we consider the difference E
[
NR−N∞
D∞

]
. We can write the numerator as

|NR −N∞|

=

∣∣∣∣∣∑
α

wα

∫ C

−C
se−

1
2 s

2[1+b̂ζ ]+M̃(hα)ds−
∑
α

wα

∫ C

−C
se−

1
2 [1+b̂ζ ]s2+Z1(hα)sds

∣∣∣∣∣
=

∣∣∣∣∣∑
α

wα

∫ C

−C
e−

1
2 s

2[1+b̂ζ ]+Z1(hα)s

[
se
−Y1(hα) s2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗)))s4

4(R2+1) − 1

]
ds

∣∣∣∣∣
≤ C

∑
α

wα

∫ C

−C
e−

1
2 [1+b̂ζ ]s2+Z1(hα)sds

[
e
|Y1(hα)| C2

2
√
R2+1

+
(ξ′(1)−q∗ξ′(q∗))C4

4(R2+1) − 1

]
.

(3.36)

As before, to get from the third line to the fourth line, we take the absolute value inside,
onto the quantity in brackets, and maximize all possible expressions. Now, this includes
bounding the s outside the exponential but inside the brackets by C. Aside from the fixed
factor of C outside, the quantity on the last line is the same as that appearing in (3.33),
and the analysis that follows would be the same.
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Remark 3.5. We remark here that the constant b̂ζ is slightly different from the constant
bζ that appears in equation (1.14). What is true is that b̂ζ , as defined here, is equal to
the constant that appears in the denominator of uζ(q∗, x) for solutions to the Parisi initial

value problem (A.21) with initial data uζ(1, x) = x2

2(1+bζ) . We expect this since the highest
overlap level we consider in our finite RSB model is q∗.

Recalling Corollary 2.8, we see we have established the following statement with the
above lemma.

lim
N→∞

E

k∏
l=1

〈(σl1)e1,l . . . (σln)el,n〉HN+n(SN+n) = lim
C→∞

lim
i→∞

lim
R→∞

FR,C,E(ζi). (3.37)

Since each ζi satisfies finite replica symmetry breaking, the limit

FC,E(ζi) = E

k∏
l=1

∑αl
wαl

∏n
i=1

∫ C
−C s

el,i
i e−

1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi∑

αl
wαl

∏n
i=1

∫ C
−C e

− 1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi

 ,
is the value of limR→∞ FR,C,E(ζi), where the wα are the weights of some appropriate
RPC.

3.3 The C →∞ limit

There is a natural guess for the C →∞ limit. It suffices to show that this limit exists
and is uniform in the variable ζ.

Lemma 3.6. Assume we are evaluating FC,E(ζ) so that the overlap distribution ζ satis-
fies finite replica symmetry breaking. Let the support of the measure ζ be 0 = q0 ≤ q1 ≤
. . . ≤ qr = q∗. We then have the following result

lim
C→∞

E

 k∏
l=1

∑
αl
wαl

∏n
i=1

∫ C
−C s

el,i
i e−

1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi∑

αl
wαl

∏n
i=1

∫ C
−C e

− 1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi


= E

k∏
l=1

∑αl
wαl

∏n
i=1

∫∞
−∞ s

el,i
i e−

1
2 [1+b̂ζ ]s2i+Zi(hα)sidsi∑

αl
wαl

∏n
i=1

∫∞
−∞ e−

1
2 [1+b̂ζ ]s2i+Zi(hαl)sidsi



= E

k∏
l=1


∑
αl
wαl

∏n
i=1 ρ

Zi
ζ,hαl

(sel,i)e
(Zi(hαl

))2

2[1+b̂ζ ]

∑
αl
wαl

∏n
i=1 e

(Zi(hαl))
2

2[1+b̂ζ ]


= E

k∏
l=1

[∑
αl

wαl

n∏
i=1

ρ
(Zi)

′

ζ,hαl
(sel,i)

]
.

(3.38)

The transition between the second and third lines is the definition of ρZiζ,hα , as in (1.16).
The transition between the third and fourth lines is due to the the construction of the
random variables (Zi)

′ is as given in the appendix A.
Moreover, the limit in C can be taken uniformly in ζ for a sequence of finite replica

symmetry breaking measures approaching ζ∗.

Proof. We will show this computation in the case that n = 1, k = 1 and e1,1 = 1. More
general E can be done using similar computations. Let NC denote the numerator

NC :=
∑
α

wα

∫ C

−C
se−

1
2 [1+b̂ζ ]s2+Z1(hα)sds,
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and let DC denote the denominator

DC :=
∑
α

wα

∫ C

−C
e−

1
2 [1+b̂ζ ]s2+Z1(hα)sds.

Correspondingly, let N∞ be the numerator of the infinite limit

N∞ :=
∑
α

wα

∫ ∞
−∞

se−
1
2 [1+b̂ζ ]s2+Z1(hα)sds,

and D∞ be the denominator of the infinite limit

D∞ :=
∑
α

wα

∫ ∞
−∞

e−
1
2 [1+b̂ζ ]s2+Z1(hα)sds.

As before, we will bound

E

∣∣∣∣NCDC
− N∞
D∞

∣∣∣∣ ≤ E ∣∣∣∣NC |D∞ −DC |
DCD∞

∣∣∣∣+ E

∣∣∣∣ |N∞ −NC |D∞

∣∣∣∣ .
We will first control the value of the former quantity. We first bound NC

DC
by C. We

see that then it would suffice to show that E
∣∣∣D∞−DCD∞

∣∣∣ decays at a rate faster than

1
C . Let GC(x) be the function

∫
(−∞,∞)\[−C,C]

e−
1
2
[1+b̂ζ ]s

2+xsds∫
(−∞,∞)

e−
1
2
[1+b̂ζ ]s

2+xsds
; let F (x) be the function∫∞

−∞ e−
1
2 [1+b̂ζ ]s2+xsds.

We see that we can then write E
∣∣∣D∞−DCD∞

∣∣∣ as E
∑
α wαGC(Z1(hα))F (Z1(hα))∑

α wαF (Z1(hα)) . We apply the

modified Bolthausen-Sznitman invariance [12][Chapter 4.4] principle to (wαF (Z1(hα)))

to see that the expectation is equal to E
∑
α wαGC(Z′1(hα)) = EGC(z′) for some random

variables Z′1(hα). z′ is a random variable with the distribution of a single Z′1(hα). The
random variables Z′1(hα) have been constructed in Appendix A.

We discuss some properties of the function GC(x). First, one can observe that
the function GC(x) is always less than 1. Furthermore, GC(x) can be shown to be
exponentially small in C as long as x is relatively small compared to C. Consider the
following,

GC(x) =

∫∞
C
e
− 1

2 [1+b̂ζ ][s− x
1+b̂ζ

]2+ x2

2(1+b̂ζ) ds+
∫ −C
−∞ e

− 1
2 [1+b̂ζ ][s− x

1+b̂ζ
]2+ x2

2(1+b̂ζ) ds∫∞
−∞ e

− 1
2 [1+b̂ζ ][s− x

1+b̂ζ
]2+ x2

2(1+b̂ζ) ds

=

∫∞
C− x

1+b̂ζ

e−
1
2 [1+b̂ζ ]s2ds+

∫ −C− x
1+b̂ζ

∞ e−
1
2 [1+b̂ζ ]s2ds∫∞

−∞ e−
1
2 [1+b̂ζ ]s2ds

≤

∫∞
C− x

1+b̂ζ

se−
1
2 [1+b̂ζ ]s2ds+

∫ −C− x
1+b̂ζ

∞ |s|e− 1
2 [1+b̂ζ ]s2ds∫∞

−∞ e−
1
2 [1+b̂ζ ]s2ds

≤ Ke
− 1

2 [1+b̂ζ ]

(
C− x

1+b̂ζ

)2

+Ke
− 1

2 [1+b̂ζ ]

(
−C− x

1+b̂ζ

)2

.

(3.39)

Here, K is a constant that does not depend on C or ζ. To get from the second line to the
third line, we assume that C− x

1+b̂ζ
> 1 and −C− x

1+b̂ζ
< −1. Using the fact that 1+b̂ζ > 1,

we see that both of these conditions can hold simultaneously provided C is sufficiently

large and |x| ≤ C
2 . Under these conditions, we have the bound GC(x) ≤ Ke−C

2

8 .
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We denote χ to be the characteristic function of the interval complement
[−C

2 , C2
]c

.
This gives us the inequality,

E[GC(z′)] ≤ E[χ(z′)] +KE[(1− χ(z′))e−C
2/8], (3.40)

where we used the fact that GC can be bounded by 1 when χ = 1.
Through the probability bounds detailed in Lemma A.3, we see that E[(z′)2p] ≤ K for

some constant that does not depend on ζ or C. By Markov’s inequality, this gives us
E[χ(z′)] ≤ KC−2p. For sufficiently large C, we also know that e−C

2/8 ≤ C−2p. Combining
these two points gives us the estimate,

E[GC(z′)] ≤ KC−2p, (3.41)

where the constant K does not depend on ζ or C. This gives us the uniform decay in ζ
for CE[GC(ζ ′)] in the C →∞ limit.

For the quantity,∣∣∣∣E [N∞ −NCD∞

]∣∣∣∣ ≤ E
∑α wα

∫
(−∞,∞)\[−C,C]

|s|e− 1
2 [1+b̂ζ ]s2+Z1(hα)sds∑

α wα
∫∞
−∞ e−

1
2 [1+b̂ζ ]s2+Z1(hα)sds

 , (3.42)

we can apply a similar logic with the application of the Bolthausen-Sznitman invariance
principle to the function F (Z(hα)). We introduce the function,

G1
C(x) =

∫
(−∞,∞)\[−C,C]

|s|e− 1
2 [1+b̂ζ ]s2+xsds∫∞

−∞ e−
1
2 [1+b̂ζ ]s2+xsds

. (3.43)

After applying the previously mentioned invariance principle, we again see that,∣∣∣∣E [N∞ −NCD∞

]∣∣∣∣ ≤ E[G1
C(z′)]. (3.44)

We now derive estimates similar to those of GC(x). By rescaling to the appropriate
mean, we see that

G1
C(x) =

∫∞
C− x

1+b̂ζ

[
s+ x

1+b̂ζ

]
e−

1
2 [1+b̂ζ ]s2ds+

∫ −C− x
1+b̂ζ

−∞

[
−s− x

1+b̂ζ

]
e−

1
2 [1+b̂ζ ]s2ds∫∞

−∞ e−
1
2 [1+b̂ζ ]s2ds

≤ 1√
2π[1 + b̂ζ ]

[
e
− 1

2 [1+b̂ζ ]

[
C− x

1+b̂ζ

]2
+ e
− 1

2 [1+b̂ζ ]

[
−C− x

1+b̂ζ

]2]

+
|x|

1 + b̂ζ

∫
(−∞,∞)\

(
−C− x

1+b̂ζ
,C− x

1+b̂ζ

) e− 1
2 [1+b̂ζ ]s2ds∫∞

−∞ e−
1
2 [1+b̂ζ ]s2ds

.

(3.45)

To get to the second line, we evaluated the portion of the integrals of the form
se−

1
2 [1+b̂ζ ]s2ds and applied absolute values to the constant factors x

1+b̂ζ
.

The final ratio of integrals appears in the computation of GC(x). The results from
there say that when |x| ≤ C

2 , we may be able to bound G1
C(x) by KCe−C

2/8 for sufficiently
large C, where K is a constant that does not depend on C or ζ. When |x| ≥ C

2 , we
may instead bound the ratio by 1 and instead derive the bound G1

C ≤ Kx, where K is a
constant that does not depend on C or ζ.

To bound E[G1
C(z′)], we first split based on whether |z′| ≤ C

2 . In the region |z′| ≥ C
2 ,

we apply a dyadic decomposition. We see
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E[G1
C(z′)] ≤ KCe−C

2/8P

[
|z′| ≤ C

2

]
+

∞∑
k=0

sup
x∈[2k−1C,2kC]

GC(x)P[z′ ≥ 2k−1C]. (3.46)

By our second moment bound from Lemma A.3, we see that there is a constant
K that does not depend on ζ such that E[z′ ≥ 2k−1C] ≤ K

22k−2C2 . Applying the bound
GC(x) ≤ Kx, we can thus bound our dyadic sum by

∞∑
k=0

sup
x∈[2k−1C,2kC]

GC(x)P[z′ ≥ 2k−1C] ≤
∞∑
k=0

K2kC
1

22k−2C2
≤ KC−1.

We remark again that this constant does not depend on C or on ζ.
This argument shows that

lim
C→∞

E

∣∣∣∣NCDC
− N∞
D∞

∣∣∣∣ = 0, (3.47)

where the rate of convergence is independent of ζ.

Remark 3.7. If one were to consider higher moments of s, say |s|p, then one will
apply the same version of the modified Bolthausen-Sznitman transformation. The only
difference here is that one would need to consider expectations of the form E[GpC(z′)],
where

GpC(x) :=

∫
(−∞,∞)\(−C,C)

spe−
1
2 [1+b̂ζ ]s2+xsds∫∞

−∞ e−
1
2 [1+b̂ζ ]s2+xsds

. (3.48)

One could show that,

GpC(x) ≤ K|x|p, |x| ≥ C

2
,

GpC(x) ≤ KCpe−C
2/8, |x| ≤ C

2
,

(3.49)

through largely the same computations outlined in the proof. The high moment bounds
in Lemma A.3 would be sufficient to compensate for the increased powers in x. The
strategy for bounding E[GpC(z′)] would again follow the strategy outlined in the proof.

To summarize again what we have established, we have

lim
N→∞

E

k∏
l=1

〈(σl1)el,1 . . . (σln)el,n〉HN+n(SN+n) = lim
i→∞

lim
C→∞

lim
R→∞

FR,C,E(ζi), (3.50)

and that when ζi satisfies finite replica symmetry breaking, we have the explicit expres-
sion

lim
C→∞

lim
R→∞

FR,C,E(ζm) = E

k∏
l=1

[
∑
αl

wαl

n∏
i=1

ρ
(Zi)

′(hαl)
ζm,hαl

(sel,i)],

where the wα and (Zi)
′ are calculated with respect to an RPC with parameters coming

from ζi. Our final step is to give a succinct representation as i→∞.

4 The local field representation of the spin distribution

We showed in the previous section that both we can establish cavity equations for the
sphere by taking an appropriate limit in R and C and that this expression is continuous
in ζ in the weak topology on measures. In this section, we will use the Cole-Hopf solution
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of the Parisi PDE to determine an expression for the limit in terms of our local field
process from Theorem 1.2. The discussion will be similar to [4], but we have to adapt
our estimates to the study of the spherical Parisi PDE. Many of our computations are
postponed to the Appendix.

Theorem 4.1. Consider a spherical spin glass HN whose limiting overlap distribution is
given by ζ∗ with sup supp(ζ∗) = q∗ and limiting Gibbs measure ν. Then, we have that

lim
N→∞

E

[
k∏
l=1

〈
n∏
i=1

(σli)
el,i〉HN

]
= E

[
k∏
l=1

n∏
i=1

ρ
X iq∗
ζ,σl

(sel,i)

]
, (4.1)

where the second expectation is taken with respect to the randomness of the process X ,
and σl are distributed i.i.d from ν⊗∞ as in Theorem 1.2.

We obtain Theorem 1.2 as an immediate corollary of this result. One can show
equality of the distributions in Theorem 1.2 by explicitly computing the polynomial
moments and showing the equality of these moments. Theorem 4.1 computes these
polynomial moments and shows equality.

In the previous section, we have related the computations of the spin distributions
to computing the distribution of the random variables Z and Z′. We start our proof by
relating these random variables with the PDE processes defined before Theorem 1.2,
assuming that the measure ζ considered satisfies finite replica symmetry breaking.

Lemma 4.2. Consider a measure ζ satisfying finite replica symmetry breaking and
consider Z(hα) from (3.6), the tilted function Z′(hα) as defined in Appendix A, and the
associated PDE quantities Z,X from (1.12) and (1.15). We have the following equality
in distribution

(Z(hα))α
d
= (Zq∗(hα))α,

(Z(hα)′)α
d
= (Xq∗(hα))α.

(4.2)

Proof. The independent increments property of the Brownian motion will give us the
first equality. We will now devote ourselves to proving the second equality. For simplicity
of presentation, we will show the equivalence for a fixed hα. We will use Girsanov’s
theorem [16][Lemma 6.4.1] to determine the law of Xt at hα. Let Q be a measure space
in which we have defined the Brownian motion (1.11). Consider a measure P with
Radon-Nikodym derivative

dP

dQ
= e

∫ t
0
ζ([0,s])duζ(s,Zs). (4.3)

Then under the measure P , the law of Zt is distributed according to the law of Xt
under Q. In the notation of [16][Lemma 6.4.1], the process Z satisfies a(t) = ξ′′(t) and
b(t) = 0. We choose the function c(t, x) = ζ([0, t])uζx(t, x). The Cameron-Martin-Girsanov
exponential is

R(t) := e
∫ t
0
ζ([0,s])uζx(s,Zs)dZs− 1

2

∫ t
0

(ζ([0,s]))2(uζx(s,Zs))2ξ′′(s)ds. (4.4)

By applying Ito’s Lemma and using the equation of the Parisi Initial Value Problem (1.13),
R(t) will be the same as the Radon-Nikodym derivative (4.3) defined earlier.

Considering a finite set of times q0, . . . , qr we have

EQ[F (Xq0 , . . . ,Xqr )] = EP [F (Zq0 , . . . ,Zqr )]

=

∫
F (Zq0 , . . . ,Zqr )e

∫ t
0
ζ([0,s])duζ(s,Zs)dQ(Z)

=

∫
F (Zq0 , . . . ,Zqr )

r∏
i=1

eζ([0,qk−1])(uζ(qk,Zqk )−uζ(qk−1,Zqk−1
))dQ.

(4.5)
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Now, we use the fact that the Cole-Hopf solution to the Parisi initial value problem is
given by uζ(qk,Zqk) = Xk(Zq1 −Zq0 , . . . ,Zqk −Zqk−1

) up to a normalization constant (one
can refer to the construction in the Appendix), and we have finished the proof.

Now, we cite a weak continuity result from [4] regarding the behavior of the right
hand side of (4.1).

Let Qd denote the set of d× d ultrametric matrices of the form

{(qij)1≤i,j≤d : qij = qji, qij ≥ qik ∧ qkj∀i, j, k}, (4.6)

Consider the space Pr([0, 1]) equipped with the weak∗ topology, so the product space
Pr([0, 1]) × Qd is compact Polish. For any Q ∈ Qd, let {σi(Q) : 1 ≤ i ≤ d} be points in
L2[0, 1], H, such that the overlap matrix of these points is Q.

We remark here that uζx(q∗,Xq∗(σl)) is explicitly given by Xq∗ (σl)

2(1+b̂δ)
. Furthermore, the

spin distribution function ρ
Xq∗
ζ,σl

(sk) for arbitrary powers k can be written as polynomials

of Xq∗(σl). To understand the spin distributions in the case of 1 cavity, d replicas, and
ek,1 = 1 for all 1 ≤ k ≤ d, we see that we have to understand the continuity properties of
the following functional in ζ and overlap distribution Q.

R(ζ,Q) = E

[
d∏
i=1

uζx(q∗,Xq∗(σi(Q)))

]
. (4.7)

We have the following lemma that is similar to Lemma 3.3 in [4]. We remark here
that controlling other spin distributions would involve controlling powers of the same
expression, and the proof would be largely unchanged.

Lemma 4.3. R is well-defined. We let ζr be a collection of finite replica symmetry
breaking measures approaching ζ∗ in the weak∗ topology and Qr be a sequence of d× d
matrices approaching Q. Then, we have that limr→∞R(ζr, Qr) = R(ζ∗, Q).

Proof. In the following discussion, we will use the notation in Lemma 3.3 in [4]. Since
the law of the diffusion of the local field process X only depends on the points σi(Q)

through the overlap distribution Q, the functional R(ζ∗, Q) is well-defined.
In order to show the continuity, it would suffice to show that the diffusion correspond-

ing to the local field process X ζr,Qr will approach the diffusion corresponding to the
limit local field process X ζ∗,Q. If we let arij(t) = 1(t ≤ qrij), b

r
ij(t, .) = ξ′′ζru

ζr
x (t, .) be the

coefficients corresponding to the diffusion X ζr,Qr , ideally, one would like to show that
we have uniformly that arij → aij and brij(t, .)→ bij(t, .).

However, we cannot show this uniform approach if the diffusions brij(t, .) are un-
bounded functions, which they are here. To rigorously establish our limit procedure, we
define a cutoff dynamics b̃rij(t, .) := brij(t, .)1[x ≤ D] to restrict bij to be a finite function.

If we can show that the effect of changing brij → b̃rij goes to 0 as D goes to∞ and that

this error is uniform in ζi, then using the rigorous limit ‘b̃rij → b̃ij ’ will justify ‘brij → bij ’.
In addition, we would need to apply finite cutoffs to the function ux appearing in R

and show the uniformity of the approximation in ζr. We first define

uζr,Bx (t, x) = uζrx (t, x)1(|uζrx (t, x)| ≤ B) +B1(uζrx (t, x) ≥ B)−B1(uζrx ≤ −B). (4.8)

We wish to show that that

lim
B→∞

∣∣∣∣∣E
[
d∏
i=1

uζrx (q∗,X ζrq∗ (σi(Qr)))

]
− E

[
d∏
i=1

uζr,Bx (q∗,X ζrq∗ (σi(Qr)))

]∣∣∣∣∣→ 0, (4.9)
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uniformly in ζr. This is a consequence of the moment bounds established in Lemma A.3
and recalling that the process X ζrq∗ has the same distribution as Z′(ζr). An appropriate
difference sequence along with Holder’s inequality shows,∣∣∣∣∣E

[
d∏
i=1

uζrx (q∗,X ζrq∗ (σi(Qr)))

]
− E

[
d∏
i=1

uζr,Bx (q∗,X ζrq∗ (σi(Qr)))

]∣∣∣∣∣ ≤
d∑
j=1

E

[ j−1∏
i=1

uζrx (q∗,X ζrq∗ (σi(Qr)))(u
ζr
x (q∗,X ζrq∗ (σj(Qr)))− uζr,Bx (q∗,X ζrq∗ (σj(Qr))))

d∏
i=j+1

uζr,Bx (q∗,X ζrq∗ (σi(Qr)))

]
≤ d

(
E[|uζrx (q∗,X ζrq∗ (σ))|d]

)(d−1)/d (
E[|uζrx (q∗,X ζrq∗ (σ))− uζr,Bx (q∗,X ζrq∗ (σ))|d]

)1/d

(4.10)

Recalling that X is distributed according to Z′, we may apply the moment bounds
from Lemma A.3 to show that this quantity goes to 0 as B goes to∞ uniformly in ζi.

Using the fact that |X ζt | is a submartingale in t (This was established for Lemma A.2
in the Appendix for Z′; the proof for X would be similar), we may apply Doob’s maximal
inequality to show P[sup0≤t≤q∗ |X

ζr
t | ≥ D] ≤ D−1E[|X ζrt |]. We have bounded E[|X ζrq∗ |]

through the moment bounds in Lemma A.3, again using the equivalence of the distribu-
tion of Xq∗ with Z′. If we then apply a union bound, we may then show that

lim
D→∞

P(∃(t, i) : |X ζrt (σi(Qr))| ≥ D) = 0,

and this limit is uniform in ζi.
Combining these two facts will allow us to see that if we instead consider the modified

local field process X̃ ζr,Qr with diffusion ãrij := arij and drift b̃rij(t, .) := brij(t, .)1(|x| ≤ D),
then we have that, uniformly in the ζr,

lim
B→∞

lim
D→∞

E

[
d∏
i=1

uζr,Bx (q∗, X̃ ζrq∗ (σi(Qr)))

]
→ E

[
d∏
i=1

uζrx (q∗,X ζrq∗ (σi(Qr)))

]
. (4.11)

The benefit of this representation is that we have uniform convergence for the
modified diffusion coefficients b̃ and ã by Lemma A.4. Therefore, we can apply the
Stroock-Varadhan, Theorem 11.1.4 in [16] to get the convergence

lim
r→∞

E

[
d∏
i=1

uζr,Bx (q∗, X̃ ζrq∗ (σi(Qr)))

]
= E

[
d∏
i=1

uζ
∗,B
x (q∗, X̃ ζ

∗

q∗ (σi(Q)))

]
. (4.12)

Since we have established earlier that the limits in B and D can all be taken uniformly
in ζi, we can exchange the r → ∞ limit with the limD→∞ and limB→∞ limits to finally
derive the result limr→∞R(ζr, Qr) = R(ζ∗, Q).

Now, we finish the proof of our main result.

Proof of Theorem 4.1 . The goal of section 3 was to show that the moments of the spin
distributions can be computed in the following manner.

lim
N→∞

E

[
k∏
l=1

〈
n∏
i=1

(σli)
el,i〉HN

]
= lim
m→∞

E

k∏
l=1

[∑
αl

wαl

n∏
i=1

ρ
(Zi)

′

ζm,hαl
(sel,i)

]
, (4.13)

where ζm is a series of measures supported on [0, q∗] satisfying finite replica symmetry
breaking and approaching ζ∗ in the limit.
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The previous lemma established the fact that

lim
m→∞

E

[
k∏
l=1

n∏
i=1

ρ
X iq∗
ζm,σl

(sel,i)

]
= E

[
k∏
l=1

n∏
i=1

ρ
X iq∗
ζ∗,σl

(sel,i)

]
. (4.14)

Lemma 4.2 showed that for the measures ζm satisfying finite replica symmetry
breaking, we have

E

[
k∏
l=1

n∏
i=1

ρ
X iq∗
ζm,σl

(sel,i)

]
= E

k∏
l=1

[∑
αl

wαl

n∏
i=1

ρ
(Zi)

′

ζm,hαl
(sel,i)

]
. (4.15)

Combining the last three equalities gives us the desired Theorem.

A Computations for finite replica symmetry breaking

A.1 Construction of the tilted random variable

This section will contain various estimates that we use in order to understand the
random variable (Z′) and local field X for measures ζ that satisfy finite replica symmetry
breaking.

One can apply a modified version of the Bolthausen-Sznitman invariance principle for

RPCs on the random variable pair

(
wα
∫∞
−∞ e−

1
2
[1+b̂ζ ]s

2+Z1(hα)sds∑
α wα

∫∞
−∞ e−

1
2
[1+b̂ζ ]s

2+Z1(hα)sds
,Z1(hα)

)
.

This is through a process detailed on [12][Section 4.4, Pg 131] and based off of
Theorem 2.6 of [12]. Namely, let uα be a Poisson-Dirichlet Process of parameter m. Let
(Xα, Yα) are a series of i.i.d. variables independent of the {uα}’s. Let Y ′α be a series of
i.i.d. random variables independent of the uα with distribution vm. The law of vm is
given by

vm(B) =
E[XmI(Y ∈ B)]

E[Xm]
,

where I is the indicator function of the event inside the parenthesis. Then, we have the
following distributional equivalence,

(uαXα, Yα)
d
= ((E[Xm])

1
muα, Y

′
α).

Let us now apply this re-weighting procedure to derive the random variables Z′.
These random variables first appeared in the proof of Lemma 3.6. Recall we wanted to
understand the expression

E

∑α wαZ(hα)e
Z2(hα)

2[1+b̂ζ ]∑
α wαe

Z2(hα)

2[1+b̂ζ ]

 . (A.1)

Recall that the variables Z(hα) have a branching structure with Z(hα) =
∑r
k=1 zαk where

αk is the ancestor of α at depth k. Each zαk is an independent Gaussian random variable
with variance ξ′(qk)− ξ′(qk−1).

We would now understand (A.1) by applying the previously mentioned modified

Bolthausen-Sznitman invariance principle to the RPC variables (wαe
Z2(hα)

2[1+b̂ζ ] ,Z(hα)).
We would be able to show that there exists a variable Z′(hα) with the following

equality in distribution (wαe
Z2(hα)

2[1+b̂ζ ] ,Z(hα))
d
= (wα,Z

′(hα)).
To define Z′(hα) we would require the following functions. The discussion and

notation borrows heavily from Panchenko’s book [12][Section 4.4].
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We let

Xr(x1, . . . , xr) =
(
∑r
i=1 xi)

2

2[1 + b̂ζ ]
. (A.2)

and define the iteration

Xp(x1, . . . , xp) =
1

ζ([0, qp])
logEp+1[eζ([0,qp])Xp+1(x1,...,xp,xp+1)],∀1 ≤ p ≤ r − 1, (A.3)

where Ep+1 is integration with respect to the randomness of xp+1 which is a mean zero
Gaussian random variable with variance ξ′(qp+1) − ξ′(qp). In the notation of [12][Ch
4], this can alternatively be seen as integration with respect to the transition kernel

Gp+1(xp+1) = e
−

x2p+1
2(ξ′(qp+1)−ξ′(qp)) .

We define the modified transition kernel

G′p+1(x′, x′p+1) := Gp+1(x′p+1)eζ([0,qp])(Xp+1(x′,x′p+1)−Xp(x′)).

With this in hand, we are now able to describe the distribution of the new variables
Z′(hα): Z′(hα) will decompose as a sum

∑r
k=1 z

′
αk , where we generate the terms z′αk via

an iterative process.

Consider some node α of the RPC and let α1, . . . , αr = α be the path from the root to
α. We generate z′αk using the values of the z′αl , l < k and kernel G′k as in the following
equation.

P(z′αk ∈ A) =

∫
A

G′k(z′α1 , . . . , z′αk−1 , z
′
αk)dz′αk . (A.4)

Using the equality in distribution (wαe
Z2(hα)
2[1+bζ ] ,Z(hα))

d
= (wα,Z

′(hα)), we can derive
that

E

∑α wαZ(hα)e
(Z(hα))2

2[1+bζ ]∑
α wαe

(Z(hα))2

2[1+bζ ]

 = E

[∑
α wαZ

′(hα)∑
α wα

]
= E[Z′(hα)]. (A.5)

In this appendix, we compute various properties of the random variable Z′(hα). In the
computations that proceed, we will not be concerned regarding the various correlations
of the Z′(hα) relating to the position hα along the RPC and, instead, only consider the
distribution of a single Z′ with the same distribution as a single Z′(hα). Z′ will decompose
as a sum z′1 + . . . + z′r where the z′k are distributed according to the Kernels G′k. For

convenience, we will define Z′ ,k :=
∑k
i=1 z

′
i.

Our first lemma will involve an explicit computation of the functions Xp for all p.

Lemma A.1.

Xp(x1, . . . , xp) = Kp +
(
∑p
i=1 xi)

2

2[1 + bp]
. (A.6)

with some constants Kp and bp. The constant bp will satisfy the relationship bp =

bp+1 − ζ([0, qp])(ξ
′(qp+1)− ξ′(qp)). Recall br = b̂ζ .

Proof. We will prove this by induction with base case p = r and going down.

We first assume the induction hypothesis for Xp+1. Letting Mp =
∑p
i=1 xi and
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recalling the constant 1 + bp = [1 + bp+1]− ζ([0, qp])(ξ
′(qp+1)− ξ′(qp)), we have

Xp(x1, . . . , xp)−Kp+1

=
1

ζ([0, qp])
log

√
ξ′(qp+1)− ξ′(qp)√

2π

∫
e
ζ([0,qp])

2[1+bp+1]
(M2

p+2xp+1Mp+x2
p+1)

e
−

x2p+1
2(ξ′(qp+1)−ξ′(qp)) dxp+1

=
1

ζ[0, qp]
log

√
ξ′(qp+1)− ξ′(qp)√

2π

∫
exp

{
M2
p

[
ζ([0, qp])

2(ξ′(qp+1)− ξ′(qp))
2(1 + bp+1)(1 + bp)

+
ζ([0, qp])

2[1 + bp+1]

]
− 1 + bp

2[1 + bp+1](ξ′(qp+1)− ξ′(qp))

(
xp+1 − M̃p

)2
}

dxp+1,

(A.7)
where

M̃p = Mp
ζ([0, qp])(ξ

′(qp+1)− ξ′(qp))
1 + bp

.

For δ([0, qp]) = 0, the above should be interpreted as the limδ([0,qp])→0 limit of the
above expression. Direct calculation can show the expression has a valid limit.

We can integrate the Gaussian above provided we have 1 + bp ≥ 0. We can also
evaluate the constant factor in front of the remaining M2

p in the exponential as

ζ([0, qp])
2(ξ′(qp+1)− ξ′(qp))

2(1 + bp+1)(1 + bp)
+

ζ([0, qp])

2[1 + bp+1]
=
ζ([0, qp])

2(1 + bp)
. (A.8)

Using this we see that

Xp(x1, . . . , xp) = Kp +
M2
p

2[1 + bp]
. (A.9)

Notice that bp is increasing in p (namely, higher the p the higher the value of bp). The
induction will be finished provided we have that 1 + b0 is positive.

We can express 1 + b0 = 1 +
∑r
i=0 ζ({qp})(1− qp)ξ′(qp). This is manifestly positive.

The implication of this lemma is that we see that the modified transition kernel has
the following density,

G′p+1(x′, x′p+1) ∝ e−
(x′p+1)2

2(ξ′(qp+1)−ξ′(qp)) e
ζ([0,qp])

(
∑p+1
k=1

x′k)2

2[1+bp+1] (A.10)

Lemma A.2. The process |Z′ ,k| = |
∑k
j=1 z

′
j | is a submartingale.

Proof. We first remark that the transition Kernel G′k+1 will be a function that depends
only on the values z′1, z

′
2, . . . , z

′
k through the sum Z′ ,k. We now have to perform the explicit

computation which will allow us to understand the value of z′k+1.

We first remark that trivially when Z′ ,k is positive, we have that

E[|Z′ ,k+1|||Z′ ,k|] ≥ E[|Z′ ,k|+ z′k+1||Z′ ,k|].

Notice that since the Kernel does not depend on the sign of Z′ ,k, we may as well assume
that Z′ ,k is positive when computing expectations.

We will have proved |Z′ ,k| is a submartingale when we establish

E[Z′ ,k + z′k+1|Z′ ,k] > Z′ ,k,

when Z′ ,k is positive.
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Let us now compute the necessary integral

E[z′k+1|Z′ ,k] =

∫
ze
ζ([0,qk])

(Z′ ,k+z)2

2[1+bk+1] e
− z2

2(ξ′(qk+1)−ξ′(qk)) dz∫
e
ζ([0,qk])

(Z′ ,k+z)2

2[1+bk+1] e
− z2

2(ξ′(qk+1)−ξ′(qk)) dz

= Z′ ,kζ([0, qk])
ξ′(qk+1)− ξ′(qk)

1 + bk
.

(A.11)

Clearly, this will be positive as we have assumed Z′ ,k to be positive and we have proved
that the sequence Z′ ,k is a submartingale.

In the following lemmas, we want to study the behavior of the random variable Z′ as
a function of the approximating measure ζ. We will use the notation Z′(ζ) to specifically
denote the random variable Z′ when it is derived using the base measure ζ.

Lemma A.3. There exists a constant Bp that depends only on ξ and p such that for all ζ
such that sup suppζ = q∗, we have E[(Z′(ζ))p] ≤ Bp.

Proof. This will be the consequence of computing moment bounds, which is an exercise in
computing the expectation level by level. We will demonstrate in detail the computation
for the second moment; we can bound higher moments by the same method. We will
prove a recursive relation for E[(Z′ ,k+1)2] in terms of E[(Z′ ,k)2] by direct integration.

E[Z′ ,k+1(ζ)2] =
(1 + bk+1)2

(1 + bk)
E[(Z′ ,k(ζ))2]

+ 2
1 + bk+1

1 + bk
E

[
Z′ ,k(ζ)E

[(
z′k+1(ζ)− ζ([0, qk])

ξ′(qk+1)− ξ′(qk)

1 + bk
Z′ ,k(ζ)

) ∣∣∣∣Z′ ,k(ζ)

]]
+ E

[
E

[(
z′k+1(ζ)− ζ([0, qk])

ξ′(qk+1)− ξ′(qk)

1 + bk
Z′ ,k(ζ)

)2 ∣∣∣∣Z′ ,k(ζ)

]]
.

(A.12)
From examining the transition kernel (A.10), we observe that z′k+1 is a Gaussian with

mean tilted to ζ([0, qk]) ξ
′(qk+1)−ξ′(qk)

1+bk
Z′ ,k(ζ). This explains the expansion given in the

equation above.
Under this rescaling, we note that the computation of the first moment in the second

line of (A.12) is 0. The third line will give us the variance of the Gaussian z′k+1. This
variance is given by

(1 + bk+1)(ξ′(qk+1)− ξ′(qk))

(1 + bk)

In summary, we thus, have the inductive relation

E[(Z′ ,k+1(ζ))2] =

(
1 + bk+1

1 + bk

)2

E[Z′ ,k(ζ)2] +
(1 + bk+1)(ξ′(qk+1)− ξ′(qk))

(1 + bk)
. (A.13)

We see that the prefactor (1+bk+1)2

(1+bk)2 will telescope upon recursion.
This gives us the relation,

E[(Z′ ,r(ζ))2] =

r∑
k=1

(1 + br)
2

(1 + bk)2

(1 + bk)

(1 + bk−1)
(ξ′(qk)− ξ′(qk−1)). (A.14)

We observe that since 1 + bk > 1 for all k and 1 + bk < 1 + br < 1 + ξ′(q∗), we may bound
all prefactors involving b that appear by a constant only depending on ξ. As a result, we
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see that

E[(Z′ ,r)2] ≤ (1 + ξ′(q∗))
3

r∑
k=1

(ξ′(qk)− ξ′(qk−1) ≤ (1 + ξ′(q∗))
3ξ′(q∗). (A.15)

This bound only depends on the covariance structure.
For higher moments, we also have a recursive relation,

E[(Z′ ,k+1)p] =
p∑
j=0

(
1 + bk+1

1 + bk

)j
E

[
(Z′ ,k)jE

[(
z′k+1 − ζ([0, qk])

ξ′(qk+1)− ξ′(qk)

1 + bk
Z′ ,k(ζ)

)p−j ∣∣∣∣Z′ ,k(ζ)

]]
.

(A.16)
We may evaluate

E

[(
z′k+1 − ζ([0, qk])

ξ′(qk+1)− ξ′(qk)

1 + bk
Z′ ,k(ζ)

)p−j ∣∣∣∣Z′ ,k
]

= Pp−j
(

(1 + bk+1)(ξ′(qk+1)− ξ′(qk))

2(1 + bk)

)p−j
,

where Pp−j is the p− jth moment of the standard normal random variable.

Again, we may recursively apply (A.16) and see that the coefficients
(

1+bk+1

1+bk

)p
is

telescoping. After applying the bound 1+bj
1+bk

≤ (1 + ξ′(q∗)), j > k to all such ratios that
appear, we see that we have,

E[(Z′ ,r(ζ))p] ≤ C
p−1∑
j=0

r−1∑
l=0

E
[
(Z′ ,l(ζ))j

]
Pp−j (ξ′(ql+1)− ξ′(ql))

p−j
. (A.17)

By inducting on the power p, one can bound E
[
(Z′ ,l)j

]
by some constant that depends

on ξ and is independent of ζ.
We may also bound

r−1∑
l=0

(ξ′(ql+1)− ξ′(ql))
p−j ≤

(
r−1∑
l=0

ξ′(ql+1)− ξ′(ql)

)p−j
≤ ξ′(q∗)p−j , (A.18)

where we used the positivity of the differences ξ′(ql+1)− ξ′(ql).
Ultimately, this bound E[(Z′ ,r(ζ))p] by a quantity that depends on ξ but not on ζ.

A.2 The Parisi PDE

The properties of the random variables Z ′ that we have defined are closely related to
the solutions of an associated Parisi PDE at approximating measure ζ with support at
points 0 = q0 ≤ q1 ≤ . . . ≤ qr = q∗ ≤ 1. We use the notation qr+1 = 1 where appropriate.

∂tu
ζ(t, x) = −ξ

′′(t)

2
(∂2
xu

ζ(t, x) + ζ([0, x])(∂xu
ζ(t, x))2). (A.19)

with initial data given by

uζ(1, x) =
x2

2[1 + bζ ]
. (A.20)

with bζ =
∑r+1
i=1 [qiξ

′(qi)− qi−1ξ
′(qi−1)]ζ([0, qi−1]).
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At ζ satisfying finite replica symmetry breaking, as we have assumed here, we have
the Cole-Hopf solution of the Parisi PDE. Namely, for t in between qj ≤ t < qj+1, we have

uζ(t, x) =
1

ζ([0, qj ])
logE[exp ζ([0, qj ])u

ζ(qj+1, x+ z
√

(ξ′(qj+1)− ξ′(t)))]. (A.21)

where z is a standard Gaussian random variable. The computation of the integral is very
similar to what was performed in the computation of the function Xj(x1, . . . , xj) aside
from the constant factor shift.

We see that for the specific values t = qj , we have

uζ(qj , x) =
x2

2(1 + bj)
+

r∑
k=j

1

2ζ([0, qk])
log

1 + bk+1

1 + bk
, (A.22)

and for values qj ≤ t ≤ qj+1 in between, we have

uζ(t, x) =
x2

2(1 + bj+1 − ζ([0, qj ])(ξ′(qj+1)− ξ′(t)))
+

r∑
k=j+1

1

2ζ([0, qk])
log

1 + bk+1

1 + bk

+
1

2ζ([0, qj ])
log

1 + bj+1

1 + bj+1 − ζ([0, qj ])(ξ′(qj+1)− ξ′(t))
.

(A.23)

When ζ([0, qj ]) = 0, the last quantity should be understood as ξ′(qj+1)−ξ′(t)
2(1+bj+1) .

Observe that from the formula given above, if we let ζi be a sequence of measures
supported on [0, q∗] that approach a limit ζ∗ in the weak∗ topology, then the solutions
uζi(t, x) approach a limit uζ

∗
(t, x) with formula given by

uζ
∗
(t, x) =

x2

2(1 +
∫ 1

0
ζ∗([0, l])(lξ′′(l) + ξ′(l))dl −

∫ 1

t
ζ∗([0, l])ξ′′(l)dl)

+
1

2

∫ 1

t

ξ′′(l)

1 +
∫ 1

0
ζ∗([0, n])(nξ′′(n) + ξ′(n))dn−

∫ 1

l
ζ∗([0, n])ξ′′(n)dn

dl.

(A.24)

One can check from an integration by parts formula that∫ 1

0

ζ∗([0, l])(lξ′(l))′dl +

∫ 1

0

(ζ∗([0, l]))′lξ′(l)dl = ζ∗([0, 1])ξ′(1),∫ 1

0

ζ∗([0, l])(ξ′(l))′dl +

∫ 1

0

(ζ∗([0, l]))′ξ′(l)dl = ζ∗([0, 1])ξ′(1)− ζ∗([0, 0])ξ′(0).

(A.25)

Thus, we have ∫ 1

0

ζ∗([0, l])(lξ′′(l) + ξ′(l))dl −
∫ 1

0

ζ∗([0, l])ξ′′(l)dl

=

∫ 1

0

(ζ∗([0, l]))′(1− l)ξ′(l)dl + ζ∗([0, 0])ξ′(0).

(A.26)

The quantity above is clearly positive and, as such, we can see that the denominator
in (A.24) is always well-defined for our initial choice of constant.

We contain these observations in a lemma.

Lemma A.4. Consider a sequence of measures ζi on ([0, 1] satisfying finite replica
symmetry breaking. Suppose the set ζi has some weak limit ζ∗ in the weak∗ topology.
Then on any compact region C of R× [0, 1] we have uniform convergence of the solution
of the Parisi PDE (A.19) to the limit solutions.

uζi(x, t)→ uζ
∗
(x, t), (A.27)

uniformly in C.
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