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Abstract

We study noise sensitivity of the consensus opinion of the voter model on finite graphs,
with respect to noise affecting the initial opinions and noise affecting the dynamics.
We prove that the final opinion is stable with respect to small perturbations of the
initial configuration, and is sensitive to perturbations of the dynamics governing the
evolution of the process. Our proofs rely on the duality relationship between the voter
model and coalescing random walks, and on a precise description of this evolution
when we have coupled dynamics.
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1 Introduction

In this note we consider the voter model on finite graphs. We study the consensus
opinion in light of noise sensitivity with respect to the initial condition and the dynamics.
The notion of noise sensitivity for Boolean functions was introduced in the seminal
paper [1] by Benjamini, Kalai, and Schramm, and regards the behaviour of Boolean
functions when a small fraction of its entries is subject to an independent noise. More
precisely, let Pp denote the probability measure in {0, 1}n with independent marginals,
each Bernoulli(p) for p ∈ [0, 1]. Given ω ∈ {0, 1}n distributed according to Pp (The
Bernoulli(p) product measure), define the ε-perturbed configuration ωε by resampling
each bit of ω independently with probability ε. A sequence of Boolean functions fn :

{0, 1}n → {0, 1} is said to be noise sensitive (at level p) if for every ε > 0 we have that
fn(ω) and fn(ωε) are asymptotically independent. Formally,

lim
n
Ep
[
fn(ω)fn(ω

ε)
]
− Ep

[
fn(ω)

]2
= 0. (1.1)

In contrast, the sequence (fn)n∈N is said to be noise stable (at level p) if

lim
ε→0

sup
n
Pp
[
fn(ω) 6= fn(ω

ε)
]
= 0, (1.2)
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Noise sensitivity for the voter model

so that small noises are not enough to provoke a macroscopic change in the value of the
functions fn.

The voter model is a classical model of interacting particles [4]. Consider a connected
graph with n vertices Gn =

(
Vn, En

)
. At each time t, each vertex v has an opinion

ηt(v) ∈ S for some space S of possible opinions. The case S = {0, 1} is the most
commonly used case. At time t = 0, each vertex of Gn has an opinion η0(v) ∈ S. Each
edge {u, v} ∈ En is then endowed with two independent Poisson processes of rate
one, with one process for each orientation of the edge. All Poisson processes for the
different edges are taken to be independent from each other as well as from the initial
configuration η0. These processes control changes in opinions in u and v. Whenever a
clock tick happens in the process associated with the oriented edge (u, v), the vertex v
copies the opinion of u. (See below for a more formal definition.) One construction of
the voter model, referred to as a graphical construction is in terms of a collection of
Poisson processes associated with the edges of the graph. This is described in detail
in Section 2. We denote by P the collection of Poisson point processes used in the
graphical construction of the voter model, and write ηt(x) for the resulting opinion of
vertex x at time t.

The configuration ηt ∈ SVn is a Markov chain which is almost surely eventually
absorbed in a constant configuration. The eventual constant opinion is called the
consensus opinion. We denote this final opinion by fn(η0,P), depending implicitly
on Gn with initial opinion η0 and graphical construction given by the clocks P. Given
p ∈ (0, 1), we say that the consensus opinion fn is noise stable with respect to the initial
condition if when the initial opinions are sampled from Pp we have

lim
ε→0

sup
n
Pp
[
fn(η0,P) 6= fn(η

ε
0,P)

]
= 0. (1.3)

To study the noise sensitivity of the consensus opinion with respect to the clock
ticks of the graphical construction, it is necessary to first define what we mean by an
ε-perturbation of P. Given ε ∈ [0, 1], Pε is constructed from P in two steps: one first
obtains P ′ as an ε-thinning of P. Then define

Pε = P ′ ∪P(ε), (1.4)

where P(ε) is an independent collection of clock ticks with intensity ε. We say that the
consensus opinion is noise sensitive with respect to the clock ticks if

lim
n
Ep
[
fn(η0,P)fn(η0,P

ε)
]
− Ep

[
fn(η0,P)

]2
= 0. (1.5)

The main result of this note is the following theorem.

Theorem 1.1. Let Gn be any sequence of connected graphs, where Gn has n vertices.
The consensus opinion in the voter model is noise stable with respect to the initial
condition for all p ∈ (0, 1) and noise sensitive with respect to the clock ticks. Moreover,
the limit

lim sup
n

Cov
(
fn(η0,P), fn(η0,P

εn)
)

(1.6)

equals zero if nεn →∞ and is positive if nεn is bounded.

One way to interpret the above theorem, suggested to us by Itai Benjamini, is by view-
ing the voter model dynamics as a random Boolean function of the initial configuration.
The dynamics determines a (random) dictator, whose opinion is revealed when checking
the initial opinions. Our theorem then says that the choice of the dictator is sensitive
with respect to noising the dynamics. Clearly, once the dictator’s identity is changed all
correlation is lost. On the other hand, given a choice of dictator, her opinion is clearly
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Noise sensitivity for the voter model

stable with respect to small perturbations. The stability statement in the theorem is an
immediate consequence of that stability.

A special case of this theorem which is of independent interest is when the graph is
the complete graph Kn. In this case, the voter model is equivalent to the Moran model
of population dynamics. Our result has the interpretation that the eventual dominant
allell is stable with respect to the initial population types, but sensitive to noise affecting
the reproduction dynamics of the model.

Generalizations The theorem and the proof extend with no significant changes to
the case of weighted graphs (electrical networks). Here each undirected edge has a
weight we. For each neighbouring pair e = (x, y), the vertex x adopts the opinion of y at
rate we, and y adopts the opinion of x at the same rate. However, the rates in the two
directions must be equal for our proof to carry through. This can be seen to be necessary,
since for general asymmetric rates the result may fail. Even in the natural case where
each vertex is activated at rate 1, and copies the opinion of a uniform neighbour the
consensus might not be sensitive to noisy dynamics. For example, in this model on the
star graph, the consensus is strongly correlated to the initial opinion of the centre vertex,
and this correlation is maintained when noise is added to the dynamics.

Proof overview The proof of Theorem 1.1 relies on the classical duality relation
between the voter model and coalescing random walks. The same clock processes
can be used to define coalescing random walks on Gn. If one fixes a realization of the
clock processes P and considers coalescing random walks going backwards in time
and moving in the opposite direction from the activated edges, the consensus opinion
coincides with the opinion at time zero from the last walker remaining. This observation
alone implies noise stability with respect to the initial condition.

Via this relation with coalescing random walks, one can also obtain that the position
of the site that realizes the consensus opinion on Gn is distributed according to the
invariant measure of the random walk on Gn. This hints at the proof of the second
statement about noise sensitivity with respect to clocks. Here one needs to study the
joint evolution of two highly dependent random walks in Gn, using clock ticks from P
and Pε, respectively. One considers these walkers as evolving on Gn ×Gn in a suitably
constructed way. The proof is then concluded by describing the invariant measure of
this coupled dynamics and verifying that the probability that both random walks end in
the same position vanishes in the limit as n increases.

Related works The notion of noise sensitivity of boolean functions was formalized by
Benjamini, Kalai and Schramm [1], following earlier related works of Hastad [3]. It has
developed into a central tool in the study of boolean functions, see e.g. O’Donnell’s book
[5]. Noise sensitivity and stability have proved to be especially useful in percolation
theory, where the natural inputs are independent variables, and many of the previous
applications of that theory had been in the context of percolation. In particular, noise
sensitivity has proved crucial to our understanding of dynamical percolation. See e.g.
Garban and Steif’s book [2] and references therein.

The consensus opinion of the voter model is known to have the same distribution
as the independent initial opinions. Obtaining bounds on the time when consensus is
reached is more delicate, and also relies on the duality relation between voter model
and coalescing random walks. The consensus time of the voter model is bounded by
the coalescence time of coalescing random walks. Oliveira [6] proves that, for graphs
with constant degree, this expected coalescing time can be bounded up to a universal
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constant by the maximum of the hitting time in the graph over all starting vertices and
targets. This implies that the consensus time in the voter model is of order at most n2.

2 Preliminaries

This section contains a short review of the voter model and its connection to coa-
lescing random walks. We highlight the main facts that will be used throughout the
paper.

The voter model Let Gn = (Vn, En) be a sequence of connected finite graphs. The
voter model with opinions in S is a Markov chain on SVn , where a voter changes their
opinion to x ∈ S at rate equal to the number of neighbours with opinion x. The voter
model on Gn can be obtained via a graphical construction that we define now. Let ~En be
the set of oriented edges of Gn, containing each edge in both directions. Let P denote a
Poisson point process on ~En×R+ with intensity µ⊗λ, where µ is the counting measure on
~En, and λ denotes the Lebesgue measure in R+. Given an initial configuration η0 ∈ SVn ,
the evolution proceeds by copying opinions at the time of the clock ticks: if the oriented
edge (u, v) has a clock tick at time t, then site v copies the opinion of u. It is easy to see
that this almost surely defines a unique process (ηt)t≥0.

The voter model has absorbing states: the constant configurations with any opinion.
Furthermore, on any connected finite graph the model almost surely reaches one of
these configurations. An easy way to see this is by noting that the number of vertices
with any opinion is a bounded martingale, and so must converge.

The voter model with general opinion set S can be understood in terms of the voter
model with Boolean opinions by noting that for any opinion a ∈ S, the set of vertices
with opinion a evolves as a voter model. (These are not independent for different a’s
but this is sufficient to deduce our results for a general opinion set from the result for
Boolean opinions.)

Coalescing random walks In this model, each site initially receives an independent
random walk that jumps to each neighbour with rate one. When any two of these walkers
meet, they coalesce and move together from that time onward.

One way to define this model precisely is using a graphical construction. Given
Poisson processes P as before, a random walk from x is constructed by jumping from u

to v if the walk is at u and the clock for directed edge (u, v) ticks. It is clear that each
walker performs a random walk, and that once two walkers are at the same vertex they
stay together from that time on. Since any two walkers on a finite connected graph will
meet at some finite time, there is some time at which all walkers have coalesced. This is
called the coalescence time, which we denote by TC .

Duality The relation between the voter model and coalescing random walks is an
easy consequence of the graphical constructions. It makes it possible to use coalescing
random walks to determine the consensus opinion via realizations of the graphical
construction (η0,P). Given t ≥ 0, let us denote by

(
Xt
i (s)

)
s≤t the random walk that is at

position i at time t and runs backwards in time up to time zero by using the clock ticks
from P: if an oriented edge (u, v) has a clock tick and the random walk is on v, then it
jumps to site u. For each t, the walks running backward in time are coalescing random
walks.

To see the relation with the voter model, one should trace the origin of the opinion of
x at time t. Going backward in time, the opinion jumps from v to u if the edge (u, v) has

ECP 27 (2022), paper 42.
Page 4/7

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP483
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Noise sensitivity for the voter model

a clock tick. Thus the origin of the opinions form coalescing random walks when viewed
backward in time.

It is clear that the coalescence time of the backward random walks has the same
distribution as that for walks moving forward in time. Since TC is almost surely finite, the
probability that the coalescence time for the walks

(
Xt
i

)
i∈[n] is at most t is the same as

P(TC ≤ t) which tends to 1 as t→∞. Now, if t is large enough such that the coalescing
random walks with the collection

(
Xt
i

)
i∈[n] have coalesced by time t, then for all i, we

have Xt
i (0) is the same vertex, and

fn(η0,P) = η0(X
t
i (0)). (2.1)

(Recall fn(η0,P) denotes the consensus opinion of the voter model.) Since TC is finite
almost surely, the equation above also implies that

fn(η0,P) = lim
t→∞

η0(X
t
i (0)), (2.2)

which in turn provides the equality in distribution

fn(η0,P) ∼ η0(X), (2.3)

where X is distributed according to the invariant measure of the random walk X1. If the
initial opinions are independent, then fn has the same law as the initial opinions.

Coalescing random walks and noise When studying noise sensitivity with respect
to the clock rings, one needs to consider a pair of coupled random walks that evolve
according to the pair of graphical constructions (P,Pε). These random walks are
coupled as follows: If they are at distinct vertices they jump independently at rate 1
across each edge; If they are at the same vertex, they jump together across each edge at
rate 1− ε, and each of the walks jumps alone across the edge at rate ε, leaving the other
walk unchanged.

Proceeding in an analogous way as in the deduction of (2.3), we obtain the equality
of the joint distribution(

fn(η0,P), fn(η0,P
ε)
)
∼
(
η0(X), η0(X

ε)
)
, (2.4)

where (X,Xε) is distributed according to the invariant measure of a pair of coupled
random walks evolving with the Poisson processes (P,Pε).

3 Proof of Theorem 1.1

We now proceed with the proof of Theorem 1.1. We first verify noise stability with
respect to the initial condition and then consider noise sensitivity with respect to clock
ticks.

Noise stability for the initial condition This is the easier part of the result. It
follows directly from (2.1) by noticing that

Pp

[
fn(η0,P) 6= fn(η

ε
0,P)

]
= Pp

[
lim
t→∞

η0(X
t
1(0)) 6= lim

t→∞
ηε0(X

t
1(0))

]
≤ ε, (3.1)

since the two are equal if η0(Xt
1(0)) has not been resampled.

ECP 27 (2022), paper 42.
Page 5/7

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP483
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Noise sensitivity for the voter model

Noise sensitivity for the clocks We now prove the statement regarding noise sensi-
tivity with respect to the clock ticks in the graphical construction. We use the relation
established in (2.4) to obtain an expression for the distribution of the vertices that realize
the consensus opinion in the coupled graphical constructions (P,Pε).

Consider a pair (Xt, X
ε
t ) of random walks that evolve according to the pair of Poisson

clocks (P,Pε). From the construction of the coupled pair of Poisson clocks, we see that
(Xt, X

ε
t ) evolves on Gn ×Gn with rates given by the n2 × n2 matrix

Q
(
(u, v), (u′, v′)

)
=



1− ε, if u = v, u′ = v′, and u ∼ u′;
ε, if u = v = v′ and u ∼ u′;
ε, if u = u′ = v and v ∼ v′;
1, if u 6= v, u = u′, and v ∼ v′;
1, if u 6= v, v = v′, and u ∼ u′;
0, otherwise.

(3.2)

The key observation is that we can write explicitly the invariant measure of the
random walk on Gn×Gn with transition rates given by the matrix Q. Define the function
ν (viewed as a 1× n2 vector) on Gn ×Gn by

ν(u, v) = 1u=v + ε1u 6=v. (3.3)

We claim thatQ is reversible w.r.t. ν. Indeed, consider the quantity ν(u, v)Q((u, v), (u′, v′)).

• If u = v and u′ = v′ this is 1 · (1− ε) if u ∼ u′ and 0 otherwise.
• If u = v and u′ 6= v′, this is 1 · ε if one of {u′, v′} is u and the other is a neighbouring

vertex (otherwise 0).
• If u 6= v and u′ = v′, this is ε · 1 if one of {u, v} is u′ and the other is a neighbouring

vertex (otherwise 0).
• If u 6= v and u′ 6= v′, this is ε · 1 as long as one of the pairs (u, u′), (v, v′) is equal and

the other are neighbours.

In all cases, this is the same if (u, v) and (u′, v′) are swapped.
This implies that the invariant measure π for the process (Xt, X

ε
t )t≥0 is proportional

to ν, i.e. π = ν/(n+ (n2 − n)ε). In particular π(X = X ′) = 1
1+(n−1)ε .

Suppose η0 has Bernoulli(p) entries. We now calculate:

Ep

(
fn(η0,P)fn(η0,P

ε)
)
= EπEp

(
η0(X), η0(X

ε)
)

= p2π(X 6= X ′) + pπ(X = X ′)

= p2 +
p− p2

1 + (n− 1)ε
.

(3.4)

Thus fn(η0,P) and fn(η0,Pε) are asymptotically independent if and only if εn→∞, as
claimed.

4 A problem

Our theorem states that the consensus is sensitive to noisy dynamics. Moreover, this
sensitivity does not depend on the graph on which the process lives. Consider a new
model, which we call the majority-voter model. Here, the voter dynamics are run for
some pre-determined time T . At that time, an election occurs, and the outcome is the
majority of the opinions at time T . This interpolates between simple majority for T = 0

and the consensus in the voter model for T →∞. A natural question is how large does T
needs to be so that the majority-voter model is sensitive to noisy dynamics. It seems that
the result would depend on the underlying graph.
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