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Abstract

We extend our results on the fluctuation of the pair counting statistic of the Circular
Beta Ensemble

∑
i6=j f(LN (θi − θj)) for arbitrary β > 0 in the mesoscopic regime

LN = O(N2/3−ε). In addition, we obtain similar results for bipartite statistics.
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1 Introduction

The Circular Beta Ensemble (CβE) is a random point process of N ≥ 2 particles on
the unit circle; where the joint probability density of the particles θj ∈ [0, 2π), 1 ≤ j ≤ N ,
with respect to the Lebesgue measure is given by:

pβ,N (θ1, · · · , θN ) =
1

Zβ,N

∏
j<k

|eiθj − eiθk |β . (1.1)

Here β > 0 and Zβ,N is the normalization constant:

Zβ,N = (2π)N
Γ(1 + βN

2 )

(Γ(1 + β
2 ))

N
.

The CβE generalizes the classical ensembles of random unitary matrices
(COE/CUE/CSE) introduced by Dyson in the 1960s in the context of quantum physics (see
e.g. [5]-[8]). The CβE can be interpreted as a Coulomb gas, or system of N repelling
particles, with β taking the role of the inverse temperature. It can also be viewed as
the limiting invariant distribution of a stochastic evolution process on the eigenvalues
known as the circular Dyson Brownian motion (see [18]). An explicit sparse random
matrix model with eigenvalue distribution matching the CβE was introduced in [12].
To understand the fluctuation of the eigenvalues one can study linear statistics of the
form

∑N
i=1 f(LNθi), 1 ≤ LN ≤ N . The Central Limit Theorem for linear statistics of

eigenvalues of the CβE was proved in [9] (see also [3] for the special case β = 2) and
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Pair dependent statistics for arbitrary β

extended beyond the macroscopic regime to LN � 1 in [17] (for β = 2) and [13] (for
arbitrary β). Recently, in [1] and [2] we studied pair dependent statistics of the form:

SN (f) =
∑
i 6=j

fLN
(θi − θj), (1.2)

where fLN
(θ) = f(LNθ) for θ ∈ [−π, π) and is extended 2π-periodically to the whole real

line. In the global regime we take LN = 1 and f to be a sufficiently smooth function
on the unit circle. In the mesoscopic regime (LN → ∞, LN

N → 0) and the local regime
(LN = N ) we consider f to be a smooth compactly supported function on the real line.

The research in [1]-[2] was motivated by a classical result of Montgomery on pair
correlation of zeros of the Riemann zeta function [15]-[16]. Assuming the Riemann
Hypothesis, Montgomery studied the distribution of the “non-trivial” zeros on the critical
line {1/2± γn}. In particular, for sufficiently large T , fast decaying f with SuppF(f) ⊂
[−π, π], and rescaling γ̃n = γn

2π log(γn) he considered the statistic:∑
0<γ̃j 6=γ̃k<T

f(γ̃j − γ̃k).

The results of [15]-[16] imply that the two-point correlations of the (rescaled) critical
zeros coincide in the limit with the local two point correlations of the eigenvalues of a
CUE (β = 2) random matrix.

The asymptotic distribution of the pair counting statistic (1.2) depends on the speed
of the growth of LN , regularity (smoothness) properties of the test function f , and
the value of the inverse temperature β > 0. The results of [1] deal with the limiting
behavior of (1.2) in three different regimes, namely macroscopic (LN = 1), mesoscopic
(1 � LN � N ) and microscopic (LN = N ). In the macroscopic (unscaled) LN = 1 case it
was shown that SN (g) has a non-Gaussian fluctuation in the limit N → ∞ provided g is a
sufficiently smooth function on the unit circle. In particular (see Theorem 2.1 in [1]),

SN (g)− ESN (g)
D−−−→ 4

β

∞∑
m=1

ĝ(m)m(ϕm − 1)

where ϕm are i.i.d. exponential random variables with E(ϕm) = 1, and

ĝ(m) =
1

2π

∫ 2π

0

g(x)e−imxdx, m ∈ Z,

are the Fourier coefficients of g. The result was proved under the optimal condition
g′ ∈ L2(T) for β = 2, and under slightly sub-optimal conditions for β 6= 2.

In the case of a slowly growing variance (i.e. when
∑N

m=−N |f̂(m)|2m2 is a slowly
growing sequence) the asymptotic fluctuation becomes Gaussian (see [2]). The determi-
nantal structure of the correlation functions of the CUE (β = 2) enabled us to study the
pair counting statistic up to the microscopic regime. In particular, a pair counting statis-
tic was shown to have limiting Gaussian fluctuation provided f is sufficiently smooth.
However, for arbitrary β 6= 2 the growth of LN in [1] was restricted to LN = o(Nε). In
this note, we extend the results of [1] for SN (f) and arbitrary β > 0 to LN = O(N2/3−ε)

in the mesoscopic regime. Next, we formulate the main result.

Theorem 1.1. Let LN be growing to infinity so that LN = O(N2/3−ε), where ε > 0 is
arbitrary small and f ∈ C∞

c be even, smooth and compactly supported. Then as N → ∞

SN (f)− ESN (f)√
LN

D−→ N
(
0,

4

πβ2

∫
R

|f̂(ξ)|2ξ2dξ
)
. (1.3)
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Pair dependent statistics for arbitrary β

Here f̂(t) = 1√
2π

∫
R
f(x)e−itxdx denotes the Fourier transform of f , and the notation

D−→ denotes convergence in distribution.

Remark 1.2. We do not expect the exponent 2/3 to be optimal and note that for β = 2

the result of Theorem 1.1 holds for all LN = o(N) (see Theorem 2.4 in [1]). The main
difficulty in extending the result of the theorem to all LN = o(N) lies in controlling the
joint distribution of the traces of powers (2.2) for k growing sufficiently fast. Even for
one of three special values of β, namely β = 4, the variance of |k|−1/2 TrUk

N , somewhat
unexpectedly, is unbounded for |k| sufficiently close to N ([11]). For β = 2 one can avoid
these additional difficulties by analyzing explicit formulas for the joint cumulants of
TrUk

N .

Next we consider bipartite statistics:

BN (f) =
∑
i,j

fLN
(τi − θj), (1.4)

where {τi}Ni=1 and {θj}Nj=1 come from different ensembles on the unit circle, for example
two independent CβE ensembles. In particular, the following result holds.

Theorem 1.3. Let {τi}Ni=1 and {θj}Nj=1 be point configurations from two independent

CβE ensembles, LN = O(N2/3−ε), with ε > 0 is arbitrary small and f ∈ C∞
c be even,

smooth and compactly supported. Then EBN (f) = N2

2πLN

∫
R
f(x)dx and

BN (f)− EBN (f)√
LN

D−→ N
(
0,

2

πβ2

∫
R

|f̂(t)|2t2dt
)
. (1.5)

Remark 1.4. The result of Theorem 1.3 could be extended to study bipartite statistics
involving different sizes N1, N2 and different values β1, β2 > 0.

Remark 1.5. The asymptotic behavior of bipartite statistics BN (g) in the global regime
LN = 1 can be treated similarly to Theorem 2.1 in [1]. In particular, the mean of a
bipartite statistic is given by E

∑N
i,j=1 g(τi − θj) = ĝ(0)N2, and, for a sufficiently smooth

test function g,

BN (g)− EBN (g)
D−−−→ 2

β

∞∑
m=1

ĝ(m)mφm,

where φm are i.i.d. centered double exponential (Laplace) random variables with
Var(φm) = 2.

We will denote a N ×N random CβE matrix by UN . The notation aN = o(bN ) means
that aN/bN → 0 as N → ∞. The notation aN = O(bN ) means that the ratio of aN and bN
is bounded in N . In Section 2, we recall some preliminary material. Theorems 1.1 and
1.3 are proved in Section 3. Local bipartite statistics are studied in Section 4.

2 Preliminary material

Consider an even real-valued function g on the unit circle that can be represented by
the Fourier series:

g(x) =

∞∑
m=−∞

ĝ(m)eimx, ĝ(m) =
1

2π

∫ 2π

0

g(x)e−imxdx.

Fourier expanding the pair dependent statistic we obtain:

∑
1≤i 6=j≤N

g(θi − θj) = 2

∞∑
m=1

ĝ(m)

∣∣∣∣∣∣
N∑
j=1

exp (imθj)

∣∣∣∣∣∣
2

+ ĝ(0)N2 −Ng(0).
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Pair dependent statistics for arbitrary β

Let now f ∈ C∞
c (R) be even, smooth and compactly supported, and LN → ∞ as

N → ∞. Then for sufficiently large LN we can view f(LNx) as a smooth compactly
supported function on the unit circle and the pair counting statistic (1.2) can be written
as:

SN (f) =
∑

1≤j 6=k≤N

fLN
(θj − θk) =

f̂(0)N2

√
2πLN

+

∞∑
k=1

2√
2πLN

f̂

(
k

LN

)(
|TrUk

N |2 −N
)
, (2.1)

where f̂ denotes the Fourier transform of f . We will use the following notation for traces
of powers of a random unitary matrix:

T
(k)
N :=

N∑
j=1

eikθj = TrUk
N , k = 0,±1,±2, . . . . (2.2)

Our proof relies on the results of Johansson and Lambert [10], who estimated the
Wasserstein-2 distance between a random vector of traces of powers of a CβE matrix
UN and a random vector of independent Gaussians of matching variance. We refer to
Theorem 1.5 in [10]. In the Appendix, we justify the claim in Remark 1.1 of [10] that
enables us to extend results to arbitrary β > 0 using Proposition 2.3 below.

Let Td =
(
T

(k)
N

)d
k=1

be the vector of the traces of the first d powers of a random CβE

matrix UN and Gd =
(√

2
βkZk

)d
k=1

, where Zk are i.i.d. complex N (0, 1). Reformulated in

terms of the pair (Td, Gd), their result states:

Proposition 2.1 (Johansson and Lambert [10]). Let 2d ≤ N . and {eiθj}Nj=1 be drawn
from the CβE with β > 0. Then as N → ∞ we have the following bound:

W2 (Td, Gd) = O
(
d2

N

)
. (2.3)

We recall that the Wasserstein-p distance between two probability measures on a
normed space is defined as:

Wp(µ, ν) := (inf{E||X − Y ||p : (X,Y ) is a r.v. such that X ∼ µ, Y ∼ ν})1/p ,

where p ≥ 1 and the notation X ∼ µ means that a random variable X has probability
distribution µ. The Wasserstein distance takes values in [0,∞]. For p = 1, the Wasserstein-
1 distance W1(µ, ν) is also known as the Kantorovich-Monge-Rubinstein metric and can
be equivalently written as:

W1(µ, ν) := sup

{∣∣∣∣∫ fdµ−
∫

fdν

∣∣∣∣ : f is 1-Lipschitz

}
.

In other words, the supremum is taken over all real-valued functions f that satisfy
|f(x)− f(y)| ≤ d(x, y), where d is the metric on the underlying metric space.

Remark 2.2. Important earlier results of Döbler and Stolz [4] and Webb [18] bounded
from above the Wasserstein-1 distance W1(Td, Gd). In particular, it was shown in [4] that
for β = 2 one has W1(Td, Gd) = O(d5/2/N). Webb proved in [18] the bound W1(Td, Gd) =

O(d7/2/N) for arbitrary β. These results are strengthened by (2.3) since

W1(µ, ν) ≤ d1/2W2(µ, ν).

Potential further improvements of these bounds should lead to improvement of the
results of Theorem 1.1 and Theorem 1.3.
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Pair dependent statistics for arbitrary β

Finally, we will require the following bound on the moments of T (k)
N .

Proposition 2.3 (Jiang and Matsumoto [11]). Let {eiθj}Nj=1 be drawn from the CβE and
T k
N defined as in (2.2). For 0 ≤ k ≤ N we have:

E|T (k)
N |2m ≤

1 +

∣∣∣ 2β − 1
∣∣∣

N −K + 2
β

1(β > 2)

K

×
(
2

β

)m

× km ×m! (2.4)

where K = km ≤ N .

3 Mesoscopic case

Proof of Theorem 1.1. Let LN = O
(
N2/3−ε

)
be going to infinity with N , ε > 0 be arbi-

trary small, and d = bLNN ε/2c. Going forward we can ignore the constant term

1√
2πLN

f̂(0)N2 −Nf(0)

appearing in (2.1) since it disappears upon centralization. Taking into account the
smoothness of f we will approximate the pair counting statistic SN (f) by a truncated
version

SN,d(f) =

d∑
k=1

2√
2πLN

f̂

(
k

LN

)
|T (k)

N |2, (3.1)

and compare its distribution with the distribution of

Sd =

d∑
k=1

2√
2πLN

f̂

(
k

LN

)
2k

β
|Zk|2. (3.2)

In Lemma 3.1 we show that the error of the approximation (3.1), namely

VN,d(f) =
∑
k>d

2√
2πLN

f̂

(
k

LN

)
|T (k)

N |2

is negligible in the limit of large N . In Lemma 3.2., we show that (3.2) converges in
distribution to a centered Gaussian with variance 4

πβ2

∫
R
|f̂(ξ)|2ξ2dξ. Finally, the main

result follows from the Wasserstein distance bound in Lemma 3.3.

Lemma 3.1. Let f ∈ C∞
c (R) be even, smooth and compactly supported and further

assume that LN = o(N2/3−ε) and d = bLNN ε/2c. Then

VN,d(f)− E (VN,d(f))√
LN

L1

−→ 0. (3.3)

Proof. From the triangle inequality:

E|LHS(3.3)| ≤ 1√
LN

∑
k≥d

2√
2πLN

∣∣∣∣f̂ ( k

LN

)∣∣∣∣Var(T (k)
N ), (3.4)

where we recall that T (k)
N denotes Tr(Uk

N ), the trace of the k-th power of a random unitary

matrix UN . The bound of Proposition 2.3 gives us that Var(T (k)
N ) ≤ Ck for k ≤ N/3. For

k ≥ N/3 we may bound it trivially by N2. Next, we will use the fact that the Fourier
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Pair dependent statistics for arbitrary β

transform of a function f ∈ C∞
c (R) is in Schwartz space and thus decays faster than any

power.

RHS(3.4) ≤ 1√
LN

N/3∑
k≥d

2C ′k√
2πLN

(
k

LN

)−γ

+
1√
LN

∑
k>N/3

2C ′′N2

√
2πLN

(
k

LN

)−γ

= O

(
L
γ−3/2
N

dγ−2
+N3−γL

γ−3/2
N

)
. (3.5)

Setting γ = 2
ε with ε > 0 sufficiently small we obtain that the r.h.s. of (3.5) goes to

zero as N → ∞.

Lemma 3.2. We have the following convergence in distribution:

Sd − ESd√
LN

D−→ N
(
0,

4

πβ2

∫
R

|f̂(ξ)|2ξ2dξ
)
. (3.6)

Proof. For k ≥ 1 let us denote

ak =
2√

2πLN

f̂

(
k

LN

)
2k

β
, Sd =

d∑
k=1

ak|Zk|2. (3.7)

Then we have

Var(Sd)

LN
=

1

LN
×

d∑
k=1

8

πβ2

∣∣∣∣f̂ ( k

LN

)∣∣∣∣2 ∣∣∣∣ k

LN

∣∣∣∣2 −→ 4

πβ2

∫
R

|f̂(ξ)|2ξ2dξ.

Since max{a2k}dk=1 = o(
∑d

1 a
2
k), the result follows from the Lindeberg-Feller theorem.

Lemma 3.3. Let d ≤ N/2. Then we have the following Wasserstein-1 bound:

W1

(
SN,d

L
1/2
N

,
Sd

L
1/2
N

)
= O

(
d3

NL
3/2
N

)
, (3.8)

Therefore L.H.S(3.8)→ 0 if LN = O
(
N2/3−ε

)
and d = bLNN εc.

Proof. Let (·, ·) denote standard Euclidean inner product in Cd and A be a diagonal d× d

matrix with Ak,k = ak, 1 ≤ k ≤ d, with ak as in (3.7). With Td and Gd as defined in
Proposition 2.1 we have:

L
−1/2
N |SN,d − Sd| = L

−1/2
N |(ATd, Td)− (AGd, Gd)|

≤ L
−1/2
N |(ATd, Td −Gd) + (A(Td −Gd), Gd)|

≤ L
−1/2
N ||A|| × ‖Td −Gd‖22 + 2L

−1/2
N ||A|| × ‖Td −Gd‖2 × ‖Gd‖2 .

Here ||A|| denotes the operator norm of A and ‖·‖2 is the vector l2 norm. Since A is a
diagonal matrix, one has ||A|| = max{|ak|, 1 ≤ k ≤ d} = O

(
L−1
N

)
. Proposition 2.2 allows

us to choose the components of the vector Gd so that

E(‖Td −Gd‖22) = O
(

d4

N2

)
. (3.9)
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Pair dependent statistics for arbitrary β

Using E(‖Gd‖22) = O
(
d2
)
and the Cauchy-Schwartz inequality we arrive at:

L
−1/2
N E|SN,d − Sd| ≤ L

−3/2
N E(‖Td −Gd‖22) + 2L

−3/2
N E(‖Td −Gd‖2 × ‖Gd‖2)

≤ O

(
d4

N2L
3/2
N

)
+O

(
d3

NL
3/2
N

)
,

Theorem 1.1 follows directly from combining Lemmas 3.1, 3.2 and 3.3.

The proof of Theorem 1.3 is quite similar with minor changes (such as replacing the
approximation of the quadratic form (ATd, Td) by the approximation of the bilinear form
(ATd, Td), where Td is an independent copy of Td. The details are left to the reader.

4 Local bipartite statistics

In this section we study bipartite statistics in the local regime LN = N for β = 2.
We recall that in Theorem 2.5 in [1] we considered SN (f) =

∑
1≤i6=j≤N fN (θi − θj),

fN (θ) = f(Nθ) for θ ∈ [−π, π), fN (θ+2π) = fN (θ), and proved the following proposition.

Theorem 4.1. Let β = 2 and f ∈ C∞
c (R) be an even, smooth, compactly supported

function on the real line. Then (SN (f) − ESN (f))N−1/2 converges in distribution to
centered real Gaussian random variable with the variance

1

π

∫
R

|f̂(t)|2 min(|t|, 1)2dt− 1

π

∫
|s−t|≤1,|s|∨|t|≥1

f̂(t)f̂(s)(1− |s− t|)dsdt (4.1)

− 1

π

∫
0≤s,t≤1,s+t>1

f̂(s)f̂(t)(s+ t− 1)dsdt.

Consider

BN (f) =
∑

1≤i,j≤N

f(N(τi − θj)), (4.2)

where the point configuration {τi}Ni=1 comes from one of the following three ensembles:
(i) an independent copy of CβE, (ii) a collection of i.i.d. uniformly distributed points
on the unit circle, (iii) evenly spaced deterministic sequence. Then the following result
holds.

Theorem 4.2. Let f ∈ C∞
c (R) be an even, smooth, compactly supported function on the

real line. Consider BN (f) defined in (4.2) where {θj}Nj=1 be a CUE configuration and
{τi}Ni=1 comes from one of the following three ensembles:

(i) an independent copy of a CUE;
(ii) a sequence of i.i.d. uniformly distributed points on the unit circle;
(iii) an evenly spaced deterministic sequence τi =

2πi
N , i = 1, . . . , N .

Then EBN (f) = N
2π

∫
R
f(x)dx, and (BN (f)− EBN (f))N−1/2 converges in distribution to

centered real Gaussian random variable with variance σ2(f), where

σ2(f) =


1
2π

∫
R
|f̂(t)|2 min(|t|, 1)2dt in the case (i),

1
2π

∫
R
|f̂(t)|2 min(|t|, 1)dt in the case (ii),

1
2π

∑
l 6=0 |f̂(l)|2 in the case (iii).

(4.3)

Proof of Theorem 4.2. As always T (k)
N :=

∑N
j=1 e

ikθj and denote T (k)
N =

∑N
j=1 e

ikτj , where
k ∈ Z. Then

Bc
N (f) := BN (f)− EBN (f) =

∑
k 6=0

1√
2πN

f̂

(
k

N

)
T

(k)
N T (−k)

N .
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Pair dependent statistics for arbitrary β

We consider the case (i) first. Using independence and E|T (k)
N |2 = min(|k|, N), one

has

Var(BN (f)) =
∑
k 6=0

1

2πN2

∣∣∣∣f̂ ( k

N

)∣∣∣∣2 min(|k|, N)2 =
N

2π

∫
R

|f̂(t)|2 min(|t|, 1)2dt(1 + o(1)).

(4.4)

To study higher moments, we use cumulant bounds and power counting. For l ≥ 2 we
have:

E(Bc
N (f))l = (2π)−l/2N−l

∑
k1,...,kl 6=0

l∏
i=1

f̂

(
ki
N

)
E

l∏
i=1

T
(ki)
N E

l∏
j=1

T (−kj)
N . (4.5)

To evaluate the moments we use Lemma 5.2 from [1] that allows us to estimate joint
cumulants of the traces of powers. It was shown that for any n ≥ 1, κ

(N)
n (k1, . . . , kn), the

n-th joint cumulant of T (k)
N ’s is O(N), uniformly in k1, . . . kn. In addition, κ(N)

2 (k1, k2) =

min(N, |k1|)1k1+k2=0. This implies that for odd values of l = 2m+ 1

E(Bc
N (f))2m+1 = O(Nm), (4.6)

and for even values l = 2m the main contribution to (4.5) comes from the l-tuples
(k1, . . . , km) that could be split into pairs (k,−k). By power counting we then obtain

E(Bc
N (f))2m = σ2m(2m− 1)!!Nm(1 + o(1)), (4.7)

and the moment convergence implies CLT. The considerations in the case (ii) are very
similar. In particular,

Var(BN (f)) =
∑
k 6=0

1

2πN2

∣∣∣∣f̂ ( k

N

)∣∣∣∣2 min(|k|, N)N =
N

2π

∫
R

|f̂(t)|2 min(|t|, 1)dt(1 + o(1)).

(4.8)

We leave higher order estimates to the reader. Finally, we turn our attention to the
case (iii). In this case we have:

Bc
N (f) =

∑
l 6=0

1√
2π

f̂(l)T
(lN)
N . (4.9)

This readily implies that:

Var(BN (f)) = N
1

2π

∑
l 6=0

|f̂(l)|2. (4.10)

The Central Limit Theorem again follows from the cumulant bounds and power
counting. It should be noted that random variables T (lN)

N , l ∈ Z\{0}, are not independent
but are identically distributed – they have the same distribution as

∑N
j=1 e

iτj .

5 Appendix

In this appendix we discuss the details in Remark 1.1 of [10] that justify the statement
of Proposition 2.1 for arbitrary β > 0. In Theorem 1.5 of [10] Johansson and Lambert
provide the bound:

W2 (X,G) ≤ O
(
d3/2

N

)
,
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where

X =

√
β

2k
Td G =

√
β

2k
Gd.

Now define the map X : Tn → R2d by X2k−1 = <T (k)
N and X2k = <T (k)

N , 1 ≤ k ≤ d,
and set Γ to be a 2d-dimensional square matrix with the entries Γk,l = ∇Xk · ∇Xl. We
also define

K = N · diag(1, 1, 2, 2, · · · , d, d)
ξ =

(
<ζ1,=ζ1,<ζ2,=ζ2, · · · ,<ζd,=ζd

)
,

where for k ≥ 1:

ζk =

√
k

2

k−1∑
`=1

√
`(k − `)T

(`)
N T

(k−`)
N .

We refer to Section 7 of [10] (specifically Lemmas 7.2 and 7.3) for full details of the
following lemma.

Lemma 5.1. For all N, d ∈ N and for any positive definite diagonal matrix K of size
2d× 2d, we have

W2(X,G) ≤
√
EN

[
|K−1ξ|2

]
+
√
EN

[
‖I−K−1Γ‖2

]
, (5.1)

where ‖ · ‖HS denotes the Hilbert–Schmidt norm.

We arrive at the desired bound with the following lemma. This corresponds to lemmas
7.4 and 7.5 of [10] where we used the moment estimates of Jiang-Matsumoto instead.

Lemma 5.2. With K,Γ and ξ as above we have:

EN |K−1ξ|2 = O
(

d3

N2

)
EN [||I−K−1Γ||2HS ] = O

(
d3

N2

)
. (5.2)

Proof. From page 37 of [10] we have the identity:

||I−K−1Γ||2HS =
β

N2

∑
1≤k<l≤d

|T (l−k)
N |2 + |T (l+k)

N |2 +
5β

2N2

d∑
k=1

|<(T (k)
N )|2

Since k ≤ LN , Proposition 2.3 gives that E|T (k)
N |2 ≤ Cβk and thus

EN

[
‖I−K−1Γ‖2HS

]
≤ Cβ ×

 ∑
1≤k<`≤d

`

N2
+

d∑
k=1

k

N2

 = O
(

d3

N2

)
.

From page 36 of [10] we have the identity:

|K−1ξ|2 =
∑

1≤`,`′<k≤d

β2

8kN2
T

(`)
N T

(k−`)
N T

(`′)
N T

(k−`′)
N .

Since k ≤ LN , Proposition 2.3 gives us (see Theorem 1 part (b) of [11]):

EN

[
T

(`)
N T

(k−`)
N T

(`′)
N T

(k−`′)
N

]
≤ Cβ

(
`(k − `)1{`=`′, 6̀=k/2} + `(k − `)1{`=k−`′, 6̀=k/2}) +

k2

4
1`=`′=k/2

)
.

Taking expectations we have:

EN

[
|K−1ξ|2

]
≤ Kβ

N2

∑
1≤`<k≤d

`(k − `)

k
= O

(
d3

N2

)
.
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