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Abstract

This paper concerns a variational representation formula for Wiener functionals. Let
B = {Bt}t≥0 be a standard d-dimensional Brownian motion. Boué and Dupuis (1998)
showed that, for any bounded measurable functional F (B) of B up to time 1, the

expectation E
[
eF (B)

]
admits a variational representation in terms of drifted Brownian

motions. In this paper, with a slight modification of insightful reasoning by Lehec
(2013) allowing also F (B) to be a functional of B over the whole time interval, we
prove that the Boué–Dupuis formula holds true provided that both eF (B) and F (B)

are integrable, relaxing conditions in earlier works. We also show that the formula
implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in
Rd, and hence, due to their equivalence, implies the logarithmic Sobolev inequality in
the d-dimensional Gaussian space.
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1 Introduction

Given a positive integer d, let B = {Bt}t≥0 be a standard d-dimensional Brownian
motion. In [6], Boué and Dupuis established the following formula for any bounded
measurable function F mapping C([0, 1];Rd) into R:

logE
[
eF (B)

]
= sup

v
E

[
F

(
B +

∫ ·
0

vt dt

)
− 1

2

∫ 1

0

|vt|2 dt
]
. (1.1)

Here the supremum runs over all progressively measurable processes v with respect to
the augmented natural filtration of B such that

∫ 1

0
|vt|2 dt is integrable. In [6], formula

(1.1) was proven useful in deriving various large deviation asymptotics such as Laplace
principles for small noise diffusions driven by Brownian motion. These results have
been extended by Budhiraja and Dupuis [9] to Hilbert space-valued Brownian motions,
and later generalized by Zhang [26] to abstract Wiener spaces. In Boué–Dupuis [7],
formula (1.1) is also applied to risk-sensitive stochastic control problems. Recently, the
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The Boué–Dupuis formula and the exponential hypercontractivity

formula has been used effectively by Barashkov and Gubinelli [2] in the study of the Φ4
3

Gibbs measure in the quantum field theory (in fact, they employ an extended formula
by Üstünel [24] to a class of unbounded functions F ; see Remark 1.2(3)). Their idea
is exploited further by Chandra, Gunaratnam and Weber in [10], and there seems to
be growing interest in the formula in this direction; see, e.g., [19] among others. The
work of Barashkov and Gubinelli also inspires approaches employed in [13, 8, 20], in
which a variational argument is used in the construction of quasi-invariant measures for
dispersive partial differential equations with random initial data.

One of the objectives of this paper is to show that the boundedness imposed on the
functions F is removable when both eF (B) and F (B) are integrable. We do this by slightly
modifying reasoning by Lehec [18] based on deep understanding of the Gaussian relative
entropy, which also allows F (B) to be a functional of B over the whole time interval.

In order to state the result precisely, we prepare some of notation. We denote by
P the probability measure of the probability space on which the Brownian motion B is
defined. We set

FBt := σ(Bs, 0 ≤ s ≤ t) ∨N , t ≥ 0,

the filtration generated by B and augmented by the set N of all P-null events. Let
v = {vt}t≥0 be a d-dimensional process defined on the same probability space as B. We
call v a drift if it is {FBt }-progressively measurable. We denote by V the set of drifts v
satisfying

E

[∫ ∞
0

|vt|2 dt
]
<∞. (1.2)

Here and in what follows, E denotes the expectation with respect to P and |x| stands for
the Euclidean norm of x ∈ Rd.

Let W = C([0,∞);Rd) be the space of Rd-valued continuous functions on [0,∞)

endowed with the topology of uniform convergence on compact subsets of [0,∞). We
denote by B(W) the associated Borel σ-field and byW the Wiener measure on (W,B(W)).
Let F : W→ R be measurable. We assume:

(A1)

∫
W

eF dW <∞; (A2)

∫
W

F− dW <∞,

where we set F−(w) := max{−F (w), 0}, w ∈W. The main result of the paper is stated
as follows:

Theorem 1.1. Let F : W→ R be a measurable function satisfying (A1) and (A2). Then
it holds that

logE
[
eF (B)

]
= sup
v∈V

E

[
F

(
B +

∫ ·
0

vt dt

)
− 1

2

∫ ∞
0

|vt|2 dt
]
. (1.3)

We may replace the supremum over V by that over a class of bounded drifts; see
Corollary 2.11.

We give a remark on Theorem 1.1.

Remark 1.2. (1) Under assumption (A1), the right-hand side of (1.3) is well-defined in
the sense that, for any v ∈ V,

E

[
F+

(
B +

∫ ·
0

vt dt

)]
<∞ with F+ := max {F, 0} ,

while E
[
F−
(
B +

∫ ·
0
vt dt

)]
may take value ∞ for some v ∈ V; see the beginning of the

proof of Proposition 2.1.
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The Boué–Dupuis formula and the exponential hypercontractivity

(2) Although a little involved argument is used in [6, Section 5], the extension of
formula (1.1) to the case that F is only assumed to be bounded from below is immediate
from the monotone convergence theorem. Indeed, for each positive real M , truncating
F from above by M , we have, from (1.1),

logE
[
eFM (B)

]
= sup
v∈V

E

[
FM

(
B +

∫ ·
0

vt dt

)
− 1

2

∫ 1

0

|vt|2 dt
]
,

where FM := min {F,M}; then, by the monotone convergence theorem, the left-hand
side converges as M → ∞ to the expression with FM replaced by F , and so does the
right-hand side since

sup
M>0

sup
v∈V

E

[
FM

(
B +

∫ ·
0

vt dt

)
− 1

2

∫ 1

0

|vt|2 dt
]

= sup
v∈V

sup
M>0

E

[
FM

(
B +

∫ ·
0

vt dt

)
− 1

2

∫ 1

0

|vt|2 dt
]

= sup
v∈V

E

[
F

(
B +

∫ ·
0

vt dt

)
− 1

2

∫ 1

0

|vt|2 dt
]
.

In this respect, what is essential in Theorem 1.1 is the removal of the boundedness of F
from below.

(3) In the setting of the classical Wiener space, Üstünel proved formula (1.1) in [24,
Theorem 7] under the condition that, for some p, q > 1 with p−1 + q−1 = 1,

E[|F (B)|p] <∞ and E
[
eqF (B)

]
<∞,

while, in [14, Theorem 1.1], the condition that

E[|F (B)|p] <∞ for some p > 1 and E
[
eF (B)

]
<∞

was imposed. Due to their methods, the restriction p > 1 seems inevitable: [24] uses
its Lemma 1 and [14] its Lemma 2.10. Note that our assumption of Theorem 1.1 is
equivalently rephrased as

E[|F (B)|] <∞ and E
[
eF (B)

]
<∞.

Theorem 7 of Üstünel [24] aims at characterizing in terms of the relative entropy the
invertibility of path transformations of the form B+

∫ ·
0
vt dt with B denoting the canonical

process in the classical Wiener space, and the essential assumption in his exploration is
E
[
(1 + |F (B)|) eF (B)

]
<∞. Generalizations of formula (1.1), such as ones to diffusions

and conditional expectations, in the same spirit as [24] may be found in a series of papers
by Hartmann; see [16] and references therein.

Independently of the work [6] by Boué–Dupuis, Borell [5] proved formula (1.1) when
F (B) is of the form f(B1) with f : Rd → R a bounded measurable function, and, among
other applications, applied it to a simple derivation of the Prékopa–Leindler inequality. In
the last part of the paper, we will show that it also yields readily the exponential version
of the hypercontractivity of the Ornstein–Uhlenbeck semigroup in Rd; the equivalence
between the exponential hypercontractivity and the logarithmic Sobolev inequality then
entails that the formula implies the Gaussian logarithmic Sobolev inequality.

We give an outline of the paper. In Section 2, we prove Theorem 1.1; the lower
bound in formula (1.3) is proven in Subsection 2.1 while the upper bound is proven
in Subsection 2.2, where the case of bounded drifts is also stated in Corollary 2.11.
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The Boué–Dupuis formula and the exponential hypercontractivity

The paper is concluded with Section 3 that explores the above-mentioned connection
between the formula and the exponential hypercontractivity of the Ornstein–Uhlenbeck
semigroup.

For every a, b ∈ R, we write a ∨ b = max{a, b} and a ∧ b = min{a, b}. For a positive
integer n, we denote by C∞b (Rn) the set of real-valued bounded C∞-functions on Rn

whose partial derivatives are all bounded. Given a measured space (X ,B,m), for every
1 ≤ p ≤ ∞, we denote by Lp(m) the set of real-valued measurable functions f on the
measurable space (X ,B) such that{

‖f‖Lp(m)

}p
:=

∫
X

|f(x)|pm(dx) <∞ for p <∞,

and that, with ess sup denoting the essential supremum with respect to m,

‖f‖L∞(m) := ess sup
x∈X

|f(x)| <∞ for p =∞.

Other notation will be introduced as needed.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let (X ,B) be a measurable space and P(X ) the set of probability measures on it.

For µ, ν ∈ P(X ), recall that the relative entropy of ν with respect to µ is defined by

H(ν | µ) :=

∫
X

dν

dµ
log

dν

dµ
dµ if ν � µ,

and H(ν | µ) := +∞ otherwise; see, e.g., [11, Section 1.4].
In the sequel, for every drift v, we denote

Bvt = Bt +

∫ t

0

vs ds, t ≥ 0,

the Brownian motion drifted by v and, whenever v ∈ V,

‖v‖V =

{
E

[∫ ∞
0

|vt|2 dt
]}1/2

.

A drift v is said to be bounded if it satisfies

sup
t≥0
‖|vt|‖L∞(P) <∞.

For later use in Subsection 2.2, we set

Vb := {v; v is a bounded drift satisfying (1.2)} ,

Vb,0 :=

{
v;

v is a bounded drift satisfying that there exists
K > 0 such that vt = 0 a.s. for all t ≥ K

}
.

Clearly, we have Vb,0 ⊂ Vb ⊂ V.

2.1 Lower bound

In this subsection, we give a proof of the lower bound in (1.3), that is, we prove

Proposition 2.1. For any measurable function F : W→ R satisfying (A1), we have

logE
[
eF (B)

]
≥ sup
v∈V

{
E[F (Bv)]− 1

2
‖v‖2V

}
. (2.1)
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Proposition 2.1 is immediate once the following lemma is at our disposal.

Lemma 2.2. Under (A1), the lower bound (2.1) holds when F is bounded from below.

By using this lemma, Proposition 2.1 is proven as follows:

Proof of Proposition 2.1. First we verify that, under assumption (A1),

E[F+(Bv)] <∞ for any v ∈ V, (2.2)

where F+(w) := F (w) ∨ 0, w ∈W. Fix v ∈ V arbitrarily and set F+,M = F+ ∧M for each
M > 0. Then, by Lemma 2.2, we have in particular

E[F+,M (Bv)] ≤ logE
[
eF+,M (B)

]
+

1

2
‖v‖2V .

By letting M →∞, the monotone convergence theorem entails that

E[F+(Bv)] ≤ logE
[
eF+(B)

]
+

1

2
‖v‖2V

≤ logE
[
1 + eF(B)

]
+

1

2
‖v‖2V ,

which is finite by (A1).
For every N > 0, we now define FN (w) := F (w)∨ (−N), w ∈W. Then, by Lemma 2.2,

the lower bound (2.1) holds for FN :

logE
[
eFN (B)

]
≥ sup
v∈V

{
E[FN (Bv)]− 1

2
‖v‖2V

}
. (2.3)

By assumption (A1), the random variable supN>0 e
FN (B) is integrable and, thanks to (2.2),

so is supN>0 FN (Bv) for any v ∈ V. Therefore, as N → ∞, we may use the monotone
convergence theorem on both sides of (2.3) to get

logE
[
eF (B)

]
≥ inf
N>0

sup
v∈V

{
E[FN (Bv)]− 1

2
‖v‖2V

}
≥ sup
v∈V

inf
N>0

{
E[FN (Bv)]− 1

2
‖v‖2V

}
= sup
v∈V

{
E[F(Bv)]− 1

2
‖v‖2V

}
,

which is the assertion.

We proceed to the proof of Lemma 2.2. We prepare two lemmas, the first one of
which is adapted from [11, Proposition 4.5.1]: set ∆(W) := {µ ∈ P(W); H(µ | W) <∞}.
Lemma 2.3. Let F : W → R be a measurable function bounded from below. Then it
holds that

log

∫
W

eF dW = sup
µ∈∆(W)

{∫
W

F dµ−H(µ | W)

}
.

The second one is taken from [18].

Lemma 2.4 ([18], Proposition 1). Let v be a drift and µ the law of Bv. Then it holds that

H(µ | W) ≤ 1

2
E

[∫ ∞
0

|vt|2 dt
]
.

ECP 27 (2022), paper 18.
Page 5/13

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP461
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


The Boué–Dupuis formula and the exponential hypercontractivity

In the setting of the classical Wiener space, the assertion of the above lemma goes
back to [23, Theorem 8].

Combining the above two lemmas yields Lemma 2.2 readily.

Proof of Lemma 2.2. For an arbitrary v ∈ V, let µ be the law of Bv. Then, since µ ∈ ∆(W)

by the definition of V and Lemma 2.4, we see from Lemma 2.3 that

log

∫
W

eF dW ≥
∫
W

F dµ−H(µ | W)

≥
∫
W

F dµ− 1

2
‖v‖2V ,

where we used Lemma 2.4 again for the second line. The assertion is proven because µ
is the law of Bv and v is arbitrary.

2.2 Upper bound

In this subsection, we prove the upper bound in (1.3):

Proposition 2.5. For any measurable function F : W→ R satisfying (A1) and (A2), we
have

logE
[
eF (B)

]
≤ sup
v∈V

{
E[F (Bv)]− 1

2
‖v‖2V

}
. (2.4)

We denote by FC∞b the set of functions Φ on W of the form

Φ(w) = φ (w(t1), . . . , w(tm)) , w ∈W, (2.5)

for some m ∈ N, 0 ≤ t1 < · · · < tm and φ ∈ C∞b (Rd×m). We also denote by C the set of
cylinder subsets C of W, namely, each C is of the form

C = {w ∈W; (w(t1), . . . , w(tm)) ∈ Γ} (2.6)

for some m ∈ N and 0 ≤ t1 < · · · < tm, and for some Borel subset Γ of Rd×m. It is well
known that

σ(C) = B(W) (2.7)

(see, e.g., [17, Problem 2.4.2]). Let F : W→ R be a measurable function and define the
σ-finite measure νF on (W,B(W)) by

dνF := (1 + F−) dW.

If F fulfills (A2), then νF is a finite measure and the following lemma is standard but
crucial to our argument.

Lemma 2.6. FC∞b is dense in L2(νF ) under assumption (A2).

For the completeness of the paper, we give a proof.

Proof of Lemma 2.6. It suffices to show that, for any A ∈ B(W), its indicator function 1A
can be approximated in L2(νF ) by a sequence {Φn}∞n=1 in FC∞b . To this end, fix a positive
integer n arbitrarily. In view of (2.7), the approximation property (e.g., [3, Theorem 5.7])
entails that there exists C ∈ C such that

‖1A − 1C‖L2(νF ) < n−1,

because of the fact that νF is a finite measure and |1A − 1C |2 = 1A∆C , where the symbol
∆ stands for the symmetric difference. As C may be expressed as (2.6), it is now routine
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to check that elements of C∞b (Rd×m) approximate 1Γ in the sense of L2 under the finite
measure

νmF ( · ) ≡ νt1,...,tmF ( · ) := νF ({w ∈W; (w(t1), . . . , w(tm)) ∈ · })

on Rd×m. To see that, notice that νmF is inner regular (cf. [3, Lemma 26.2]). Hence there
exists a compact subset K of Γ such that

‖1Γ − 1K‖L2(νm
F ) =

√
νmF (Γ)− νmF (K) < n−1.

Convoluting 1K with the standard mollifier ([12, Subsection 4.2.1]), we may construct a
family {φε}ε>0 ⊂ C∞b (Rd×m) (in fact, each φε is compactly supported) such that, as ε ↓ 0,
φε → 1K a.e. Thanks to the finiteness of νmF , this a.e. convergence entails that there
exists φ ∈ C∞b (Rd×m) such that

‖1K − φ‖L2(νm
F ) < n−1

by the bounded convergence theorem. Therefore, setting

Φn(w) := φ (w(t1), . . . , w(tm)) , w ∈W,

we have the desired sequence {Φn}∞n=1 ⊂ FC∞b because

‖1A − Φn‖L2(νF ) < 3n−1

for each n by construction.

Following the notation of [18], we define

S := {µ ∈ P(W); µ has a density Φ ∈ FC∞b w.r.t.W such that infw∈W Φ(w) > 0} .

The next lemma is also adapted from [18].

Lemma 2.7 ([18], Theorem 7). For every µ ∈ S, there exists v ∈ V such that Bv has law
µ and

H(µ | W) =
1

2
‖v‖2V . (2.8)

Remark 2.8. With u : [0,∞) ×W → W the Föllmer process associated with µ, as
constructed in the proof of [18, Theorem 2], one of v’s fulfilling (2.8) is given by
v = {u(t,X)}t≥0, where X = {Xt}t≥0 is the unique strong solution to the stochastic
differential equation

dXt = dBt + u(t,X) dt, t ≥ 0, X0 = 0,

whose pathwise uniqueness is ensured by µ ∈ S. The above choice of v is in Vb,0; indeed,
supposing that µ ∈ S has a density Φ given by (2.5), we see that, by construction,

|vt| ≤
1

inf
x∈Rd×m

φ(x)

m∑
i=1

sup
x∈Rd×m

|∇xiφ(x)| a.s.,

for 0 ≤ t ≤ tm and vt = 0 for t > tm. Here, for each 1 ≤ i ≤ m, ∇xiφ is the gradient of
φ(x) ≡ φ(x1, . . . , xm) with respect to the variable xi ∈ Rd.

Combining Lemmas 2.6 and 2.7, we immediately obtain

Proposition 2.9. The upper bound (2.4) holds for any measurable function F : W→ R

that is bounded from above and satisfies (A2).
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Proof. Set G := eF . Without loss of generality, we may assume ‖G‖L1(W) = 1. As

G ∈ L2(νF ) thanks to the boundedness of G, there exists a sequence {Φn}∞n=1 ⊂ FC∞b
such that

lim
n→∞

‖Φn −G‖L2(νF ) = 0 (2.9)

by Lemma 2.6. For every n, truncating Φn if necessary, we may assume infw∈W Φn(w) > 0.
For each n, define Gn := Φn/ ‖Φn‖L1(W) so that dµn := Gn dW is in S. It is clear that

lim
n→∞

‖Gn −G‖L2(νF ) = 0 (2.10)

by (2.9); indeed,

‖Gn −G‖L2(νF ) ≤
1

‖Φn‖L1(W)

‖Φn −G‖L2(νF ) +

∣∣∣∣∣ 1

‖Φn‖L1(W)

− 1

∣∣∣∣∣ ‖G‖L2(νF ) ,

which tends to 0 because (2.9) also entails that limn→∞ ‖Φn‖L1(W) = ‖G‖L1(W) = 1.

As {Gn}∞n=1 is bounded in L2(W) by (2.10) and the definition of νF , the sequence
{Gn logGn}∞n=1 is uniformly integrable underW, whence, by Vitali’s convergence theo-
rem (see, e.g., [21, Theorem 22.7]),

lim
n→∞

∫
W

Gn logGn dW =

∫
W

G logG dW (2.11)

because (2.10) also implies Gn → G in probability underW. Moreover, it follows that

lim
n→∞

∫
W

GnF− dW =

∫
W

GF− dW.

Since {Gn}∞n=1 also converges to G in L1(W) and F+ is bounded, we have

lim
n→∞

∫
W

GnF+ dW =

∫
W

GF+ dW

as well, and hence

lim
n→∞

∫
W

FGn dW =

∫
W

FGdW. (2.12)

Combining (2.11) and (2.12), we see that∫
W

F dµn −H(µn | W) =

∫
W

FGn dW −
∫
W

Gn logGn dW

−−−−→
n→∞

0

by the definition of G. Therefore, for any ε > 0, there exists µ ∈ S such that

logE
[
eF (B)

]
<

∫
W

F dµ−H(µ | W) + ε

because of E
[
eF (B)

]
= 1. The right-hand side of the last inequality is dominated by

sup
v∈V

{
E[F (Bv)]− 1

2
‖v‖2V

}
+ ε (2.13)

in view of Lemma 2.7, which proves the proposition as ε > 0 is arbitrary.
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Remark 2.10. If we let vn ∈ V be as in Remark 2.8 for each µn, what is in fact proven is

logE
[
eF (B)

]
= lim
n→∞

{
E[F (Bvn)]− 1

2
‖vn‖2V

}
.

We finish the proof of Proposition 2.5.

Proof of Proposition 2.5. For a measurable function F : W→ R satisfying (A1) and (A2),
we set, for each M > 0, FM (w) := F (w) ∧M, w ∈ W. Then, for any M , we have, by
Proposition 2.9,

logE
[
eFM (B)

]
≤ sup
v∈V

{
E[FM (Bv)]− 1

2
‖v‖2V

}
≤ sup
v∈V

{
E[F (Bv)]− 1

2
‖v‖2V

}
,

the last expression being well-defined by (2.2). Letting M → ∞ on the leftmost side
completes the proof by the dominated/monotone convergence theorem.

Since domination (2.13) is valid if we replace the supremum over V by that over Vb
or Vb,0 in view of Remark 2.8, we have the following corollary, which we think is useful
in some of applications; see, e.g., [10, Remarks 4.8 and 4.9].

Corollary 2.11. The supremum in (1.3) may be replaced by that over drifts v in Vb or
Vb,0; that is, for any measurable function F : W→ R satisfying (A1) and (A2), we have

logE
[
eF (B)

]
= sup
v∈Vb

{
E[F (Bv)]− 1

2
‖v‖2V

}
= sup
v∈Vb,0

{
E[F (Bv)]− 1

2
‖v‖2V

}
.

We end this section with a remark on the proof of Theorem 1.1 and related facts.

Remark 2.12. (1) Since both sides of (1.3) are well-defined only under assumption
(A1) as noted in Remark 1.2(1), it is plausible that formula (1.3) holds true without
any assumptions on F from below; however, we have not succeeded in proving it. The
difficulty is to prove the upper bound (2.4) without assuming (A2).

(2) Using the notion of filtrations introduced by Üstünel and Zakai [25] on abstract
Wiener spaces, Zhang [26] extended formula (1.1) of Boué–Dupuis for bounded Wiener
functionals to the framework of abstract Wiener spaces as simplifying the original proof
of the upper bound which relied on a complicated measurable selection argument. As
for the case of the Wiener space (W,W), Lehec [18] further simplified the proof of the
upper bound, based on deep analysis of the Gaussian relative entropy as exhibited in
Lemmas 2.4 and 2.7. Note that Lehec’s extension [18, Theorem 9] to the case with F (B)

a functional of B, assumed bounded from below, over the whole time interval may be
seen as a particular case of Zhang’s result [26, Theorem 3.2]; indeed, as discussed in
[22, Section 8.1], by restricting W to the Banach space W̃ consisting of paths w ∈W
such that limt→∞ |w(t)|/t = 0 normed by supt≥0 |w(t)|/(1 + t), the triple (W̃,H,W) forms
an abstract Wiener space, where H is the usual Cameron–Martin subspace of W.

(3) One of the main differences between Lehec’s proof and ours is that we appeal to
the density of FC∞b in L2(νF ) instead of L2(W); another is the employment of Vitali’s
convergence theorem in (2.11).
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3 Application to the Ornstein–Uhlenbeck semigroup

In this section, we explore a connection between formula (1.3) and the exponential
version of the hypercontractivity of the Ornstein–Uhlenbeck semigroup in Rd. For this
purpose, we begin with restating Theorem 1.1 when the functional F (B) is a function of
B1.

We consider the set of d-dimensional {FBt }-progressively measurable processes
v = {vt}0≤t≤1 satisfying

E

[∫ 1

0

|vt|2 dt
]
<∞;

in order to specify notationally that vt is a functional of B up to time t and the terminal
time is 1, we denote this set by V1(B). Let γ denote the standard Gaussian measure on
Rd and f : Rd → R be a measurable function. Noting that conditions (A1) and (A2) are
equivalent to both eF and F being in L1(W) (see Remark 1.2(3)), we assume

(B) ef ∈ L1(γ) and f ∈ L1(γ).

The following is immediate from Theorem 1.1 applied to F (B) = f(B1):

Proposition 3.1. Under assumption (B), we have

logE
[
ef(B1)

]
= sup
v∈V1(B)

E

[
f

(
B1 +

∫ 1

0

vt dt

)
− 1

2

∫ 1

0

|vt|2 dt
]
. (3.1)

Next we recall the exponential hypercontractivity of the Ornstein–Uhlenbeck semi-
group Q = {Qt}t≥0 defined in the Gaussian space (Rd, γ).

For each t ≥ 0, the operator Qt acts on L1(γ) in such a way that, for f ∈ L1(γ),

(Qtf)(x) =

∫
Rd

f
(
e−tx+

√
1− e−2ty

)
γ(dy), x ∈ Rd.

It is well known that Q enjoys the hypercontractivity, which is also known (see [1,
Proposition 4]) to be equivalent to the following property that we call the exponential
hypercontractivity: for any measurable function f : Rd → R satisfying (B),

‖exp(Qtf)‖Le2t (γ) ≤
∥∥ef∥∥

L1(γ)
for all t ≥ 0. (3.2)

We provide a simple derivation of (3.2) by means of Proposition 3.1; formula (3.1) for
any bounded measurable function f was discovered by Borell [5] independently of Boué–
Dupuis [6] and applied to a simple proof of the Prékopa–Leindler inequality among others.
Our application, which seems to be new to our knowledge, serves as another instance
of usefulness of the formula, often referred to as Borell’s formula, in deriving existing
functional inequalities.

Let f ∈ L1(γ) and observe the following identity in law for every t ≥ 0:

(Qtf, γ)
(d)
=
(
E
[
f(B1) | FBe−2t

]
, P
)
.

Indeed, by the independence of B1 −Be−2t and Be−2t , we have, a.s.,

E
[
f(B1) | FBe−2t

]
= E[f(B1 −Be−2t + x)]

∣∣
x=Be−2t

,

which has the same law as

E
[
f
(√

1− e−2tN2 + e−tx
)]∣∣∣

x=N1

,

where N1 and N2 are d-dimensional standard Gaussian random variables. Therefore the
exponential hypercontractivity (3.2) is equivalently stated as
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Proposition 3.2. For every measurable function f : Rd → R satisfying (B), it holds that

t logE
[
exp

{
t−1E

[
f(B1) | FBt

]}]
≤ logE

[
ef(B1)

]
(3.3)

for all 0 < t ≤ 1.

We give a proof of the proposition via Proposition 3.1. To this end, given f ∈ L1(γ),
we set

g(t, x) := E[f(B1 −Bt + x)] , 0 ≤ t ≤ 1, x ∈ Rd,

so that, for every 0 ≤ t ≤ 1,

E
[
f(B1) | FBt

]
= g(t, Bt) a.s. (3.4)

Proof of Proposition 3.2. By appealing to the monotone convergence theorem, it suffices
to prove (3.3) when f ∈ L1(γ) is bounded from above. Fix 0 < t ≤ 1 and set

Ws :=
1√
t
Bts, FWs := σ(Wu, 0 ≤ u ≤ s) ∨N ,

for 0 ≤ s ≤ 1, so that W = {Ws}0≤s≤1 is a standard d-dimensional {FWs }-Brownian
motion. Note that

√
tW1 = Bt and FW1 = FBt by definition. Moreover, as g(t, Bt) is

integrable in view of (3.4), the function t−1g
(
t,
√
tx
)
, x ∈ Rd, fulfills assumption (B) since

we have assumed that f is bounded from above. Therefore, noting (3.4) again, we may
apply Proposition 3.1 to t−1g

(
t,
√
tW1

)
to rewrite the left-hand side of (3.3) as

t logE
[
exp

{
t−1g

(
t,
√
tW1

)}]
= t sup

v∈V1(W )

E

[
t−1g

(
t,
√
tW1 +

√
t

∫ 1

0

vs ds

)
− 1

2

∫ 1

0

|vs|2 ds
]

= sup
v∈V1(W )

E

[
g

(
t,
√
tW1 +

∫ 1

0

vs ds

)
− 1

2

∫ 1

0

|vs|2 ds
]

= sup
v∈V1(W )

E

[
f

(
B1 +

∫ 1

0

vs ds

)
− 1

2

∫ 1

0

|vs|2 ds
]
.

(3.5)

Here the second equality follows from the equivalence
√
tv ∈ V1(W ) ⇐⇒ v ∈ V1(W );

for the third, by recalling the definition of g, and by noting that the random variables

√
tW1 +

∫ 1

0

vs ds,

∫ 1

0

|vs|2 ds

are independent of B1 −Bt because they are FBt -measurable by the definition of W , the
boundedness of f from above allowed us to apply Fubini’s theorem. Due to the obvious
inclusion V1(W ) ⊂ V1(B), the last expression in (3.5) is dominated by

sup
v∈V1(B)

E

[
f

(
B1 +

∫ 1

0

vs ds

)
− 1

2

∫ 1

0

|vs|2 ds
]
,

and hence, in virtue of Proposition 3.1 again, by logE
[
ef(B1)

]
. This proves (3.3).

Remark 3.3. We may start the proof with bounded measurable functions by truncating
f as (f ∧M) ∨ (−N) for M,N > 0. Then repeated use of the monotone convergence
theorem as N →∞ and then as M →∞ completes the proof. The essential part of the
above proof is how Borell’s formula applies to (3.3).
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By [1, Proposition 4], the exponential hypercontractivity (3.2) is equivalent to the
Gaussian logarithmic Sobolev inequality in Rd: for any weakly differentiable function f
in L2(γ) with |∇f | ∈ L2(γ),∫

Rd

|f |2 log |f | dγ ≤ ‖|∇f |‖2L2(γ) + ‖f‖2L2(γ) log ‖f‖L2(γ) ; (3.6)

we also refer to [15, Subsection A.1] in this respect. It is known [4, Section 3] that
the Prékopa–Leindler inequality implies the logarithmic Sobolev inequality; the above
exploration provides another path from formula (3.1) to (3.6).
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