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Abstract

We study the weak limit of the arboreal gas along any exhaustion of a regular tree with
wired boundary conditions. We prove that this limit exists, does not depend on the
choice of exhaustion, and undergoes a phase transition. Below and at criticality, we
prove the model is equivalent to bond percolation. Above criticality, we characterise
the model as the superposition of critical bond percolation and a random collection of
infinite one-ended paths. This provides a simple example of an arboreal gas model
that continues to exhibit critical-like behaviour throughout its supercritical phase.
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1 Introduction

Let G = (V,E) be a finite graph. The arboreal gas is a model for a random spanning
subgraph ω ∈ {0, 1}E that is a forest, a graph without cycles. Given a parameter β > 0,
the arboreal gas AGβ assigns weight AGβ (ω = η) = β|η|/Zβ to each forest η ∈ {0, 1}E with
|η| edges, where Zβ is the suitable normalising constant. In terms of bond percolation
PGp , in which every edge in E is independently included in ω with probability p ∈ [0, 1],

AGβ ( · ) = PGpβ ( · | ω is a forest) with pβ :=
β

β + 1
. (1.1)

This model is at the intersection of a number of other important models in discrete
probability: the arboreal gas is the weak limit of the q-state random cluster model φp,q
as q → 0 with p = βq [5, Section 1.5], and taking β = 1 and β → ∞, the arboreal
gas becomes the uniform measure on spanning forests and the uniform spanning tree,
respectively.

The arboreal gas was studied on the complete graph in [10, 12]. In this setting,
the arboreal gas has a phase transition at the same point as the corresponding bond
percolation process, and the two models are equivalent in the subcritical phase. However,
in the supercritical phase, the following surprising phenomenon occurs: the second
largest cluster in the arboreal gas scales like n2/3, as in the critical arboreal gas (and
critical bond percolation [3, 9]), whereas the second largest cluster in bond percolation
scales like log n, as in subcritical bond percolation. More recently, weak limits of the
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The wired arboreal gas on regular trees

arboreal gas along exhaustions of Zd were studied in [2, 1] by exactly relating the
arboreal gas to a non-linear sigma model with hyperbolic target space. Here again,
the authors find that in the supercritical phase, the arboreal gas continues to exhibit
critical-like behaviour, this time with respect to the decay of certain truncated two-point
functions. They remark that this phenomenon is actually natural from the viewpoint of
spontaneously broken continuous symmetries, rather than bond percolation.

The motivation for this paper is to give a transparent example of an arboreal gas
model exhibiting this behaviour and to establish it by elementary arguments. Let T be
the k-regular tree for some k ≥ 3. Since T is infinite, the arboreal gas on T is not defined
a priori. To extend the definition of the arboreal gas to T , we take the weak limit along
an exhaustion (Vn). An exhaustion of T is a growing sequence of finite connected sets of
vertices whose union contains every vertex in T . For each n, construct a finite graph Gn
as follows: take the subgraph of T induced by the union of Vn with its neighbours in T ,
then merge these neighbours to a single vertex ∂n. This corresponds to equipping (Vn)

with wired boundary conditions. If we used free boundary conditions instead, i.e. we did
not merge the boundary vertices, then each Gn would be a tree, so the arboreal gas on
Gn would simply be bond percolation. The wired arboreal gas on T of parameter β > 0,
denoted WT

β , is defined to be the weak limit of AGnβ as n→∞.

The goal of this paper is to prove the following theorem characterising WT
β . Notice

WT
β undergoes a phase transition at βc :=

1
k−2 . This corresponds to the critical parameter

pc :=
1

k−1 for bond percolation in the sense that pc = pβc . In the subcritical and critical

phases, WT
β is equal to PTpβ , whereas in the supercritical phase, WT

β is the superposition

of PTpc and a random collection of infinite one-ended paths. In particular, the supercritical
clusters are distributed as in critical bond percolation when finite and as the incipient
infinite cluster [8] when infinite. We write o for an arbitrary distinguished vertex in T ,
we write d for the graph distance metric on T , and we label the endpoints of each edge
e ∈ T by e− and e+ with d(o, e−) < d(o, e+).

Theorem 1.1. Let (Gn) be the sequence of graphs induced by an exhaustion of a
k-regular tree T with k ≥ 3 using wired boundary conditions, and let β > 0.

1. The sequence (AGnβ )∞n=1 converges weakly to a limit WT
β that is independent of the

choice of exhaustion and is therefore invariant under any graph automorphism of
T .

2. When β ≤ 1
k−2 , we have WT

β = PTpβ .

3. When β ≥ 1
k−2 , we can sample ω according to WT

β by the following procedure:

(a) Sample a configuration ω0 on the edges of T according to PTpc .

(b) Sample a configuration η on the vertices of T such that each vertex v is
independently included in η with probability β(k−2)k−k

β(k−2)k−1 if v = o and probability
β(k−2)−1
β(k−2) if v 6= o.

(c) Let U be the set of vertices v ∈ η such that v = o or there is an edge e ∈ T\ω0

with e+ = v.

(d) For each vertex v ∈ T , independently select a neighbour s(v) with d(o, s(v)) >
d(o, v) uniformly at random. Let γ(v) denote the edges in the path v, s(v),

s(s(v)), . . . .

(e) Set

ω = ω0 ∪
⋃
v∈U

γ(v).
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The wired arboreal gas on regular trees

The wired uniform spanning forest, i.e. the weak limit of the uniform spanning
tree with wired boundary conditions, can be sampled by the above procedure if we
instead insist that η includes every vertex [7]. So as β → ∞, the wired arboreal gas
WT

β converges weakly to the wired uniform spanning forest, which we will denote WT
∞.

This is an infinite analogue of the fact that on finite graphs, the arboreal gas converges
weakly to the uniform spanning tree as β →∞.

The next corollary contains two stochastic domination properties of the wired arboreal
gas. We prove these by using the procedure from Theorem 1.1 to build monotone
couplings. For item 1, we use the fact that there is a monotone coupling of the bond
percolation measures (PTp )p∈[0,1] [4, Theorem 2.1] to build a monotone coupling of the
measures (WT

β )β>0. For item 2, we modify the procedure in order to sample from
the wired arboreal gas conditioned on the state of a given edge. Item 2 is a negative
dependence property that is weaker than negative association but stronger than edge-
negative correlation. The arboreal gas may satisfy negative association in general, but
even edge-negative correlation has not been proved. This is the main obstacle to defining
the arboreal gas on arbitrary infinite graphs, including Zd [1].

Corollary 1.2 (Stochastic Domination).
1. For all β1, β2 ∈ (0,∞] with β1 < β2, we have WT

β1
.WT

β2
.

2. For each edge e ∈ T , we have WT
β ( · | e ∈ ω) . WT

β ( · | e 6∈ ω), where these are
viewed as measures on the configurations of the edges in T\{e}.

Remark. While writing this paper, we learned that G. Ray and B. Xiao have also been
independently studying the wired arboreal gas on regular trees [13]. Their main result
is similar to ours. However, their arguments have a slightly different flavour, being more
similar to [6].

2 Existence via cylinder events

In this section, we prove that WT
β is well-defined and compute the probability it

assigns to certain cylinder events, i.e. events that depend on finitely many edges. We
naturally identify the edges in each Gn with edges in T , so that for each edge e ∈ Gn, the
endpoints e− and e+ are defined as vertices in Gn. Given vertices u, v ∈ T , we say u is a
descendant of v if the geodesic in T from o to u crosses v. For each Gn and edge e ∈ Gn,
we define Gn(e) to be the subgraph of Gn induced by {e−, ∂n} and the descendants of
e+. Finally, we drop the subscripts in AGβ ,W

G
β ,P

G
pβ
, pβ whenever this does not cause

confusion.

Lemma 2.1. Let e1, . . . , er be edges in T such that e−i is not a descendent of e−j for

any i 6= j. Pick n sufficiently large that e−1 , . . . , e
−
r ∈ Vn, and let H be the graph formed

from Gn(e1), . . . , Gn(er) by identifying e−1 , . . . , e
−
r to a single vertex v. For each i, define

qi := A
Gn(ei)

(
e−i 6↔ ∂n

)
. Then

AH (v 6↔ ∂n) =
1

1− r +
∑
i

1
qi

, (2.1)

and abbreviating {ω is a forest} to {forest},

PH (forest) =

∏
i

qi +
∑
i

(1− qi)
∏
j 6=i

qj

 ·∏
i

PGn(ei) (forest) . (2.2)

Proof. Every cycle in H is either entirely contained in some Gn(ei) or consists of two
edge-disjoint paths from v to ∂n that are each entirely contained in some distinct Gn(ei)
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and Gn(ej), respectively. So by independence and (1.1),

PH ({forest} ∩ {v 6↔ ∂n}) =
∏
i

PGn(ei)
(
{forest} ∩ {e−i 6↔ ∂n}

)
=

(∏
i

qi

)
·
∏
i

PGn(ei) (forest) ,

(2.3)

PH ({forest} ∩ {v ↔ ∂n})

=
∑
i

PGn(ei)
(
{forest} ∩ {e−i ↔ ∂n}

)∏
j 6=i

PGn(ej)
(
{forest} ∩ {e−j 6↔ ∂n}

)

=

∑
i

(1− qi)
∏
j 6=i

qj

 ·∏
i

PGn(ei) (forest) .

(2.4)

Adding (2.3) to (2.4) gives (2.2). Dividing (2.3) by (2.2) gives an expression for
AH (v 6↔ ∂n) that rearranges to the claimed formula (2.1).

Lemma 2.2. For each edge e ∈ T ,

lim
n→∞

AGn(e)
(
e− 6↔ ∂n

)
= λ :=

{
1 if β ≤ 1

k−2 ,
k−1

(k−2)(1+β) if β ≥ 1
k−2 .

Proof. This formula will follow from the fact that λ is the smallest fixed point of a suitable
recursion function F . Pick n sufficiently large that e+ ∈ Vn. Consider an edge f ∈ Gn(e)
with f+ 6= ∂n. There are k − 1 edges f1, . . . , fk−1 ∈ Gn(e) with f−i = f+. For each i,
define qi := AGn(fi)

(
f−i 6↔ ∂n

)
. By (2.1) and conditioning on the state of f ,

AGn(f)
(
f− 6↔ ∂n

)
= (1− p) + p · 1

1− (k − 1) +
∑
i

1
qi

. (2.5)

Define a function F : (0, 1]→ (0, 1] by F (q) := (1− p) + p · 1
1−(k−1)+(k−1)/q , which comes

from setting q1 = · · · = qk−1 = q in (2.5). Notice that λ is a fixed point of F , and for every
q ∈ (0, λ), we have F (q) ∈ (q, λ). In particular, if q1, . . . , qk−1 ∈ (0, λ), then

min
i
qi < F

(
min
i
qi

)
≤ AGn(f)

(
f− 6↔ ∂n

)
≤ F

(
max
i
qi

)
< λ. (2.6)

For every edge f ∈ Gn(e) with f+ = ∂n, we trivially have AGn(f) (f− 6↔ ∂n) = 1 −
p ∈ (0, λ). So by eq. (2.6) and induction on the graph distance from ∂n, we have
AGn(f) (f− 6↔ ∂n) ∈ (1− p, λ) for every edge f ∈ Gn(e).

Let Rn be the maximum integer such that the ball of vertices {u ∈ T : d(e−, u) ≤ Rn}
is contained in Vn. We have shown that for every edge f ∈ Gn(e), in particular every
edge f ∈ Gn(e) with d(e−, f−) = Rn, we have AGn(f) (f− 6↔ ∂n) ∈ (1− p, λ). So by (2.6)
and induction on the value of Rn,

F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
Rn copies

(1− p) ≤ AGn(e)
(
e− 6↔ ∂n

)
< λ. (2.7)

By (2.6), the sequence (1− p), F (1− p), F ◦F (1− p), F ◦F ◦F (1− p), . . . is an increasing
sequence of real numbers in (0, λ). So this sequence converges to some limit l ∈ (0, λ].
Since F is continuous, l must be a fixed point of F . Since F (q) > q whenever q ∈ (0, λ),
we know l = λ. In particular, since Rn →∞ as n→∞,

lim
n→∞

F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
Rn copies

(1− p) = λ.

The result now follows from (2.7).
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We use these lemmas to relate the limiting probabilities of certain cylinder events
under AGn to their probabilities under PT . Let B be a finite connected set of edges in
T that contains an edge adjacent to o, and let η ∈ {0, 1}B be a configuration on B. For
every set of edges E ⊆ T , we write ∂E for the set of edges in T\E that are adjacent to E.
η induces the equivalence relation on ∂B in which edges e and f are related if and only
if e− and f− are connected by a path in η. The next lemma explains how to use the sizes
of the equivalence classes A1, . . . , At to compute the limiting probability of the cylinder
event {ω ∩B = η} under AGn .

Lemma 2.3. For each non-negative integer m, define Qm := λm +m(1− λ)λm−1, where
λ is the limit from Lemma 2.2. Then

lim
n→∞

AGn (ω ∩B = η) =

∏t
i=1Q|Ai|

Qk ·Q|B|k−1

· PT (ω ∩B = η) .

Proof. Pick n sufficiently large that Gn contains B ∪ ∂B. By (1.1),

AGn (ω ∩B = η) = PGn (ω ∩B = η | forest) =
PGn (forest | ω ∩B = η)

PGn (forest)
· PT (ω ∩B = η) .

(2.8)

For each i ∈ {1, . . . , t}, let Hi be the graph formed from {Gn(e) : e ∈ Ai} by identifying
the vertices in {e− : e ∈ Ai} to a single vertex vi. Starting from Gn, when we contract
every edge in η and delete every edge in B\η, we are left with copies of H1, . . . ,Ht that
meet only at ∂n. Each cycle in this graph is entirely contained in a copy of some Hi. So
by independence, PGn (forest | ω ∩B = η) =

∏t
i=1P

Hi (forest). For each edge e ∈ Gn,
define qe := AGn(e) (e− 6↔ ∂n). By (2.2) and Lemma 2.2, it follows that

PGn (forest | ω ∩B = η) =

t∏
i=1

∏
e∈Ai

qe +
∑
e∈Ai

(1− qe)
∏

f∈Ai\{e}

qf

(∏
e∈Ai

PGn(e) (forest)

)

∼

(
t∏
i=1

Q|Ai|

)
·
∏
e∈∂B

PGn(e) (forest) .

(2.9)

Here we use the notation y(n) ∼ z(n) to mean limn→∞ y(n)/z(n) = 1. Similarly, by (2.2)
and Lemma 2.2,

PGn (forest) =

 ∏
e: e−=o

qe +
∑

e: e−=o

(1− qe)
∏

f : f−=o
f 6=e

qf

 · ∏
e: e−=o

PGn(e) (forest)

∼ Qk ·
∏

e: e−=o

PGn(e) (forest) .

For every edge e ∈ Gn, we have PGn(e) (forest) = PGn(e)\{e} (forest), since no cycle in
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Gn(e) crosses e−. So by repeatedly applying (2.2) and Lemma 2.2,

PGn (forest) ∼ Qk ·

 ∏
e1∈∂B: e−1 =o

PGn(e1) (forest)


·

 ∏
e1∈B: e−1 =o

Qk−1 ·

 ∏
e2: e

−
2 =e+1

PGn(e2) (forest)


. . .

∼ QkQ|B|k−1 ·
∏
e∈∂B

PGn(e) (forest) . (2.10)

The result now follows by plugging (2.9) and (2.10) into (2.8).

From Lemma 2.3, whose formula does not depend on (Vn), we deduce that AGn

converges weakly as n→∞ to a limitWT that is independent of the choice of exhaustion.
This verifies item 1 of Theorem 1.1. To prove item 2, take β ≤ 1

k−2 . By Lemma 2.2, λ = 1,

so Qm = 1 for every non-negative integer m. So WT and PT assign the same probability
to every cylinder event covered by Lemma 2.3 and hence to every event.

3 Supercritical phase

In this section, we prove item 3 from Theorem 1.1, which characterises the supercrit-
ical phase of WT . Let E1 t E2 be a partition of the edges adjacent to o in T . Consider
the corresponding subgraphs T1 and T2 induced by the union of E1 with the descendants
of {e+ : e ∈ E1} and the union of E2 with the descendants of {e+ : e ∈ E2}, respectively.
Our first step is to relate the restricted configurations ω ∩ T1 and ω ∩ T2 to each other. In
particular, writing Ku for the cluster containing u, we relate the restricted configuration
ω ∩ T1 to the restricted cluster Ko ∩ T2 on the event that Ko ∩ T2 is finite. Interestingly,
we find that when conditioned to be finite, Ko ∩ T2 is distributed as it is under critical
bond percolation PTpc .

Lemma 3.1. When β ≥ 1
k−2 ,

1. Under WT ( · | |Ko ∩ T2| <∞), the random variables ω ∩ T1 and Ko ∩ T2 are in-
dependently distributed, and Ko ∩ T2 has the same distribution as it does under
PTpc ;

2. WT (|Ko ∩ T2| <∞) = β(k−2)|E1|+|E2|−1
β(k−2)k−1 .

Proof. Let B1 ⊆ T1 be a finite connected set of edges that contains E2, let η1 ∈ {0, 1}B1

be a configuration on B1, and let G ⊆ T2 be a finite connected subgraph containing o. Our
first goal is to compute WT ({ω ∩B1 = η1} ∩ {Ko ∩ T2 = G}). The event {Ko∩T2 = G} is
the event that the edges in G, say O, are open, and the edges adjacent to G in T2, say C,
are closed. So we can write this event as {ω ∩B2 = η2}, where B2 := O ∪ C and η2 := O.
In particular, we can write the event {ω ∩ B1 = η1} ∩ {Ko ∩ T2 = G} as {ω ∩ B = η},
where B := B1 ∪B2 and η := η1 ∪ η2.

As in the setup for Lemma 2.3, the configuration η induces the equivalence relation
on ∂B in which edges e and f are related if and only if e− and f− are connected by a
path in η. None of the edges in ∂B1 are related to any of the edges in ∂B2. Moreover,
the edges in ∂B2 are partitioned into |C| equivalence classes, each containing k − 1

edges. Let a1, . . . , at be the sizes of the equivalence classes containing the edges in ∂B1,
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including repeats. By Lemma 2.3,

WT (ω ∩B = η) =
Q
|C|
k−1 ·

∏t
i=1Qai

Qk ·Q|B|k−1

· PT (ω = η) .

By induction on |O|, we find |C| = |E2| + (k − 2) · |O|. So we can rewrite the above
expression as

WT (ω ∩B = η) =

(∏t
i=1Qai

Qk ·Q|B1|
k−1

· p|η1|(1− p)|B1\η1|+|E2|

)
·
(
p(1− p)k−2

Qk−1

)|O|
.

By Lemma 2.3 again, the first term in this product is WT ({ω ∩B1 = η1} ∩ {E2 closed}).
By direct calculation, we miraculously find that the second term in this product is(
pc(1− pc)k−2

)|O|
, which is equal to PTpc (Ko ∩ T2 = G) /(1− pc)|E2|. Therefore,

WT (ω ∩B = η) =
WT ({ω ∩B1 = η1} ∩ {E2 closed})

(1− pc)|E2|
· PTpc (Ko ∩ T2 = G) . (3.1)

Since pc is the critical parameter for bond percolation on T2, we know Ko ∩ T2 is PTpc -
almost surely finite [11, Proposition 5.4]. Summing (3.1) over all possibilities for G, it
follows that

WT ({ω ∩B1 = η1} ∩ {|Ko ∩ T2| <∞}) =
WT ({ω ∩B1 = η1} ∩ {E2 closed})

(1− pc)|E2|
. (3.2)

Plugging this back into (3.1) and dividing by WT (|Ko ∩ T2| <∞) gives

WT (ω ∩B = η | |Ko ∩ T2| <∞) =WT (ω ∩B1 = η1 | |Ko ∩ T2| <∞) ·PTpc (Ko ∩ T2 = G) .

Since η1 and G were arbitrary, this proves item 1. To prove item 2, sum (3.2) over all
possibilities for η1 given B1 to obtain

WT (|Ko ∩ T2| <∞) =
WT (E2 closed)

(1− pc)|E2|
,

then use Lemma 2.3 to compute

WT (E2 closed)

(1− pc)|E2|
=
Qk−|E2| ·Q

|E2|
k−1

Qk ·Q|E2|
k−1

· (1− p)
|E2|

(1− pc)|E2|
=
β(k − 2) |E1|+ |E2| − 1

β(k − 2)k − 1
.

Given a subgraph H of T , let {o H←→∞} be the event that ω ∩H contains an infinite

self-avoiding path from o. Let {o H←→ ∞} ◦ {o H←→ ∞} and {o H ∞} be the events that
ω ∩ H contains at least two edge-disjoint such paths and no such paths, respectively.

When H = T , we simply write↔ in place of
H←→. Given an edge e ∈ T , we write T (e) for

the subgraph of T induced by e− and the descendants of e+.

Corollary 3.2. When β ≥ 1
k−2 ,

1. UnderWT ( · | |Ko| <∞), the cluster Ko has the same distribution as it does under
PTpc ;

2. WT (o↔∞) = β(k−2)k−k
β(k−2)k−1 ;

3. WT ({o↔∞} ◦ {o↔∞}) = 0;
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4. WT (o↔∞ | o
T (e)

∞) = β(k−2)−1
β(k−2) for every edge e adjacent to o.

Proof. Items 1 and 2 follow immediately by taking E1 = ∅ in items 1 and 2 of Lemma 3.1,
respectively. To prove item 3, start by rewriting

1−WT ({o↔∞} ◦ {o↔∞})

=WT (o 6↔ ∞) +
∑

e: e−=o

WT

{o T (e)←−→∞} ∩
⋂

f : f−=o
f 6=e

{o
T (f)

∞}

 .

By item 2 of Lemma 3.1, for every edge e adjacent to o,

WT

{o T (e)←−→∞} ∩
⋂

f : f−=o
f 6=e

{o
T (f)

∞}

 =WT

 ⋂
f : f−=o
f 6=e

{o
T (f)

∞}

−WT (o 6↔ ∞)

=
β(k − 2) + k − 2

β(k − 2)k − 1
− k − 1

β(k − 2)k − 1

=
β(k − 2)− 1

β(k − 2)k − 1
.

Therefore,

1−WT ({o↔∞} ◦ {o↔∞}) = k − 1

β(k − 2)k − 1
+ k · β(k − 2)− 1

β(k − 2)k − 1
= 1.

To prove item 4, given an edge e adjacent to o, use the resultWT ({o↔∞} ◦ {o↔∞}) =
0 and Lemma 3.1 to compute

WT (o↔∞ | o
T (e)

∞) =

WT

(
o

T\T (e)←−−−→∞
)

WT

(
o

T (e)
∞
) =

β(k − 2)− 1

β(k − 2)
.

We now combine our results to prove item 3 of Theorem 1.1 and Corollary 1.2.

Proof of item 3 of Theorem 1.1. Let Q be the distribution of the configuration ω given
by the procedure. For some positive integer R, let B be the set of edges e ∈ T with
d(o, e+) ≤ R, and for each edge e ∈ B, define B(e) := T (e) ∩B. Recall that for every set
of edges E ⊆ T , we defined ∂E to be the set of edges in T\E that are adjacent to E. We
write ∂2E for ∂(E ∪ ∂E). Define random sets of edges E1, E2, . . . by E1 := Ko ∩B, and
for each i ≥ 2,

Ei :=
⋃

e∈B∩∂2Ei−1

K(e−) ∩B(e).

It suffices to check that for each i,

Q (Ei = · | E1, . . . , Ei−1) =W
T (Ei = · | E1, . . . , Ei−1) .

Start with i = 1. By item 2 from Corollary 3.2, the probability that Ko is finite is the
same under WT and Q. By item 1 from Corollary 3.2, the conditional distribution of Ko

given that Ko is finite is the same under WT and Q. By item 3 from Corollary 3.2, on
the event that Ko is infinite, there is WT -almost surely a unique infinite self-avoiding
path P in ω from o. By symmetry, since WT is invariant under any graph automorphism
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of T , this path P is distributed uniformly and hence has the same law as γ(o) from the
procedure. Let I be the edges of a length-R self-avoiding path from o. Let E be the event
that Ko is infinite and the first R edges in P are the edges in I. It suffices to check that
the conditional distribution of (Ko ∩B)\I =

⋃
e∈B∩∂I K(e−) ∩B(e) given E is the same

under WT and Q. Since T is vertex-transitive, the result WT ({o↔∞} ◦ {o↔∞}) = 0

holds with o replaced by any other given vertex. In particular, on E , the set K(e−) ∩B(e)

is finite for every edge e ∈ B ∩ ∂I, WT -almost surely. So by item 1 from Lemma 3.1,
given E , the sets {K(e−) ∩B(e)}e∈B∩∂I are distributed under WT as they are under PTpc
and hence under Q.

Now take i ≥ 2. Let A be the event that (E1, . . . , Ei−1) assumes a particular outcome
(E1, . . . , Ei−1). On A, no edge in B ∩ ∂Ei−1 belongs to ω. So by item 1 of Lemma 3.1,
given A, the sets {K(e+) ∩ (B(e)\{e})}e∈B∩∂Ei−1

are distributed independently under

WT , which is also the case under Q. By item 2 of Corollary 3.2, given A, for every edge
e ∈ B ∩ ∂Ei−1, the set K(e+) has the same probability of being finite under WT and Q,
and arguing similarly to the case i = 1, Lemma 3.1 and Corollary 3.2 guarantee that if we
additionally condition on whether K(e+) is finite, the set K(e+)∩(B(e)\{e}) has the same
distribution underWT and Q. Therefore, given A, Ei−1 =

⋃
e∈B∩∂Ei−1

K(e+)∩(B(e)\{e})
has the same distribution under WT and Q.

Proof of Corollary 1.2. Item 1 follows from item 3 of Theorem 1.1 because there is a
monotone coupling of the bond percolation measures (PTp )p∈[0,1] [4, Theorem 2.1]. For
item 2, we explicitly modify the procedure from item 3 of Theorem 1.1 to construct a
monotone coupling (ωopen, ωclosed) of (WT ( · | e ∈ ω) ,WT ( · | e 6∈ ω)). By automorphism-
invariance, we can assume e is adjacent to o, say e = {o, u}.

Sample ω0 according to PT\{e}pc . Sample a configuration η on the vertices of T except

{o, u} such that each vertex is independently included with probability β(k−1)−1
β(k−2) . Let U be

the set of vertices v ∈ η such that there is an edge f ∈ T\(ω ∪ {e}) with v = f+. For each
vertex v ∈ T , independently select a neighbour s(v) with d(e, s(v)) > d(e, v) uniformly
at random. Let γ(v) denote the edges in the path v, s(v), s(s(v)), . . . . Let Aclosed be a
random subset of {o, u} such that each vertex is independently included with probability

WT (o
T\T (e)←−−−→∞ | e 6∈ ω). Let Aopen be a random subset of {o, u} containing at most one

vertex such that each vertex is included with probability WT (o
T\T (e)←−−−→ ∞ | e ∈ ω). By

item 3 of Theorem 1.1, Aopen is well-defined, and the configurations of the edges in T\{e}
given by

ωopen := ω0 ∪
⋃

v∈U∪Aopen

γ(v) and ωclosed := ω0 ∪
⋃

v∈U∪Aclosed

γ(v)

are distributed according to WT ( · | e ∈ ω) and WT ( · | e 6∈ ω), respectively.
We automatically have P (u ∈ Aopen | o ∈ Aopen) ≤ P (u ∈ Aclosed). Using Theorem 1.1,

we find by direct calculation that P (u ∈ Aopen | o 6∈ Aopen) = P (u ∈ Aclosed) and
P (o ∈ Aopen) ≤ P (o ∈ Aclosed). So we can couple Aopen and Aclosed with Aopen ⊆ Aclosed

almost surely. In particular, we can couple ωopen and ωclosed with ωopen ⊆ ωclosed almost
surely.
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