
Electron. Commun. Probab. 27 (2022), article no. 9, 1–13.
https://doi.org/10.1214/22-ECP451
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

On the rate of escape or approach to the origin of a random

string*

Phúc Lâm†

Abstract

In this paper, we extend upon a result by Mueller and Tribe regarding Funaki’s model
of a random string. Specifically, we examine the rate of escape of this model in
dimensions d ≥ 7. We also provide a bound for the rate of approach to the origin in
dimension d = 6.
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1 Introduction and main results

Mueller and Tribe studied recurrence questions for the following model of a random
string in [9]:

∂ut(x)

∂t
=
∂2ut(x)

∂x2
+ Ẇ (x, t), (1.1)

where Ẇ = (Ẇ (x, t))t≥0,x∈R is a Rd-valued space-time white noise with independent
components and (ut(x))t≥0,x∈R is a continuous Rd-valued process. We also suppose that
the noise is adapted with respect to a filtered probability space (Ω,F , (Ft), P ), where F
is complete and (Ft) is right continuous, in that W (f) is Ft-measurable whenever f is
supported in [0, t]×R.

Denote Gt(x) = (4πt)−1/2 exp(−x2/4t) as the fundamental solution of the heat equa-
tion. The stationary pinned string (Ut(x))t≥0,x∈R, which we will study in this paper, is a
solution to (1.1) driven by the white noise Ẇ (x, t) such that

• U0(x) =
∫∞
0

∫
(Gr(x − z) − Gr(z))W̃ (dzdr), where W̃ is a space-time white noise

independent of Ẇ ;

• Ut(x) is a continuous version of the process
∫
Gt(x − z)U0(z)dz +

∫ t
0

∫
Gr(x −

z)W (dzdr).
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On the rate of escape or approach to the origin of a random string

Here, we write f . g if there is a constant C > 0 such that f(x) ≤ Cg(x) for all x, and
f ' g if there are constants C1, C2 > 0 such that C1f(x) ≤ g(x) ≤ C2f(x) for all x. We
also denote Bδ(z) as the open ball {y ∈ Rd : |yi − zi| < δ ∀i}

Before proceeding any further, we restate a few properties of the stationary pinned
string, all of which can be found in [9].

1. Ut(x) =
(
U

(1)
t (x), . . . , U

(d)
t (x)

)
, where the U (i)(x) are i.i.d. and (U

(i)
0 (x))x∈R is a

two-sided Brownian motion with U0(0) = 0.

2. Each of the
(
U

(i)
t (x)

)
t≥0,x∈R

are centered Gaussian fields such that

E

[(
U

(i)
t (x)− U (i)

t (y)
)2]

= |x− y| ∀x, y ∈ R, t ≥ 0, (1.2)

and for x, y ∈ R, 0 ≤ s < t,

E

[(
U

(i)
t (x)− U (i)

s (y)
)2]

= (t− s)1/2F
(
|x− y|(t− s)−1/2

)
, (1.3)

where F : R→ R is smooth, bounded below by (2π)−1/2, and

lim
|x|→∞

F (x)/|x| = 1.

Moreover, there exists c1 > 0 such that

c1

(
|x− y|+ |t− s|1/2

)
≤ E

[(
U

(i)
t (x)− U (i)

s (y)
)2]
≤ 2

(
|x− y|+ |t− s|1/2

)
.

(1.4)

3. (Translation invariance) For any t0 ≥ 0, x0 ∈ R, the field

(Ut0+t(x0 ± x)− Ut0(x0))x∈R,t≥0

has the same law as the stationary pinned string.

4. (Scaling) For L > 0, the field (
L−1UL4t(L

2x)
)
x∈R,t≥0

has the same law as the stationary pinned string.

(1.4) gives us a simple yet useful bound as follows.

Proposition 1.1. For all t > 0, x ∈ Rd, and δ > 0,

P (Ut(x) ∈ Bδ(0)) .

(
δ(

t1/2 + |x|
)1/2

)d
.

We call (Ut(x))t≥0,x∈R

• point recurrent if, almost surely, ∀z ∈ Rd, there exist (random) sequences
{xn}, {tn} such that tn ↗∞ and Utn(xn) = z ∀n;

• neighborhood recurrent if, almost surely, ∀z ∈ Rd and ε > 0, there exist (random)
sequences {xn}, {tn} such that tn ↗∞ and Utn(xn) ∈ Bε(z) ∀n;

• transient if, infx∈R |Ut(x)| goes to infinity.

In [9], Mueller and Tribe showed that
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On the rate of escape or approach to the origin of a random string

• for d ≤ 5, (Ut(x))t≥0,x∈R is point recurrent;

• for d = 6, (Ut(x))t≥0,x∈R is neighborhood recurrent but not point recurrent;

• for d ≥ 7, (Ut(x))t≥0,x∈R is transient.

This motivates the question of finding the rate of escape of this string when d ≥ 6.
How fast should a ball centered at z grow so that (neighborhood) recurrence happens for
d ≥ 7? Likewise, how fast should a ball centered at z shrink so that transience happens
for d = 6?

In this paper, we wish to study the question of recurrence and transience when the
growth rate is of the form f(t) = tα, where α ∈ R. Since it suffices to consider the ball
centered at the origin, we establish our main results in the following theorems.

Theorem 1.2. Suppose (Ut(x))t≥0,x∈R is the stationary pinned string in Rd (d ≥ 7). Then
almost surely,

lim inf
t→∞

infx∈R |Ut(x)|
tα

=

{
+∞ (0 < α < 1/4)

0 (α ≥ 1/4).

This means neighborhood recurrence of Ut(x) happens when α ≥ 1/4, and transience
happens otherwise.

Theorem 1.3. Suppose (Ut(x))t≥0,x∈R is the stationary pinned string in R6. Then almost
surely,

lim inf
t→∞

infx∈R |Ut(x)|
t−α

= 0 ∀α > 0.

This means neighborhood recurrence of Ut(x) happens for all α.

The remainder of this paper is organized as follows. In Sections 2 and 3, we prove
separate cases of Theorem 1.2. We then prove Theorem 1.3 in 4. Finally, we discuss
previous results, open questions, and conjectures in 5.

2 Proof of Theorem 1.2 when α ≥ 1/4

Define Eε be the event that there exist sequences {xn}, {tn} with tn ↗∞ such that

Utn(xn) ∈ B
εt

1/4
n

(0), i.e. |Utn(xn)|/t1/4n < ε. Define

GN = σ{U0(x) : |x| > N}
∨ σ{W (φ) : φ(t, x) = 0 if 0 ≤ t ≤ N and |x| ≤ N},

and

G =
⋂
N≥1

GN ,

Since U0 and W are independent, using the same arguments to prove Kolmogorov’s 0-1
law for the Brownian tail σ-field, we can show that G is trivial.

Lemma 2.1. Eε belongs to the tail σ-field G.

Proof. The proof of this lemma is similar to that of Lemma 5 in [9].

Proof of Theorem 1.2 when α ≥ 1/4. It suffices to show the result for α = 1/4. For any
ε > 0,

P (Eε) ≥ P
(

inf
x∈R
|Un(x)|/n1/4 < ε for infinitely many n ∈ Z+

)
.

By Fatou’s Lemma,

P (Eε) ≥ lim sup
n→∞

P

(
inf
x∈R
|Un(x)|/n1/4 < ε

)
.
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On the rate of escape or approach to the origin of a random string

By scaling,

P (Eε) ≥ lim sup
n→∞

P

(
inf
x∈R
|U1(x)| < ε

)
= P

(
inf
x∈R
|U1(x)| < ε

)
≥ P (|U1(0)| < ε) = P

(
|U (1)

1 (0)| < ε
)d

> 0,

the last inequality follows since U (1)
1 (0) is a non-degenerate centered Gaussian random

variable.
From Lemma 2.1, since Eε is a tail event in G, we have that

P (Eε) = 1,

which holds for every ε > 0, concluding our proof.

3 Proof of Theorem 1.2 when 0 < α < 1/4

We start with the following lemma.

Lemma 3.1. Define the sequence {tn}n≥1 as follows.{
t1 = 1

tn+1 = tn + t4αn (n ≥ 1).

Then there exists a constant c = c(α) > 0 such that for all n ≥ 1,

tn ≥ cn1/(1−4α). (3.1)

Proof. Denote r = 1/(1 − 4α) > 1. We show by induction that (3.1) holds for c =

(1/2)drer ∈ (0, 1), where d·e is the ceiling function.
(3.1) trivially holds for n = 1. Suppose it holds for n = k ≥ 1, i.e. tk ≥ ckr. We see

that(
1 +

1

k

)r
≤
(

1 +
1

k

)dre
= 1 +

dre∑
i=1

(
dre
i

)
1

ki
≤ 1 +

1

k

dre∑
i=0

(
dre
i

)
= 1 +

2dre

k
= 1 +

c−1/r

k
.

This implies
c(1 + k)r ≤ ckr + c1−1/rkr−1. (3.2)

By the induction hypothesis,

tk+1 = tk + t4αk ≥ ckr + (ckr)
1−1/r

. (3.3)

From (3.2) and (3.3), we see that

tk+1 ≥ c(1 + k)r,

which completes the proof of Lemma 3.1.

Proof of Theorem 1.2 when 0 < α < 1/4. Our strategy closely follows that found in The-
orem 3 of [9]. We find a grid of points and show that recurrence of this string along this
grid is impossible, then control the regions between these grid points.

Define the sequence {tn}n≥1 as in Lemma 3.1. On the lines t = tn+1, choose points
kt2αn (k ∈ Z). Let Rn,k be the rectangles with vertices (tn, kt

2α
n ), (tn+1, t

2α
n ), (tn, (k+1)t2αn ),

(tn+1, (k + 1)t2αn ). Define m(n, k) = b
(
n1/2 + |k|

)d/6−1.1c. We divide Rn,k into m(n, k)3

rectangles, each of them a translate of
[
0, t4αn m(n, k)−2

]
×
[
0, t2αn m(n, k)−1

]
, so the

points with the largest (t, x) coordinates are
(
tn + it4αn m(n, k)−2, kt2α + jt2αn m(n, k)−1

)
=: (t(n,k,i), x(n,k,j)) (1 ≤ i ≤ m(n, k)2; 1 ≤ j ≤ m(n, k)) for each rectangle; these will be
our grid points.
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3.1 Transience of the pinned string at grid points

By Proposition 1.1,

∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P
(∣∣Ut(n,k,i)(x(n,k,j))∣∣ ≤ B2δtα

(n,k,i)
(0)
)

.
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

 δt(n,k,i)
α(

t
1/2
(n,k,i) + |x(n,k,j)|

)1/2

d

. δd
∑
n≥1

∑
k≥0

m(n,k)2∑
i=1

m(n,k)∑
j=1

 t(n,k,i)
α(

t
1/2
(n,k,i) + |x(n,k,j)|

)1/2

d

, (3.4)

Now,
t(n,k,i)

2α

t
1/2
(n,k,i) + |x(n,k,j)|

=
1

t
1/2−2α
(n,k,i) + |x(n,k,j)|t(n,k,i)−2α

. (3.5)

We bound the terms in the denominator in (3.5) as follows. By Lemma 3.1,

t
1/2−2α
(n,k,i) &

(
n1/(1−4α)

)1/2−2α
= n1/2. (3.6)

Also,

|x(n,k,j)|t(n,k,i)−2α = t2αn
(
k + jm(n, k)−1

) (
tn + it4αn m(n, k)−2

)−2α
.

Since 1 ≤ i ≤ m(n, k)2,

|x(n,k,j)|t(n,k,i)−2α ≥ t2αn
(
k + jm(n, k)−1

) (
tn + t4αn

)−2α
= (tn/tn+1)

2α (
k + jm(n, k)−1

)
.

Since tn/tn+1 ≥ 1/2,

|x(n,k,j)|t(n,k,i)−2α & k + jm(n, k)−1 ≥ k.
(3.7)

From (3.5), (3.6), and (3.7),

t(n,k,i)
2α

t
1/2
(n,k,i) + |x(n,k,j)|

.
1

n1/2 + k
. (3.8)

From (3.4) and (3.8),

∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P
(∣∣Ut(n,k,i)(x(n,k,j))∣∣ ≤ B2δtα

(n,k,i)
(0)
)

. δd
∑
n≥1

∑
k≥0

m(n,k)2∑
i=1

m(n,k)∑
j=1

(
n1/2 + k

)−d/2
= δd

∑
n≥1

∑
k≥0

m(n, k)3
(
n1/2 + k

)−d/2
≤ δd

∑
n≥1

∑
k≥0

(
n1/2 + k

)d/2−3.3 (
n1/2 + k

)−d/2
= δd

∑
n≥1

∑
k≥0

(
n1/2 + k

)−3.3
<∞, (3.9)
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On the rate of escape or approach to the origin of a random string

the last inequality follows from the integral test∫ ∞
1

∫ ∞
0

dydx(
x1/2 + y

)3.3 <∞.
By the Borel-Cantelli lemma, the string Ut(x), evaluated at these grid points, will eventu-
ally leave their corresponding balls B2δtα

(n,k,i)
(0) for large (random) t.

3.2 Controlling the regions between grid points

From the display after (6.8) in [9], we can find constants c1, c2 > 0 such that for all
δ > 0,

P

(
sup

(t,x)∈[0,1]2
|Ut(x)| ≥ δ

)
≤ c1 exp

(
−c2δ2

)
. (3.10)

Denote R(n,k,i,j) as the translation of
[
0, t4αn m(n, k)−2

]
×
[
0, t2αn m(n, k)−1

]
with largest

coordinates (t(n,k,i), x(n,k,j)). Then by translation,

∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P

(
sup

(t,x)∈R(n,k,i,j)

∣∣Ut(x)− Ut(n,k,i)(x(n,k,j))
∣∣ ≥ δtα(n,k,i)

)

=
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P

(
sup

(t,x)∈[0,t4αn m(n,k)−2]×[0,t2αn m(n,k)−1]

|Ut(x)| ≥ δtα(n,k,i)

)
.

By the scaling of Ut(x), the preceding quadruple sum becomes

=
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P

(
sup

(t,x)∈[0,1]2
|Ut(x)| ≥ δtα(n,k,i)m(n, k)1/2t−αn

)
.

By (3.10), we can bound the sum above by

.
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

exp
(
−c2δ2m(n, k)(t(n,k,i)/tn)2α

)

≤
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

exp
(
−c2δ2m(n, k)

)
=
∑
n≥1

∑
k∈Z

m(n, k)3 exp
(
−c2δ2m(n, k)

)
.
∑
n≥1

∑
k≥0

m(n, k)3 exp
(
−c2δ2m(n, k)

)
'
∑
n≥1

∑
k≥0

(
n1/2 + k

)d/2−3.3
exp

(
−c2δ2

(
n1/2 + k

)d/6−1.1)
<∞,

the last inequality can be shown using the integral test for convergence of series.
By the Borel-Cantelli lemma, there exists a (random) N0 ∈ Z+ such that for all n ≥ N0,

k ∈ Z, i ≤ m(n, k)2, and j ≤ m(n, k), we have that

sup
(t,x)∈R(n,k,i,j)

∣∣Ut(x)− Ut(n,k,i)(x(n,k,j))
∣∣ < δtα(n,k,i). (3.11)

If Ut(x) evaluated at the grid point (t(n,k,i), x(n,k,j)) is outside of the ball B2δtα
(n,k,i)

(0)

and (3.11) holds, then none of the values Ut(x), where (t, x) ∈ R(n,k,i,j), can be within
δtα < δtα(n,k,i) of 0.

Combining Subsections 3.1 and 3.2, we see that the probability of recurrence is zero,
thus completing the proof.
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On the rate of escape or approach to the origin of a random string

4 A result when d = 6

We start with the following lemmas.

Lemma 4.1. Let δ ∈ (0, 1) and α > 0. Then

P
(
Ut(x) ∈ Bδt−α(0), Ut+s(x+ y) ∈ Bδ(t+s)−α(0)

)
. C

(t+ s)−6αt−6α(
s1/2 + |y|

)3 (
t1/2 + |x|

)3 (4.1)

holds under one of the following conditions:

1. t ≥ 1, |x|, |y| ≤ 2t1/2, and 0 ≤ s ≤ t;
2. |y| ≤ 2s1/2,

where C = C(δ) > 0 is dependent only on δ.

The proof of this lemma is deferred to Appendix A.

Lemma 4.2. For any α ∈ Z+, there exists a constant C = C(α) > 0 such that for N ≥ 2,((
1 + (N2 −N)−(6α+1)

)1/(6α+1)

− 1

)−1
. NC .

Proof. Let K = 6α+ 1 ∈ Z+, C = 2K + 2, and ρ = 41/K − 1 > 0. Then for N ≥ 2,

(NC + ρ)K = NCK +

K∑
i=1

(
K

i

)
NC(K−i)ρi ≤ NCK +NC(K−1)(1 + ρ)K

≤ NCK +N (C−2)KN−2(1 + ρ)K ≤ NCK +N (C−2)K .

Thus,

ρ ≤ NC
(
1 +N−2K

)1/K −NC ≤
((

1 + (N2 −N)−K
)1/K − 1

)
NC ,

completing our proof of the lemma.

Lemma 4.3. (An inclusion-exclusion type lower bound) Let {Ai}1≤i≤n be events and
A =

⋃n
i=1Ai. Then

P (A) ≥
(
∑n
i=1 P (Ai))

2∑n
i=1 P (Ai) + 2

∑
1≤i<j≤n P (Ai ∩Aj)

. (4.2)

We omit the proof for this standard lemma.

Proof of Theorem 1.3. We mimic the same strategy as that in the proof of Theorem 3

of [9]. It suffices to show for α ∈ Z+. Here, we fix δ ∈ (0, 1) (thus, constants that are
only dependent on δ and/or α are treated as absolute constants). Let R(δ) be the event
that there exist sequences {xn}, {tn} with tn ↗ ∞ such that Utn(xn) ∈ Bδt−αn (0). As in
Lemma 2.1, we can show that R(δ) is an event in the tail σ-field G, where G is defined in
Section 2.

Denote k = 1/(6α+ 1) ∈ (0, 1). For integers i, j,N , define

R(N)
i,j =

{
UN+ik(j) ∈ Bδ(N+ik)−α(0)

}
,

R(N, δ) =
⋃

i:N≤N+ik≤N2

⋃
0≤j≤(N+ik)1/2

R(N)
i,j .
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Using Lemma 4.3, we show that there exists p0 > 0 such that P (R(N, δ)) ≥ p0 > 0 for all
sufficiently large N . Then, since

P (R(δ)) ≥ P (R(N, δ) infinitely often) ≥ p0 > 0,

we get P (R(δ)) = 1 by the zero-one law for any δ > 0, concluding our proof. To bound

P (R(N, δ)) below, we find bounds for the sum of P
(
R(N)
i,j

)
(which we call the “first-order

term”), and the sum of P
(
R(N)
i,j ∩R

(N)
i′,j′

)
(which we call the “covariance term”).

4.1 Bounding the first-order term

Denote r = b(N2 −N)1/kc. Using the variance estimate in (1.4), similar to the proof
of Proposition 1.1, we get

P
(
R(N)
i,j

)
'
(
N + ik

)−6α ((
N + ik

)1/2
+ |j|

)−3
, (4.3)

where ' is defined in Section 1. Thus,

r∑
i=0

∑
0≤j≤(N+ik)1/2

P
(
R(N)
i,j

)

'
r∑
i=0

∑
0≤j≤(N+ik)1/2

(
N + ik

)−6α ((
N + ik

)1/2
+ |j|

)−3

'
∫ r

0

∫ (N+ik)1/2

0

(
N + xk

)−6α ((
N + xk

)1/2
+ |y|

)−3
dydx

'
∫ r

0

(
N + xk

)−6α−1
dx

Setting z = N + xk, then the above is equal to

=

∫ N2

N

(6α+ 1)(z −N)6αz−6α−1dz

'
∫ N2

N

(1−N/z)6αz−1dz. (4.4)

Trivially, ∫ N2

N

(1−N/z)6αz−1dz ≤
∫ N2

N

z−1dz = logN. (4.5)

For N large enough,

∫ N2

N

(1−N/z)6αz−1dz ≥
∫ N2

2N

(1−N/z)6αz−1dz ≥
∫ N2

2N

(1/2)6αz−1dz ' logN. (4.6)

From (4.4), (4.5), and (4.6),

r∑
i=0

∑
0≤j≤(N+ik)1/2

P
(
R(N)
i,j

)
' logN. (4.7)
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On the rate of escape or approach to the origin of a random string

4.2 Bounding the covariance term

The covariance term is as follows.

r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=0

∑
0≤j′≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j′

)
1{(i,j) 6=(i′,j′)}

'
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i

∑
0≤j+j′≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)
1{(i′,j′)6=(i,0)}.

Since −
(
N + i′ k

)1/2 ≤ − (N + ik
)1/2 ≤ −j ≤ j′ ≤

(
N + ik

)1/2 − j ≤ (N + i′ k
)1/2

, the
quadruple sum above is at most

≤
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i

∑
|j′|≤(N+i′ k)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)
1{(i′,j′) 6=(i,0)}. (4.8)

Setting t = N + ik, s = i′ k − ik, x = j, y = j′, we see that t ≥ 1, s ≥ 0, 0 ≤ x ≤ t1/2, and
|y| ≤ (t+ s)1/2. Consider the following cases.

1. If s ≤ t, then x ≤ t1/2 < 2t1/2 and |y| ≤ (t+ s)1/2 < 2t1/2;

2. If s > t, then |y| ≤ (t+ s)1/2 < 2s1/2.

In any case, the conditions in Lemma 4.1 hold. Thus,

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)
.

(N + i′ k)−6α(N + ik)−6α(
(i′ k − ik)1/2 + |j′|

)3 (
(N + ik)1/2 + j

)3 . (4.9)

We split the quadruple sum in (4.8) into two parts: i′ > i, and i′ = i. In the first
case, j′ = 0 is included in the summation, whereas it is not in the second case (since
(i′, j′) 6= (i, 0)). For the first case, using (4.9),

r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i+1

∑
|j′|≤(N+i′ k)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)

.
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i+1

∑
0≤j′≤(N+i′ k)1/2

(N + i′ k)−6α(N + ik)−6α(
(i′ k − ik)1/2 + |j′|

)3 (
(N + ik)1/2 + j

)3
'
∫ r

0

∫ (N+xk)1/2

0

∫ r

x+1

∫ (N+x′ k)1/2

0

(N + x′ k)−6α(N + xk)−6α(
(x′ k − xk)1/2 + y′

)3 (
(N + xk)1/2 + y

)3 dy′dx′dydx
.
∫ r

0

∫ (N+xk)1/2

0

∫ r

x+1

(N + x′ k)−6α(N + xk)−6α

(x′ k − xk)
(
(N + xk)1/2 + y

)3 dx′dydx
'
∫ r

0

∫ r

x+1

(N + x′ k)−(6α+1)(N + xk)−6α

x′ k − xk
dx′dx
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Setting z = N + xk, z′ = N + x′ k, the above is equal to

=

∫ N2

N

∫ N2

((z−N)1/k+1)k+N+1

k−2
(

1− N

z

)6α(
1− N

z′

)6α
1

z(z′ − z)
dz′dz

.
∫ N2

N

∫ N2

((z−N)1/k+1)k+N+1

dz′dz

z(z′ − z)

=

∫ N2

N

z−1
(

log(N2 − z)− log(((z −N)1/k + 1)k − (z −N)
)
dz

≤
(

log(N2 −N)− log(((N2 −N)1/k + 1)k − (N2 −N)
)∫ N2

N

z−1dz

= log

((
1 + (N2 −N)−(6α+1)

)1/(6α+1)

− 1

)−1
logN

By Lemma 4.2, for some constant C > 0, the above is at most

≤ logNC logN . (logN)2. (4.10)

For the second case, using (4.9) again,

r∑
i=0

∑
0≤j≤(N+ik)1/2

∑
1≤|j′|≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i,j+j′

)

.
r∑
i=0

∑
0≤j≤(N+ik)1/2

∑
1≤|j′|≤(N+ik)1/2

(N + ik)−12α

j′ 3
(
(N + ik)1/2 + j

)3
'
∫ r

0

∫ (N+xk)1/2

0

∫ (N+xk)1/2

1

(N + xk)−12α

y′ 3
(
(N + xk)1/2 + y

)3 dy′dydx
'
∫ r

0

(N + xk)−12α−1
(
1− (N + xk)−1

)
dx

<

∫ r

0

(N + xk)−12α−1dx

Setting z = N + xk, the above is equal to

=

∫ N2

N

k−1(z −N)6αz−12α−1dz � logN. (4.11)

From (4.8), (4.10), and (4.11),

r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=0

∑
0≤j′≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j′

)
1{(i,j)6=(i′,j′)} . (logN)2. (4.12)

Using the bounds in (4.7) and (4.12) from the Subsections above, applying Lemma 4.3
for R(N, δ) =

⋃r
i=0

⋃
0≤j≤(N+ik)1/2 R

(N)
i,j , we get

P (R(N, δ)) &
1

(logN)−1 + 1
& 1,

i.e. there exists a p0 > 0 such that P (R(N, δ)) ≥ p0 for sufficiently large N . Our proof is
complete.

ECP 27 (2022), paper 9.
Page 10/13

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP451
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On the rate of escape or approach to the origin of a random string

5 Open questions

The rate of escape of Brownian motion has been well-studied (see [1], [6], [8], [10],
and [12]). In many of the finite-dimensional Brownian motions, an integral test is usually
used to determine a necessary and sufficient condition for recurrence. For example, for
Brownian motion (B(t))t≥0 in Rd (d ≥ 3), we have the following result.

Theorem 5.1. (Dvoretzky-Erdős test) Let (B(t))t≥0 in Rd (d ≥ 3) and f : R+ → R+

increasing. Then∫ ∞
1

(
f(t)t−1/2

)d−2
t−1dt <∞ if and only if lim inf

t→∞

B(t)

f(t)
=∞ a.s.

Conversely, if the integral diverges, then lim inft→∞
B(t)

f(t)
= 0 a.s.

Though the stationary pinned string is not Brownian, it is still Gaussian, allowing for
possible analogies. From Theorem 1.2, we suspect that a similar condition holds for the
stationary pinned string (Ut(x))t≥0,x∈R when d ≥ 7.

Conjecture 5.2. For d ≥ 7, there exists a constant C = C(d) > 0 such that the following
holds: given f : R+ → R+ increasing, then∫ ∞

1

(
f(t)t−1/4

)C
t−1dt <∞ if and only if lim inf

t→∞

infx∈R |Ut(x)|
f(t)

=∞ a.s.

Conversely, if the integral diverges, then lim inft→∞
infx∈R |Ut(x)|

f(t)
= 0 a.s.

The situation is even less well-understood in the critical dimension d = 6, where we
only managed to bound the shrinking rate of f(t) on one side. Inspired by the case of
N -parameter d-dimensional Brownian sheet (see [8]), we suspect that an exponential
shrinking rate might suffice for transience of the stationary pinned string. However, the
tools from potential theory, which was developed in the mentioned paper, is intractable
in solving this problem. Interestingly, the difficulties for d = 6 are encountered not only
when we study the question of recurrence, but also in hitting problems. Recall that a
Rd-valued process (ut(·))t≥0 is said to hit the point z ∈ Rd if

P (ut(x) = z for some t > 0, x ∈ R) > 0.

We also say that dc is the critical dimension if hitting of B = {z} occurs for d < dc but
not for d > dc. For the nonlinear stochastic heat equation

∂ut(x)

∂t
=
∂2ut(x)

∂x2
+ σ(ut(x))Ẇ (t, x),

where the white noise in (1.1) is multiplied by a matrix-valued function with certain
restrictions (see [2], [4]), the critical dimension is known to be dc = 6. Unlike in the case
of vector-valued Brownian sheet and other classes of Gaussian fields, where the sets of
hitting points are relatively well-understood (see [8], [3]), it is only known that for the
nonlinear stochastic heat equation, almost every point in R6 is not hit.

A Proof of Lemma 4.1

We start with the following lemma.

Lemma A.1. When d = 6, for all s, t ∈ [1, 2], |x|, |y| ≤ 2, and δ1, δ2 ∈ (0, 1),

P (Ut(x) ∈ Bδ1(0), Us(y) ∈ Bδ2(0)) . δ61δ
6
2

(
|t− s|1/2 + |x− y|

)−3
. (A.1)
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Proof. The proof of this lemma is similar to that of Lemma 3 in [9].

Proof of Lemma 4.1. Suppose the first condition in the lemma holds. Then by scaling,

P
(
Ut(x) ∈ Bδt−α(0), Ut+s(x+ y) ∈ Bδ(t+s)−α(0)

)
= P

(
U1(x/t1/2) ∈ Bδt−α−1/4(0), U1+s/t((x+ y)/t1/2) ∈ Bδ(t+s)−αt−1/4(0)

)
By Lemma A.1, the above is bounded by a constant multiple of

.
(
δt−α−1/4δ(t+ s)−αt−1/4

)6 (
(s/t)1/2 + |y|/t1/2

)−3
= δ12

t−6α(t+ s)−6α(
s1/2 + |y|

)3
t3/2

Since |x| ≤ 2t1/2, the above is bounded by a constant multiple of

. δ12
t−6α(t+ s)−6α(

s1/2 + |y|
)3 (

t1/2 + |x|
)3 ,

concluding our proof when the first condition in the lemma holds. Suppose now that the
second condition in the lemma holds. From Section 1,

Ut+s(x+ y) =

∫
Gs(x+ y − z)Ut(z)dz +

∫ s

0

∫
Gs−r(x+ y − z)W (dzdr).

Thus,

Var (Ut+s(x+ y)− E(Ut+s(x+ y)|Ft)

= Var

(∫ s

0

∫
Gs−r(x+ y − z)W (dzdr)

)
' s1/2.

Hence, for |y| ≤ 2s1/2,

P
(
Ut+s(x+ y) ∈ Bδ(t+s)−α(0) | Ft

)
. δ6(t+ s)−6αs−3/2 . δ6(t+ s)−6α

(
s1/2 + |y|

)−3
.

Then

P
(
Ut(x) ∈ Bδt−α(0), Ut+s(x+ y) ∈ Bδ(t+s)−α(0)

)
. δ12

(t+ s)−6αt−6α(
s1/2 + |y|

)3 (
t1/2 + |x|

)3 ,
concluding our proof.
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