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Gaussian Variational Approximations for
High-dimensional State Space Models∗

Matias Quiroz†,‡, David J. Nott§,¶ and Robert Kohn‖,∗∗

Abstract. We consider a Gaussian variational approximation of the posterior
density in high-dimensional state space models. The number of parameters in
the covariance matrix of the variational approximation grows as the square of
the number of model parameters, so it is necessary to find simple yet effective
parametrisations of the covariance structure when the number of model parame-
ters is large. We approximate the joint posterior density of the state vectors by a
dynamic factor model, having Markovian time dependence and a factor covariance
structure for the states. This gives a reduced description of the dependence struc-
ture for the states, as well as a temporal conditional independence structure sim-
ilar to that in the true posterior. We illustrate the methodology on two examples.
The first is a spatio-temporal model for the spread of the Eurasian collared-dove
across North America. Our approach compares favorably to a recently proposed
ensemble Kalman filter method for approximate inference in high-dimensional hi-
erarchical spatio-temporal models. Our second example is a Wishart-based multi-
variate stochastic volatility model for financial returns, which is outside the class
of models the ensemble Kalman filter method can handle.

Keywords: dynamic factor, stochastic gradient, spatio-temporal modelling.

1 Introduction

Variational approximation (VA) (Ormerod and Wand, 2010; Blei et al., 2017) replaces
the true posterior density by a parametric density whose parameters optimise a measure
of closeness to the true posterior. A frequent choice for the approximation is a multi-
variate Gaussian distribution, where the variational optimisation is over an unknown
mean and covariance matrix. VA is an increasingly popular way to approximate the pos-
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terior because of its ability to handle large datasets and highly parametrised models.
The accuracy of the VA depends on a number of factors, such as the flexibility of the
approximating family, the model considered, and the sample size. There are now some
theoretical results which show that the variational posterior converges to the true pa-
rameter value under suitable regularity conditions, and rates of convergence have been
established for parametric models (Wang and Blei, 2019) and, more generally, for non-
parametric and high-dimensional models (Zhang and Gao, 2020). However, for a finite
number of observations, when the variational approximation does not collapse to a point
mass, it is often observed that there is a practically meaningful discrepancy between the
uncertainty quantification provided by the approximation and that of the true posterior
distribution. This is especially the case when the variational family used is insufficiently
flexible. Nevertheless, even in these cases, predictions and prediction intervals obtained
from VA seem empirically to be usefully close to those obtained from the exact poste-
rior. In the context of Gibbs posteriors (Zhang, 2006), i.e. when posteriors are formed
via a loss function approach, Frazier et al. (2021b) show that the discrepancy between
predictive inference based on the variational posterior and that of the true posterior is
asymptotically zero. Frazier et al. (2021a) demonstrate empirically the accuracy of the
predictive distribution for a range of variational approximation methods for state space
models, including ours. As such, variational approximation methods provide a useful
and fast alternative to Markov chain Monte Carlo (MCMC), especially when predictive
inference is required.

Our article considers a Gaussian variational approximation (GVA) for a state space
model when the state vector is high-dimensional. Such models are common in spatio-
temporal applications (Cressie and Wikle, 2011), financial econometrics (Philipov and
Glickman, 2006), and in other important applications. It is challenging to obtain the
GVA when dealing with a high-dimensional model, because the number of variational
parameters in the covariance matrix of the approximation grows quadratically with the
number of model parameters. This makes it necessary to parametrise the variational
covariance matrix parsimoniously, but still be able to capture the dependence struc-
ture of the posterior. This goal is best achieved by taking into account the dependence
structure of the posterior itself. We do so by parametrising the variational posterior
covariance matrix using a dynamic factor model, which reduces the dimension of the
state vector. The Markovian time dependence for the low-dimensional factors provides
the necessary sparsity in the precision matrix for the factors. We develop efficient com-
putational methods for forming the approximations and illustrate the advantages of the
approach in two example datasets with high-dimensional state vectors, where Bayesian
inference by MCMC simulation is challenging for both models. The first is a spatio-
temporal model for the spread of the Eurasian collared dove across North America
(Wikle and Hooten, 2006); the second is a multivariate stochastic volatility model for
a portfolio of assets (Philipov and Glickman, 2006). We derive GVAs for both models
and demonstrate that they give useful predictive inference.

As noted above, Bayesian computation for complex state space models with a high-
dimensional state vector is challenging. In this context, the use of ensemble Kalman
filtering and smoothing methods (Evensen, 1994; Evensen and Van Leeuwen, 2000)
provides an alternative and scalable approach to approximating the distribution of the
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states. We refer to sampling algorithms using these methods as ensemble Kalman fil-
ter methods, by which we mean that an ensemble Kalman filter is used for filtering
and an ensemble Kalman smoother for smoothing. Katzfuss et al. (2020) use ensem-
ble Kalman filter methods to sample the posterior distribution of hierarchical dynamic
spatio-temporal models. We later compare our method to their so-called Gibbs ensemble
Kalman smoother in our spatio-temporal example and find that our method is a faster
alternative with similar inferential performance. Importantly, the strength of our ap-
proach is that it is an all-purpose method that applies to general high-dimensional state
space models. While ensemble Kalman filter methods can handle a non-Gaussian distri-
bution of the measurement equation, the distribution of the state transition equation is
assumed to be Gaussian. Hence it cannot be applied to our second example (multivariate
stochastic volatility), where the distribution of the state transition is Wishart.

The paper has an appendix and a supplement, both are web-based (Quiroz et al.,
2022). The appendix contains the equations to implement the gradients of the method,
and the supplement contains proofs and other material. We refer to equations, sections,
etc. in the main paper as (1.1), Section 1, etc., in the appendix as (A1.1), Appendix A,
etc., and in the web-based supplement as (S1.1), Section S1, etc.

2 Methodology

To state some of the results below we use conventional matrix calculus notation. Sec-
tion 6 defines the notation for readers unfamiliar with it.

2.1 Model, prior and posterior

Let y = (y1, . . . , yT )
� be an observed time series generated by the state space model

yt|Xt = xt, ζ ∼ mt(y|xt, ζ), t = 1, . . . , T, (2.1a)

Xt|Xt−1 = xt−1, ζ ∼ st(x|xt−1, ζ), t = 1, . . . , T ; (2.1b)

the prior density for X0 is p(X0|ζ), ζ are the unknown fixed (non-time-varying) param-
eters in the model, and the elements of ζ in the measurement and the state equation
are typically different, but the same symbol is used for brevity. The observations yt are
independent given ζ and the states X = (X�

0 , . . . , X�
T )�, and the prior distribution of

X given ζ is

p(X|ζ) = p(X0|ζ)
T∏

t=1

st(Xt|Xt−1, ζ).

Let θ = (X�, ζ�)� denote the full set of unknowns in the model. The posterior density
of θ is p(θ|y) ∝ p(θ)p(y|θ), with p(θ) = p(ζ)p(X|ζ), where p(ζ) is the prior density for

ζ and p(y|θ) =
∏T

t=1 mt(yt|Xt, ζ). Let p be the dimension of Xt and suppose p is large.
Approximating the posterior distribution in this setting is difficult and we propose a
method based on Gaussian variational approximation.
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2.2 Example model: Multivariate stochastic volatility

To illustrate the discussion above, we consider the multivariate stochastic volatility
model introduced by Philipov and Glickman (2006), which is useful for modeling the
time-varying dependence of a portfolio of k assets over T time periods. Section 4 dis-
cusses the model in more detail.

Let Rk×k
+ denote the space of positive definite matrices of dimension k× k. Philipov

and Glickman (2006) assume that the mean-centred return at time period t, t = 1, . . . , T ,
is the k dimensional vector yt,

yt ∼ N (0,Σt), Σt ∈ R
k×k
+ ; (2.2a)

Σ−1
t ∼ Wishart(ν, St−1), St =

1

ν
H(Σ−1

t )dH�, St ∈ R
k×k
+ , ν > k, 0 < d < 1; (2.2b)

H is an unknown lower triangular Cholesky factor of A = HH� ∈ R
k×k
+ , ν, d are

unknown scalars and Σ0 ∈ R
k×k
+ is known. Section 4 describes the priors for all the

fixed parameters and states. The state vector Xt = vech(Σt) is k(k+1)/2-dimensional.
The dimensionality of Xt grows rapidly with k, e.g. it is 55 dimensional for k = 10. To
carry out exact Bayesian inference based on Markov chain Monte Carlo it is necessary
to use particle methods which do not scale to high-dimensional states (Katzfuss et al.,
2020).

2.3 Stochastic gradient ascent variational methods

The main contribution of our article is to propose a parsimonious parametrisation of
the covariance matrix of the approximating Gaussian variational density that captures
dependence structures of the statistical model in (2.1); see Section 2.4. Before outlining
this idea, we briefly describe how the optimal variational parameters are found given a
parametrisation.

Variational approximation methods (Attias, 1999; Jordan et al., 1999; Winn and
Bishop, 2005) express the problem of approximating an intractable posterior distribution
as an optimisation problem. We consider a family of densities {qλ(θ)}, indexed by the
variational parameter λ, to approximate p(θ|y). Our article takes the approximating
family to be Gaussian so that λ consists of the mean vector and the distinct elements
of the covariance matrix (as parametrised in the next subsection) in the approximating
Gaussian density.

The optimisation problem is to find the variational parameters λ that minimise the
Kullback-Leibler divergence between the variational approximation and the posterior
density. This can be achieved by maximising the evidence lower bound (ELBO) (see
e.g. Ormerod and Wand, 2010) given by

L(λ) =
∫

log
p(θ)p(y|θ)

qλ(θ)
qλ(θ)dθ. (2.3)

Since L(λ) is generally intractable, stochastic gradient methods (Robbins and Monro,
1951) are needed to perform the optimisation and there is now a large literature on
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implementing them (Ji et al., 2010; Paisley et al., 2012; Nott et al., 2012; Salimans and
Knowles, 2013; Kingma and Welling, 2014; Rezende et al., 2014; Hoffman et al., 2013;
Ranganath et al., 2014; Titsias and Lázaro-Gredilla, 2015; Kucukelbir et al., 2017).

Stochastic gradient ascent methods start with an initial guess for the optimal value
λ(0), which then gets updated according to the iterative scheme

λ(t+1) = λ(t) + at
̂∇λL(λ(t)), (2.4)

where at, t ≥ 0, is a sequence of learning rates, ∇λL(λ) is the gradient vector of L(λ)
with respect to λ and ∇̂λL(λ) denotes its unbiased estimate. The learning rate sequence
is typically chosen to satisfy

∑
t at = ∞ and

∑
t a

2
t < ∞, which ensures that the iterates

λ(t) converge to a local optimum as t → ∞ under suitable regularity conditions (Bottou,
2010). Various adaptive choices for the learning rates are also possible and we use the
ADADELTA (Zeiler, 2012) approach in our applications in Sections 3 and 4.

Reducing the variance of the gradient estimates in (2.4) is important for both the
stability of the algorithm and fast convergence. Our article uses gradient estimates
based on the so-called reparametrisation trick (Kingma and Welling, 2014; Rezende
et al., 2014) which is now outlined. The lower bound L(λ) in (2.3) is an expectation
with respect to qλ,

L(λ) = Eq(log h(θ)− log qλ(θ)), (2.5)

where Eq(·) denotes expectation with respect to qλ and h(θ) = p(θ)p(y|θ). Differen-
tiating with respect to λ under the integral sign in (2.5), the resulting expression for
the gradient can also be written as an expectation with respect to qλ, which is easily
estimated unbiasedly by Monte Carlo integration. However, this so-called score function
method (Williams, 1992) typically results in a very large variance of the gradient esti-
mator. The reparametrisation trick is often much more efficient (Xu et al., 2019) and
we now illustrate the method using a full covariance matrix for simplicity. Suppose that
we can write θ ∼ qλ(θ) as θ = u(λ, ω), where ω is a random vector with a density which
does not depend on the variational parameters λ. For qλ(θ) = N (μ,Σ), with Σ = CC�,
where C is the (lower triangular) Cholesky factor of Σ, we can write θ = μ+Cω, where
ω ∼ N (0, Id). Substituting θ = u(λ, ω) into (2.5), we obtain

L(λ) = Eω(log h(u(λ, ω))− log qλ(u(λ, ω))), (2.6)

where Eω is the expectation with respect to ω. Differentiating under the integral sign,
we obtain

∇λL(λ) = Eω(∇λ log h(u(λ, ω))−∇λ log qλ(u(λ, ω))), (2.7)

which is easily estimated unbiasedly.

Section S2 discusses a further variance reduction technique proposed in Han et al.
(2016), Tan and Nott (2018) and Roeder et al. (2017) that may be particularly effec-
tive when the variational family is flexible enough to accurately approximate the true
posterior.
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2.4 Structure of the proposed variational approximation

We derive the variational posterior density qλ(θ) for θ = (X, ζ) in three steps.

The first step approximates the posterior of Xt, and is based on a generative model
which has the dynamic factor structure,

Xt = Bzt + εt εt ∼ N (0, D2
t ), (2.8)

where B is a p × q matrix with Bij = 0 for i < j, q 
 p, and Dt is a diagonal matrix
with diagonal elements δt = (δt1, . . . , δtp)

�. Hence Xt of dimension p is approximated
via a vector zt of lower dimension q as in (2.8).

The second step approximates the joint posterior of the resulting low-dimensional
state vector z = (z�0 , . . . , z�T )� and ζ. We assume that ρ = (z�, ζ�) ∼ N (μ,Σ), Σ =
C−�C−1 where C is the Cholesky factor of the precision matrix of ρ. For computational
tractability, we further assume that

C =

[
C1 0
0 C2

]
,

is block diagonal, C1 is the Cholesky factor of the precision matrix Ω1 = C1C
�
1 for z, and

C2 is the Cholesky factor for the precision matrix of ζ. We note that this assumption
implies independence between the two blocks. Let Σ1 = Ω−1

1 denote the covariance
matrix of z. We further assume that C1 is lower triangular with a single band, implying
that Ω1 is band tridiagonal; see Section S3 for details. For a Gaussian distribution, zero
elements in the precision matrix represent conditional independence relationships. In
particular, the sparse structure imposed on C1 means that in the generative distribution
for ρ, the latent variable zt, given zt−1 and zt+1, is conditionally independent of the
remaining elements of z; in other words, if we think of the variables zt, t = 1, . . . , T as
a time series, they have a Markovian dependence structure. Setting zero elements in C2

follows the same principle and depends on the model; see Section 2.6.

The third step constructs the variational distribution for the full parameter vector
θ through

θ =

[
X
ζ

]
=

[
IT+1 ⊗B 0

0 IP

]
ρ+

[
ε
0

]
,

P is the dimension of ζ, and ε = (ε�0 , . . . , ε
�
T )

�. We can apply the reparametrisation
trick by writing ρ = μ+ C−�ω, where ω ∼ N (0, Iq(T+1)+P ). Then,

θ = Wρ+ Ze = Wμ+WC−�ω + Ze, (2.9)

where

W =

[
IT+1 ⊗B 0p(T+1)×P

0P×q(T+1) IP

]
, Z =

[
D 0p(T+1)×P

0P×p(T+1) 0P×P

]
, e =

[
ε

0P×1

]
,

D is a diagonal matrix with diagonal entries (δ�0 , . . . , δ�T )
�, and u = (ω�, ε�)� ∼

N (0, I(p+q)(T+1)+P ). We also write ω = (ω�
1 , ω

�
2 )

�, where the blocks of this partition
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follow those of ρ = (z�, ζ�)�. We note that with the notation above, the variational
approximation density has the explicit form

qλ(θ) = N
(
θ|Wμ,WC−�C−1W� + Z2

)
. (2.10)

The factor model above describes the covariance structure for the states, as well as for
dimension reduction in the variational posterior mean of the states, since E(Xt) = Bμt,
where μt = E(zt). An alternative is to set E(zt) = 0 and use

Xt = μt +Bzt + εt, (2.11)

where μt is now a p-dimensional vector specifying the variational posterior mean for Xt

directly.

We call parametrisation (2.8) the low-dimensional state mean (LD-SM) parametrisa-
tion, and parametrisation (2.11) the high-dimensional state mean (HD-SM) parametri-
sation. In both parametrisations, B forms a basis for Xt, which is reweighted over time
according to the latent weights (factors) zt. The LD-SM parametrisation provides infor-
mation on how these basis functions are reweighted over time to form the approximate
posterior mean, since E(Xt) = Bμt and we infer both B and μt in the variational
optimisation. This is explored in Section S6 for the spatio-temporal example in Sec-
tion 3.

It is well known that factor models have identifiability issues (Shapiro, 1985). The
choice of identifying constraints in factor models can matter, particularly for interpre-
tation. However, here the choice of any identifying constraints is not crucial as we do
not interpret either the factors or the loadings, but only use them for modeling the
covariance matrix and, in the LD-SM parametrisation, also the variational mean.

2.5 Related work

We note that the sparsity imposed above is very important for reducing the number of
variational parameters that need to be optimised. This allows the Gaussian variational
approximation method to be extended to high dimensions. Our method relies on the
combination of two ideas.

The first idea is explored in Tan and Nott (2018), who consider an approach which
parametrises the precision matrix Ω = Σ−1 = CC� in terms of its Cholesky factor C,
and impose a sparse structure on C which comes from the conditional independence
structure in the model. We apply this idea to the Cholesky factor C1 of the precision
matrix of the dynamic factors as described in Section 2.4. Archer et al. (2016) also
consider parametrising a Gaussian variational approximation using the precision matrix,
but they optimise directly with respect to the elements Ω.

While the method of Tan and Nott (2018) is an attractive way to reduce the num-
ber of variational parameters in problems with an exploitable conditional independence
structure, there are models where no such structure is available. An alternative parsi-
monious parametrisation is to use a factor model structure (Geweke and Zhou, 1996;
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Bartholomew et al., 2011) when modelling the covariance matrix of the variational pos-
terior (Ong et al., 2018). This is the second idea, which we use to parametrise the
covariance matrix of the high-dimensional state vector Xt.

2.6 Implementation

The objective function of interest is (2.5) with h(θ) being the posterior (up to a nor-
malising constant) of the general state space model in (2.1), i.e.

h(θ) = p(X0|ζ)
T∏

t=1

st(Xt|Xt−1, ζ)mt(yt|xt, ζ), (2.12)

and qλ(θ) as in (2.10). With regards to the variational approximation qλ(θ), the user
only needs to impose zeroes for C2, which is the Cholesky factor of the precision matrix
of the vector ζ of fixed parameters. This depends on the model: if the parameters ζi
and ζj are not connected in (2.12), then the i, jth element in C2 is set to zero.

To apply the reparametrisation trick, we cast the objective function to a similar
expectation as in (2.6) by using the generative model for θ in (2.9). Appendix A gives
the resulting gradients. These gradients above are functions of ∇θ log h(θ) with h(θ)
in (2.12). As such, the implementation of the method only requires the user to derive
the gradient of the model structure, i.e. ∇θ log h(θ), either analytically or via automatic
differentiation. It is hard to efficiently apply automatic differentiation to obtain the
gradients of the variational structure, i.e. the gradient elements in Lemmas A1 and A2
beside the model specific ∇θ log h(θ), because they involve a combination of sparse and
low rank matrix manipulations.

Algorithm 1 outlines the stochastic gradient ascent algorithm maximising (2.6).
The gradients are unbiasedly estimated by generating one or more samples from (ω, ε).
Lemma A1 (A2) contains the gradients corresponding to (2.7) ((S2.1)), which we refer
to as the standard gradient (the Roeder et al., 2017 gradient). The gradients in Lemma
A2 follow Han et al. (2016), and are discussed in a very general way in Roeder et al.
(2017), and are preferred if the variational approximation is accurate; Section S2 pro-
vides a detailed discussion. However, since we consider massive dimension reduction
with only a small numbers of factors, the approximation may be crude and we therefore
investigate both approaches in later examples.

2.7 Efficient computation

The gradient estimates for the lower bound are efficiently computed using a combi-
nation of sparse matrix operations (for evaluating terms such as C−�ω and the high-
dimensional matrix multiplications in the expressions) and, as in Ong et al. (2018), the
Woodbury identity for dense matrices such as (WΣW�+Z2)−1 and (W1Σ1W

�+D2)−1.
The Woodbury identity is

(ΛΓΛ� +Ψ)−1 =Ψ−1 −Ψ−1Λ(Λ�Ψ−1Λ + Γ−1)−1Λ�Ψ−1,
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Algorithm 1: Stochastic gradient ascent for optimising the variational objective
L(λ) in (2.6).

Input: Starting values λ0 ← (μ0, B0, δ0, C0), learning rates ημ, ηB , ηδ, ηC , number
of iterations M .

for m = 1 to M do

μm ← μm−1 + ημ 
 ∇̂μL(λm−1) � ∇μL in (A2) or (A6)

λm−1 ← (μm, Bm−1, δm−1, Cm−1) � Update μ

Bm ← Bm−1 + ηB 
 ̂∇vec(B)L(λm−1) � ∇vec(B)L in (A3) or (A7)

λm−1 ← (μm, Bm, δm−1, Cm−1) � Update B

δm ← δm−1 + ηδ 
 ∇̂δL(λm−1) � ∇δL in (A4) or (A9)

λm−1 ← (μm, Bm, δm, Cm−1) � Update δ

Cm ← Cm−1 + ηC 
 ∇̂CL(λm−1) � ∇CL in (A5) or (A10)

λm ← (μm, Bm, δm, Cm) � Update C

λm−1 ← λm � Update λ
end

Output: λm

for conformable matrices Λ,Γ and diagonal Ψ. It reduces the required computations
into a much lower dimensional space since q 
 p and Ψ is diagonal.

3 Application 1: Spatio-temporal model

3.1 Eurasian collared-dove data

The first example considers the spatio-temporal model of Wikle and Hooten (2006)
for a dataset on the spread of the Eurasian collared-dove across North America. The
dataset consists of the number of doves ysit observed at location si (latitude, longitude)
i = 1, . . . , p, in year t = 1, . . . , T = 18, corresponding to an observation period of
1986–2003. The spatial locations correspond to p = 111 grid points with the dove
counts aggregated within each area. See Wikle and Hooten (2006) for details. The count
observed at location si at time t depends on the number of times Nsit that the location
was sampled.

3.2 Model

The model in Wikle and Hooten (2006) is

yt|vt ∼ Poisson(diag(Nt) exp(vt)), yt, Nt, vt ∈ Rp

vt|ut, σ
2
ε ∼ N (ut, σ

2
ε Ip), ut ∈ Rp, σ2

ε ∈ R+
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ut|ut−1, ψ, σ
2
η ∼ N (H(ψ)ut−1, σ

2
ηIp), ψ ∈ Rp, H(ψ) ∈ Rp×p, σ2

η ∈ R+,

with priors σ2
ε , σ

2
ψ, σ

2
α ∼ IG(2.8, 0.28), σ2

η ∼ IG(2.9, 0.175) and

u0 ∼ N (0, 10Ip)

ψ|α, σ2
ψ ∼ N (Φα, σ2

ψIp), Φ ∈ Rp×l,α ∈ Rl, σ2
ψ ∈ R+

α ∼ N (0, σ2
αRα), α0 ∈ Rl, Rα ∈ Rl×l, σ2

α ∈ R+.

Poisson(·) is the Poisson distribution for a (conditionally) independent response vector
parametrised in terms of its expectation and IG(·) is the inverse-gamma distribution
with shape and scale as arguments. The dynamic process ut evolves according to a diffu-
sion equation and H(Ψ) (approximately) solves the diffusion equation for one time step.
The spatial dependence is modeled via the prior mean Φα of the diffusion coefficients
ψ, where Φ consists of the l orthonormal eigenvectors with the largest eigenvalues of the
spatial correlation matrix R(c) = exp(−cd) ∈ Rp×p, where d is the Euclidean distance
between pairwise grid locations in si. Finally, Rα is a diagonal matrix with the l largest
eigenvalues of R(c). We follow Wikle and Hooten (2006) and set l = 1 and c = 4.

Let u = (u�
0 , . . . u

�
T )

�, v = (v�1 , . . . v
�
T )

� and denote the parameter vector

θ = (u, v, ψ, α, log σ2
ε , log σ

2
η, log σ

2
ψ, log σ

2
α),

whose posterior distribution is

p(θ|y) ∝ σ2
εσ

2
ησ

2
ψσ

2
αp(σ

2
ε )p(σ

2
η)p(σ

2
ψ)p(σ

2
α)p(α|σ2

α)p(ψ|α, σ2
ψ)

p(u0)

T∏
t=1

p(ut|ut−1, ψ, σ
2
η)p(vt|ut, σ

2
ε )p(yt|vt). (3.1)

Section S4.2 derives the gradient of the log-posterior.

3.3 Variational approximations of the posterior distribution

Section 2 considers two different parametrisation of the low rank approximation, in
which either the state vector Xt has mean BE(zt) = Bμt, μt ∈ Rq (low-dimensional
state mean, LD-SM) or Xt has a separate mean μt ∈ Rp and E(zt) = 0 (high-
dimensional state mean, HD-SM). In this application there is a third choice of parametri-
sation which we now consider. The model in Section 3.2 connects the data with the
high-dimensional state vector ut via a high-dimensional auxiliary variable vt. In the
notation of Section 2, we can include v in ζ, in which case the parametrisation of the
variational posterior is the one described there. We refer to this parametrisation as a
low-rank state (LR-S). Although (3.1) shows that there is posterior dependence between
ut and vt, the variational approximation in Section 2 omits the dependence between z
and ζ. Moreover, vt is also high-dimensional, but the LR-S parametrisation does not re-
duce its dimension. An alternative parametrisation that deals with both considerations
includes v in the z-block, which we refer to as the low-rank state and auxiliary variable
(LR-SA) parametrisation. This comes at the expense of omitting dependence between vt
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and σ2
ε , and also becomes more computationally costly because, while the total number

of variational parameters is smaller (see Table S1 in Section S8), the dimension of the
z-block increases (B and C1) and the main computational effort lies here and not in
the ζ-block. Table 1 shows the CPU times relative to the LR-S parametrisation. The
LR-SA parametrisation requires a small modification of the derivations in Section 2,
which are outlined in detail in Section S5 as they can be useful for other models with a
high-dimensional auxiliary variable.

It is straightforward to deduce conditional independence relationships in (3.1) to
build the Cholesky factor C2 of the precision matrix Ω2 of ζ, with

ζ =

{
(v, ψ, α, log σ2

ε , log σ
2
η, log σ

2
ψ, log σ

2
α) (LR-S)

(ψ, α, log σ2
ε , log σ

2
η, log σ

2
ψ, log σ

2
α) (LR-SA).

Section 2 outlines the construction of the Cholesky factor C1 of the precision matrix Ω1

of z, whereas the minor modification needed for LR-SA is in Section S5. We note that,
regardless of the parametrisation, we obtain massive parsimony (between 6,428–11,597
variational parameters) compared to the saturated Gaussian variational approximation
which in this application has 8,923,199 parameters; see Section S8 for further details.

We consider four different variational parametrisations, combining each of LR-SA or
LR-S with the different parametrisation of the means ofXt, i.e. LD-SM or HD-SM. In all
cases, we let q = 4 and perform 10,000 iterations of a stochastic optimisation algorithm
with learning rates chosen adaptively according to the ADADELTA approach (Zeiler,
2012). We use the gradient estimators in Roeder et al. (2017), i.e. (A6), (A7), (A9) and
(A10), although we found no noticeable difference compared to (A2)–(A5); it is likely
that this is due to the small number of factors as described in Sections 2.3 and 2.6.
Our choice is motivated by computational efficiency as some terms cancel out using the
approach in Roeder et al. (2017). We initialise B and C as unit diagonal matrices, and
μ and D are chosen to match the starting values of the Gibbs sampler in Wikle and
Hooten (2006).

Figure 1 monitors the convergence via the estimated value of L(λ) using a single
Monte Carlo sample. Table 1 presents estimates of L(λ) at the final iteration using 100
Monte Carlo samples. The results suggest that the best GVA parametrisation in terms
of ELBO is the low-rank state algorithm (LR-SA) with, importantly, a high-dimensional
state-mean (HD-SM) (otherwise the poorest GVA is achieved; see Table 1). However,
Table 1 also shows that this parametrisation is about three times as CPU intensive.
The fastest GVA parametrisations are both Low-Rank State (LR-S) algorithms, and
modeling the state mean separately for these does not seem to improve L(λ) (Table 1)
and is also slightly more computationally expensive (Table 1). Taking these considera-
tions into account, the final choice of GVA parametrisation used for this model is the
low-rank state with low-dimensional state mean (LR-S + LD-SM). Section 3.6 shows
that this parametrisation gives accurate approximations for our analysis. For the rest
of this example, we benchmark the GVA posterior from LR-S + LD-SM against the
MCMC approach in Wikle and Hooten (2006) and also a Gibbs sampler based on en-
semble Kalman filter methods that is well suited for problems with a high-dimensional
state vector.
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Figure 1: L(λ) for the variational approximations for the spatio-temporal example. The
figure shows the estimated value of L(λ) vs iteration number for the four different
parametrisations; see Section 3.3 or Table 1 for abbreviations.

3.4 MCMC settings

Before comparing the approximate methods (GVA and ensemble Kalman filter methods)
to MCMC, it is necessary to determine a reasonable burn-in period and number of
iterations for inference for the Gibbs sampler in Wikle and Hooten (2006). As it is
infeasible to monitor convergence for every single parameter in such a large scale model
as (3.1), we focus on ψ, u18 and v19, which are among the variables considered in the
analysis in Section 3.6.

Wikle and Hooten (2006) use 50,000 iterations, discarding the first 20,000 as burn-in.
Four sampling chains are generated with these settings and inspected for convergence
using the coda package (Plummer et al., 2006) in R. We compute the scale reduction
factors (SRF) (Gelman and Rubin, 1992) for ψ, u18 and v19 as a function of the number
of Gibbs iterations. The adequate number of iterations in MCMC depends on what
functionals of the parameters are of interest; here we monitor convergence for these
quantities since we report marginal posterior distributions for them later. The scale
reduction factor of a parameter measures if there is a significant difference between
the variance within the four chains and the variance between the four chains of that
parameter. We use the rule of thumb that concludes convergence occurs when SRF <
1.1, which gives a burn-in period of approximately 40,000 for these functionals here.
After discarding these samples and applying a thinning of 10 we are left with 1,000
posterior samples for inference. However, as the draws are auto-correlated, this does
not correspond to 1,000 independent draws used in the analysis in Section 3.6 (note
that we obtain independent samples from our variational posterior). To decide how
many Gibbs samples are equivalent to 1,000 independent samples for ψ, u18 and v19, we
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Parametrisation

Spatio-temporal R-CPU L(λopt) Confidence interval

LR-S + LD-SM 1 −1,996 [−2,004;−1,988]

LR-S + HD-SM 1.005 −2,024 [−2,032;−2,016]

LR-SA + LD-SM 3.189 −2,158 [−2,167;−2,148]

LR-SA + HD-SM 3.017 −1,909 [−1,918;−1,900]

Wishart process

LR-S + LD-SM 1 −1,121 [−1,126;−1,115]

LR-S + HD-SM 1.0004 −1,040 [−1,046;−1,035]

Table 1: L(λ) and CPU time for the GVA parametrisations in the spatio-temporal and
Wishart process example. The table shows the estimated value of L(λ) for the differ-
ent GVA parametrisations by combining low-rank state / low-rank state and auxiliary
(LR-S / LR-SA) with either of low-dimensional state mean / high-dimensional state
mean (LD-SM / HD-SM). The estimate and its 95% confidence interval are computed
at the final iteration using 100 Monte Carlo samples. The table also shows the relative
CPU (R-CPU) times, where the reference is LD-SM.

compute the effective sample size (ESS) which takes into account the auto-correlation
of the samples. We find that the smallest is ESS = 5 and hence we require 200,000
iterations after a thinning of 10, which makes a total of 2,000,000 Gibbs iterations,
excluding the burn-in of 40,000. Thinning is advisable here due to memory issues — it
is impractical to store 2,000,000 iterations for each parameter (which may be used, for
example, to estimate kernel densities) in high-dimensional models.

3.5 The Gibbs ensemble Kalman smoother

Katzfuss et al. (2020) develop scalable Markov chain Monte Carlo inference for high-
dimensional state space models based on ensemble Kalman filter methods for filtering
(Evensen, 1994) and smoothing (Evensen and Van Leeuwen, 2000). The filtering density
in the standard Kalman filter is costly to compute when the state is high-dimensional.
The idea of the ensemble Kalman filter is to represent the filtering density via an initial
ensemble from the prior of the state vector, and then i) forecast the ensemble, and
ii) update the forecast; see Katzfuss et al. (2020) for details. Katzfuss et al. (2020)
propose the Gibbs ensemble Kalman smoother (GEnKS), which is a Gibbs algorithm
that uses the ensemble Kalman smoother (which requires the ensemble Kalman filter)
when sampling from the full conditional distribution of the states. The updates of the
rest of the parameters are then carried out conditional on this sample following the
usual Gibbs sampling procedure. An important assumption in ensemble Kalman filter
methods is that the distribution of the state transition equation is Gaussian. While this
is the case for the model in this section (see Section 3.2), it does not hold for the model
in Section 4.1.

We implement the GEnKS algorithm with 100 ensembles using a burn-in period of
5,000 iterations and with 33,000 post burn-in samples, which gives an average effective
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sample size for ψ similar to that of the MCMC algorithm with the settings described
in Section 3.4.

Figure 2: Distribution of the diffusion coefficients. The figure shows the posterior dis-
tribution of ψi obtained by MCMC, GVA and GEnKS. The locations are divided into
three categories (total doves over time within brackets): zero count locations (Idaho,
i = 1 [0], Arizona i = 5 [0], left panels), low count locations (Texas, i = 35 [16], 46 [21],
middle panels) and high count locations (Florida, i = 96 [1566], 105 [1453], right panels).

3.6 Analysis and results

We first consider inference on the diffusion coefficient ψi for location i. Figure 2 plots
the “true” posterior (represented by MCMC) together with the variational and GEnKS
approximations for six locations described in the caption of the figure. The figure shows
that the posterior distribution is highly skewed for locations with zero dove counts
and approaches normality as the dove counts increase. Consequently, the accuracy of
the variational posterior (which is Gaussian) improves with increasing dove counts. We
note that the GEnKS provides a better approximation than the GVA approach; however,
some notable discrepancies to the true posterior densities also exist for GEnKS.

Regarding the inferential performance of our method, it is well-known that inade-
quate approximations to the posterior distribution of the states can lead to inconsistent
estimation of the fixed parameters (Wang and Titterington, 2004; Frazier et al., 2021a),
although the impact on predictive performance is limited in many cases (Frazier et al.,



M. Quiroz, D. J. Nott, and R. Kohn 1003

2021a). Frazier et al. (2021a) show that integrating out the states within a variational
approximation by unbiased estimation of the likelihood (Tran et al., 2017), or exact
sampling from the conditional distribution of the states if possible (Loaiza-Maya et al.,
2021), is preferable to using a parametrised approximation to the states as in our ap-
proach. However, they also acknowledge that with a high-dimensional state, these meth-
ods are infeasible in practice. The state-of-the-art in this setting uses ensemble Kalman
filter methods and our approach is competitive in terms of accuracy, but has a much
smaller computational time as discussed above.

Figure 3: Samples from the posterior sum of dove intensity over the spatial grid for each
year. The figure shows 100 samples from the posterior distribution of ϕt =

∑
i exp(vit)

obtained by MCMC (left panel), GVA (middle panel) and GEnKS (right panel).

Figure 3 shows 100 GVA, GEnKS and MCMC posterior samples of the dove inten-
sity for each year summed over the spatial locations, i.e. ϕt =

∑
i exp(vit). The three

posteriors are similar and show an exponential increase of doves until the year 2002
followed by a steep decline for 2003. Section S6 shows some spatial properties of the
model, confirming that GVA gives accurate location estimates of the spatial process.

Figure 4 illustrates the posterior distribution of the log-intensity for selected loca-
tions for 2003, as well as the out-of-sample posterior predictive distribution for 2004.
The posterior distributions for the GVA, GEnK and MCMC are similar for the in-
sample prediction year 2003. For the out-of-sample prediction year 2004, GEnKS does
not give an accurate result because of a large error in estimating σ2

ε ; the point esti-
mate with GEnKS is 0.059 compared to 4.45819 with MCMC. The corresponding point
estimate for GVA is 4.781454, and thus GVA and MCMC give similar results for this
out-of-sample prediction. It is evident that using this large scale model for forecasting
future values is associated with a large uncertainty. We note that when the ensemble size
and the number of MCMC samples tend to infinity, GEnKS will under mild regularity
conditions produce samples from the exact posterior if the state evolution is linear and
a consistent estimator of the forecast covariance matrix is used (Katzfuss et al., 2020).
However, a large ensemble size is computationally infeasible in this example. With en-
semble size 100, GEnKS was about 12.3 times slower than GVA. GVA took about 6.5
hours to run. We also note that GVA is 7.3 times faster than MCMC.
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Figure 4: Forecasting the log-intensity of the spatial process. The figure shows an in-
sample forecast density of the log-intensity vit for 2003 (t = 18, upper panels) and out-
of-sample forecast density for 2004 (t = 19, lower panels) for Central Florida (i = 96,
left panels) and South East Florida (i = 105, right panels).

4 Application 2: Stochastic volatility modeling

4.1 Model

The second example considers the Wishart based multivariate stochastic volatility model
proposed in Philipov and Glickman (2006) who used it to model the time-varying de-
pendence of a portfolio of k assets over T time periods. Section 2.2 briefly discusses this
model.

The model of the mean-centred returns in Philipov and Glickman (2006) is

yt ∼ N (0,Σt); Σt ∈ R
k×k
+ ;

Σ−1
t ∼ Wishart(ν, St−1); St =

1

ν
H(Σ−1

t )dH�; St ∈ R
k×k
+ ; ν > k; 0 < d < 1;

H is a lower triangular Cholesky factor of A = HH� ∈ R
k×k
+ and Σ0 is assumed

known. Philipov and Glickman (2006) use the following priors: the prior for A is inverse
Wishart, i.e. A−1 ∼ Wishart(γ0, Q0), with γ0 = k+1 and Q0 = I; d has a uniform prior
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on [0, 1], i.e. d ∼ U [0, 1]; ν has a shifted gamma prior, i.e. ν − k ∼ Gamma(α0, β0). The
joint posterior density for (Σ, A, ν − k, d) is

p(Σ, A, ν − k, d|y) ∝ p(A, d, ν − k)

T∏
t=1

p(Σt|ν, St−1)p(yt|Σt); (4.1)

p(A, d, ν−k) is the joint prior density for (A, d, ν−k); p(Σt|ν, St−1, d) is the conditional
inverse Wishart prior for Σt given ν, St−1 and d, and p(yt|Σt) is the normal density for
yt given Σt.

We write Ct for the Cholesky factor of Σt and reparametrise the posterior in terms
of the unconstrained parameter vector

θ = (vech(H ′)�, d′, ν′, vech(C ′
1)

�, . . . , vech(C ′
T )

�)�;

where

C ′
t ∈ Rk×k; C ′

t,ij = Ct,ij ; i �= j, and C ′
t,ii = logCt,ii;

H ′ ∈ Rk×k; H ′
ij = Hij ; i �= j, and Hii = logHii;

with d′ = log d/(1− d) and ν′ = log(ν − k). Section S4.3 shows that

p(θ|y) ∝ |Lk(Ik2 +Kk,k)(H ⊗ Ik)L
�
k | ×

{
T∏

t=1

|Lk(Ik2 +Kk,k)(Ct ⊗ Ik)L
�
k |

}
× (ν − k)

× d(1− d)×
{∏

i

Hii

} {
T∏

t=1

k∏
i=1

Ct,ii

}
× p(A, d, ν − k)

×
{

T∏
t=1

p(Σt|ν, St−1, d)p(yt|Σt)

}
; (4.2)

Section S1 defines the elimination matrix Lk and the commutation matrix Kk,k; Section
S4.4 shows how to evaluate the gradient of the log posterior.

4.2 Evaluating the predictive performance of the variational
approximation

Philipov and Glickman (2006) develop an MCMC algorithm to estimate their Wishart
based multivariate stochastic volatility model. Rinnergschwentner et al. (2012) point out
that the Gibbs sampler developed by Philipov and Glickman (2006) contains a mistake
which affects all the full conditionals. We find that implementing the corrected version
of their algorithm results in a very inefficient sampler even for the k = 5 portfolios
used by Philipov and Glickman (2006) in their empirical example. This means that the
corrected Philipov and Glickman (2006) algorithm cannot be used as a ‘gold standard’
to compare against the variational approximation results. Although it may be possible
to estimate the posterior of the Philipov and Glickman (2006) model using particle
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methods, we do not pursue this here as particle methods do not scale well to high-
dimensional states (Katzfuss et al., 2020). Section S9 illustrates the inefficiency of the
corrected Philipov and Glickman (2006) sampler and explains its problems.

We now show empirically (by simulation) that the variational posterior provides use-
ful predictive inference. Since MCMC is unavailable, the GVA is benchmarked against an
oracle predictive approach, which assumes that the fixed model parameters are known.
We use a bootstrap particle filter (Gordon et al., 1993) to obtain the posterior density
of the state-vector at t = T ; it is then possible to obtain the one-step ahead oracle pre-
dictive density p(yT+1|y1:T , ζtrue), where ζtrue denotes the true fixed model parameters.
The variational predictive density is then benchmarked against the oracle predictive
density; we note that the variational predictive density integrates over the variational
posterior of all the parameters, including the fixed model parameters.

Section S7.1 shows how to simulate from the oracle predictive density. Section S7.2
shows how to simulate from the variational predictive density. The one-step ahead pre-
diction is repeated for H = 4 horizons. At horizons h = 1, . . . , H, both filtering densities
are based on y1:T+h−1 and the optimisation for finding the variational posterior for h > 1
is fast since the variational parameters are initialised (except the ones added at T + h)
at their variational mode from the previous optimisation.

4.3 Variational approximations of the posterior distribution

Since this example does not include a high-dimensional auxiliary variable, we use the
low-rank state (LR-S) parametrisation combined with both a low-dimensional state
mean (LD-SM) and a high-dimensional state mean (HD-SM). As in the previous exam-
ple, it is straightforward to deduce conditional independence relationships in (4.2) to
build the Cholesky factor C2 of the precision matrix Ω2 of ζ in Section 2; this section
also outlines how to construct the Cholesky factor C1 of the precision matrix Ω1 of
z. Massive parsimony is achieved in this application. In particular, for k = 12 assets,
the saturated Gaussian variational approximation has 31,059,020 parameters, while our
parametrisation has 10,813. For k = 5, the saturated case has 1,152,920 parameters and
our parametrisations has 4,009–5,109. See Section S8 for more details.

For all the variational approximations, we take q = 4 and perform 10,000 iterations
of a stochastic optimisation algorithm with learning rates chosen adaptively according
to the ADADELTA approach (Zeiler, 2012). We initialise B and C as unit diagonal
matrices and choose μ and D randomly. Figure 5 monitors the estimated ELBO for
both parametrisations, using both the gradient estimators in Roeder et al. (2017) and
the alternative standard ones which do not cancel terms that have zero expectation.
For k = 5, the figure shows that the different gradient estimators perform equally
well. Moreover, slightly more variable estimates are observed in the beginning for the
low-dimensional state mean parametrisation compared to that of the high-dimensional
mean. Table 1 presents estimates of L(λ) at the final iteration using 100 Monte Carlo
samples and also presents the relative CPU times of the algorithms. In this example,
the separate state mean present in the high-dimensional state mean improves the ELBO
considerably.
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Figure 5: L(λ) for the variational approximations in the Wishart process example. The
figure shows the estimated value of L(λ) vs iteration number using a low-dimensional
state mean / high-dimensional state mean (LD-SM / HD-SM) with the gradient esti-
mator in Roeder et al. (2017) or the standard estimator. The left and middle panels are
for k = 5; the right panel is for the real data with k = 12.

4.4 Results for simulated data

We now assess the variational approximation by comparing its out-of-sample predictive
properties against the oracle predictive density described in Section 4.2. The comparison
is based on data generated by the multivariate stochastic volatility model with d = 0.2,
ν = 20 and A generated from ∼ Inv-Wishart(5, diag(5)). While the reported results
are for a particular simulated dataset due to space restrictions, we have verified that
the same performance is obtained when the random number seed is changed and d and
ν are varied. Figure 6 shows the kernel density estimates for the marginals predictive
densities of all five assets and bivariate kernel density estimates for all pairs of assets
for the predictive p(yT+1|y1:T ) (variational and oracle) for T = 100. The figure also
shows the test observation (withheld when estimating the variational predictive and the
oracle predictive). Figure 7 shows boxplots of draws from all marginals of the predictive
densities p(yT+h|y1:T+h−1) (variational and oracle) for the horizons h = 1, 2, 3, 4. This
figure also shows the withheld test observation which is within the prediction intervals
of both methods. Figure 8 shows, for each of the H = 4 horizons, future predictions
(variational and oracle) of an equally weighted portfolio wT+h =

∑5
k=1(1/5)y(T+h)k

conditional on the posteriors using the data y1:(T+h−1). Section S7.3 gives plots that
further confirm the accuracy of the variational predictive densities.

4.5 Real data results

The data consists of T = 100 monthly observations on all k = 12 value-weighted port-
folios from the 201709 CRSP database, for the period 2009-06 to 2017-09. The portfo-
lios are: consumer non-durables, consumer durables, manufacturing, energy, chemicals,
business equipment, telecom, utilities, retail/wholesale, health care, finance, other. With
k = 12 the dimension of the state vector is p = 78. We follow Philipov and Glickman
(2006) and prefilter each series using an AR(1) process. Philipov and Glickman (2006)
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Figure 6: Multivariate stochastic volatility model with simulated data and T = 100. The
top row and the two panels from the left of the second row show the marginal one-step-
ahead kernel density estimates of the predictive density for each of the k = 5 variables
for both the variational approximation and the oracle; the test observation is the red
line. The right panel of the second row and the rest of the panels show the contour plots
of the kernel density estimates of the one-step-ahead bivariate predictive densities for
the variational approximation and the oracle; the red dot is the test observation.

only consider k = 5 assets and report an acceptance probability close to zero when
k = 12 for their sampler.

The right panel in Figure 5 shows the estimated ELBO on a variational optimisation
using the real dataset. While the estimated ELBO plot is more variable than for the
k = 5 case, it settles down eventually. Figure 9 shows the in-sample prediction of ỹ100
given y1:100, together with the observed data point, for some of the assets. The figure
also shows an in-sample prediction of a portfolio consisting of equally weighted assets.
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Figure 7: Boxplots of samples from the variational one-step ahead marginal predictive
densities compared against the oracle predictive densities with T = 100, 101, 102, 103
using simulated data. The figure also shows the test observation (red) dot for each T
and variable.

The variational posterior for the real data example uses the low-dimensional state mean

parametrisation.

5 Discussion

We propose an all-purpose GVA method for high-dimensional state space models. Di-

mension reduction in the variational approximation is achieved through a dynamic factor

structure for the variational covariance matrix. The factor structure reduces the dimen-

sion in the description of the states, whereas the Markovian dynamic structure for the
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Figure 8: Kernel density estimates of the one-step ahead predictive densities of an
equally weighted portfolio of assets for the simulated data. The results are for T =
100, 101, 102, 103. The figure also shows the test observation (red line) for each T .

factors achieves parsimony in describing the temporal dependence. We show that the
method works well in two challenging models. The first is an extended example for a
spatio-temporal data set describing the spread of the Eurasian collared-dove through-
out North America. We benchmark our method against the Gibbs ensemble Kalman
smoother with favorable outcomes. In particular, our method is 12 times faster in the
demonstration example. Moreover, our method does not rely on the state distribution
being Gaussian, and so applies more widely than ensemble Kalman filter methods. Thus,
it applies to our second example which is a multivariate stochastic volatility model in
which the state vector is high dimensional and follows a Wishart distribution.

The most obvious limitation of our current work is the restriction to a Gaussian ap-
proximation, which cannot capture skewness or heavy tails in the posterior distribution.
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Figure 9: Kernel density estimates of the in-sample predictive density of the multivariate
stochastic volatility model for some of the assets and an equally weighted portfolio of
assets using real data. The figure also shows the in-sample observation (red line).

However, Gaussian variational approximations can be used as building blocks for more
complex approximations based on normal mixtures, copulas or conditionally Gaussian
families, for example Han et al. (2016); Miller et al. (2016); Smith et al. (2020); Tan
et al. (2020) and these more complex variational families can overcome some of the
limitations of the simple Gaussian approximation. We intend to consider this in future
work.

6 Technical definitions

We consider any vector x ∈ Rn to be arranged as a column vector with n elements,
i.e. x = (x1, . . . , xn)

�. Likewise, if g is a function whose range is vector valued, i.e.
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g(x) ∈ Rm, then g(x) = (g1(x), . . . , gm(x))�. For a matrix A, vec(A) is the vector
obtained by stacking the columns of A from left to right.

Definition 1. (i) Suppose that g : Rn → R is a scalar valued function of a vector
valued argument x. Then ∇xg is a column vector with ith element ∂g/∂xi.

(ii) Suppose that g : Rn → Rm is a vector valued function of a vector valued argu-
ment x. Then dg/dx is a m× n matrix with (i, j)th element ∂gi/∂xj.

(iii) Suppose that g : Rm×n → R is a scalar valued function of a m×n matrix A = (aij).
Then ∇Ag is an m× n matrix with (i, j)th element ∂g/∂aij.

(iv) Suppose that G : Rm×n → Rq×r is a matrix valued function of a matrix valued
argument A. Then,

dG

dA
=

d vec(G)

d vec(A)

is an mq × nr matrix with (i, j)th element ∂ vec(G)i/∂ vec(A)j .

Remark 1. If g is a scalar function of a vector valued argument x, then Part (ii) (with
m = 1) implies that dg/dx is a row vector. Hence, ∇Xg = (dg/dx)�.

We write In for the n×n identity matrix, 0m×n for the m×n matrix of zeros, ⊗ for
the Kronecker product and 
 for the Hadamard (elementwise) product which can be
applied to two matrices of the same dimensions. We also write Kr,s for the commutation
matrix, of dimensions rs× rs, which for an r × s matrix Z satisfies

Kr,s vec(Z) = vec(Z�).

Supplementary Material

Web-based supplementary materials (DOI: 10.1214/22-BA1332SUPP; .pdf). The sup-
plementary material contains expression of the gradients with proofs, and additional
material regarding results and modification of the methods.
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