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Bayesian Inferences on Uncertain Ranks and
Orderings: Application to Ranking Players and

Lineups∗

Andrés F. Barrientos†, Deborshee Sen‡, Garritt L. Page§, and David B. Dunson¶

Abstract. It is common to be interested in rankings or order relationships among
entities. In complex settings where one does not directly measure a univariate
statistic upon which to base ranks, such inferences typically rely on statistical
models having entity-specific parameters. These can be treated as random effects
in hierarchical models characterizing variation among the entities. In this paper,
we are particularly interested in the problem of ranking basketball players in terms
of their contribution to team performance. Using data from the National Basket-
ball Association (NBA) in the United States, we find that many players have sim-
ilar latent ability levels, making any single estimated ranking highly misleading.
The current literature fails to provide summaries of order relationships that ade-
quately account for uncertainty. Motivated by this, we propose a Bayesian strategy
for characterizing uncertainty in inferences on order relationships among players
and lineups. Our approach adapts to scenarios in which uncertainty in ordering
is high by producing more conservative results that improve interpretability. This
is achieved through a reward function within a decision theoretic framework. We
apply our approach to data from the 2009–2010 NBA season.

Keywords: Bayesian, ordering statements, ranking, decision theory, sports
statistics.

1 Introduction

Making inference on orderings among parameters is of widespread importance. These
may represent, for example, abilities of individuals or teams performing a given task
(Cattelan et al., 2013), treatment effects in clinical trials (Rücker and Schwarzer, 2015),
health and social indices of geographical regions (Marriott, 2017), consumer preferences
in search engines (Park et al., 2015), and educational systems (Millot, 2015). Stan-
dard statistical techniques for inferring such orderings aim to estimate a ranking of
parameters. These have classically included ranking the posterior means or using the
posterior expected ranks (Laird and Louis, 1989; Lin et al., 2006); we refer the reader to
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Henderson and Newton (2016) for a more nuanced technique. Other methods have been
developed based on the type of data at hand. For example, when data originate directly
from paired comparisons between competing units, the Bradley-Terry model (Bradley
and Terry 1952) has become a popular option to estimate each unit’s “ability” which are
then used to produce a ranking (Agresti 2002; Hunter 2004; Caron and Doucet 2012).
Recent work dedicated to Bradley-Terry type models has focused on generalizations
of the base model. For example, Dittrich et al. (1998) allow unit-specific covariates to
inform ability estimates, and Huang et al. (2008) use group information to estimate
individual abilities. When preference data are available, Vitelli et al. (2018) recently
developed a method based on the Mallows model that produces rankings. In this same
setting, Caron et al. (2014) developed a method that produces rankings based on a
Plackett-Luce model.

This article is motivated by our interest in providing an approach for producing
ordering statements for entities in professional sports leagues, with a particular focus
on the National Basketball Association (NBA) of the United States of America. In what
follows, we use the term “ordering statement” to mean the collection of rankings of a
subset of objects of interest. We are interested in comparing players not on the basis of
their individual statistics but in terms of their contribution to team performance. Our
primary dataset is from the 2009–2010 NBA season, and our goal is to provide ordering
statements associated with individuals’ and groups of individuals’ (lineups’) abilities.
This is a particularly challenging case study because many players have similar abilities
and, based on the available data, the abilities need to be estimated from measurements
taken at a group level, making them imprecise. Ranking statements typically summarize
orderings in parameters and it can be challenging to assess and summarize uncertainty
in such statements. This is especially true in scenarios where parameter values are
similar or the amount of data is limited relative to the number of parameters (as in
our case study). In such settings, it is particularly important to not over-interpret a
single estimated ranking but instead to carefully account for uncertainty in rank-based
decision making and inferences.

Despite the rich statistical literature on ranking problems, few contributions focus
on characterizing uncertainty. In the Bayesian framework, methods for measuring uncer-
tainty include point-wise credible intervals for ranks (Rodŕıguez and Moser, 2015) and
identifying rankings with high posterior probability (Soliman and Ilyas, 2009; Vitelli
et al., 2018; see also Jewett et al., 2019 for some visual tools). In the frequentist frame-
work, some theoretical contributions focus on studying asymptotic conditions under
which point-wise confidence intervals of population ranks have the claimed coverage
probability (Xie et al., 2009), and under which ranking estimates converge to the truth
as the number of parameters and sample size increase to infinity (Hall and Miller, 2010).
Other contributions aim to define confidence regions for rankings using multiple confi-
dence intervals or hypothesis tests for the parameters while controlling the family-wise
error rate (Wright et al., 2018; Klein et al., 2020; Mohamad et al., 2021). However,
controlling the family-wise error rate can be challenging and often leads to regions that
are so wide as to be practically meaningless. Loss functions have also been used in this
regard, with the choice of the loss depending on the ranking problem at hand; examples
include ranking by using a weighted loss that improves estimates of extrema (Wright
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et al., 2003), finding the correct rank for a particular parameter, finding a parameter
corresponding to a particular rank, or correctly ordering a pair of parameters (all in
Jewett et al., 2019), identifying the top or bottom rankings (Lin et al., 2006; Henderson
and Newton, 2016), optimizing the area under a receiver operating characteristic curve
(Rendle et al., 2009), and learning to rank (Chen et al., 2009).

In this paper, we adopt a Bayesian framework and propose an approach for produc-
ing ordering statements of parameters along with their associated uncertainty. These
ordering statements are not designed to make definitive conclusions about all parameters
being compared; instead, they maintain accuracy by remaining silent when uncertainty
associated with the ranking is high. These ordering statements thus represent uncer-
tainty more realistically as compared to usual rankings. We achieve this by forming
two particular types of ordering statements, which we term local and global statements.
Local statements provide orderings relative to individual parameters, and global state-
ments combine local statements. In our framework, combining local statements to form
global statements leads to a potentially massive number of global statements. To address
this, we propose a decision-theoretic approach to pick a global statement that balances
the number of elements included in the statement and its uncertainty. The proposed ap-
proach can be parallelised, which makes it attractive from a computational perspective.
We also show that the optimal global statement that maximizes the expected utility
function converges to the true ranking. We highlight the fact that our approach is based
solely on posterior distribution probabilities. Thus, it can be employed regardless of the
statistical model used to fit the data. For this reason, we focus primarily on developing
and presenting our approach that produces local and global ordering statements and
ancillarily on the model employed to fit the NBA data.

The rest of the paper is organized as follows. Section 2 discusses the challenges
of ranking parameters under different scenarios; this is motivated concretely by the
NBA application. Because our approach is applicable regardless of the statistical model
utilized, Section 3 first provides formal definitions of local and global statements, in-
troduces the reward function used to find optimal statements, and presents an asymp-
totic result showing the convergence of the optimal statements to the true ranking.
Section 4.1 describes the statistical model used in the NBA application, and the rest
of Section 4 is dedicated to conducting a simulation study to assess the performance
of our approach and compare to the cumulative probability consensus ranking de-
scribed in Vitelli et al. (2018). Section 5 presents results for our analysis of the NBA
data. Computer codes used to carry out the analysis in Section 5 can be found in
our R-package at https://github.com/anfebar/anfebar.github.io/tree/master/
Software/BOARS. Finally, we end with some concluding remarks in Section 6.

2 Motivation through basketball application

Since our focus is on NBA performance data, we begin by briefly providing some context.
In basketball, a competition between two teams is based on five players within a lineup.
A basketball game is a timed collection of competitions between lineups, which we refer
to as “encounters”. The lineup compositions for both teams change frequently during
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the course of a game based on substitutions made by team coaches. It is common for
teams to record a number of metrics during encounters to evaluate lineup performance.
Among these are the total number of points scored and the total number of points
conceded. In this work, we use the difference of these two totals as a way to measure
the ability of a lineup while taking into account the quality of opponent. The available
information we have is thus at the lineup level rather than the player level.

It is often stated that the NBA is a “player’s league”, meaning that a team’s suc-
cess is highly dependent on its top players’ talent level. Being able to discriminate
between player abilities and attract high-performing players is thus crucial for general
managers/decision makers. In addition, basketball is a sport that requires precise in-
teractions between players, and thus being able to identify collections of players that
play effectively together is a coach’s key responsibility. This makes it important to be
able to order players and lineups. Examples of ordering statements that could prove
useful to coaches and general managers are a ranking of all players or lineups across
the NBA, rankings of subsets of players or lineups (within a team or between teams),
pairwise comparisons between players and/or lineups, lists of players or lineups that
are at the top or bottom of a team or a subset of teams, et cetera. To obtain such
statements, a common approach is to first fit a model that produces a posterior distri-
bution of player/lineup abilities, and then compute a ranking based on either a summary
measure of the posterior distribution or by means of loss functions. Examples of sum-
mary measures include posterior means, the so-called r-values (Henderson and Newton,
2016), and posterior expected ranks (Laird and Louis, 1989; Lin et al., 2006), while loss
functions are explored in Jewett et al. (2019).

If a posterior summary measure is used to construct an ordering of players/lineups,
it is desirable that this be accompanied by a measure of uncertainty. Since an ordering
statement defines a region of the parameter space, a natural measure of uncertainty is the
amount of posterior probability that such a region accumulates. Ideally, one would like
the posterior probability of an ordering statement to be large and also for it to be precise.
For example, it would be undesirable to report a wide credible interval for the position
at which a player is ranked even though the posterior probability of the interval is high.
Figure 1 illustrates the challenges of producing precise ordering statements with small
uncertainty in our application. This displays a caterpillar plot of each players’ average
per game difference between points scored and allowed for each encounter in which the
player participates. This could be thought of as a type of adjusted plus/minus (Sill,
2010) in that it takes into account lineup information. It is clear that there is a massive
overlap in the average difference in points scored and allowed across players. Reasons for
this are: (i) player abilities are inferred using measurements collected at an aggregate,
that is, lineup level, (ii) players have very similar abilities, which is not unexpected for
a top-level competition, (iii) the number of observations for a player varies widely from
around twenty to two thousand, and (iv) encounters are often competitive, resulting in
differences in points scored close to zero. This overlap makes it so that any ordering
statements (as those listed in the previous paragraph) that contain a moderate to large
subset of players (and thus lineups) would likely have negligible posterior probability.
For this reason, it is imperative to attach a measure of uncertainty to these types of



A. F. Barrientos, D. Sen, G. L. Page, and D. B. Dunson 781

Figure 1: Per game average of points scored minus points allowed of each encounter
in which a player participated. Each bar represents the interquartile range of the per
game average between points scored and allowed of the all encounters in which a player
participated.

ordering statements so that coaches and general managers are aware that they are
making decisions based on statements that may be very uncertain.

In scenarios like our NBA application where any ranking/ordering of a large num-
ber of players/lineups is likely to have massive uncertainty, an alternative option is to
focus on making statements for a small subset of players/lineups. This can include, for
example, pairwise comparisons. Doing so would produce ordering statements that are
likely to be less uncertain. However, if a coach/general manager makes decisions based
on a collection of statements that consist of a small subset of players/lineups, then in
order to correctly quantify uncertainty, they will need to compute the joint posterior
probability of each of the “smaller” statements occurring simultaneously. Unfortunately,
this joint probability is again likely to be low. In Section 5.2, we provide some examples
of how typical approaches lead to ordering statements which have posterior probability
that are essentially zero.

In this article, we propose an approach that attempts to find ordering statements
which accumulate a large joint posterior probability. Our approach focuses on explor-
ing the support of the posterior distribution and identifying a region (or regions) in
the parameter space for which a non-negligible concentration of posterior probability
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occurs, and in turn connecting the region to a set of ordering statements. The posterior
probability of the identified regions is equal to the joint probability of the corresponding
ordering statements, which corresponds to our measure of uncertainty. In addition, not
only do we attempt to find an ordering statement on which a non-negligible amount of
posterior probability is concentrated, but, if possible, we find one that involves a rea-
sonable number of players/lineups as well. We achieve this by forming local and global
statements, where local statements provide orderings relative to individual parameters,
and global statements combine local statements; concrete definitions of these statements
are provided in Section 3. When comparing the abilities of two players/lineups within a
local statement, say ξ1 and ξ2, the global statement should refrain from saying whether
player 1 is better or worse than player 2 (that is, ξ1 > ξ2 or ξ1 < ξ2, respectively)
if the posterior probability of the event ξ1 > ξ2 is not reasonably large or small, re-
spectively. Thus, local statements can end up being empty. When the global statement
only involves a few local statements comprised of a few players/lineups, we call it a
sparse global statement. If sparsity needs to be reduced, there are two options: (i) work
with a smaller posterior probability, or (ii) introduce a mechanism that allows coaches
or managers to introduce some error and accept that some players or lineups may be
misordered in some of the ordering statements. Thus, for each ordering statement, we
need to provide not only the posterior probability, but also a proper quantification of
such error. Our proposed approach to achieve this is both novel and complementary to
the existing literature of alternate methods to estimate ordering statements.

Decision makers will be able to employ the ordering statements our approach pro-
vides with confidence that uncertainty is explicitly and properly calibrated. However,
it may be the case that comparisons between two or more players/lineups of interest
is not available in the global statement, implying that uncertainty associated with the
comparisons is large. If this is the case, then the coach/general manager’s options are
twofold: (i) make a decision based on, for example, the posterior mean of the abilities,
r-values, posterior expected ranks in the face of high uncertainty (which essentially
boils down to a “guess”), or (ii) collect a different set of data that is able to better
discriminate between desired players or lineups and run our procedure based on these
data. The next section presents a detailed description of our proposed approach.

Before describing our approach, we briefly mention that analyzing player contribu-
tions to lineup effectiveness and overall team strength has appeared in the basketball
analytics literature. A small sampling of these are Kalman and Bosch (2020), who dis-
cover effective lineups based on new position definitions, Page et al. (2007), use box-score
variables to highlight player skills that are conducive to winning games, and Deshpande
and Jensen (2016), who use situational contributions to estimate player quality and pro-
duce a player ranking. That being said, we are not aware of any work in sports analytics
that addresses uncertainty quantification associated with rankings or orderings.

3 Bayesian ordering statements

This section contains the main conceptual contribution of this article. We begin by pro-
viding a formal description of the setup we are working under in Section 3.1. We then
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introduce notions of local and global statements in Section 3.2. These are formed using
loss parameters that users are free to pick according to their needs; this is discussed
further in Section 3.2. We provide a decision-theoretic approach to tune the loss pa-
rameters in Section 3.3; this leads to optimal global statements. We show in Section 3.4
that the optimal global statement converges to the true ranking asymptotically as the
sample size increases.

3.1 Setup

Formally, our goal is to compare L unknown parameters ξ1, . . . , ξL ∈ Ξ; these represent
player abilities in our application, and will also later be used to construct lineup abilities.
We use the shorthand notation ξ = (ξ1, . . . , ξL) ∈ ΞL, and we let B(ΞL) denote the Borel
sigma-algebra on ΞL. We assume that ΞL allows orderings among parameters, that is,
for every (ξ1, . . . , ξL) ∈ ΞL and every pair (l, l′), 1 ≤ l �= l′ ≤ L, one of ξl′ > ξl or
ξl = ξl′ or ξl > ξl′ is true.

We adopt a Bayesian approach in this article and assume that there is a statistical
model with parameters ξ, and we let P be the posterior distribution of ξ given obser-
vations, where we omit its explicit dependence on observations to keep the notation
simple; P is defined on the space (ΞL,B(ΞL)). It is reasonable to assume that no two
players have exactly the same ability. In other words, either ξl′ > ξl or ξl > ξl′ for every
l �= l′ and ξ ∈ ΞL, and we shall assume this in the remainder of the article.

Throughout this article, we shall be interested in making ordering statements among
individual parameters, which we formally define as follows.

Definition 1. An ordering statement is an event in B(ΞL) that establishes order rela-
tions among (a subset of) individual parameters. No order relations are assumed among
the remaining parameters.

A trivial ordering statement is the empty statement, that is, entire space ΞL. While
this has posterior probability one, it provides no information among the relative or-
derings of any individual parameters. The simplest meaningful ordering statements
are those which order only two individual parameters, for example, {ξ ∈ ΞL : ξ1 <
ξ2, ξ3, . . . , ξL ∈ Ξ}. For simplicity, we shall just write this as (ξ1 < ξ2) and not make
explicit that ξ3, . . . , ξL ∈ Ξ. An example of a strict ordering statement is ξ1 < · · · < ξL,
which provides an ordering among all the individual parameters; this typically has
negligible posterior probability. The above examples are of relatively simple ordering
statements, and we shall construct more sophisticated ordering statements in the se-
quel. In the remainder of this section, we fix the posterior distribution P and construct
statements based on it.

3.2 From local to global statements

We begin by considering pairwise comparisons. We define events El,l′ = (ξl > ξl′),
1 ≤ l �= l′ ≤ L and call these elementary statements because they compare pairs of
parameters. These will be used as building blocks in the sequel. In particular, El,l′
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denotes the event that the lth parameter is ordered higher than the l′th parameter.
We then choose a lower bound (1 − α) for the posterior probability of the elementary
statements for α ∈ [0, 1], we define sets

Al,α = {l′ ∈ {1, . . . , L} : P(El′,l) > 1− α} ,
Al,α = {l′ ∈ {1, . . . , L} : P(El,l′) > 1− α} .

(3.1)

The set Al,α consists of all parameters that are ordered higher than the lth parameter
with posterior probability at least (1 − α), and the set Al,α consists of all parameters
that are ordered lower than the lth parameter with posterior probability at least (1−α);
recall that we have fixed the posterior distribution before constructing statements. In
other words, the sets Al,α and Al,α are sets of players whose posterior probability of
having an ability different from that of player l is high. We order the lth parameter
only with respect to parameters in Al,α and Al,α, since ordering with respect to other
parameters has a high degree of uncertainty.

We now define the following local statements which involve multiple elementary
comparisons. We use the notation |A| to denote the cardinality of a finite set A.

1. Statement Al,α: parameter l is ordered higher than all parameters in Al,α and

ordered lower than all parameters in Al,α, that is,

Al,α = (∩l′∈Al,α
El,l′)∩ (∩l′∈Al,α

El′,l).

In other words, Al,α is the event where all the elementary statements associated
with Al,α ∪ Al,α simultaneously hold.

2. Statement Al,α,t: at least (1− t)× 100 percent of the elementary statements in
Al,α are α-correct for t ∈ [0, 1], where α-correct refers to an elementary statement
El,l′ or El′,l such that P(El,l′) > (1 − α) or P(El′,l) > (1 − α), respectively; we
will refer to t as the local error. Formally,

Al,α,t =∪(A,A)∈Al,α,t
(∩l′∈AEl,l′)∩ (∩l′∈AEl′,l), (3.2)

where

Al,α,t =
{
(A,A) : A ⊆ Al,α, A ⊆ Al,α, |A|+ |A| ≥ (1− t)× |Al,α ∪ Al,α|

}
.

Notice that A ∪ A with (A,A) ∈ Al,α,t is a collection of indices with cardinality
greater than or equal to (1− t)×|Al,α∪Al,α| and for which either P(El′,l) > 1−α
or P(El′,l) > 1− α.

Al,α is the subset of ΞL where ξl′ < ξl for all l
′ ∈ Al,α and ξl < ξl′ for all l

′ ∈ Al,α;

where we note that the sets Al,α and Al,α were chosen based on the posterior distri-
bution P. This is relaxed in the event Al,α,t, which does not require all the elementary
statements in Al,α to hold. The posterior probability of at least one of the elementary
statements in Al,α being α-incorrect is a non-decreasing function of the number of such
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statements in Al,α, and therefore P(Al,α) is a non-increasing function of the number of
elementary statements in Al,α. Since our final aim is to define statements having high
posterior probability, statement Al,α,t considers the same elementary statements as Al,α

but also allowing for a local error determined by t.

To create statements involving multiple local statements for a fixed t and α, we
consider only those players whose corresponding Al,α,t have posterior probability lower-
bounded by (1− γ) for γ ∈ [0, 1],

Gα,t,γ = {l ∈ {1, . . . , L} : P (Al,α,t) ≥ 1− γ} . (3.3)

We now define the following global statements.

1. Statement Gα,t,γ : statements Al,α,t simultaneously hold for all l ∈ Gα,t,γ , that
is, Gα,t,γ =∩l∈Gα,t,γAl,α,t. In other words, Gα,t,γ is the event where all the local
statements associated with Gα,t,γ simultaneously hold.

2. Statement Gα,t,γ,q: at least (1−q)×100 percent of the local statements compris-
ing Al,α,t are γ-correct for q ∈ [0, 1], where γ-correct refers to a statement Al,α,t

such that P(Al,α,t) ≥ 1− γ; we will refer to q as the global error. Formally,

Gt,α,γ,q =∪G∈Gα,t,γ,q ∩l∈G Al,α,t, (3.4)

where
Gα,t,γ,q = {G : G ⊆ Gα,t,γ , |G| ≥ (1− q)× |Gα,t,γ |} .

Notice that G ⊆ Gα,t,γ is a collection of indices l′ with cardinality greater than or
equal to (1− q)× |Gα,t,γ | and for which P (Al,α,t) ≥ 1− γ.

Recall that we choose the set Gα,t,γ based on the posterior probability of events Al,α,t.
Having chosen Gα,t,γ , Gα,t,γ is then the subset of ΞL where the events Al,t,α happen
for all l ∈ Gα,t,γ . This is relaxed in the global statement Gα,t,γ,q, which requires only a
proportion of the events Al,t,α for l ∈ Gα,t,γ to happen.

The global statement Gα,t,γ,q allows a global error q that plays a role similar to
that of t at the local level. These global statements are of principal interest as they can
be employed to produce rankings. Section 1 of the supplementary material (Barrientos
et al., 2022) details an algorithm that is able to find local and global statements along
with the corresponding posterior probabilities using samples drawn from P.

One of our goals is to produce global statements that balance sparsity and the de-
sire for statements having high posterior probability, which can be achieved through
specific choices of (α, t, γ, q). The following inequalities provide intuition about the re-
lation between (α, t, γ, q) and the posterior probability of global statements and local
statements.

1. P(Gα,t,γ,q) ≥ P(Gα,t,γ,q′) for q ≥ q′, that is, global statements with smaller global
error have smaller posterior probability.
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2. P(Gα,t,γ,q=0) = P(Gα,t,γ) ≥ 1 − γ|Gα,t,γ |, that is, when the global error is equal
to zero, the posterior probability of the global statement increases as γ or the
number of local statements in Gα,t,γ decreases.

3. P(Al,α,t) ≥ P(Gα,t,γ) if l ∈ Gα,t,γ , that is, when the global error is zero, the
posterior probability of the global statement is upper bounded by the posterior
probability of any local statement in Gα,t,γ .

4. P(Al,α,t=0) = P(Al,α) ≥ 1−α|Al,α∪Al,α|, that is, when the local error is equal to
zero, the posterior probability of the local statement increases as α or the number
of elementary statements in Al,α decreases.

Moreover, for fixed q and t, the number of elementary statements in Al,α,t and local
statements in Gα,t,γ,q decreases as either α or γ decreases. We can thus obtain less sparse
statements by setting α and γ at large values, which in turn increases the posterior
probability of the global statement. The roles of q and t are less obvious. For example,
if we increase q and t, it is not clear how this will impact the posterior probability of
Gα,t,γ,q. On one hand, the posterior probability of the local statements will increase
leading to less sparse global statements which may decrease its posterior probability;
while on the other hand, an increase of q will also allow more errors which may result in
an increase in the posterior probability. To deal with the effect of variations of (α, t, γ, q)
on the posterior probability and on sparsity of Gα,t,γ,q, we introduce a decision theoretic
framework in the next Section 3.3 to select values of (α, t, γ, q), and illustrate their
impact on the ordering statements in Section 5.

3.3 Decision theoretic framework

In the previous section, we defined a hierarchy of ranking statements (elementary, local,
and global). Our goal is to identify global statements having high posterior probability
while simultaneously including as many local statements as possible. To this end, we
formulate this as an optimization problem within a decision theoretic framework. We
use a reward function and assume that the space of actions corresponds to the set of all
possible global statements, that is, each action is equivalent to a global statement. We
can in principle construct global statements by putting together any arbitrary combi-
nation of elementary and local statements without using a posterior distribution. Since
the space of actions is finite, we should then compute the reward function for each of
these statements and choose the one that maximizes the reward. However, the space of
actions is massive, and it turns out to be infeasible to evaluate the reward function for
all actions. For computational efficiency, we discard in advance actions that have low
posterior probability. This is why we consider global statements constructed using the
posterior distribution, that is, statements of the form Gα,t,γ,q with non-negligible pos-
terior probability. We remark that since we only consider global statements constructed
using the posterior distribution (in particular, using the data), our strategy is not strict
decision theoretic approach, but rather an approximate one.

When optimizing the reward function, locally, we seek statements that maximize
the number of elementary comparisons, which is given by |Al,α ∪ Al,α| for the lth
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parameter. However, each local statement Al,α,t allows an error that depends on t, and
we seek to simultaneously minimize this. Globally, we seek to maximize the number of
local statements |Gα,t,γ | while minimizing the error q. Finally, we want the posterior
probability of the final global statement Gα,t,γ,q to be high. With this in mind and
defining a = (α, t, γ, q) ∈ [0, 1]4 to be an action (that in turn leads to a statement
Gα,t,γ,q), we couch this in a decision theoretic framework and seek to design a reward
function satisfying the following Condition 3.1.

Condition 3.1. The reward function assessing Gα,t,γ,q satisfies the following.

1. It is a non-decreasing function of |Al,α ∪ Al,α| for l ∈ Gα,t,γ , and of |Gα,t,γ |.

2. It is a non-increasing function of t and q.

3. It is a non-decreasing function of P(Gα,t,γ,q).

An example of such a reward function is

R(a) = R(α, t, γ, q) = C(Gα,t,γ,q)× P(Gα,t,γ,q), (3.5)

where

C(Gα,t,γ,q) = 
(1− q)× |Gα,t,γ |� ×

⎧⎨
⎩

∑
l∈Gα,t,γ


(1− t)× |Al,α ∪ Al,α|�

⎫⎬
⎭ (3.6)

satisfies the first two parts of Condition 3.1. In this case, the factor C(Gα,t,γ,q) equals
the (1−q)×100 percent of the number of local statements within Gα,t,γ,q multiplied by
(1−t)×100 percent of the total number of elementary statements within the local state-
ments comprising Gα,t,γ,q. Thus, adding (or removing) local statements in Gα,t,γ,q will
raise (or lower) C(Gα,t,γ,q) by (1−q)×100 percent of the number of added (or removed)
local statements multiplied by (1− t)× 100 percent of the total number of elementary
statements within the added local statements. If the number elementary statements in-
creases (or decreases) within a local statement already in Gα,t,γ,q, the factor C(Gα,t,γ,q)
will change by (1 − t) × 100 percent of the number of added (or removed) elementary
statements. It is worth noting that the reward function in equation (3.5) changes in di-
rect proportion to P(Gα,t,γ,q) and C(Gα,t,γ,q). If either C(Gα,t,γ,q) or P(Gα,t,γ,q) change
in ±1%, the reward function will also change in ±1%. Changes in reward function values
are primarily governed by the trade-off between C(Gα,t,γ,q) and P(Gα,t,γ,q) because less
sparse global statements (i.e., larger C(Gα,t,γ,q)) leads to smaller posterior probabilities
(i.e., smaller P(Gα,t,γ,q)). Depending on the application, the dynamics of this trade-off
will differ.

With an abuse of notation, the function C is interpreted as a measure of the quality
of a global statement G comprised of local statements as described in Section 3.2; this
does not necessarily have to be constructed using the parameters (α, t, γ, q). Restricting
ourselves to the set of global statements that are indeed constructed using parameters
(α, t, γ, q), the reward function (3.5) corresponds to the posterior mean of a utility
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function of the form u{(ξ1, . . . , ξL), a} = C(Gα,t,γ,q)× 1(Gα,t,γ,q). Doing this allows us
to reduce the space of all possible global statements to a more manageable size and
constrain the optimization to statements having high posterior probability.

An efficient algorithm to approximate the optimizer of the reward function â =
(α̂, t̂, γ̂, q̂) = argmaxa∈[0,1]4 R(a) is provided in Section 2 of the supplementary mate-
rial. Section 3.4 provides asymptotic guarantees showing that, under this strategy, the
optimal global statement Gα̂,t̂,γ̂,q̂ converges to the “true” ranking. Since users may also
be interested in fixing local and global errors at desired values or making statements
that ensure a minimum posterior probability, the algorithm in Section 2 of the supple-
mentary material also enables users to approximate optimal global statements over any
subset of (α, t, γ, q) such that P(Gα,t,γ,q) is above a given value.

The computational cost of finding a global statement given M samples drawn from
the posterior distribution is O(ML2); this is because we have to consider all possible
pairwise comparisons to form the sets El,l′ , Al,α and Al,α. However, this can be trivially
parallelised since they can be computed independently of each other for each parameter.
Having written code in R and C++, even without parallelisation, it takes only a few
minutes to compute global statements for up to 4×103 parameters and 2×103 posterior
samples. Precise results for computational times required to approximate the optimal
global statements are provided in Section 4.3 for a simulation study, and in Sections 5.1
and 5.2 for the NBA application.

3.4 Large data limit

We study the asymptotic behavior of the proposed procedure when there is a “true”
underlying ξ� = (ξ�1 , . . . , ξ

�
L) that generates the data and the probability measure P

concentrates around this truth as the amount of data increases. This is the case when
P is a consistent posterior distribution. Writing the measure P as a function of N as
P(N), where N is the number of observations, we assume that the following consistency
condition holds:

P(N) {ξ ∈ Bε(ξ�)} → 1 in Pξ� -probability for any ε > 0, (3.7)

whereBε(ξ�) denotes a ball around ξ� of radius ε> 0,Bε(ξ�)= {ξ∈ΞL : dist(ξ, ξ�)≤ ε},
dist(·, ·) denotes a distance measure on ΞL, and Pξ� denotes the data-generating mech-
anism under parameter value ξ�. In the following Proposition 2, we show that our
method is guaranteed to produce a traditional ranking with high posterior probability
as N → ∞ while assuming that, without loss of generality, ξ�1 ≺ · · · ≺ ξ�L.

Proposition 2. Let ξ� be such that ξ�1 ≺ · · · ≺ ξ�L. If the distribution P(N) concen-
trates at ξ� in Pξ�-probability as N → ∞ (that is, equation (3.7) holds), the optimal
action (α̂(N), t̂(N), γ̂(N), q̂(N)) converges to (α̂(∞), t̂(∞), γ̂(∞), q̂(∞)) ≡ (0, 0, 0, 0) in Pξ�-
probability, with G0,0,0,0 stating that ξ1 ≺ · · · ≺ ξL.

Proof of Proposition 2. We can find ε > 0 such that ξ1 ≺ · · · ≺ ξL for all ξ ∈ Bε(ξ
�), for

example, by choosing ε = minl∈{1,...,L} |ξl+1− ξl|/3 if ξl ∈ R for all l. By equation (3.7),
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for any δ > 0, we can choose N large enough such that

P(N) {Bε(ξ
�)} > 1− δ, (3.8)

which implies P(N)(ξ1 ≺ · · · ≺ ξL) > 1− δ. Choosing

δ < min{α, γ} (3.9)

implies that P(N)(El,l′) > 1 − δ for l > l′ and P(N)(El′,l) > 1 − δ for l < l′. Since
δ < α, from equation (3.2) we have that Al,α,t ⊇ Bε(ξ

�) for all l ≥ 0, and thus
P(N)(Al,α,t) ≥ P(N){Bε(ξ

�)} ≥ 1 − δ for all l ≥ 0. Since δ < γ, this implies that
Gα,t,γ = {1, . . . , L} for any γ > 0. This in turn implies that Gα,t,γ,q ⊇ Bε(ξ

�) for all
q ≥ 0. Thus the reward function (3.5) is maximized for t = q = 0. Since the reward
function (3.5) is a decreasing function of α and γ, and since P(Gα,t,γ,q) ≥ 1 − δ, the
reward function is maximized for a = (α̂(∞), t̂(∞), γ̂(∞), q̂(∞)). The result now follows
from equations (3.9) and (3.8).

4 Simulation study

We perform a simulation study to investigate the global statements defined in Section 3.
The simulation study is based on a subset of the NBA lineup data so that synthetic
datasets mimic the inherent complexities of the NBA lineup data. Section 4.1 introduces
the approach adopted to model the data (which is used later in Section 5) and generate
synthetic datasets. Section 4.2 describes simulation of the synthetic datasets and factors
considered in the simulation study, and Section 4.3 presents the obtained results.

4.1 Statistical model

The model used to estimate player abilities based on the NBA data is detailed; this will
be used in the sequel to illustrate our approach. We emphasize that the framework of
Section 3 is applicable regardless of the model posed and the dataset considered.

Let zi and z′i denote the points scored by the two lineups that competed in the ith
encounter, where i = 1, . . . , N , and N denotes the number of encounters. Each lineup is
comprised of five players and, as before, we assume that ξ = (ξ1, . . . , ξL) ∈ R

L denotes
the abilities of the L total players. Let Li ⊂ {1, . . . , L} and L′

i ⊂ {1, . . . , L} such that
Li ∩L′

i = ∅ identify the five players of the two lineups in the ith encounter. The ability
of lineup Li is defined as

τLi =
∑
k∈Li

ξk. (4.1)

By defining the ability of lineup Li as the sum of the abilities of individuals in the lineup,
we induce correlation among lineups that share players and achieve a more parsimonious
setup. Following Huang et al. (2008), we model the difference in points scored as

(zi − z′i) | ξ, σ2 ind∼ Normal(τLi − τL′
i
, σ2), i = 1, . . . , N. (4.2)

We estimate ξ and σ2 under a Bayesian approach, and choices for the prior distribution
of ξ and σ2 are discussed in Section 4.2. Notice that (4.1) and (4.2) correspond to an
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extension of the Bradley-Terry model (Bradley and Terry, 1952) for continuous scores
and that includes group information (i.e., lineups). If our goal were to create ordering
statements for lineups only, a potential modeling strategy would be to have lineup-
specific parameters. However, this would result in a less parsimonious model, which
would introduce more uncertainty, and prediction for unobserved lineups would not be
available.

We note that the model given by equations (4.1) and (4.2) is not identifiable. Dif-

ferent conditions can be imposed for identifiability, such as requiring L−1
∑L

l=1 ξl = 0,
which is interpreted as an average player having ability zero, or requiring ξl̃ = 0 for a

fixed l̃ ∈ {1, . . . , L}, in which case all other abilities are interpreted as relative to the

ability of the l̃th player. For this paper, we impose the latter constraint with l̃ being
the player with the highest frequency of appearance.

We acknowledge that the structure of the NBA data is particularly complex and
model (4.2) does not account for some of the structure present in the data. For ex-
ample, point differences are discrete random variables, player abilities are expected to
be correlated with playing times, some players might have similar abilities (i.e., the
modeling strategy could account for ties), information beyond lineup composition (e.g.,
homecourt) could influence point differences, and the definition of lineup abilities should
include interaction terms between players. Nonetheless, this simple model is expected
to be able to capture important orderings among players’ and lineups’ abilities.

4.2 Simulation setting

We conduct a simulation study to examine the performance of the proposed method
under four different conditions: (i) the prior distributions for ξ and σ2, (ii) the sample
size (which is given by the number of encounters), (iii) the true abilities to be estimated,
and (iv) the number of parameters to be ordered (which is given by the number of
players). In what follows, we provide specific details about how synthetic datasets are
generated; as a high level description, our approach is to first fit model (4.2) to a subset
of the NBA data and then employ the posterior distribution of ξ and σ2 as the seed to
generate true player abilities.

To complete the model specification described in the previous section, we consider
the following priors for ξ and σ2.

Prior 1: ξl | μ iid∼ Laplace(μ, 3), l = 1, . . . , L,

Prior 2: ξl | μ iid∼ Laplace(μ, σλ−1/2), l = 1, . . . , L, λ ∼ Gamma(1, 1),

Prior 3: ξl | μ iid∼ Normal(μ, σ2λ), l = 1, . . . , L, λ ∼ Half-Cauchy(0, 1),

with π(σ2) ∝ σ−2 and μ ∼ Normal(0, 32). Prior 1 represents an informative scenario
that assumes knowledge of the approximate variability of ξls. Priors 2 and 3 are less
informative and induce shrinkage towards the mean μ, with prior 3 producing more
shrinkage than prior 2. Prior 2 is motivated by Park and Casella (2008) and Hans
(2009, 2010), and prior 3 by Gelman (2006) and Polson and Scott (2012). The prior
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variance for μ was set to 9 due to the fact that most encounters between lineups are
competitive and so few result in point differences of double digits.

Since the idea is to simulate data that mimic the complexities of the NBA lineup
data, we consider two subsets of data with five and ten randomly selected teams, re-
spectively. The subset with five teams has 78 players and 844 encounters, while the
one with ten teams has 167 players and 3604 encounters. For both subsets, we sam-
ple from the posterior distribution of the abilities of players based on the three priors
described above. We use Stan (Stan Development Team, 2018) to collect 104 samples
from each posterior distribution, from which we discard the initial 20% as burn-in and
thin every 8 after that. We use the no-U-turn sampler (NUTS) (Hoffman and Gelman,
2014), which is an adaptive version of Hamiltonian Monte Carlo (Duane et al., 1987).
From the 104 samples, we randomly select fifty samples denoted by (ξ̃(j,k,d), σ̃

2
(j,k,d)),

with j = 1, . . . , 50, indexing the samples, k = 1, 2, 3 indexing the prior used for data
generation, and d = 5, 10 being the number of teams. The use of priors 1, 2, and 3 for
data generation offers different levels of similarity among true abilities, with prior 1 and
3 leading to the least and most similar abilities, respectively.

We generate synthetic datasets as follows. For each value of (j, k, d), we assume that
ξ̃(j,k,d) and σ̃2

(j,k,d) are the true abilities and variance, respectively. Given the shrinkage

properties of the considered priors, the abilities in ξ̃(j,3,d) are more similar to each other

than those in ξ̃(j,2,d), and ξ̃(j,1,d) represents the case where abilities are the least similar.
Using model (4.2), we simulate differences in points scored assuming that the lineups
in each encounter are the same as observed in the NBA data. The synthetic datasets
thus are comprised of 844 (for d = 5) and 3604 (for d = 10) encounters. Moreover,
for each (j, k, d), we consider two sets of experiments indexed by s = 1, 2. In the first
set (s = 1), we consider the encounters as they are, while in the second set (s = 2),
we generate two independent realizations of the differences in points scored zi for each
encounter. Thus for the second set of experiments, the synthetic datasets are comprised
of 1688 (for d = 5) and 7208 (for d = 10) encounters. In total, we are generating 600
(50× 3× 2× 2) synthetic datasets, where each of them are associated with a particular
combination of (j, k, d, s). We use D(j,k,d,s) to denote the synthetic dataset corresponding
to combination (j, k, d, s).

For each synthetic dataset we sample from the posterior distributions of the abilities
of players and lineups using the three priors described above. We use the algorithm
in Section 2 of the supplementary material and restrict the search to statements with
posterior probability greater than 0.9 to obtain the optimal global statements. Let

G
(j,k,d,s,m)
â denote the optimal global statement – note that â = (α̂, t̂, γ̂, q̂) is also a

function of (j, k, d, s,m) – obtained from model (4.2), prior m, and dataset D(j,k,d,s).
To evaluate the performance of our procedure at each combination v = (k, d, s,m), we
compute the following measures: (i) posterior probability of the global statements; (ii)
frequentist coverage, that is, fraction of global statements that are consistent with the
true abilities; (iii) the number of local statements and average number of players (or line-
ups) within local statements for each global statement; and (iv) local and global errors.

We compare our proposed approach with the cumulative probability consensus rank-
ing (CPCR) methodology proposed by Vitelli et al. (2018). Because the information
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provided by our statements and CPCR cannot be compared directly (our approach pro-
duces a joint statement while the CPCR produces a type of marginal statement), we
define a type of joint CPCR. This permits us to compare the two approaches which we do
based on measures equivalent to (i) and (ii), i.e., posterior probability of a type of joint
CPCR; (ii) fraction of joint CPCRs that are consistent with the true abilities. Vitelli
et al. (2018) define CPCRs as follows: first select the item which has the maximum a
posteriori marginal probability of being ranked 1st – we denote this item with ξ(1); then
the item which has the maximum a posteriori marginal posterior probability of being
ranked 1st or 2nd among the remaining ones – denoted by ξ(1:2), etc. Thus, we define

joint CPCRs for players as
⋂L

l=L0
[ξ(1:l) ranked 1st, 2nd, . . ., or lth], L0 = 1, . . . , L, and

for lineups as
⋂T

l=L0
[τ(1:l) ranked 1st, 2nd, . . ., or lth], L0 = 1, . . . , T , where T is the

number of observed lineups.

4.3 Results

We apply our approach using the reward function in equation (3.5) to find global state-
ments for lineups and players. For lineups, we draw a sample from the posterior dis-
tribution of player abilities, which simultaneously leads to a sample from the posterior
distribution of lineup abilities τLi . The optimization described in Section 3.3 is not
performed over all 5-tuples, but only over the observed lineups. Given the similarities
between the patterns observed for players and lineups, we report the results for lineups
in Figure 2, while results for players are deferred to Figure 1 of the online Supplementary
Material. Local and global errors for statements associated with players and lineups are
both reported in the online Supplementary Material (see Figure 2). Moreover, state-
ments associated with lineups are based on the lineups from the Cleveland Cavaliers
and San Antonio Spurs.

The first observation from Figure 2 is that the proposed procedure is, as expected,
able to find global statements having high posterior probability (above 0.9). The num-
ber of teams d ∈ {5, 10} does not appear to have a direct impact on the posterior
probabilities or frequentist coverage as no clear patterns emerge. However, as expected,
relative differences between true player abilities (reflected by k), coupled with the prior
distribution specification m, impacts the frequentist coverage as well as the number of
local statements and average number of lineups within local statements.

Generally speaking, the average number of lineups within local statements are small-
est for prior 3 (that is,m = 3). Since making statements with a large number of lineups is
desirable, this is unsatisfactory if the frequentist coverage does not remain high. Notice,
however, that as the relative similarity among player and lineup abilities increases (that
is, k increases), the coverage associated with priors 1 and 2 decreases quite dramatically
even with sparse global statements (that is, low number of local statements and low
average number of players or lineups within local statements); this too is undesirable.
Thus, the balancing act alluded to earlier (correctness of statement versus the number
of items the statement contains) is impacted by the prior distribution and similarity of
true parameter values. Indeed, when the true abilities are most similar (k = 3) and the
model accurately captures this (m = 3), we observe global statements that are sparser,
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Figure 2: Simulation results for lineups assessing the effect of prior distribution used
for fitting (captured by m), prior distribution used for data generation (captured by
k), number of parameters (captured by d), and doubling the sample size (captured
by s) with v = (k, d, s,m). The top-left plot displays the posterior probability of the
global statements; the top-right plot shows the frequentist coverage; the bottom-left plot
presents the number of local statements within global statements; and the bottom-right
plot shows the distribution of the average number of lineups within local statements
across global statements. These plots summarize results over 50 synthetic datasets.

indicating that the method refrains from collecting many local statements when forming
the global statement, which is the right decision in such cases. Finally, increasing the
number of encounters (moving from s = 1 to s = 2) has the desired effect of producing
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Figure 3: Simulation results for joint CPCRs for lineups assessing the effect of prior
distribution used for fitting (captured by m), prior distribution used for data generation
(captured by k), number of parameters (captured by d), and doubling the sample size
(captured by s) with v = (k, d, s,m). Each plot displays the average posterior probability

and frequentist coverage of the joint CPCRs (i.e.,
⋂T

l=L0
[τ(1:l) ranked 1, 2, . . ., or l]).

These plots summarize results over 50 synthetic datasets.

statements that are less sparse and have higher posterior probability and smaller local
and global errors (see Figure 2 of the Supplementary Material).

We now analyze the results obtained under the CPCR methodology. As originally
intended by Vitelli et al. (2018), the CPCR approach identifies, for each l = 1, . . . , T ,
events of the form [τ(1:l) ranked 1st, 2nd, . . ., or lth] that concentrates the highest poste-
rior probability (see Figure 3 in the supplementary material). Both the average posterior
probability and the frequentist coverage for each CPCR are similar to each other across
all combinations of simulation factors. The CPCRs representing the lineups with high-
est ability have probabilities less than or around 0.3, while CPCRs representing lineups
that have the lowest ability have probabilities close to one (by design CPCRs for the
worst lineups are more imprecise). As mentioned, global statements and CPCR are not
directly comparable because the former provides joint statements and the latter pro-
vides a type of marginal statement. For this reason, we consider joint CPCRs defined as⋂T

l=L0
[τ(1:l) ranked 1st, 2nd, . . ., or lth], L0 = 1, . . . , T . Figure 3 shows the effect that

L0 has on the probabilities for joint CPCRs. The larger L0 (less lineups in the joint
statement), the higher the probability. Notice how quickly these probabilities decay to
zero. In fact, if the goal is to report a joint statement that concentrates a probability
close to 0.9, we must select L0 = 243 for d = 5 (5 teams = 247 lineups) and L0 = 422
for d = 10 (10 teams = 425 lineups). For the case L0 = 243 with d = 5, the most precise

statement in
⋂247

l=243[τ(1:l) ranked 1, 2, . . ., or l] states that lineup τ(1:243) is ranked 1st,
2nd, . . ., or 243th out of 247 lineups, which does not provide much information. No-
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Figure 4: Wall clock times required to approximate optimal global statements without
parallelisation.

tice that under the CPCR methodology the most informative statements are those for
the best lineups suggesting we could alternatively consider joint statements of the form⋂L0

l=1[τ(1:l) ranked 1, 2, . . ., or l], L0 = 1, . . . , T . Unfortunately, the probability of any
of those joints statements will be upper bounded by the probability of [τ(1) ranked first]
which is, in the best case, around 0.3 as stated before. This strategy would limit the
possibility of finding joint statements that concentrate high probability. The results for
players under the CPCR methodology are similar to those obtained for lineups (see
Figures 3 and 4 in the supplementary material).

The main conclusion from the simulation study is that the proposed method succeeds
in finding statements having high posterior probability. The accuracy of the statements
at containing the truth relies on the accuracy of the posterior distributions, and we
observe that employing prior 3 produces global and local statements that maintain
good frequentist properties at the cost of producing conservative statements. On the
other hand, priors 1 and 2 produce statements that are less conservative, but are also
more inaccurate. Thus if one does not have prior information regarding the similarity of
true parameters, the recommended option is to use priors that lead to more conservative
statements. If one indeed has prior information that the true parameters are relatively
dissimilar, more informative priors (like prior 1) should be used as they lead to less
sparse statements. We briefly mention here that the same conclusions where drawn
when generating data that contained lineups that were not observed in the NBA data.
Hypothetical lineups are clearly of interest to general managers and coaches as they
work through the process of team building. Details are provided in Section 3 of the
supplementary material.

To end this section, we provide the computational times required to optimize the
global statements in Figure 4. While parts of the algorithm for finding the optimal local
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and global statements can be parallelised to speed things up, we do not incorporate this
into our code. Even without doing this, it takes less than two minutes to approximate
the optimal global statement.

5 Application: National Basketball Association lineup
data

The 2009–2010 NBA season consisted ofN = 30,807 total encounters with 10,942 unique
lineups based on 30 teams and 510 players. For each encounter, the points scored by
each lineup is recorded along with the five players that constituted each lineup. For
simplicity, we treat players that change teams during the season as different players;
such changes mid-season affect a small number of players. We fit the model described in
Section 4.1 using prior 3. This prior was used as the simulation study indicated that it
should be used in the absence of knowledge regarding the similarity of true parameters.
Similarly to Section 4.2, posterior sampling was carried out using NUTS implemented
in Stan. We generated 13 independent Markov chain Monte Carlo (MCMC) chains. The
initial 2,000 iterates for each chain was discarded and each chain thinned by 20 until a
total of 10,000 combined posterior draws were collected. Then our method was applied
to player and lineup abilities based on the posterior distributions of the player abilities.

Instead of optimizing over the set of all possible global statements, in applications
one may want to impose additional constraints in order to obtain global statements
with desired characteristics. Our framework allows this by simply letting us fix certain
parameters while optimizing over the others. Setting the parameter t to be very small
leads to many narrow local statements (that is, lineup/player statements that contain
few competing lineups/players). This can be seen from the form of the function (3.6).
A similar effect occurs at the global level if q is very small. To illustrate the impact
that t and q have on the resulting local and global statements, we consider t = q ∈
{0, 0.1, 0.25}. Unless otherwise stated, we use a grid of 21 equally spaced values between
0 and 0.05 for α and γ to obtain global statements; our simulations have indicated that
the results do not change by using a finer grid.

5.1 Ordering statements for lineups

We detail results for lineups in this section. For ease of illustration, we only consider
lineups from teams that made the playoffs during the season under consideration. This
subset of the data constitutes 16 teams, 261 players, 5,121 lineups, and 15,884 encoun-
ters.

Figure 5 displays the global statement for the 5,121 lineups based on t = q = 0.1 and
t = q = 0.25. It took about eighteen minutes to compute this. The posterior probability
of the global statement using t = q = 0.1 is 0.95 and using t = q = 0.25 is 1.0. As
expected, each lineup’s local statement for t = q = 0.1 is sparser in the sense that they
contain less competing lineups compared to lineup local statements for t = q = 0.25.
To illustrate this the red points in the left plot of Figure 5 correspond to lineups whose
local statements are empty. That is, these lineups are no better or worse than any other
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Figure 5: Visual depiction of global statement based on the 5,121 lineups from the 16
playoff teams. Left and right panels display global statements setting (α, t, γ, q) equal
to (0.025, 0.1, 0.05, 0.1) and (0.05, 0.25, 0.05, 0.25), respectively. Each graph should be
interpreted vertically, where each column of dots represents a particular lineup and its
corresponding local statement. Red dots represent lineups to which no comparisons with
any other lineups can be made. Gray dots below the black one define lineups that are
worse than the corresponding lineups and those above define the group of lineups that
are better. Green “+” points correspond to the lineups listed in Table 1.

lineup. On the other hand, all lineup local statements based on t = 0.25 are non-empty.
This added “information” comes at the cost of accuracy as more errors are permitted for
each lineup. We therefore recommend exploring global statements for a range of values
for t and q, and making decisions depending on the amount of risk that a decision maker
is willing to take.

The lineup that was better than the greatest number of other lineups is from the
Orlando Magic and is comprised of Matt Barnes, Vince Carter, Dwight Howard, Rashard
Lewis, and Jameer Nelson. This lineup was better than 4,803 of the 5,121 lineups and
worse than none in their local statement for t = q = 0.1, and they were better than 5,019
lineups and worse than none in their local statement for t = q = 0.25. Table 1 contains
the “best” lineups (that is, those whose local statement contains the highest number of
competing lineups for which they are better) extracted from the global statement for
each of the playoff teams under both t = q = 0.25 and t = q = 0.1. Interestingly, moving
from t = 0.1 to t = 0.25 results in a larger increase of lineups “below” than lineups
“above” for each team. Each of the lineups could be considered to be their teams “best”.
To visualize where each lineup in Table 1 is located in the global statement, they are
highlighted by green colored “+” points in Figure 5. It should be clear why, for example,
Chicago’s lineup is not better than any other lineup, as it is found in the lower tail of
lineup abilities. It may be tempting at first glance to use the information like that
provided in Table 1 to rank order lineups. Doing so however, is problematic for two
reasons. First, it is not clear how to rank lineups that have empty local statements (i.e.,
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t = q = 0.1 t = q = 0.25

Team Lineup Below Above Below Above

ATL Bibby, Horford, Johnson, Josh Smith, Williams 2241 0 3230 0
BOS Garnett, Perkins, Pierce, R. Allen, Rondo 1696 0 2624 1
CHA Augustin, Diaw, Jackson, Murray, Wallace 3 9 51 26
CHI Alexander, D. Brown, Law, Pargo, Richard 0 89 0 332
CLE James, Jamison, Parker, Varejao, West 2505 0 3473 0
DAL Dampier, Kidd, Marion, Nowitzki, Terry 1428 0 2347 0
DEN Andersen, Anthony, Billups, Nene, Smith 555 1 1205 2
LAL Artest, Bryant, Bynum, Fisher, Gasol 2940 0 3818 0
MIA Alston, Haslem, ONeal, Richardson, Wade 639 0 1370 1
MIL Bogut, Delfino, Ilyasova, Jennings, Salmons 168 1 645 2
OKC Collison, Durant, Krstic, Sefolosha, Westbrook 890 0 1723 1
ORL Barnes, Carter, Howard, Lewis, Nelson 4803 0 5019 0
PHX Dudley, Frye, Nash, Richardson, Stoudemire 948 1 1774 2
POR Aldridge, Batum, Camby, Miller, Roy 1410 0 2418 0
SAS Duncan, Ginobili, Jefferson, McDyess, Parker 2168 0 3184 0
UTA Boozer, Kirilenko, Korver, Millsap, Williams 452 1 1094 2

Table 1: Results when comparing lineups from all playoff teams. Each team’s listed
lineup corresponds to that which was better than the highest number of lineups among
all playoff teams. The columns “below” and “above” refer to the number of lineups
worse and better, respectively, than the stated lineup across all playoff teams.

those that are no better or worse then any other lineup). Second, it is possible that
there exist two lineups whose local statements are the same size but are comprised of
different lineups. Here too, it is unclear how to rank the two lineups.

It is somewhat challenging to summarize all the information found in Figure 5.
From a coaching perspective, focusing specifically on their team’s lineups would be
more useful as this would allow coaches to more easily identify their team’s best lineups
and game plan for a particular opponent. To illustrate this, we extract the 305 local
lineup statements from the global statement for the Utah Jazz and display them in
Figure 6. We note that all local statements are guaranteed to have posterior probability
at least that of the global statement. As before, setting t = q = 0.1 results in local
statements that are sparser relative to those for t = q = 0.25, and the red points found
in the left plot of Figure 6 correspond to lineups whose local statements are empty.

Unsurprisingly, for both t = q = 0.1 and t = q = 0.25, Deron Williams was a member
of all the “best” Utah Jazz lineups. Perhaps somewhat surprisingly, Kyle Korver rather
than Carlos Boozer (the supposed 2nd best player on the Jazz) was featured more
regularly in the “better” Jazz lineups. Very surprisingly, Kyrylo Fesenko (a seldom
used player) was a regular member of the Jazz’s “better” lineups. In fact the lineup
with the largest estimated ability is comprised of Carlos Boozer, Kyrylo Fesenko, Andrei
Kirilenko, Kyle Korver, and Deron Williams. This lineup played sparingly (a total of five
encounters), but has a local statement that is not empty (better than 305 other lineups



A. F. Barrientos, D. Sen, G. L. Page, and D. B. Dunson 799

Figure 6: Graphical display of the 301 lineups that the Utah Jazz employed dur-
ing the 2009–2010 NBA season. Blue dots correspond to lineups from the Denver
Nuggets. Left and right panels display global statements setting (α, t, γ, q) equal to
(0.025, 0.1, 0.05, 0.1) and (0.05, 0.25, 0.05, 0.25), respectively. Each graph should be in-
terpreted vertically, where each column of dots represents a particular lineup and its
corresponding local statement. Red dots represent lineups to which no comparisons with
any other lineups can be made. Gray dots below the black one define lineups that are
worse than the corresponding lineups and those above define the group of lineups that
are better.

most of which didn’t contain Deron Williams). Thus, it seems that the Utah Jazz coach
should have explored lineups that contained Fesenko more. Contrast this to the lineup
of Andrei Kirilenko, Kyle Korver, Wesley Matthews, C. J. Miles and Deron Williams
which played more regularly and whose estimated ability is similar (the red dot with the
largest estimated ability in left plot of Figure 6). However, the local statement associated
with this lineup is empty. The reason behind this is the uncertainty associated with the
lineup ability estimates. The posterior standard deviation of the latter is larger than the
former. Remaining silent about this lineup highlights a novel feature of our approach.
It turns out that the Utah Jazz lineup with the local statement containing the highest
number of competing lineups consists of Carlos Boozer, Andrei Kirilenko, Kyle Korver,
Paul Millsap, and Deron Williams. This lineup was arguably the strongest for the Utah
Jazz during the 2009–2010 season.

It is valuable for a coach to know which of their team’s lineups should compete
against particular lineups of the opposing team. In the first round of the playoffs of the
2009–2010 NBA season, the Utah Jazz played against the Denver Nuggets. Each blue
point in Figure 6 corresponds to a particular lineup from the Denver Nuggets. Thus we
see that the “best” Jazz lineups are better than a number of Denver Nugget lineups for
t = q = 0.1. However, it is only when we allow more uncertainty regarding the accuracy
of the local lineups that we see some Denver Nugget lineups that are better than any
Utah Jazz lineups.
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5.2 Ordering statements for players

Ideally, global statements would consist of dense local statements that have high pos-
terior probability and small values for α, γ, t and q. Unfortunately, this turns out to
be impossible to achieve when comparing abilities of all 510 players. Figure 7 of the
Supplementary Material displays the global statement of all 510 players for t = q = 0.1
and t = q = 0.25. It took under a minute to compute these global statements. The
posterior probability is above 0.95 in both cases, but local statements are very sparse,
thus limiting the usefulness of the global statement. This is a consequence of the uncer-
tainty associated with player ability estimates (see Figure 6 of the online Supplementary
Material) and producing a global statement based on all 510 players. Each additional
player included in the global statement introduces more uncertainty which propagates
to the local statements.

That being said, comparing all 510 players is typically not of interest as players
can take on vastly different roles within a team framework. To further illustrate our
method, we apply our procedure to a subset of players whose usage rate (an estimate
of the percentage of a team’s possessions ended by a particular player’s action) was in
the top twenty among all players in the 2009–2010 season. This permits us to compare
players with similar roles across teams. As a brief aside, we remark that player abilities
are estimated borrowing information across players that play on the same team. As
a result, players who played on bad teams (for example, Golden State Warriors) were
often members of lineups that lost many encounters (that is, negative difference between
points scored and points allowed), and their ability was estimated to be generally lower
than players on strong teams. Thus, small contributions to winning lineups result in a
higher estimated ability relative to larger contributions to losing lineups.

The posterior distributions for players’ abilities whose usage rate belonged to the
top twenty during the 2009–2010 season are provided in the top-left plot of Figure 7. For
this subset of players, we fix t = q = 0 as this will permit us to use the local statements
to produce multiple orderings that can all be interpreted similarly to traditional rank-
ings. Note that unlike traditional rankings, the probability that all these rankings hold
simultaneously is equal to the posterior probability of the global statement. Further,
the probability of any subset of these rankings holding simultaneously is lower bounded
by the posterior probability of the global statement. To rank players using the global
statement, we only need to look at the inherent transitivity of the local statements.
That is, if player 1 is better than players 2 and 3, and player 3 better than player 2,
then we can conclude that player 1 is better than player 3 is better than player 2 (i.e.,
ξ2 < ξ3 < ξ1). Although the transitivity of the local statements can be used to create
rankings of subsets of players when either t �= 0 or q �= 0 (that is, local and global errors
are allowed), we refrained from exploring them as it is not evident how to quantify the
inherited error for each of the derived rankings.

The global statement in the top-right plot of Figure 7 has a posterior probability
of 0.87. This statement is sparse and only produces rankings that involve at most two
players (for example, ξJames > ξEllis and ξWade > ξEllis, et cetera.). Even though it is
sparse, we can still conclude that the players with empty local statements (e.g., players
with red dots “POR Roy” – “CHI Rose”) are essentially exchangeable in terms of the
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Figure 7: Results from players that were in the top twenty in terms of usage rate. The
top-left plot corresponds to the posterior distributions of the player abilities for each of
the twenty players. The top-right and bottom-left plots display the global statements
setting (α, t, γ, q) equal to (0.0225, 0, 0.05, 0) and (0.09, 0, 0.9, 0), respectively. These two
plots can be interpreted similarly as Figure 5. The bottom-right plot displays the global
statement in the bottom left-plot using a network graph. Arrows point to nodes (players)
that are better than those represented by the respective nodes.

their abilities. However, their salaries are very different ranging from 1 million to 16

million USD a year. Of course some of the discrepancy in salary is due to experience in

the league. But even players like Stephen Jackson and J. R. Smith who play very similar

roles, using a similar style of play, and with a similar number of years in the league, differ

in salary by more than 2 million USD. Thus, our approach can provide general managers

added information when making personnel decisions by indicating which players are very



802 Bayesian Rankings

similar in their contributions to lineup success. The global statement provided in the
bottom left of Figure 7 is less sparse with a posterior probability of 0.34 and, given
that this probability is low, we provide it more to contrast the sparser global statement.
In this global statement, Lebron James and Dwayne Wade were better than 10 and 9
players, respectively, and worse than none. Monta Ellis, on the other hand, was worse
than 11 players and better than none.

To help visualize the relationships between players, the global statement can be
plotted using a network graph. The bottom right plot of Figure 7 displays a network
graph that corresponds to the global statement in the bottom-left plot. Each node
corresponds to a player. The network graph is directed in that edges connecting two
players indicate which player is better by way of an arrow. Thus, any path of the graph
represents a ranking of the nodes (that is, players). From the network graph, its clear
that Monta Ellis is ranked as the worst player among the twenty, as many arrows are
pointing away from him. Also notice that Monta Ellis is ranked below Carmelo Anthony,
who is ranked below Lebron James. So, we can conclude that ξJames > ξAnthony > ξEllis.
Similarly, we can conclude that ξDurant > ξRose and ξBryant > ξHamilton, but also that
Bryant is neither better nor worse than James, et cetera. Note that all these ranking
statements, or any combination of rankings from the global statement, have a joint
posterior probability that is bounded below by 0.34 (which is the posterior probability
of the global statement).

Twenty players are displayed in the top left plot of Figure 7, where the order of
the players on the x-axis corresponds to their median ability. Given that no ranking
of the twenty players appears more than once among the 104 MCMC iterates, any
point estimate of the ranking will have posterior probability close to zero. Even if focus
is placed on rankings that only require James, Wade, and Durant to be in the top
three regardless of order, the posterior probability is still only 9 × 10−2. Similarly, the
posterior probability of rankings where Ellis, Maggette, and Kaman are in the bottom
three regardless of order is 10−2, and the posterior probability of rankings where both
James, Wade, and Durant are in the top three and Ellis, Maggette, and Kaman are in the
bottom three simultaneously is 7×10−4. In contrast, our global statement communicates
a similar message about these six players but with a much higher probability (3.4×10−1

compared to 2.5× 10−3). Notice that our global statement indicates that, for example,
James, Wade, and Durant are the players who have the largest number of players that
have a lower ability (see left bottom plot of Figure 7). Further, the global statement
is saying that these three players are better than the seven players below Smith, and
not that they have an ability that is consistently greater than the ability of all other 17
players.

6 Discussion

We have presented a novel procedure to find statements associated with orderings of
parameters (for example, player and lineup abilities). Relying on a decision theoretic
framework, the proposed approach generates statements associated with high posterior
probability while incorporating as many players/lineups into the statements as possible.
This represents a new approach that is quite different from existing ranking methods.
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Although we use a prior distribution that assigns zero probability to ties among
parameters in the numerical illustrations, we can incorporate ties in the statements by
using prior specifications that assign positive probability to them, (for example, spike-
and-slab priors of Ishwaran and Rao, 2005), or by defining ties based on practical criteria
(for example, a tie is present if the maximum difference between parameters is below
a given threshold). Moreover, it would be interesting to consider informative priors for
player abilities. A possibility is to modify the prior mean for ξl in Section 4.2 to μl, with
μl depending on the official NBA ranking of the players in the previous year (that is,
have a different prior mean for each player ability).

From an NBA general manager’s perspective, it may seem unsatisfactory that the
global statements are silent about some players. This could be particularly true when
employing the lineup data to make personnel decisions (for example, deciding between
which free-agents to pursue). In this setting, our procedure can focus specifically on the
small subset of players of interest. Posterior probabilities of the form P(ξl > ξl′ | data)
can be useful for deciding whether to trade players. Since there is often a monetary cost
involved in trading, this can be incorporated as well to calculate the expected gain in
trading players.

Supplementary Material

Supplementary Material for “Bayesian Inferences on Uncertain Ranks and Orderings:
Application to Ranking Players and Lineups” (DOI: 10.1214/22-BA1324SUPP; .pdf).
Contains details associated with the algorithms employed to find local and global state-
ments and optimal global statements in additionn to further results associated with the
simulation study with regards to player and lineup abilities and posterior abilities of all
the 510 players in the 2009–2010 NBA season as well as the global statement for all the
players for t = q = 0.1 and t = q = 0.25.
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